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Block 1 - UNIT 1

Advanced Group Theory

Objectives

• To recall basic concepts of sets and groups

• We try to learn about the relation conjugacy

• To study about Class equation

• Try to learn about Cauchy’s Theorem

1.1 Basic Notions

Set theory is a proper framework for abstract mathemat-

ical thinking. A set is a well-defined collection of objects; that is, it is

defined in such a manner that we can determine for any given object

x whether or not x belongs to the set. The objects that belong to

a set are called its elements or members. We will denote sets by

capital letters, such as A or X ; if a is an element of the set A ,

we write a ∈ A .

Some of the more important sets that we will consider are the

following:

N = {n : n is a natural number } = {1, 2, 3, . . .};

1



2 1.1. BASIC NOTIONS

W = {n : n non-negative integers } = {0, 1, 2, 3, . . .};
Z = {n : n is an integer } = {. . . ,−2,−1, 0, 1, 2, . . .};
Q = {r : r is a rational number } =

{
p
q

: p, q ∈ Z where q 6= 0
}

;

R = {x : x is a real number };
C = {z : z is a complex number } :

We can find various relations between sets as well as perform

operations on sets. A set A is a subset of B , written A ⊂ B or

B ⊃ A if every element of A is also an element of B .

Notice that {4, 5, 8} ⊂ {2, 3, 4, 5, 6, 7, 8, 9} and N ⊂W ⊂ Z ⊂ Q ⊂
R ⊂ C

Trivially, every set is a subset of itself. A set B is a proper subset of

a set A if B ⊂ A but B 6= A . If atleast one element of A is not in

B , we say that A is not a subset of B . For example, if A = {4, 7, 9}
and B = {2, 4, 5, 8, 9} , then A is not a subset of B .

Two sets are equal, written A = B , if we can show that A ⊂ B and

B ⊂ A . It is convenient to have a set with no elements in it. This set

is called the empty set and is denoted by ∅ . Note that the empty

set is a subset of every set. To construct new sets out of old sets,

we can perform certain operations: the union A ∪ B of two sets A

and B is defined as

A ∪ B = {x : x ∈ A or x ∈ B};

the intersection of A and B is defined by

A ∩ B = {x : x ∈ A and x ∈ B}.

If A = {1, 3, 5} and B = {1, 2, 3, 9} , then

A ∪ B = {1, 2, 3, 5, 9}

and A ∩ B = {1, 3}. When two sets have no elements in common,

they are said to be disjoint; for example, if E is the set of even
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integers and O is the set of odd integers, then E and O are

disjoint. Two sets A and B are disjoint exactly when A ∩ B = ∅ .

Sometimes we will work within one fixed set U , called the universal

set. For any set A ⊂ U , we define the complement of A , denoted

by A′ , to be the set A′ = {x : x ∈ U and x /∈ A} . We define the

difference of two sets A and B to be A\B = A ∩ B′ = {x : x ∈ A

and x /∈ B} :

Example 1.1.1. Let R be the set real numbers and suppose that

A = {x ∈ R : 0 < x ≤ 3} and B = {x ∈ R : 2 ≤ x < 4} .

Then

A ∩ B = {x ∈ R : 2 ≤ x ≤ 3}

A ∪ B = {x ∈ R : 0 < x < 4}

A\B = {x ∈ R : 0 < x < 2}

A′ = {x ∈ R : x ≤ 0 or x > 3.

Cartesian Products and Mappings

Given sets A and B , we can define a new set A× B , called the

Cartesian product of A and B , as a set of ordered pairs. That is,

A× B = {(a, b) : a ∈ A and b ∈ B} .

Example 1.1.2. If A = {x, y}, B = {1, 2, 3} , and C = ∅, then

A× B is the set

{(x, 1), (x, 2), (x, 3), (y, 1), (y, 2), (y, 3)} and A× C = ∅ .

We define the Cartesian product of n sets to be

A1 × A2 × · · · × An = {(a1, a2, . . . , an) : ai ∈ Ai, 1 ≤ i ≤ n}.

Subsets of A× B are called relations. We will define a mapping or

function f ⊂ A× B from a set A to a set B to be the special type

of relation where (a, b) ∈ f if for every element a ∈ A there exists
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a unique element b ∈ B . Another way of saying this is that for every

element in A , f assigns a unique element in B . We usually write

f : A→ B .

Instead of writing down ordered pairs (a, b) ∈ A × B , we write

f (a) = b . The set A is called the domain of f and f (A) = { f (a) :

a ∈ A} ⊂ B is called the range or image of f . We can think of the

elements in the function’s domain as input values and the elements

in the function’s range as output values.

A relation is well-defined if each element in the domain is assigned

to a unique element in the range. If f : A → B is a map and

the image of f is B , i.e., f (A) = B , then f is said to be onto

or surjective. In other words, if there exists an a ∈ A for each

b ∈ B such that f (a) = b , then f is onto. A map is one-to-one or

injective if a1 6= a2 implies f (a1) 6= f (a2) . Equivalently, a function

is one-to-one if f (a1) = f (a2) implies a1 = a2 . A map that is both

one-to-one and onto is called bijective.

An ordered pair, denoted (x, y), is a pair of elements x and y in

which x is considered to be the first coordinate and y the second

coordinate. A relation is a set of ordered pairs. The following are

examples of relations:

(i) S = {(1, 1), (1, 2), (3, 4), (5, 6)}

(ii) T = {(−3, 5), (4, 12), (5, 12), (7,−6)}

Every relation determines two sets:

1. The set of all the first coordinates of the ordered pairs is called

the domain.

2. The set of all the second coordinates of the ordered pairs is called

the range.

For the above examples:

(i) domain of S = {1, 3, 5}, range of S = {1, 2, 4, 6}
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(ii) domain of T = {−3, 4, 5, 7}, range of T = {5, 12,−6}.

Some relations may be defined by a rule relating the elements in

the domain to their corresponding elements in the range. In order

to define the relation fully, we need to specify both the rule and the

domain. For example, the set {(x, y) : y = x + 1, x ∈ {1, 2, 3, 4}} is

the relation {(1, 2), (2, 3), (3, 4), (4, 5)}.

The domain is the set X = {1, 2, 3, 4} and the range is the set

Y = {2, 3, 4, 5}.

A function is a relation such that for each x− value there is only

one corresponding y− value. This means that, if (a, b) and (a, c)

are ordered pairs of a function, then b = c. In other words, a

function cannot contain two different ordered pairs with the same

first coordinate.

Relations on Sets

An equivalence relation on a set X is a relation R ⊂ X × X such

that

• (x, x) ∈ R for all x ∈ X (reflexive property)

• (x, y) ∈ R implies (y, x) ∈ R for all x, y ∈ X (symmetric

property)

• (x, y) and (y, z) ∈ R imply (x, z) ∈ R for all x, y, z ∈ X

(transitive property)

Given an equivalence relation R on a set X , we usually write x ∼ y

instead of (x, y) ∈ R. Equivalence relations are very special.

Definition 1.1.1. Let ∼ be an equivalence relation on a set X and

let a ∈ X. Then [a] = {y ∈ X : y ∼ a} is called the equivalence

class of a.

Why are equivalence classes so interesting? We need another

definition.
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Definition 1.1.2. Let S be a set, and let T be a set of nonempty

subsets of S . We say that T is a partition of S if every a ∈ S lies

in exactly one set in T .

Alternatively, a partition P of a set X is a collection of nonempty

sets {X1, X2, . . . , } such that Xi ∩ Xj = ∅, for i 6= j and
⋃

t Xt =

X.

What is the connection between these concepts? We will see

that an equivalence relation gives rise to a partition via equivalence

classes.

Theorem 1.1.1. Let S be a set, and ∼ an equivalence relation on

S . Then the equivalence classes with respect to ∼ form a partition

of S . In particular, if a ∈ S , then a ∈ [a] and, furthermore, a ∈ [b]

if and only if [a] = [b].

Conversely, whenever a partition of a set exists, there is some

natural underlying equivalence relation, as we state in the following

result.

Result: If P = {Xa} is a partition of a set X, then there is an

equivalence relation on X with equivalence classes Xa.

Definition 1.1.3. Let n ≥ 2 be an integer. The set of integers

modulo n , denoted Zn , is the set of all equivalence classes of

Z with respect to the equivalence relation a = b( mod n) .We

call these the congruence classes modulo n . Specifically, Zn =

{[0], [1], [2], . . . , [n− 1]}.

Example 1.1.3. The elements of Z4 are [0], [1], [2] and [3] , where

[0] = {. . . ,−, 8,−4, 0, 4, 8, . . .}

[1] = {. . . ,−7,−3, 1, 5, 9, . . .}

[2] = {. . . ,−6,−2, 2, 6, 10, . . .}

[3] = {. . . ,−5,−1, 3, 7, 11, . . .}.
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Some Basic Results in Number Theory:

(Well Ordering Principle): Every non-empty set of natural numbers

contains a smallest element.

The well ordering principle is an axiom that agrees with the common

sense of most people familiar with the natural numbers. An empty

set does not contain a smallest member because it contains no

members at all. As soon as we have a set of natural numbers

with some members then we can order those members in the usual

fashion. Having ordered them, one will be smallest. This intuition

agreeing with this latter claim depends strongly on the fact the

integers are whole numbers spaced out in increments of one.

The concept of divisibility plays a fundamental role in the theory of

numbers. We say a nonzero integer t is a divisor of an integer

s if there is an integer u such that s = tu . In this case, we

write t|s (read t divides s ). When t is not a divisor of s , we

write t - s . A prime is a positive integer greater than 1 whose

only positive divisors are 1 and itself. We say an integer s is a

multiple of an integer t if there is an integer u such that s = tu.

As our first application of the Well Ordering Principle, we establish

a fundamental property of integers that we will use often.

Theorem 1.1.2. (Division Algorithm:)

Let m and n be integers with n 6= 0 . Then there exist unique

integers q and r with the property that m = nq + r , where

0 ≤ r < n.

Definition 1.1.4. (Least Common Multiple:)

The least common multiple of two nonzero integers x and y is the

smallest positive integer that is a multiple of both x and y . We will

denote this integer by lcm(x, y) .

Definition 1.1.5. : (Greatest Common Divisor)

The greatest common divisor of two nonzero integers x and y is
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the largest of all common divisors of x and y . We denote this

integer by gcd(x, y).

Definition 1.1.6. (Relatively Prime Integers)

Let x, y ∈ Z. Then x and y are relatively prime if (x, y) = 1.

Theorem 1.1.3. (GCD is a Linear Combination:)

For any nonzero integers x and y , there exist integers s and t

such that gcd(x, y) = xs + yt . Moreover, gcd(x, y) is the smallest

positive integer of the form xs + yt.

Thus, the last theorem says that if some linear combination of x

and y equals 1, then x and y are relatively prime.

Corollary 1.1.1. If x and y are relatively prime, there exist integers

s and t such that xs + yt = 1

Lemma 1.1.1. (Euclid’s Lemma:)

If p is a prime that divides xy , then p divides x or p divides y .

Note that Euclid’s Lemma may fail when p is not a prime, since

4|(6 · 2) but 4 - 6 and 4 - 2.

Theorem 1.1.4. ( Fundamental Theorem of Arithmetic: )

Every integer greater than 1 is a prime or a product of primes. This

product is unique, except for the order in which the factors appear.

That is, if x = p1p2 · · · pm and x = q1q2 · · · qn , where the p′s and

q′s are primes, then p′s m=n p′s and, after renumbering the q′s ,

we have pi = qi, ∀i .

Definition 1.1.7. (First Principle of Mathematical Induction:)

Let S be a set of integers containing x . Suppose S has the

property that whenever some integer n ≥ x belongs to S , then the

integer n + 1 also belongs to S . Then, S contains every integer

greater than or equal to x .



1.2. GROUP THEORY 9

Theorem 1.1.5. Mathematical Induction I: Suppose that P(n) is a

proposition that it either true or false for any given natural numbers

n . If

(i) P(0) is true and,

(ii) when P(n) is true so is P(n + 1)

Then we may deduce that P(n) is true for any natural number.

Definition 1.1.8. (Second Principle of Mathematical Induction:)

Let S be a set of integers containing x . Suppose S has the

property that n belongs to S whenever every integer less than n

and greater than or equal to x belongs to S . Then, S contains

every integer greater than or equal to x .

A nice problem on which to demonstrate mathematical induction

is counting how many subsets a finite set has.

Theorem 1.1.6. (Subset counting):

A set S with n elements has 2n subsets.

1.2 Group Theory

The theory of groups is the proper place to begin the study of

abstract algebra. Group Theory occupies a central position in

mathematics. Modern group theory arose from an attempt to find

the roots of a polynomial in terms of its coefficients. Groups now

play a central role in such areas as coding theory, counting, and

the study of symmetries; many areas of biology, chemistry, and

physics have benefited from group theory. In this section we give

basic definitions and theorems which are familiar to us in the under

graduate level itself.

Definitions and examples
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Definition 1.2.1. A binary operation ∗ on a set G is a mapping

from G× G into G . That is, ∗ : G× G −→ G .

Definition 1.2.2. A group (G, ∗) is a non-empty set G together

with a binary operation on G satisfying the following properties.

Closure: For all a, b ∈ G, the element a ∗ b is a uniquely defined

element in G.

Associativity: For all a, b, c ∈ G, we have

a ∗ (b ∗ c) = (a ∗ b) ∗ c

Existence of Identity: There exists an identity element e ∈ G

such that

e ∗ a = a ∗ e = a, ∀a ∈ G.

Existence of Inverse: For each a ∈ G, there exists an inverse

element a−1 ∈ G such that

a ∗ a−1 = e and a−1 ∗ a = e.

Definition 1.2.3. If a group G satisfies commutative property, that

is, a ∗ b = b ∗ a for all a, b ∈ G, then it is called commutative group

or abeliean group.

Definition 1.2.4. If a set G satisfies closure property alone then it

is called a Groupoid.

Definition 1.2.5. If a set G satisfies closure property and

associative property then it is called a Semigroup.

Definition 1.2.6. If a set G satisfies closure property, associative

property and identity property then it is called a Monoid.
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Example 1.2.1. The set of Natural numbers N is a groupoid with

respect to (i) addition, and to (ii) multiplication.

Example 1.2.2. The set of integers Z is a groupoid with respect to

subtraction .

Example 1.2.3. The set of Natural numbers N is not a groupoid

with respect to subtraction.

Example 1.2.4. The set of Natural numbers N is a semigroup with

respect to (i) addition, and also to (ii) multiplication.

Example 1.2.5. The set of integers Z is a groupoid with respect to

subtraction, but not a semigroup with respect to subtraction.

Example 1.2.6. The set of non-negative integers W is a monoid

with respect to (i) addition and also to (ii) multiplication.

Example 1.2.7. The set of integers Z is a monoid but not a group

with respect to multiplication.

Example 1.2.8. The set of integers Z is a group with respect to

addition.

Example 1.2.9. The set of rational numbers Q is a group with

respect to addition.

Definition 1.2.7. The number of elements in a group G is called

order of the group and this is denoted as o(G) or |G| . If this order

is finite then the group is called a finite group.

1.3 Another Counting Principle

We have studied an equivalence relation on a finite set, which

measures the size of the equivalence classes under this relation,

and then equates the number of elements in the set to the sum of
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the orders of these equivalence classes. In this unit, we study for

the relation conjugacy.

Definition 1.3.1. Let G be a group. Let a, b ∈ G . The element b

is said to be conjugate to a if there exists an element c ∈ G such

that b = cac−1 . This relation is called conjugacy relation and it is

denoted by ∼ .

Theorem 1.3.1. Conjugacy is an equivalence relation

Proof. (i) Reflexive Property :

Let a ∈ G . Then a = eae−1 . Thus a ∼ a .

(ii) Symmetric property :

Let a ∼ b .Then b = cac−1 for some c ∈ G .

That is, c−1b = ac−1 ( premultiply by c−1 )

c−1bc = a ( post multiply by c )

a = c−1b(c−1)−1 . Thus b ∼ a . Hence symmetric property is true.

(iii) Transitivity property:

Let a ∼ b and b ∼ c.

Then

a = xbx−1 for some x ∈ G (1.3.1)

and

b = ycy−1 for some y ∈ G (1.3.2)

Substituting (1.3.2) in (1.3.1) , we get,

a = x(ycy−1)x−1 = (xy)c(y−1x−1) = (xy)c(xy)−1 .

That is a ∼ c . Hence transitivity property is true. �

Definition 1.3.2. Let G be a group and let a ∈ G . Then,

C(a) = {x ∈ G|x = cac−1 for some c ∈ G} .

This C(a) is called conjugate class of a . Let ca be the number

of elements of C(a) . The union of all the conjugate classes of
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elements of G is equal to the whole group G . Thus,

⋃
a∈G

C(a) = G.

Definition 1.3.3. Let G be a group and let a ∈ G , then normalizer

of a in G is defined as follows.

N(a) = {y ∈ G | ay = ya}

Lemma 1.3.1. N(a) is a subgroup of G .

Proof. Let x, y ∈ N(a). Then,

x ∈ N(a)⇒ ax = xa.

y ∈ N(a)⇒ ay = ya.

Claim : xy ∈ N(a) .

a(xy) = (ax)y = (xa)y = x(ay) = x(ya) = (xy)a .

Hence x, y ∈ N(a)⇒ xy ∈ N(a) . Thus closure is verified.

Claim : x−1 ∈ N(a).

Let x ∈ N(a)⇒ ax = xa.

x−1a = x−1ae = x−1a(xx−1) = x−1(ax)x−1 = x−1(xa)x−1 =

(x−1x)ax−1

That is, x−1a = ax−1 . Hence x−1 ∈ N(a) .

Hence N(a) is a subgroup of G . �

Note : By Lagrange’s theorem,
o(G)

o(N(a))
is a constant

Lemma 1.3.2. Let G be a finite group and let a ∈ G . Let N(a) be

the normalizer of a in G and C(a) be the conjugate class of a in

G . That is the number of distinct elements conjugate to a in G is

the index of N(a) in G .
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Proof. By definitions,

C(a) = {b ∈ G| b = xax−1 for some x ∈ G}

C(a) = {xax−1, for some x ∈ G}

N(a) = {x ∈ G| ax = xa}

Let us define

M = {N(a).x| x ∈ G}

(i.e) M = {Set of all distinct cosets of N(a) in G }

Claim : o(M) = o(C(a))

Define a map f : M→ C(a) , such that

f (N(a)x) = x−1ax, ∀x ∈ G

We will prove that f is well defined.

Let N(a).x = N(a).y, for some x, y ∈ G

⇒ N(a).xy−1 = N(a)

⇒ xy−1 ∈ N(a)

⇒ a(xy−1) = (xy−1)a

Premultiply by x−1 and post multiply by y , we have

x−1a(xy−1)y = x−1(xy−1)ay

i.e, x−1ax(y−1y) = (x−1x)y−1ay

i.e, x−1ax = y−1ay

f (N(a).x) = f (N(a).y), ∀x, y ∈ G

Thus f is well defined.

By retracing these steps, we can prove that f is one-one.

Now let us prove f is onto.

For given, x−1ax ∈ C(a), ∃N(a).x ∈ M such that f (N(a)x) =

x−1ax .
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Thus f is onto. Therefore, o(M) = o(C(a))

But, M = Set of all distinct cosets of N(a) in G

i.e, o(M) =
o(G)

o(N(a))

Thus, o(M) = o(C(a))

o(C(a)) =
o(G)

o(N(a))

ca =
o(G)

o(N(a))
· · · (1)

Hence the lemma. �

Theorem 1.3.2. If N(a) be the normalizer of a in G, then o(G) =

o(Z(G)) + ∑
a/∈Z(G)

o(G)
o(N(a)) .

Proof. We know that G =
⋃

a∈G
C(a). But the number of elements of

C(a) is ca .

Therefore by Lemma 1.3.2, we have

o(G) = ∑
a∈ G

ca

= ∑
a∈ G

o(G)

o(N(a))

= ∑
a∈Z(G)

o(G)

o(N(a))
+ ∑

a/∈Z(G)

o(G)

o(N(a))

= o(Z(G)) + ∑
a/∈Z(G)

o(G)

o(N(a))

Thus, o(G) = o(Z(G)) + ∑
a/∈Z(G)

o(G)

o(N(a))

�

This equation is called the class equation of a group G .
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1.4 Cauchy’s Theorem

In this section we prove Cauchy’s Theorem on groups.

Theorem 1.4.1. Let G be a group. If p | o(G) , where p is prime,

then there exist an element a 6= e in G such that ap = e .

( OR )

If p | o(G) , where p is prime, then G has an element of order p.

Proof. Let us prove this theorem by method of induction on o(G) .

Basis for induction:

Suppose o(G) = 1 , then the theorem is obviously true.

Induction Assumption:

Assume that this theorem is true for all subgroups W , such that

o(W) < o(G) .

If p | o(W) , then by induction assumption, there exist an element

a ∈ W such that ap = e . Therefore let us assume that p does

not divide the order of any proper subgroup of G . We know that

Cauchy’s theorem is true for abelian groups. Therefore, Now we will

prove that G is abelian. That is, we will prove that G = Z(G) .

But we know that Z(G) ⊆ G · · · (1)

We have to prove that G ⊆ Z(G) .

Suppose a ∈ G but a /∈ Z(G) . Consider the class equation,

o(G) = o(Z(G)) + ∑
N(a) 6=G

o(G)

o(N(a))

Since a /∈ Z(G) we have N(a) 6= G . Therefore, p - o(N(a)).

But p | o(G) and p - o(N(a)).

So,

p | o(G)

o(N(a))
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Therefore,

p | ∑
N(a) 6=G

o(G)

o(N(a))

That is, p | o(G) and

p | ∑
N(a) 6=G

o(G)

o(N(a))

Therefore,

p |

o(G)− ∑
N(a) 6=G

o(G)

o(N(a))


That is, p | o(Z(G)) , which is a contradiction.

Hence, a ∈ G ⇒ a ∈ Z(G) .

That is G ⊆ Z(G) · · · (2)

From (1) and (2), we have G = Z(G) . Thus G is abelian. Hence

Cauchy’s theorem is true for all groups. �

Theorem 1.4.2. The number of conjugate classes in Sn is P(n) ,

the number of partitions of n .

Proof. Here Sn is a permutation group acting on n elements.

We know that every permutation can be expressed as product

of disjoint cycles. Let σ ∈ Sn . We say that σ has a cycle

decomposition {n1, n2, · · · , nr} if it can be written as the product

of disjoint cycles of lengths {n1, n2, · · · , nr}, n1 ≤ n2 ≤ · · · ≤ nr

and n = n1 + n2 + · · ·+ nr .

Claim: Two permutations in Sn are conjugate if and only if they have

same type of cycle decomposition.

Let θ, σ ∈ Sn . To compute θ−1σθ , replace every symbol in σ by its

image under θ .

Let σ, τ ∈ Sn having same cycle decomposition. Let

σ = (a1, a2, · · · , an1)(b1, b2, · · · , bn2) · · · (x1, x2, · · · , xnr)

and τ = (α1, α2, · · · , αn1)(β1, β2, · · · , βn2)



18 1.4. CAUCHY’S THEOREM

· · · (χ1, χ2, · · · , χnr)

Then by taking θ as,

θ =

 a1 a2 · · · an1 b1 b2 · · · bn2 · · · x1 x2 : · · · xnr

α1 α2 · · · αn1 β1 β2 · · · βn2 · · · χ1 χ2 · · · χnr


We can show that τ = θ−1σθ . Here θ is called conjugating

permutation. Thus, τ and σ are conjugate. This proves our claim.

From the above claim, we observe that, the set of permutations

having same cycle decomposition ( conjugates to each other ) gives

one partition for n . Thus for one conjugate class in Sn we have one

partition for n . So, the number of partitions for n is same as the

number of conjugate classes in Sn . Hence the number of conjugate

classes in Sn = P(n) . Hence the theorem. �

Example 1.4.1. Let θ, σ, τ ∈ Sn .

σ = ( 1 2) (3 4 5 ) ( 6 7 8 9 )

and τ = ( 2 6 ) ( 1 4 7 ) ( 3 5 9 8 )

Then, θ =

 1 2 3 4 5 6 7 8 9

2 6 1 4 7 3 5 9 8


Clearly, θ−1σθ = τ . Here σ and τ are conjugate with conjugacy

permutation θ .

Let η =

 1 2 3 4 5 6 7 8 9

1 3 2 5 4 7 8 9 6


Then, η−1τη = (3 7) (1 5 8)(2 4 6 7)

Let α = (1)(2 3)(4 5)(6 7 8 9) and

β = (2)(6 1)(4 7)(3 5 9 8) .

Then, θ−1αθ = (2)(6 1)(4 7)(3 5 9 8)

γ = (1 3)(2 4)(9 5 7)(8 6 9)

δ = (1 4)(3 2)(5 8)(7 9 6)

µ = (4 5)(6 7)(9 1)(3 2 8)
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λ = (1 5)(1 2 3)(4 9)(8 6 7)

Then τ−1γτ = µ and α−1δα = λ .

Therefore

[σ] = {σ, τ, · · · }, {2 + 3 + 4 = 9}

[α] = {α, β, · · · }, {1 + 2 + 2 + 4 = 9}

[µ] = {µ, λ, γ, δ, ....}, {2 + 2 + 2 + 3 = 9}

Thus each conjugate class in S9 gives one partition for 9. Therefore

number of conjugate classes in S9 is equal to P(9) .

Summary of this unit.

In this unit we have studied the following:

• Let G be a group. Let a, b ∈ G . The element b is said to

be conjugate to a if there exists an element c ∈ G such that

b = cac−1 . This relation is called conjugacy relation and it is

denoted by ∼ .

• Conjugacy is an equivalence relation

• Class equation:

o(G) = o(Z(G)) + ∑
a/∈Z(G)

o(G)

o(N(a))

• Cauchy’s Theorem: Let G be a group. If p | o(G) , where p

is prime, then there exist an element a 6= e in G such that

ap = e .

( OR )

If p | o(G) , where p is prime, then G has an element of order

p.

• The number of conjugate classes in Sn is P(n) , the number

of partitions of n .

Multiple Choice Questions
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1. Two elements a, b ∈ G are conjugate if g ∈ G such that

a) b = gag

b) b = g−1ga

c) b = gag−1

d) b = g−1ag−1

2. Two Conjugate elements in G have

a) No order

b) Different order

c) Same order

d) prime order

3. The number of elements in a conjugacy class Ca of an element

a in G is equal to

a) Index of its normalizer in G

b) Order of its normalizer in G

c) Index of its Centralizer in G

d) Order of its centralizer in G

4. No two distinct elements are conjugate in

a) Abelian group

b) Non-abelian group

c) symmetric group

d) Dihedral group

5. Conjugacy classes of D4 are

a) 1 b) 3 c. 5 d) 7

6. Conjugacy classes of S3 are

a) 0 b) 1 c) 2 d) 3

7. Cauchy’s theorems deal with

a) Abelian group’s

b) Non-abelian group’s
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c) Both

d) None of these

8. If A is a finite abelian group and p a prime divisor of the order

of A, then A contains an element of order p is statement of

a) Lagrange’s theorem

b) Cayley’s theorem

c) Sylow’s theorem

d) Cauchy’s theorem

9. If a prime p divides the order of a group G then G contains a/an

a) Subgroup of order p

b) Group of order p

c) Element of order p

d) Generator of order p

Answers:

1 2 3 4 5 6 7 8 9

c c a a c d c d c



Block 1 - UNIT 2

Sylow Theorems

Objectives

• We study First Sylow Theorem

• To Study about double cosets

• To study second Sylow theorem

• Learn about Third Sylow Theorem

2.1 First Sylow Theorem

In this section we prove first Sylow theorem.

Theorem 2.1.1. ( First Sylow Theorem)

Let G be a group and if p is a prime number such that pα | o(G) ,

then G has a subgroup of order pα .

Proof. To prove this theorem, we need the following

number-theoretic result.

Let o(G) = pαm, where p is a prime number.

22
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If pr|o(G) but pr+1 - o(G) , then,

pr |

 pαm

pα

 but pr+1 -

 pαm

pα

 . . . (1)

More over pα+r | pαm · · · (2)

Proof of the Theorem: Let M = {M ⊂ G | o(M) = pα}

Clearly o(M) =

 pαm

pα

 . Define a relation ∼ on M as follows.

For M1, M2 ∈ M , define M1 ∼ M2 if ∃g ∈ G such that M1 =

M2g .

Claim 1: ∼ is an equivalence relation

(i) ∼ is reflexive

Since M1 = M1e , where e is identity element of G , we have

M1 ∼ M1. Hence ∼ is reflexive.

(ii) ) ∼ is symmetric

Let M1 ∼ M2 . Then M1 = M2g for some g ∈ G . Since G

is a group, for g ∈ G we have g−1 ∈ G. Therefore, M1g−1 =

M2gg−1 ⇒ M1g−1 = M2. That is,

M2 = M1g−1 . This ⇒ M2 ∼ M1 . Thus, ∼ is symmetric

(iii) ∼ is transitive

Let M1 ∼ M2 and let M2 ∼ M3 . Then

M1 = M2g1 for some g1 ∈ G · · · (i)

M2 = M3g2 for some g2 ∈ G · · · (ii)

Therefore, M1 = M2g1 = (M3g2)g1 = M3(g2g1) = M3g3 ,

where g3 = g2g1 ∈ G . Thus M1 ∼ M3 . So, ∼ is transitive .

Hence ∼ is an equivalence relation.

Therefore, this ∼ splits M in to distinct equivalence classes.

Let r be an integer such that pr | m but pr+1 - m · · · (1)

Claim 2 : There exists atleast one equivalence class whose size is
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not divisible by pr+1 .

Suppose pr+1 divides the sizes of all equivalence classes of M .

Therefore it will divides their union. Therefore pr+1 is a divisor of

the size of M . That is,

pr+1 |

 pαm

pα

 , which is a contradiction to (1). Therefore there

exist atleast one equivalence class whose size is not divisible by

pr+1 . Let this equivalence class be {M1, M2, . . . , Mn} .

That is, pr+1 - n · · · (3)

Clearly by definition, ∀i = 1, 2, . . . , n , Mi = Mjg for some j ,

1 ≤ j ≤ n .

Let H = {g ∈ G | M1g = M1} . Clearly H is a finite subset of G .

Claim 3: H is a subgroup of G .

Let a, b ∈ G . Then M1a = M1, M1b = M1 .

Now M1 = M1b = (M1a)b = M1(ab) . Thus ab ∈ H . Therefore

a, b ∈ H ⇒ ab ∈ H . Thus H is a closed subset of a finite group G .

Hence H is a subgroup of G .

By Lagrange’s theorem o(H) is a divisor of o(G) .

Let o(G) = n . o(H) · · · (4)

From (2), we have, pα+r | pαm . That is, pα+r | o(G).

That is, pα+r | n . o(H) implies either pα+r | n or pα+r | o(H) .

But pr+1 - n whence we get pα+r - n . Therefore we must have,

pα+r | o(H) .

That is, pα pr | o(H) . This ⇒ pα | o(H) and pr | o(H) .

Therefore, pα | o(H) .

This shows that, o(H) ≥ pα · · · (5)

Let m1 ∈ M1 and h ∈ H . Therefore, M1h = M1 .

Now m1h ∈ M1h = M1 ⇒ m1h ∈ M1 .

Since h is arbitrary, M1 has atleast o(H) elements.

Therefore, size of M1 ≥ o(H) .

That is, pα ≥ o(H) · · · .(6).
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From (5) and (6), we have o(H) = pα .

Thus H is a subgroup of G having pα elements.

Hence the theorem. �

2.2 Second Sylow Theorem

In this section we define double cosets and prove second part of

Sylow theorem.

Definition 2.2.1. Let G be a group and let H and K are subgroups

of G . Then the set HaK = {hak | h ∈ H, k ∈ K} is called the

double coset of H and K in G . If G is a finite group, clearly,

G =
⋃

a∈G
HaK

and

o(G) = ∑
a∈G

o(HaK)

Proposition 2.2.1. Let H be a subgroup of G . Then for x ∈ G , the

set xHx−1 is also a subgroup of G , such that o(H) = o(xHx−1) .

Proof. The set xHx−1 is defined as follows.

xHx−1 = {xhx−1 | h ∈ H} .

Let xh1x−1, xh2x−1 ∈ xHx−1 , where h1, h2 ∈ H .

Consider

(xh1x−1)(xh2x−1)−1 = (xh1x−1)(xh−1
2 x−1)

= xh1(x−1x)h−1
2 x−1

= x(h1h−1
2 )x−1 ∈ xHx−1.

Thus xHx−1 is a subgroup of G .
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Now let us prove that o(H) = o(xHx−1) .

Indeed, let f : H −→ xHx−1 such that f (h) = xhx−1 .

Initially let us prove f is 1-1:

Suppose let f (h1) = f (h2)⇒ xh1x−1 = xh2x−1.

By cancellation law, h1 = h2 . Thus f is 1-1.

By definition, onto is obvious.

Hence o(H) = o(xHx−1) . �

The number of elements in a double coset is obtained in following

lemma.

Lemma 2.2.1. Let A and B are finite subgroups of a group G ,

then,

o(AxB) =
o(A)o(B)

o(A ∩ xBx−1)

Proof. Define a map T : AxB → AxBx−1 such that T(axb) =

axbx−1 .

We claim that this map is well defined.

Indeed let a1xb1 = a2xb2 for some a1, a2 ∈ A and b1, b2 ∈ B · · · (1)

Since x ∈ G , we have x−1 ∈ G .

Post multiply by x−1 on both sides, we have,

a1xb1x−1 = a2xb2x−1.

That is, T(a1xb1) = T(a2xb2) .

Thus T is well defined.

By retracing these steps, we can prove that T is 1-1.

Secondly we claim that T is onto.

Note that for every axbx−1 ∈ AxBx−1, ∃axb ∈ AxB such that

T(axb) = axbx−1 . Thus T is onto.

We know that o(AxB) = o(AxBx−1) · · · (2)

o(AxB) = o(AxBx−1) =
o(A)o(xBx−1)

o(A ∩ xBx−1)
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But o(B) = o(xBx−1) . Therefore,

o(AxB) =
o(A)o(B)

o(A ∩ xBx−1)

Hence the Lemma. �

Second Sylow theorem:

Theorem 2.2.1. If G is a finite group and if p is a prime number

such that pn | o(G) and pn+1 - o(G) , then any two subgroups of G

of order pn are conjugate.

(OR) Any two p− Sylow subgroups of G are conjugate.

Proof. Let A and B be any two p− Sylow subgroups of G of order

pn . That is, o(A) = o(B) = pn .

Claim : A = xBx−1 , for some x ∈ G .

Suppose A 6= xBx−1 , for every x ∈ G .

Consider the double cosets of A and B . Clearly,

G =
⋃

x∈G
AxB

and

o(G) = ∑
x∈G

o(AxB)

i.e, o(AxB) =
o(A)o(B)

o(A ∩ xBx−1)

Since A 6= xBx−1, o(A ∩ xBx−1) < o(A) .

Let o(A ∩ xBx−1) = pm , where m < n .

Therefore, o(AxB) =
pn pn

pm = p2n−m.

But 2n−m ≥ n + 1 . This implies,

pn+1 | p2n−m ⇒ pn+1 | o(AxB)⇒ pn+1 | ∑ o(AxB)
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This implies, pn+1 | o(G) , which is a contradiction. Therefore,

A = xBx−1 for some x ∈ G . Hence A and B are conjugate.

Hence the theorem. �

2.3 Third Sylow Theorem

In this section we prove third part of Sylow theorem.

Definition 2.3.1. Let H be a p − Sylow subgroup of G .Then

normalizer of H in G is defined as follows.

N(H) = {x ∈ G | xHx−1 = H}

Clearly, N(H) is a subgroup of G .

Lemma 2.3.1. Let H be a p − Sylow subgroup of G . Then the

number of p− Sylow subgroups of G is equal to
o(G)

o(N(H))

Proof. We know that

o(Cl(H)) =
o(G)

o(N(H))
· · · (1)

Cl(H) = {A ⊆ G | A = gHg−1, text f or g ∈ G }

= Set of all p-Sylow subgroups of G

conjugate to H

That is, the total number of p− Sylow subgroups of G is equal to

o(Cl(H)) · · · (2)

Substituting (2) in (1), we have

The total number of p − Sylow subgroups of G is equal to
o(G)

o(N(H))
. �

Third Sylow Theorem:
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Theorem 2.3.1. The total number of p− Sylow subgroups of G is

of the form 1+ kp , where p is a prime number and k is an integer.

Proof. Let H be a p− Sylow subgroup of G of order pn . That is,

o(H) = pn .

Then, pn | o(G) but pn+1 - o(G) . Decompose G in to double

cosets of H as

G =
⋃

x∈G
HxH

i.e, G =
⋃

x∈G
HxH =

 ⋃
x∈N(H)

HxH

 ⋃  ⋃
x/∈N(H)

HxH



Therefore, o(G) = ∑
x∈N(H)

o(HxH) + ∑
x/∈N(H)

o(HxH) · · · (1)

Here two cases arises.

Case(i): x ∈ N(H)⇒ Hx = xH

⇒ HHx = HxH

⇒ Hx = HxH

That is, HxH = Hx.

Therefore, ⋃
x∈N(H)

HxH =
⋃

x∈N(H)

Hx = N(H)

Therefore, ∑
x∈N(H)

o(HxH) = o(N(H)).

Case(ii): x /∈ N(H)⇒ Hx 6= xH

⇒ xHx−1 6= H

Since xHx−1 6= H , we have o(H ∩ xHx−1) < o(H)

Let o(H ∩ xHx−1 = pm ,where m < n .

i.e, o(HxH) =
o(H)o(H)

o(H ∩ xHx−1)
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=
pn pn

pm = p2n−m · · · (2)

Sub (2) in (1), we have

o(G) = o(N(H)) + ∑ p2n−m · · · (3)

But 2n−m ≥ n + 1 for m < n. This implies,

pn+1 | p2n−m ⇒ pn+1 | ∑ p2n−m

⇒ ∑ p2n−m = pn+1.u where u is an integer · · · (4)

Sub (4) in (3), o(G) = o(N(H)) + pn+1.u

Dividing by o(N(H)) , we have,
o(G)

o(N(H))
= 1 + pn+1.u

o(N(H))
· · · (5)

Since o(G)
o(N(H))

and 1 are integers , o(G)
o(N(H))

− 1 is also an integer.

