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BLOCK I 

 
Partial Differentiation 



1  

 
Learning Outcomes : 

 
After studying this unit, students will acquire knowledge 

 

F To evaluate partial derivatives of functions of several variables. 

F To identify the relationship between continuous and differentiable func- 

tions. 

F To derive basic mean value theorem which is of fundamental importance 

in the theory of partial differentiation. 

F To understand under what condition the cross derivatives are equal. 

 
 
 
 
 
 

 

Unit 1 

 
Functions of Several 

Variables 
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= 

1.1 Introduction 

 
Constants and Variables 

 
The quantity or parameters that does not change their value through- 

out a particular mathematical investigation are called constants and the 

quantities which take different values are called variables or arguments . 

 

Functions 

 
For finding the area of a triangle the base and altitude are multiplied. 

Here the base and the altitude can be of any value but the area of the 

triangle depends on these two values. So area of the triangle is called a 

function of the base and altitude of the triangle. The base and altitude 

are called the independent variables and the area is called the dependent 

variable. 

In this unit we shall be dealing with real functions of several variables 

such as u = f (x, y), u = f (x, y, �) etc., The variables x, y, �, ... are called 

the independent variables or arguments of the function, u is the dependent 

variable or value of the function. 

 

Single valued and many valued functions 

If the value of a function is uniquely determined by the argument we 

call the function single-valued or one valued function . For example 

3x + 5 
u 

16x + 3 
.
 

If the value of a function is not uniquely determined that is to each value 

of the argument, if there correspond more than one value of the function 

the function is called many-valued function or multiple-valued function. 

As an example, 
 

u2 + x2 + y2 = a2 (1.1) 
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Multiple valued functions may be studied as combinations of single-valued 

functions. For example the equation (1.1) defines two single valued func- 

tions 

u = +
q

a2 − x2 − y2 (1.2) 

u = −
q

a2 − x2 − y2, x2 + y2 ≤ a2 (1.3) 

A function of two variables clearly represents a surface in the space of 

the rectangular coordinates x, y, u. 

 
Explicit and Implicit functions 

 
If we consider a set of n independent variables x, y, �, ..., t and one de- 

pendent variable u, the equation 

u = f (x, y, �, ..., t) (1.4) 

 
denotes the functional relation, where u depends for its values on x, y, �, ..., t. 

Then, we say that the function represented by equation (1.4) is an explicit 

function. 

But in case of several variables it is rarely possible to obtain an equation 

expressing one of the variables explicitly in terms of the other. Thus most 

of the functions of more than one variable are implicit functions, that is 

to say we are given a functional relation φ(x, y, �, ..., t) = 0 connecting n 

variables x, y, �, ..., t, and it is not in general possible to solve this equation 

to find an explicit function which expresses one of these variables say x, in 

terms of the other n − 1 variables. 

For example, the equation (1.1) defines two functions (1.2) and (1.3) 

which are said to be defined implicitly by (1.1) or explicitly by (1.2) and 

(1.3). 

In other cases, a function may be defined implicitly eventhough it is 

impossible to give its explicit form. For example, the equation 

u + log u = xy (1.5) 
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∂� ∂� 
3 0 0 0 

defines one single valued function u of x and y. Given real values for the 

arguments, the equation could be solved by approximation methods for u. 

Yet u cannot be given in terms of x and y by use of a finite number of the 

elementary functions. 

 
Partial derivatives 

 

The ordinary derivative of a function of several variables with respect 

to one of the independent variables, keeping all other independent variables 

constant is called the partial derivative of the function with respect to the 

variable. Partial derivatives of u = f (x, y, �) with respect to x is generally 

denoted by 
∂u 

= f1(x, y, �) = 
∂f 

= 
∂ 

f (x, y, �) = f , 
∂x ∂x ∂x 

x 

while those with respect to y and � are given by 

 
f (x, y, �) = fy 

 
 

f (x, y, �) = f� 

 

 
Example 1.1.1  If f (x, y, �) = 2x2 − xy + xy2, then 

f1(x, y) = 4x − y + y2 

and f2(x, y) = −x + 2xy 

Example 1.1.2  If f (x, y, �) = x�y, then f2(x, y, �) = x�y log � 

 
Note : The partial derivatives at a particular point (x0, y0, �0) are often 

denoted by 

∂u ∂f 

∂x 
|x=x0,y=y0,�=�0  =  

∂x 
|x0,y0,�0  = f1(x0, y0, �0), 

∂u ∂f 

∂y 
|x=x0,y=y0,�=�0 =  

∂y 
|x0,y0,�0  = f2(x0, y0, �0) 

and 
∂u 

| = 
∂f 

|
 

= f (x , y , � ) x=x0,y=y0,�=�0 x0,y0,�0 

∂u = f2(x, y, �) = ∂f = ∂ 

∂y  ∂y  ∂y 

and 

∂u 
 
= f3(x, y, �) = 

 

∂f 

 

= 

 

∂ 

∂�  ∂�  ∂� 
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− 

d� 
� 

∂x ∂x u 

∂y ∂y u 

For example, f3(x0, y0, �0) = 
d 

f (x0, y0, �)| = 
 

 
Example 1.1.3 If f (x, y, �) = x sin(y�), then 

 
f3(x, y, �) = xy cos(y�) 

and f3(a, 1, π) = a cos π = −a. 

 
Example 1.1.4 Consider equation (1.1) 

 
u2 + x2 + y2 = a2 

 
Differentiating partially with respect to x and y 

 

2u
∂u 

+ 2x = 0, 
∂u 

= − 
x

, 

2u
∂u 

+ 2y = 0, 
∂u 

= − 
y 

. 
 

 

Example 1.1.5  If v + log u = xy, u + log v = x y, find 
∂v

 
∂x 

and 
∂u

. 
∂x 

 

Solution: Differentiating partially with respect to x 

 
∂v 

+ 
1 ∂u 

= y,
 

∂x u ∂x 
∂u 

+ 
1 ∂v 

= 1,
 

∂x v ∂x 

u
∂v 

+ 
∂u 

∂x ∂x 

 
= uy, 

and 
1 ∂v 

+ 
∂u 

= 1. 

 

Subtracting we get 

v ∂x ∂x 

∂v 
= 

v(uy − 1) 
.
 

 
Similarly, we can find 

∂x uv − 1 

∂u 
= 

u(y − v) 
.
 

∂x 1 − uv 

�0 
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∂x ∂y 
f21 x, y, � , 

∂y ∂y∂� 
f322 x, y, � , 

∂x∂y∂�2 ∂x ∂y∂�2 
f3321 x, y, � . 

Higher order derivatives 

By successive application of the differentiation, we can obtain partial 

derivatives of higher order. The notations used are sufficiently illustrated 

by the following examples. If u = f (x, y, �) 

∂2u 
=  

∂   
  

∂u 
   

= ( ) 

∂3u 
= 

∂   
   

∂2u 
! 

= ( ) 

and 
∂4u

 = 
∂   

    
∂3u  

! 

= ( ) 
 

 

Remarks 

 
1. A function of two variables has two derivatives of order one, four 

derivatives of order two and 2n derivatives of order n. 

2. A function of m independent variable will have mn derivatives of 

order n. 

3. Many of the derivatives of a given order will be equal under very 

general conditions. In fact, 

 
Number of distinct derivatives of order n 

= Number of terms in a homogeneous polynomial in m variables 

of degree n: 

 
n + m − 1

! 

=  
(n + m − 1)! 

.
 

n n!(m − 1)! 
 

 

Example 1.1.6 Find 
∂2

 

∂r 

 
log(r2 + 

 
s). 

 

Solution:  

 
Let u = log(r2 + s) 

∂u 
= 

2r 
 

  

∂r r2 + s 

2 

∂x∂y 

∂y2∂� 
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= 
− 

2 

  ! 

x 

x 

2 

∂x∂y ∂x ∂y ∂x 
x x 

∂x ∂y∂x 

    

∂2u 
= 

(r2 + s)2 − 2r(2r) 

∂r2 (r2 + s)2 

2(s r2) 

(r2 + s)2 
.
 

 

 
 

Example 1.1.7 If 

 
Solution: Given 

 
u = xy, show that 

∂3u
 

∂x ∂y 

∂3u 
. 

∂x∂y∂x 

 

u = xy 
∂u 

= xy log x 
∂y 

∂2u  
=  

∂   
  

∂u 
  

=  
∂ 

( y log  ) 

 

= xy. 
1 

+ log x.xy−1.y = xy−1(1 + y log x) 
x 

∂3u 
 

 

∂x2∂y 
=  

∂ ∂2u 

∂x ∂x∂y 

=  
∂ 

xy−1(1 + y log x) 
∂x 

= xy−1

  
y 

  

+ (y − 1)xy−2(1 + y log x) 

= xy−2(y + (y − 1)(1 + y log x)) 

= xy−2(2y − 1 + (y − 1)y log x) 

∂u 
= yxy−1 

∂x 

∂2u  
=  

∂   
  

∂y 
   

=  
∂ 

yxy−1
 
 

∂y∂x ∂y ∂x ∂y 

= yxy−1 log x + xy−1 

= xy−1(y log x + 1) 

∂3u 
=  

∂   
   

∂2y 
! 

= 
∂

 
y−1( 

 
log + 1)

 

 

= (y − 1)xy−2(y log x + 1) + xy−1

  
y 
 

 
 

 
 

So 
∂3u 

∂x ∂y 

= xy−2 ((y − 1)(y log x + 1) + y) 

= xy−2(2y − 1 + (y − 1)y log x) 

∂3u 
. 

∂x∂y∂x 

= 

= 

∂x∂y∂x ∂x 
x y x 
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∈ ⇔ 

∆ 

x→a x→a 

1.2 Functions of One variable 

 
In this section, we recall some definitions and theorems without proof. 

 

Limits and continuity 

 
A function f (x) approaches a limit A as x approaches a if, and only if, 

for each positive number ϵ there is another, δ, such that whenever 

0 < |x − a| < δ we have |f (x) − A| < ϵ. 

In symbols we write 

lim f (x) = A. 
x→a 

Note : 

We make use of the following symbols / notations. 

 
1. ϵ : belongs to or is a member of 

 

2. ⇒: implies 

3. ⇔: implies and implied by or if, and only if 

4. C : the class of continuous functions 

 
Definition 1.2.1 f (x) C at x = a lim f (x) = f (a). 

x→a 

This may be read as ” f (x) belongs to the class of functions continuous at 

x = a or f (x) is continuous at x = a if, and only if the limit f (x) is f (a) 

as x approaches a.” 

Also, we have 

lim f (x) = f
  

lim x
  

. 

 

Derivatives : We now introduce classes of functions, which have deriva- 

tives of certain order. 

Definition 1.2.2 The derivative of f (x) at x = a is 

 
f �(a) = lim 

∆x→0 

f (a + ∆x) − f (a) 
, 

x 



9  

+ 
∆ + ∆ 

the right and left derivatives of f (x) at x = a are 

f � (a) = lim 
x→0 

f � (a) = lim 

f (a + ∆x) − f (a) 
, 

x 

f (a + ∆x) − f (a) 
.
 

− 

 
Definition 1.2.3 . 

∆x→0− ∆x 

f (x) ∈ Cn ⇔ fn
(x) ∈ C, n = 1, 2, .... When f �(x) exist, then f (x) ∈ C. 

Hence if f (x) ∈ Cn we also have f (x) ∈ Ck for k = 0, 1, 2, ..., n − 1,   C0 = 

C. 

 
Theorem 1.2.1 (Rolle’s Theorem) 

 
1. f (x) ∈ C, a ≤ x ≤ b 

2. f �(x) exists, a < x < b and 

3. f (a) = f (b) = 0 

⇒ f �(ξ) = 0 for some ξ,   a < ξ < b. 

Theorem 1.2.2 (Law of the Mean) 

 
1. f (x) ∈ C, a ≤ x ≤ b and 

2. f �(x) exists, a < x < b 

 

⇒   f (b) − f (a) = f �(ξ)(b − a) for some ξ,    a < ξ < b. 

 
1.3 Functions of several variables 

 
In this unit we shall be mainly concerned with the applications of dif- 

ferential calculus to functions of more than one variable. The characteristic 

properties of a function of n independent variables may usually be under- 

stood by the study of a function of two or three variables and this restriction 

of two or three variables will be generally maintained. This restriction has 

the considerable advantage of simplifying the formulae and of reducing the 

mechanical labour. 
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→ x   a 

2 

x→ 

x→ 

x + y 

so that |x| < 
q 

є , |y| < 
q 

є
 

so |x2 + y2 − 0| < ϵ whenever |x| < 
q 

є , |y| < 
q 

є . 

1.3.1 Limits and continuity 

 
We now define the limit of a function of two variables. 

 
Definition 1.3.1 We say that a function f (x, y) approaches a limit A as 

x approaches a and y approaches b, 

 
lim f (x, y) = A, 
y→b 

if, and only if, for each positive number ϵ there is another, δ, such that 

|f (x, y)−A| < ϵ, whenever |x−a| < δ, |y−b| < δ or 0 < (x−a)2 +(y−b)2. 

In otherwords, a function tends to a limit A when (x, y) tends to (a, b) if 

to every positive number ϵ there corresponds a neighborhood with center 

at (a, b) such that |f (x, y) − A| < ϵ  for every point (x, y) other than (a, b) 

of the neighborhood. 

 
Example 1.3.1  If f (x, y) = x2 + y2, find  lim f (x, y). 

0 
y→0 

Solution: Given ϵ > 0 we may choose δ = 
q 

є , 
 

 

Consider 

2 2 

 

x2 + y2 = |x2| + |y2| 
 r 
ϵ 

 2 

 

 
 r 
ϵ 

 2 

 
 

  

 

 
Hence, 

2 2 

 

 
lim x2 + y2 = 0. 

0 
y→0 

 
 

 
Example 1.3.2 

 
 

 
Let f (x, y) = 

 
x − y 

, x −y 

 
 
 

(1.6) 
 

1, x = −y 

Then f (x, y) approaches no limit as (x, y) approaches the origin. 

2 2 
< + = ϵ. 
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− − 

→ 

→ 

→ 

x   a 

x   a 

x→0 y→0 x→0 y→0 x + y 

y→0 x→0 y→0 x→0 x + y 

x→x0 y→y0 y→y0 x→x0 

Solution: f (x, y) approaches no limit as (x, y) approaches the origin. Be- 

cause, f (x, y) is as large as we like at points near the line x = −y. 