Therefore , pn+1.u
o(N(H))

is an integer.

Let this integer be t (say).

Therefore , pn+1.u
o(N(H))

= t

That is, pn+1.u = t.o(N(H)) · · · (6)

Since H ⊆ N(H) we have, o(H) | o(N(H))

pn | o(N(H))

⇒ o(N(H)) = pn.r · · · (7)

But from (6), pn+1.u = t.o(N(H)) = t.pn.r

That is, pn+1.u = t.pn.r

Dividing by pn , we have, p.u = t.r · · · (8)

Also,
t
p
=

u
r
· · · (9)

This implies, p | t.r

If p | r , then p.pn | r.pn

i.e, pn+1 | o(N(H) by (7)

i.e, pn+1 | o(G) ( since o(N(H) | o(G) ), which is a contradiction.

Therefore, p - r .

Hence we must have, p | t⇒ t
p
= k (say) , where k is a constant.

Therefore from (9), we have,
u
r
= k · · · (10)
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Now from (5), we have,

o(G)

o(N(H))
= 1 +

pn+1.u
o(N(H))

= 1 +
pn+1.u

pn.r

= 1 +
p.u
r

= 1 + kp

Thus,
o(G)

o(N(H))
= 1 + kp. But by Lemma 2.3.1, we have, The

total number of p− Sylow subgroups of G is equal to
o(G)

o(N(H))
.

Hence, total number of p − Sylow subgroups of G is of the form

1 + kp . �

Lemma 2.3.2. If G is a group and if p is a prime number and if G

has only one p− Sylow subgroup, then it must be normal.

Proof. Let H be a p− Sylow subgroup of G .

We claim that H is a normal subgroup of G .

Indeed, since H is a subgroup of G , xHx−1 is also a p− Sylow

subgroup of G . But it is given that G has only one subgroup of G .

Therefore, H = xHx−1 . That is, Hx = xH . This implies, H is a

normal subgroup. �

Solved Problems
Problem 1. Prove that every group of order 112 · 132 is abelian.

Solution : It is given that o(G) = 112 · 132 . Here 112 | o(G) but

113 - o(G).

There exist a 11− Sylow subgroup in G of order 112.

Similarly, 132 | o(G) but 133 - o(G) .

There exist a 13− Sylow subgroup in G of order 132. Let this group

be B.

We know that the total number of 11− Sylow subgroups of G is of

the form 1 + 11 k . We know that, 1 + 11 k | o(G) .
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That is, 1 + 11 k | 112.132 . But, 1 + 11 k - 112 . Therefore,

1 + 11 k | 132 . This is possible only if, k=0. Therefore, the total

number of 11− Sylow subgroups of G is only one. Let this group

be A .

That is A is the only one 11− Sylow subgroup of G . Hence A is

normal.

Again we know that the total number of 13− Sylow subgroups of G

is of the form 1 + 13 k . We know that, 1 + 13 k | o(G) .

That is, 1 + 13 k | 112.132 . But, 1 + 13 k - 132 . Therefore,

1 + 13 k | 112 . This is possible only if, k=0. Therefore, the total

number of 13− Sylow subgroups of G is only one. Let this group

be B .

That is B is the only one 13− Sylow subgroup of G . Hence B is

normal.

Therefore, A ∩ B = {e}

Consider, a ∈ A and b ∈ B . Therefore, a−1 ∈ A and b−1 ∈ B

Consider aba−1b−1 . Since a ∈ A we have, a ∈ G .

Since B is normal, for b ∈ B and a ∈ G, we get, aba−1 ∈ B.

That is aba−1 ∈ B. Also, b−1 ∈ B .

Therefore, aba−1b−1 ∈ B · · · · · · (1)

Now, b ∈ B⇒ b ∈ G . But, a ∈ A⇒ a−1 ∈ A .

Now a−1 ∈ A, and b ∈ G ⇒ ba−1b−1 ∈ A. ( Since A is normal )

That is ba−1b−1 ∈ A. Also, a ∈ A .

Therefore, aba−1b−1 ∈ A · · · · · · (2)

That is, aba−1b−1 ∈ A and aba−1b−1 ∈ B and hence aba−1b−1 ∈

A ∩ B . But , A ∩ B = {e} .

Therefore, aba−1b−1 = e

Hence ab = ba . Therefore G is abelian.
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Problem 2. Discuss the number and nature of 3-Sylow subgroups

and 5-Sylow subgroups of a group of order 32 · 52

Solution: We know that the total number of 3− Sylow subgroups

of G is of the form 1 + 3 k . We know that, 1 + 3 k | o(G) .

That is, 1 + 3 k | 32.52 . But, 1 + 3 k - 32 . Therefore, 1 + 3 k | 52 .

This is possible for k=0 or k =8. Therefore G has either only one

3− Sylow subgroup or 25, 3− Sylow subgroups .

Also we know that the total number of 5− Sylow subgroups of G

is of the form 1 + 5 k . We know that, 1 + 5 k | o(G) .

That is, 1 + 5 k | 32.52 . But, 1 + 5 k - 52 . Therefore, 1 + 5 k | 32 .

This is possible for only k=0 . Therefore G has exactly one

5− Sylow subgroup.

We have that o(G) = 225 . But G has 25, 3− Sylow subgroups,

each of order 9. Since the identity element is common to all these

25 subgroups, each subgroup has eight elements other than the

identity element. Hence there are 200 elements other than identity

elements and hence totally there are 201 elements in all these 25

subgroups. But G has exactly one 5− Sylow subgroup of order

52 = 25 .Hence other than the identity it has 24 elements. Hence G

has 200+24+1=225 elements which is equal to order of G . Thus we

conclude that G has one 5− Sylow subgroup and 25, 3− Sylow

subgroups.

Problem 3. If o(G)=30, show that either 3-Sylow sub group or

5-Sylow subgroup is normal in G .

Solution: o(G) = 30 = 2 · 3 · 5

We know that the total number of 3− Sylow subgroups of G is of

the form 1 + 3 k . We know that, 1 + 3 k | o(G) .

That is, 1 + 3 k | 2 · 3 · 5 . But, 1 + 3 k - 3 . Therefore, 1 + 3 k | 2 · 5 .

This is possible for k=0 or k =3. Therefore G has either only one

3− Sylow subgroup or 10, 3− Sylow subgroups .
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Also we know that the total number of 5− Sylow subgroups of G

is of the form 1 + 5 k . We know that, 1 + 5 k | o(G) .

That is, 1 + 5 k | 2 · 3 · 5 . But, 1 + 5 k - 5 . Therefore, 1 + 3 k | 2 · 3 .

This is possible for k=0 or k =1. Therefore G has either only one

5− Sylow subgroup or 6, 5− Sylow subgroups .

Suppose G has 10, 3 − Sylow subgroups and 6, 5 − Sylow

subgroups.

The each of the ten 3-Sylow subgroups have 2 elements other than

the identity. Therefore there are, 20+1=21 elements in 3-Sylow

subgroups.

Each of the six 5-Sylow subgroups has 4 elements other than

the identity. Therefore there are, 24+1=25 elements in 5-Sylow

subgroups.

Thus all these subgroups has 46-1=45 elements where as the

original group has one 30 elements which is not possible. Therefore

we must have either there is only one 3-Sylow sub group or only one

5-Sylow subgroup and hence one must be normal. Hence G is not

simple.

Problem 4. Prove that a group of order 56 is not simple.

Solution: o(G) = 56 = 23 · 7

We know that the total number of 2− Sylow subgroups of G is of

the form 1 + 2 k . We know that, 1 + 2 k | o(G) .

But, 1+ 2 k - 23 . But, Therefore, 1+ 2 k | 7 . This is possible for k=0

or k =3. Therefore G has either only one 2− Sylow subgroup or 7,

2− Sylow subgroups .

Also we know that the total number of 7− Sylow subgroups of G

is of the form 1 + 7 k . We know that, 1 + 7 k | o(G) .

But, 1 + 7 k - 7 . Therefore, 1 + 7 k | 23 . This is possible for k=0 or

k =1. Therefore G has either only one 7− Sylow subgroup or 8,
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7− Sylow subgroups .

Suppose G has 7, 2 − Sylow subgroups and 8, 7 − Sylow

subgroups. Each of the seven 2-Sylow subgroups has 7 elements

other than the identity. Therefore there are, 49+1=50 elements in

2-Sylow subgroups.

Each of the eight 7-Sylow subgroups has 6 elements other than

the identity. Therefore there are, 48+1=49 elements in 7-Sylow

subgroups.

Thus all these subgroups have 99-1=98 elements where as the

original group has only 56 elements which is not possible. Therefore

we must have either there is only one 2-Sylow sub group or only one

7-Sylow subgroup and hence one must be normal. Hence G is not

simple.

Problem 5. Prove that a group of order 72 is not simple.

Solution: o(G) = 56 = 23 · 32.

We know that the total number of 2− Sylow subgroups of G is of

the form 1 + 2 k . We know that, 1 + 2 k | o(G) .

But , 1 + 2 k - 23 . Therefore, 1 + 2 k | 9 . This is possible for k=0 or

k =4. Therefore G has either only one 2− Sylow subgroup or 9,

2− Sylow subgroups .

Also we know that the total number of 3− Sylow subgroups of G

is of the form 1 + 3 k . We know that, 1 + 3 k | o(G) .

But, 1 + 3 k - 9 . Therefore, 1 + 3 k | 23 . This is possible for k=0 or

k =1. Therefore G has either only one 3− Sylow subgroup or 4,

3− Sylow subgroups .

Suppose G has 9, 2 − Sylow subgroups and 4, 3 − Sylow

subgroups. The each of the nine 2-Sylow subgroups has 7 elements

other than the identity. Therefore there are, 63+1=64 elements in

2-Sylow subgroups.
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Each of the 4, 3-Sylow subgroups has 8 elements other than

the identity. Therefore there are, 32+1=33 elements in 3-Sylow

subgroups.

Thus all these subgroups have 97-1=96 elements where as the

original group has only 72 elements which is not possible. Therefore

we must have either there is only one 2-Sylow sub group or only one

3-Sylow subgroup and hence one must be normal. Hence G is not

simple.

Summary of this unit.

In this unit we have studied the following:

• First Sylow Theorem: Let G be a group and if p is a prime

number such that pα | o(G) , then G has a subgroup of order

pα .

• Let G be a group and let H and K are subgroups of G . Then

the set HaK = {hak | h ∈ H, k ∈ K} is called the double coset

of H and K in G .

• Let H be a subgroup of G . Then for x ∈ G , the set xHx−1

is also a subgroup of G , such that o(H) = o(xHx−1) .

• Let A and B are finite subgroups of a group G , then,

o(AxB) =
o(A)o(B)

o(A ∩ xBx−1)

• Second Sylow Theorem: If G is a finite group and if p is a

prime number such that pn | o(G) and pn+1 - o(G) , then any

two subgroups of G of order pn are conjugate.

(OR) Any two p− Sylow subgroups of G are conjugate.

• Let H be a p− Sylow subgroup of G .Then normalizer of H

in G is defined as follows.

N(H) = {x ∈ G | xHx−1 = H}
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• Let H be a p− Sylow subgroup of G . Then the number of

p− Sylow subgroups of G is equal to
o(G)

o(N(H))

• Third Sylow Theorem: The total number of p − Sylow

subgroups of G is of the form 1 + kp , where p is a prime

number and k is an integer.

Multiple Choice Questions

1. If o(G) = 30, then

a) either 3-Sylow sub group or 5-Sylow subgroup is normal in G .

b) 3-Sylow sub group and 5-Sylow subgroup are normal in G .

c) G is a simple group

d) neither 3-Sylow sub group nor 5-Sylow subgroup is normal in

G .

2. If o(G) = 72, and if A and B are finite subgroups of a group G ,

of orders 8 and 9 respectively such that o(A ∩ B) = 1, then, for

any x ∈ G, o(AxB) =

a) 72 b) 8 c) 9 d) 36

3. Let G be a group of order 45. Let H be a 3-sylow subgroup of

G and K be a 5- sylow subgroup of G. Then,

a) Both H and K are normal in G

b) H is normal in G but K is not normal in G

c) H is not normal in G but K is normal in G

d) Both H and K are not normal in G

4. If o(G) = 112.132 and if A and B are respectively 11- Sylow

and 13-Sylow subgroups of G then for any t ∈ G,

a) tA = At but tB 6= Bt

b) Bt = tB but tA 6= At

c) tA 6= At and tB 6= Bt

d) tA = At and tB = Bt.
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5. If o(G) = 225, then G has

a) one 5− Sylow subgroup and 25, 3− Sylow subgroups.

b) one 3− Sylow subgroup and 25, 5− Sylow subgroups.

c) either one 5− Sylow subgroup or 25, 3− Sylow subgroups .

d) has only one 3− Sylow subgroup and exactly one 5− Sylow

subgroup.

6. Any two conjugate subgroups of a group are

a) Isomorphic

b) Not isomorphic

c) May or may not isomorphic

d) All of these

7. Two conjugate subgroups of a group have the same

a) Index b) Order c) Coset d) None of these

8. Let H, K be subgroups of a group G and x is an arbitrary

element of G. Then the set HxK is

a) Left Coset

b) Right Coset

c) Coset

d) Double Coset

9. The order of a subgroup H of a finite group G is a power of p

and the index of H is prime to p then H is

a) Normalizer

b) Centralizer

c) Sylow p-subgroup

d) None of these

10. A finite group whose order is divisible by a prime p contains a

Sylow p-subgroup, is

a) Sylow p-subgroup
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b) Sylow’s first theorem

c) Sylow’s second theorem

d) Sylow’s third theorem

11. A group of order 80 has how many Sylow 5-subgroup’s?

a) 0 b) 1 c) 2 d) 3

12. A group of order 200 has how many Sylow 2-subgroup’s ?

a) 3 b) 5 c) 7 d) 0

13. If o(G) = 121, then o(Z(G)) is

a)1 b) 11 c) 121 d) 112

14. Any two Sylow p-subgroups of a group G are

a) Normal to each other

b) Conjugate to each other

c) Centralizers

d) None of these

15. A finite group G has a unique Sylow p-subgroup H iff H is

a) Normal in G

b) Centralizer in G

c) Conjugate in G

d) Sylow p-subgroup

16. The number k of Sylow p-subgroup of a finite group is congruent

to the

a) p mod 1 b) 1 mod p

c) 1 mod 2p d) 0 mod p

Answers:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

a a a d a a b d c b b b c b a b
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Exercise

1. Prove that no group of order 96 is simple

2. Show that every group of order 160 has a normal subgroup.

3. Find the class equation for S4 .



Block 2 - UNIT 3

Finite abelian groups

Objectives

• We study internal direct product and external direct product

• Learn about 1-1 correspondence between internal direct

product and external direct product

• Study about the relation between a finite abelian group and its

Sylow subgroups

• Study about the relation between a finite abelian group and its

cyclic subgroups

• To learn about Isomorphic abelian groups and its invariants

• To study about number of non-isomorphic abelian groups of

order pn.

In our under graduate level, in the investigation of cyclic groups

we have found that every group of prime order is isomorphic to Zp,

where p is a prime number. We also determined that Zmn '

Zm × Zn, when gcd(m, n) = 1. In this chapter we define direct

products on groups. In this unit, we first prove that every finite

41
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abelian group is isomorphic to a direct product of cyclic groups of

prime power order and then we prove the Fundamental Theorem of

Finite abelian Groups.

3.1 Direct Products

In this section we construct a new group from some groups that we

already have on hand.

Cartesian product of groups

Let A, B be any two groups. Consider the Cartesian product of A, B

namely A× B .

Let G = A× B .

Then G = {(ai, bi) | ai ∈ A and bi ∈ B } .

Define the multiplication in G as follows.

Let (a1, b1), (a2, b2) ∈ G . Then (a1, b1)(a2, b2) = (a1a2, b1b2) .

Since a1, a2 ∈ A, we have a1a2 ∈ A and b1, b2 ∈ B we have

b1b2 ∈ B, and therefore we have (a1a2, b1b2) ∈ G. With this

definition a product defined in G , we prove G is a group as given

in the following lemma.

Lemma 3.1.1. If A and B are any two groups then their Cartesian

product G = A× B is also a group with respect to multiplication.

Proof. G = {(a, b) | a ∈ A and b ∈ B } .

We prove all the four required axioms now.

Closure: Let (a1, b1), (a2, b2) ∈ G . Then (a1, b1)(a2, b2) =

(a1a2, b1b2) ∈ G since a1a2 ∈ A and b1b2 ∈ B .

Associativity: Let (a1, b1), (a2, b2), (a3, b3) ∈ G .
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Then

[(a1, b1)(a2, b2)](a3, b3) = (a1a2, b1b2)(a3, b3)

= (a1a2a3, b1b2b3)

= [a1(a2a3), b1(b2b3)]

= (a1, b1)(a2a3, b2b3)

= (a1, b1)[(a2, b2)(a3, b3)].

That is, [(a1, b1)(a2, b2)](a3, b3) = (a1, b1)[(a2, b2)(a3, b3)] .

Existence of Identity: Let e, f be the identity elements of A and

B respectively. Then (e, f ) ∈ G .

Let (a, b) ∈ G . Then (a, b)(e, f ) = (ae, b f ) = (a, b) .

Similarly, (e, f )(a, b) = (ea, f b) = (a, b) .

Therefore, (e, f ) is the identity element of G .

Existence of Inverse: Let a ∈ A . Then, a−1 ∈ A .

Let b ∈ B . Then, b−1 ∈ B .

Therefore, (a, b) ∈ G ⇒ (a−1, b−1) ∈ G .

Consider (a, b)(a−1, b−1) = (aa−1, bb−1) = (e, f ).

Similarly, (a−1, b−1)(a, b) = (a−1a, b−1b) = (e, f ).

Therefore (a−1, b−1) is the inverse of (a, b) . Therefore G is a group

which completes the proof of the Lemma. �

Note: This cartesian product A × B is called the external direct

product of A and B .

Corollary 3.1.1. If A and B are any two groups then their external

direct product A× B is also a group .

Lemma 3.1.2. If A and B are any two groups with identity
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elements e, f respectively. Then, A × { f } and {e} × B are the

normal subgroups of G where G = A× B .

Proof. Now we prove that A× { f } is a normal subgroup.

Let (a1, f ), (a2, f ) ∈ A× { f } , where, a1, a2 ∈ A, f ∈ { f } .

Then, (a1, f )(a2, f )−1

= (a1, f )(a−1
2 , f−1)

= (a1, f )(a−1
2 , f )

= (a1a−1
2 , f ) = (e, f ) ∈ A× { f } .

Therefore , A× { f } is a subgroup of G .

Let (a1, b1) ∈ G , and let (a, f ) ∈ A× { f } . Then,

(a1, b1)(a, f )(a1, b1)
−1

= (a1, b1)(a, f )(a−1
1 , b−1

1 )

= (a1aa−1
1 , b1 f b−1

1 )

= (a1aa−1
1 , b1b−1

1 )

= (a1aa−1
1 , f ) ∈ A× { f } .

Thus A× { f } is a normal subgroup of G .

Similarly, {e} × B is also normal subgroup of G. Thus the Lemma

is proved. �

Lemma 3.1.3. Let A and B be any two groups with identity

elements e, f respectively and let G = A× B . Then, A ' A× { f }

and B ' {e} × B .

Proof. Define a map φ : A → A× { f } such that φ(a) = (a, f ) for

all a ∈ A .

We first claim that φ is 1-1 :

Indeed let, φ(a1) = φ(a2) , then (a1, f ) = (a2, f )⇒ a1 = a2 .

Thus φ is 1-1.

Secondly, we show that φ is onto :

Note that ∀ (a, f ) ∈ A × { f }, there exists a ∈ A such that
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φ(a) = (a, f ) .

Thus φ is onto.

Finally we prove that φ is a homomorphism:

Now, φ(ab) = (ab, f ) = (a, f )(b, f ) = φ(a)φ(b).

Thus φ is a homomorphism.

Similarly we can prove, B ' {e} × B.

Hence A ' A × { f } and B ' {e} × B. Hence the Lemma is

proved. �

3.2 Internal Direct product

Definition 3.2.1. Define G = (A × { f })({e} × B) , where G =

A× B .

Thus if (a, b) ∈ G, then (a, b) = (ae, f b) = (a, f )(e, b) .

That is, G = (A× { f })({e} × B) .

This G = (A× { f })({e} × B) is called the internal direct product

of A and B and this is denoted by G = AB .

Now we generalize these concepts for a finite number of n groups.

Let G1, G2, . . . , Gn be any groups and let e1, e2, . . . , en be the identity

elements of G1, G2, . . . , Gn respectively. Then the cartesian product

of G1, G2, ..., Gn namely, G = G1 × G2 × · · · × Gn is called the

external direct product of G1, G2, · · · , Gn .

The identity element of G is (e1, e2, · · · , en) .



46 3.2. INTERNAL DIRECT PRODUCT

Consider the following sets.

G1 × {e2} × {e3} × {e4}× · · · ×{en})

{e1} × {G2} × {e3} × {e4}× · · · ×{en}

{e1} × {e2} × {G3} × {e4}× · · · ×{en}

{e1} × {e2} × {e3} × {G4}× · · · ×{en}
...

{e1} × {e2} × {e3} × {e4}× · · · ×{Gn}

Each of the above set is a normal subgroup of G ,

where G = G1 × G2 × · · · .× Gn and

G1 × {e2} × {e3} × {e4}× · · · ×{en} ' G1

{e1} × {G2} × {e3} × {e4}× · · · ×{en} ' G2

{e1} × {e2} × {G3} × {e4}× · · · ×{en} ' G3

{e1} × {e2} × {e3} × {G4}× · · · ×{en} ' G4

...

{e1} × {e2} × {e3} × {e4}× · · · ×{Gn} ' Gn

Thus the product G is defined as

G = [G1 × {e2} × · · · × {en}]

[{e1} × {G2} × {e3} × · · · × {en}]

[{e1} × {e2} × {G3} × {e4} × · · · × {en}]

· · · [{e1} × {e2} × {e3} × {e4} × · · · × {Gn}].

This G is called the internal direct product of G1, G2, · · · , Gn .

Let G = {(a, b) | a ∈ A , b ∈ B} , be a group with identity element

(e, f ) .

Let G1 = {(e, b) | e ∈ A , b ∈ B}
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G2 = {(a, f ) | a ∈ A , f ∈ B}

Clearly G1 ⊆ G and G2 ⊆ G .

We claim that G1 is a normal subgroup of G.

Indeed, first we prove G1 is a subgroup.

Let (e, b1), (e, b2) ∈ G1 . Therefore, (e, b1b2) ∈ G1 . Thus closure is

verified.

Since b ∈ B we have b−1 ∈ B . Therefore (e, b) ∈ G1 ⇒ (e, b−1) ∈

G1 .

Consider (e, b)(e, b−1)⇒ (e, bb−1)⇒ (e, f ) ∈ G1 .

Thus (e, b−1) is the inverse element of (e, b) .

Hence G1 is a subgroup of G .

Now we prove G1 is normal.

Consider (e, b) ∈ G1 and (x, y) ∈ G .

Now (x, y)(e, b)(x−1, y−1)⇒ (xe, yb)(x−1, y−1)⇒ (x, yb)(x−1, y−1)

⇒ (xx−1, yby−1)⇒ (e, yy−1b)⇒ (e, b) ∈ G1 .

Thus G1 is a normal subgroup of G .

Similarly, G2 is also normal subgroup of G .

Now we claim that G = G1G2 .

Let g = g1g2 where g1 ∈ G1 and g2 ∈ G2 . Then

g = (a, b) where a ∈ A and b ∈ B

g1 = (e, b) where e ∈ A and b ∈ B

g2 = (a, f ) where a ∈ A and f ∈ B

(a, b) = (e, b)(a, f ) = (ea, b f ) = (a, b) .

Thus every element g ∈ G can be expressed in a unique way as

g = g1g2 where g1 ∈ G1 and g2 ∈ G2 .

This G is called the internal direct product of G1 and G2 . More

formally,

Definition 3.2.2. Let G1, G2, · · · , Gn are normal subgroups of

G. The group G is said to be the internal direct product of
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G1, G2, · · · , Gn if

(i). G = G1G2 · · ·Gn

(ii).Every element g ∈ G can be expressed in a unique way as

g = g1g2g3 · · · gn where gi ∈ Gi .

Suppose that G is the internal direct product of the normal

subgroups N1, . . . , Nn. For a little moment, we use these N1, . . . , Nn

as groups and construct their external direct product T as T =

N1 × N2 × · · · × Nn. For every one, it is natural to ask about the

relationship between G and T. Our aim is to show that this relation

is up to an isomorphism. That is, we prove that G is isomorphic to

T. We start with the following result.

Lemma 3.2.1. Let G be the internal direct product of

N1, N2, · · · , Nn. Then,

(i). Ni ∩ Nj = (e) , for i 6= j. More over

(ii). if a ∈ Ni and b ∈ Nj, then ab = ba.

Proof. Let x ∈ Ni ∩ Nj. Then , x ∈ Ni and x ∈ Nj .

x = e1e2 · · · ei−1xei+1 · · · ej−1ejej+1 · · · en

where et = e, t = 1, 2, 3, 4, · · · , n and t 6= i as x ∈ Ni.

Again, x = e1e2 · · · ei−1eiei+1 · · · ej−1xej+1 · · · en

where ek = e, k = 1, 2, 3, 4, · · · , n and k 6= j as x ∈ Nj.

But it is given that G is the internal direct product of N1, N2, · · · , Nn .

Therefore every element in G has a unique expression.

As x ∈ G, the above two expressions for x must be equal.

Therefore, x = ei = ej = e = x. Thus x = e.

Hence Ni ∩ Nj = (e). This proves part (i).

To prove the second part of this Lemma, let a ∈ Ni and b ∈ Nj.

a ∈ Ni ⇒ a−1 ∈ Ni

b ∈ Nj ⇒ b−1 ∈ Nj
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Consider aba−1b−1

Since Nj is normal , we have, aba−1 ∈ Nj.

Also b−1 ∈ Nj . Therefore, aba−1b−1 ∈ Nj.

Since Ni is normal , we have, ba−1b−1 ∈ Ni .

Also a ∈ Ni . Therefore, aba−1b−1 ∈ Ni .

Thus, aba−1b−1 ∈ Ni and aba−1b−1 ∈ Nj and therefore

aba−1b−1 ∈ Ni ∩ Nj. But Ni ∩ Nj = (e) .

Therefore aba−1b−1 = e . Hence ab = ba .

Hence the Lemma is proved. �

Isomorphism between the external and internal direct products

We now prove the desired isomorphism between the external and

internal direct products which we mentioned earlier.

Theorem 3.2.1. Let G be a group and suppose that G is the

internal direct product of N1, N2, · · · , Nn. Let T = N1 × N2 × · · · ×

Nn. Then G and T are isomorphic.

Proof. Define a map ψ : T → G by

ψ(a1, a2, a3, · · · , an) = a1a2a3 · · · an , where ai ∈ Ni , for i =

1, 2, 3, · · · , n.

To prove T and G are isomorphic, we have to prove the following.

(i) ψ is 1-1.

(ii) ψ is onto

(iii) ψ is a homomorphism

To prove ψ is 1-1.

Let ψ(a1, a2, a3, · · · , an) = ψ(b1, b2, b3, · · · , bn), where ai, bi ∈ Ni

⇒ a1a2a3 · · · an = b1b2b3 · · · bn

By uniqueness of elements in the internal direct product,

we have ai = bi for all i . Thus ψ is 1-1.

To prove ψ is onto.
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Since G is the internal direct product of N1, N2, · · · , Nn ,

every x ∈ G is of the form x = a1a2a3 · · · an, for some a1 ∈ N1, a2 ∈

N2, a3 ∈ N3, · · · , an ∈ Nn.

But by definition, ψ(a1, a2, a3, · · · , an) = a1a2a3 · · · an = x.

Hence ψ is onto.

To prove ψ is a homomorphism:

Let X = (a1, a2, a3, · · · , an) and let Y = (b1, b2, b3, · · · , bn)

be any two elements of T . Then,

ψ(XY) = ψ[(a1, a2, a3, · · · , an)(b1, b2, b3, · · · , bn)]

= ψ[(a1b1, a2b2, a3b3, · · · , anbn)]

= a1b1a2b2a3b3 · · · anbn.

However by Lemma 3.2.1, we have, aibj = bjai , if i 6= j .

This says that,

a1b1a2b2a3b3 · · · anbn = a1a2a3 · · · anb1b2b3 · · · bn

Thus, ψ(XY) = a1a2a3 · · · anb1b2b3 · · · bn

But we can recognize

a1a2a3 · · · an as ψ(a1, a2, a3, · · · , an) = ψ(X) and

b1b2b3 · · · bn as ψ(b1, b2, b3, · · · , bn) = ψ(Y)

That is, ψ(XY) = ψ(X)ψ(Y) .

Thus ψ is an isomorphism of T onto G . This proves the

theorem. �

Example 3.2.1. Consider the Klein group Z2 ×Z2, it contains the

two subgroups H = {(h, 0), h ∈ Z2} and K = {(0, k), k ∈ Z2}.

We have that both H and K are normal, because the Klein group

is commutative. We also have that H ∩ K = {(0, 0)}, so the Klein

group is indeed an internal direct product.

Example 3.2.2. Consider the subset D in the direct product given

by D = {(g, g) ∈ G× G|g ∈ G} ⊂ G× G .

We claim that D is a subgroup of G× G.

Let, (g, g), (h, h) ∈ G× G.
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Now, (g, g)(h, h) = (gh, gh) ∈ D and

(g, g)−1 = (g−1, g−1) ∈ D.

That is for any g, h ∈ G, D is closed under multiplications and

inverses, and hence D is a subgroup of G× G.

3.3 Fundamental theorem on Finite abelian groups

Here we prove that every finite abelian group is isomorphic to a

direct product of cyclic groups of prime power order. That is,

every finite abelian group is isomorphic to a group of the type

Zpn1 ×Zpn2 × · · ·Zpnk . This is given as

Theorem 3.3.1. Any finite abelian group is isomorphic to a

direct product Sp1 × · · · × Spr where n =
r

∏
i=1

pni
i is the prime

decomposition of the order o(G) = n and Spi is the unique Sylow

pi -subgroup in G of order pni
i . This direct product decomposition

is canonical: the subgroups Spi are uniquely determined, as are

the primes pi and their exponents ni.

Proof. Let us write Si for the unique Sylow pi -subgroup. Therefore,

o(Si) = pni
i . For each index 1 ≤ i ≤ r, define the product set

Hi =
i

∏
j=1

Sj. Since G is abelian, each Hi is a normal subgroup of

G.

We now claim that, the order is o(Hi) =
i

∏
j=1

p
nj
j .

By definition, it is clear that, o(H1) = o(S1) = pn1
1 .

When i = 2, the order of the subgroup H1 ∩ S2 = S1 ∩ S2 must

divide both pn1
1 and pn2

2 , and hence the intersection H1 ∩ S2 is

trivial. That is, H1 ∩ S2 = {e} and therefore, o(H1 ∩ S2) = 1.

Using the result, o(HK) =
o(H)o(K)
o(H ∩ K)

, we immediately have that for

H2 = H1S2,
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o(H2) = o(H1S2) =
o(H1)o(S2)

o(H1 ∩ S2)
=

pn1
1 pn2

2
1

= pn1
1 pn2

2 .

At the next stage we have H3 = H2S3 and H2 ∩ S3 is again trivial

because these subgroups have different prime divisors; applying the

same result, we get o(H3) = o(H2)o(S3) = pn1
1 pn2

2 pn3
3 . Continuing

inductively we prove our claim.

This already implies that G is a direct product. In fact, since

o(G) = o(Hr) we see that G is equal to the product set S1S2 · · · Sr.

It remains only to check that if a1a2 · · · ar = e with ai ∈ Si, then

each ai = e. Let q be the smallest index such that a non-trivial

decomposition of the identity occurs. Certainly q > 1 and aq 6= e,

and then a−1
q = a1 · · · aq−1. But on the left we have an element

of Sq and on the right an element of the subgroup Hq−1. These

subgroups have trivial intersection, which is impossible if aq 6= e.

Thus every element in G has a unique decomposition of the form

a1a2 · · · ar, and G is the direct product of its Sylow subgroups. �

Theorem 3.3.2. (Fundamental Theorem of Finite Abelian Groups)

Every finite abelian group is the direct product of its cyclic

subgroups.

Proof. We know that every finite abelian group is isomorphic to

the direct product of Sylow subgroups. To prove our theorem it is

enough to prove that every Sylow subgroup is the direct product of

its cyclic subgroups. Hence without loss of generality, let us assume

that the given group G is of order pn , where p is a prime.

Let a1 ∈ G such that o(a1) = pn1 , n1 ≤ n and such that this a1 has

the highest possible order. Let A1 be the cyclic group generated by

a1 .

That is, A1 = (a1).

Let G =
G
A1

.
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Choose b2 in G such that o(b2) is maximal in
G
A1

, say pn2 such

that

bpn2

2 = e. (3.3.1)

Therefore pn2 |o(b2). This shows n2 ≤ n1 .

Let pn2 be the least positive integer such that bpn2

2 ∈ A1 .

Since A1 is the cyclic group generated by a1 and

bpn2

2 ∈ A1, we have bpn2

2 = ai
1, for some i. (3.3.2)

We claim that there exists a cyclic group, say A2 , of order pn2 .

To prove this claim, let us find an element a2 in G , with help of b2 ,

such that A2 = (a2) .

Consider

aipn1−n2

1 = (ai
1)

pn1−n2

= (bpn2

2 )pn1−n2

= bpn2 pn1−n2

2

= bpn2 pn1 p−n2

2

= bpn1

2 = e (by(3.3.1)).

That is, aipn1−n2

1 = e .

But o(a1) = pn1 ⇒ pn1 |ipn1−n2 ⇒ pn1 pn2 |ipn1

⇒ pn2 |i⇒ i = pn2 .j, for some j .

Therefore

bpn2

2 = ai
1 = apn2 .j

1 . (3.3.3)

Let a2 = a−j
1 b2 .
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Therefore,

apn2

2 = (a−j
1 b2)

pn2

= a−jpn2

1 bpn2

2

= a−jpn2

1 apn2 .j
1

= e (using(3.3.3)).

That is,

apn2

2 = e. (3.3.4)

Thus we have found a2 with help of b2 , such that o(a2) = pn2 .

This proves our Claim .

Now we show that A1 ∩ A2 = {e}.

Let at
2 ∈ A1 ∩ A2 . This implies, at

2 ∈ A1 and at
2 ∈ A2 .

Let us prove that at
2 = e .

Since a2 = a−j
1 b2 , we have at

2 =
(

a−j
1 b2

)t
∈ A1

⇒ a−jt
1 bt

2 ∈ A1 ⇒ bt
2 ∈ A1 (since a−jt

1 ∈ A1).

But pn2 is the least positive integer such that bpn2

2 ∈ A1 .

Therefore pn2/t⇒ t = pn2k1 , for some k1 .

But at
2 = apn2 k1

2 =
(

apn2

2

)k1
= ek1 = e . ( using (3.3.4)).

Thus we have shown that at
2 = e.

Let us consider the quotient group
G

A1A2
. Choose b3 in G such

that the image of b3 in
G

A1A2
has maximal order in

G
A1A2

, say

pn3 such that, (b3)
pn3 = e, bpn2

3 ∈ A1 and pn3 is the least positive

integer such that bpn3

3 ∈ A1A2. Therefore n3 ≤ n2 .

We can prove that there exist an element a3 , which can be defined

with the help of b3. Let A3 be the cyclic group generated by a3

such that o(A3) = pn3 and A3 ∩ (A1A2) = e .

Continuing in this way, we get cyclic groups,
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A1 = (a1), A2 = (a2), · · · , Ak = (ak) of orders, pn1 , pn2 , · · · , pnk

respectively, with n1 ≥ n2 ≥ n3 ≥ · · · ≥ nk such that G =

A1A2 · · · Ak and such that for all i , Ai ∩ (A1A2 · · · Ai−1) = (e) .

This says that every x ∈ G has a unique representation as

x = a′1a′2a′3 · · · a′k where each a′i ∈ Ai, for i = 1, 2, 3, · · · , k.

Thus G is the direct product of cyclic groups, A1, A2, · · · , Ak of G .

Hence the Theorem is proved. �

Definition 3.3.1. The integers n1, n2, · · · , nk are called invariants

of G .

Definition 3.3.2. If G is an abelian group and s is any integer,

then G(s) = {x ∈ G|xs = e}

Because G is abelian it is evident that G(s) is a subgroup of G.

We now show this in the following lemma.

Lemma 3.3.1. The set G(s) = {x ∈ G|xs = e} is a subgroup of an

abelian group G.

Proof. We know that, for an abelian group G,

(ab)n = anbn, ∀a, b ∈ G and n ∈N.

Let x, y ∈ G(s). Then, xs = e, and ys = e.

Consider (xy)s = xsys = e.e = e. That is, x, y ∈ G(s) implies

xy ∈ G(s). Hence, G(s) has closure property.

Now, (x−1)s = (xs)−1 = e−1 = e. That is, x ∈ G(s) implies

x−1 ∈ G(s). Hence, G(s) is a subgroup of G. This proves the

lemma. �

We now prove a result on isomorphic images of abelian groups.

Lemma 3.3.2. If G and G′ are isomorphic abelian groups, then for

every integer s, G(s), and G′(s) are isomorphic.
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Proof. Let φ be an isomorphism of G onto G′. We claim that

φ maps G(s) isomorphically onto G′(s). First we show that

φ(G(s)) ⊂ G′(s). For, if x ∈ G(s) then xs = e. Hence φ(xs) =

φ(e) = e′. But φ(xs) = (φ(x))s. Hence φ(x)s = e′ and so

φ(x) is in G′(s). Thus φ(G(s)) ⊂ G′(s). On the other hand, if

u′ ∈ G′(s) then (u′)s = e′. But, since φ is onto, u′ = φ(y) for

some y ∈ G. Therefore e′ = (u′)s = φ(y)s = φ(ys). Because φ

is one-to-one, we have ys = e and so y ∈ G(s). Thus φ maps

G(s) onto G′(s). Therefore since φ is one-to-one, onto, and a

homomorphism from G(s) to G′(s), we conclude that G(s) and

G′(s) are isomorphic. �

Lemma 3.3.3. Let G be an abelian group of order pn, p a prime.