On the other hand, we see that 

lim 

 

lim f (x, y)

   

= lim 

  

lim 

  
x − y 

  

 
 

 

 
and 

= lim 1 = 1, 
x→0 

 

lim

  

lim f (x, y)

   

= lim 

  

lim 

  
x − y 

  

 
 

 

 
Note : 

The iterated limits  lim 

= lim 1 = 1. 
y→0 

 
  

lim f (x, y)

    

and  lim  

   

lim 

 
f (x, y)

   

are not 

necessarily equal. Although they must be equal if  lim 
x   x0 
y→y0 

f (x, y) is to exist, 

their equality does not guarantee the existence of this last limit.  In the 

above example the iterated limits are not equal.   Hence  lim f (x, y) does 
x→0 

not exist. 
y→0 

 

Definition 1.3.2 

 
f (x, y) ∈ C at (a, b) ⇔ 

x
lim

a 
f (x, y) = f (a, b) 

y→b 

We note that three conditions must be satisfied in order for f (x, y) to be 

continuous at (a, b). 

(i) lim f (x, y) must exist 
y→b 

(ii) f (a, b) must exist and 

 

(iii) lim f (x, y) = f (a, b). 
y→b 

 

Example 1.3.3 If 

f (x, y) = 
3xy, (x, y) (1, 2) 

, 
 

0, (x, y) = (1, 2) 

then f (x, y) is not continuous at (1, 2). 
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x→1 

Solution: Given f (1, 2) = 0. 

lim f (x, y) = 6 /= f (1, 2). 
y→2 

Hence f (x, y) is not continuous at (1, 2). 

Note: If we redefine the function, so that f (x, y) = 6 for (x, y) = (1, 2), 

then the function is continuous at (1,2). 

NEIGHBORHOODS 

Point set : Any collection of points (x, y) is called a point set. 

δ− neighborhood : The set of points |x − a| < δ, |y − b| < δ, where δ > 0 

is called an open square or two-dimensional interval or a δ− neighborhood 

of the point (a, b). 

Deleted δ− neighborhood : The set of points 0 < |x − a| < δ, 

0 < |y − b| < δ, where δ > 0 which excludes (a, b) is called a deleted δ− 

neighborhood of the point (a, b). 

Circular δ− neighborhood : The set of points (x − a)2 + (y − b)2 < δ2, 

where δ > 0, is called circular δ− neighborhood of (a, b). 

Limit point : A point (a, b) is a limit point of a set S if every δ− neigh- 

borhood of (a, b) contains points of S. 

Closed set : A set S is closed if it contains all its limit points. 

REGIONS 

Interior point : A point is an interior point of S, if it is the centre of a 

δ− neighborhood composed entirely of points of S. 

Exterior point : A point is an exterior point of S if there exist a 

δ− neighborhood which does not contains any point of S. 
 

Figure 1.1 

 
Boundary point : A point is a boundary point of S, if there exist a δ− 
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neighborhood which contains points belonging to S and also points not be- 

longing to S. The boundary of a set is the set of all limit points not interior 

points. 

Open set : A set S is called an open set, if every point of S is an interior 

point of S. For example, if S is the set of points (x, y) for which x2+y2 < a2, 

then S is open. 

Domain : A domain is an open set,such that any two of whose points can 

be joined by a broken line having a finite number of segments, all of whose 

points belong to the set. We shall use the letter D to indicate a domain. 

Region : A region is either a domain or a domain with some or all of its 

boundary. 

If a region contains all of its boundary, it is a closed region. We use the 

letter R to indicate a region. 

Remark : 

 

1. f (x, y) ∈ C in a domain D if and only if f (x, y) ∈ C at every point 

of D. 

 
2. f (x, y) ∈ C at a boundary point (a, b) of a region R where f (x, y) is 

defined if, and only if, 

 

x
lim

a  
= f (a, b), (x, y) ∈ R 

y→b 

 
That is, the point (x, y) approaches (a, b) only through the points of 

R. 
 
 

3. f (x, y) ∈ C in R if f (x, y) ∈ C at each point of R. 

 
Uniform continuity : In the definition of continuity of f (x, y) at (a, b) 

the choice of δ depends on ϵ  and also on (a, b). If in a region R we can find 

a δ which depends only on ϵ but not on any particular point (a, b) in R, 

then f (x, y) is said to be uniformly continuous in R. 
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∂f 

∂f 

1.3.2 Derivatives 

 
We now define the classes Cn for functions of several variables. 

 

Definition 1.3.3 

f1(a, b) = |( 

 

) = lim 

 
f (a + ∆x, b) − f (a, b) 

∂x a,b 
∆x→0 ∆x 

f2(a, b) = |( ) = lim f (a, b + ∆y) − f (a, b) 

 

Definition 1.3.4 

∂y  a,b 

 

 
n 

∆y→0 

 
 
∂nf 

 
 

 
 

 
∂nf 

∆y 

 
 

∂nf 
 

f (x, y) ∈ C  in R ⇔ 
∂xn , ∂xn−1∂y

, ..., 
∂yn  ∈ C in R. 

 

Note: If f (x, y) satisfies the condition of this definition, then f (x, y) ∈ 

Ck, k = 0, 1, 2, ..., n − 1. 

 
1.3.3 Basic mean value theorem 

 
We now prove a theorem analogous to the law of the mean for functions 

of a single variable.This theorem is of fundamental importance in the theory 

of partial differentiation. 

Theorem 1.3.1 

 
1. f (x, y) ∈ C1 in D and 

2. The circle (x − a)2 + (y − b)2 ≤ δ2 lies in D 

⇒ f (a+∆x, b+∆y)−f (a, b)  =  f1(a+θ1∆x, b)∆x+f2(a+∆x, b+θ2∆y)∆y, 

where ∆x2 + ∆y2 < δ2 and 0 < θ1 < 1, 0 < θ2 < 1. 
 
 

Proof: Let 

 

 
Then 

 
∆f = f (a + ∆x, b + ∆y) − f (a, b) (1.7) 

 

∆f = f (a + ∆x, b + ∆y) − f (a + ∆x, b) + f (a + ∆x, b) − f (a, b) 

= [f (a + ∆x, b + ∆y) − f (a + ∆x, b)] + [f (a + ∆x, b) − f (a, b)] 
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Applying law of the mean to the function f (x, b) of the single variable x, 

its derivative is f1(x, b), and we have 

 
f (a + ∆x, b) − f (a, b) = f1(a + θ1∆x, b)∆x, 

where 0 < θ1 < 1. 

Applying law of the mean to the function f (a + ∆x, y), we have 

 
f (a + ∆x, b + ∆y) − f (a + ∆x, b) = f2(a + ∆x, b + θ2∆y)∆y, 

where 0 < θ2 < 1. Thus, 

 
∆f = f2(a + ∆x, b + θ2∆y)∆y + f1(a + θ1∆x, b)∆x. 

 
Hence, 

 
f (a + ∆x, b + ∆y) − f (a, b) = f1(a + θ1∆x, b)∆x + f2(a + ∆x, b + θ2∆y)∆y. 

(1.8) 

Here the two numbers θ1 and θ2 are different. Q 

Remark : If we replace the hypothesis 2 by the hypothesis that (a, b) and 

(a + ∆x, b + ∆y) are both points of D, then  equation  (1.8)  might  not  be 

true . It will be clear from the following figure. 
 

 
Figure 1.2 

 

 

Example 1.3.4 Using basic mean value theorem, find the numbers θ1 and 

θ2, if f (x, y) = x2 + 3xy + y2,   a = b = 0, ∆x = 1, ∆y = −1. 
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Solution: From basic mean value theorem, 

f (a + ∆x, b + ∆y) − f (a, b) = f1(a + θ1∆x, b)∆x + f2(a + ∆x, b + θ2∆y)∆y 

Here 
 

f (1, −1) − f (0, 0) = f1(θ1, 0) − f2(1, −θ2) (1.9) 

f (x, y) = x2 + 3xy + y2 

f1(x, y) = 2x + 3y, f1(θ1, 0) = 2θ1 

f2(x, y) = 3x + 2y, f2(1 − θ2) = 3 − 2θ2 

f (1, −1) = −1, f (0, 0) = 0 

Hence we have from (1.9) 
 

−1 = 2θ1 − 3 + 2θ2 

⇒ 2(θ1 + θ2) = 2 

⇒ θ1 + θ2 = 1 
1 1 

⇒ θ1 = 
2 

, θ2 = 
2 

. 

 
Example 1.3.5 Using basic mean value theorem, find the numbers θ1 and 

θ2 if f (x, y) = x2 + y2 + x3, (a, b) = (1, 2). 

 
Solution: From basic mean value theorem, 

f (a + ∆x, b + ∆y) − f (a, b) = f1(a + θ1∆x, b)∆x + f2(a + ∆x, b + θ2∆y)∆y 

Here 

f (1 + ∆x, 2 + ∆y) − f (1, 2) = f1(1 + θ1∆x, 2)∆x + f2(1 + ∆x, 2 + θ2∆y)∆y 

(1.10) 
 

f (x, y) =x2 + y2 + x3 

f (1 + ∆x, 2 + ∆y) =(1 + ∆x)2 + (2 + ∆y)2 + (1 + ∆x)3
 

=1 + ∆x2 + 2∆x + 4 + 4∆y + ∆y2 + 1 + ∆x3 

+ 3∆x2 + 3∆x 

=∆x3 + 4∆x2 + ∆y2 + 5∆x + 4∆y + 6 
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1 

1 

1 

1 

1 

3∆ 

1 

f (1, 2) = 6. 

f1(x, y) = 2x + 3x2 

f1(1 + θ1∆x, 2) = 2(1 + θ1∆x) + 3(1 + θ1∆x)2
 

= 2 + 2θ1∆x + 3 + 3θ2∆x2 + 6θ1∆x 

= 3θ2∆x2 + 8θ1∆x + 5 

 
f2(x, y) = 2y 

f2(1 + ∆x, 2 + θ2∆y) = 4 + 2θ2∆y 

Hence we have from (1.10) 

∆x3 + 4∆x2 + ∆y2 + 5∆x + 4∆y 

=(3θ2∆x2 + 8θ1∆x + 5)∆x + (2θ2∆y + 4)∆y 

∆x(∆x2 + 4∆x + 5) + ∆y(∆y + 4) 

=(3θ2∆x2 + 8θ1∆x + 5)∆x + (2θ2∆y + 4)∆y. 
 

We have 

 
∆x2 + 4∆x + 5 = 5 + 8θ1∆x + 3θ2∆x2 

∆x2(3θ2 − 1) + ∆x(8θ1 − 4) = 0 ⇒ ∆x[(3θ2 − 1)∆x + 8θ1 − 4] = 0 
1 1 

2 2 

⇒ (3θ1 − 1)∆x + 8θ1 − 4 = 0 ⇒ 3θ1∆x − ∆x + 8θ1 − 4 = 0 

θ1 = 
−8 ± 

√
64 + 12(4 + ∆x)∆x 

= 
−4 ± 

√
16 + 3(4 + ∆x)∆x 

√ 6∆x 
2

 3∆x 

θ1 = 
−4 + 16 + 12∆x + 3∆x 

x 

Also, 2θ2 = 1 

⇒ θ2 = 
2 

. 

 
 

1.3.4 Composite functions 

 
The Basic mean value theorem can be used to differentiate composite 

functions. 
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∂ 

∆x ∆y 

∆ 

∆ 

∆f 

Theorem 1.3.2 f (x, y), g(r, s), h(r, s) ∈ C1 

⇒ 
∂r

f (g, h) = f1(g, h)g1(r, s) + f2(g, h)h1(r, s) 

∂ 
f (g, h) = f1(g, h)g2(r, s) + f2(g, h)h2(r, s) 

∂s 
 

Proof:    Given that g  and h are functions of r and s, f is a function of x 

and y, but the regions in which the given function ∈ C1 are not specified. 

So it is understood that the region for (r, s) and the region for (x, y) must 

be such that we can form a function f (g(r, s), h(r, s)) by substituting x = g 

and y = h. From the definition of partial derivative we have 
 

|(r0,s0)  =   lim , 
∂r ∆r→0 ∆r 

where ∆f = f (g(r0 + ∆r, s0), h(r0 + ∆r, s0)) − f (g(r0, s0), h(r0, s0)). 

Let 
 

g(r0 + ∆r, s0) = x0 + ∆x, x0 = g(r0, s0) 

and h(r0 + ∆r, s0) = y0 + ∆y, y0 = h(r0, s0). 

Now, ∆f = f (x0 + ∆x, y0 + ∆y) − f (x0, y0). 

Applying mean value theorem, we have 

 
∆f = f1(x0 + θ1∆x, y0)∆x + f2(x0 + ∆x, y0 + θ2∆y)∆y 

where 0 < θ1, θ2 < 1. 

Since g and h are continuous ∆x and ∆y tends to zero as ∆r tends to zero, 

We have 

∆f 
= f1(x0 + θ1∆x, y0) 

∆x 
+ f2(x0 + ∆x, y0 + θ2∆y) 

∆y
 

∆r ∆r ∆r 

where 0 < θ1, θ2 < 1. 

lim 
∆f 

= lim f1(x0 + θ1∆x, y0) +  lim  f2(x0 + ∆x, y0 + θ2∆y) , 
∆r→0 ∆r ∆r→0 ∆r ∆r→0 ∆r 

where 0 < θ1, θ2 < 1. 

∂f 

∂r 
|(

 

 
 

r0,s0 ) = lim 
∆r→0 

f1(g(r0 + θ1∆r, s0), h(r0, s0)) 
g(r0 + ∆r, s0) − g(r0, s0)

 
r 

+ lim 
∆r→0 

f2(g(r0 + ∆r, s0), h(r0 + θ2∆r, s0)) 
h(r0 + ∆r, s0) − h(r0, s0)

 
r 

=f1(x0, y0)g1(r0, s0) + f2(x0, y0)h1(r0, s0), 0 < θ1, θ2 < 1 

∂f 
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∂r ∂θ 

∂r ∂x ∂r ∂y ∂r 

∂θ ∂x ∂θ ∂y ∂θ 

∂θ ∂x ∂θ ∂y ∂θ 

Replacing x0, y0 by their values and omitting subscripts, we have 
 

∂ 
f (g, h) = f1(g, h)g1(r, s) + f2(g, h)h1(r, s). 

∂r 

Similarly, we can obtain 
 

∂ 
f (g, h) = f1(g, h)g2(r, s) + f2(g, h)h2(r, s). 