Suppose that G = A1 × A2 × · · · × Ak, where each Ai = (ai)

is cyclic of order pni and n1 ≥ n2 ≥ · · · ≥ nk > 0. If m

is an integer such that n1 > nt > m ≥ nt+1 then G(pm) =

B1 × · · · × Bt × At+1 × · · · × Ak where Bi is cyclic of order pm,

generated by apni−m

i , for i ≤ t. The order of G(pm) is pu, where

u = mt +
k

∑
i=t+1

ni (3.3.5)

Proof. It is given that G = A1 × A2 × · · · × Ak, and o(Ai) = pni ,

Ai = (ai) , ∀n1 ≥ n2 ≥ · · · nk > 0.

Since Ai = (ai) and o(Ai) = pni , we have,

o(ai) = pni ⇒ apni

i = e (3.3.6)

G(pm) = {x ∈ G|xpm
= e}, , where nt > m ≥ nt+1

CLAIM 1. Ai ⊆ G(pm) , ∀i = t + 1, t + 2, · · · k.

It is given that n1 ≥ n2 ≥ · · · nt > m ≥ nt+1 ≥ · · · ≥ nk > 0 .
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Since m ≥ nt+1 ≥ · · · ≥ nk > 0, for every j ≥ t + 1 , we have,

apm

j = (apnj

j )pm−nj
= epm−nj

= e. (3.3.7)

That is, apm

j = e , for j ≥ t + 1.

Therefore, (apm

j ) ⊆ G(pm)

That is, Ai ⊆ G(pm) , ∀i = t + 1, t + 2, · · · , k.

CLAIM 2. Bi ⊆ G(pm) , for 1 ≤ i ≤ t

Clearly, nt > m , when i ≤ k .

It is given that Bi = (apni−m

i ) .

Now consider,

(apni−m

i )pm
= (apni

i ) = e. (3.3.8)

Therefore, apni−m

i ⊆ G(pm)

That is, B ⊆ G(pm) .

Thus, B1, B2, · · · , Bt, At+1, · · · , Ak ⊆ G(pm) .

Since, B1, B2, · · · , Bt, At+1, · · · Ak are all in G(pm) , their product is

also in G(pm) .

That is, B1 × B2 × · · · × Bt × At+1 × · · · × Ak ⊆ G(pm) .

CLAIM 3: G(pm) ⊆ B1 × B2 × · · · × Bt × At+1 × · · · × Ak .

Let x ∈ G(pm) . Therefore, x = aλ1
1 aλ2

2 aλ3
3 · · · a

λk
k .

Since, x ∈ G(pm) , we have, xpm
= e.

Therefore, xpm
= (aλ1

1 aλ2
2 aλ3

3 · · · a
λk
k )pm

= e

That is, aλ1 pm

1 aλ2 pm

2 aλ3 pm

3 · · · aλk pm

k = e

Since the product G = A1× A2× · · · Ak is direct, we have, aλi pm

i =

e, for i = 1, 2, · · · k.

Since m ≥ t + 1 ≥ t + 2 ≥ · · · ≥ nk, for i ≥ t + 1, we have pni |pm.

As o(ai) = pni and aλi pm

i = e, we have pni |λi pm.

That is, pni−m|λi, for i ≤ t.

Therefore, λi = pni−mvi , for i ≤ k .

Now, x = av1 pn1−m

1 av2 pn2−m

2 · · · avt pnt−m

t aλt+1
t+1 · · · a

λk
k
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⇒ x ∈ B1 × B2 × · · · × Bt × At+1 × · · · × Ak .

∴ G(pm) ⊆ B1 × B2 × · · · × Bt × At+1 × · · · × Ak .

Hence we have

G(pm) = B1 × · · · × Bt × At+1 × · · · × Ak . Now,

o(G(pm)) = o(B1) · · · o(Bt)o(At+1)o(At+2) · · · o(Ak) .

But o(Bi) = pm, and o(Ai) = pni , , we have,

o(G(pm)) = pm pm · · · pm︸ ︷︷ ︸
t−times

pnt+1 · · · pnk . Thus, if order of G(pm) is pu,

then,

u = mt +
k

∑
i=t+1

ni (3.3.9)

and the Theorem is proved. �

Corollary 3.3.1. If G is as in Lemma 3.3.3, then o(G(p)) = pk.

Proof. For the case m = 1 in above lemma, we have t = k.

Therefore, u = 1k = k. Hence o(G) = pk. �

Theorem 3.3.3. Two abelian groups of order pn are isomorphic if

and only if they have the same invariants.

In other words, if G and G′ are abelian groups of order pn and

G = A1 × · · · × Ak, where each Ai is a cyclic group of order

pni , n1 ≥ · · · ≥ nk > 0, and G′ = B′1 × · · · × B′s, where each B′i
is a cyclic group of order phi , h1 ≥ · · · ≥ hs > 0, then G and G′

are isomorphic if and only if k = s and for each i, ni = hi.

Proof. One way is very easy, namely, if G and G′ have the same

invariants then they are isomorphic. For then G = A1 × · · · × Ak

where Ai = (ai) is cyclic of order pni , and G′ = B′1 × · · · × B′s,

where B′i = (b′i) is cyclic of order pni .

Define a map φ from G onto G′ such that φ(aα1
1 · · · a

αk
k ) =

(b′1)
α1 · · · (b′k)αk . We leave it to the reader to verify that this defines

an isomorphism of G onto G′.
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Now for the other direction. Suppose that G = A1 × · · · × Ak,

and G′ = B′1 × · · · × B′s, Ai, B′i as described above, cyclic of orders

pni , phi , respectively, where n1 ≥ · · · ≥ nk > 0 and h1 ≥ · · · ≥

hs > 0. We want to show that if G and G′ are isomorphic then

k = s and each ni = hi.

If G and G′ are isomorphic then, by Lemma 3.3.2, G(pm) and

G′(pm) must be isomorphic for any integer m ≥ 0, hence must

have the same order.

Suppose let m = 1. Then by Corollary 3.3.1, o(G(p)) = pk and

o(G′(p)) = ps. Hence pk = ps and so k = s. Thus we observed

that the number of invariants for G and G′ is the same.

If ni 6= hi for some i, let t be the first i such that nt 6= ht; we

may suppose that nt > ht. Let m = ht. Consider the subgroups,

H = {xpm |x ∈ G} and H′ = {(x′)pm |x′ ∈ G′}, of G and G′,

respectively. Since G and G′ are isomorphic, it follows easily that

H and H′ are isomorphic.

We now find the invariants of H and H′.

Because G = A1 × · · · × Ak, where Ai = (ai) is of order pni , we

get that H = C1× · · · ×Ct× · · · ×Cr, where Ci = (apm

i ) is of order

pni−m , and where r is such that nr > m = ht ≥ nr−1. Thus the

invariants of H are n1 −m, n2 −m, · · · , nr −m and the number of

invariants of H is r ≥ t.

Because G′ = B′1 × · · · × B′k, where Bi = (b′i) is cyclic of order phi

, we get that H′ = D′1 × · · · × D′t−1, where D′i = ((b′i)
pm
) is cyclic

of order phi−m. Thus the invariants of H′ are h1−m, · · · , ht−1−m

and so the number of invariants of H′ is t − 1. But H and H′

are isomorphic. This shows that they have the same number

of invariants. Consequently, each ni = hi, and the theorem is

proved. �
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3.4 Non-isomorphic abelian groups

Theorem 3.4.1. The number of non-isomorphic abelian groups of

order pn, where p is a prime, equals the number of partitions of n.

Proof. If n1 ≥ n2 ≥ · · · ≥ nk > 0, where n = n1 + n2 + · · ·+ nk, is

any partition of n, then we can easily construct an abelian group of

order pn whose invariants are n1 ≥ n2 ≥ · · · ≥ nk > 0. To do this,

let Ai be a cyclic group of order pni and let G = A1× A2× · · ·× Ak

be the external direct product of A1, A2, . . . , Ak. Then, by the very

definition, the invariants of G are n1 ≥ n2 ≥ · · · ≥ nk > 0. Finally,

two different partitions of n give rise to nonisomorphic abelian

groups of order pn. Hence the Theorem is proved. �

Example 3.4.1. The possible isomorphism types of abelian groups

of order 16 are: Z16; Z8 ×Z2; Z4 ×Z4; Z4 ×Z2 ×Z2; Z2 ×Z2 ×

Z2 ×Z2.

Example 3.4.2. The possible isomorphism types of abelian groups

of order 100 are

Z100; Z50 ×Z2; Z25 ×Z4; Z10 ×Z10 : Z20 ×Z5.

Example 3.4.3. Obviously, all finite groups are finitely generated.

For example, the group S3 is generated by the permutations (12)

and (123).

The group Z×Zn is an infinite group but is finitely generated by

{(1, 0), (0, 1)}.

Example 3.4.4. Find all distinct finite Abelian groups of order 16 =

24.
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Solution: We first list all partitions of 4.

4

3 + 1

2 + 2

2 + 1 + 1

1 + 1 + 1 + 1

This then yields distinct groups:

Z24 = Z16

Z23 ×Z21 = Z8 ×Z2

Z22 ×Z22 = Z4 ×Z4

Z22 ×Z21 ×Z21 = Z4 ×Z2 ×Z2

Z21 ×Z21 ×Z21 ×Z21 = Z2 ×Z2 ×Z2 ×Z2

Example 3.4.5. Find all distinct finite Abelian groups of order 72 =

2332

Solution: We first list all partitions for 3 using partitions 3 = 3 =

2 + 1 = 1 + 1 :

This then yields distinct groups:

Z8

Z4 ×Z2

Z2 ×Z2 ×Z2

The partitions for 2 is: 2 = 2 = 1 + 1 :

This partition yields following distinct groups:

Z9

Z3 ×Z3

Then we create all possible combinations as
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Z8 ×Z9

Z8 ×Z3 ×Z3

Z4 ×Z2 ×Z9

Z4 ×Z2 ×Z3 ×Z3

Z2 ×Z2 ×Z2 ×Z9

Z2 ×Z2 ×Z2 ×Z3 ×Z3

Example 3.4.6. Suppose that we wish to classify all abelian groups

of order 540 = 22.33.5 . The Fundamental Theorem of Finite

Abelian Groups tells us that we have the following six possibilities.

• Z2 ×Z2 ×Z3 ×Z3 ×Z3 ×Z5;

• Z2 ×Z2 ×Z3 ×Z9 ×Z5;

• Z2 ×Z2 ×Z27 ×Z5;

• Z4 ×Z3 ×Z3 ×Z3 ×Z5;

• Z4 ×Z3 ×Z9 ×Z5;

• Z4 ×Z27 ×Z5.

Summary of this unit.

In this lesson we have studied the following:

• If A and B are any two groups then their Cartesian product

G = A× B is also a group with respect to multiplication.

• Let G1, G2, · · · , Gn are normal subgroups of G. The group G

is said to be the internal direct product of G1, G2, · · · , Gn if

(i). G = G1G2 · · ·Gn

(ii).Every element g ∈ G can be expressed in a unique way as

g = g1g2g3 · · · gn where gi ∈ Gi .
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• Let G be the internal direct product of N1, N2, · · · , Nn. Then,

(i). Ni ∩ Nj = (e) , for i 6= j. More over

(ii). if a ∈ Ni and b ∈ Nj, then ab = ba.

• Let G be a group and suppose that G is the internal direct

product of N1, N2, · · · , Nn. Let T = N1 × N2 × · · ·Nn. Then

G and T are isomorphic.

• Any finite abelian group is isomorphic to a direct product of its

Sylow subgroups.

• Every finite abelian group is the direct product of its cyclic

subgroups.

• The set G(s) = {x ∈ G|xs = e} is a subgroup of an abelian

group G.

• If G and G′ are isomorphic abelian groups, then for every

integer s, G(s), and G′(s) are isomorphic.

• Two abelian groups of order pn are isomorphic if and only if

they have the same invariants.

• The number of non-isomorphic abelian groups of order pn,

where p is a prime, equals the number of partitions of n.

Multiple Choice Questions

1. If G is an abelian group then the set of all elements in G of same

order is a

a) subgroup of G

b) normal subgroup of G

c) not a subgroup of G

d) subgroup but not a normal subgroup of G .
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2. The possible isomorphism types of abelian groups of order 16

are:

a) Z16and Z8

b) Z8 × Z2and Z4 × Z2

c) Z4 × Z4and Z8 × Z2

d) Z2 × Z2 × Z2and Z8 × Z4.

3. Let G = Z200 × Z8 × Z6. Then G is isomorphic to

a) Z10 × Z8 × Z120

b) Z150 × Z4 × Z10

c) Z120 × Z6 × Z20

d) Z110 × Z4 × Z12

4. The abelian groups of order 720 upto isomorphism are

a) Z16 × Z9 × Z5and Z4 × Z5 × Z9 × Z5

b) Z4 × Z4 × Z9 × Z5and Z2 × Z8 × Z9 × Z5

c) both (a) and (b)

d) neither (a) nor (b)

5. The abelian groups upto isomorphism of order 1800 are

a) Z8 × Z9 × Z25and Z4 × Z2 × Z3 × Z3 × Z25

b) Z8 × Z3 × Z3 × Z3 × Z5and Z8 × Z9 × Z5 × Z5

c) both (a) and (b)

d) (a) is true but (b) is not true.

6. The number of nonisomorphic abelian groups of order 625 is

a) 5 b) 25 c) 125 d) 625

7. Find generator of Z11

a) 2 b) 4 c) 5 d) 3

8. Suppose that the order of a finite abelian group G is divisible by

10. Then

a) G has a cyclic subgroup of order 10.
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b) G has a cyclic subgroup of order 12.

c) G has a cyclic subgroup of order 14.

d) G has a cyclic subgroup of order 16.

9. Suppose that G is a finite abelian group that has exactly one

subgroup for each divisor of o(G) . Then G is

a) cyclic

b) not cyclic

c) simple

d)not simple

10. A finite Abelian group of prime-power order is an internal direct

product of

a) cyclic groups

b) noncyclic groups

c) 2- Sylow subgroups

d) 3- Sylow subgroups

11. If A and B are cyclic groups of order m and n respectively, then

A× B is cyclic if the possible values of m and n respectively,

a) 4,6 b) 7,35 c) 5,20 d) 6,7

Answers:

1 2 3 4 5 6 7 8 9 10 11

b c a b c a a a a a d

Exercise:

1. If A and B are groups, prove that A × B is isomorphic to

B× A.

2. Let A, B be cyclic groups of order m and n , respectively.

Prove that A× B is cyclic if and only if m and n are relatively
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prime.

3. Let G be a group. Show that D = {(g, g) ∈ G× G|g ∈ G} is

isomorphic to G.

4. If G is a group and if D = {(g, g) ∈ G× G|g ∈ G}, prove that

D is normal in G× G if and only if G is abelian.

5. Find all of the abelian groups of order less than or equal to 40

up to isomorphism.

6. Find all of the abelian groups of order 200 up to isomorphism.

7. Prove that if a finite abelian group has subgroups of orders

m and n, then it has a subgroup whose order is the least

common multiple of m and n.

8. Describe all finite abelian groups of order 26

9. Describe all finite abelian groups of order 116

10. Describe all finite abelian groups of order 75

11. Describe all finite abelian groups of order 24.34

12. Show how to get all abelian groups of order 23.34.5

13. Find the number of nonisomorphic abelian groups of order 24.

14. Find all abelian groups (up to isomorphism) of order 720.

15. Find up to isomorphism all abelian groups of order 1800.



Block 2 - UNIT 4

Ring Theory

Objectives

• We try to learn about the polynomials

• To study about degree of polynomials

• Try to learn about Division Algorithm

• We study about irreducible polynomial

In this unit, we study about rings and polynomials.

4.1 Ring of Polynomials

If R is a ring, the ring of polynomials in x with coefficients in R is

denoted R[x]. It consists of all formal sums

∞

∑
i=0

aixi.

Here ai = 0 for all but finitely many values of i. We can replace

a formal sum with the infinite vector whose components are the

67
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coefficients of the sum:

∞

∑
i=0

aixi = (a0, a1, a2, . . .).

All of the operations which we will define using formal sums can be

defined using vectors. But it’s traditional to represent polynomials

as formal sums, so this is what we will do.

4.2 Arithmetic in Polynomials

Definition 4.2.1. A nonzero polynomial f (x) =
∞

∑
i=0

aixi has degree

n if n ≥ 0 and an 6= 0 , and n is the largest integer with this

property. Write deg f (x) to denote the degree of f (x) .

Definition 4.2.2. If all the coefficients in a polynomial is zero, then

it is called a zero polynomial.

The zero polynomial is defined by convention to have degree −∞ .

(This is necessary in order to make the degree formulas work out.)

Alternatively, we can say that the degree of the zero polynomial is

undefined; in that case, we will need to make minor changes to

some of the results below.

Polynomials are added component wise, and multiplied using the

convolution formula:

Theorem 4.2.1. If f (x) =
∞
∑

i=0
aixi and g(x) =

∞
∑

i=0
bixi , then,

∞

∑
i=0

aixi +
∞

∑
i=0

bixi =
∞

∑
i=0

(ai + bi)xi

(
∞

∑
i=0

aixi

)
·
(

∞

∑
j=0

bjxj

)
=

∞

∑
k=0

ckxk, where ck = ∑
i+j=k

aibj

These formulas will help us to compute sums and products as usual.
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Example 4.2.1. ( Polynomial arithmetic)

(a) Compute

(i).(x2 + 2x + 2) + (x2 + 3) and

(ii). (x2 + 2x + 2) · (x2 + 3) in Z[x].

(b) Compute

(i).(2x2 + 1) + (4x2 + 5) and

(ii). (3x + 2) · (2x + 3) in Z[x].

Solution:

(a) (i). (x2 + 2x + 2) + (x2 + 3) = 2x2 + 2x.

(ii). (x2 + 2x + 2) · (x2 + 3) = x4 + 2x3 + x + 1.

(b) (i). (2x2 + 1) + (4x2 + 5) = 0.

(ii). (3x + 2) · (2x + 3) = 6x2 + 13x + 6 = x.

Lemma 4.2.1. Let p(x) and q(x) be polynomials in R[x], where R

is an integral domain. Then deg p(x) + deg q(x) = deg (p(x)q(x)).

Furthermore, R[x] is an integral domain.

Proof. Suppose that we have two nonzero polynomials p(x) =

amxm + · · · + a1x + a0 and q(x) = bnxn + · · · + b1x + b0 with

am 6= 0 and bn 6= 0. The degrees of p(x) and q(x) are m and

n, respectively. The leading term of p(x)q(x) is ambnxm+n, which

cannot be zero since R is an integral domain; hence, the degree

of p(x)q(x) is m + n, and p(x)q(x) 6= 0. Since p(x) 6= 0 and

q(x) 6= 0 imply that p(x)q(x) 6= 0, we know that R[x] must also be

an integral domain. �

The verifications amount to writing out the formal sums, with a little

attention paid to the case of the zero polynomial. These formulas

do work if either f (x) or g(x) is equal to the zero polynomial,

provided that −∞ is understood to behave in the obvious ways (e.g.

−∞ + c = −∞ for any c ∈ Z ).
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Example 4.2.2. ( Degrees of polynomials)

(a) Give examples of polynomials f (x), g(x) ∈ R[x] such that

deg( f (x) + g(x)) < max(deg( f (x)), deg(g(x))).

(b) Give examples of polynomials f (x), g(x) ∈ Z4[x] such that

deg( f (x) · g(x)) 6= deg( f (x)) + deg(g(x)) .

Solution:

(a) deg
[
(x2 + 2) + (−x2 + 5)

]
= deg 7 = 0, whereas

max
[
deg(x2 + 2), deg(−x2 + 5)

]
= 2.

This shows that equality might not hold in deg( f (x) + g(x)) ≤

max(deg f (x), deg g(x)).

(b) deg([(2x) · (2x + 1)]) = deg(2x) = 1, but deg(2x) + deg(2x +

1) = 1 + 1 = 2.

Lemma 4.2.2. Let F be a field, and let F[x] be the polynomial ring

in one variable over F . The units in F[x] are exactly the nonzero

elements of F .

Proof. It is clear that the nonzero elements of F are invertible in

F[x], since they are already invertible in F .

Conversely, suppose that f (x) ∈ F[x] is invertible, so f (x)g(x) = 1

for some g(x) ∈ F[x] .

Then deg f (x) + deg g(x) = deg 1 = 0 , which is impossible unless

f(x) and g(x) both have degree 0.

In particular, f (x) is a nonzero constant, that is an element of

F . �

Theorem 4.2.2. ( Division Algorithm):

Let F be a field, and let f (x), g(x) ∈ F[x]. Suppose that g(x) 6= 0.

There are unique polynomials q(x), r(x) ∈ F[x] such that f (x) =

g(x)q(x) + r(x), and deg r(x) < deg g(x).

Proof. The idea is to imitate the proof of the Division Algorithm for
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Z .

Let S = { f (x)− g(x)q(x) | q(x) ∈ F[x]}.

The set {deg(s(x)) | s(x) ∈ S} is a subset of the nonnegative

integers, and therefore must contain a smallest element by

well-ordering.

Let r(x) ∈ S be an element in S of smallest degree, and write

r(x) = f (x)− g(x)q(x), where q(x) ∈ F[x].

We need to show that deg r(x) < deg g(x). If r(x) = 0 , then since

g(x) 6= 0 , we have deg g(x) ≥ 0 > −∞ = deg r(x).

Suppose then that r(x) 6= 0. Assume toward a contradiction that

deg r(x) ≥ deg g(x).

Write r(x) = rnxn + · · ·+ r1x + r0,

g(x) = gmxm + · · ·+ g1x + g0.

Assume rn, gm 6= 0 , and n ≥ m.

Consider the polynomial

r(x)− rn

gm
xn−mg(x) =

(rnxn + · · ·+ r1x + r0)−
(

rnxn +
rn

gm
xn−1 + · · ·

)
.

Its degree is less than n, since the n -th degree terms cancel out.

However,

r(x)− rn

gm
xn−mg(x) = f (x)− g(x)q(x)− rn

gm
xn−mg(x)

= f (x)− g(x)
(

q(x) +
rn

gm
xn−m

)
.

The latter is an element of S .

We have found an element of S of smaller degree than r(x), which

is a contradiction.

It follows that deg r(x) < deg g(x).

Finally, to prove uniqueness, suppose
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f (x) = g(x)q(x) + r(x) = g(x)q′(x) + r′(x), and

deg r(x), deg r′(x) < deg g(x). Rearranging the equation, we get

g(x)(q(x)− q′(x)) = r′(x)− r(x).

Then

deg (r′(x) − r(x)) = deg[g(x)(q(x) − q′(x))] = deg g(x) +

deg(q(x)− q′(x)).

But deg(r′(x)− r(x)) < deg g(x).

The equation can only hold if

r′(x)− r(x) = 0 and q(x)− q′(x) = 0.

Hence, r(x) = r′(x) and q(x) = q′(x). �

4.3 Irreducible Polynomials

In this section we prove some results on irreducible polynomials.

Definition 4.3.1. A polynomial p(x) ∈ F[x] is irreducible over F if

whenever p(x) = a(x)b(x) with a(x), b(x) ∈ F[x], then either a(x)

or b(x) has degree zero. That is a(x) or b(x) is a constant.

Proposition 4.3.1. A nonzero nonconstant polynomial f (x) ∈ F[x]

is irreducible if and only if f (x) = g(x)h(x) implies that either g(x)

or h(x) is a constant.

Proof. Suppose f (x) is irreducible and f (x) = g(x)h(x). Then

one of g(x), h(x) is a unit. But we have shown earlier that the

units in F[x] are the constant polynomials.

Suppose that f (x) is a nonzero nonconstant polynomial, and

f (x) = g(x)h(x) implies that either g(x) or h(x) is a constant

polynomial.

Since f (x) is nonconstant, it is not a unit. Note that if

f (x) = g(x) = h(x), then g(x), h(x) 6= 0 since f (x) 6= 0.

Therefore, the condition that f (x) = g(x)h(x) implies that either
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g(x) or h(x) is a constant polynomial means that f (x) = g(x)h(x)

implies that either g(x) or h(x) is a unit.

Again, the nonzero constant polynomials are the units in F[x]. This

is what it means for f (x) to be irreducible. �

Example 4.3.1. Show that x2 + 1 is irreducible in R[x] but not in

C[x].

x2 + 1 has no real roots, so by the Root Theorem it has no linear

factors. Hence, it is irreducibile in R[x].

However, x2 + 1 = (x + i)(x− i) in C[x].

Corollary 4.3.1. Let F be a field. A polynomial of degree 2 or 3 in

F[x] is irreducible if and only if it has no roots in F .

Proof. Suppose f (x) ∈ F[x] has degree 2 or 3.

If f (x) is not irreducible, then f (x) = g(x)h(x) , where neither

g(x) nor h(x) is a constant polynomial.

Now deg g(x) ≥ 1 and deg h(x) ≥ 1 , and

deg g(x) + deg h(x) = deg f (x) = 2 or 3.

This is only possible if at least one of g(x) or h(x) has degree 1.

This means that at least one of g(x) or h(x) is a linear factor ax+ b

, and must therefore have a root in F . Since f (x) = g(x)h(x) , it

follows that f (x) has a root in F as well.

Conversely, if f (x) has a root c in F , then x− c is a factor of f (x)

by the Root Theorem. Since f (x) has degree 2 or 3, x − c is a

proper factor, and f (x) is not irreducible. �

Remark: The result is false for polynomials of degree 4 or higher.

For example, (x2 + 1)2 has no roots in R , but it is not irreducible

over R .
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Definition 4.3.2. Let F be a field, let F[x] be the ring of polynomials

with coefficients in F, and let f (x), g(x) ∈ F[x], where f (x) and

g(x) are not both zero. The greatest common divisor of f (x) and

g(x) is the monic polynomial which is a greatest common divisor of

f (x) and g(x) (in the integral domain sense).

Let F be a field, and suppose p(x) ∈ F[x]. 〈p(x)〉 is the set of all

multiples (by polynomials) of p(x), the (principal) ideal generated

by p(x). When we form the quotient ring
F[x]
〈p(x)〉 , it is as if we have

to set multiples of p(x) equal to 0.

If a(x) ∈ F[x], then a(x) + 〈p(x)〉 is the coset of 〈p(x)〉

represented by a(x).

Define a(x) ≡ b(x) mod p(x).

That is, a(x) is congruent to b(x) mod p(x) to mean that

p(x) | a(x)− b(x).

In words, this means that a(x) and b(x) are congruent mod p(x)

if they differ by a multiple of p(x). In equation form, this says

a(x) − b(x) = k(x) · p(x) for some k(x) ∈ F[x], or a(x) =

b(x) + k(x) · p(x) for some k(x) ∈ F[x].

Lemma 4.3.1. Let R be a commutative ring, and suppose

a(x), b(x), p(x) ∈ R[x]. Then a(x) ≡ b(x) mod p(x) if and only

if a(x) + 〈p(x)〉 = b(x) + 〈p(x)〉.

Proof. Suppose a(x) ≡ b(x) mod p(x). Then a(x) = b(x)+ k(x) ·

p(x) for some k(x) ∈ R[x]. Hence,

a(x) + 〈p(x)〉 = (b(x) + k(x) · p(x)) + 〈p(x)〉 = b(x) + 〈p(x)〉.
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Conversely, suppose a(x) + 〈p(x)〉 = b(x) + 〈p(x)〉. Then

a(x) ∈ a(x) + 〈p(x)〉 = b(x) + 〈p(x)〉.

Hence,

a(x) = b(x) + k(x) · p(x) for some k(x) ∈ R[x].

This means that a(x) ≡ b(x) mod p(x).

Depending on the situation, we may write a(x) ≡ b(x) mod p(x)

or a(x) + 〈p(x)〉 = b(x) + 〈p(x)〉. �

Example 4.3.2. ( A quotient ring of the rational polynomial ring)

Take p(x) = x − 2 in Q[x]. Then two polynomials are congruent

mod (x− 2) if they differ by a multiple of x− 2.

(a) Show that 2x2 + 3x + 5 ≡ x2 + 4x + 7 mod (x− 2).

(b) Find a rational number r such that x3 − 4x2 + x + 11 ≡ r

mod (x− 2).

(c) Prove that
Q[x]
〈x− 2〉 ' Q.

Solution:

(a) (2x2 + 3x + 5)− (x2 + 4x + 7) = x2 − x− 2 = (x + 1)(x− 2).

So, 2x2 + 3x + 5 = x2 + 4x + 7 mod (x− 2).

(b) By the Remainder Theorem, when f (x) = x3 − 4x2 + x + 11 is

divided by x− 2 , the remainder is

f (2) = 23 − 4 · 22 + 2 + 11 = 5.

Thus, x3 − 4x2 + x + 11 = (x− 2)q(x) + 5.

That is, x3 − 4x2 + x + 11 ≡ 5 mod (x− 2)

(c) We will use the First Isomorphism Theorem. Define φ : Q[x] →

Q by φ ( f (x)) = f (2).
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That is, φ evaluates a polynomial at x = 2. Note that

φ ( f (x) + g(x)) = f (2) + g(2) = φ ( f (x)) + φ (g(x))

and φ ( f (x)g(x)) = f (2)g(2) = φ ( f (x)) φ (g(x)) ,

It follows that φ is a ring homomorphism. We claim that Ker φ =

〈x− 2〉.

Now f (x) ∈ Ker φ if and only if f (2) = φ ( f (x)) = 0.

That is, f (x) ∈ Kerφ if and only if 2 is a root of f (x). By the Root

Theorem, this is equivalent to x − 2 | f (x), which is equivalent to

f (x) ∈ 〈x− 2〉.

That is, Ker φ =< x− 2 > .

Next, we will show that φ is surjective. Let q ∈ Q. We can think of

q as a constant polynomial, and doing so, φ(q) = q, Therefore, φ

is surjective.

Using these results,
Q[x]
〈x− 2〉 ' Q.

In the last example,
F[x]
〈p(x)〉 was a field. The next result says that

this is the case exactly when p(x) is irreducible.

Theorem 4.3.1.
F[x]
〈p(x)〉 is a field if and only if p(x) is irreducible.

Proof. Since F[x] is a commutative ring with identity, so is
F[x]
〈p(x)〉 .

Suppose p(x) is irreducible. We need to show that
F[x]
〈p(x)〉 is a

field. That is we have to show that nonzero elements are invertible.

Take a nonzero element of
F[x]
〈p(x)〉 (say) a(x) + 〈p(x)〉, for a(x) ∈

F[x].

What does it mean for a(x) + 〈p(x)〉 to be nonzero?

It means that a(x) /∈ 〈p(x)〉, so p(x) - a(x).

Now what is the greatest common divisor of a(x) and p(x) ?

Well, (a(x), p(x)) | p(x), but p(x) is irreducible, so, its only factors
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are units and unit multiples of p(x).

Suppose (a(x), p(x)) = k · p(x) , where k ∈ F and k 6= 0. Then

k · p(x) | a(x), that is, k · p(x)b(x) = a(x) for some b(x).

But then p(x)[k · b(x)] = a(x) shows that p(x) | a(x), contrary to

assumption.

The only other possibility is that (a(x), p(x)) = k, where k ∈ F and

k 6= 0.

So we can find polynomials m(x), n(x), such that a(x)m(x) +

p(x)n(x) = k.

Then, a(x) ·
(

1
k

m(x)
)
+ p(x) ·

(
1
k

n(x)
)
= 1.

Hence,

1+ < p(x) > =

[
a(x)

(
1
k

m(x)
)
+ p(x)

(
1
k

n(x)
)]

+ 〈p(x)〉

1 + 〈p(x)〉 = a(x)
(

1
k

m(x)
)
+ 〈p(x)〉

1 + 〈p(x)〉 = (a(x) + 〈p(x)〉)
(

1
k

m(x) + 〈p(x)〉
)

This shows that
1
k

m(x) + 〈p(x)〉 is the multiplicative inverse of

a(x) + 〈p(x)〉. Therefore, a(x) + 〈p(x)〉 is invertible, and
F[x]
〈p(x)〉

is a field, which proves one part of the theorem.

Going the other way, suppose that p(x) is not irreducible. Then we

can find polynomials c(x), d(x) such that p(x) = c(x)d(x), where

c(x) and d(x) both have smaller degree than p(x).

Because c(x) and d(x) have smaller degree than p(x), they are

not divisible by p(x).

In particular, c(x) + 〈p(x)〉 6= 0 and d(x) + 〈p(x)〉 6= 0.

But p(x) = c(x)d(x) gives

p(x) + 〈p(x)〉 = c(x)d(x) + 〈p(x)〉

⇒ 0 = (c(x) + 〈p(x)〉) (d(x) + 〈p(x)〉)

This shows that
F[x]
〈p(x)〉 has zero divisors. Therefore, it is not an
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integral domain and since fields are integral domains, it can not be

a field, either. �

Example 4.3.3. ( A quotient ring which is not an integral domain)

Prove that
Q[x]
〈x2 − 1〉 is not an integral domain by exhibiting a pair of

zero divisors.

(x− 1)+ 〈x2− 1〉 and (x+ 1)+ 〈x2− 1〉 are zero divisors, because

(x− 1)(x + 1) = x2 − 1 ≡ 0 mod x2 − 1.

Solved Problems

Problem 1 Find the greatest common divisor of the following

polynomials over Q , the field of rational numbers: x2 + 1 and

x6 + x3 + x + 1.

Solution: Using long division method, we have

x6 + x3 + x + 1 = (x2 + 1)(x4 − x2 + x + 1) .

So we have gcd(x6 + x3 + x + 1, x2 + 1) = gcd(x2 + 1, 0) = x2 + 1.

So we have gcd(x6 + x3 + x + 1, x2 + 1) = x2 + 1

Problem 2 Prove that x2 + x + 1 is irreducible over Z2, the field of

integers mod 2.

Solution: We have

x2 + x + 1 |x=0= 1 mod 2

x2 + x + 1 |x=1= 1 mod 2

So x2 + x + 1 6= 0, ∀ x ∈ Z2, implying x2 + x + 1 is irreducible in

Z2[x].

Problem 3 Prove that x2 + 1 is irreducible over Z7, the integers

mod 7.
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Solution: We have

x2 + 1 |x=0 = 1 mod 7

x2 + 1 |x=1 = 2 mod 7

x2 + 1 |x=2 = 5 mod 7

x2 + 1 |x=3 = 3 mod 7

x2 + 1 |x=4 = 3 mod 7

x2 + 1 |x=5 = 5 mod 7

x2 + 1 |x=6 = 2 mod 7

So x2 + 1 6= 0, ∀ x ∈ Z7. So x2 + 1 is irreducible in Z7[x]

Problem 3 Let F, K be two fields F ⊂ K and suppose f (x), g(x) ∈

F[x] are relatively prime in F[x]. Prove that they are relatively prime

in K[x].

Solution: First we can easily see that if 1 is the multiplicative

identity of F, then it is also the multiplicative identity of K too. Now

since f (x), g(x) are relatively prime in F[x], so 1 = λ(x) f (x) +

µ(x)g(x), for some λ(x), µ(x) ∈ F[x]. But since F ⊂ K, therefore

1, λ(x), µ(x), f (x), g(x) are also elements of K[x]. So the relation

1 = λ(x) f (x) + µ(x)g(x) is equally valid in K[x]. But that would

mean f (x), g(x) as elements of K[x] are relatively prime in K[x].

Hence the result.

Problem 4 Prove that x2 + 1 is irreducible over the field Z11 of

integers mod 11, is a field having 121 elements.



80 4.3. IRREDUCIBLE POLYNOMIALS

Solution: We have

x2 + 1 |x=0 = 1 mod 11

x2 + 1 |x=1 = 2 mod 11

x2 + 1 |x=2 = 5 mod 11

x2 + 1 |x=3 = 10 mod 11

x2 + 1 |x=4 = 6 mod 11

x2 + 1 |x=5 = 4 mod 11

x2 + 1 |x=6 = 4 mod 11

x2 + 1 |x=7 = 6 mod 11

x2 + 1 |x=8 = 10 mod 11

x2 + 1 |x=9 = 5 mod 11

x2 + 1 |x=10 = 2 mod 11

So x2 + 1 6= 0, ∀ x ∈ Z11. So x2 + 1 is irreducible over Z11[x].

Now consider
Z11[x]
〈x2 + 1〉 .

Since 〈x2 + 1〉 is an ideal of Z11[x], so
Z11[x]
〈x2 + 1〉 is a ring.

Also
Z11[x]
〈x2 + 1〉 = {〈x

2 + 1〉+ ax + b | a, b ∈ Z11}.

Since Z11 has 11 elements, so
Z11[x]
〈x2 + 1〉 has 11 × 11 = 121

elements.

Summary of this unit.

In this unit we have studied the following:

• Let p(x) and q(x) be polynomials in R[x], where R is an

integral domain. Then deg p(x) + deg q(x) = deg (p(x)q(x)).

Furthermore, R[x] is an integral domain.

• ( Division Algorithm): Let F be a field, and let f (x), g(x) ∈

F[x]. Suppose that g(x) 6= 0. There are unique polynomials
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q(x), r(x) ∈ F[x] such that f (x) = g(x)q(x) + r(x), and

deg r(x) < deg g(x).

• A polynomial p(x) ∈ F[x] is irreducible over F if whenever

p(x) = a(x)b(x) with a(x), b(x) ∈ F[x], then either a(x) or

b(x) has degree zero. That is a(x) or b(x) is a constant.

• A nonzero nonconstant polynomial f (x) ∈ F[x] is irreducible

if and only if f (x) = g(x)h(x) implies that either g(x) or h(x)

is a constant.

Multiple Choice Questions

1. The polynomial x2 + 1 is reducible over

a) R b) Q c) Z d) Z2

2. The polynomial x2 + 1 is irreducible over

a) C b) Q(i) c) Z[i] d) R

3. Highest Degree of irreducible polynomial over Real numbers is

a) 1 b) 2 c) 3 d) 4

4. Highest Degree of irreducible polynomial over Complex numbers

is

a) 1 b) 2 c) 3 d) 4

5. Find the polynomial which is irreducible over Q

a) x2 + 3

b) x2 + 5x + 4

c) x4

d) x2 − 1

6. Find the polynomial which is reducible over Q

a) x2 + 3

b) x2 + 5x



82 4.3. IRREDUCIBLE POLYNOMIALS

c) x4 − 2

d) x2 + 1

7. Find the number of Quadratic polynomials which is irreducible

over Z2

a) 3 b) 1 c) 4 d) 8

8. Z2[x]
<x3+x2+1> is

a) a field having 8 elements

b) a field having 9 elements

c) an infinite field

d) not a field.

9. The set
Q[x]

< x2 − 1 >
is a

a) quotient ring

b) Integral domain

c) quotient ring but not an integral domain

d) both (a) and (b) are true

10. The gcd of x2 + 1 and x6 + x3 + x + 1 over Q is

a) x2 + 1 b) x + 1 c) x− 1 d) x2 − 1

11. The set
Z11[x]

< x2 + 1 >
is a

a) ring

b) ring but not a field

c) field with 11 elements

d) field with 121 elements

Answers:

1 2 3 4 5 6 7 8 9 10 11

d d b a a b b a c a d

Exercise
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1. Prove that
Z2[x]

〈x2 + x + 1〉 is a field.

2. Prove that x3− 9 is irreducible over Z31 the integers mod 31.

3. Prove that x3 − 9 is reducible over Z11 the integers mod 11.

4. Find ax + b ∈ Z2[x] so that

(x4 + x3 + 1) + 〈x2 + x + 1〉 = (ax + b) + 〈x2 + x + 1〉.

5. Construct addition and multiplication tables for
Z2[x]

〈x2 + x + 1〉 .

6. How many elements are in the quotient ring
Z3[x]

〈2x2 + x + 2〉?

7. Reduce the following product in
Z3[x]

〈2x2 + x + 2〉 to the form (ax +

b) + 〈2x2 + x + 2〉 :

(2x + 1 + 〈2x2 + x + 2〉) · (x + 1 + 〈2x2 + x + 2〉).

8. Find [x + 2 + 〈2x2 + x + 2〉]−1 in
Z3[x]

〈2x2 + x + 2〉 .

9. Show that
Z3[x]

〈x3 + 2x + 1〉 is a field.

10. How many elements are there in
Z3[x]

〈x3 + 2x + 1〉?

11. Compute:[
(x2 + x + 2) + 〈x3 + 2x + 1〉

] [
(2x2 + 1) + 〈x3 + 2x + 1〉

]
.

Express your answer in the form (ax2 + bx + c) + 〈x3 + 2x + 1〉

, where a, b, c ∈ Z3.

12. Find
[
(x2 + 1) + 〈x3 + 2x + 1〉

]−1 .

13. Prove directly that
Z11[x]
〈x2 + 1〉 is a field having 121 elements.

14. Prove directly that
Z11[x]

〈x2 + x + 4〉 is a field having 121 elements.



Block 3 - UNIT 5

Polynomial over the Rational

Field

Objectives

• We try to learn about Primitive polynomials

• To study about the Content of the polynomial

• Learn about greatest common divisor

• Try to learn about Gauss’ Lemma

• We study monic polynomials

• To Study about Eisenstein Criterion

In this unit, we study polynomials over the field of rational

numbers.

5.1 Primitive Polynomials

Definition 5.1.1. (The pigeonhole principle):

If n objects are distributed over m places, and if n > m, then some

84
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place receives atleast two objects.

Definition 5.1.2. (The Content of the polynomial):

Let f (x) = α0 + α1x + α2x + · · · + αmxm, where the

α0, α1, α2, . . . , αm , are integers. The content of f (x) is defined as

the gcd of α0, α1, α2, . . . , αm.

Clearly, given any polynomial f (x) with integer coefficients it can

be written as f (x) = c · g(x) where c is the content of f (x) and

where g(x) is a primitive polynomial.

Definition 5.1.3. (Primitive polynomial):

The polynomial f (x) = a0 + a1x + a2x + · · · + anxn, where the

a0, a1, a2, . . . , an , are integers is said to be primitive if the gcd of

a0, a1, . . . , an is 1 . That is, the content is 1.

Lemma 5.1.1. If f (x) and g(x) are primitive polynomials, then

f (x)g(x) is a primitive polynomial.

Proof. Let f (x) = a0 + a1x + · · ·+ anxn, an 6= 0 and

g(x) = b0 + b1x + · · ·+ bmxm, bm 6= 0.

Let f (x)g(x) = h(x) = c0 + c1x+ c2x2 + · · ·+ cm+nxm+n, cm+n 6= 0.

Let us prove this theorem by method of contradiction.

Suppose that h(x) is not primitive, then there exists some prime

number p such that it divides all the coefficients of h(x).

Since f (x) is primitive, p can not divide all the coefficients of f (x).

That is, there exist some coefficients of f (x) which are not divisible

by p.

Let aj be the first coefficient of f (x) which p does not divide. That

is, p | aj−1, aj−2, · · · , a1, a0 .

But, p - aj, aj+1, · · · , p - an.

Similarly let bk be the first coefficient of g(x) which p does not

divide. That is, p | bk−1, bk−2, · · · , b1, b0 .
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But, p - bk, bk+1, · · · , p - bm.

In p(x), the coefficient cj+k of xj+k is of the form

cj+k = ajbk + (aj+1bk−1 + aj+2bk−2 + · · · + aj+kb0) + (aj−1bk+1 +

aj−2bk+2 + · · ·+ a0bj+k) · · · (1)

Since, p | bk−1, bk−2, · · · , b1, b0 , we get

p|(aj+1bk−1 + aj+2bk−2 + · · ·+ aj+kb0).

Again since, p | aj−1, aj−2, · · · , a1, a0 , we get

p | (aj−1bk+1 + aj−2bk+2 + · · ·+ a0bj+k).

But by assumption, we have, p divides all the coefficients of h(x)

and whence p | cj+k.

Thus by equation (1) , we get, p | ajbk, which is a contradiction

since p - aj and p - bk. This proves the lemma. �

Lemma 5.1.2. (Gauss’ Lemma )

If the primitive polynomial f (x) can be factored as the product of

two polynomials having rational coefficients, it can be factored as

the product of two polynomials having integer coefficients.

Proof. Suppose that f (x) = g(x)h(x) where g(x) and h(x) have

rational coefficients.

By clearing of fractions and taking out common factors, we can then

write f (x) =
α

β
· a(x) · b(x) where α and β are integers and where

both a(x) and b(x) have integer coefficients and are primitive.

Thus β f (x) = αa(x) · b(x). The content of the left-hand side is β

, since f (x) is primitive; since both a(x) and b(x) are primitive,

by Lemma 5.1.1 , their product a(x) · b(x) is also primitive, so that

the content of the right-hand side is α. Therefore α = β , whence,
α

β
= 1, and therefore, f (x) = a(x) · b(x) , where, both a(x) and

b(x) have integer coefficients, which proves the theorem. �

Definition 5.1.4. A monic polynomial is a polynomial whose leading

coefficient is 1.
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Example 5.1.1. For example, here are some monic polynomials

over Q :

x3 − 3x + 5, x100 − 2
3

x17, x + 42.

Definition 5.1.5. (Integer Monic)

A polynomial is said to be integer monic if all its coefficients are

integers and its highest coefficient is 1.

Thus an integer monic polynomial is merely one of the form xm +

α1xm−1 + α2xm−2 + · · ·+ αm where the α′s are integers. Clearly an

integer monic polynomial is primitive.

Corollary 5.1.1. If an integer monic polynomial factors as the

product of two nonconstant polynomials having rational coefficients

then it factors as the product of two integer monic polynomials.

Definition 5.1.6. Let F be a field, let F[x] be the ring of polynomials

with coefficients in F , and let f (x), g(x) ∈ F[x] , where f (x) and

g(x) are not both zero. The greatest common divisor of f (x) and

g(x) is the monic polynomial which is a greatest common divisor of

f (x) and g(x) (in the integral domain sense).

Example 5.1.2. ( Polynomial greatest common divisors)

Find the greatest common divisor of x2− 4 and x2− x− 2 in Q[x].

x− 2 is a greatest common divisor of x2 − 4 and x2 − x− 2 :

x2 − 4 = 1 · (x2 − x− 2) + (x− 2)

x2 − x− 2 = (x + 1)(x− 2) + 0

Notice that any nonzero constant multiple of x− 2 is also a greatest

common divisor of x2 − 4 and x2 − x − 2 (in the integral domain

sense):

For example,
1

100
(x− 2) works.
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This makes sense, because the units in Q[x] are the nonzero

elements of Q.

But by convention, will refer to x − 2, the monic greatest common

divisor as the greatest common divisor of x2 − 4 and x2 − x− 2.

5.2 The Eisenstein Criterion

Here we give a criteria which declare that a given polynomial is

irreducible or not.

Lemma 5.2.1. (THE EISENSTEIN CRITERION ):

Let f (x) = a0 + a1x + a2x + · · ·+ anxn be a polynomial with integer

coefficients. Suppose that for some prime number p ,

(i) p | a0, a1, a2, . . . , an−1

(ii) p - an

(iii) p2 - a0 . Then f (x) is irreducible over the rationals.

Proof. It is given that f (x) = a0 + a1x + a2x + · · ·+ anxn · · · (1)

is a polynomial with integer coefficients. Let us prove this theorem

by method of contradiction.

Without loss of generality we may assume that f (x) is primitive and

reducible over rationals.

Since f (x) is reducible, we can factor this as a product of two

polynomials over rationals and hence by Gauss’s lemma, over

integers. That is, we can write f (x) as

f (x) = (b0 + b1x + · · ·+ brxr)(c0 + c1x + · · ·+ csxs) · · · (2)

where the b ’s and c ’s are integers and where r > 0 and s > 0.

Comparing the coefficients of (1) and (2), we first get a0 = b0c0.

Since p | a0, p must divide either b0 or c0.

Since p2 - a0, p cannot divide both b0 and c0.

Let us assume that p | b0, p - c0. Since p - an , we get, not all the
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coefficients b0, b1, · · · , br can be divisible by p. Let bk be the first

coefficient, not divisible by p, k ≤ r < n.

Thus p | bk−1, bk−2, · · · , b1, b0.

But ak = bkc0 + bk−1c1 + bk−2c2 + · · ·+ b0ck · · · (3)

Now, p | ak and p | bk−1, bk−2, · · · , b1, b0 , whence from (3), we get,

p | bkc0 · · · (4)

However, we have, p - c0 and p - bk , which is a contradiction to

(4). This contradiction proves that we could not have factored f (x)

and so f (x) is irreducible, whence the lemma. �

Summary of this unit.

In this unit we have studied the following:

• The polynomial f (x) = a0 + a1x + a2x2 + · · · + anxn, where

the a0, a1, a2, . . . , an , are integers is said to be primitive if the

gcd of a0, a1, . . . , an is 1 .

• If f (x) and g(x) are primitive polynomials, then f (x)g(x) is

a primitive polynomial.

• Let f (x) = α0 + α1x + α2x + · · · + αmxm, where the

α0, α1, α2, . . . , αm , are integers. The content of f (x) is defined

as the gcd of α0, α1, α2, . . . , αm.

• Gauss’ Lemma : If the primitive polynomial f (x) can be

factored as the product of two polynomials having rational

coefficients, it can be factored as the product of two

polynomials having integer coefficients.

• A monic polynomial is a polynomial whose leading coefficient

is 1.

• A polynomial is said to be integer monic if all its coefficients

are integers and its highest coefficient is 1.
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• If an integer monic polynomial factors as the product of two

nonconstant polynomials having rational coefficients then it

factors as the product of two integer monic polynomials.

• Let F be a field, let F[x] be the ring of polynomials with

coefficients in F , and let f (x), g(x) ∈ F[x] , where f (x) and

g(x) are not both zero. The greatest common divisor of f (x)

and g(x) is the monic polynomial which is a greatest common

divisor of f (x) and g(x) .

• THE EISENSTEIN CRITERION : Let f (x) = a0 + a1x + a2x +

· · ·+ anxn be a polynomial with integer coefficients. Suppose

that for some prime number p ,

(i) p | a0, a1, a2, . . . , an−1

(ii) p - an

(iii) p2 - a0 . Then f (x) is irreducible over the rationals.

Multiple Choice Questions

1. The content of the polynomial f (x) = 4 + 10x + 16x2 + 32x3 is

a) 2 b) 4 c) 6 d) 8

2. The polynomial f (x) = 1 + 2x + 3x2 + 4x3 is

a) primitive

b) has all roots in Z

c) has atleast two roots in Z

d) has all the roots in Q

3. If the primitive polynomial f (x) can be factored as the product

of two polynomials having rational coefficients, then

a) it can be factored as the product of two polynomials having

integer coefficients.

b) it can be factored as the product of two polynomials having

real coefficients.
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c) it can be factored as the product of two polynomials having

non-real coefficients.

d) it can be factored as the product of two polynomials having

irrational coefficients.

4. The polynomial f (x) = 1 + 11x− 13x2 + 6x3 is

a) primitive and monic

b) primitive but not monic

c) Not primitive but monic

d) Not primitive and not monic

5. The polynomial x8 − 7 ∈ Q[x] is

a) irreducible in Z but reducible in Q

b) reducible in Q but irreducible in R

c) irreducible in Q

d)None of the above

6. The polynomial 1 + x + x2 + · · ·+ x16 is

a) reducible in Z

b) reducible in Q

c) irreducible in Q

d)None of the above

7. which of the following are monic polynomials?

a) 2x3 + 5x2 + 6x + 1 and 2
5 x3 + x2 + 6

5 x +
1
5

b) 4x3 + 2x2 + x + 1 and x3 + 1
2 x2 + 1

4 x + 1

c) x3 + 2x2 + 5x + 10 and x301 + 1
2 x2 + 16x + 11

d) x2 + 1 and 2x3 + 5x + 1

8. The integer monic polynomials are

a) 4x3 + 5x2 + 1 and x5 + 6

b) 4x3 + 2x2 + x + 1 and x3 + 3
5 x2 + 1

9 x + 1
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c) x3 + 51x2 + 91 and x15 + 116

d) x3 + 3
51 x2 + 11 and x3 + 2x2 + x + 1

Answers:

1 2 3 4 5 6 7 8

b a a a c c c c
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Extension Fields

Objectives

• We try to learn finite extensions

• To study about algebraic elements

• Learn about algebraic extension

• Try to learn about finite extension of a finite extension

• We study algebraic extension of an algebraic extension

• To Study about algebraic number

In this unit, we shall be concerned with the relation of one field to

another. A field K is an extension field of a field F if F is a sub

field of K . The field F is called the base field . We write F ⊂ K.

Throughout this unit, F will denote a given field and K an extension

of F .

93
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6.1 Introduction

The concept of field extensions can soon lead to very interesting

and peculiar results. The following examples will illustrate this:

Initially, take the field Q . Now, clearly, we have the polynomial

p(x) = x2 − 2 ∈ Q[x]; however, it should be evident that its

roots,±
√

2 /∈ Q . This polynomial is then said to be irreducible over

Q . Thus, by considering the quotient ring Q[x]
(x2−2) , we find that we

obtain another field, denoted Q(
√

2) or Q(−
√

2)

Secondly take the field R . Again, we may easily find a polynomial,

which is irreducible over our field. Choosing p(x) = x2 + 1 ∈ R[x] ,

it is obvious that the roots, ±i /∈ R . Thus, if we consider the quotient

ring,
R[x]

(x2 + 1)
, we obtain the field R(i)(' C!).

Example 6.1.1. For example, let F = Q(
√

2) = {a + b
√

2 : a, b ∈

Q} and let E = Q(
√

2 +
√

3) be the smallest field containing

both Q and
√

2 +
√

3. Both E and F are extension fields of the

rational numbers. We claim that E is an extension field of F. To

see this, we need only show that
√

2 is in E. Since
√

2 +
√

3

is in E,
1

(
√

2 +
√

3)
=
√

3−
√

2 must also be in E. Taking linear

combinations of
√

2 +
√

3 and
√

3−
√

2, we find that
√

2 and
√

3

must both be in E.

6.2 Finite Extensions

Let K be a finite extension of a field F. If we regard K as a vector

space over F, then we can bring the machinery of linear algebra to

bear on the problems that we will encounter in our study of fields.

The elements in the field K are vectors; the elements in the field
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F are scalars. We can think of addition in K as adding vectors.

When we multiply an element in K by an element of F, we are

multiplying a vector by a scalar. This view of field extensions is

especially fruitful if a field extension K of F is a finite dimensional

vector space over F. Thus if we prove that K is a vector space over

F , then K has a basis over F . We know that the dimension of K

over F is denoted by, dimFK . The degree of K over F is denoted

by [K : F] = dimFK . If [K : F] is finite then we say that K is a finite

extension of F . The next theorem is a counting theorem, similar to

Lagrange’s Theorem in group theory.

Theorem 6.2.1. Let K be a finite extension of F and let L be

an extension of K then L is a finite extension of F . More over

[L : K][K : F] = [L : F]

(OR) Every finite extension of a finite extension is finite.

Proof. It is given that K is a finite extension of F .

Therefore [K : F] is finite.

Let [K : F] = n . That is, dimFK = n .

Then K has a basis consisting of n elements over F .

Let v1, v2, · · · , vn be a basis for K over F .

It is also given that L is a finite extension of K .

Therefore [L : K] is finite.

Let [L : K] = m . That is, dimKL = m .

Then L has a basis consisting of m elements over K .

Let w1, w2, · · · , wm be a basis for L over K .

Consider the subset

S = {v1w1, v2w1, v3w1, · · · vnw1, v1w2, v2w2, v3w2, · · ·

vnw2, · · · · · · v1wm, v2wm, v3wm, · · · , vnwm} .

Clearly the set S has mn elements.

Since m and n are finite we have mn is also finite.
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We claim that S is a basis for L over F .

Indeed, first we prove that S is linearly independent.

Consider the linear combination

f11v1w1 + f21v2w1 + f31v3w1 + · · ·+ fn1vnw1+

f12v1w2 + f22v2w2 + f32v3w2 + · · ·+ fn2vnw2+

f13v1w3 + f23v2w3 + f33v3w3 + · · ·+ fn3vnw3+

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

f1iv1wi + f2iv2wi + f3iv3wi + · · ·+ fnivnwi+

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

f1mv1wm + f2mv2wm + f3mv3wm + · · ·+ fnmvnwm = 0 · · · · · · (1)

That is,

( f11v1 + f21v2 + f31v3 + · · ·+ fn1vn)w1+

( f12v1 + f22v2 + f32v3 + · · ·+ fn2vn)w2+

( f13v1 + f23v2 + f33v3 + · · ·+ fn3vn)w3+

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

( f1iv1 + f2iv2 + f3iv3 + · · ·+ fnivn)wi+

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

( f1mv1 + f2mv2 + f3mv3 + · · ·+ fnmvn)wm = 0

k1w1 + k2w2 + k3w3 + · · ·+ kmwm = 0 · · · · · · (2) where

k1 = f11v1 + f21v2 + f31v3 + · · ·+ fn1vn

k2 = f12v1 + f22v2 + f32v3 + · · ·+ fn2vn

k3 = f13v1 + f23v2 + f33v3 + · · ·+ fn3vn

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

ki = f1iv1 + f2iv2 + f3iv3 + · · ·+ fnivn

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

km = f1mv1 + f2mv2 + f3mv3 + · · ·+ fnmvn

Clearly k1, k2, k3, · · · , km ∈ K .

Since {w1, w2, · · · , wm} is a basis for L over K , they are linearly

independent over K .

Therefore, k1w1 + k2w2 + k3w3 + · · ·+ kmwm = 0
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⇒ k1 = 0, k2 = 0, k3 = 0, · · · , km = 0

Now k1 = 0⇒ f11v1 + f21v2 + f31v3 + · · ·+ fn1vn = 0;

k2 = 0⇒ f12v1 + f22v2 + f32v3 + · · ·+ fn2vn = 0;

k3 = 0⇒ f13v1 + f23v2 + f33v3 + · · ·+ fn3vn = 0;

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

ki = 0⇒ f1iv1 + f2iv2 + f3iv3 + · · ·+ fnivn = 0;

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

km = 0⇒ f1mv1 + f2mv2 + f3mv3 + · · ·+ fnmvn = 0;

But {v1, v2, · · · , vn} is a basis for K over F .

Therefore, they are linearly independent over F .

f11v1 + f21v2 + f31v3 + · · ·+ fn1vn = 0

⇒ f11 = 0, f21 = 0, f31 = 0, · · · fn1 = 0 .

Similarly, f12 = 0, f22 = 0, f32 = 0, · · · , fn2 = 0 · · · , f1m = 0, f2m =

0, f3m = 0, · · · , fnm = 0 .

Thus all f ′ij s are separately zero.

Thus S is linearly independent.

Next we will prove S span L over F .

Let t ∈ L . Since {w1, w2, · · · , wm} is a basis for L over K , we

have,

t = k1w1 + k2w2 + k3w3 + · · ·+ kmwm .

Since {v1, v2, · · · , vn} is a basis for K over F , we have,

k1 = f11v1 + f21v2 + f31v3 + · · ·+ fn1vn

k2 = f12v1 + f22v2 + f32v3 + · · ·+ fn2vn

k3 = f13v1 + f23v2 + f33v3 + · · ·+ fn3vn

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

ki = f1iv1 + f2iv2 + f3iv3 + · · ·+ fnivn

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

km = f1mv1 + f2mv2 + f3mv3 + · · ·+ fnmvn, where all fij ∈ F .

Thus, t = ( f11v1 + f21v2 + f31v3 + · · ·+ fn1vn)w1+

( f12v1 + f22v2 + f32v3 + · · ·+ fn2vn)w2+
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( f13v1 + f23v2 + f33v3 + · · ·+ fn3vn)w3+

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

( f1iv1 + f2iv2 + f3iv3 + · · ·+ fnivn)wi+

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

( f1mv1 + f2mv2 + f3mv3 + · · ·+ fnmvn)wm .

That is,

t = f11v1w1 + f21v2w1 + f31v3w1 + · · ·+ fn1vnw1+

f12v1w2 + f22v2w2 + f32v3w2 + · · ·+ fn2vnw2+

f13v1w3 + f23v2w3 + f33v3w3 + · · ·+ fn3vnw3+

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

f1iv1wi + f2iv2wi + f3iv3wi + · · ·+ fnivnwi+

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

f1mv1wm + f2mv2wm + f3mv3wm + · · ·+ fnmvnwm .

Thus every element in L can be expressed as a linear combination

of elements of S over F .

Hence S span L over F .

Therefore S is a basis for L over F .

Since S has mn elements, dimension of L over F is mn .

That is [L : F] = mn = nm = [L : K][K : F] . Hence the

theorem. �

Corollary 6.2.1. If K is a finite extension of F and L is a finite

extension of K then [L : K]|[L : F] or [K : F]|[L : F] .

It is important to note that if [L : F] is a prime number, then there

can be no fields properly between F and L .

If the polynomial q(x) ∈ F[x] , the ring of polynomials in x over F ,

and q(x) = β0xm + β1xm−1 + · · ·+ βm, then for any element b ∈ K,

by q(b) we shall mean the element β0bm + β1bm−1 + · · ·+ βm, in

K . In the expression commonly used, q(b) is the value of the

polynomial q(x) obtained by substituting b for x . The element
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b is said to satisfy q(x) if q(b) = 0.

Definition 6.2.1. An element a is said to be a root of a polynomial

f (x) if f (a) = 0 , where f (x) is a nonzero polynomial.

6.3 Algebraic elements

Definition 6.3.1. An element a ∈ K is said to be algebraic over F

if it satisfies a nonzero polynomial over F .

Example 6.3.1. The number
√

2 is algebraic over the field Q .

The extension Q(
√

2) of Q is algebraic. Since every element

α ∈ Q(
√

2, can be expressed as α = a + b
√

2 for a, b ∈ Q , it can

very easily be seen that α is the root of some polynomial in Q[x]

(Simply take the polynomial p(x) = x2− 2ax + a2 + b2 . Its roots are

a+ b
√

2 and a− b
√

2 . On the other hand, the extension R of Q is

not algebraic (because of the existence of transcendental numbers

such as e and π which are not the roots of any polynomials in

Q[x]).

Example 6.3.2. Both
√

2 and i are algebraic over Q since they are

roots of the polynomials x2− 2 and x2 + 1, respectively. Clearly π

and e are algebraic over the real numbers; however, it is a nontrivial

fact that they are transcendental over Q. Numbers in R that are

algebraic over Q are in fact quite rare. Almost all real numbers are

transcendental over Q. (In many cases we do not know whether

or not a particular number is transcendental; for example, it is not

known whether π + e is transcendental or algebraic.)

Example 6.3.3. We will show that
√

2 +
√

3 is algebraic over Q.

If β =
√

2 +
√

3 then β2 = 2 +
√

3. Hence, β2 − 2 =
√

3 and

(β2 − 2)2 = 3.
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Since β4 − 4β2 + 1 = 0, it must be true that β is a root of the

polynomial x4 − 4x2 + 1 ∈ Q[x].

Definition 6.3.2. An element a ∈ K is said to be algebraic of degree

n over F if it satisfies a nonzero polynomial over F of degree n but

no polynomial of degree less than n .

Let K be an extension of F and let a be in K .

Let M be the collection of all subfields of K which contain both F

and a .

M is not empty, for K itself is an element of M .

Now, as is easily proved, the intersection of any number of subfields

of K is again a subfield of K .

Thus the intersection of all those subfields of K which are members

of M is a subfield of K .

We denote this subfield by F(a) .

Certainly it contains both F and a , since this is true for every

subfield of K which is a member of M .

Moreover, by the very definition of intersection, every subfield of K

in M contains F(a) , yet F(a) itself is in M .

Thus F(a) is the smallest subfield of K containing both F and a .

We call F(a) the subfield obtained by adjoining a to F .

The description of F(a) , so far, has been purely an external one.

We now give an alternative and more constructive description of

F(a) .

Consider all these elements in K which can be expressed in the

form β0 + β1a + · · · + βrar. Here the β′ can range freely over F

and r can be any non negative integer. As elements in K , one

such element can be divided by another, provided the latter is not

0 . Let U be the set of all such quotients. clearly U is a subfield of

K .
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On one hand, U certainly contains F and a , whence U ⊃ F(a) .

On the other hand, any subfield of K which contains both F and a ,

by virtue of closure under addition and multiplication, must contain

all the elements β0 + β1a + · · ·+ βrar, where each βi ∈ F . Thus

F(a) must contain all these elements; being a subfield of K , F(a)

must also contain all quotients of such elements. Therefore, F(a) ⊃

U . The two relations U ⊂ F(a) , U ⊃ F(a) imply that U = F(a) . In

this way we have obtained an internal construction of F(a) , namely

as U .

We now intertwine the property that a ∈ K is algebraic over F with

macroscopic properties of the field F(a) itself. This is

Theorem 6.3.1. An element a ∈ K is algebraic over F if and only

if F(a) is a finite extension of F

Proof. ( If part ): Let F(a) is a finite extension of F.

We claim that a is algebraic over F.

Clearly, a ∈ F(a).

∴ a2, a3, · · · , an ∈ F(a).

That is, 1, a, a2, a3, · · · , an ∈ F(a).

But F(a) is a vector space of dimension n.

Hence these (n + 1) elements are linearly dependent over F.

Therefore there exist scalars α0, α1, · · · αn not all zero such that

α01 + α1a + α2a2 + · · ·+ αnan = 0

That is, a satisfies a nonzero polynomial α0 + α1x + α2x2 + · · · +

αnxn over F.

Hence a is algebraic over F.

(Only if part ): Let a ∈ K is algebraic over F

we prove that F(a) is a finite extension of F.

Suppose a ∈ K is algebraic over F. We will prove that F(a) is a

finite extension of F.
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Consider the ring of polynomials F[x] over F.

Since a ∈ K is algebraic over F , a satisfies a nonzero polynomial

over F.

Let p(x) be the minimal polynomial for a.

Clearly p(a) = 0, and p(x) ∈ F[x].

Now we show that p(x) is irreducible over F.

Suppose p(x) is reducible over F.

Then it can be written as p(x) = f (x)g(x), for some, f (x), g(x) ∈

F[x].

Clearly, deg( f (x)) ≤ deg(p(x)) and deg(g(x)) ≤ deg(p(x)).

Since p(x) = f (x)g(x), we have, p(a) = f (a)g(a).

That is, 0 = f (a)g(a). This implies that f (a) = 0 or g(a) = 0.

This implies that a satisfies either f (x) or g(x), which is a

contradiction.

∴ p(x) is irreducible over F.

Let deg(p(x)) = n. Consider the ideal generated by p(x).

< p(x) >= V = {t(x) ∈ F[x]|p(x) divides t(x) or t(x) is a

multiple of p(x)}.

Since p(x) is irreducible, we have V is maximal.

Therefore F[x]
V is a field.

Since F ⊆ F[x], F[x]
V is an extension of F.

Moreover dimF(
F[x]
V ) = deg(p(x)), which is a finite quantity .

Therefore F[x]
V is a finite extension of F.

Further we claim that F(a) ' F[x]
V

Define ψ : F[x]→ F[a] such that ψ( f (x)) = f (a).

Now let us prove that ψ is a ring homomorphism.

ψ( f (x) + g(x)) = f (a) + g(a) = ψ( f (x)) + ψ(g(x))

ψ( f (x).g(x)) = f (a).g(a) = ψ( f (x)).ψ(g(x))
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Therefore ψ is a ring homomorphism.

Kerψ = { f (x) ∈ F[x]|ψ( f (x)) = 0}

Kerψ = { f (x) ∈ F[x]| f (a) = 0}

= {set o f all polynomials satis f ied by a}

= {set o f all polynomials divisible by p(x)}

= {set o f all polynomials which are multiples o f p(x)}

= V, the ideal generated by p(x).

That is Kerψ = V

Therefore by fundamental homomorphism theorem on rings, we

have,
F[x]
V ' ψ(F[x]).

But for every α ∈ F, ψ(α) = α.

∴ F ⊆ ψ(F[x]).

Moreover a ∈ ψ(F[x]).

Thus, ψ(F[x]) is a field which contains both F and a.

But F(a) is the smallest field containing both F and a.

Hence ψ(F[x]) = F(a).

∴ F(a) ' F[x]
V

Since F[x]
V is a finite extension of F and F(a) ' F[x]

V , we have F(a)

is a finite extension of F. Hence the theorem. �

Theorem 6.3.2. If a ∈ K is algebraic of degree n over F , then

[F(a) : F] = n .

Definition 6.3.3. Let K be a finite extension of F. Let a, b ∈ K are

algebraic over F, then F(a, b) is a field obtained by adjoining a to

F and then adjoining b to F(a). Clearly F(a, b) = F(b, a).

Definition 6.3.4. Let a1, a2, · · · , an ∈ K are algebraic over F. Then

F(a1, a2, · · · , an) is a field obtained by adjoining a1, a2, · · · , an to F.
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6.4 Algebraic Closure

Given a field F, the question arises as to whether or not we can

find a field K such that every polynomial p(x) has a root in K .

This leads us to the following theorem.

Theorem 6.4.1. Let K be a finite extension of F. If a, b ∈ K are

algebraic over F, then, a± b, ab, a
b , (b 6= 0) are also algebraic over

F. (OR) If K is a finite extension of F, then the set of all algebraic

elements of a field F forms a sub field of F.

Proof. It is given that a is algebraic over F.

Therefore F(a) is a finite extension of F.

Let F(a) = T. That is, [T : F] is finite. Clearly, F ⊆ T. It is also

given that b is algebraic over F .

Since F ⊆ T, b is algebraic over F implies, b is algebraic over T.

Therefore T(b) is a finite extension of T.

Let T(b) = W. That is, [W : T] is finite.

Clearly, W is a subfield of K.

Since a, b ∈ W, and W is a field, we have, a± b, ab, a
b , (b 6= 0) are

also in W.

Therefore, a ± b, ab, a
b , (b 6= 0) are algebraic over F. Hence the

theorem.

�

Here, too, we have proved somewhat more. Since [W : F] ≤ mn ,

every element in W satisfies a polynomial of degree at most mn

over F , whence the

Corollary 6.4.1. If a and b in K are algebraic over F of degrees m

and n , respectively, then a± b, ab, and a
b (if b 6= 0 ) are algebraic

over F of degree at most mn .



6.4. ALGEBRAIC CLOSURE 105

Definition 6.4.1. Let K be a finite extension of F. If every element

in K is algebraic over F, then K is called an algebraic extension of

F.

Theorem 6.4.2. If K is algebraic extension of F and L is algebraic

extension of K then, L is algebraic extension of F. (OR) Algebraic

extension of an algebraic extension is algebraic.

Proof. It is given that K is algebraic extension of F and L is

algebraic extension of K.

Our aim is to show that L is algebraic extension of F.

Let a ∈ L, be arbitrary. We will show that a satisfies a nonzero

polynomial over F.

Since L is algebraic extension of K, a satisfies a nonzero

polynomial over K.

Let this polynomial be h(x) = k0 + k1x + k2x2 + · · ·+ knxn, where,

k0, k1, k2, · · · , kn ∈ K.

Since K is algebraic extension of F, we have

F(k0, k1, k2, · · · , kn) is a finite extension of F.

Let M = F(k0, k1, k2, · · · , kn) . Now h(x) is a polynomial over M.

Hence a is algebraic over M. Therefore M(a) is a finite extension

of M.

Now, M is a finite extension of F and M(a) is a finite extension of

M and therefore, M(a) is a finite extension of F.

That is, [M(a) : F] = finite. Therefore, a is algebraic over F.

Since a is arbitrary, all the elements of L are algebraic over F.

Hence, L is algebraic extension of F. Hence the theorem. �

The preceding results are of special interest in the particular

case in which F is the field of rational numbers and K the field

of complex numbers.
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Definition 6.4.2. A complex number is said to be an algebraic

number if it is algebraic over the field of rational numbers.

The set of all algebraic numbers form a field.

Definition 6.4.3. An algebraic number a is said to be an algebraic

integer if it satisfies an equation of the form am + α1am−l + · · · +

αm = 0 , where α1, α2, α3, · · · αm are integers.

Definition 6.4.4. A number which is not algebraic is called

transcendental.

Solved Problems

Problem 1. Prove that the mapping ψ : F[x] → F(a) defined by

ψ(h(x)) = h(a) is a homomorphism.

Solution: Let f (x), g(x) be two elements in F[x]. Then ψ( f (x) +

g(x)) = ψ( f + g)(x) = ( f + g)(a) = f (a) + g(a) = ψ( f (x)) +

ψ(g(x)).

Moreover ψ( f (x)g(x)) = f (a)g(a) = ψ( f (x))ψ(h(x)). Hence is a

homomorphism.

Problem 2. Let F be a field and let F[x] be the ring of polynomials

in x over F. Let g(x) of degree n, be in F[x] and let V =< g(x) >

be the ideal generated by g(x) in F[x]. Prove that
F[x]
V

is an

n -dimensional vector space over F.

Solution:
F[x]
V

= { f (x) + V | f (x) ∈ F[x]}. V is the ideal

generated by the polynomial g(x) of degree n. Since F[x] is

a Euclidean ring there exists h(x) and r(x) ∈ F[x] such that

f (x) = g(x)h(x) + r(x) where either r(x) = 0 or degr(x) <

degg(x). Group structure of
F[x]
V

is already known. For any λ ∈ F,

and f (x) + V ∈ F[x]
V

define λ( f (x) + V) = λ f (x) + V, with

this addition and multiplication by an element of F, the set
F[x]
V

forms a vector space over the field F. Every element of
F[x]
V
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can be written uniquely as a linear combination of the elements

1 + V, x + V, · · · , xn−1 + V. Indeed let f (x) + V = a0 + a1x +

· · · + an−1xn−1 + V = b0 + b1x + · · · + bn−1xn−1 + V Then (a0 −

b0) + (a1− b1)x + · · ·+ (an−1− bn−1)xn−1 ∈ V. But every non-zero

element in V has degree λ ≥ n. Hence (a0 − b0) + (a1 − b1)x +

· · ·+ (an−1 − bn−1)xn−1 = 0. Then ai = bi for all i = 0, · · · , n− 1.

Therefore the set {1 + V, x + V, · · · , xn−1 + V} forms a basis for

the vector space
F[x]
V

of dimension n. On the other hand, it is clear

that every element in
F[x]
V

can be written as a linear combination

of the above elements.

Problem 3. (a) Let R be the field of real numbers and Q the field

of rational numbers. In R,
√

2 and
√

3 are both algebraic over Q.

Exhibit a polynomial of degree 4 over Q satisfied by
√

2 +
√

3.

(b) What is the degree of
√

2 +
√

3 over Q? Prove your answer.

(c) What is the degree of
√

2
√

3 over Q?

Solution: Let x =
√

2 +
√

3 then x2 = 2 + 3 + 2
√

6 and x2 − 5 =

2
√

6

(x2 − 5)2 = 4× 6

x4 − 10x2 + 25 = 24

x4 − 10x2 + 1 = 0

f (x) = x4 − 10x2 + 1 ∈ Q[x] has
√

2 +
√

3 as a root.

(b) f (x) is an irreducible polynomial in Q[x]. Firstly f (x) does not

have any root in Q because the only possible roots in Q are ±1

but f (±1) 6= 0. On the other hand f (x) cannot be factored as a

product of polynomials of degree 2. One can see this by substituting

t = x2 in the above equation. Hence [Q(
√

2 +
√

3) : Q] = 4.

(c) Let x =
√

2
√

3 then x2 = 2 × 3. Hence f (x) = x2 − 6 is

satisfied by
√

2
√

3 and by Eisenstein criterion f (x) is irreducible.

Hence [Q(
√

2
√

3) : Q] = 2.
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Problem 4. With the same notation as in problem 3 , show that
√

2 + 3
√

5 is algebraic over Q of degree 6.

Solution: Let a =
√

2 + 3
√

5. Then (a −
√

2)3 = 5. We get

a3 − 3a2
√

2 + 6a− 2
√

2 = 5a3 + 6a− 5 = (3a2 + 2)
√

2.

Hence (a3 + 6a− 5)2 = 2(3a2 + 2)2.

So a6 − 6a4 − 10a3 + 12a2 − 60a + 17 = 0.

Now if one goes backwards finds that the polynomial p(x) =

x6 − 6x4 − 10x3 + 12x2 − 60x + 17 is satisfied by a.