∂s 

Q 

Remark : The above results can be put in a simpler form as follows: 
 

∂f 
= 

∂f ∂x 
+ 

∂f ∂y
.
 

∂r ∂x ∂r ∂y ∂r 
∂f 

= 
∂f ∂x 

+ 
∂f ∂y

.
 

∂s ∂x ∂s ∂y ∂s 
 
 

 

Example 1.3.6 If � = x3 − xy + y3, x = r cos θ, y = r sin θ, find ∂� , ∂� . 

Solution: 

∂� 
= 

∂� 
. 
∂x 

+ 
∂� ∂y  

= (3x2 − y) cos θ + (3y2 − x) sin θ 

and 
∂�  

= 
∂� 

. 
∂x 

+ 
∂� ∂y  

= (3x2 − y)(−r sin θ) + (3y2 − x)r cos θ. 

 
Remark : We can prove the following case using the method used in 

theorem 1.3.2. If u = f (x, y, �), x = g(r, s), y = h(r, s), � = k(r, s), then 

∂u 
= 

∂u ∂x 
+ 

∂u ∂y 
+ 

∂u ∂� 
.
 

∂r ∂x ∂r ∂y ∂r ∂� ∂r 
 

Example 1.3.7  If u = x2 + y2, x = r cos θ, y = r sin θ, compute  
∂u

 
∂r 

and 

∂u 
. 

∂θ 
 

Solution:  
∂u 

= 
∂u ∂x 

+ 
∂u ∂y 

= 2x cos θ + 2y sin θ 
∂r ∂x ∂r ∂y ∂r 

∂u 
= 

∂u ∂x 
+ 

∂u ∂y 
= −2xr sin θ + 2ry cos θ. 
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− 

− 

∂x ∂y ∂r r2 

∂x ∂y 

r ∂θ ∂x ∂y 

x x2 x x x 

x2 x x x x 

x x2 x x x 

− 

Example 1.3.8 If u = f (x, y), x = r cos θ, y = r sin θ, show that 

  
∂u 

 2 

+ 

  
∂u 

 2 

= 

  
∂u 

 2 

+
 1 

  
∂u 

  2 

 

 
 

Solution:  
∂u 

= 
∂u

. 
∂x 

+ 
∂u

. 
∂y 

∂r ∂x  ∂r ∂y ∂r 

= 
∂u 

cos θ + 
∂u 

sin θ 
∂x ∂y 

∂u 
= 

∂u
. 
∂x 

+ 
∂u

. 
∂y 

∂θ ∂x ∂θ ∂y ∂θ 

= 
∂u 

(−r sin θ) + 
∂u 

(r cos θ) 

Therefore, 
1 ∂u 

= − 
∂u 

sin θ + 
∂u 

cos θ 

Then, 

  
∂u 

  2 

+ 
1 

  
∂u 

  2 

= 

  
∂u 

  2 

+ 

  
∂u 

  2
 

∂r r ∂θ ∂x ∂y 
 

 

Example 1.3.9 If u  =  � sin 
y 

,  where x  =  3r2 + 2s, y  =  4r 2s3 and 
x 

� = 2r2 3s2, find 
∂u

 
∂r 

and 
∂u

. 
∂s 

 

Solution: 

∂u 
= 

∂u ∂x 
+ 

∂u ∂y 
+ 

∂u ∂� 
∂r ∂x ∂r ∂y ∂r ∂� ∂r 

= 

  

� cos 
y 

     

− 
y  

  

6r + 

 

� cos 
y 

      
1

  

4 + 

  

sin 
y 

  

4r 

= − 
6ry� 

cos 
y 

+ 
4� 

cos 
y 

+ 4r sin 
y

 
 

∂u 
= 

∂u ∂x 
+ 

∂u ∂y 
+ 

∂u ∂� 
∂s ∂x ∂s ∂y ∂s ∂� ∂s 

= 

  

� cos 
y 

    

− 
y  

  

2 + � cos 
y 

   
1 

  

(−6s2) + 

  

sin 
y 

  

(−6s) 

= 
2y� 

cos 
y 

 
 

6s2� 
cos 

y 
 

  

6  sin 
y

 
 

 

x2 x 
− 

x x 
s 

x
.
 

 
 

1.3.5 Higher Derivatives 

 
We can compute higher order derivatives of composite functions by the 

principles that we know already. 

∂θ 
. 

. 
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2 

2 

For clear understanding consider the function u = f (φ(r, s), ψ(r, s)), 

where the three functions involved belong to C2. 

We now compute three derivatives of order two for the above function. 

∂u 
= f1(φ(r, s), ψ(r, s))φ1(r, s) + f2(φ(r, s), ψ(r, s))ψ1(r, s), 

∂r 
∂u 

= f1(φ(r, s), ψ(r, s))φ2(r, s) + f2(φ(r, s), ψ(r, s))ψ2(r, s). 
∂s 

Note: In each φ or ψ with any subscript, we omit the arguments (r, s) and 

in each f we omit the arguments (φ(r, s), ψ(r, s)). 

Differentiating both 
∂u 

and 
∂u 

partially with respectively to r and s. 

we have, 
 
 
∂2u 
∂r2 

∂r 
 

 
f1φ11 + 

 

 
 

f2ψ11 

∂s 
 

 
+ φ1[f11φ1 

 

 
+ f12ψ1] + 

 

 
ψ1[f21φ1 

 

 
+ f22ψ1], 

∂2u 
 

 

∂s∂r 
∂2u 

 
 

∂r∂s 

= f1φ12 

 
= f1φ21 

+ f2ψ12 

 
+ f2ψ21 

+ φ1[f11φ2 

 
+ φ2[f11φ1 

+ f12ψ2] + 

 
+ f12ψ1] + 

ψ1[f21φ2 

 
ψ2[f21φ1 

+ f22ψ2], 

 
+ f22ψ1], 

and 
∂2u 

= 
∂s 

f1φ22 + f2ψ22 + φ2[f11φ2 + f12ψ2] + ψ2[f21φ2 + f22ψ2]. 

 
 

 
Example 1.3.10 If u = f (x, y) = exy, x = φ(r, s) = r + s, 

y = ψ(r, s) = r − s, find 
∂2u 

and 
∂r 

∂2u 
. 

∂r∂s 
 

Solution: Given u = f (x, y) = exy, x = φ(r, s) = r + s, y = ψ(r, s) = r − s. 

f1 = yexy, φ1 = 1, ψ1 = 1 

f2 = xexy, φ2 = 1, ψ2 = −1 

f11 = y2exy, φ11 = φ12 = 0, ψ11 = ψ12 = 0 

f12 = f21 = (1 + xy)exy, φ21 = φ22 = 0, ψ21 = ψ22 = 0 

f22 = x2exy 

∂2u 
 

 

∂r2 

 
f1φ11 

 
+ f2ψ11 

 
+ φ1[f11φ1 

 
+ f12ψ1] + 

 
ψ1[f21φ1 

 
+ f22ψ1] 

= y2exy + (1 + xy)exy + (1 + xy)exy + x2exy 

= exy
(y2 + 2 + 2xy + x2) 

= e(r+s)(r−s)[(r − s)2  + 2 + 2(r + s)(r − s) + (r + s)2] 

= er2−s2 

[4r2 + 2]. 

= 

= 
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∂2u 
 

 

∂r∂s 
= f1φ21 + f2ψ21 + φ2[f11φ1 + f12ψ1] + ψ2[f21φ1 + f22ψ1] 

= y2exy + (1 + xy)exy − 1[(1 + xy)exy + x2exy
] 

= exy
(y2 − x2) 

= e(r+s)(r−s)((r − s)2 − (r + s)2) 

= er2−s2 

(−4rs) 

= −4rser2−s2 

. 

 
 

1.3.6 Differentiable functions 

 
The class of differentiable functions lie between C and C1. 

 
Definition 1.3.5 f (x, y) is differentiable at (a, b) if, and only if f1(a, b), f2(a, b) 

exist and if 

f (a + ∆x, b + ∆y) − f (a, b) = f1(a, b)∆x + f2(a, b)∆y + φ(∆x, ∆y)∆x 

+ψ(∆x, ∆y)∆y, 

(1.11) 

where φ(∆x, ∆y) and ψ(∆x, ∆y) → 0 as (∆x, ∆y) → (0, 0). 

Example 1.3.11 Prove that f (x, y) = 2 − y + 2x2 − x2y  is  differentiable 

at every point . 

 

Solution: Given f (x, y) = 2 − y + 2x2 − x2y 

f1 = 4x − 2xy, f2 = −1 − x2. 

At (0, 0), f = 2, f1 = 0, f2 = −1 

f (∆x, ∆y) − f (0, 0) = 2 − ∆y + 2(∆x)2 − (∆x)2∆y − 2 

= −∆y + (2∆x − ∆x∆y)∆x 

= (−1)∆y + (2∆x − ∆x∆y)∆x 

= f2(0, 0)∆y + (2∆x − ∆x∆y)∆x 

= f2(0, 0)∆y + (2∆x)∆x − ∆x2∆y. 



23  

Hence we may take 

 

φ(∆x, ∆y) = 2∆x − ∆x∆y and ψ(∆x, ∆y) = 0 
 

or 

φ(∆x, ∆y) = 2∆x and ψ(∆x, ∆y) = −(∆x)2. 

In either case φ(∆x, ∆y) and ψ(∆x, ∆y) → 0 as (∆x, ∆y) → 0. 

Hence f is differentiable at every point. 

Result :  If f (x, y) ∈ C1 in D, then f (x, y) is differentiable at every point 

of D. 

Proof: Suppose that f (x, y) ∈ C1 in D. 

Then f1 and f2 are continuous. 

Let 

φ(∆x, ∆y) = f1(a + θ1∆x, b) − f1(a, b) 

ψ(∆x, ∆y) = f2(a + ∆x, b + θ2∆y) − f2(a, b), 

By the basic mean value theorem ,we have 

f (a + ∆x, b + ∆y) − f (a, b) = f1(a + θ1∆x, b)∆x + f2(a + ∆x, b + θ2∆y)∆y, 

where, 0 < θ1, θ2 < 1. 

Now 

f (a + ∆x, b + ∆y) − f (a, b) = [φ(∆x, ∆y) + f1(a, b)] ∆x 

+ [ψ(∆x, ∆y) + f2(a, b)] ∆y, 

which is same as equation (1.11). 

Since f1 and f2 are continuous, the functions φ and ψ  tends to zero as 

(∆x, ∆y) → (0, 0). 

Hence f (x, y) is differentiable at every point of D. 

 
Example 1.3.12 Show by examples that continuity at a point need not 

imply differentiability at that point. 

Solution: (i). Consider f (x, y) = |x|(1 + y). 
 

lim 
(x,y)→(0,0) 

f (x, y) = 0 = f (0, 0). 
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x 

√ 

2 2 

So f (x, y) is continuous at (0, 0). 

But f1(0, 0) does not exist. 

So f (x, y) is not differentiable at (0, 0). 

(ii). Consider the function f (x, y) =  

 

 
 
x, when |y| < |x| 

 
f (x, y) is continuous at (0, 0). 

−x, when |y| ≥ |x| 

Also f1(0, 0) = 0, f2(0, 0) = 0. Assume that f (x, y) is differentiable at (0, 0). 

When ∆y = ∆x, equation (1.11) would become 

 

f (∆x, ∆x) = −∆x 

= ∆x + ∆xφ(∆x, ∆x) + ∆xψ(∆x, ∆x). 

But this is a contradiction,as one sees by canceling ∆x and letting ∆x → 0. 

So our assumption is wrong and hence f (x, y) is not differentiable at (0, 0). 

Remark : From the above two examples we may conclude that there exist 

continuous functions which are not differentiable. 

 
Example 1.3.13 Show by an example that there exist differentiable func- 

tions not belonging to C1. 

Solution: Consider the function f (x, y) = g(
√

x2 + y2), g(x) = x2 sin 
  

1 
   

, 

g(0) = 0. 

It is easy to prove that f1(0, 0) = f2(0, 0) = 0. 

Now 

f (∆x, ∆y) = g(
q

∆x2 + ∆y2) 

= (∆x2 + ∆y2) sin

 

From equation (1.11) we have 

 
1 

 

 

∆x2 + ∆y2 

1 

f (∆x, ∆y) = (∆x2 + ∆y2) sin(∆x2 + ∆y2)
− 

2 

= φ(∆x, ∆y)∆x + ψ(∆x, ∆y)∆y. 

φ = ∆x sin(∆x2 + ∆y2)− 1 

, ψ = ∆y sin(∆x2 + ∆y2)− 1 

, 

then φ(x), ψ(x) → 0 as (∆x, ∆y) → (0, 0). 

If 

! 
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2 

Hence the function is differentiable at (0, 0). 

To prove the function does not belongs to C1. 

It is enough to show that f1(x, x) has no limit as x → 0+. 

We have f1(x, x) =  √1  g�(x
√

2), x > 0. 

We can easily prove that g�(0+) does not 

exist. So f1(x, x) does not belongs to C1. 

 

1.4 Equality of Cross Derivatives 

 
In this section, we will find under what condition the cross derivatives 

f12(x, y) and f21(x, y) are equal. Also we shall show that the result is true 

for all functions of class C2. 

 
1.4.1 A preliminary Result 

 
We define two operators ∆x and ∆y on a function f (x, y) as follows: 

 
∆xf (x0, y0) = f (x0 + ∆x, y0) − f (x0, y0) 

∆yf (x0, y0) = f (x0, y0 + ∆y) − f (x0, y0) 

 

 
Lemma 1.4.1 Prove that for any function f (x, y), 

 
∆x∆yf (x0, y0) = ∆y∆xf (x0, y0). 

 

Proof: Consider 

 
∆x∆yf (x0, y0) =∆x {f (x0, y0 + ∆y) − f (x0, y0)} 

=∆xf (x0, y0 + ∆y) − ∆xf (x0, y0) 

=f (x0 + ∆x, y0 + ∆y) − f (x0, y0 + ∆y) − f (x0 + ∆x, y0) 

+ f (x0, y0). 
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Consider 

 

∆y∆xf (x0, y0) =∆y {f (x0 + ∆x, y0) − f (x0, y0)} 

=∆yf (x0 + ∆x, y0) − ∆yf (x0, y0) 

=f (x0 + ∆x, y0 + ∆y) − f (x0 + ∆x, y0) − f (x0, y0 + ∆y) 

+ f (x0, y0). 