Now we need to show that [Q(a) : Q] = 6. We will show that the

possibilities [Q(a) : Q) = 3 or [Q(a) : Q] = 2 cannot occur. Then

we conclude that [Q(a) : Q] = 6.

Let F = Q( 3
√

5,
√

2). Then, [Q(a,
√

2), Q] = [Q(a,
√

2) :

Q(
√

2)][Q(
√

2), Q] = 6.

If [Q(a) : Q] = 3, then,

[Q(a, 3
√

5) : Q(a)︸ ︷︷ ︸
2

][Q(a) : Q︸ ︷︷ ︸
3

] = 6. There exists p(x) ∈ Q(a)[x] such

that p( 3
√

5) = 0.

The polynomial p(x) is irreducible and of degree 2. But p(x)

must divide x3 − 5, since x3 − 5 satisfies 3
√

5. This implies the

polynomial x3 − 5 must have a root in Q(a) ⊆ R, but x3 − 5 has

only one real root in R, namely 3
√

5.

This implies 3
√

5 ∈ Q(a); this is impossible as Q(a, 3
√

5) = F and

[F : Q] = 6. Hence the possibility [Q(a) : Q] = 3 cannot occur.

If [Q(a) : Q] = 2, then [Q(a,
√

2) : Q(a)][Q(a) : Q] ≤ 4.

x2 − 2 ∈ Q(a)[x] and satisfies
√

2. Then either
√

2 ∈ Q(a) or

[Q(a,
√

2) : Q(a)] = 2 certainly
√

2 /∈ Q(a). Otherwise 3
√

5 ∈ Q(a)

and hence Q(a) = Q( 3
√

5,
√

2) = F and this is impossible as

[F : Q] = 6.

Hence [Q(a,
√

2) : Q] = 4 which is impossible.

Hence [Q(a) : Q] = 6 and Q(a) = F.
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Summary of this unit.

In this unit we have studied the following:

• Let K be a finite extension of F and let L be an extension of

K then L is a finite extension of F . More over [L : K][K : F] =

[L : F]

(OR) Every finite extension of a finite extension is finite.

• An element a is said to be a root of a polynomial f (x) if

f (a) = 0 , where f (x) is a nonzero polynomial.

• An element a ∈ K is said to be algebraic over F if it satisfies

a nonzero polynomial over F .

• An element a ∈ K is said to be algebraic of degree n over F

if it satisfies a nonzero polynomial over F of degree n but no

polynomial of degree less than n .

• An element a ∈ K is algebraic over F if and only if F(a) is a

finite extension of F

• If a ∈ K is algebraic of degree n over F , then [F(a) : F] = n .

• Let K be a finite extension of F. Let a, b ∈ K are algebraic

over F, then F(a, b) is a field obtained by adjoining a to F

and then adjoining b to F(a). Clearly F(a, b) = F(b, a).

• Let K be a finite extension of F. If a, b ∈ K are algebraic

over F, then, a ± b, ab, a
b , (b 6= 0) are also algebraic over F.

(OR) If K is a finite extension of F, then the set of all algebraic

elements of a field F forms a sub field of F.

• Let K be a finite extension of F. If every element in K is

algebraic over F, then K is called an algebraic extension of

F.
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• If K is algebraic extension of F and L is algebraic extension

of K then, L is algebraic extension of F. (OR) Algebraic

extension of an algebraic extension is algebraic.

• A complex number is said to be an algebraic number if it is

algebraic over the field of rational numbers.

• A number which is not algebraic is called transcendental.

Multiple Choice Questions

1. If L is a finite extension of F and K is a subfield of L which

contains F, then

a) [L : F]|[K : F] b) [K : F]|[L : F]

c) [K : F]|[F : L] d) [F : K]|[L : F]

2. Find algebraic element over Q

a)
√

2 b) π c) e d) π + 1

3. Find dimension of Q(
√

2) over Q is

a) 2 b) 3 c) 5 d) 1

4. Find dimension of Q(i) over Q is

a) 1 b) 3 c) 5 d) 2

5. Find dimension of R over Q is

a) 1 b) 3 c) ∞ d) 2

6. The dimension of Q(
√

2 +
√

3) over Q is

a) 2 b) 3 c) 4 d) 6 .

7. Find dimension of Q(
√

2,
√

3) over Q is

a) 1 b) 4 c) ∞ d) 2

8. Select the number which is not an element of Q(
√

2)

a) 1 b) 4 c) 3
√

2 d) 2
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9. The field Q(
√

3 +
√

7) is isomorphic to

a) Q b) R c) Q(
√

3,
√

7) d) C

10. Which of the following number is conjugate to
√

3

a) 1 b) 2 c) 3 d) −
√

3

11. Let E is Q(
√

3,
√

7) Then number of automorphisms of E which

leaves Q fixed is

a) 1 b) 2 c) 3 d. 4

12. Number of automorphisms from Q(
√

2) to Q(
√

3) is

a) 1 b) 2 c) 3 d) 0

13. Find the fixed field of Q(
√

2) of the mapping
√

2 goes to −
√

2

a) Q b) R c) C d) Z

14. Let E is Q(
√

3,
√

7) and F is Q. Then index of E over F is

a) 2 b) 3 c) 4 d) 1

Answers:

1 2 3 4 5 6 7 8 9 10 11 12 13 14

b a a d c c b c c d d d a c

Exercise:

1. If V is a finite-dimensional vector space over the field K , and

if F is a subfield of K such that [K : F] is finite, show that V

is a finite-dimensional vector space over F and that moreover

dimF(V) = (dimK(V))([K : F]).

2. Prove that F(a, b) = F(b, a).

3. If a, b ∈ K are algebraic over F of degrees m and n ,

respectively, and if m and n are relatively prime, prove that

F(a, b) is of degree mn over F .
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4. If a is any algebraic number, prove that there is a positive

integer n such that na is an algebraic integer.

5. Prove that the sum of two algebraic integers is an algebraic

integer.

6. Prove that the product of two algebraic integers is an algebraic

integer.



Block 3 - UNIT 7

Roots of polynomials

Objectives

• We try to learn about Remainder theorem

• To study about multiple root of a polynomial

• To Study about minimal polynomial of an element

• Try to learn about Fundamental Theorem on Algebra

• We study splitting field of the polynomial

In earlier units we discussed elements in a given extension K of

F which were algebraic over F , that is, elements which satisfied

polynomials in F[x] . We now turn the problem around; given a

polynomial p(x) in F[x] we wish to find a field K which is an

extension of F in which p(x) has a root. No longer is the field

K available to us; in fact it is our prime objective to construct it.

Once it is constructed, we shall examine it more closely and see

what consequences we can derive.

113
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7.1 Fundamental Theorem on Algebra

Definition 7.1.1. If p(x) ∈ F[x], then an element a ∈ K, where K

is some extension of F is called a root of p(x) if p(a) = 0.

Let us begin with the familiar result known as the Remainder

Theorem.

Theorem 7.1.1. (Remainder theorem) : Let K be a finite extension

of F and let p(x) be a polynomial over F . Let a ∈ K. Then there

exists a polynomial q(x) ∈ K[x] such that p(x) = (x − a)q(x) +

p(a) , where degq(x) = degp(x)− 1.

Proof. Since p(x) ∈ F[x] and F ⊆ K , we have p(x) ∈ K[x] .

Since a ∈ K , x− a ∈ K.

Divide p(x) by (x− a) . Let the quotient be q(x) and the remainder

be r(x) .

Clearly, deg(q(x)) = deg(p(x))− 1.

∴ p(x) = (x− a)q(x) + r(x) · · · (1).

Here either r(x) = 0 or degr(x) < deg(x− a).

Since (x− a) is of degree 1, r(x) must be a constant polynomial.

Therefore let us take r(x) = r.

From equation (1), we have,

p(x) = (x− a)q(x) + r · · · (2)

Put x = a in (2). Then we have, p(a) = (a− a)q(a) + r.

That is, p(a) = r. · · · (3)

Sub (3) in (2), we have,

p(x) = (x− a)q(x) + p(a) where degq(x) = degp(x)− 1.

Hence the theorem. �

Definition 7.1.2. An element a ∈ K is a multiple root of a

polynomial p(x) with multiplicity m if (x − a)m|p(x) , whereas

(x− a)m+1 - p(x).



7.1. FUNDAMENTAL THEOREM ON ALGEBRA 115

One can have a reasonable question to ask, how many roots can a

polynomial have in a given field? Before answering we must decide

how to count a root of multiplicity m . We shall always count it as m

roots. Even with this convention we can prove

Theorem 7.1.2. (Fundamental Theorem on Algebra ) A polynomial

of degree n over a field can have at most n roots in any extension

field.

Proof. Let us prove this theorem by method of induction on degree

of the polynomial p(x) (say).

Basis for induction: Let deg(p(x)) = 1.

Then p(x) is of the form p(x) = αx + β , where, α 6= 0, α, β ∈ F .

Let p(x) = 0 .

Therefore, αx + β = 0⇒ x = −β/α .

Therefore − β
α is the only root of p(x) .

Thus p(x) has at most one root.

Induction hypothesis: Let us assume that this theorem is true for all

polynomials of degree less than n .

Let deg(p(x)) = n . Let K be any extension of F .

Let α ∈ K be a multiple root of p(x) with multiplicity m .

Therefore, (x− α)m|p(x) but (x− α)m+1 - p(x) .

Therefore, p(x) = (x − α)m.q(x) , for some q(x) where,

deg(q(x)) = n−m < n.

Clearly α is not a root of q(x).

Let β 6= α be a root of p(x) . That is , p(β) = 0.

But, p(x) = (x− α)m.q(x) .

Therefore, p(β) = (β− α)m.q(β).

Since, β 6= α , we have, q(β) = 0.

That is, β is a root of q(x).

Thus, any root of p(x) other than α is also a root of q(x).
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By Induction hypothesis we have, q(x) can have at most (n− m)

roots.

Therefore p(x) can have at most m + (n−m) roots.

That is, p(x) can have at most n roots in K . Hence theorem. �

The previous results are having only of subsidiary interest. We now

set ourselves to our prime task, that of providing ourselves with

suitable extensions of F in which a given polynomial has roots.

Once this is done, we shall be able to analyze such extensions to

a reasonable enough degree of accuracy to get results. The most

important step in the construction is accomplished for us in the next

theorem.

Theorem 7.1.3. Let p(x) ∈ F[x] is of degree n ≥ 1 and irreducible

over F . Then there exists a finite extension E of F , such that

[E : F] = n , in which p(x) has a root.

Proof. It is given that p(x) is an irreducible polynomial over F .

Let V be a ideal generated by p(x) .

That is, V =< p(x) > .

Therefore V is a maximal ideal.

Hence F[x]
V is a field. Let us denote, E = F[x]

V .

Claim 1: E is the required field.

First let us show that E is an extension field of F .

Let us define a map ψ : F → F[x]
V such that ψ(α) = α + V.

(i) First let us prove ψ is a homomorphism.

ψ(α + β) = (α + β) + V = (α + V) + (β + V) = ψ(α) + ψ(β) .

That is, ψ(α + β) = ψ(α) + ψ(β) .

Now, ψ(α.β) = (α.β) + V = (α + V).(β + V) = ψ(α).ψ(β).

That is, ψ(α.β) = ψ(α).ψ(β).

That is, ψ is a homomorphism.

(ii) ψ is 1-1.
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Let , ψ(α) = ψ(β) ⇒ (α + V) = (β + V) ⇒ (α− β) + V = V ⇒

(α− β) ∈ V ⇒ (α− β) = p(x)q(x) , where q(x) ∈ F[x] .

This is possible only if q(x) = 0 .

That is, (α− β) = p(x)q(x) = p(x).0 = 0;

That is, (α− β) = 0;⇒ α = β .

This implies, ψ(α) = ψ(β)⇒ α = β .

Hence ψ is 1− 1.

∴ ψ is an isomorphism from F to E .

Let F be the image of F under ψ .

But ψ is an isomorphism from F on to E .

Thus, F ' F .

Since F is a sub field of E , we can say that E is an extension of F

.

Since F ' F , we can say that E is an extension of F .

Claim 2: E is a finite extension of F . That is, [E : F] = n .

Let us consider the set, S = {1 + V, x + V, x2 + V, · · · , xn−1 + V}

of elements of E .

(i) Now let us prove that, S is linearly independent.

Consider the linear combination

α0(1 + V) + α1(x + V) + α2(x2 + V) + α3(x3 + V) + · · · +

αn−1(xn−1 + V) = 0 + V. · · · (1).

= α0 + V + α1x + V + α2x2 + V + α3x3 + V + · · ·+ αn−1xn−1 + V =

0 + V

= [α0 + α1x + α2x2 + α3x3 + V + · · ·+ αn−1xn−1] + V = 0 + V

⇒ [α0 + α1x + α2x2 + α3x3 + V + · · ·+ αn−1xn−1] ∈ V.

Let m(x) = α0 + α1x + α2x2 + α3x3 + V + · · ·+ αn−1xn−1

That is, m(x) ∈ V.

This ⇒ m(x) = p(x) f (x) , where f (x) ∈ E[x].

Here LHS is of degree n− 1 where as RHS is of degree n .

This is possible only if f (x) = 0.
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That is, m(x) = p(x) f (x) = p(x).0 = 0;

That is , m(x) is a zero polynomial.

That is, α0 + α1x + α2x2 + α3x3 + V + · · · + αn−1xn−1 is a zero

polynomial.

This shows α0 = 0, α1 = 0, α2 = 0, α3 = 0, · · · , αn−1 = 0

Thus, S is linearly independent.

(ii) Next we prove that S span E .

Let f (x) + V ∈ F[x]
V = E.

By division algorithm there exist q(x), r(x) such that f (x) =

p(x)q(x) + r(x) , where, either r(x) = 0 or deg r(x) < degp(x).

So, f (x) + V = (p(x)q(x) + r(x)) + V = (p(x)q(x)) + V + (r(x) +

V) = r(x) + V ( ∵ p(x) generates V ).

Take, r(x) = α0 + α1x + α2x2 + α3x3 + · · ·+ αn−1xn−1 .

f (x) + V = [α0 + α1x + α2x2 + α3x3 + · · ·+ αn−1xn−1] + V

f (x) + V = α0 + V + α1x + V + α2x2 + V + α3x3 + V + · · · +

αn−1xn−1 + V

That is, f (x) + V = α0(1 + V) + α1(x + V) + α2(x2 + V) + α3(x3 +

V) + · · ·+ αn−1(xn−1 + V) · · · (2).

Thus every element in E can be expressed as a linear combination

of elements of S over F.

Thus S is a basis for E over F .

Hence E is a finite extension of F .

It remains to prove that p(x) has a root in E .

Let p(x) = α0 + α1x + α2x2 + α3x3 + · · ·+ αn−1xn−1 + αnxn ∈ F[x].

Replacing , α0 by α0 + V, α1 by α1 + V, α2 by α2 + V, · · · , αn by

αn + V , we have,

p(x) = (α0 + V) + (α1 + V)x + (α2 + V)x2 + (α3 + V)x3 + · · · +

(αn−1 + V)xn−1 + (αn + V)xn ∈ E[x].

Consider p(x + V) = (α0 + V) + (α1 + V)(x + V) + (α2 + V)(x +

V)2 + · · ·+ (αn−1 + V)(x + V)n−1 + (αn + V)(x + V)n · · · (3)
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But (x + V)2 = (x + V)(x + V) = x2 + V

Similarly, (x + V)3 = x3 + V, (x + V)4 = x4 + V, · · · , (x + V)n =

xn + V.

Substituting these values in (3), we get,

p(x +V) = (α0 +V) + (α1 +V)(x +V) + (α2 +V)(x2 +V) + · · ·+

(αn−1 + V)(xn−1 + V) + (αn + V)(xn + V)

= (α0 + V) + (α1x + V) + (α2x2 + V) + · · · + (αn−1xn−1 + V) +

(αnxn + V)

= α0 + α1x + α2x2 + · · ·+ αn−1xn−1 + αnxn + V

= p(x) + V = V, which is the zero element of E .

Thus, (x + V) is a root of p(x) which is in E . Hence the

theorem. �

An immediate consequence of this theorem is the

Corollary 7.1.1. If f (x) ∈ F[x] then there exists a finite extension

E of F , in which f (x) has a root and [E : F] ≤ degree of f (x) .

Proof. Let f (x) is irreducible. Then corollary follows from theorem.

Therefore let f (x) is not irreducible over F .

Then there exists an irreducible factor p(x) for f (x).

More over deg(p(x)) ≤ deg( f (x)).

Now p(x) is an irreducible polynomial in F[x].

Therefore by above theorem there exists a finite extension E for F

in which p(x) has a root.

Let this root be a . Hence a is also a root of f (x) .

Thus, f (x) has a root in E . Now [E : F] = degree of p(x) ≤

deg( f (x)).

That is, [E : F] ≤ deg( f (x)). �

Theorem 7.1.4. Let f (x) ∈ F[x] is of degree n ≥ 1 then there

exists a finite extension E of F in which f (x) has all the roots.



120 7.2. SPLITTING FIELDS

More over , such that [E : F] ≤ n!.

Proof. It is given that f (x) ∈ F[x] is of degree n ≥ 1 .

Therefore by above corollary, there exists a finite extension E1 of

F , in which f (x) has a root and [E1 : F] ≤ n .

Let this root be α .

Divide f (x) by (x− α) . Let the quotient be q(x) .

Obviously, q(x) ∈ F[x] .

But F is a subset of E1 . That is F ⊆ E1 .

Therefore q(x) ∈ E1[x].

Again from above corollary, there exists a finite extension E2 of E1

in which q(x) has a root and [E2 : E1] ≤ (n− 1).

But, [E2 : F] = [E2 : E1][E1 : F] ≤ n(n− 1) .

Let this root be β .

Divide q(x) by (x− β) . Let the quotient be q1(x) , and degree of

q1(x) = n− 2 and q1(x) ∈ F[x] .

Again F ⊆ E2[x].

Using the corollary continuously, we will get an extension E for F

which has all the roots of f (x).

[E : F] ≤ n(n− 1).(n− 2).(n− 3). · · · 2.1 = n!.

That is, [E : F] ≤ n! . Hence the theorem. �

7.2 Splitting fields

The above theorem asserts the existence of a finite extension E in

which the given polynomial f (x), of degree n , over F has n roots.

If f (x) = a0xn + a1xn−l + · · ·+ am, a0 6= 0 and if the n roots in E

are α1, α2, · · · , αn , then by a known result, we can say f (x) can

be factored over E as f (x) = a0(x− 1)(x− α2) · · · (x− αn). Thus

f (x) splits up completely over E as a product of linear (first degree)
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factors. Since a finite extension of F exists with this property, a

finite extension of F of minimal degree exists which also enjoys this

property of decomposing f (x) as a product of linear factors. For

such a minimal extension, no proper subfield has the property that

f (x) factors over it into the product of linear factors. This yields the

Definition 7.2.1. Splitting field : Let f (x) be a polynomial over a

field F . Then the smallest field having all the roots of the polynomial

f (x) is called the splitting field of the polynomial. ( OR)

Let f (x) be a polynomial over a field F . A field E is said to be a

splitting field of f (x) if E has all the roots of f (x) and no proper

subfield of E has all the roots of f (x) .

Example 7.2.1. Let p(x) = x4 + 2x2− 8 be in Q[x]. Then p(x) has

irreducible factors x2 − 2 and x2 + 4. Therefore, the field Q(
√

2, i)

is a splitting field for p(x).

Example 7.2.2. Let p(x) = x3 − 3 be in Q[x]. Then p(x) has a

root in the field Q( 3
√

3). However, this field is not a splitting field for

p(x) since the complex cube roots of 3,
− 3
√

3± ( 6
√

3)5i
2

are not in

Q( 3
√

3).

An immediate question arises: given two splitting fields E1 and E2

of the same polynomial f (x) in F[x] , what is their relation to each

other? We will answer this question in following theorems. Let F

and F′ be two fields and let τ be an isomorphism of F onto F′ .

For convenience let us denote the image of any α ∈ F under τ by

α′ ; that is, ατ = α′ . We shall maintain this notation for the next few

pages.

We can make use of τ to set up an isomorphism between F[x]

and F′[t] , the respective polynomial rings over F and F′ . For an

arbitrary polynomial f (x) = α0xn + α1xn−1 + · · · + αn ∈ F[x] we
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define τ∗ by f (x)τ∗ = (α0xn + α1xn−1 + · · · + αn)τ∗ = (α′0tn +

α′1tn−1 + · · ·+ α′n)

Lemma 7.2.1. τ∗ defines an isomorphism of F[x] onto F′[t] with

the property that ατ∗ = α′ for every α ∈ F .

The proof is easy and straight forward matter, which we leave to the

reader, to verify.

Lemma 7.2.2. There is an isomorphism τ∗∗ of
F[x]

( f (x))
onto

F′[t]
( f ′(t))

with the property that for every α ∈ F, ατ∗∗ = α′, (x + ( f (x)))τ∗∗ =

t + ( f ′(t)).

Proof. Before starting with the proof proper, we should make clear

what is meant by the last part of the statement of the lemma. As we

have already done several times, we can consider F as imbedded in
F[x]

( f (x))
by identifying the element α ∈ F with the coset α + ( f (x))

in
F[x]

( f (x))
.

Similarly, we can consider F′ to be contained in
F′[t]

( f ′(t))
.

The isomorphism τ∗∗ is then supposed to satisfy (α+( f (x)))τ∗∗ =

α′ + ( f ′(t)).

We seek an isomorphism τ∗∗ of
F[x]

( f (x))
onto

F′[t]
( f ′(t))

.

What could be simpler or more natural than to try the τ∗∗ defined

by

[g(x) + ( f (x))]τ∗∗ = g′(t) + ( f ′(t)) for every g(x) ∈ F[x] .

Clearly τ∗∗ is an isomorphism from
F[x]

( f (x))
onto

F′[t]
( f ′(t))

. �

Theorem 7.2.1. If p(x) is irreducible in F[x] and if v is a root of

p(x) , then F(v) is isomorphic to F′(w) where w is a root of p′(t) ;

moreover, this isomorphism σ can so be chosen that

1. vσ = w.

2. ασ = α′ for every a ∈ F .
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Proof. Let v be a root of the irreducible polynomial p(x) lying in

some extension K of F .

Let M = { f (x) ∈ F[x]| f (v) = 0} .

Trivially M is an ideal of F[x] , and M 6= F[x] .

Since p(x) ∈ M and is an irreducible polynomial, we have that

M = (p(x)) .

As given in earlier proofs, map F[x] into F(v) ⊆ K by the mapping

ψ defined by

q(x)ψ = q(v) for every q(x) ∈ F[x] .

We saw earlier that ψ maps F[x] onto F(v) .

The kernel of ψ is precisely M , so must be (p(x)) .

By the fundamental homomorphism theorem for rings there is an

isomorphism

ψ∗ of
F[x]

(p(x))
onto F(v) .

Note further that αψ∗ = α for every α ∈ F .

Thus, ψ∗ is an isomorphism of
F[x]

(p(x))
onto F(v) leaving every

element of F fixed and with the property that v = (x + (p(x))ψ∗ .

Since p(x) is irreducible in F[x], p′(t) is irreducible in F′[t] .

Therefore by a known Lemma, there is an isomorphism θ∗ of
F′[t]

(p′(t))
onto F′(w)

where w is a root of p′(t) such that θ∗ leaves every element of F′

fixed and such that [t + (p′(t))]θ∗ = w.

Therefore, there is an isomorphism τ∗∗ of
F[x]

(p(x))
onto

F′[t]
(p′(t))

which coincides with τ on F and which takes x + (p(x)) onto

t + (p′(t)) .

Motivated by F(v)
(ψ∗)−1

−→ F[x]
(p(x))

τ∗∗−→ F′[t]
(p′(t))

θ∗−→ F′w,

Consider the mapping σ = (ψ∗)−1τ∗∗θ∗ of F(v) onto F′(w) .

It is an isomorphism of F(v) onto F′(w) since all the mapping

ψ∗, τ∗∗ , and θ∗ are isomorphisms and onto.

Moreover, since v = [x + (p(x))]ψ∗ , we have,
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vσ = (v(ψ∗)−1)τ∗∗θ∗

= ([x + (p(x)]τ∗∗)θ∗

= [t + (p′(t))]θ∗ = w .

Also, for α ∈ F ,

ασ = ((α(ψ∗)−1)τ∗∗θ∗

= (ατ∗∗)θ∗

= α′θ∗

= α′ .

We have shown that σ is an isomorphism satisfying all the

requirements of the isomorphism in the statement of the theorem.

Thus the Theorem is proved. �

A special case, but itself of interest, is the

Corollary 7.2.1. If p(x) ∈ F[x] is irreducible and if a, b are two

roots of p(x) , then F(a) is isomorphic to F(b) by an isomorphism

which takes a on to b and which leaves every element of F fixed.

We now come to the theorem which is, as we indicated earlier, the

foundation stone on which the whole Galois theory rests. For us it

is the focal point of this whole chapter.

Theorem 7.2.2. If f (x) ∈ F[x] and f ′(t) ∈ F′[t] are two

polynomials and if E and E′ are the splitting fields of f (x) and

f ′ respectively then there is an isomorphism φ from E to E′ with

the property that αφ = α′, ∀α ∈ F

Proof. Let us prove this theorem by method of Induction on [E : F] .

Basis for induction:

Let [E : F] = 1. Therefore, E = F .

Since E is the splitting field of f (x) , we have F is the splitting field

of f (x) .

Similarly, F′ is the splitting field of f ′(t) , we have E′ = F′ .
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Therefore by a known theorem, there is an isomorphism

τ : F → F′ such that ατ = α′, ∀α ∈ F

Take τ = φ. Hence, φ : E → E′ is an isomorphism such that

αφ = α′, ∀α ∈ F

( ∵ E = F and E′ = F′) .

Induction hypothesis:

Assume that this theorem is true for all splitting fields of degree less

than n .

That is, if F0 and F′0 are any two fields and f (x) ∈ F0[x] and if

E0 is the splitting field of f (x) such that [E0 : F0] < n , then E0 is

isomorphic to E′0 where E′0 is the splitting field of f ′(t) ∈ F′0[t].

Let [E : F] = n > 1 , where E is the splitting field of f (x) .

Since n > 1 , f (x) has an irreducible factor p(x) of degree r > 1 .

Let p′(t) be the corresponding irreducible factor of f ′(t) .

Since E is splitting field of f (x) , all the roots of f (x) are in E .

Let v be any root of p(x) . Therefore p(v) = 0 .

Since deg(p(x)) = r , we have [F(v) : F] = r .

Similarly there is a w in E′ such that w is a root of p′(t). That is,

p′(w) = 0 .

By a known theorem, there is an isomorphism

σ from F(v) to F′(w) with the property that ασ = α′, ∀α ∈ F

Now, [E : F] = n and [F(v) : F] = r .

Since F ⊂ F(v) ⊂ E , we have [E : F] = [E : F(v)][F(v) : F] .

That is, n = [E : F(v)].r

That is, [E : F(v)] =
n
r
< n.

Since F ⊆ F(v) and since f (x) ∈ F[x] we have f (x) is a

polynomial over F(v) and [E : F(v)] < n.

Similarly, f ′(t) is a polynomial over F′(w) and E′ is the splitting

field of f ′(t) and [E′ : F(w)] < n.

Therefore by induction hypothesis, there exists an isomorphism
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φ : E→ E′ such that αφ = α′, ∀α ∈ F .

Hence for every α ∈ F, αφ = α′, ∀α ∈ F . Hence the theorem. �

Theorem 7.2.3. Any two splitting fields of the same polynomial over

a given field F are isomorphic by an isomorphism leaving every

element of F fixed.

Proof. Take F = F′ .

Let τ be the identity map.

That is ατ = α, ∀α ∈ F .

Let E1 and E2 be two splitting fields of f (x) .

Clearly F ⊆ E and F ⊆ E′ .

Take E1 = E and E2 = E′. Then by above theorem, E1 and E2

are isomorphic with the property that ατ = α, ∀α ∈ F . Hence the

theorem. �

Example 7.2.3. Let f (x) = x2− 2 and g(x) = x4− 4x2 + 1. These

polynomials are the minimal polynomials of
√

2 and
√

2 +
√

3,

respectively.

Proposition 7.2.1. Let E be a field extension of F and α ∈ E

be algebraic over F. Then F(α) ' F[x]
< p(x) >

, where p(x) is the

minimal polynomial of α over F.

Proof. Let φ : F[x] → E be the evaluation homomorphism. The

kernel of this map is < p(x) >, where p(x) is the minimal

polynomial of α. By the First Isomorphism Theorem for rings, the

image of φ in E is isomorphic to F(α) since it contains both F and

α. �

Example 7.2.4. Let p(x) = x5 + x4 + 1 ∈ Z2[x]. Then p(x) has

irreducible factors x2 + x + 1 and x3 + x + 1. For a field extension

E of Z2 such that p(x) has a root in E, we can let E be either
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Z2[x]
< x2 + x + 1 >

or
Z2[x]

< x3 + x + 1 >
. We will leave it as an exercise

to show that
Z2[x]

< x3 + x + 1 >
is a field with 23 = 8 elements.

Solved Problems

Problem: 1 Determine an extension field of Q containing
√

3 +
√

5.

Solution: It is easy to determine that the minimal polynomial of
√

3 +
√

5 is x4 − 16x2 + 4. It follows that [Q(
√

3 +
√

5) : Q] = 4.

We know that {1,
√

3} is a basis for Q(
√

3) over Q. Hence,
√

3 +
√

5 cannot be in Q(
√

3). It follows that
√

5 cannot be in

Q(
√

3) either. Therefore, {1,
√

5} is a basis for Q(
√

3,
√

5) =

(Q(
√

3))(
√

5) over Q(
√

3) and {1,
√

3,
√

5,
√

3
√

5 =
√

15} is a

basis for Q(
√

3,
√

5) = Q(
√

3 +
√

5) over Q. This example shows

that it is possible that some extension F(a1, · · · , an) is actually a

simple extension of F even though n > 1.

Problem 2: Determine the irreducible polynomial for α = i +
√

2

over Q.

Solution: There were several ways to do this problem. The basic

idea is to find a linear combination of powers of α that equals

zero. Then one needs to explain why the associated polynomial

is irreducible. α2 = −1 + 2
√
−2 + 2 = 1 + 2

√
−2.

Thus (α2− 1)2 = −8 hence α satisfies (x2− 1)2 + 8 = x4− 2x2 +

9 = f (x). It is easy to prove that this is irreducible by the theory of

field extensions .

Let K be the splitting field for f (x). Clearly, Q(
√

2, i) contains K.

But, Q(
√

2) has degree 2 over Q and since i /∈ Q(
√

2), Q(i,
√

2)

has degree 2 over Q(
√

2).

Consequently, K = Q(
√

2, i), [K : Q] = 4 and f (x) is irreducible.

Problem 3: Determine the degree of the splitting field of the

polynomial f (x) = x3 + x + 1 over Q.
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Solution: It has no rational roots, so it is irreducible. Since

f ′(x) = 3x2 + 1 > 0, f (x) is increasing on the real line and has

exactly one real root α. By the Fundamental Theorem of Algebra, it

has two complex roots β and β. Consider the extension Q(α) ⊆ R,

there we have f (x) = (x− α)g(x). Since both roots of g(x) are not

real, they do not belong to Q(α), so g(x) is irreducible over Q(α).

Then we can consider the field K = Q(α, β) where f (x) factors

completely. We have [Q(α, β) : Q] = [Q(α, β) : Q(α)][Q(α) : Q] =

2× 3 = 6.

Problem 4: Find the splitting field of the polynomial xp − 1 = 0

where p is a prime number. Also find its degree.

Solution: The given polynomial is xp − 1 = 0 where p is a prime

number.

Let f (x) = xp − 1. That is, f (x) = (x − 1)(xp−1 + xp−2 + xp−3 +

· · ·+ x + 1) = 0.

That is f (x) = (x − 1)q(x) , where, q(x) = xp−1 + xp−2 + xp−3 +

· · ·+ x + 1.

It is clear that the degree of q(x) = p− 1.

Clearly 1 is a root of f (x) which is in F .

Then the remaining roots of f (x) are exactly the roots of q(x).

Let ω be any root of q(x). Now consider the field F(ω).

Then, ω, ω2, ω3, · · · , ωn−1 ∈ F(ω) .

Thus, F(ω) has all the roots of f (x) and no proper subfield of

F(ω) has all the roots of f (x) .

Hence F(ω) is the splitting field of f (x) .

Since ω is a root of q(x) and degree of q(x) is p− 1, we can say

that ω is algebraic of degree p− 1 .

Therefore [F(ω) : F] = p− 1.

Problem 5: Find the degree of the splitting field of the polynomial

x17 − 1 = 0. Here 17 is a prime.
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Solution: The given polynomial is xp − 1 = 0.

We know that if, xp − 1 = 0 where p is a prime number, then the

degree of the splitting field of xp − 1 = 0 is p− 1 .

Therefore the degree of the splitting field of the polynomial x17− 1 =

0 is 17− 1 = 16.

Problem 6: Let F be the field of rational numbers and let f (x) =

x4 + x2 + 1 is a polynomial over F . Find the splitting field of the

polynomial f (x) and determine its degree.

Solution: f (x) = x4 + x2 + 1 = (x2 + x + 1)(x2 − x + 1) =

g(x)h(x) , where, g(x) = (x2 + x + 1), h(x) = (x2 − x + 1) .

But g(−x) = h(x) . Therefore the roots of g(x) is also the roots of

h(x) with negative sign.

g(x) = (x2 + x + 1).

The roots of g(x) are:

−1±
√
(12 − 4.1.1)

2.1
= (−1±

√
−3
2

) .

Let ω = (−1 +
i
√

3
2

), ω2 = (−1− i
√

3
2

)

But, h(x) = (x2 − x + 1) .

Clearly, −ω = (−1− i
√

3
2

), −ω2 = (−1 +
i
√

3
2

) are the roots of

h(x) .

Thus, ω, ω2,−ω,−ω2 are all the four roots of f (x) .

These roots are in F(ω) . But no proper subfield of F(ω) has all

the roots.

Hence, F(ω) is the splitting field of the polynomial f (x) .

Since ω satisfies g(x) and degree of g(x) is 2 , we have, [F(ω) :

F] = 2.

Therefore the degree of the splitting field of the polynomial f (x) is

2.

Summary of this unit.
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In this unit we have studied the following:

• If p(x) ∈ F[x], then an element a ∈ K, where K is some

extension of F is called a root of p(x) if p(a) = 0.

• Remainder theorem : Let K be a finite extension of F and let

p(x) be a polynomial over F . Let a ∈ K. Then there exists a

polynomial q(x) ∈ K[x] such that p(x) = (x− a)q(x) + p(a) ,

where degq(x) = degp(x)− 1.

• An element a ∈ K is a multiple root of a polynomial p(x) with

multiplicity m if (x− a)m|p(x) , whereas (x− a)m+1 - p(x).

• Fundamental Theorem on Algebra : A polynomial of degree

n over a field can have at most n roots in any extension field.

• Let p(x) ∈ F[x] is of degree n ≥ 1 and irreducible over

F . Then there exists a finite extension E of F , such that

[E : F] = n , in which p(x) has a root.

• If f (x) ∈ F[x] then there exists a finite extension E of F , in

which f (x) has a root and [E : F] ≤ degree of f (x) .

• Let f (x) ∈ F[x] is of degree n ≥ 1 then there exists a finite

extension E of F in which f (x) has all the roots. More over ,

such that [E : F] ≤ n!.

• Splitting field : Let f (x) be a polynomial over a field F . Then

the smallest field having all the roots of the polynomial f (x) is

called the splitting field of the polynomial. ( OR)

Let f (x) be a polynomial over a field F . A field E is said to

be a splitting field of f (x) if E has all the roots of f (x) and

no proper subfield of E has all the roots of f (x) .

• Any two splitting fields of the same polynomial over a given

field F are isomorphic by an isomorphism leaving every
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element of F fixed.

• Let E be a field extension of F and α ∈ E be algebraic

over F. Then F(α) ' F[x]
< p(x) >

, where p(x) is the minimal

polynomial of α over F.

Multiple Choice Questions

1. Find splitting field of x2 − 2, x2 − 3 over Q

a) Q(
√

3,
√

2)

b) Q(
√

3)

c) Q(
√

2)

d) R

2. Find the inverse of 3 in Z5

a) 4 b) 1 c) 3 d. 2

3. Find the splitting field of x3 − 2 over Q

a) Q(i
√

3, 3
√

2)

b) Q(
√

3)

c) Q(
√

2)

d) R

4. Find a zero of x3 − 2 in Z5

a) 0 b) 1 c) 3 d) 2

5. Find splitting of x3 − 1 over Q

a) Q(i
√

3, 3
√

2)

b) Q(ζ)

c) Q(
√

2)

d) R

6. The degree of the splitting field of x3 + x + 1 over Q is

a) 3 b)4 c) 5 d) 6
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7. The degree of the splitting field of x2 + ax + p ∈ Q[x] is

a) 2 b) 3 c) 4 d) 5

8. The degree of the splitting field of x3 − 2 ∈ Q[x] is

a) 6 b) 5 c) 4 d) 3

9. The number of automorphisms on Q 3
√

2 is

a) 24 b) 6 c) 2 d) 1

10. The number of automorphisms other than the identity

automorphism on Q 3
√

2 is

a) 0 b) 2 c) 6 d) 1

Answers:

1 2 3 4 5 6 7 8 9 10

a d a c b d a a d a

Exercise:

Let F be the field of rational numbers. Determine the degrees of

the splitting fields of the following polynomials over F .

1. x4 + 1

2. x6 + 1

3. x4 − 2

4. x5 − 1

5. x6 + x3 + 1

6. If F is the field of rational numbers, find necessary and

sufficient conditions on a and b so that the splitting field of

x3 + ax + b has degree exactly 3 over F



Block 4 - UNIT 8

More about Roots

Objectives

• We try to learn about the derivative of polynomials

• To study the relation between characteristic of F and

polynomials over F

• Try to learn about simple extension of a field F

• We study separable extension a field F

• To Study about perfect extensions

In this unit, we show that all finite extensions are simple

extensions. Let F be any field and, as usual, let F[x] be the ring of

polynomials in x over F .