Hence ∆x∆yf (x0, y0) = ∆y∆xf (x0, y0). Q 

 
1.4.2 The principle Result 

 

Theorem 1.4.1  
f (x, y) ∈ C2 =⇒ f12(x, y) = f21(x, y). 

 

Proof: Let (x0, y0) be an arbitrary point in the domain where f ∈ C2. 

Then by the previous lemma, we have 

∆x∆yf (x0, y0) = ∆y∆xf (x0, y0) (1.12) 

Let φ(y) = f (x0 + ∆x, y) − f (x0, y). 

Then φ(y0) = ∆xf (x0, y0). Applying the law of the mean for functions of 

one variable, 

∆y∆xf (x0, y0) = ∆yφ(y0) 

= φ(y0 + ∆y) − φ(y0) 

= φ�(y0 + θ1∆y)∆y, 0 < θ1 < 1. 

∆y∆xf (x0, y0) = f2(x0 + ∆x, y0 + θ1∆y)∆y − f2(x0, y0 + θ1∆y)∆y (1.13) 

Let ψ(x) = f (x, y0 + ∆y) − f (x, y0). 

Then ψ(x0) = ∆yf (x0, y0). Applying the law of the mean for functions of 

one variable, 

∆x∆yf (x0, y0) = ∆xψ(x0) 

= ψ(x0 + ∆x) − ψ(x0) 

= ψ�(x0 + θ2∆x)∆x, 0 < θ2 < 1. 
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∆x∆yf (x0, y0) = f1(x0 + θ2∆x, y0 +∆y)∆x − f1(x0 + θ2∆x, y0)∆x (1.14) 

Applying law of the mean to the right side of equations (1.13) and (1.14), 

we have 

∆y∆xf (x0, y0) = f12(x0 + θ3∆x, y0 + θ1∆y)∆y∆x, 

 
where 0 < θ3 < 1 and 

 
∆x∆yf (x0, y0) = f21(x0 + θ2∆x, y0 + θ4∆y)∆x∆y, 

 
where 0 < θ4 < 1. 

From equation (1.12), we have 

 
f12(x0 + θ3∆x, y0 + θ1∆y)∆y∆x = f21(x0 + θ2∆x, y0 + θ4∆y)∆x∆y. 

 
Then 

 

f12(x0 + θ3∆x, y0 + θ1∆y) = f21(x0 + θ2∆x, y0 + θ4∆y). 

 

Letting ∆x → 0 and ∆y → 0 and since f12 and f21 are continuous at 

(x0, y0), we have 

f12(x0, y0) = f21(x0, y0). 

As (x0, y0) is an arbitrary point in the domain, we have 

 
f12(x, y) = f21(x, y). 

 

Q 

We shall now give an example of a function for which the cross derivatives 

are not equal. 

2

 x2 − y2 
 

 

2 +  2 = 0 

Example 1.4.1  If  f (x, y)  = 
xy 

x2 + y2 
, x y 

 ,  Prove that 

 
f12 

 
f21. 

0, (x, y) = (0, 0) 

 

Solution: When (x, y) is not the origin, then using formal rules of dif- 

ferentiation we can easily prove that f12 = f21. When (x, y) is the origin, 

then 

f1(0, 0) =  lim f (∆x, 0) − f (0, 0) 
=  lim

 
  0  

= 0. 

∆x→0 ∆x ∆x→0 ∆x 
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→ 
⇐⇒ 

f2(0, 0) = lim f (0, ∆y) − f (0, 0) 
=  lim

 
  0  

= 0. 

 
If (x, y) 

 
(0, 0), 

∆y→0 

 

(x2 − y2) 
 

 

∆y ∆y→0 ∆y 

 
(x2 + y2)2x − (x2 − y2)2x 

 

f1(x, y) = 2y 
 = 2 

x2 + y2   
+ 2xy 

(x2 − y2) 
 

 

4xy2 
(x2 + y2)2 

2 2 

y  
x2 + y2    

+ 2xy 
(x2 + y2)2 

, x  + y 0 
(x2 − y2) 

 
 

4x2y 2 2 
 

f2(x, y) = 2x 
x2 + y2    

− 2xy 
(x2 + y2)2 

, x  + y 0 
 

f21(0, 0) =  lim f2(∆x, 0) − f2(0, 0) 
=  lim

 2∆x 
= 2

 

∆x→0 ∆x ∆x→0 ∆x 

f12(0, 0) =  lim f1(0, ∆y) − f1(0, 0) 
=  lim

 −2∆y 
= −2.

 

∆y→0 

Hence at (0, 0), f12(0, 0) 

 
Summary 

∆y 

f21(0, 0). 

∆y→0    ∆y 

 

• A  function  f (x, y)  approaches  a  limit  A  as  x  approaches  a  and  y 

approaches  b,  that  is  
x
lim

a 
f (x, y) = A for  each  positive  number 

y    b 

ϵ  there is another δ,  such that |f (x, y) − A| <  ϵ  whenever |x − a| < 

δ, |y − b| < δ or 0 < (x − a)2 + (y − b)2. 

• f (x, y) ∈ C  at (a, b) ⇐⇒ 
x
lim

a 
f (x, y) = f (a, b) 

y→b 

n ∂nf 
 

 

∂nf ∂nf 
 

• f (x, y) ∈ C in a region R ⇐⇒ 
∂xn , ∂xn−1∂y

, ..., 
∂yn ∈ C in R 

 

• Basic mean value theorem: 

1. f (x, y) ∈ C1 in D and 

2. The circle (x − a)2 + (y − b)2 ≤ δ2 lies in D 

⇒ f (a + ∆x, b + ∆y) − f (a, b) = f1(a + θ1∆x, b)∆x + f2(a + ∆x, b + 

θ2∆y)∆y, where ∆x2 + ∆y2 < δ2 and 0 < θ1 < 1, 0 < θ2 < 1. 

 
• Basic mean value theorem can be used to differentiate composite func- 

tions. 

• The class of differentiable function lie between C and C1 
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• Continuity at a point need not imply differentiability at that point 

• If f ∈ C1 in D then f is differentiable at every point 

• There exist differentiable functions not belonging to C1 

• f is differentiable ⇒ f ∈ C 

• There exist nondifferentiable functions having partial derivatives 

• f (x, y) ∈ C2 ⇐⇒ f12(x, y) = f21(x, y) 

 
Multiple Choice questions. 

 
1. Choose the wrong statement. 

 
(a) Continuity at a point need not imply differentiablity at that 

point. 

(b) There exist differentiable functions not belonging to C1. 

(c) Continuity at a point always imply differentiability at that point. 

 

2. If f (x, y), g(r, s), h(r, s) ∈ C1, then 

(a)  
∂f (g, h) 

= f1(g, h)g1(r, s) + f2(g, h)h1(r, s) 
∂r 

(b) 
∂f (g, h) 

= f1(g, h)g2(r, s) + f2(g, h)h2(r, s) 
∂r 

(c)  
∂f (g, h) 

= f1(g, h)g1(r, s) + f2(g, h)h1(r, s) 
∂s 

3. If f (x, y) = x2 + y2, then the value of lim f (x, y) is 
x→0 

a) −1 b) 1 c) 0 

y→0 

 

Ans: 1. (c) 2. (a) 3.(c) 

 
Exercises 1 

 
1. Define the following : 

 
(a) limit of a function of two variables. 

(b) continuity of a function of two variables. 
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2 

x 2 

x y 

(c) interior point,exterior point and boundary point. 

(d) the classes Cn for functions of several variables. 

(e) δ− neighbourhood and limit point. 

(f) Domain and region. 

 
2. State and prove basic mean value theorem. 

 
3. Find the number θ1 and θ2 in Basic mean value theorem if f = 

exy, a = b = ∆x = ∆y = 1. 

Ans: θ1 = log(e − 1), θ2 = 1 [log(e2 − 1) − log 2]. 

4. Show that if f (x, y) is differentiable at a point it is continuous there. 

Hint : let (∆x, ∆y) → (0, 0) in equation (1.11). 

5. f (x, y) ∈ C1 in D, then prove that f (x, y) is differentiable at every 

point of D. 

6. If f (x, y), g(r, s), h(r, s) ∈ C1 then prove that 

∂ 
f (g, h) = f1(g, h)g1(r, s) + f2(g, h)h1(r, s). 

∂r 
∂ 

f (g, h) = f1(g, h)g2(r, s) + f2(g, h)h2(r, s). 
∂s 

 
7. If =  v = sin( ) find  

∂2u
 

 
 u e , v xy� , . 

∂y∂� 

Ans:  evx cos(xy�) − evx2y� sin(xy�) + evx2y� cos2(xy�). 

8. For any function f (x, y), prove that 

∆x∆yf (x0, y0) = ∆y∆xf (x0, y0). 

 

9. If f (x, y) ∈ C2, prove that f12(x, y) = f21(x, y). 

10. If f (x, y) = x2 tan−1 

  
 y 

   

− y2 tan−1 

   
 x 

  

, xy /= 0 and 

f (x, 0) = f (0, y) = 0, prove that f12(0, 0) /= f21(0, 0). 

11. If f (x, y) = (x2 + y2) tan−1 

   
 y 

   

when x 0 and f (x, y) = π y2 when 

x = 0, Show that f12(0, 0) f21(0, 0). 
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Learning Outcomes : 

 
After studying this unit, students will be able 

 

F To explain homogeneous functions. 

F To understand the concept of total derivatives. 

F To describe the meaning of differentials. 

F To know about directional derivatives and gradient. 

 
 
 
 
 
 
 

Unit 2 

 
Homogeneous functions and 

Differentials 

 
 
 
 

 

 

2.1 Homogeneous functions 

 
A polynomial in x and y is said to be homogeneous if all its terms are of 

same degree. We generalize this property to functions of several variables. 

 
Definition 2.1.1 A function f (x, y) is homogeneous of degree n in a region 
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1 − 4 

x 

x 

     

 √   

 √    √   

3 3 
λx x 3 y 3 

x 

Example 2.1.3  Consider f (x, y) = x 2 y 3 + x 3 y 3 . 

2 3 3 3 3 x 3 y 3 λ 3 x 3 y 3 

λx x 

R if, and only if , for (x, y) in R and for every positive value of λ 

 
f (λx, λy) = λnf (x, y) (2.1) 

 
The number n is positive, negative, or zero and need not be an integer. 

The region R must be such that (λx, λy) is a point of it for all positive λ 

whenever (x, y) is a point of it. 

 
Remark : The definition can be extended to a function of any number of 

variables. 

Example 2.1.1 Consider f (x, y) = x4 + 2xy3 − 5y4. 

f (λx, λy) = (λx)4 − 2(λx)(λy)3 − 5(λy)4 = λ4(x4 +2xy3 − 5y4) = λ4f (x, y). 

Hence f (x, y) is homogeneous of degree 4. 
 

 
Example 2.1.2  Consider f (x, y) = x 3 y 

 
3 tan −1 

   
y 

  

,

 

Here n = 1; R is any quadrant without the axes, 

f (λx, λy) = (λx) 
1 

(λy)− 4  

tan−1 
   

λy 
    

= λ−1  
1    − 4  

tan−1 
  y   

= λ−1f (x, y). 

Hence f (x, y) is homogeneous of degree −1. 

 
1   − 2 2    − 1 

f (λx, λy) = (λx) 
1 

(λy)− 2  

+ (λx) 
2 

(λy)− 1  

= λ− 
1

 

1   − 2 
+

 1    2    − 1 
.
 

So the function is not homogeneous. 

 

Example 2.1.4 Consider f (x, y) = x2 + y2  
3 

, 

Here n = 3; R is the whole plane. 

f (λx, λy) = (λx)2  + (λy)2   
3  

= λ3 x2  + y2   
3  

= λ3f (x, y) = |λ|3f (x, y). 

If λ is a negative number, then equation (1.12) is not satisfied for this func- 

tion. 

 
Example 2.1.5 Consider f (x, y) = 3 + log  

y  , 

Here n = 0; R is the first or third quadrant without the axes. 

f (λx, λy) = 3 + log 
  

λy 
   

= 3 + log
  y    

= λ0f (x, y). 

The function is homogeneous of order 0. 
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2.2 Euler’s Theorem 

 
Theorem 2.2.1 (Euler) 

 

1. f (x, y) ∈ C1, (x, y) in R 

2. f (x, y) is homogeneous of degree n in R. 

 

⇒ f1(x, y)x + f2(x, y)y = nf (x, y), (x, y) in R (2.2) 

 
Proof: Since f (x, y) is homogeneous of degree n, we have 

 
f (λx, λy) = λnf (x, y). 

 
Differentiating partially with respect to λ 

 
xf1(λx, λy) + yf2(λx, λy) = nλn−1f (x, y) 

 

Let λ = 1, we have      xf1(x, y) + yf2(x, y) = nf (x, y). Q 

Remark 1: Some of the authors may define homogeneity in a different 

way , demanding that equation (2.1) should hold for all real values of λ 

with this definition the function in example 2.1.4 is not homogeneous.But 

this definition would have two disadvantages that the converse of Euler’s 

theorem would be false. 

We now prove that converse of the Euler’s theorem is valid under definition 

2.1.1. 

 
Theorem 2.2.2 

 

1. f (x, y) ∈ C1, (x, y) in R. 

2. xf1 + yf2 = nf, (x, y) in R. 

 
⇒ f (x, y) is homogeneous of degree n, (x, y) in R. 
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Proof: Let (x0, y0) be an arbitrary point of R. Then (λx0, λy0) ∈ R for 

all positive values of λ. 

Let φ(λ) = f (λx0, λy0) be defined for all positive values of λ. 

Differentiating partially with respect to λ we have 

 
φ�(λ) = x0f1(λx0, λy0) + y0f2(λx0, λy0). 

 

Since (x0, y0) ∈ R, from hypothesis 2, we have 

x0f1(x0, y0) + y0f2(x0, y0) = nf (x0, y0). 

Since (λx0, λy0) ∈ R, replace x0 by λx0 and  y0  by  λy0 

λx0f1(λx0, λy0) + λy0f2(λx0, λy0) = nf (λx0, λy0) 

λφ�(λ) = nφ(λ). 

 
Differentiating φ(λ)λ−n with respect to λ, we have 

 

(φ(λ)λ−n
)� = φ�(λ)λ−n − nφ(λ)λ−n−1 

= λ−n−1 λφ�(λ) − nφ(λ) 

= 0. 

 
Here φ(λ)λ−n = C, a constant. 

Let λ = 1, then φ(1) = C and so f (x0, y0) = C. 