8.1 Derivative of Polynomials

Definition 8.1.1. If f (x) = α0xn + α1xn−1 + α2xn−2 + · · ·+ αixn−i +

· · ·+ αn−1x + αn in F[x] , then the derivative of f (x) is denoted as

133
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f ′(x) and is defined as

f ′(x) = nα0xn−1 + (n − 1)α1xn−2 + · · · + (n − i)αixn−i−1 + · · · +

αn−1 in F[x] .

Earlier , we defined what is meant by the characteristic of a field.

Let us recall it now. A field F is said to be of characteristic 0 if

ma 6= 0 for a 6= 0 in F and m > 0 , an integer. If ma = 0 for

some m > 0 and some a 6= 0 ∈ F , then F is said to be of finite

characteristic. In this second case, the characteristic of F is defined

to be the smallest positive integer p such that pa = 0 for all a ∈ F .

It turned out that if F is of finite characteristic then its characteristic

p is a prime number.

We return to the question of the derivative. Let F be a field of

characteristic p 6= 0 . In this case, the derivative of the polynomial

xp is pxp−1 = 0. Thus the usual result from the calculus that a

polynomial whose derivative is 0 must be a constant no longer

need hold true. We now prove the analogs of the formal rules of

differentiation that we know so well.

Lemma 8.1.1. For any f (x), g(x) ∈ F[x] and any α ∈ F ,

1. ( f (x) + g(x))′ = f ′(x) + g′(x).

2. (α f (x))′ = α f ′(x)

3. ( f (x)g(x))′ = f ′(x)g(x) + f (x)g′(x).

Proof. First let us prove (iii): Let f (x) = xi and g(x) = xj .

Then f (x)g(x) = xixj = xi+j .

So, ( f (x)g(x))′ = (xi+j)′ = (i + j)xi+j−1 · · · (1)

But f ′(x) = ixi−1 and g′(x) = jxj−1.

Therefore f ′(x)g(x) = ixi−1xj = ixi+j−1 · · · (2)

f (x)g′(x) = xi jxj−1 = jxi+j−1 · · · (3)

Now, (2) + (3) gives,

f ′(x)g(x) + f (x)g′(x) = (i + j)xi+j−1 · · · (4)
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Hence, from equations (1) and (4), we have,

( f (x)g(x))′ = f ′(x)g(x) + f (x)g′(x). Hence the Theorem. �

It should be note that in elementary calculus the equivalence is

shown between the existence of a multiple root of a function and

the simultaneous vanishing of the function and its derivative at a

given point. Even in our setting, where F is an arbitrary field, such

an interrelation exists.

Remark: If f (x) and g(x) in F[x] have a nontrivial common

factor in K[x] , for K an extension of F , then they have a nontrivial

common factor in F[x]. For, were they relatively prime as elements

in F[x] , then we would be able to find two polynomials a(x) and

b(x) in F[x] such that a(x) f (x) + b(x)g(x) = 1 . Since this relation

also holds for those elements viewed as elements of K[x] , in K[x]

they would have to be relatively prime.

Lemma 8.1.2. The polynomial f (x) ∈ F[x] has a multiple root if

and only if f (x) and f ′(x) have a nontrivial (that is, of positive

degree) common factor.

Proof. Without loss of generality let us assume that F has all

the roots of f (x). If f (x) has a multiple root α , then f (x) =

(x− α)mq(x) , where m > 1 .

However, note that, ((x− α)m)′ = m(x− α)m−1.

Hence, by Lemma 8.1.1,

f ′(x) = (x − α)mq′(x) + m(x − α)m−1q(x) = (x − α)r(x) , since

m > 1 .

But this says that f (x) and f ′(x) have the common factor (x− α) ,

thus the lemma is true.

On the other hand, if f (x) has no multiple root then

f (x) = (x− α1)(x− α2) · · · (x− αn) where each αi are all distinct
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(we are supposing f (x) to be monic).

But then f ′(x) =
n
∑

i=1
(x − α1) · · · ̂(x− αi) · · · (x − αn) where the ̂

denotes the term is omitted.

We claim no root of f (x) is a root of f ′(x). Indeed, f ′(αi) =

∏
i 6=j

(αi − αj) 6= 0 , since the roots are all distinct.

However, if f (x) and f ′(x) have a nontrivial common factor, they

have a common root, namely, any root of this common factor.

Thus, f (x) and f ′(x) have no nontrivial common factor, and so the

lemma has been proved in the other direction. �

Corollary 8.1.1. If f (x) ∈ F[x] is irreducible, then

i) If the characteristic of F is 0, then f (x) has no multiple roots.

ii) If the characteristic of F is p 6= 0 , then f (x) has a multiple root

only if it is of the form f (x) = g(xp) .

iii) If the characteristic of the field F is p 6= 0 , then the polynomial

xpm − x ∈ F[x] for n ≥ 1 , has distinct roots.

Proof. Since f (x) is irreducible, its only factors in F[x] are 1 and

f (x) itself.

If f (x) has a multiple root, then by Lemma 8.1.2, f (x) and f ′(x)

have a nontrivial common factor.

Hence f (x) | f ′(x) .

However, since the degree of f ′(x) is less than that of f (x) , we

get, f ′(x) must be a zero polynomial.

In characteristic 0 this implies that f (x) is a constant, which has

no roots; in characteristic p 6= 0 , this forces f (x) = g(xp). �

Corollary 8.1.2. If F is a field of characteristic p 6= 0 , then the

polynomial xpn − x ∈ F[x] , for n ≥ 1 , has distinct roots.

Proof. The derivative of xpn − x is pnxpn−1 − 1.

Since F is of characteristic p , we have pa = 0 .
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Therefore, pnxpn−1 − 1 = −1 .

Therefore xpn − x and its derivative are certainly relatively prime,

which, by the lemma, implies that xpn − x has no multiple

roots. �

The Corollary 8.1.1, does not rule out the possibility that in

characteristic p 6= 0 an irreducible polynomial might have multiple

roots. The presence of irreducible polyno-

mials with multiple roots leads to many interesting cases. Here after

we make the assumption that all fields occurring in the text material

are fields of characteristic 0 .

8.2 Simple extension

Definition 8.2.1. The extension K of F is a simple extension of F

if K = F(α) for some α ∈ K .

Theorem 8.2.1. If the characteristic of F is 0 and a, b are algebraic

over F , then there exists an element c ∈ F(a, b) such that F(a, b) =

F(c) .

Proof. Let f (x) and g(x) , are irreducible polynomials over F of

degrees m and n , satisfied by a and b , respectively.

Let K be the splitting field of both f (x) and g(x).

Since the characteristic of F is 0 , all the roots of f (x) and g(x)

are distinct.

Let the roots of f (x) be a = a1, a2, · · · , am and those of g(x), b =

b1, b2, · · · , bn.

If j 6= 1 , then bi 6= b1 = b , hence the equation ai + λbj = a1 +

λb1 = a + λb has only one solution λ in K , namely, λ =
ai − a
b− bj

.

Since F is of characteristic 0 it has an infinite number of elements,
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so we can find an element γ ∈ F such that ai + γbj = a + γb for

all i and for j 6= 1 .

Let c = a + γb. We claim that F(c) = F(a, b).

Since c ∈ F(a, b) , we have, F(c) ⊂ F(a, b) · · · (1)

We will now show that both a and b are in F(c) from which it will

follow that F(a, b) ⊂ F(c).

Now b satisfies the polynomial g(x) over F , hence satisfies g(x)

considered as a polynomial over K = F(c) .

Moreover, if h(x) = f (c − γx) then h(x) ∈ K[x] and h(b) =

f (c− γb) = f (a) = 0 , since a = c− γb .

Thus in some extension of K , h(x) and g(x) have x − b as a

common factor. We show that x − b is their greatest common

divisor.

For, if bj 6= b , is another root of g(x) , then h(bj) = f (c− γbj) 6= 0 ,

since by our choice of y , c − γbj for j 6= 1 avoids all roots ai of

f (x) .

Also, since (x − b)2 does not divide g(x) , (x − b)2 cannot divide

the greatest common divisor of h(x) and g(x) .

Thus (x− b) is the greatest common divisor of h(x) and g(x) over

some extension of K .

But then they have a nontrivial greatest common divisor over K ,

which must be a divisor of x− b .

Since the degree of x − b is 1 , we see that the greatest common

divisor of g(x) and h(x) in K[x] is exactly x− b .

Thus x − b ∈ K[x] , whence b ∈ K ; remembering that K = F(c) ,

we obtain that b ∈ F(c) .

Since a = c− γb , and since b, c ∈ F(c), y ∈ F ⊂ F(c) , we get that

a ∈ F(c) , whence F(a, b) ⊆ F(c) · · · (2)

Equations (1) and (2) together yields F(a, b) = F(c). Hence the

theorem. �
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We can expand the result from 2 elements to any finite number.

That is, if α1, α2, · · · , αn are algebraic over F , then there is an

element c ∈ F(α1, α2, · · · , αn) such that F(c) = F(α1, α2, · · · , αn) .

Thus the

Corollary 8.2.1. Any finite extension of characteristic 0 is a simple

extension.

Definition 8.2.2. An element a ∈ K where K is some extension

of F is called separable over F if it satisfies a polynomial over F

having no multiple roots.

Definition 8.2.3. An extension K of F is called separable extension

if all its elements are separable.

Definition 8.2.4. A field F is called perfect if all finite extensions

are separable.

Example 8.2.1. The polynomial x2 − 2 is separable over Q since

it factors as (x −
√

2)(x +
√

2). In fact, Q(
√

2) is a separable

extension of Q.

Let α = a + b
√

2 be any element in Q(
√

2). If b = 0, then α is a

root of x− a. If b 6= 0, then α is the root of the separable polynomial

x2 − 2ax + a2 − 2b2 = (x− (a + b
√

2))(x− (a− b
√

2)).

Summary of this unit.

In this unit we have studied the following:

• If f (x) = α0xn + α1xn−1 + α2xn−2 + · · · + αixn−i + · · · +

αn−1x + αn in F[x] , then the derivative of f (x) is denoted as

f ′(x) and is defined as

f ′(x) = nα0xn−1 + (n − 1)α1xn−2 + · · · + (n − i)αixn−i−1 +

· · ·+ αn−1 in F[x] .

• For any f (x), g(x) ∈ F[x] and any α ∈ F ,

1. ( f (x) + g(x))′ = f ′(x) + g′(x).
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2. (α f (x))′ = α f ′(x)

3. ( f (x)g(x))′ = f ′(x)g(x) + f (x)g′(x).

• The polynomial f (x) ∈ F[x] has a multiple root if and only if

f (x) and f ′(x) have a nontrivial (that is, of positive degree)

common factor.

• If f (x) ∈ F[x] is irreducible, then

i) If the characteristic of F is 0, then f (x) has no multiple

roots.

ii) If the characteristic of F is p 6= 0 , then f (x) has a multiple

root only if it is of the form f (x) = g(xp) .

iii) If the characteristic of the field F is p 6= 0 , then the

polynomial xpm − x ∈ F[x] for n ≥ 1 , has distinct roots.

• If F is a field of characteristic p 6= 0 , then the polynomial

xpn − x ∈ F[x] , for n ≥ 1 , has distinct roots.

• The extension K of F is a simple extension of F if K = F(α)

for some α ∈ K .

• If the characteristic of F is 0 and a, b are algebraic over F ,

then there exists an element c ∈ F(a, b) such that F(a, b) =

F(c) .

• Any finite extension of characteristic 0 is a simple extension.

• An element a ∈ K where K is some extension of F is called

separable over F if it satisfies a polynomial over F having no

multiple roots.

• An extension K of F is called separable extension if all its

elements are separable.

• A field F is called perfect if all finite extensions are separable.
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Multiple Choice Questions

1. The polynomial f (x) ∈ F[x] has a multiple root if

a) f (x) and f ′(x) have a trivial common factor.

b) f (x) and f ′(x) have a nontrivial common factor.

c) f (x) and f ′(x) have a no common factor.

d) None of the above

2. If f(x) is an irreducible polynomial of degree 5 over a perfect field

F, then f(x) has

a) 2 multiple root and 3 distinct roots

b) 4 multiple root and 1 distinct root

c) All are distinct roots

d) All are multiple roots

3. If F is of characteristic 0 and if f (x) ∈ F[x] is irreducible of

degree 8, then

a) f (x) has 6 multiple roots and two distinct roots

b) f (x) has 4 multiple roots and four distinct roots

c) f (x) has only multiple roots

d) f (x) has only distinct roots

4. If F is of characteristic 0 and if f (x) ∈ F[x] is irreducible of

degree 21, then

a) f (x) has 6 multiple roots and 15 distinct roots

b) f (x) has 4 multiple roots and 17 distinct roots

c) f (x) has only multiple roots

d) f (x) has only distinct roots

5. If F is of characteristic 2 then the polynomial x32− x ∈ F[x] has

a) has 6 multiple roots and 26 distinct roots
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b) has 16 multiple roots and 16 distinct roots

c) has only distinct roots

d) has only multiple roots

6. If F is of characteristic 3 then the polynomial x81− x ∈ F[x] has

a) has 56 multiple roots and 25 distinct roots

b) has only distinct roots

c) has only multiple roots

d) has 70 multiple roots and 11 distinct roots

7. If F is of characteristic 5 then the polynomial x125 − x ∈ F[x]

has

a) has 100 multiple roots and 25 distinct roots

b) has 70 multiple roots and 55 distinct roots

c) has only multiple roots

d) has only distinct roots

8. If F is of characteristic 7 then the polynomial x35 − x7 ∈ F[x] is

a) 35x34

b) −7x6

c) 0

d) 35x34 − 7x6

9. Any finite extension of characteristic 0 is

a) simple extension

b) perfect extension

c) separable extension

d) algebraic extension

Answers:
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1 2 3 4 5 6 7 8 9

a c d d c b d c a

Exercise:

1. If F is of characteristic 0 and f (x) ∈ F[x] is such that

f ′(x) = 0 , prove that f (x) = α ∈ F .

2. If F is of characteristic p 6= 0 and if f (x) ∈ F[x] is such

that f ′(x) = 0 , prove that f (x) = g(xp) for some polynomial

g(x) ∈ F[x] .

3. Show that any field F is of characteristic 0 is perfect.

4. Show that any finite field is perfect

5. Prove that the set of all separable elements of K over F form

a subfield of K .

6. If any one of a, b is separable then show that F(a, b) is simple

extension.

7. Prove that a finite, separable extension is simple.



Block 4 - UNIT 9

Galois Theory

Objectives

• We try to learn about automorphism on a field F

• To study fixed field of a group G .

• Try to learn about normal extension of a field F

• We study elementary symmetric functions of given variables

• To Study about symmetric rational functions of given variables

• We study about fundamental theorem of the Galois theory

In this unit will discuss what is nowadays called Galois theory (it

was originally called theory of equations), the interrelation between

field extensions and certain groups associated to them, called

Galois groups. Given a polynomial p(x) in F[x] , the polynomial

ring in x over F , we shall associate with the Galois group of p(x) .

There is a very close relationship between the roots of a polynomial

and its Galois group; In fact, the Galois group will turn out to be a

certain permutation group of the roots of the polynomial. Through

the splitting field of p(x) over F , the Galois group of p(x) is

144
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defined as a certain group of automorphisms of this splitting field.

A beautiful duality, expressed in the fundamental theorem of the

Galois theory exists between the subgroups of the Galois group

and the sub fields of the splitting field. This theory will enable us

to prove Galois’s theorem describing precisely when the quadratic

formula can be generalized to polynomials of higher degree.

9.1 Automorphisms on a field

In this section we define automorphisms on fields and study the

linearly independence of σ1(u), σ2(u),

σ3(u), · · · , σn(u) where , σ1, σ2, σ3, · · · , σn are automorphisms on

K acting on the elements u ∈ K.

Definition 9.1.1. Let K be a field. A mapping σ : K → K is said to

be an automorphism on K if

1. σ is 1 - 1

2. σ(x + y) = σ(x) + σ(y)

3. σ(xy) = σ(x)σ(y), ∀x, y ∈ K.

Definition 9.1.2. Two automorphisms σ and τ on K are said to

be equal if σ(x) = τ(x), ∀x,∈ K.

Two automorphisms σ and τ on K are said to be distinct if

σ(x) 6= τ(x), for some x in K .

Theorem 9.1.1. Let K be a field. Let σ1, σ2, · · · , σn, be distinct

automorphisms on K , then it is impossible to find elements

a1, a2, · · · an in K , not all zero such that

a1σ1(u) + a2σ2(u) + a3σ3(u) + · · ·+ anσn(u) = 0, ∀u ∈ K.

Proof. Let us prove this theorem by method of contradiction.

Suppose there exists a finite set of elements a1, a2, · · · an in K , not
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all zero such that

a1σ1(u) + a2σ2(u) + a3σ3(u) + · · ·+ anσn(u) = 0, ∀u ∈ K is true.

Let the minimal relation among those is

a1σ1(u) + a2σ2(u) + a3σ3(u) + · · ·+ amσm(u) = 0, ∀u, m < n, ai 6=

0 · · · (1)

Suppose m = 1 . Then a1σ1(u) = 0, ∀u ∈ K. Here a1 6= 0.

Therefore σ1(u) = 0. This implies σ1 is a zero mapping, which is a

contradiction.

Therefore let m > 1.

Let c, u ∈ K . Therefore cu ∈ K .

Since equation (1) is true for all u ∈ K , it must be true for each

cu .

Therefore a1σ1(cu) + a2σ2(cu) + a3σ3(cu) + · · ·+ amσm(cu) = 0, for

ai 6= 0.

That is,

a1σ1(c)σ1(u)+ a2σ2(c)σ2(u)+ a3σ3(c)σ3(u)+ · · ·+ amσm(c)σm(u) =

0 · · · (2)

Multiply (1) by σ1(c) , we get,

a1σ1(u)σ1(c) + a2σ2(u)σ1(c) + a3σ3(u)σ1(c) + · · ·+ amσm(u)σ1(c) =

0 · · · (3).

(2) − (3) gives,

a2σ2(u)(σ2(c)− σ1(c)) + a3σ3(u)(σ3(c)− σ1(c)) + · · ·+

amσm(u)(σm(c)− σ1(c)) = 0 , where a2, a3, · · · , am 6= 0.

This expression has (m− 1) elements and we have a contradiction

for the minimal expression has m elements. Hence the theorem is

true. �

Fixed fields

We now define the fixed field of a group and study its properties.

Definition 9.1.3. Let G be a group of all automorphisms on K .
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Then the fixed field of G is denoted by KG and is defined as follows.

KG = {x ∈ K|σ(x) = x, ∀σ ∈ G}

Theorem 9.1.2. The fixed field of G is a subfield of K .

Proof. : Let a, b ∈ KG . Then σ(a) = a, σ(b) = b, ∀σ ∈ G .

Now, σ(a± b) = σ(a)± σ(b) = a± b, ∀σ ∈ G.

Thus the fixed field is an additive abelian group.

Similarly, σ(ab) = σ(a)σ(b) = ab, ∀σ ∈ G.

Let b 6= 0. Then σ(b−1) = (σ(b))−1 = (b)−1.

That is σ(b−1) = (b)−1∀σ ∈ G. Thus b−1 ∈ KG .

Hence the fixed field of G is a subfield of K . �

Definition 9.1.4. Let K be a field and let F be the subfield of K .

The set of all automorphisms on K leaving every element of F is

fixed is called the group of all automorphisms on K relative to F .

This is denoted by G(K, F) . That is, the automorphism σ of K is

in G(K, F) iff σ(α) = α, ∀α ∈ F.

Theorem 9.1.3. If K is a finite extension of F , then G(K, F)

is a finite group and its order o(G(K, F)) satisfies the condition

o(G(K, F)) ≤ [K : F].

Proof. It is given that K is a finite extension of F .

Therefore [K : F] is finite.

Let [K : F] = n . That is, dimFK = n.

Then K has a basis consisting of n elements over F .

Let u1, u2, · · · , un be a basis for K over F .

Suppose

that there are (n + 1) distinct automorphisms σ1, σ2, · · · , σn+1 in

G(K, F) .

Consider the system of homogenous equations with the unknowns

x1, x2, · · · , xn+1.
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σ1(u1)x1 + σ2(u1)x2 + σ3(u1)x3 + · · ·+ σn+1(u1)xn+1 = 0

σ1(u2)x1 + σ2(u2)x2 + σ3(u2)x3 + · · ·+ σn+1(u2)xn+1 = 0

σ1(u3)x1 + σ2(u3)x2 + σ3(u3)x3 + · · ·+ σn+1(u3)xn+1 = 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

σ1(un)x1 + σ2(un)x2 + σ3(un)x3 + · · ·+ σn+1(un)xn+1 = 0

Now we have a system of n homogenous equations with (n + 1)

unknowns.

Therefore there exists a nontrivial solution for this system.

Let x1 = a1, x2 = a2, · · · , xn+1 = an+1 be a non trivial solution set

for the above system of equations.

That is, not all ai is zero. Therefore

σ1(u1)a1 + σ2(u1)a2 + σ3(u1)a3 + · · ·+ σn+1(u1)an+1 = 0

σ1(u2)a1 + σ2(u2)a2 + σ3(u2)a3 + · · ·+ σn+1(u2)an+1 = 0

σ1(u3)a1 + σ2(u3)a2 + σ3(u3)a3 + · · ·+ σn+1(u3)an+1 = 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

σ1(un)a1 + σ2(un)a2 + σ3(un)a3 + · · ·+ σn+1(un)an+1 = 0

Let t ∈ K be arbitrary.

Then t = α1u1 + α2u2 + α3u3 + · · ·+ αnun, where each σ is in F.

Then, σ1(t) = σ1(α1u1 + α2u2 + α3u3 + · · ·+ αnun)

i.e, σ1(t) = σ1(α1u1) + σ1(α2u2) + σ1(α3u3) + · · ·+ σ1(αnun)

i.e, σ1(t) = σ1(α1)σ1(u1) + σ1(α2)σ1(u2) + σ1(α3)σ1(u3) + · · · +

σ1(αn)σ1(un)

i.e, σ1(t) = α1σ1(u1) + α2σ1(u2) + · · ·+ αnσ1(un)

Multiply by a1 , we have,

a1σ1(t) = a1α1σ1(u1) + a1α2σ1(u2) + · · ·+ a1αnσ1(un)

Similarly,

a2σ2(t) = a2α1σ2(u1) + a2α2σ2(u2) + · · ·+ a2αnσ2(un)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
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· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

anσn(t) = anα1σn(u1) + anα2σn(u2) + · · ·+ anαnσn(un)

an+1σn+1(t) =

an+1α1σn+1(u1) + an+1α2σn+1(u2) + · · ·+ an+1αnσn+1(un)

Adding we get

a1σ1(t) + a2σ2(t) + · · · an+1σn+1(t) = α1[a1σ1(u1) + a2σ2(u1) +

an+1σn+1(u1)] + · · ·+ αn[a1σ1(un) + a2σ2(un) + an+1σn+1(un)]

⇒ α1.0 + α2.0 + α3.0 + · · ·+ αn.0 = 0.

Thus, a1σ1(t) + a2σ2(t) + · · · an+1σn+1(t) = 0, where not all a’s are

zero. This is contradiction to a well known theorem.

Hence o(G(K, G)) ≤ n.

Therefore o(G(K, F)) ≤ [K : F]. �

Example 9.1.1. Let us look at the splitting field and Galois group of

f (x) = x3 − 5 over Q . Clearly Q( 3
√

5) contains a root of f (x) but

is not a splitting field for f (x) since Q( 3
√

5) only contains one root

of f (x) . Then,in Q( 3
√

5)[x] we have f (x) = (x− 3
√

5)(x2 + 3
√

5x +

3
√

25) and the quadratic factor is irreducible over Q( 3
√

5) . So let

ζ = (−1 + i
√

3) 3
√

5/2. Then ζ is a root of f (x) over Q , hence is

a root of x2 + 3
√

5x + 3
√

25 over Q( 3
√

5) . Then it becomes clear that

F = Q( 3
√

5, ζ) is a splitting field of x3 − 5 over Q . Furthermore,

[F : Q] = [Q( 3
√

5, ζ) : Q( 3
√

5)][Q( 3
√

5) : Q] = 2× 3 = 3! .

To compute the Galois group, any element of the Galois group must

permute the roots 3
√

5, ζ, ζ where ζ denotes the complex conjugate

of ζ . So let σ, τ ∈ G(F, Q) be defined by letting τ correspond to

complex conjugation and let σ correspond to a cyclic permutation

of the roots.

So σ( 3
√

5) = ζ, σ(ζ) = ζ, σ(ζ) = 3
√

5 and σ(q) = q for all q ∈ Q .

We leave it as an exercise to show that σ is an automorphism.

Clearly σ has order 3 and τ has order 2 . Furthermore, στ(ζ) =

3
√

5 while τσ(ζ) = ζ , so G(F, K) is noncommutative. Finally, we
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have o(G(F, Q)) = 6 , hence G(F, Q) ' S3.

9.2 Field of Rational Functions

Let R be a ring. Then R[x1] is also a ring. We know that

R[x1] is the set of all polynomials in x1 with coefficient from R .

Let R1 = R[x1]. The set of all polynomials in x2 with coefficient

from R1 is denoted by R1[x2] . Let R2 = R1[x2]. The set of all

polynomials in x3 with coefficient from R2 is denoted R2[x3] . Let

R3 = R2[x3] . Continuing this way we get Rn = Rn−1[xn] . Clearly

Rn = R1[x1, x2, · · · , xn] . If the ring R is an integral domain, then

R[x1, x2, · · · , xn] is an integral domain. If the ring R becomes

field F , then F[x1, x2, · · · , xn] is an integral domain. The field of

quotients, F(x1, x2, · · · , xn) , is also field. This field is called the

field of rational functions in x1, x2, · · · , xn over F .

The elements of F(x1, x2, · · · , xn) are denoted as

r(x1, x2, · · · , xn) .

Thus, r(x1, x2, · · · , xn) ∈ F(x1, x2, · · · , xn) is called a rational

function in x1, x2, · · · , xn .

Elementary symmetric functions

Here we define elementary symmetric functions in n variables and

its relation to rational functions.

Let A = {x1, x2, · · · , xn} be a finite set.

Let a1 =
n
∑

i=1
xi

a2 = ∑
i<j

xixj

a3 = ∑
i<j<k

xixjxk

· · · · · · · · · · · ·

· · · · · · · · · · · ·

an−1 = ∑
i<j<···<(n−1)

xixjxk · · · xn−1
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an =
n
∏
i=1

xi

These a1, a2, · · · , an are called elementary symmetric functions in

x1, x2, · · · , xn .

For n = 2, a1 = x1 + x2 and a2 = x1x2.

For n = 3, a1 = x1 + x2 + x3, a2 = x1x2 + x1x3 + x2x3 and a3 =

x1x2x3.

When n = 2, x1, x2 are the roots of the equation

t2 − a1t + a2 = 0

When n = 3, x1, x2, x3 are the roots of the equation

t2 − a1t2 + a2t− a3 = 0

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

When n = 10, x1, x2, x3, x4, · · · , x9, x10 are the roots of the equation

t10 − a1t9 + a2t8 − · · · − a9t + a10 = 0

Theorem 9.2.1. Let F be a field and let F(x1, x2, · · · , xn) be the

field of rational functions in x1, x2, · · · , xn over F . Suppose S is

the field of symmetric rational functions in x1, x2, · · · , xn over F .

Then

1. [F(x1, x2, · · · , xn) : S] = n!

2. G(F(x1, x2, · · · , xn), S) = Sn, where Sn is a symmetric group

of degree n .

3. If a1, a2, · · · , an are called elementary symmetric functions in

x1, x2, · · · , xn , then S = F(a1, a2, · · · an)

4. F(x1, x2, · · · , xn) is the spitting field of the polynomial

tn− a1tn−1 + a2tn−2 + · · ·+(−1)nan over F(a1, a2, · · · an) = S.

Proof. Define a map

σ : F(x1, x2, · · · , xn)→ F(x1, x2, · · · , xn)
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such that σ(r(x1, x2, · · · , xn) = r(xσ(1), xσ(2), · · · , xσ(n)) .

This σ is a automorphism on F(x1, x2, · · · , xn) .

The fixed field of Sn is defined as follows.

S = {r(x1, x2, · · · , xn) ∈ F(x1, x2, · · · , xn)|

σ(r(x1, x2, · · · xn)) = r(x1, x2, · · · xn)∀σ ∈ Sn}.

That is,

r(xσ(1), xσ(2), · · · , xσ(n)) = r(x1, x2, · · · xn) , ∀σ ∈ Sn} .

Clearly, Sn ⊆ G(F(x1, x2, · · · , xn), S)

⇒ o(Sn) ≤ o(G(F(x1, x2, · · · , xn), S))

⇒ n! ≤ o(G(F(x1, x2, · · · , xn), S))

But it is clear that

o(G(F(x1, x2, · · · , xn), S)) ≤ [F(x1, x2, · · · xn) : S]

Therefore, n! ≤ [F(x1, x2, · · · xn) : S] · · · (1)

Consider the polynomial p(t) = tn − a1tn−1 + a2tn−2 + · · · +

(−1)nan , where a1, a2, · · · , an ∈ F(a1, a2, · · · , an) are the

elementary symmetric functions in x1, x2, · · · , xn .

Therefore, x1, x2, · · · , xn are the roots of the polynomial p(t).

That is p(t) can be written as

p(t) = (t − x1)(t − x2) · · · (t − xn) where x1, x2, · · · , xn ∈

F(x1, x2, · · · , xn) .

Thus F(x1, x2, · · · , xn) has all the roots of the polynomial p(t)

namely x1, x2, · · · , xn .

But no proper subfield of F(x1, x2, · · · , xn) has all the roots of the

polynomial p(t) .

Therefore F(x1, x2, · · · , xn) is the splitting field of the polynomial

p(t) .

As the degree of p(t) is n , we have

[F(x1, x2, · · · , xn) : F(a1, a2, · · · an)] ≤ n!.
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But F(a1, a2, · · · an) ⊆ S ⊆ F(x1, x2, · · · xn) . Therefore,

[F(x1, x2, · · · , xn) : F(a1, a2, · · · an)] = [F(x1, x2, · · · xn) : S][S :

F(a1, a2, · · · an)].

That is, n! ≥ [F(x1, x2, · · · xn) : S][S : F(a1, a2, · · · an)].

That is, n! ≥ n![S : F(a1, a2, · · · an)].

That is, [S : F(a1, a2, · · · an)] = 1

Therefore [F(x1, x2, · · · xn) : S] = 1⇒ S = F(a1, a2, · · · an).

Thus we have proved first, third and fourth parts of the theorem.

From (1), we have

o(Sn) = n! ≤ o(G(F(x1, x2, · · · xn), S) ≤ [F(x1, x2, · · · xn) : S] = n!.

(i.e), o(Sn) = o(G(F(x1, x2, · · · , xn), S))

⇒ Sn = G(F(x1, x2, · · · xn), S) .

Hence the theorem. �

9.3 Normal extensions

In this section we define normal extension of a field F and study the

relationship with the splitting fields of polynomials.

Definition 9.3.1. Let K be a field and let F be the subfield of K .

Let G(K, F) be the group of all automorphisms on K relative to F .

If the fixed field of G(K, F) is F then the extension K is called the

normal extension of F .

Theorem 9.3.1. Suppose K is a finite extension of F . Let H be a

subgroup of G(K, F) .

Let KH = {x ∈ K|σ(x) = x, ∀σ ∈ H} be the fixed field of H . Then,

1. [K : KH] = o(H)

2. G(K, KH) = H

In particular, when G(K, F) = H , then [K : F] = o(G(K, F)).
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Proof. It is given that H is a subgroup of G(K, F) where

G(K, F) = {σ ∈ A(K)|σ(x) = x, ∀x ∈ F} · · · (1)

(i.e), H ⊆ G(K, F) · · · (2)

The fixed field of H is given as

KH = {x ∈ K|σ(x) = x, ∀σ ∈ H} · · · (3)

It also given that K is a finite extension of F .

Clearly, F ⊆ KH ⊆ K.

Hence by Theorem 6.2.1, [K : F] = [K : KH][KH : F].

Since [K : F] is finite, we must have [K : KH] is finite.

Also we know that, o(G(K, KH)) ≤ [K : KH] · · · (4)

Thus G(K, KH) is a finite group.

But G(K, KH) = {σ ∈ A(K)|σ(x) = x, ∀x ∈ KH} · · · (5).

We claim that H ⊆ G(K, KH).

Let y ∈ KH and let σ ∈ H · · · (A).

Then σ(y) = y. This is true for all y ∈ KH.

This implies σ ∈ G(K, KH) · · · (B) .

From (A) and (B) we have σ ∈ H ⇒ σ ∈ G(K, KH) .

Therefore, H ⊆ G(K, KH).

⇒ o(H) ≤ o(G(K, KH)).

⇒ o(H) ≤ [K, KH] , [By eqn (4)] · · · · · · (6).

Now we prove that H ⊇ G(K, KH) .

That is o(H) ≥ o(G(K, KH)) . That is we have to prove o(H) ≥ [K :

KH].

Let o(H) = n and let [K : KH] = m · · · (7)

We will prove that n ≥ m.

Let H = {σ1, σ2, · · · , σn} , where σ1 is the identity element of H .

Therefore σ1(x) = x, ∀x.

Since KH is of characteristic 0, we have K is a finite extension.

Therefore there exists an element a ∈ K such that KH(a) = K.

Therefore [KH(a) : KH] = m.
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That is a is algebraic over KH of degree m .

That is a satisfies a nonzero polynomial over KH of degree m .

Let σ1(a) = x1, σ2(a) = x2, · · · , σn(a) = xn.

Then x1, x2, · · · , xn are in K .

Let α1, α2, · · · , αn are the elementary symmetric functions

in the variables x1, x2, · · · , xn.

Then, define

α1 =
n
∑

i=1
σi(a)

α2 = ∑
i<j

σi(a)σj(a)

α3 = ∑
i<j<k

σi(a)σj(a)σk(a)

· · · · · · · · · · · ·

· · · · · · · · · · · ·

αn−1 = ∑
i<j<···<(n−1)

σi(a)σj(a) · · · σn−1(a)

αn =
n
∏
i=1

σi(a)

Clearly, each αi is invariant under σj , for all σj ∈ H.

(i.e), α1, α2, · · · , αn ∈ KH.

Consider the polynomial,

p(t) = (t− x1)(t− x2) · · · (t− xn)

(i.e), p(t) = tn − α1tn−1 + α2tn−2 + · · · + (−1)nαn, where

α1, α2, · · · , αn ∈ KH.

Clearly, p(t) is a polynomial over KH.

Now p(a) = (a− x1)(a− x2) · · · (a− xn)

(i.e), p(a) = (a− σ1(a))(a− σ2(a)) · · · (a− σn(a))

(i.e), p(a) = (a− a)(a− x2) · · · (a− xn) [∵ σ1(a) = a].

(i.e), p(a) = 0.

Thus a is a root of p(t) .

But degree of p(t) is n and a is algebraic of degree m .

Hence n ≥ m . Therefore o(H) ≥ [K : KH] · · · (8).

From (6) and (8), we have o(H) = [K : KH] · · · (9).

But we have, H ⊆ G(K, KH) and H ⊇ G(K, KH).



156 9.3. NORMAL EXTENSIONS

Therefore, H = G(K, KH) · · · (10)

But it is given that, H = G(K, F) · · · (11).

Therefore, From (10) and (11), we conclude that, F = KH.

Now H = G(K, F)⇒ o(H) = o(G(K, F)) · · · (12)

Since F = KH, o(H) = [K : KH]

⇒ o(H) = [K : F] · · · (13) [By eqn (9)].

Thus from (12) and (13) we have o(G(K, F)) = [K : F]. Hence the

theorem. �

We state following two results to prove next Lemma.

Result: 1. If an extension is normal extension, then it is a finite

extension

Result: 2. If the field F is of characteristic zero, then all finite

extension are simple extensions.

Lemma 9.3.1. If K is a normal extension of F , then K is a splitting

field of some polynomial over F .

Proof. It is given that K is a normal extension of F .

Therefore by above results, it is a finite extension of F .

Therefore K = F(a) for some a ∈ K .

Let G(K, F) = {σ1, σ2, · · · , σn}.

Consider the polynomial

p(x) = (x− σ1(a))(x− σ2(a)) · · · (x− σn(a)) over F .

Let α1, α2, · · · αn are elementary symmetric functions in

σ1(a), σ2(a), · · · , σn(a).

Therefore p(x) = xn − α1xn−1 + α2xn−2 + · · · + (−1)nαn, where

α1, α2, · · · , αn ∈ K.

But each αj is invariant under σ, ∀σ ∈ G(K, F) .

Now p(x) is a polynomial over F . Thus K splits p(x) as a product

of linear factors in F .
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But a is a root of p(x) . Therefore all the roots of p(x) are in K .

Thus K is a splitting field of some polynomial over F . �

We now provide following results to prove next lemma.

Result 1: If p(x) ∈ F[x] is irreducible and if a and b are the roots

of p(x) , then F(a) ' F(b) , by an isomorphism which takes a onto

b .

Result 2. Any two splitting field of the same polynomial over F are

isomorphic by an isomorphism leaving every element of F fixed.

Lemma 9.3.2. Suppose f (x) is a polynomial in F[x] , and let K be

the splitting field of f (x) , and let p(x) is an irreducible factor of

f (x). If α1, α2, · · · αr are the roots of p(x) then for each i , there

exists an automorphism σi in G(K, F) such that σi(α1) = αi.

Proof. It is given that K be the splitting field of f (x) .

It is also given that p(x) is an irreducible factor of f (x) .

Let all the roots of p(x) are α1, α2, · · · , αr .

Therefore, α1, α2, · · · , αr are the roots of f (x) .

Therefore, α1, α2, · · · αr are in K .

Let α1, αi be any two roots of p(x). Then by result 1 given above,

there exists an isomorphism τ such that τ(α1) = αi ,

and leaving every element of F fixed.

Let F(α1) = F1 and F(αj) = F′1.

Now f (x) ∈ F[x]⇒ f (x) ∈ F1[x].

Similarly, f (x) ∈ F[x]⇒ f (x) ∈ F′1[x].

Let K be the splitting field of f (x) , where f (x) ∈ F1[x] and let K

be the splitting field of f (x) , where f (x) ∈ F′1[x].