Hence using φ(λ) = f (λx0, λy0) in φ(λ)λ−n = C, we have 

 
f (λx0, λy0)λ−n = f (x0, y0) 

 

=⇒ f (λx0, λy0) = λnf (x0, y0). 

Since (x0, y0) is an arbitrary point of R, the theorem is true for all (x, y) 

in R. Q 

Remark : If f (x, y) is homogeneous of degree n, 

we have x2f11 + xyf12 + y2f22 = n(n − 1)f. 

Example 2.2.1 Verify Euler’s theorem for the function 

 
a)u = x2 + y2 + 2xy b)u = x3 + y3 + �3 + 3xy� 
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x + y 

Solution:  a)  Given  u  = x2 + y2 + 2xy. 

This is a homogeneous function of degree 2. 

To verify Euler’s theorem we have to prove 

x
∂u 

+ y
∂u  

∂x ∂y 
= 2u 

 
 
 
 
 

 
Hence, we have 

∂u 
= 2x + 2y 

∂x 

x
∂u 

= 2x2 + 2xy 
∂x 
∂u 

= 2y + 2x 
∂y 

y
∂u 

= 2y2 + 2xy 
∂y 

 
 

x
∂u 

+ y
∂u 

= 2(x2 + y2 + 2xy) = 2u. 
∂x ∂y 

b) Given u = x3 + y3 + �3 + 3xy�. 

This is a homogeneous function of degree 3. 

To verify Euler’s theorem we have to prove 

x
∂u 

+ y
∂u  

∂x ∂y 
+ � 

∂u 
 

 

∂� 
= 3u 

 
 
 
 
 
 
 
 

 
Hence, we have 

∂u 
= 3x2 + 3y� 

∂x 

x
∂u 

= 3x2 + 3xy� 
∂x 
∂u 

= 3y2 + 3x� 
∂y 

y
∂u 

= 3y3 + 3xy� 
∂y 
∂u 

= 3�2 + 3xy 
∂� 

� 
∂u 

= 3�3 + 3xy� 
∂� 

x
∂u 

+ y
∂u 

+ � 
∂u 

= 3(x3 + y3 + �3 + 3xy�) 
∂x ∂y ∂� 

= 3u. 

 

 
Example 2.2.2 If = tan−1 

    

x2 + y2 
!

 

 
Show that 

 

x
∂u 

+ y
∂u  

∂x ∂y 
= sin u cos u. 

u , 
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  !

−

 

(x + y) 

∂u 

  
x + y 

2 

u 
(x + y) (x + y) 

! 

Solution:  
u = tan 

 
1 x2 + y2 

x + y 

tan u = 
x2 + y2 

x + y 
= f (say) 

Then tan u is a homogeneous function of degree 1. 

Hence by Euler’s theorem, we get 

x 
∂ 

(tan u) + y
∂

 
∂x ∂ 

(tan u) = 1. tan u 

x sec2 u
∂u 

+ y sec2 u
∂u 

= tan u 
∂x ∂y 

∂u ∂u tan u sin u cos2 u 
x

∂x 
+ y 

∂y 
= 

sec2 u 
=

 

 
 

cos u 

x
∂u 

+ y
∂u  

∂x ∂y 
= sin u cos u 

 
Example 2.2.3 If = sin−1 

( 
x2 + y2 

)

 Show that x
∂u

 
∂x 

 
y = tan u. 

∂y 
 

Solution: Given = sin−1 

( 
x2 + y2 

) 

= 

 
sin = 

x2 + y2 
=

 
 

(say). 

f is homogeneous function of degree 1. 

So by Euler’s theorem for f, we have 

x
∂f 

+ y
∂f  

∂x ∂y 
∂ ∂ 

= 1.f 

x (sin u) + y 
∂x 

∂u 

(sin u) = sin u 
∂y 

∂u 
x cos u 

∂x 
+ y cos u 

∂y 
= sin u 

Hence x
∂u 

+ y
∂u 

= tan u. 

 
 
 

Example 2.2.4 If u = log 

 
(i) x

∂u 
+ y

∂u 
= 

3 
. 

 
   

∂x 
 
 

x2 + y2 
√

x + 
√

y 

∂y 
 
 

 
, then prove that 

 
(ii)  

∂x ∂y 2 

2 ∂2u ∂2u 2 ∂
2u 3 

 

x 
∂x2  

+ 2xy 
∂x∂y 

+ y  
∂y2  

= − 
2 

. 
 

 
Solution: u = log 

x2 + y2 
√

x + 
√

y ⇒ eu 

2 2 

= √
x + 

√
y 

= f (say). 

Then f is homogeneous function of degree 3 . 

+ 

  

⇒ u f 

u , 

! 
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2 
f 

= 
2 

. 

To prove (i). By Euler’s theorem for f, we have 

x
∂f 

+ y
∂f 

= 
3 

∂x ∂y 
∂   u ∂   u 3 u 

 x e  + y e 
∂x ∂y = 

2 
e 

xeu ∂u 

∂x 
+ yeu 

∂u
 

∂y 

3 
eu 

2 

x
∂u 

+ y
∂u 3 

∂x ∂y 

Differentiating (i) partially with respect to x. 

∂2u ∂u ∂2u 

 
 

Multiply by x 

x
∂x2  

+ 
∂x 

+ y
∂x∂y 

= 0.
 

2 ∂2u ∂u ∂2u 
 

x 
∂x2  

+ x
∂x 

+ xy 
∂x∂y 

= 0. 

Differentiating (i) partially with respect to y 

∂2u ∂2u ∂u 

 
 

Multiply by y 

x
∂y∂x 

+ y 
∂y2  

+ 
∂y  

= 0.
 

∂2u 2 ∂2u ∂u 
 xy + y 

∂y∂x 
∂y2  

+ y 
∂y 

= 0. 

Adding above two resulting equations, and using (i) we have 

2 ∂2u 
 

 

∂2u 2 ∂2u 
 

 

∂u ∂u 
 

 

x  
∂x2 

+ 2xy 
∂x∂y 

+ y 
2 ∂2u 

 
 

∂y2  
+

 
∂2u 

x + y = 0 
∂x ∂y 

2 ∂2u 3 
 

x 
∂x2  

+ 2xy 
∂x∂y 

+ y  
∂y2  

+ 
2 

= 0 
2 ∂2u 

 
 

∂2u 2 ∂2u 3 
 

x 
∂x2  

+ 2xy 
∂x∂y 

+ y  
∂y2  

= − 
2 

. 
 
 
 
 

2.3 Total derivatives 

Let x = φ(t), y = ψ(t) define two functions for t, t0 < t < t1. Then the 

pair (x, y) define a corresponding region R in the xy− plane. 

Let u be the function of x and y defined on the region R such that u = 

f (x, y) and x = φ(t), y = ψ(t), for t0 ≤ t ≤ t1. 

= 
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∆x dy 

x→ 

x→ 

−  

∆ 

Now u may vary because of variations in t and 
du

 
dt 

is called the total derivative of u with respect to t. 

at a point, if it exists, 

Let ∆x, ∆y and ∆u be the corresponding changes, for a change ∆t in t. 

We have, 
dx 

=  lim , = lim  
∆y

 

 
and 

dt ∆t→0  ∆t dt ∆t→0  ∆t 

du 
= lim  

∆u
. 

dt ∆t→0 ∆t 

Now ∆u = f (x + ∆x, y + ∆y) − f (x, y). 

Therefore, 
 

du 
=  lim  

∆u 
dt ∆t→0  ∆t 

= lim 
∆ 0 
∆y→0 
∆t→0 

= lim 
∆ 0 
∆y→0 
∆t→0 

f (x + ∆x, y + ∆y) f (x, y) 

∆t 
 

f (x + ∆x, y + ∆y) − f (x, y + ∆y) + f (x, y + ∆y) − f (x, y) 

t 

= lim 
 

 

  
f (x + ∆x, y + ∆y) − f (x, y + ∆y) ∆x 

∆ 0 ∆y→0 
∆t→0 

∆x ∆t 

+ 
f (x, y + ∆y) − f (x, y) ∆y 

 
 

∆y ∆t 

So, 

du 
= 

∂u dx 
+ 

∂u dy 
.
 

dt ∂x dt ∂y dt 

Remark 1: If u is a function of  x, y, � which are functions of a single 

variable t, then 

du 
= 

∂u dx 
+ 

∂u dy 
+ 

∂u d� 
.
 

dt ∂x dt ∂y dt ∂� dt 

Remark 2: Suppose t = x, that is u is a function of x and y, where y is 

itself a function of x, then we have 

du 
= 

∂u 
+ 

∂u dy 
.
 

dx ∂x ∂y dx 

x→ 
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dx 
x x − 

b2y 

x x − 
b2

 

Example 2.3.1 Find 
du

 
dx 

if u = sin(x2 + y2) where a2x2 + b2y2 = c2. 

 

Solution:  
du 

= 
∂u 

+ 
∂u dy 

.
 

 
Given u = sin(x2 + y2) 

∂u 
 

 

dx ∂x 
 

 
2 2 

∂y dx 

∂u 2 2 
 

⇒ 
∂x 

= cos(x + y )2x and = cos(x 
∂y 

+ y  )2y. 

Consider a2x2 + b2y2 = c2. Differentiating with respect to x, we have 

2 2 2   dy 
 

 

dy a2x 
 

 
Now 

a  x + 2b  y
dx 

= 0 ⇒ 
dx 

= − 
b2y 

. 

du 
= 2

 
cos( 2 + 2) + 2 cos( 2 + 2) 

  
a2x 

!
 

 
 

 
= 2  cos( 2 + 2) 

  

1 
a2 

! 

 

 

 

 

Example 2.3.2 Find 
du

 
dt 

if u = x3y4 where x = t3 and y = t2. 

 

Solution:  
du 

= 
∂u dx 

+ 
∂u dy 

dt ∂t dt ∂y dt 

= 3x2y4(3t2) + 4x3y3(2t) 

= 3t6t8(3t2) + 4t9t6(2t) 

= 9t16 + 8t16 

= 17t16. 

 
Example 2.3.3 If u = x2y3 where x = log t and y = et, find 

du
. 

dt 
 

Solution:  
du 

= 
∂u dx 

+ 
∂u dy 

dt ∂t dt ∂y dt 

= 2xy3. 
1 

+ 3x2y2.et 
t 

= 2 log t.e3t. 
1 

+ 3(log t)2e2t.et 
t 

= 
2 log t.e3t 

+ 3(log
 

 
 

2    3t 

t) .e 
t 

x y y y 

y . 
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∂r dt ∂s dt ∂r dt ∂s dt 

Example 2.3.4 If u = sin(ex + y), x = f (t), y = g(t), compute 
du

. 
dt 

 

Solution: 

 
du 

= 
∂u dx 

+ 
∂u dy 

= cos(ex + y)exf �(t) + cos(ex + y)g�(t). 
dt ∂x dt ∂y dt 

 
 
 

Example 2.3.5 If u = xy�, x = t, y = t2, � = t3, compute 
du

. 
dt 

 

Solution: 

 
du 

= 
∂u dx 

+ 
∂u dy 

+ 
∂u d� 

= y� + �xy�−1(2t) + xy� log y(3t2) 
dt ∂x dt ∂y dt ∂� dt 

= y� + 2�xty�−1 + 3xy�t2 log y. 

 
 

 
Example 2.3.6 If u = f (x, y), x = g(r, s), y = h(r, s), r = φ(t), s = ψ(t), 

find 
du

. 
dt 

 

Solution: 

 
du 

= 
∂u dx 

+ 
∂u dy 

dt ∂x dt ∂y dt 

= f1(x, y)

  
∂x dr 

+ 
∂x ds

  

+ f2(x, y)

  
∂y dr 

+ 
∂y ds 

 
 

= f1

 
g1φ� + g2ψ�

  
+ f2 

 
h1φ� + h2ψ�

  
. 

 

2.4 Differentials 

 
We shall introduce briefly the idea of differential of a function of several 

variables. It will be sufficient to give our definitions for functions of two 

variables. 
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2.4.1 The Differential 

 
Definition 2.4.1 Let u = f (x, y) be a function of C1, where x and y are 

independent variables. Form the following function of four variables: 

φ(x, y, r, s) = f1(x, y)r + f2(x, y)s. 

 
If r = ∆x, s = ∆y are variables whose range is a neighborhood of 

r = 0, s = 0, then the differential du of u, is defined as φ(x, y, ∆x, ∆y) : 

 
du = φ(x, y, ∆x, ∆y) = f1(x, y)∆x + f2(x, y)∆y (2.3) 

 

Thus there is associated with each point (x, y) where f (x, y) ∈ C1, a differ- 

ential which is itself a linear function of two variables ∆x, ∆y. 

 
Example 2.4.1 Compute the differential du for the function 

x 
u = f (x, y) = . 

y 
 

Solution: 
u = f (x, y) = 

x
, 

y 
1 x 

f1 = 
y 

, f2 = − 
y2 

. 

r sx 
φ(x, y, r, s) = f1(x, y)r + f2(x, y)s = 

y 
− 

y2 
. 

du = f1(x, y)∆x + f2(x, y)∆y = 
∆x x∆y 

y 
− 

y2 
. 

 
 

 

Example 2.4.2 Compute the differential du for the function u = f (g(x, y), h(x, y)). 

 
Solution: du = (f1g1 + f2h1)∆x + (f1g2 + f2h2)∆y. 

 

2.4.2 Meaning of the Differential 

 
The equation of the tangent plane to the surface � = f (x, y) at the 

point (x0, y0, �0) of the surface is 

� − �0 = f1(x0, y0)(x − x0) + f2(x0, y0)(y − y0). 
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Figure 2.1 

 
By the definition of differential, 

 
d� = f1(x, y)∆x + f2(x, y)∆y. 

 

d� at (x0, y0) is 

d� = f1(x0, y0)∆x + f2(x0, y0)∆y. 
 

The point Q lies on that plane and its coordinates are 

(x0 + ∆x, y0 + ∆y, �0 + d�). If 

∆� = f (x0 + ∆x, y0 + ∆y) − f (x0, y0), 

then the point N (x0 +∆x, y0 +∆y, �0 +∆�), lies on the surface � = f (x, y). 

Hence MN = ∆�, MQ = d�. 

That is, |d�| = the length of the ordinate x = x0 + ∆x, y = y0 + ∆y cutoff 

between the tangent plane and the plane � = �0. 