Then there exists an isomorphism,

σi : K → K, leaving every element of F fixed.



158 9.3. NORMAL EXTENSIONS

That is, σi(x) = x, ∀x ∈ F.

That is σ = τ on F1 . Thus, σi(α1) = τ(α1) = αi. �

Lemma 9.3.3. If K is a splitting field of some polynomial over F ,

then K is a normal extension of F .

Proof. We will prove this lemma by method of induction on [K : F].

Basis for induction :

If [K : F] = 1 , then we have K = F .

Thus F is a normal extension of F . Hence the lemma is obviously

true.

Induction Hypothesis:

Assume that this Lemma is true for all extension K of F such that

[K : F] < n.

Let [K : F] = n and let f (x) ∈ F[x].

Since K is a splitting field of f (x) , there exists an irreducible factor

p(x) of f (x) ∈ F[x] .

Let degree of p(x) = r, r > 1. Let α1, α2, · · · αr are the roots of p(x)

and they are in K .

Since α1 is algebraic of degree r , we have, [F(α1) : F] = r.

But, [K : F] = [K : F(α1)][F(α1) : F]⇒ n = [K : F(α1)].r

⇒ [K : F(α1) =
n
r < n.

Since [K : F(α1)] < n , by induction hypothesis, we have K is the

normal extension of F(α1).

Let θ ∈ K be fixed by every automorphism σ ∈ G(K, F(α1)).

We claim that θ ∈ F . This will imply fixed field of G(K, F(α1)) is F .

That is, K will be normal over F .

By induction hypothesis, we have proved that K is the normal

extension of F(α1) . So , [K, F((α1)] is finite and the fixed field

of G(K, F(α1)) is F(α1) .

Since θ ∈ F(α1) and every element of F(α1) is of the form
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λ0 + λ1α+ λ2α2 + λ3α3 + · · ·+ λr−1αr−1, where, λ0, λ1, · · · , λr−1 ∈

F.

⇒ θ = λ0 + λ1α + λ2α2 + λ3α3 + · · ·+ λr−1αr−1 · · · (A)

where, λ0, λ1, · · · , λr−1 ∈ F . Hence by above Lemma, ∀i, there

exists σi(α1) = αi .

Since θ is fixed by every automorphism σi ∈ G(K, F) , we have

σi(θ) = θ.

Operating σi on both sides of (A)

σi(θ) = σi(λ0 + λ1α1 + λ2α2
1 + λ3α3

1 + · · ·+ λr−1αr−1
1 )

σi(θ) =

σi(λ0) + σi(λ1α1) + σi(λ2α2
1) + σi(λ3α3

1) + · · ·+ σi(λr−1αr−1
1 )

θ = λ0 + λ1αi + λ2α2
i + λ3α3

i + · · ·+ λr−1αr−1
i

0 = (λ0 − θ) + λ1αi + λ2α2
i + λ3α3

i + · · · + λr−1αr−1
i , for i =

1, 2, 3 · · · r.

Let q(x) = (λ0 − θ) + λ1x + λ2x2 + λ3x3 + · · ·+ λr−1xr−1

Thus q(x) has r distinct roots, namely, α1, α2, · · · αr . But degree of

q(x) = r− 1.

Thus we have a polynomial of degree r − 1 with r roots. This is

possible only if q(x) is a zero polynomial.

This implies, (θ − λ0) = 0, λ1 = 0, λ2 = 0, · · · λr−1 = 0

i.e θ − λ0 = 0⇒ θ = λ0.

Since λ0 ∈ F , we have, θ ∈ F . Hence the lemma. �

Theorem 9.3.2. A field K is a normal extension of F if and only if

it is a splitting field of some polynomial over F .

Proof. Write the proofs of above three theorems. �
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9.4 Fundamental Theorem on Galois Theory

Galois theory analyzes the connection between algebraic exten-

sions K of a field F and the corresponding Galois groups G(K, F) .

This connection will enable us to prove the converse of Galois’s

theorem: If F is a field of characteristic 0, and if f (x) ∈ F[x]

has a solvable Galois group, then f (x) is solvable by radicals.

The fundamental theorem of algebra is also a consequence of this

analysis. We have already seen several theorems about Galois

groups whose hypothesis involves an extension being a splitting

field of some polynomial. Let us begin by asking whether there is

some intrinsic property of an extension K of F that characterizes its

being a splitting field, without referring to any particular polynomial

in F[x] . It turns out that the way to understand splitting fields K

over F is to examine them in the context of both separability and

the action of the Galois group G(K, F) on K . Let K be a field and

let A(K) be the group of all (field) automorphisms of K . If F is

any subfield of K , then G(K, F) is a subgroup of A(K) , and so it

acts on K . Whenever a group acts on a set, we are interested in

its orbits and stabilizers, but we now ask for those elements of K

stabilized by every σ in some subset H of A(K) .

Correspondence between sub fields and subgroups

Now we state fundamental theorem on Galois Theory as

Theorem 9.4.1. Let f (x) ∈ F[x] and let K be the splitting field of

f (x) . Let G(K, F) be the Galois group of f (x) . For any subfield T

of K which contains F , ( F ⊆ T ⊆ K ), let

G(K, T) = {σ ∈ G(K, F)|σ(t) = t, ∀t ∈ T} .

For any subgroup H of G(K, F) , let KH = {x ∈ K|σ(x) = x, , ∀σ ∈

H} .

Then the association of T with G(K, T) , is a one to one
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correspondence between the set of all subfield of K which contains

F on to the set of all subgroups of G(K, F) such that

1. KG(K,T) = T

2. G(K, KH) = H

3. [K : T] = o(G(K, T),

[T : F] = index of G(K, T) in G(K, F)

4. T is the normal extension of F iff G(K, T) is a normal

subgroup of G(K, F) .

5. If T is the normal extension of F then

G(T, F) ' G(K, F)
G(K, T)

Proof. Let f (x) ∈ F[x] and let T be the extension of F such that

F ⊆ T ⊆ K.

Then for any polynomial f (x) ∈ F[x] , we have f (x) ∈ T[x] .

It is given that K is the splitting field of f (x) over F .

That is K is the splitting field of f (x) over T .

⇒ K is the normal extension of T .

⇒ Fixed field of G(K, T) is T . That is, KG(K,T) = T . This proves

(1).

Since K is the normal extension of F , for any subgroup H of

G(K, F) , by a known result, we have G(K, KH) = H.

Let T be a subfield of K such that F ⊆ T .

Let σ ∈ G(K, T) . This means, σ is an automorphism on K such

that σ(t) = t, ∀t ∈ T .

This means, σ is an automorphism on K such that σ(x) = x, ∀x ∈

F ⇒ σ ∈ G(K, F).

Thus we have obtained a subgroup G(K, T) of G(K, F).

Let A = {T|F ⊆ T ⊆ K} and define

B = {G(K, Ti), where, F ⊆ T1 ⊆ · · · ⊆ Tn ⊆ K|G(K, Tn) ⊆
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G(K, Tn−1) ⊆ · · · ⊆ G(K, F)}.

Let us define a map φ : A→ B such that φ(T) = G(K, T).

Clearly φ is onto.

Now let us prove φ is 1-1.

Let φ(T1) = φ(T2). This implies,

G(K, T1) = G(K, T2)⇒ T1 = T2.

Thus φ is 1− 1 map from A→ B.

Thus we have established a 1− 1 correspondence between A and

B .

Let T be the extension of F such that F ⊆ T ⊆ K.

Then K is the normal extension of T ⇒ [K : T] = o(G(K, T))

Then K is the normal extension of F ⇒ [K : F] = o(G(K, F))

But [K : F] = [K : T][T : F]. Therefore

[T : F] =
[K : F]
[K : T]

=
o(G(K : F))
o(G(K : T))

That is, index of G(K : T) in G(K : F) . This proves part 3.

Lemma 9.4.1. T is normal extension of F such that F ⊆ T ⊆ K if

and only if ∀σ ∈ G(K, F), σ(T) ⊂ T .

Proof. Let σ(T) ⊂ T . This implies, σ(t) ∈ T, ∀t ∈ T .

But we know that, T = F(a) for some a ∈ T . If a ∈ T , then

σ(a) ∈ T for all σ ∈ G(K, F) .

This implies T has all the roots of the polynomial

p(x) = ∏(x− σ(a)), ∀σ ∈ G(K, F).

⇒ T is the splitting field of the polynomial p(x) over F.

⇒ T is normal extension of F .

Conversely, assume that T is a normal extension of F

Then T is finite extension of F . Let T = F(a) , for some a ∈ T. Let

the minimal polynomial for a be

p(x) = ∏(x− σ(a)).

But T has all the roots of p(x) .
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Therefore if a is a root for p(x) , then σ(a) is also a root of

p(x), ∀σ ∈ G(K, F)

Thus a ∈ T ⇒ σ(a) ∈ T, ∀σ ∈ G(K, F)

σ(T) ⊂ T, ∀σ ∈ G(K, F) . Hence the lemma. �

Now let us prove 4: Let T is the normal extension of F

σ(T) ⊂ T, ∀σ ∈ G(K, F)

σ(t) ⊂ T, ∀σ ∈ G(K, F)

Let τ ∈ G(K, T) and t ∈ T

τ(σ(t)) = σ(t); ∀τ ∈ G(K, T), t ∈ T, ∀σ ∈ G(K, F)

(σ−1τσ)(t) = σ−1τ(σt) = t ∈ T.

(σ−1τσ) ∈ G(K, T)

Finally, if T is normal over F , given σ ∈ G(K, F) , since σ(T) ⊂ T ,

σ induces an automorphism σ∗ of T defined by σ∗(t) = σ(t) for

every t ∈ T . Because σ∗ leaves every element of F fixed, σ∗ must

be in G(T, F) .

Also, as is evident, for any σ, ψ ∈ G(K, F), (σψ)∗ = σ∗ψ∗ whence

the mapping of G(K, F) into G(T, F) defined by σ → σ∗ is a

homomorphism of G(K, F) into G(T, F) . Now let us find the kernel

of this homomorphism. It consists of all elements σ in G(K, F) such

that σ∗ is the identity map on T . That is, the kernel is the set of all

σ ∈ G(K, F) such that t = σ∗(t) = σ(t) ; by the very definition, we

get that the kernel is exactly G(K, T) .

The image of G(K, F) in G(T, F) , by fundamental homomorphism

Theorem on groups, it is isomorphic to
G(K, F)
G(K, T)

, whose order is
o(G(K, F))
o(G(K, T))

= [T : F] = o(G(T, F)) . Thus

the image of G(K, F) in G(T, F) is all of G(T, F) and so we have

G(T, F) isomorphic to
G(K, F)
G(K, T)

. Hence the theorem. �

Example 9.4.1. Let K be the field of complex numbers and let F
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be the field of real numbers.

We compute G(K, F) . If ( σ is any automorphism of K , since

i2 = −1, σ(i)2 = σ(i2) = σ(−1) = −1 , hence σ(i) = ±i .

If, in addition, σ leaves every real number fixed, then for any a + bi

where a and b are real, σ(a + bi) = σ(a) + σ(b) σ(i) = a± bi .

Each of these possibilities, namely the mapping σ1(a + bi) = a + bi

and σ2(a + bi) = a− bi defines an automorphism of K , σ1 being

the identity automorphism and σ2 complex-conjugation.

Thus G(K, F) is a group of order 2. Now let us find the fixed field of

G(K, F).

It certainly must contain F . Now let us check does the fixed field of

G(K, F) some more elements or not.

If a + bi is in the fixed field of G(K, F) then a + bi = σ2(a + bi) =

a− bi , whence b = 0 and a = a + bi ∈ F .

Thus, in this case we see that the fixed field of G(K, F) is precisely

F itself.

Solved Problems

Problem 1. Let σ : Q(
√

3,
√

5)→ Q(
√

3,
√

5) be the automorphism

that maps
√

3 to −
√

3. Then Q(
√

5) is the subfield of Q(
√

3,
√

5)

left fixed by σ.

Problem 2. Show that the complex conjugation, defined by σ :

a + bi 7→ a− bi, is an automorphism of the complex numbers.

Solution: Since σ(a) = σ(a + 0i) = a− 0i = a. The automorphism

defined by complex conjugation must be in G(C, R).

Problem 3. Find the Galois group of Q(
√

3,
√

5) over Q.

Solution: Consider the fields Q ⊂ Q(
√

5) ⊂ Q(
√

3,
√

5). Then

for a, b ∈ Q(
√

5), σ(a + b
√

3) = a − b
√

3 is an automorphism of

Q(
√

3,
√

5) leaving Q(
√

5) fixed. Similarly, τ(a + b
√

5) = a− b
√

5

is an automorphism of Q(
√

3,
√

5) leaving Q(
√

3) fixed. The

automorphism µ = στ moves both
√

3 and
√

5. It will soon be



9.4. FUNDAMENTAL THEOREM ON GALOIS THEORY 165

clear that {I, σ, τ, µ} is the Galois group of Q(
√

3,
√

5) over Q.

The following table shows that this group is isomorphic to Z2×Z2.

I σ τ µ

I I σ τ µ

σ σ I µ τ

τ τ µ I σ

µ µ τ σ I

We may also regard the field Q(
√

3,
√

5) as a vector space

over Q that has basis {1,
√

3,
√

5,
√

15}. It is no coincidence that

o(G(Q(
√

3,
√

5), Q)) = [Q(
√

3,
√

5) : Q] = 4.

We can now confirm that the Galois group of Q(
√

3,
√

5) over Q in

Problem 3 given above is indeed isomorphic to Z2 ×Z2. Certainly

the group H = {I, σ, τ, µ} is a subgroup of G(Q(
√

3,
√

5), Q),

however, H must be all of G(Q(
√

3,
√

5), Q) , since o(H) =

[Q(
√

3,
√

5) : Q] = o(G(Q(
√

3,
√

5), Q)) = 4.

Problem 4: Compute the Galois group of f (x) = x4 + x3 + x2 +

x + 1 over Q.

Solution: We know that f (x) is irreducible.

Furthermore, since (x − 1) f (x) = x5 − 1, we can use DeMoivre’s

Theorem to determine that the roots of f (x) are ωi, where i =

1, 2, 3, 4 and ω = cos
(

2π

5

)
+ i sin

(
2π

5

)
. Hence, the splitting field

of f (x) must be Q(ω). We can define automorphisms σi of Q(ω)

by σi(ω) = ωi for i = 1, 2, 3, 4. It is easy to check that these are

indeed distinct automorphisms in G(Q(ω), Q). Since [Q(ω) : Q] =

o(G(Q(ω), Q)) = 4, the σi ’s must be all of G(Q(ω), Q). Therefore,

G(Q(ω), Q) ' Z4 since ω is a generator for the Galois group.

Problem 5: Let F be the field of rational numbers and let f (x) =

x3 − 2 . Find the Galois group of f (x).
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Solution: In the field of complex numbers the three roots of f (x)

are 3
√

2, ω 3
√

2, ω2 3
√

2, where ω = (−1 +
√

3i)/2 and where 3
√

2 is

a real cube root of 2 . Now F( 3
√

2) cannot split x3 − 2 , for, as a

subfield of the real field, it cannot contain the complex, but not real,

number ω 3
√

2. Without explicitly determining it, what can we say

about K , the splitting field of x3 − 2 over F? By a known theorem

[K : F] ≤ 3! = 6. Since x3 − 2 is irreducible over F and since

[F( 3
√

2) : F] = 3 , we have, 3 = [F( 3
√

2) : F] | [K : F] . Finally,

[K : F] > [F( 3
√

2) : F] = 3.

The only way out is [K : F] = 6 .

Therefore, o(G(K : F)) = [K : F] = 6.

Let us find the 6 elements {σ1, σ2, σ3, σ4, σ5, σ6} of G(K, F).

σ1 =

 3
√

2 ω 3
√

2 ω2 3
√

2
3
√

2 ω 3
√

2 ω2 3
√

2



σ2 =

 3
√

2 ω 3
√

2 ω2 3
√

2

ω 3
√

2 3
√

2 ω2 3
√

2



σ3 =

 3
√

2 ω 3
√

2 ω2 3
√

2

ω2 3
√

2 ω 3
√

2 3
√

2



σ4 =

 3
√

2 ω 3
√

2 ω2 3
√

2
3
√

2 ω2 3
√

2 ω 3
√

2



σ5 =

 3
√

2 ω 3
√

2 ω2 3
√

2

ω 3
√

2 ω2 3
√

2 3
√

2


and

σ6 =

 3
√

2 ω 3
√

2 ω2 3
√

2

ω2 3
√

2 3
√

2 ω 3
√

2
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Let β = 3
√

2. We know that

K = {a0 + a1β + a2β2 + a3ω + a4βω + a5β2ω|ai ∈ Q, i = 0, · · · , 5}.

Moreover, σi(β) = β or ωβ or ω2β, and σi(ω) = ω or ω2.

The image of any element of K under σi can be elementarily

determined. Therefore, the only six elements are: G(K, F) =

{σ1, σ2, σ3, σ4, σ5, σ6}

Problem: 6 Let F be the field of rational numbers and let f (x) =

x4 − 5x2 + 6 ∈ Q[x] . Find the Galois group of f (x).

Solution: The polynomial f (x) = x4 − 5x2 + 6 ∈ Q[x] factors as

x4 + 5x2 + 6 = (x2 + 2)(x2 + 3).

f (x) splits in Q(i
√

2, i
√

3) as f (x) = (x + i
√

2)(x − i
√

2)(x +

i
√

3)(x− i
√

3).

Let the splitting field be K = Q(i
√

2, i
√

3). Let

K = {a0 + a1(i
√

2) + a2(i
√

3) + a3(i
√

6)|a0, a1, a2, a3 ∈ Q}.

Now [K : F] = 2× 2 = 4. Since K is the splitting field of f (x) , and

is normal extension of F , we get,

o(G(K, F)) = [K : F] = 4.

Let us find the 4 elements {σ1, σ2, σ3, σ4} of G(K, F).

σ1 =

 i
√

2 −i
√

2 i
√

3 −i
√

3

i
√

2 −i
√

2 i
√

3 −i
√

3



σ2 =

 i
√

2 −i
√

2 i
√

3 −i
√

3

i
√

3 −i
√

3 i
√

2 −i
√

2



σ3 =

 i
√

2 −i
√

2 i
√

3 −i
√

3

−i
√

3 i
√

3 −i
√

2 −i
√

2


and

σ4 =

 i
√

2 −i
√

2 i
√

3 −i
√

3

−i
√

2 i
√

2 −i
√

3 i
√

3

 .
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Therefore, G(K, F) = {σ1, σ2, σ3, σ4}.

Summary of this unit.

In this unit we have studied the following:

• Let K be a field. A mapping σ : K → K is said to be an

automorphism on K if

1. σ is 1 - 1

2. σ(x + y) = σ(x) + σ(y)

3. σ(xy) = σ(x)σ(y), ∀x, y ∈ K.

• Two automorphisms σ and τ on K are said to be equal if

σ(x) = τ(x), ∀x,∈ K.

Two automorphisms σ and τ on K are said to be distinct if

σ(x) 6= τ(x), for some x in K .

• Let K be a field. Let σ1, σ2, · · · , σn, be distinct automorphisms

on K , then it is impossible to find elements a1, a2, · · · an in K ,

not all zero such that

a1σ1(u) + a2σ2(u) + a3σ3(u) + · · ·+ anσn(u) = 0, ∀u ∈ K.

• Let G be a group of all automorphisms on K . Then the fixed

field of G is denoted by KG and is defined as follows.

KG = {x ∈ K|σ(x) = x, ∀σ ∈ G}

• The fixed field of G is a subfield of K .

• Let K be a field and let F be the subfield of K . The set of

all automorphisms on K leaving every element of F is fixed is

called the group of all automorphisms on K relative to F . This

is denoted by G(K, F) . That is, the automorphism σ of K is

in G(K, F) iff σ(α) = α, ∀α ∈ F.

• If K is a finite extension of F , then G(K, F) is a finite group
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and its order o(G(K, F)) satisfies the condition o(G(K, F)) ≤

[K : F].

• Let K be a field and let F be the subfield of K . Let G(K, F)

be the group of all automorphisms on K relative to F . If the

fixed field of G(K, F) is F then the extension K is called the

normal extension of F .

• Suppose K is a finite extension of F . Let H be a subgroup of

G(K, F) .

Let KH = {x ∈ K|σ(x) = x, ∀σ ∈ H} be the fixed field of H .

Then,

1. [K : KH] = o(H)

2. G(K, KH) = H

• If K is a normal extension of F , then K is a splitting field of

some polynomial over F .

• Suppose f (x) is a polynomial in F[x] , and let K be the

splitting field of f (x) , and let p(x) is an irreducible factor

of f (x). If α1, α2, · · · αr are the roots of p(x) then for each

i , there exists an automorphism σi in G(K, F) such that

σi(α1) = αi.

• If K is a splitting field of some polynomial over F , then K is a

normal extension of F .

• A field K is a normal extension of F if and only if it is a splitting

field of some polynomial over F .

• Let f (x) ∈ F[x] and let K be the splitting field of f (x) . Let

G(K, F) be the Galois group of f (x) . For any subfield T of

K which contains F , there is a one to one correspondence

between the set of all subfields of K which contains F on to

the set of all subgroups of G(K, F)
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Multiple Choice Questions

1. Let K be an extension of F .Two automorphisms σ and τ on K

are said to be distinct if

a) σ(x) 6= τ(x), for some x in K

b) σ(x) 6= τ(x), for all x in K

c) σ(x) 6= τ(x), for some x in F

d) σ(x) 6= τ(x), for all x in F

2. Let G be a group of all automorphisms on K . Then the fixed

field of G is

denoted by KG and is defined as follows.

a) KG = {x ∈ K|σ(x) = x, for someσ ∈ G}

b) KG = {x ∈ G|σ(x) = x, for allσ ∈ K}

c) KG = {x ∈ K|σ(x) = x, for allσ ∈ G}

d) GK = {x ∈ K|σ(x) = x, for allσ ∈ G}

3. The fixed field of G is

a) always a subfield of K .

b) for some times a subfield of K .

c) never be a subfield of K .

d) None of the above

4. Find Galois group of the polynomial x4 − 5x2 + 6 over Q

a) Z2 b) Z3 c) Klein 4 group d) Z5

5. Find Galois group of the polynomial x2 − 3 over Q

a) Z2 b) Z3 c) R d) Z5

6. Find Galois group of the polynomial x2 − 1 over Q

a) Z2 b) Z3 c) Q d) Z5

7. If K is the field of complex numbers and F is the field of real

numbers, then o(G(K, F)) and KG(K, F) respectively are
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a) 2, K

b) 2, F

c) 3, K

d) 3, F

8. The number of elementary symmetric functions in x1, x2, x3 and

x4 is

a) 2 b) 4 c) 8 d) 16

9. If [K : F] = 11 , then

a) o(G(K, F)) < 11

b) o(G(K, F)) ≤ 11

c) o(G(K, F)) > 11

d) o(G(K, F)) ≥ 11

10. An extension K is a normal extension of F if

a) If K is a splitting field of some polynomial over F

b) the fixed field of G(K, F) is F

c) both (a) and (b) is true

d) (a) is true but (b) is not true.

Answers:

1 2 3 4 5 6 7 8 9 10

a c a c a a b b b c

Exercise:

1. Prove directly that any automorphism of K must leave every

rational number fixed.

2. If K is a field and S a set of automorphisms of K , prove that

the fixed field of S and that of S (the subgroup of the group of
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all automorphisms of K generated by S ) are identical.

3. Prove that the Galois group of x3 − 2 over Q is isomorphic to

S3 , the symmetric group of degree 3 .

4. Find the splitting field, K, of x3 − 2 over Q

5. For every subgroup H of S3 find KH and check the

correspondence given in Fundamental Theorem on Galois

Theory.

6. Prove that a symmetric polynomial in x1, · · · , xn is a

polynomial in the elementary symmetric functions in x1, · · · , xn

.

7. Express the x2
1 + x2

2 + x2
3 as polynomial in the elementary

symmetric functions in x1, x2 and x3 .

8. Write x3
1 + x3

2 + x3
3 as polynomial in the elementary symmetric

functions in x1, x2 and x3 .

9. Express the (x1− x2)
2 +(x1− x3)

2 +(x2− x3)
2 as polynomial

in the elementary symmetric functions in x1, x2 and x3 .



Block 5 - UNIT 10

Solvability by Radicals

Objectives

• We try to learn about solvable groups

• To study about commutator subgroups

• Try to learn about solvability by radicals over F

• We study Abel’s Theorem

In this unit first we discuss about solvable groups.

10.1 Solvable Groups

Definition 10.1.1. A group G is said to be solvable if there exists

a nested sequence of subgroups ( chain of subgroups ) of the form

G = N0 ⊇ N1 ⊇ N2 ⊇ · · · ⊇ Nk = (e) such that,

i) Ni+1 is a subgroup of Ni

ii)
Ni

Ni+1
is abelian.

Definition 10.1.2. Let G be a group and let a, b ∈ G . Then define,

S = {aba−1b−1 | a, b ∈ G} . The set S is called commutator set.

173
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Definition 10.1.3. Let S be a nonempty subset of a group G and let

H = {x1x2 · · · xn | xi ∈ S (or) x−1
i ∈ S} . If this H is a subgroup

of G , then we say that it is generated by S .

If H = G , then we say that G is generated by S . This set S is

called the generating set of G .

Definition 10.1.4. Let G be a group and let S be a set of

commutators of G . The subgroup G′ generated by S is called

the commutator subgroup of G (or) the derived subgroup of G .

Lemma 10.1.1. Let G′ be the commutator subgroup of G . Then

i) G′ is normal in G

ii)
G
G′

is abelian

iii) G′ is the smallest subgroup of G such that
G
G′

is abelian

Proof. Let x ∈ G′ and g ∈ G.

Claim: g−1xg ∈ G′ .

Since x ∈ G′ , we have, x = c1c2c3 · · · cn , where n is finite and

ci ∈ S or c−1
i ∈ S , where S is the set of commutators of G .

Let ci ∈ S . Then, ci = a−1
i b−1

i aibi for some ai, bi ∈ G

Then c−1
i = (a−1

i b−1
i aibi)

−1 = b−1
i a−1

i biai ⇒ c−1
i is a commutator.

Consider g−1xg = g−1(c1c2c3 · · · cn)g

= g−1(c1gg−1c2gg−1c3gg−1 · · · gg−1cn)g

That is,

g−1xg = (g−1c1g)(g−1c2g)(g−1c3g) · · · (g−1cng) · · · (1)

Consider g−1cig = g−1(a−1
i b−1

i aibi)g for some b, a ∈ G .

= g−1(a−1
i gg−1b−1

i gg−1aigg−1bi)g

= (g−1a−1
i g)(g−1b−1

i g)(g−1aig)(g−1big)

= (g−1aig)−1(g−1big)−1(g−1aig)(g−1big)

= α−1β−1αβ where, α = (g−1aig) and β = (g−1big)

Thus g−1cig is a commutator.

Hence g−1cig ∈ G′ , for all i .
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Therefore their product is also in G′ .

Hence by equation (1), we have, g−1xg ∈ G′ .

That is G′ is normal. This proves part (i).

Proof of (ii): We know that
G
G′

= {aG′ | a ∈ G} .

Let aG′, bG′ ∈ G
G′ .

To prove G
G′ is abelian, it is enough to prove that aG′bG′ = bG′aG′

Now aG′bG′

= abG′

= eabG′

= (baa−1b−1)abG′

= ba(a−1b−1ab)G′

= baG′. ( since (a−1b−1ab) ∈ G′ ).

Thus, aG′bG′ = bG′aG′

Hence,
G
G′

is abelian.

Proof of (iii) : Suppose G
K is abelian.

Claim : G′ ⊆ K .

Let aK, bK ∈ G
K

. Then, aK.bK = ab.K . But bK.aK = ba.K .

Since
G
K

is abelian, we have,

ab.K = ba.K ⇒ a−1b−1ab.K = K

Thus S ⊆ K . ( S is the set of all commutators ).

Hence G′ is the smallest subgroup of G such that
G
G′

is

abelian. �

10.2 Derived subgroups

We present now following notation to describe derived subgroups.

Notation: Let G be a group.

G(1) is the derived subgroup of G .

That is, G(1) = G′

G(2) is the derived subgroup of G(1).
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That is, G(2) = (G(1))′

G(3) is the derived subgroup of G(2).

That is, G(3) = (G(2))′

G(4) is the derived subgroup of G(3).

That is, G(4) = (G(3))′

.......................................................

.......................................................

.......................................................

G(n) is the derived subgroup of G(n−1).

That is, G(n) = (G(n−1))′

Theorem 10.2.1. A group G is solvable if and only if G(k) = {e} ,

for some integer k .

Proof. Let G be the group. We know that

G(k) = (G(k−1))′ .

Let G(k) = Nk . Then Nk is the normal subgroup of Nk−1 .

Let G(k) = {e} , for some integer k .

Claim : G is solvable

Let G = N0 G′ = N1

G(2) = N2

G(3) = N3

..................

..................

G(k) = Nk = e

Clearly, N1 is a normal subgroup of N0

N2 is a normal subgroup of N1

N3 is a normal subgroup of N2

N4 is a normal subgroup of N3

..................................
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..................................

Nk is a normal subgroup of Nk−1

More over N0
N1

is abelian .
N0

N1
is abelian .

N1

N2
is abelian .

N2

N3
is abelian .

............................

............................

............................
Nk−1

Nk
is abelian .

Also, G = N0 ⊇ N1 ⊇ N2 ⊇ · · · ⊇ Nk = (e) . Hence G is solvable.

Converse part: Suppose G is solvable. Then there exists a chain

of subgroups N0, N1, N2, · · · , Nk such that ,

N0 ⊇ N1 ⊇ N2 ⊇ · · · ⊇ Nk = (e) for some k

and such that,

N1 is a normal subgroup of N0

N2 is a normal subgroup of N1

N3 is a normal subgroup of N2

N4 is a normal subgroup of N3

..................................

..................................

Nk is a normal subgroup of Nk−1

and
N0

N1
is abelian .

N1

N2
is abelian .

N2

N3
is abelian .

......................

......................
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......................
Nk−1

Nk
is abelian .

Take, G = N0 , G′ = N1 , G(2) = N2 , G(3) = N3, · · · , G(k) = Nk =

e .

Hence the Theorem. �

Theorem 10.2.2. The homomorphic image of a solvable group is

solvable.

Proof. Let G is a solvable group and let f be a homomorphism

from G onto G∗ . We have to prove that f (G) is solvable.

Let us denote f (G) = G · · · (1)

We have to prove that G is solvable.

Since G is solvable, there exists an integer k such that G(k) = e.

Since f is a homomorphism, f (e) = e .

That is, f (G(k)) = e⇒ f (G(k)) = e .

But (G(k)) = (G)
(k)

)

Hence, (G)
(k)

= e .

That is, G is solvable. �

Lemma 10.2.1. Let G = Sn , where n ≥ 5 , then G(k), for

k = 1, 2, 3, · · · , contains every 3-cycles of Sn .

Proof. It is given that, G = Sn , for n ≥ 5 . Let us take G = N . Let

a = (1, 2, 3) and b = (1, 4, 5) be any two 3-cycles of N .

Claim : a, b ∈ N′ .

It is obvious that N is a normal subgroup of N itself.

Let α = (1 2 3) =

 1 2 3

2 3 1

 .

Then, α−1 =

 1 2 3

3 1 2
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Let β = (1 4 5) =

 1 2 3 4 5

4 2 3 5 1

 .

Then, β−1 =

 1 2 3 4 5

5 2 3 1 4

 Let x = α−1β−1αβ = 1 2 3

3 1 2

 1 2 3 4 5

5 2 3 1 4

 1 2 3

2 3 1

 1 2 3 4 5

4 2 3 5 1


=

 1 2 3 4 5

4 1 3 2 5

 = (1 4 2) (3) (5)

⇒ x = (1 4 2 )

Clearly x ∈ N′ . Let π ∈ N0 = G and x ∈ N′ .

Since N′ is a normal subgroup of N0 , we have that π−1xπ ∈ N′ .

Let π =

 1 2 4

i1 i3 i2

 for any three distinct integers i1, i2, i3 .

Then, π−1 =

 i1 i2 i3

1 2 4

 . Then,

π−1xπ =

 i1 i2 i3

1 2 4

 1 4 2

4 2 1

 1 2 4

i1 i3 i2


=

 i1 i2 i3

i2 i3 i1


⇒ π−1xπ ∈ N′ .

That is, i1 i2 i3 ∈ N′ .

Thus, N′ has all the 3-cycles of N .

N(2) has all the 3-cycles of N′ and so of N .

N(3) has all the 3-cycles of N(2) and so of N .

N(4) has all the 3-cycles of N(3) and so of N .

.................................................................

.................................................................

N(k) has all the 3-cycles of N(k−1) and so of N .

Hence the Theorem. �

Theorem 10.2.3. The group Sn for n ≥ 5 , is not solvable .
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Proof. Let G = Sn . Then G(k) has all the 3-cycles of G . Therefore

there exists no integer k such that G(k) = (e) . Hence G is not

solvable. �

10.3 Solvability of Galois groups

In this section we now interrelate the solvability by radicals of p(x)

with the solvability, as a group, of the Galois group of p(x) . The

terminology is highly suggestive that such a relation exists.

Now we need a result about the Galois group of a certain type of

polynomial. We assume for the rest of the section that F is a field

which contains all nth roots of unity for every integer n . We have

Definition 10.3.1. A polynomial p(x) is said be solvability by

radicals over F if there exists a finite sentence of fields F1 =

F(ω1), F2 = F1(ω2), · · · , Fk = Fk−1(ωk) such that

ωr1
1 ∈ F , ωr2

2 ∈ F1, · · · , ω
rk
k ∈ Fk−1 such that all the roots of p(x)

are lie in Fk .

Theorem 10.3.1. If F has all the nth roots of unity and suppose

that a 6= 0 is in F . Let xn − a ∈ F[x] and let K be its splitting field

over F . Then

i) K = F(u) , where u is any root of xn − a .

ii) The Galois group of xn − a is abelian.

Proof. Since F has all the nth roots of unity , it contains ξ = e
2πi
n .

Then , ξn = 1 but ξm 6= 1, for 0 < m < n .

It is also given that u is a root of xn − a and K is the splitting field

of xn − a · · · (1)

Therefore , un − a = 0 · · · (2).

Substitute u = ξ iu in (2) . Then we have , (ξ iu)n − a = (ξn)iun −

a = 1iun − a = un − a = 0.
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This implies, ξ iu is also a root of xn − a, for i = 1, 2, · · · , n− 1.

i.e , u, ξu, ξ2u · · · ξn−1u , are all the roots of xn − a.

We claim that all the above roots are distinct.

Suppose ξ iu = ξ ju, (i > j).

ξ iu− ξ ju = 0

(ξ i − ξ j)u = 0, (u 6= 0).

Therefore we must have (ξ i − ξ j) = 0

⇒ ξ i = ξ j ⇒ ξ i

ξ j = 1⇒ ξ i−j = 1 , which is a contradiction.

Therefore all the roots are distinct.

Now x ∈ F, u ∈ K . Hence we have u, ξu, ξ2u, · · · , ξn−1u ∈ F(u).

Therefore F(u) is a splitting field of xn − a · · · (3).

So from (1) and (3) , we have K = F(u) . This proves the first part.

Now let us prove the second part.

Let σ, τ be any two elements in the Galois group of xn − a.

Since u is a root of xn − a , we have un − a = 0 . Now σ(un − a) =

σ(0) = 0

⇒ σ(un)− σ(a) = 0⇒ σ(un)− a = 0⇒ σ(u)n − a = 0

⇒ σ(u) is a root of xn − a.

Similarly , τ(u) is also a root of xn − a.

Therefore let us take , σ(u) = ξ iu and τ(u) = ξ ju, for some i, j.

Now, τ(σ(u)) = τ(ξ iu) = τ(ξ i)τ(u) = ξ iξ ju = ξ i+ju.

That is, τ(σ(u)) = ξ i+ju · · · (4).

Again now, σ(τ(u)) = σ(ξ ju) = σ(ξ j)σ(u) = ξ jξ iu = ξ i+ju.

That is, σ(τ(u)) = ξ i+ju · · · (5).

Therefore from (4) and (5), we have τ(σ(u)) = σ(τ(u)). Therefore,

τσ = στ . Hence the Galois group is abelian. �

Note that the Theorem says that when F has all nth roots of unity,

then adjoining one root of xn − a to F , where a ∈ F , gives us the

whole splitting field of xn − a; thus this must be a normal extension
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of F . We have

Theorem 10.3.2. If p(x) ∈ F[x] is solvable by radicals over F , then

the Galois group of p(x) is a solvable group.

Proof. Let K be the splitting field of p(x) over F and let G(K, F)

be the Galois group of p(x) over F .

We claim that G(K, F) is a solvable group.

It is given that p(x) is solvable by radicals over F.

Therefore there exists a finite sentence of fields

F1 = F(ω1), F2 = F1(ω2), · · · , Fk = Fk−1(ωk) such that

ωr1
1 ∈ F , ωr2

2 ∈ F1, · · · , ω
rk
k ∈ Fk−1 such that all the roots of p(x)

are lie in Fk .

Without loss of generality, we assume that Fk is a normal extension

of F .

As a normal extension of F , Fk is also a normal extension of

any intermediate field. Hence Fk is a normal extension of Fi for

i = 1, 2, · · · , (k− 1).

Also each Fi is a normal extension of Fi−1 , for i = 1, 2, · · · , (k− 1).

Thus , F1 is a normal extension of F ⇒ G(Fk, F1) is a normal

subgroup of G(Fk, F).

F2 is a normal extension of F1 ⇒ G(Fk, F2) is a normal subgroup of

G(Fk, F1).

F3 is a normal extension of F2 ⇒ G(Fk, F3) is a normal subgroup of

G(Fk, F2).

Thus in general,

Fi is a normal extension of Fi−1 ⇒ G(Fk, Fi) is a normal subgroup

of G(Fk, Fi−1).

Now consider the chain G(Fk, F) ⊇ G(Fk, F1) ⊇ G(Fk, F2) ⊇

G(Fk, F3) ⊇ · · · ⊇ G(Fk, Fk−1) = (e).