It is clear from the property of a tangent plane that d� will be nearly equal 

to ∆� for small values of ∆x and ∆y. 

So for simplicity we have assumed that f (x, y) ∈ C1. But if we assume 

only that f (x, y) is differentiable at (a, b), the differential df is equally well 

defined at (a, b) by equation (2.3). Then from the equation 

f (a + ∆x, b + ∆y) − f (a, b) = f1(a, b)∆x + f2(a, b)∆y + φ(∆x, ∆y)∆x 

+ ψ(∆x, ∆y)∆y, 
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∆y→0 

where φ(∆x, ∆y) and ψ(∆x, ∆y) → 0 as (∆x, ∆y) → (0, 0). 

We have 

 
∆� = ∆f = d� + ∆xφ(∆x, ∆y) + ∆yψ(∆x, ∆y). 

 
So d� is nearly equal to ∆�, when (∆x, ∆y) is near (0, 0). 

Thus, 

|∆� − d�| 

|∆x| + |∆y| ≤ |φ(∆x, ∆y)| + |ψ(∆x, ∆y)| 

lim    ∆� − d�     
= 0.

 

∆x→0 |∆x| + |∆y| 

 

 

 

Example 2.4.3 Find approximately how much x2 +y3 changes when (x, y) 

changes from (1, 1) to (1.1, 0.9). 

 
Solution: Let u = x2 + y3. 

Then 

f1(x, y) = 2x, f2(x, y) = 3y2 and 

∆x = 1.1 − 1 = 0.1, ∆y = 0.9 − 1 = −0.1. 

 
du = f1(x, y)∆x + f2(x, y)∆y 

So d(x2 + y3) = 2x∆x + 3y2∆y. 

d(x2 + y3)at (1,1) = 2∆x + 3∆y. 

Approximate change in (x2 + y3) = |2(0.1) + 3(−0.1)| = 0.1. 

Actual change in x2 + y3 = 2 − (1.12 + 0.93) = 0.061. 

 
2.5 Directional Derivatives 

 
The partial derivatives describes the rate of change of a function in 

the direction of each coordinate axis. A natural generalization of partial 

derivatives is the directional derivative, which studies the rate of change of 

a function in an arbitrary direction. 
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4 − 

4  
∆s 

 
∆s 

∂f 

 
∆s 

 
∆s 

4 

2 

In the definition of f1(x0, y0), the numerator of the difference quotient 

used involves the values of f (x, y) at two points (x0 + ∆x, y0) and (x0, y0). 

As ∆x approaches zero , the first point approaches the latter along the line 

y  = y0. For f2(x0, y0) a point (x0, y0 + ∆x) approaches (x0, y0) along the 

line x = x0. In the definition of directional derivative we replace these two 

special lines by an arbitrary line through (x0, y0). 

A direction ξα  is defined as the direction of any directed line which 

makes an angle α with the positive x− axis (positive angle measured in the 

counterclockwise sense).  For example the line segment directed from the 

point (0, 0) to the point (−1, −1) has the direction ξ 5π or ξ  3π . 
4 

 

Definition 2.5.1 The directional derivative of f (x, y) in the direction ξα 

at (a, b) is 

∂f 
|( ) = lim f (a + ∆s cos α, b + ∆s sin α) − f (a, b) 

.
 

∂ξα a,b 
∆s→0 ∆s 

 

Example 2.5.1 Find directional derivative of f (x, y) = x2 − 2y in the 

direction ξ 3π 
4 

at (1, 2). 

 

Solution: Given f (x, y) = x2 − 2y. 

f (a + ∆s cos α, b + ∆s sin α) = (a + ∆s cos α)2 − 2(b + ∆s sin α). 

At a = 1, b = 2, α = 3π , 

the above value becomes 

2 

1 − √
2 

− 2 2 + √
2 

, 

f (a, b) = a2 − 2b , f (1, 2) = 1 − 4 = −3. 

 
    |(1,2) = lim 

 
 

2 

1 − √
2 

− 2 2 + √
2 

+ 3 

∂ξ 3π 
4 

∆s→0 

 
1 

= lim 
∆s→0 

 
2∆s 
√

2
 

∆s 

(∆s)2
 

2 
− − 

∆s 

 
2∆s 
√

2
 

= lim 
∆s→0 

 
∆s 

− 2
√

2

   

= −2
√

2. 

 

 

Remark 1: At each point (x, y) a function has infinitely many directional 

+ + 3 − 
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α 

    

− −1 
 2 

∆ 

4 

    
3π 

4 

    −4 
2 

derivatives so that 
∂f

 
∂ξα 

is a function of the three variables x, y, α. 

Remark 2: In computing a directional derivative of higher order, the 

variable α must be held constant. 

For example, if 
∂f

 
∂ξα 

= x cos α + y sin α, then 

∂2f 
 

 

∂ξ2 
= 

 ∂ 

∂ξα 

= lim 

∂f 

∂ξα 

(x + ∆s cos α) cos α + (y + ∆s sin α) sin α − x cos α − y sin α 

∆s→0 ∆s 

= cos2 α + sin2 α = 1. 
 

We see that, 
∂f

 
∂ξ0 

= f1,  
∂f

 
∂ξπ  

2 

= f2, 
∂f

 
∂ξπ 

= f ,
  ∂f   

= f . 
∂ξ 3π 

 
 

2 

Theorem 2.5.1 f (x, y) ∈ C1 
∂f 

⇒ 
∂ξα 

= f1(x, y) cos α + f2(x, y) sin α. 

 

Proof: By the Basic mean value theorem, we have 

f (a + ∆s cos α, b + ∆s sin α) − f (a, b) 
= f1(a + θ1∆s cos α, b) cos α 

s 

+ f2(a + ∆s cos α, b + θ2∆s sin α) sin α 

 
where 0 < θ1 < 1, 0 < θ2 < 1. 

Taking limit as ∆s approaches zero, we obtain, 
 

∂f 
 

 

∂ξα 
= f1(x, y) cos α + f2(x, y) sin α. 

 

Q 

Remark : This theorem enables us to compute directional derivatives 

without reverting to the defining limiting process. 

In example (2.5.1), we have f (x, y) = x2 − 2y, f1(x, y) = 2x, f2(x, y) = −2, 

so for any point (x, y) and any direction α, 
 

∂f 

∂ξα = f1(x, y) cos α + f2(x, y) sin α = 2x cos α − 2 sin α. 

In particular, for x = 1, y = 2, α = 3π , 

∂f 

∂ξα 

 

 
(1,2) 

 
= 2 cos 

4 
− 2 sin 

3π 
= 2

   1   
−√

2
 

  1   
− √

2
 = √

2 
= −2

√
2. 
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α α 

∈ ⇒ 

1 

2 

√
5 

, √
5 

, √
5
 

Also, we have  
∂2f 

 
 

∂ξ2 

 

= 2 cos2 α, 

 
∂3f 

 
 

∂ξ3 

 

= 0. 

 
 

 

Definition 2.5.2  A vector →r  is a triple of numbers (r1, r2, r3). Its length is 
2 2 2 1 

 
 

r1  r2  r3 
|→r| = |r̄| = (r1 +r2 +r3 ) 2 . The direction cosines of the vector are  

|r̄  
,  

r̄
 r̄| 

Its  components  are  r1, r2, r3.  It  is  clear  that  a  vector  is  complete

|

ly

| 

d

|

et

|

er- 

mined by its length and its direction cosines. 

 
We now define directional derivatives for functions of three variables. 

 
Definition 2.5.3  Let →a = (a1, a2, a3) be a given vector and →r = (r1, r2, r3) 

a given point.  Let ξa be the direction of the vector.  Let its direction cosines 

be cos α1, cos α2, cos α3. 

Then  the  directional  derivative  of  the  function  F (x1, x2, x3)  at  the  point →r 
in the direction ξ will be 

∂F 
| = 

∂F 
(r , r , r ), 

a 
∂ξa  

(r1,r2,r3) ∂ξa 
1 2 3 

∂F 
(r1, r2, r3) =  lim 

 
 

F (r1 + ∆s cos α1, r2 + ∆s cos α2, r3 + ∆s cos α3) − F (r1, r2, r3) 
.
 

 
 

∂ξa ∆s→0 ∆s 
 

For example if →a is taken successively as (1, 0, 0), (0, 1, 0), (0, 0, 1), then  
∂F

 
∂ξa 

is successively the partial derivatives 
∂F 

, 
∂F 

, 
∂F 

. 
∂x1 ∂x2  ∂x3 

Now we state a theorem analogous to that of theorem 2.5.1 without proof. 
 

 
Theorem 2.5.2 

 

F (x1, x2, x3) C1 
∂F

 
∂ξa 

 
 

= 
∂F 

∂x1 

 
 
cos α1 + 

∂F
 

∂x2 

 
 
cos α2 + 

∂F
 

∂x3 

 
 

cos α3. 

 

Example 2.5.2 Compute 
∂F

 
∂ξa at →r = (1, 1, −1) for the function F  = x2 − 

x2 + 2x2x3  in the direction →a = (1, 0, −2). 

 
Solution:  F  = x2 − x2 + 2x2x3 →r : (1, 1, −1), →a : (1, 0, −2). 

1 2 
  

  1   0   
 

  

−2 
 

 
 

 

, . 

The direction cosines of →a are . 
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Then 
 

 
∂F 

 
 

∂ξa 

 
= 

∂F 
∂x1 

 
cos α1 + 

∂F
 

∂x2 

 
cos α2 + 

∂F
 

∂x3 

 
 
cos α3 

1 

   
   1   

  
 

 2

  
  0   

  
 

 2

    
  2   

  
 

= 2x 
∂F 2 

√
5 

+ 2x 
4 

√
5 

+ 2x 
2 

−√
5
 

∂ξa 
|(1,1,−1) =  √

5 
+ 0 − √

5  
= −√

5 
. 

2 

That is F is decreasing at a rate √
5 

in the direction ξa. 

Consider the function f→ : Rn → Rm. We shall find the directional derivative 

of this function at →c in the direction →u. 

 

Definition 2.5.4  The directional derivative of f→ : S → Rm  where S ⊂ Rn, 

at  →c  in  the  direction  →u,  denoted  by  the  symbol  f→�(→c, →u)  is  defined  by  the 

equation 

f→�(→c, →u) =  lim  
f→(→c + h→u) − f→(→c) 

,
 

h→0 h 

whenever the limit on the right exists. 

 

Definition 2.5.5 (Operator �→ .)  The operator �→ is a symbolic vector with 

components  
∂

 
∂x1 

∂ 
, 

∂x2 

∂ 
, 

∂x3 
. It may be applied to a scalar function F (x1, x2, x3) 

or to a vector function →y(x1, x2, x3) with components yi(x1, x2, x3), 

i = 1, 2, 3. 

 

Definition 2.5.6  �→ F (x1, x2, x3) is a vector function with components 
∂F   

,  
∂F  

, 
∂F  

.  It is called gradient of F  : Grad F  = �→ F. 
∂x1 ∂x2 ∂x3 

 

Definition 2.5.7 

�→ .→y =  
∂y1  

+ 
∂y2  

+ 
∂y3 . 

∂x1 ∂x2 ∂x3 

This  scalar  function  is  called  the  divergence  of  the  vector  function  →y   : 

Div →y = �→ .→y. 
 

Definition 2.5.8 �→ × →y  is a vector function with components 

∂y3 ∂y2   ∂y1 ∂y3  ∂y2 ∂y1 

∂x2 
− 

∂x3 
, 

∂x3 
− 

∂x1 
, 

∂x1 
− 

∂x2 

This vector function is called the Curl  of the vector function →y : 

Curl →y = �→ × →y. 
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1 2 1 2 

1 2 1 2 

f1 + f2 f1 + f2 

2 2 2 

2.5.1 The Gradient 

 
Definition 2.5.9 The gradient of f (x, y) at a point (a, b), Gradf (x, y)|(a,b) 
is a vector of magnitude 

 
f (a, b)2 + f (a, b)2

   1   

in the direction ξ , defined 
1 2 2 α1 

by the equations 
 

sin α =
 f2 

, cos α 
 

 

=
 f1  

 
 

(2.4) 

1 q

f 2 + f 2 
1 q

f 2 + f 2 
sin α2 = −

 f2 , cos α2 = −
 f1 

 
 

  

(2.5) 

q

f 2 + f 2 
q

f 2 + f 2 

Example 2.5.3 Find Grad f (x, y)|(1,3) for the function 

f (x, y) = x2 − xy + y2. 

 
Solution: Consider f (x, y) = x2 − xy + y2. 

f1(x, y) = 2x − y, f2(x, y) = −x + 2y. 

The magnitude of Grad f (x, y)|(1,3) is 

1 
2 2 1 √   

 
 

(f1(1, 3)  + f2(1, 3) ) 2 = (1 + 25) 2  = 26. 
 

The direction ξα1 of Grad f (x, y)|(1,3) is 

 sin =
 f2 

= 
  5  

, cos α 
 

  

=
 f1 

= −
 1  

.
 

 α1 q 
2

 

2 
√

26 
1 q 

2 2 
√

26 

Example 2.5.4 Find the Grad f (x, y)|(3,4) for the function f (x, y) = x2 + 

y2. 

Solution: Given 

 

 

f (x, y) = x2 + y2 

f1(x, y) = 2x, f2(x, y) = 2y 

The magnitude of ( ) =
 

(3 4) + (3 4)
 1

 

    

 

Grad f x, y |(3,4) 1 2 
1 

, f , f 
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= (36 + 64) 2 = 10. 
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⇒ 
0 π 

f1 + f2 f1 + f2 

1 2 1 2 

1 2 1 2 

The direction ξα1 of Grad f (x, y)|(3,4) is 

 
sin =

 f2 
= 

4 
, cos α 

 
 

=
 f1 

= 
3 

.
 

 

α1 q 
2 2 5 

1 q 
2 2 5 

 

 

Theorem 2.5.3 

 
1. f (x, y) ∈ C1 

2. f1(a, b)2 + f2(a, b)2 0 

 
∂f 2 2  1 ∂f 

 
  max 

≤α≤2 ∂ξα |(a,b) = (f1(a, b) + f2(a, b) ) 2   = 
∂ξα 

|(a,b), 

where ξα1 is the direction of Grad f (x, y)|(a,b) defined by equation (2.4) and 

(2.5). 

 
Proof: Since f (x, y) ∈ C1, 

 

∂f 
 

 

∂ξα 
= f1(x, y) cos α + f2(x, y) sin α. 

 

For a fixed point (a, b), we determine the direction ξα which will make  
∂f

 
∂ξα 

a maximum. 

Let F (α) = f1(a, b) cos α + f2(a, b) sin α. 

Then F (α) will have a maximum or minimum when F �(α) = 0. 

So 

−f1 sin α + f2 cos α = 0. 

Case (i). If f1 and f2 are not both zero. 

Then the above equation will have just two distinct solutions α1 and α2 

between θ and 2π determined by the equations 
 

sin α =
 f2 , cos α 

 
 

=
 f1  

 

1 q

f 2 + f 2 
1 q

f 2 + f 2 sin α2 = −
 f2 , cos α2 = −

 f1 
 

 

q

f 2 + f 2 
q

f 2 + f 2 
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f 2 + f 2 f 2 + f 2 
1 2 

∂ξα2 
1 2 

For these directions, we have 

  ∂f f1.f1 
q 

f2.f2 
q = 

q

f 2 + f 2 

 
and 

1 2 1 2 

∂f  
= 

q

f 2 + f 2. 
 

Hence 
∂f

 
∂ξα 

is maximum in the direction ξα1 , and is minimum in the 

direction ξα2 . 

Here α1 and α2 differ by π. 

Case (ii). If f1 = f2 = 0, 

Then the maximum and minimum values of 
∂f

 
∂ξα 

 
 
 

are both zero,since the 

directional derivative is constantly zero. Q 

 
Summary 

• A function f (x, y) is homogeneous of degree n in a region R ⇐⇒ for 

(x, y) in R and for every positive value of λ,  f (λx, λy) = λnf (x, y), 

the number n is positive, negative and need not be an integer 

• Euler’s theorem : 

1. f (x, y) ∈ C1, (x, y) in R 

2. f (x, y) is homogeneous of degree n in R. 
 

⇒ f1(x, y)x + f2(x, y)y = nf (x, y), (x, y) in R 

• Let x = φ(t), y = ψ(t) define two functions for t, t0 < t < t1. Then 

the pair (x, y) define a  corresponding  region  R  in  the  xy− plane. 

Let u be the function of x and y defined on the region R such that 

u = f (x, y) and x = φ(t), y = ψ(t), for t0 ≤ t ≤ t1. 

Now u may vary because of variations in t and 
du

 
dt 

at a point, if it 

exists, is called the total derivative of u with respect to t 
 

• Let u = f (x, y) be a function of C1, where x and y are independent 

variables. Form the following function of four variables: 

φ(x, y, r, s) = f1(x, y)r + f2(x, y)s. 

= + 
∂ξα1 
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• ∈ ⇒ 

1 

3 

∈ 

1 2 1 2 

1.  The function f (x, y) = x 3 y 3 tan 

If r = ∆x, s = ∆y are variables whose range is a neighborhood of 

r = 0, s = 0, then the differential du of u, is defined as φ(x, y, ∆x, ∆y) : 

 
du = φ(x, y, ∆x, ∆y) = f1(x, y)∆x + f2(x, y)∆y 

 
• There is associated with each point (x, y), where f ∈ C1, a differential 

which itself is a linear function of two variables ∆x, ∆y. 

• The directional derivative of f (x, y) in the direction ξα at (a, b) is 

∂f 
|( ) = lim f (a + ∆s cos α, b + ∆s sin α) − f (a, b) 

.
 

∂ξα a,b 
∆s→0 ∆s 

 

f (x, y) C1 
∂f

 
∂ξα 

= f1(x, y) cos α + f2(x, y) sin α. 

• The gradient of f (x, y) at a point (a, b), Grad f (x, y)|(a,b) is a vector 
of magnitude 

  
f  (a, b)2 + f  (a, b)2

   1    

in the direction ξ , defined by 
1 2 2 α1 

the equations 
 

sin α =
 f2 , cos α 

 
 

=
 f1  

 

1 q

f 2 + f 2 
1 q

f 2 + f 2 sin α2 = −
 f2 

, cos α2 = −
 f1 

 
 

q

f 2 + f 2 
q

f 2 + f 2 
1 2 

 
Multiple Choice questions. 

 
1   − 4 

1 2 

 
 

 
−1 

  
y 
  

a) 
3 

b) 

x 

−4 
c) − 1 

2. Suppose u is a function of x and y where y is itself a function of x 

then 

(a) 
du 

= 
∂u 

+ 
∂u

. 
dy 

dx ∂x ∂y dx 

(b) 
du 

= 
∂u 

+ 
∂u

. 
dy 

dx ∂y ∂x dx 

(c) 
du 

= 
∂u

. 
dy 

dx ∂y dx 

3. If f (x, y) C1 then 
 ∂f  

is 
∂ξα 

(a) f1(x, y) + f2(x, y) 

is homogeneous of degree. 
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y y2 

y2 y 

(b) f1(x, y) cos α + f2(x, y) sin α 

(c) f1(x, y) sin α + f2(x, y) cos α 

 
4. What is the magnitude of the gradient of f (x, y) at a point (a, b) 

 

2 2  1 

(a)  (f1(a, b)  + f2(a, b) ) 2 

(b)  (f1(a, b)2 + f2(a, b)2) 

(c)  (f1(a, b) + f2(a, b)) 

 
5. The directional derivatives describes 

 

(a) 
The rate of change of a function in the direction of each coordi- 

nate axes. 

(b) 
The rate of change of a function in an arbitrary direction. 

(c) 
The rate of change of a function in fixed direction. 

6. If u = f (x, y) = 
x

, then the value of du is 
y 

(a) 
∆x 

−
 x∆y 

(b) 
∆x − x∆y 

(c) 
∆x 

−
 x∆y 

 

Ans: 1. (c) 2. (a) 3. (b) 4. (a) 5. (b) 6. (a) 
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3 

2 

x 
1 − 4 

x 

xy −  
( 2

 

 .
+ )

 

− 

∈ 

x 3 ey 

x y 

2 

Exercises 2 

 
1. Define homogeneous function of degree n. 

2. Which of the following functions are homogeneous ? Also find its 

degree . 

a) 
√

x − 
√

y 

b) log y − log x 

c)
 
x3 + y3

 2

 

 
  

d) 
h
 x+y + 

2     x i 
y− 5 

e) xf
  y  

+ yg 
 
 x 
 

 

Ans: a)  n = 1 , b)  n = 0, c)  n = 2, d) no, e) n=1. 

 
3. State and prove Euler’s theorem and its converse. 

 
4. Verify Euler’s theorem for 

(i) f (x, y) = 3 + log 

 
 y 

  

. 

(ii) f (x, y) = x 3 y 3 tan −1 
  y   . 

 

5. Explain the concept of total derivatives. 

6. If u = x log(xy) where x3 + y3 + 3xy = 1, find 
du

. 
dx 

Ans: 1 + log( ) 
x(x   + y)

 
y y x 

7. If u = emx
(y �), y = m sin x and � = cos x, find

 du
. 

dx 

Ans: emx
(m2 + 1) sin x. 

 
8. Explain the meaning of differential. 

 
9. Define (i) directional derivative, (ii) gradient. 

 

10. If f (x, y) C1 prove that
 ∂f

 
∂ξα 

= f1(x, y) cos α + f2(x, y) sin α. 

11. If 

 

(a) f (x, y) ∈ C1 

(b) f1(a, b)2 + f2(a, b)2 /= 0 

xy 
3 



55  

prove that 
 

∂f 2 2  1 ∂f 
 

  max 
0≤α≤2π ∂ξα |(a,b) = (f1(a, b) + f2(a, b) ) 2   = 

∂ξα 
|(a,b), 

where ξα1  is the direction of Grad f (x, y)|(a,b) 
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BLOCK II 

 
Implicit Functions and 

Inverse Functions 
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Learning Outcomes : 

 
Upon completion of this unit, students will acquire knowledge 

 

F To understand the notation of Jacobian. 

F To distinguish between dependent and independent variables. 

F To find inverse of a transformation. 

F To find the relationship between Jacobians of a transformation and its 

inverse 

F To use the change of variable property of Jacobians. 

 
 
 
 
 
 

 

Unit 3 

 
Jacobians 

 
 
 
 

 

 
 

In this unit we discuss the method of finding the derivatives of the solutions 

of the system of equations, assumed to exist. We can use Cramer’s rule for 

solving simultaneous linear equations. 

In solving simultaneous equations we may come across determinants whose 

elements are partial derivatives. If the order of the determinants is higher 

than two it is worth having a notation for them. Hence the Jacobians were 
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. .3. ∆ =

  /= 0 
G G 

. . . . 

. . . . 

G G G G 
2 

∆ 
2 

∆ 

introduced. 

 

 
3.1 Jacobians 

 
Theorem 3.1.1 

 
1. F (u, v, x, y), G(u, v, x, y), f (x, y), g(x, y) ∈ C1 

2.  F (f (x, y), g(x, y), x, y) ≡ 0, G(f (x, y), g(x, y), x, y) ≡ 0 

F1 F2 

.  1 2. 

 

 

F3 F2 

⇒ f  = −
.G3 G2. 

, g 
 

 

F1 F3 

= −
.G1 G3. 

,
 

 
 

1 
∆ 

1 

F4 F2 

∆ 

F1 F4 
 

f  = −
.  4 2. 

, g  = −
.  1 4. 

, 
 
 

Proof: Consider F (f (x, y), g(x, y), x, y) ≡ 0, G(f (x, y), g(x, y), x, y) ≡ 0. 

Differentiating partially with respect to x we have 

 
F1(f (x, y), g(x, y), x, y)f1(x, y) + F2(f (x, y), g(x, y), x, y)g1(x, y) 

+ F3(f (x, y), g(x, y), x, y) = 0 

 
and 

 
G1(f (x, y), g(x, y), x, y)f1(x, y) + G2(f (x, y), g(x, y), x, y)g1(x, y) 

+ G3(f (x, y), g(x, y), x, y) = 0. 

 
We can solve the following equations for f1 and g1 by Cramer’s rule. 

 
F1f1 + F2g1 + F3 = 0 

and G1f1 + G2g1 + G3 = 0 
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. .
∆ =  =

 − 
G G 

G G 

. . 

. . 

.  .1

 3 

. . 

G G G G 

.

. 

.

.

 .

. 

.

.

 

= 

.

.    

.

. .G

 G G1  3 

  6 

Then f1 = 
∆1 

, where ∆1 = 
.−F3 F2 . 

= − 
.F3 F2 . 

. 

g1 = 
∆2 , where ∆2 = 

.F1 −F3 . 
= − 

.F1 F3 . . 

1 
∆ 

1 
∆ 

2 
∆ 

0 

Given that,  

F1 F2 
F1G2 F2G1 . 

.  1 2. 

 

 

   ∆ 
.−G3 G2. . 3 2. 

 

∆ G1 −G3 

F3 F2 
− 

 

G G 

F1 F3 
− 

Hence f  = − 
.  3 2. 

, g  = − 
.  1 3. 

.
 

Similarly considering 

F (f (x, y), g(x, y), x, y) ≡ 0, G(f (x, y), g(x, y), x, y) ≡ 0. 

Differentiating partially with respect to y we have 

 
F1f2 + F2g2 + F4 = 0 

G1f2 + G2g2 + G4 = 0. 

 
Solving for f2 and g2 by Cramer’s rule we have 

 
f = − 

F4 F2 
− 

G4 G2 

, g 

F1 F4 
− 

G1 G4 

= − . Q 

 

The notation for jacobian is illustrated below: 

 
Illustration 1: 

Consider three functions F, G, H of six variables u, v, w, x, y, � appearing in 

that order. The Jacobian of F, G, H with respect to u, w, � is 

   F1 F3 F6 

∂(F, G, H) 
(u, w, �) 

. . 

.H1 H3 H6. 

∆ 
2 

∂ 
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. . 

. . 

. . 

. . 

.

. 

.

.

 

− − − 

∂(G, F, K, H) 
=  

F3 F4 F6 F1  
.
 

. 
G G 

. 

Illustration 2: 

Suppose we add a fourth function K of the same six variables then 

 

   G3 G4 G6 G1 
 

 
∂(w, x, �, u) 

 
K3 K4 K6 K1 

.H3 H4 H6 H1. 
 

Remark 1: Jacobians are often prove useful in obtaining partial derivatives 

of implicit functions. We could express the results of theorem 2.4.1 in 

Jacobian notation. 

Consider F (u, v, x, y) = 0, G(u, v, x, y) = 0, u = f (x, y) and v = g(x, y). 
 

F3 F2  
   − . . 

 
 Then f 

= 
∂u 

=
 

 

 

.  3 2. 
, where 

.F1 F2 . 
0. 

F1 F2 

G1 G2 
 

In Jocobian notation we have, 

.  1 2. 

 
∂(F, G) 

 

 

 
Similarly 

 

 

 

 

∂(F, G) 

f1 = 
∂u 

=
 

∂x 

− 
∂(x, v) 

∂(F, G)  
,
 

 
 

∂(u, v) 

 

∂(F, G) 

 

 

 

 

∂(F, G) 

f2 = 
∂u 

∂y 

− 
∂(y, v) 

∂(F, G) 
 

 

∂(u, v) 

, g1 = 
∂v 

=
 

∂x 

− 
∂(u, x) 

∂(F, G) 
 

 

∂(u, v) 

and g2 = 
∂v

 
∂y 

− 
∂(u, y) 

∂(F, G) 
.
 

 
 

∂(u, v) 

Remark 2: We now express the results of theorem 3.1.1 using the same 

rule. We have considered the function F (x, y, �) = 0, where � = f (x, y). 

f1 = − 
F1 , f2 = − 

F2 , where F3 /= 0. 
F3 F3 

∂F ∂F 
 

That is f1 = 
∂�

 
∂x 

 

= ∂x 
∂F 

 

 

and f2 = 
∂� 

= 
∂y

 
∂y ∂F 

 

Illustration 3: Consi
∂

d
�
er the system 

∂� 

F (u, v, w, x) = 0, G(u, v, w, x) = 0, H(u, v, w, x) = 0. 

∂x 

1 

G G 

. . 

= = 
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∂(u, v, w) 

where 0 

Let u, v, w be the dependent variables and x is the independent variable. 

Since there is single independent variable, the method gives us the total 

derivatives 
du

, 
dv 

, 
dw

. dx dx  dx 

We have, for 
∂(F, G, H) 

/= 0, 

∂(F, G, H) 

du 
= 

− 
∂(x, v, w) 

,
 

dx ∂(F, G, H) 
 

∂(u, v, w) 

 
∂(F, G, H) 

dv 
= 

− 
∂(u, x, w) 

,
 

dx ∂(F, G, H) 
 

∂(u, v, w) 

∂(F, G, H) 

dw 
= 

−
 
 

 

∂(u, v, x) . 
 