It is given that each subgroup in this chain is the normal subgroup
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of the preceding one. Since Fi is a normal extension Fi−1 , By

Fundamental Theorem on Galois Theory , we have,

G(Fi, Fi−1) '
G(Fk, Fi−1)

G(Fk, Fi)
But by Theorem 10.3.1 , the Galois group G(Fi, Fi−1) is abelian.

Therefore , each quotient group ,
G(Fk, Fi−1)

G(Fk, Fi)
is abelian.

Hence the group G(Fk, F) is a solvable group.

Also we have K ⊆ Fk and K is a normal extension of F . Therefore

G(K, F) ' G(Fk, F)
G(Fk, K)

Here G(K, F) is the homomorphic image of a solvable group

G(Fk, F). Hence G(K, F) is solvable. �

Note that the converse of above theorem is also true; that is,

Theorem 10.3.3. If the Galois group of p(x) ∈ F[x] is a solvable

group then p(x) is solvable by radicals over F .

It is important to mention here that above two theorems are true

even if F does not contain roots of unity.

Now we recall the definition of general polynomial of degree n over

F , p(x) = xn + a1xn−1 + a2xn−2 + · · ·+ an where F(a1, a2, · · · , an)

is the field of rational functions in the n - variables a1, a2, · · · , an. We

close this section with the great, classic theorem of Abel:

Theorem 10.3.4. (Abel’s Theorem:)

The general polynomial of degree n ≥ 5 is not solvable by radicals.

Proof. In earlier theorems we saw that if F(a1, · · · , an) is the field

of rational functions in the n variables a1, · · · , an then the Galois

group of the polynomial p(t) = tn + a1tn−1 + a2tn−2 + · · · + an

where over F(a1, · · · , an) was Sn , the symmetric group of degree

n .

But we know that, Sn is not a solvable group when n ≥ 5 , thus by
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Theorem 10.3.2, p(t) is not solvable by radicals over F(a1, · · · , an)

when n ≥ 5 . Hence the theorem. �

10.4 Galois Groups over the Rationals

In earlier chapters, we have seen that, given a field F and a

polynomial p(x) , of degree n , in F[x] , then the splitting field of

p(x) over F has degree at most n! over F . But we have seen

that this upper limit of n! is, indeed, taken on for some choice of

F and some polynomial p(x) of degree n over F . In fact, if F0 is

any field and if F is the field of rational functions in the variables

a1, a2, · · · , an over F0 , it was shown that the splitting field, K , of

the polynomial p(x) = xn + a1xn−1 + a2xn−2 + · · ·+ an over F has

degree exactly n! over F.

Moreover, it was shown that the Galois group of K over F is Sn ,

the symmetric group of degree n. This turned out to be the basis for

the fact that the general polynomial of degree n , with n ≥ 5, is not

solvable by radicals. We will show that for any prime number p, at

least, we can find polynomials of degree p over the field of rational

numbers whose splitting fields have degree p! over the rationals.

This way we will have polynomials with rational coefficients whose

Galois group over the rationals is Sp. Therefore by well known

theorems, we will conclude from this that the roots of these

polynomials cannot be expressed in combinations of radicals

involving rational numbers. We shall make use of the fact that

polynomials with rational coefficients have all their roots in the

complex field. We now prove that the Galois group of an irreducible

polynomial of degree p , p a prime is Sp the symmetric group of

degree p .

Theorem 10.4.1. Let q(x) be an irreducible polynomial of degree
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p , p a prime, over the field Q of rational numbers. Suppose that

q(x) has exactly two nonreal roots in the field of complex numbers.

Then the Galois group of q(x) over Q is Sp the symmetric group

of degree p . Thus the splitting field of q(x) over Q has degree p!

over Q.

Proof. Let K be the splitting field of the polynomial q(x) over Q .

If α is a root of q(x) in K , then, since q(x) is irreducible over Q ,

by a well known theorem we have [Q(α) : Q] = p .

Since K ⊃ Q(α) ⊃ Q and, according to Theorem 6.2.1, [K : Q] =

[K : Q(α)][Q(α) : Q] = [K : Q(α)]p , we have that p | [K : Q].

If G is the Galois group of K over Q , by Theorem 9.3.1, o(G) =

[K : F].

Thus p | o(G) . Hence, by Cauchy’s theorem on groups, G has an

element σ of order p .

It is given that q(x) has exactly two non real roots. Let these two

non real roots be α1, α2 .

Therefore α1 = α2 and α2 = α1 , where the bar denotes the

complex conjugate.

If α3, α4, · · · , αp−1, αp are the other roots, then, since they are real,

α3 = α3, α4 = α4, · · · , αp = αp.

Thus the complex conjugate mapping takes K into itself, is an

automorphism τ of K over Q , and interchanges α1 and α2 ,

leaving the other roots of q(x) fixed.

Now, the elements of G take roots of q(x) into roots of q(x) , so

induce permutations of α1, α2, α3, · · · , αp.

In this way we imbed G in Sp . The automorphism τ described

above is the transposition (1, 2) since τ(α1) = α2, τ(α2) = α1 , and

τ(αi) = αi for i ≥ 3 .

Since G is imbedded in Sp and σ is in G , we can view σ is in
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Sp . Since σ is of order p , and the elements in Sp of order p are

exactly p− cycles, we must have σ is a p− cycle.

Therefore G , as a subgroup of Sp , contains a transposition and a

p− cycle.

It is very clear that that any transposition and any p− cycle in Sp

generate Sp .

Thus τ and σ generate Sp .

But since they are in G , the group generated by τ and σ must be

in G .

The net result of this is that G = Sp . In other words, the Galois

group of q(x) over Q is Sp . This proves the theorem. �

The above theorem gives us a general criterion to get Sp as a

Galois group over Q . Now we obtain a polynomial of degree p

over the rationals which is irreducible over Q and have exactly two

nonreal roots. We do it for p = 5.

Let us consider the polynomial q(x) = 2x5 − 10x + 5 .

By the Eisenstein criterion, q(x) is irreducible over Q .

If we draw the graph of this polynomial q(x) = 2x5 − 10x + 5 , we

can see that the curve intersects the x− axis in three places.

Therefore it must have three real roots.

Since this polynomial is of degree 5, the remaining two roots must

be complex roots.

Thus, this q(x) has exactly two non real roots.

Therefore the Galois group of q(x) over Q is S5 the symmetric

group of degree 5 .

But by Abel’s theorem, S5 is not solvable by radicals over Q .

That is, it is not possible to express the roots of q(x) in a

combination of radicals of rational numbers.

Example 10.4.1. Show that f (x) = x5 − 6x3 − 27x − 3 ∈ Q[x] is
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not solvable.

Solution: We claim that the Galois group of f (x) over Q is S5.

By Eisenstein’s Criterion, f (x) is irreducible and, therefore, must

be separable. The derivative of f (x) is f ′(x) = 5x4 − 18x2 − 27,

hence, setting f ′(x) = 0 and solving, we find that the only real roots

of f ′(x) are x = ±

√
6
√

6 + 9
5

.

Therefore, f (x) can have at most one maximum and one minimum.

It is easy to show that f (x) changes sign between −3 and −2,

between −2 and 0, and once again between 0 and 4.

Therefore, f (x) has exactly three distinct real roots. The remaining

two roots of f (x) must be complex conjugates. Let K be the

splitting field of f (x). Since f (x) has five distinct roots in K and

every automorphism of K fixing Q is determined by the way it

permutes the roots of f (x), we know that G(K, Q) is a subgroup of

S5. Since f (x) is irreducible, there is an element σ ∈ G(K, Q) such

that σ(a) = b for two roots a and b of f (x). The automorphism

of C that takes a + bi 7→ a − bi leaves the real roots fixed and

interchanges the complex roots; consequently, G(K, Q) ⊂ S5.

Since S5 is generated by a transposition and an element of order

5, we get, G(K, Q) must be all of S5. By Abel’s Theorem, S5 is not

solvable. Consequently, f (x) cannot be solved by radicals.

Summary of this unit.

In this unit we have studied the following:

• A group G is said to be solvable if there exists a nested

sequence of subgroups ( chain of subgroups ) of the form

G = N0 ⊇ N1 ⊇ N2 ⊇ · · · ⊇ Nk = (e) such that,

i) Ni+1 is a subgroup of Ni
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ii)
Ni

Ni+1
is abelian.

• Let G be a group and let S be a set of commutators of G .

The subgroup G′ generated by S is called the commutator

subgroup of G (or) the derived subgroup of G .

• Let G′ be the commutator subgroup of G . Then

i) G′ is normal in G

ii)
G
G′

is abelian

iii) G′ is the smallest subgroup of G such that
G
G′

is abelian .

• A group G is solvable if and only if G(k) = {e} , for some

integer k .

• Let G = Sn , where n ≥ 5 , then G(k), for k = 1, 2, 3, · · · ,

contains every 3-cycles of Sn .

• The group Sn for n ≥ 5 , is not solvable .

• A polynomial p(x) is said be solvability by radicals over F

if there exists a finite sentence of fields F1 = F(ω1), F2 =

F1(ω2), · · · , Fk = Fk−1(ωk) such that

ωr1
1 ∈ F , ωr2

2 ∈ F1, · · · , ω
rk
k ∈ Fk−1 such that all the roots of

p(x) are lie in Fk .

• If F has all the nth roots of unity and suppose that a 6= 0 is

in F . Let xn − a ∈ F[x] and let K be its splitting field over F .

Then

i) K = F(u) , where u is any root of xn − a .

ii) The Galois group of xn − a is abelian.

• If p(x) ∈ F[x] is solvable by radicals over F , then the Galois

group of p(x) is a solvable group.

• If the Galois group of p(x) ∈ F[x] is a solvable group then

p(x) is solvable by radicals over F .
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• Abel’s Theorem: The general polynomial of degree n ≥ 5 is

not solvable by radicals.

• Let q(x) be an irreducible polynomial of degree p , p a prime,

over the field Q of rational numbers. Suppose that q(x) has

exactly two nonreal roots in the field of complex numbers.

Then the Galois group of q(x) over Q is Sp the symmetric

group of degree p . Thus the splitting field of q(x) over Q has

degree p! over Q.

Multiple Choice Questions

1. Subgroup G generated by all commutators [u, v] such that

u, v ∈ G then it is known as

a) Abelian

b) Normal subgroup

c) Commutator subgroup

d) Commutator and Normal subgroup

2. Let G′ be the commutator subgroup of G . Then

a) G′ is normal in G

b) G′ is not normal in G

c) G′ is not cyclic

d) G′ is cyclic

3. If G′ be the commutator subgroup of G then

a)
G
G′

is abelian

b) G′ is normal in G

c) both (a) and (b) is true

d) None of the above

4. The symmetric group Sn , is not solvable for

a) n ≥ 5 b) n = 5 c) n 6= 5 d) n ≤ 5
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5. Consider the statements.

I. If the Galois group of p(x) ∈ F[x] is a solvable group then

p(x) is solvable by radicals over F

II. If p(x) ∈ F[x] is solvable by radicals over F , then the Galois

group of p(x) is a solvable group.

a) Only (I) is true

b) Only (II) is true

c) (I) is true but (II) is not true

d) both (I) and (II) is true.

6. The general polynomial p(x) of degree n is not solvable by

radicals if

a) n ≤ 5 b) n = 5 c) n 6= 5 d) n ≥ 5

Answers:

1 2 3 4 5 6

c a c a d d

Exercise:

1. Prove that a subgroup of a solvable group is solvable.

2. Prove that S4 is a solvable group.

3. If G is a group, prove that all G(k) are normal subgroups of

G .

4. If N is a normal subgroup of G prove that N′ must also be a

normal subgroup of G .

5. If p(x) is solvable by radicals over F , prove that we can find

a sequence of fields F ⊂ F1 = F(ω1) ⊂ F2 = F1(ω2) ⊂ · · · ⊂

Fk = Fk−1(ωk) where
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ωr1
1 ∈ F , ωr2

2 ∈ F1, · · · , ω
rk
k ∈ Fk−1 , Fk containing all the roots

of p(x) , such that Fk is normal over F .

6. If the Galois group of p(x) ∈ F[x] is a solvable group prove

that p(x) is solvable by radicals over F .

7. Prove that the above problem is true even if F does not contain

all the nth roots of unity.

8. In S5 show that (1 2) and (1 2 3 4 5) generate S5

9. In S5 show that (1 2) and (1 3 2 4 5) generate S5

10. If p > 2 is a prime, show that (1 2) and (1 2 · · · p) generate

Sp

11. Prove that any transposition and p− cycle in Sp , p a prime,

generate Sp

12. Show that the polynomial p(x) = x3 − 3x − 3 , over Q is

irreducible and have exactly two nonreal roots.

13. Prove that the polynomial p(x) = x5 − 6x + 3 , over Q is

irreducible and have exactly two nonreal roots.

14. Show that the polynomial p(x) = x5 + 5x4 + 10x3 + 10x2− x−

2 , over Q is irreducible and have exactly two nonreal roots

15. Find the Galois group over Q of the polynomial p(x) =

x3 − 3x− 3

16. Obtain the Galois group over Q of the polynomial p(x) =

x5 + 5x4 + 10x3 + 10x2 − x− 2

17. Find the Galois group over Q of the polynomial p(x) =

x5 − 6x + 3



Block 5 - UNIT 11

Finite fields

Objectives

• We try to learn about finite fields

• To study about the existence of a unique field for every prime

number p and for every positive integer m.

• Try to learn about Wedderburn theorem

• We study Jacobson’s Theorem

In this unit we investigate the nature of fields having only a finite

number of elements. Such fields are called finite fields. Finite fields

do exist, for the ring Jp of integers modulo any prime p , provides

us with an example of such.

11.1 The properties of fields

In this section we shall determine all possible finite fields and many

of the important properties which they possess. We begin with

Lemma 11.1.1. Let F be a finite field consists of q elements and

192
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let K be an extension of F such that [K : F] = m, then K has qm

elements.

Proof. It is given the [K : F] = m. Therefore dimFK = m.

Hence we can obtain a basis for K over F consisting of m

elements, say, {v1, v2, · · · , vm} . Let w ∈ K.

Then w = α1v1 + α2v2 + α3v3 + · · ·+ αmvm.

Since each coefficient has q values, we conclude that K has qm

elements.

Result: If F is of characteristic p , where p is a prime, then there

exists a field F0 such that F0 ⊂ F and F0 ' Jp. �

Corollary 11.1.1. If F is a finite field,then F has pm elements,

where the prime p is the characteristic of F .

Proof. It is given that F is a finite field of characteristic p , where p

is a prime number.

Then by the above result, there exists a proper sub field F0

isomorphic to Jp .

Since Jp has p elements we have F0 has p elements.

But F is a finite extension of F0 . Let [F : F0] = m.

Hence by Lemma 11.1.1, we have F has pm elements. �

Corollary 11.1.2. If F is a finite field having pm elements, where p

is a prime, then every element a ∈ F satisfies apm
= a.

In other words, every element of F is a root for the polynomial

xpm − x for some m > 0.

Proof. Let a = 0. Then, 0pm
= 0. This implies 0 = 0, which is true.

There fore let us prove this corollary for the nonzero elements of F .

Let G = F− {0}. Then G is group with respect to multiplication of

order pm − 1.
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That is, o(G) = pm − 1.

By corollary to Lagrange’s Theorem, for any a ∈ G , ao(G) = 1.

That is, apm−1 = 1.

Multiply by a on both sides, we have, apm
= a. �

Lemma 11.1.2. If F is a finite field consisting of pm elements,

then the polynomial xpm − x ∈ F[x] factors in F[x] as xpm − x =

∏
λ∈F

(x− λ).

Proof. The polynomial xpm − x ∈ F[x] has pm roots.

But every element in F is a root for xpm
= x .

Hence the polynomial xpm
= x has all the roots in F itself.

Since F has pm elements and since xpm
= x has pm roots in F

we have each element of F is a root of xpm
= x .

Thus, F has all the roots of the polynomial xpm
= x and no proper

subfield of F has all the roots of the polynomial xpm
= x .

Therefore F is splitting field of the polynomial xpm
= x .

Thus xpm
= x can splits in F[x]. �

Corollary 11.1.3. If the field F has pm elements then F is the

splitting field of the polynomial xpm − x.

Proof. By Lemma 11.1.2, xpm − x certainly splits in F . But, it

cannot split in any smaller field for that field would have to have

all the roots of this polynomial and so would have to have at least

pm elements. Thus F is the splitting field of xpm − x . �

As we have seen in earlier chapters any two splitting fields over a

given field of a given polynomial are isomorphic. We can state

Lemma 11.1.3. Any two finite fields having the same number of

elements are isomorphic.
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Proof. Let F and K be any two finite fields.

Let F contains pm elements and let K contains pm elements.

Then by Lemma 11.1.2, the polynomial xpm
= x has all the pm

roots in F .

Therefore F is the splitting field of the polynomial xpm
= x .

Similarly, the polynomial xpm
= x has all the pm roots in K.

Therefore K is the splitting field of the polynomial xpm
= x .

Since a polynomial xpm
= x has two splitting fields, they are

isomorphic.

Hence F and K are isomorphic. Hence the proof. �

Result: If F is of characteristic p , where p is a prime, then the

polynomial xpm
= x has distinct roots.

Thus for any integer m and any prime number p there is, up to

isomorphism, at most one field having pm elements. The purpose

of the next lemma is to demonstrate that for any prime number p

and any integer m there is a field having pm elements. Once we

done this, we shall know that there is exactly one field having pm

elements where p is an arbitrary prime and m an arbitrary integer.

Lemma 11.1.4. For every prime number p and for every positive

integer m, there exists a field F consisting of pm elements.

Proof. It is given that p is a prime number. So, Jp is the ring of

integers modulo prime p.

Let Jp[x] be the set of all polynomials in x over Jp.

Then xpm − x ∈ Jp[x].

Let K be the splitting field for the polynomial xpm − x .

Clearly F be the set of all the roots of xpm − x .

Thus F has pm elements.

Claim: F is a field.

Let a, b ∈ F. Then apm
= a and bpm

= b.
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(ab)pm
= (a)pm

.(b)pm
= ab.

Thus F is closed with respect to multiplication.

Consider (a± b)pm
= (a)pm

+ pmC1(apm−1)b + · · ·+ (b)pm

(a± b)pm
= (a)pm ± (b)pm

= a± b.

Hence a± b ∈ F .

Consequently F is a subfield of K and F itself is a field consisting

of pm elements. �

Theorem 11.1.1. For every prime number p and for every positive

integer m , there exists a unique field F consisting of pm elements.

Proof. Write the proofs of Lemma 11.1.3 and Lemma 11.1.4. �

Theorem 11.1.2. Let G be finite abelian group enjoying the

property that the relation xn = e is satisfied by atmost n elements

of G for every integer n . Then G is a cyclic group.

Proof. Our aim is to show that G is cyclic.

Case (i): Let o(G) = Power of some prime number q .

Let a ∈ G such that a is of maximum order.

Let o(a) = qr for some integer r . Therefore aqr
= e.

Consider the elements A = {e, a, a2, a3, · · · , aqr−1}.

Clearly these elements are distinct because these are distinct

solutions of xqs
= e.

Let b ∈ G such that o(b) = qs where s < r.

Consider (b)qr
=
(

bqs
)qr−s

= e.

Thus b is a root for xqr
= e.

Since b is a element of A , we have b = ai for 0 ≤ i ≤ qr−1 .

Thus b can be expressed as some integral powers of a .

That is a is a generator of G . Hence G is cyclic.

Case(ii): Suppose G is a finite abelian group of general order.

We know that every finite abelian group can be expressed as a
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direct product of its Sylow subgroups.

Thus, G = Sq1Sq2Sq3 · · · Sqk where each Sqi is a Sylow subgroup

such that q1, q2, · · · , qk are distinct prime numbers, which are

divisors of G .

Let g ∈ G be arbitrary.

Therefore g = s1s2s3 · · · sk where each si ∈ Sqi .

Now each solution of xn = e in Sqi is also a solution of xn = e in

G.

Thus each Sylow sub group satisfies the hypothesis of the theorem.

Hence each Sylow sub group is Cyclic.

Let ai be the generator of Sqi , i = 1, 2, 3, · · · , k.

Let c = a1a2 · · · ak. Clearly c ∈ G.

We claim that c is the generator for G.

Let o(c) = m.

Therefore cm = e and m|o(G) · · · (1)

Now cm = (a1a2 · · · ak)
m = e.

That is, am
1 am

2 · · · am
k = e.

This implies, am
1 = e, am

2 = e, · · · , am
k = e.

Thus, o(a1)|m, o(a2)|m, o(a3)|m, · · · o(ak)|m .

Therefore,

o(a1) = o(Sq1), o(a2) = o(Sq2), o(a3) = o(Sq3), · · · , o(ak) = o(Sqk).

Therefore, o(Sq1)|m, o(Sq2)|m, o(Sq3)|m, · · · , o(Sqk)|m.

Therefore o(Sq1)o(Sq2)o(Sq3) · · · o(Sqk)|m.

That is o(G)|m · · · (2).

From (1) and (2), we have o(G) = m = o(c).

Therefore c is the generator for G . Hence G is cyclic. �

Lemma 11.1.5. Let K be a finite field and let G be a finite subgroup

of the multiplicative group of nonzero elements of K. Then G is a

cyclic group.
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Proof. Since K is a field, any polynomial of degree n in K[x] has

atmost n roots in K .

In particular for the polynomial xn− 1 ∈ K[x] has atmost n roots in

K and hence in G , where G = K− 0 .

Since each root is non zero, all these roots are in G.

Thus atmost n elements of G satisfies the property, xpm
= 1 ;

Hence by a known Lemma, we have G is cyclic. �

Theorem 11.1.3. The multiplicative group of nonzero elements of a

finite field is a cyclic group.

Proof. By Lemma 11.1.5, F is cyclic. �

We conclude this section by using a counting argument to prove

the existence of solutions of certain equations in a finite field. We

shall need the result in one proof of the Wedderburn theorem.

Lemma 11.1.6. If F is a finite field and α 6= 0, β 6= 0 are in F , then

we can find elements a, b ∈ F such that 1 + αa2 + βb2 = 0.

Proof. We know that for every prime number p and for every

positive integer m , there exists a unique field F consisting pm

elements.

Case(i): Let p = 2 . Then F has 2n elements, where n is any

positive integer.

Therefore ∀x ∈ F we have x2n
= x.

Hence every element in F is a square .

Let α 6= 0 in F . Therefore α−1 exists in F .

Therefore α−1 = a2 , for some a ∈ F. Now,

1 + αa2 + βb2 = 1 + α(α−1) + β(0) = 1 + 1 = 2( mod 2) = 0.

Case(ii): If F is a characteristic p , where p is odd prime, then F

has pm elements, for some positive integer n .

Let us define a subset Wα = {1 + αx2|x ∈ F} .
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When x 6= 0 for both x and −x we get only one element in Wα .

So, for all nonzero elements of F , we have
pn − 1

2
elements.

Therefore Wα has 1 +
pn − 1

2
elements.

That is, Wα has 1 +
pn − 1

2
=

2 + pn − 1
2

=
pn + 1

2
elements.

Thus Wα has more than half of the elements of F .

Let us define a subset Wβ = {−βx2|x ∈ F} .

Here also Wβ has
pn + 1

2
elements.

Thus Wβ has more than half of the elements of F .

Since Wα and Wβ are subsets of F and each of them having more

than half of elements of F , we have that their intersection nonempty.

Let c ∈Wα ∩Wβ.

Now, c ∈Wα ⇒ c = 1 + αa2, for some a ∈ F.

Similarly, c ∈Wβ ⇒ c = −βb2, for some b ∈ F.

Therefore, 1 + αa2 = −βb2.

Hence 1 + αa2 + βb2 = 0. Hence the theorem. �

Definition 11.1.1. The nonzero elements of Jp form a cyclic group

under multiplication. We denote this group as J∗p . Any generator of

this group is called a primitive root of p .

Example 11.1.1. Now let us find the primitive root of 11. The

non zero residues of 11 are J∗11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} . It is

clear that 2 is a generator of J∗11 , since 21 = 2, 22 = 4, 23 = 8, 24 =

16 = 5, 25 = 32 = 10, 26 = 64 = 9, 27 = 128 = 7, 28 = 256 = 3, 29 =

512 = 6, 210 = 1024 = 1 . Therefore 2 is a primitive root of 11.

Clearly o(J∗11) = 10 .

The positive integers which are less than 10 but relatively prime to

10 are {1, 3, 7, 9} .

There fore the cyclic group J∗11 has 4 generators.

Therefore 11 has 4 primitive roots.
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11.2 Wedderburn’s Theorem

In 1905 Wedderburn proved the theorem, now conside-

red a classic, that a finite division ring must be a commutative field.

Cyclotomic polynomials

Now we discuss the concept of primitive nth root of unity and

cyclotomic Polynomials.

Definition 11.2.1. A complex number θ is said to be a primitive nth

root of unity if θn = 0 but θm 6= 0 for any positive integer m < n .

The complex numbers satisfying xn = 1 form a finite subgroup,

under multiplication, of the complex numbers, so by a known

theorem this group is cyclic. Any cyclic generator of this group must

then be a primitive nth root of unity, so we know that such primitive

roots exist. (Alternatively, θ = e
2πi
n yields us a primitive nth root of

unity.)

φ1(x) = x− 1

φ2(x) = x + 1

φ3(x) = x2 + x + 1

φ4(x) = x2 + 1

φ5(x) = x4 + x3 + x + 1

φ6(x) = x2 − x + 1

The divisors of 2 are 1,2. Therefore

φ1(x)φ2(x) = (x− 1)(x + 1) = x2 − 1.

This can be written as x2 − 1 = ∏
d|2

φd(x)

The division of 3 are 1,3. Therefore

φ1(x)φ3(x) = (x− 1)(x2 + x + 1) = x3 − 1.

This can be written as x3 − 1 = ∏
d|3

φd(x)

The divisors of 4 are 1,2,4. Therefore
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φ1(x)φ2(x)φ4(x) = (x− 1)(x + 1)(x2 + 1) = x4 − 1.

This can be written as

x4 − 1 = ∏
d|4

φd(x) = ∏
d|4,(d 6=4)

φd(x)φ4(x)

In general,

xn − 1 = ∏
d|n

φd(x) = ∏
d|n,(d 6=n)

φd(x)φn(x)

Theorem 11.2.1. A finite division ring is necessarily a commutative

Field.

Proof. Let K be a finite division ring. Let a ∈ K.

Define N(a) = {x ∈ K|ax = xa}

Define the centre of K as Z = {z ∈ K|zx = xz, ∀x ∈ K}.

It is clear that Z ⊆ N(a) ⊆ K.

Since K is a division ring, Z is a subdivision ring of K .

N(a) is a subdivision ring of K . Also Z is a subdivision ring of

N(a) .

Let Z has q elements.

Viewing K as a vector space over Z such that [K : Z] = n , we

have K has qn elements.

Viewing N(a) as a vector space over Z such that [N(a) : Z] =

n(a) ,we have N(a) has qn(a) elements.

Claim: Z = K or n = 1.

Being a division ring the nonzero elements of K form a group with

respect to multiplication.

Let this group be D∗ . Then o(D∗) = qn − 1. D∗ = K− {0}.

Being a division ring the nonzero elements of N(a) form a group

with respect to multiplication.

Let this group be N∗ . Then o(N∗) = qn(a) − 1.

Being a division ring the nonzero elements of Z form a group with

respect to multiplication.
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Let this group be Z∗. Then o(Z∗) = q− 1.

By class equation on groups, we have

o(D∗) = o(Z∗) + ∑
o(D∗)
o(N∗)

qn − 1 = q− 1 + ∑
qn − 1

qn(a) − 1
· · · (1)

Consider the cyclotomic polynomials φn(x) = ∏(x − θ), where θ

is a primitive nth root of unity.

Also it is easy to see that

xn − 1 = ∏
d|n

φd(x) = ∏
d|n,(d 6=n)

φd(x)φn(x) · · · (2)

First we show that φn(x) is a monic Polynomial with integer

coefficients.

Let us prove this by method of induction on n.

Let n = 1. Then φ1(x) = x− 1.

Clearly it is a monic polynomial with integer coefficients.

Induction Hypothesis: Let us assume that this result is true for all

polynomials of degree upto n− 1.

That is φn−1(x) is a monic polynomial with integer coefficients.

Consider φn(x). From (2), we have

xn − 1 = ∏
d|n

φd(x) = ∏
d|n,(d 6=n)

φd(x)φn(x).

But d|n, d 6= n⇒ d < n.

i.e, φn(x) =
xn − 1

∏
d|n,(d 6=n)

φd(x)
.

Here xn − 1 is integer monic and ∏
d|n,(d 6=n)

φd(x) is integer monic.

Therefore φn(x) =
xn − 1

∏
d|n,(d 6=n)

φd(x)
is also integer monic.

Secondly now we prove that φn(x)
∣∣xn − 1
xd − 1

, where d|n, d 6=

n · · · (2)

We know that xn − 1 = ∏
d|n

φd(x) and xd − 1 = ∏
k|d

φk(x)

Since d < n, xd − 1 does not involve the term φn(x), we have all
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the divisors of d are also divisors of n , Therefore there may be

some divisors for n which are not divisors of d . Therefore we have,

xn − 1 = (xd − 1)

[
∏

k|n,(k 6=n)
φk(x)

]
φn(x)

xn − 1 = (xd − 1)g(x)φn(x) where g(x) = ∏
k|n,(k 6=n)

φk(x)

Therefore we have,
xn − 1
xd − 1

= g(x)φn(x).

Hence, φn(x)
∣∣xn − 1
xd − 1

.

Note that φn(x)|(xn − 1) is true for all x. Let t be an integer.

Therefore φn(t) is also an integer.

Thus by (2) , we have, φn(t)
∣∣ tn − 1
td − 1

, where d|n, d 6= n

In particular, for the integer q, we have,

φn(q)
∣∣ qn − 1
qn(a)−1

, where n(a)|n, n(a) 6= n

Also, φn(q)|(qn − 1).

That is, qn − 1 = q− 1 + ∑
qn − 1

qn(a) − 1
, n(a)|n, n(a) 6= n

In particular, φn(q)
∣∣ qn − 1
qn(a)−1

Also, φn(q)|(qn − 1) .

This implies qn − 1 = q− 1 + ∑
qn − 1

qn(a) − 1
and φn(q)|(qn − 1)

This implies, φn(q)|(q− 1) · · · (3)

Finally we show that n = 1.

Indeed, if n > 1, then φn(q) = ∏(q− θ).

Now |q− θ| > |q| − |θ| > q− 1.

|φn(q)| = ∏ |(q− θ)| > ∏ |(q− 1)|

φn(q) > (q − 1) and therefore φn(q) > (q − 1) which is a

contradiction to (3). Therefore n = 1 and thus the claim is

established. Now o(Z) = o(K) and Z ⊆ K ⇒ Z = K. Since Z

is commutative, K is commutative. Therefore K is a commutative

field. Hence the theorem. �
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11.3 Jacobson’s Theorem

In this section, in the division ring case, we will prove a beautiful

theorem due to Jacobson.

The central elements

Definition 11.3.1. An element x ∈ R is called idempotent if x2 =

x . The center of R is Z(R) = {x ∈ R : xy = yx for all y ∈ R}.

It is easy to see that Z(R) is a subring of R . An element x ∈ R

is called central if x ∈ Z(R) . Obviously R is commutative iff

Z(R) = R , that is, every element of R is central.

Theorem 11.3.1. If D be a division ring such that for every element

a ∈ D , there exists a positive integer n(a) > 1 such that an(a) = a,

then D is a commutative field.

Proof. Let a ∈ D. Then there exists a positive integer n such that

an = a, (n > 1) .

Let a 6= 0 . Since a 6= 0, 2a ∈ D, there exists a positive integer

say, m , such that (2a)m = 2a, (m > 1).

Clearly (n− 1)(m− 1) + 1 > 1.

Let s = (n− 1)(m− 1) + 1.

That is s = nm− n−m + 2.

Then s > 1. Now,

as = anm−n−m+2

= an(m−1)+2−m

= an(m−1)a(2−m)

= (an)(m−1)a(2−m)
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= a(m−1)a(2−m)

= a(m−1+2−m)

= a

Thus as = a. Again, now consider,

(2a)s = (2a)(nm−n−m+2)

= (2a)m(n−1)(2a)(2−n)

= ((2a)m)(n−1)(2a)(2−n)

= (2a)(n−1)(2a)(2−n)

= (2a)(n−1+2−n)

= 2a

Thus (2a)s = 2a · · · (1)

But (2a)s = 2sas = 2sa · · · (2)

Therefore from (1) and (2) we have 2s = 2a.

That is, 2s − 2a = 0. That is, (2s − 2)a = 0.

Let (2s − 2) = p . Therefore p > 0. Hence D is of characteristic

p > 0.

Let Z be the centre of D . Then Z ⊆ D · · · (3).

Claim: D ⊆ Z.

Let P be a sub field of Z which is isomorphic to Jp .

Therefore P has p elements.

Since an = a, we have an − a = 0. This implies, a satisfies the

polynomial xn − x ∈ Jp[x].

This implies a is algebraic over Jp (over P ).

Therefore [P(a) : P] is finite.

Let us assume that a algebraic of degree n .

Therefore [P(a) : P] = n .

Therefore P(a) has pn elements.
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Since a ∈ P(a) and since P(a) has pn elements, we have a

satisfies a polynomial xpn − x.

That is apn − a = 0. That is apn
= a. Here pn > 1.

Similarly we can show that bpk
= b.

Now we define

W =

{
x ∈ D|x =

pn

∑
i=1

pk

∑
j=1

pijaibj

}
It is easy to see that, W is a finite subdivision ring of D .

Therefore by Wedderburn’s Theorem we have W is a commutative

field.

Moreover a, b ∈W ⇒ ab = ba · · · (4)

Now we have, D and a /∈ Z , by the above result, there exists

an element b such that bab−1 6= a . That is ab 6= ba , which is a

contradiction to (4).

Therefore for every a ∈ D we have a ∈ Z.

Hence D ⊆ Z · · · (5) .

From (1) and (5) we have Z = D .

Since Z is commutative we have D is commutative.

Therefore D is a commutative division ring. Hence it is a field. �

Jacobson’s theorem actually holds for every ring R satisfying

an(a) = a for every a ∈ R , not just for division rings.

Summary of this unit.

In this unit we have studied the following:

• Let F be a finite field consists of q elements and let K be

an extension of F such that [K : F] = m, then K has qm

elements.

• If F is a finite field,then F has pm elements, where the prime

p is the characteristic of F .
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• If F is a finite field having pm elements, where p is a prime,

then every element a ∈ F satisfies apm
= a.

In other words, every element of F is a root for the polynomial

xpm − x for some m > 0.

• If F is a finite field consisting of pm elements, then the

polynomial xpm − x ∈ F[x] factors in F[x] as xpm − x =

∏
λ∈F

(x− λ).

• If the field F has pm elements then F is the splitting field of

the polynomial xpm − x.

• Any two finite fields having the same number of elements are

isomorphic.

• For every prime number p and for every positive integer m,

there exists a field F consisting of pm elements.

• For every prime number p and for every positive integer m ,

there exists a unique field F consisting of pm elements.

• Let G be finite abelian group enjoying the property that the

relation xn = e is satisfied by atmost n elements of G for

every integer n . Then G is a cyclic group.

• Let K be a finite field and let G be a finite subgroup of the

multiplicative group of nonzero elements of K. Then G is a

cyclic group.

• The multiplicative group of nonzero elements of a finite field is

a cyclic group.

• If F is a finite field and α 6= 0, β 6= 0 are in F , then we can

find elements a, b ∈ F such that 1 + αa2 + βb2 = 0.

• A complex number θ is said to be a primitive nth root of unity

if θn = 0 but θm 6= 0 for any positive integer m < n .
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• The nonzero elements of Jp form a cyclic group under

multiplication. We denote this group as J∗p . Any generator

of this group is called a primitive root of p .

• Wedderburn theorem: A finite division ring is necessarily a

commutative Field.

• Jacobson’s Theorem: If D be a division ring such that for

every element a ∈ D , there exists a positive integer n(a) > 1

such that an(a) = a, then D is a commutative field.

Multiple Choice Questions

1. Number of elements in the Galois group of pth cyclotomic

polynomial over Q is

a) 2 b) p c) p− 1 d) p + 1

2. Which of the following is a Fermat prime

a) 2 b) 6 c) 5 d) 8

3. Which of the following is not a Fermat prime

a) 3 b) 5 c) 17 d) 8

4. Find the number of elements less than and relatively prime to 10

a) 3 b) 5 c) 4 d) 8

5. Which of the following is an order of a finite field

a. 16 b) 20 c. 26 D. 15

6. Which of the following is not an order of a finite field

a) 16 b) 20 c) 3 d) 5

7. If F has 6561 elements, then the splitting field of x6561 = x is

a) Q b) F c) Q(
√

2) d) F(
√

2)

8. The number of primitive roots of 17 is

a) 4 b) 6 c) 8 d) 10
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9. A complex number θ is a primitive nth root of unity if

a) θn = 1 and θm = 1, m < n

b) θn = 1 and θm 6= 1, n < m

c) θn = 1 and θm = 1, n < m

d) θn = 1 and θm 6= 1, m < n

Answers:

1 2 3 4 5 6 7 8 9

c c d c a b b c d

Exercise:

1. If the field F has pn elements prove that the automorphisms

of F form a cyclic group of order n .

2. If F is a finite field, by the quaternions over F we shall mean

the set of all {±1,±i,±j,±k} , such that ijk = i2 = j2 = k2 =

−1, ij = −ji, ik = −ki, jk = −kj . Prove that the quaternions

over a finite field do not form a division ring.

3. Find primitive roots of: 17, 23, 31.

4. How many primitive roots does a prime p have?

5. If t > 1 is an integer and (tm− 1) | (tn− 1) , prove that m | n.

6. If D is a division ring, prove that its dimension (as a vector

space) over its center cannot be 2 .

7. Show that any finite subring of a division ring is a division ring.

8. If R is a finite ring in which xn = x , for all x ∈ R where n > 1

prove that R is commutative.

9. If R is a finite ring in which x2 = 0 implies that x = 0 , prove

that R is commutative.
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10. If W =

{
x ∈ D|x =

pn

∑
i=1

pk

∑
j=1

pijaibj

}
, prove that, W is a finite

subdivision ring of D where D is given as in statement of

Jacobson’s theorem.
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