 

dx ∂(F, G, H) 

∂(u, v, w) 

Illustration 4: Consider the system 

 

 

 

 

 

 

 

 
 

then 

F (u, v, w, x, y, �) = 0 

F (u, v, w, x, y, �) = 0 

F (u, v, w, x, y, �) = 0 

F (u, v, w, x, y, �) = 0 

and let u, v, w,x be the dependent variables. 

 

∂(F, G, H, K) 

∂x 
= 

− 
∂(u, v, w, �) ∂(F, G, H, K) , . 

∂� ∂(F, G, H, K) 
 

∂(u, v, w, x) 

∂(u, v, w, x) 

Remark : We can observe that the number of dependent variables is equal 

to number of simultaneous equations. 

The following results concerning Jacobians are found to be useful in the 

problems of change of variable. 

Illustration 5: 

Let f (u, v, w, x, y, �) = 0, g(u, v, w, x, y, �) = 0, h(u, v, w, x, y, �) = 0. The 



60  

.
2u −1 . 

.

. 

.

.

 

1   −4v 

. . 

. . 

1 − 8uv 

above equations define three functions u, v, w of the variables x, y, �. Then 
 

∂u ∂v ∂w 
f1 

∂x 
+ f2 

∂x 
+ f3 

∂x 
= −f4. 

∂u ∂v ∂w 
g1 

∂x 
+ g2 

∂x 
+ g3 

∂x 
= −g4. 

∂u ∂v ∂w 
h1 

∂x 
+ h2 

∂x 
+ h3 

∂x 
= −h4. 

Solving these linear equations, we obtain 

 
∂u  

= − 
∂(f, g, h) 

.
 1 

∂x ∂(x, v, w)  ∆ 

∂v  
= − 

∂(f, g, h) 
.
 1 

∂x ∂(u, x, w)  ∆ 

∂w  
= − 

∂(f, g, h) 
.
 1 where ∆ =  

∂(f, g, h) 
0. 

∂x ∂(u, v, x) ∆ ∂(u, v, w) 
 

 

 

Example 3.1.1 If u2−v = 3x+y and u−2v2 = x−2y, find 
∂u

, 
∂v 

, 
∂u

, 
∂v 

. 

 
Solution: The given equations are 

F (u, v, x, y) = u2 − v − 3x − y = 0, 

G(u, v, x, y) = u − 2v2 − x + 2y = 0. 

∂x  ∂x  ∂y   ∂y 

 

Then we have  
∂(F, G) 

∂u 
= 

− 
∂(x, v) 

 
 

∂x ∂(F, G) 
 

∂(u, v) 

F3 F2 
− 

G3 G2 

= 

F1 F2 

.G1 G2. 

− 
.−3 −1 . 

= .
.− . 

      1 −4v 

= 
1 − 12v 

, 1 − 8uv 0. 
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.

. 

.

.

 

. . 

1 −1 

1 − 8uv 

∂(F, G) 

∂v 
= 

− 
∂(u, x) 

∂x ∂(F, G) 
 

∂(u, v) 

F1 F3 
− 

G1 G3 

= 

F1 F2 

.G1 G2. 

 

 

 

 

− 
.2u    −3. 

.

2

.

u −1 

.

 

. 1 −4v. 

=  
2u − 3 

, 1 − 8uv 0. 
 

 

Similarly we can find 
∂u 

= 
−2 − 4v 

, 
∂v 

= 
−4u − 1 

, 1 − 8uv 0. 

∂y 1 − 8uv ∂y 1 − 8uv 
 
 
 

 

3.2 Dependent and independent variables 

 
In the statement of a given problem involving several variables, it is 

not always possible to determine from the notation which variables are 

intended to be independent and which dependent. One must then state 

clearly which variables are dependent and which variables are independent 

or else one must treat all possible cases. 

If a partial derivative, such as 
∂y 

,  appears in the statement of a prob- 
∂x 

lem, we may be sure that one of the dependent variables is y and one of 

the independent variables is x. We shall illustrate by use of a number of 

examples. 

= 
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− / 

3.2.1 Illustration 1: 

Find 
∂u 

if 
∂x 

 
 
 

u = f (x, y), 

y = g(x, �). 

 

Here u is the dependent variable and x is the independent variable. 

We can have only two cases, since there must be two dependent variables 

corresponding to the two equations. 

 
Case (i). 

Dependent variables : u, � 

Independent variables : x, y 

Differentiating 

u = f (x, y) 

y = g(x, �) 

partially with respect to x, we have 

∂u 
= f1, 0 = g1 + g2 

∂� 
. 

 
(3.1) 

 
So, we get 

∂x ∂x 
 
 

∂u 
= f1, 

∂x 

 

 
Case (ii). 

∂� 

∂x 
= 

g1 , where g2 = 0. 
g2 

Dependent variables : u, y 

Independent variables : x, � 

Differentiating (2.4) partially with respect to x, we have 

∂u 
= f1 + f2 

∂y 
, 

∂x ∂x 

∂y 
= g1. 

∂x 

Hence 
∂u 

= f1 + f2g1, 
∂y 

= g1. 
∂x ∂x 
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Sometimes, we can use the following notations to distinguish between such 

cases: 

Case (i). 
∂ux,y 

, 
∂�x,y 

. 
∂x ∂x 

 

Case (ii). 
∂ux,� 

, 
∂yx,� 

. 
∂x ∂x 

The independent variables are used as subscripts against the dependent 

ones. 

 
 

3.2.2 Illustration 2: 

 
Consider u = f (x, y), y = g(x, �). 

Find 
∂u

. 
∂y 

Case (i). 
∂uy,� 

, 
∂xy,� 

. 
∂y ∂y 

 

 
∂u 

= f1 
∂x 

+ f2, 
∂y ∂y 

1 = g1 
∂x

 
∂y 

∂uy,� 

∂y 

∂xy,� 

∂y 

= f2 + 
f1 , 
g1 

= 
 1 

, where g1 0. 
g1 

 

Case (ii). 
∂uy,x , 

∂�y,x . 
∂y ∂y 

In this case the two equations are independent of each other. The first 

equation defines u and the second equation defines �. 

∂uy,� = f2, 
∂�y,x  

= 
 1 

, g2 0. 
∂y ∂y g2 

 

 

3.2.3 Illustration 3: 

 

Find 
∂y 

, if 
∂x 

v = f (x, y, �), x = g(y, u, v). 
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Case (i). 
∂yx,u,v 

. 
∂x 

The second equation alone is sufficient. 

 

1 = g1 
∂y 

⇒ 
∂y 

= 
 1 

, g1 /= 0. 
∂x ∂x g1 

Case (ii). 
∂yx,�,v

 

∂x 

The first equation alone is sufficient 
 

f1 + f2 
∂y 

= 0 
∂x 

 

∂y f1 
 

⇒ 
∂x 

= − 
f2 

, f2 0. 

Case (iii). 
∂yx,�,u

 

∂x 

Both equations are necessary 
 

∂y ∂v ∂y ∂v 

 
 

Then 

f2 
∂x 

− 
∂x 

= −f1, g1 
∂x 

+ g3 
∂x 

= 1 

∂yx,�,u  
= 

 1 − f1g3 
, g1 + f2g3 0. 

∂x g1 + f2g3 
 

 

3.3 The inverse of a transformation 

 
A set of equations of the form 

 
u = f (x, y, �), v = g(x, y, �), w = h(x, y, �) 

 
is known as a transformation. These equations transforms a point with co- 

ordinates (x, y, �) into another with coordinates (u, v, w). If these equations 

can be solved for x, y, �, we have three functions of u, v, w. The three cor- 

responding equations constitute the inverse of the original transformation. 

They would give explicitly the point or points (x, y, �) from which (u, v, w) 

could have come in the original transformation. 

By using the following method we obtain the derivatives of x, y, � with re- 

spect to u, v, w without actually knowing the inverse transformation. 
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= 

f1 f f2  

 3 

. . 

. . 

Let 

 

 

 

 

 
 

Now 

 
F (u, v, w, x, y, �) = u − f (x, y, �). 

G(u, v, w, x, y, �) = v − g(x, y, �). 

H(u, v, w, x, y, �) = w − h(x, y, �). 

 
∂(F, G, H) 

∂y 
− 

∂(x, w, �) 
 

∂w ∂(F, G, H) 

∂(x, y, �) 

 

f1 0 f3 

g1 0 g3 

=  
.h1 1  h3. 

.

g1 g2 g3

.

 
.

h1 h2 h3

.

 

∂(f, g) 

= 

− 
∂(x, �) 

, where 
∂(f, g, h) 

0.
 

∂(f, g, h) 
 

 

∂(x, y, �) 

∂(x, y, �) 

 

 

Example 3.3.1 If x = 4u + 3v, y = 3u + 2v, find 
∂u

 
∂y 

and 
∂v

.  
∂y 

 

Solution: 

Method (i). Instead of using the above formula, we can find the partial 

derivative by direct method. 

Differentiating the above equations partially with respect to y we have, 

0 = 4 
∂u 

+ 3 
∂v

,  
∂y ∂y 

 

1 = 3 
∂u 

+ 2 
∂v

 
∂y ∂y 

Solving for 
∂u

, we have 
∂y 

8 
∂u 

+ 6 
∂v 

= 0, 
∂y ∂y 
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− 

∂y ∂y 

∂y ∂y ∂y ∂y 

∂y ∂y ∂y ∂y 

9 
∂u 

+ 6 
∂v 

= 3 

 
So 

 

 
Solving for 

∂v
, we have 

∂y 

∂y ∂y 
 

 
∂u 

= 3. 
∂y 

∂v 
= 4. 

∂y 

Method (ii). To find the partial derivative by finding the inverse trans- 

formation 

x = 4u + 3v 

⇒ 4u = x − 3v 

and y = 3u + 2v 

⇒ 2v = y − 3u. 

So 

4u = x − 3 

  
y −

2

3u 
 

 

= x − 
3y 

+ 
9u 

2 2 
−u 

= 
2x − 3y 

2 2 

 
 

and 

⇒ u = −2x + 3y 

y 3 

v = 
2 

− 
2 

(−2x + 3y) = 3x − 4y. 

Then 
∂u 

= 3 and 
∂v 

= −4. 
 

Example 3.3.2 If F (u, v, g(u, v, x)) = 0, G(u, v, h(u, v, y)) = 0, find  
∂u

. 
∂y 

 

Solution: Differentiating the above equations partially with respect y, we 

have 

F1 
∂u 

+ F2 
∂v 

+ F3 

 

g1 
∂u 

+ g2 
∂v 

  

= 0. 

G1 
∂u 

+ G2 
∂v 

+ G3 

 

h1 
∂u 

+ h2 
∂v 

+ h3

  

= 0. 
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. . 

( ) 

( ) 

. . 

∂y ∂y 

∂u J 

∂v J 

That is  
(F1 + F3g1) 

∂u 
+ (F2 + F3g2) 

∂v  
= 0. 

∂y ∂y 

(G1 + G3h1) 
∂u 

+ (G2 + G3h2) 
∂v  

= −G3h3. 
 

To find 
∂u

 
∂y 

we must solve the above equations.  This will be possible if 

F1 + F3g1 F2 + F3g2 
0.

 

.G1 + G3h1 G2 + G3h2. 

 

3.4 Relationship between Jacobians of a transfor- 

mation and its inverse 

 

Result 1: Consider the transformation 

u = f (x, y)  

v = g(x, y)  

 

 
(3.2) 

with Jacobian J  =  
∂(u, v)

 
∂ x, v /= 0. The inverse of the transformation (3.2) 

have the Jacobian j = 
∂(x, y) 

. 
∂ u, v 

We now find the relationship between the Jacobian of the given transfor- 

mation (3.2) and its inverse. Computing the derivatives,we have 

∂x 
= 

g2 
,
 

∂u J 
∂y 

= − 
g1 

,
 

∂x 
= −

−f2 
,
 

∂y 
= 

f1 
.
 

 
So that 

∂v J 

j = 
. g2 −g1. 

.
 1 

=  
J  

= 
1 

 

 

 
Hence 

J2 

−f2 f1 

J.j = 1. 

J2 J 

∂(u, v) ∂(x, y) 

∂(x, y) ∂(u, v) 
= 1. 
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. . 

. . 

. . 

h h 

K 

. . . . . . 

JK  = . =   0 = J0 

. 

K 

( ) 

For example, the co-factor of g3 is G3, G3 = − 
. . . 
f f1  

 2 

with similar equations for the 

The above can be generalized to three functions. 

Result 2: Consider the transformation 
 

 

u = f (x, y, �) 

v = g(x, y, �), J = 

and w = h(x, y, �) 

 
∂(u, v, w) 

 

 

∂(x, y, �) 

 

, j = 

 
∂(x, y, �) 

 

 

∂(u, v, w) 

 

f1 f2 f3 

For the determinant J = g1 g2 g3 , 

.h1 h2 h3. 
. .

 

F1 F2 F3 

the determinant of co-factors is given by K = 
.

G1 G2 G3 

. 

. 

H1 H2 H3 
 

 

         
 

    

.  1 2. 
 

∂u J ∂u J ∂u J 
derivatives with respect to v and w. 

Then 
 

 

 

But 

j = 
J3 

. 

 

f1 f2 f3 F1 F2 F3 J 0 0 

3 
.g1 g2 g3.  .G1 G2 G3. . J . 

h1 h2 h3 
 

we have JK = J3 

JK = . 
j 

H1 H2 H3 0 0 J 

 

so that Jj = 1. 

 
Example 3.4.1 If x = r cos θ, y = r sin θ, find 

∂(r, θ) 
. 

∂ x, y 

= 
F3 

=  
F2 

, 
∂� 

=  
F1 

, 
∂y Then 

∂x
 

. . . . . 
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( ∂y) . 

. . 

.
= 

∂u 
.

.

 

. 

=  ∂r 
∂ r, θ . 

∂θ 
∂y 

= 
.v − vw u − uw −uv. 

Solution: 

x = r cos θ, y = r sin θ 

 
∂(x, y) 

∂x ∂x 
. . 

 

. 

. 
∂r ∂θ 

. 

.
 

 

 

 

 
 

we have, 

= 
cos θ −r sin θ 

.

sin θ r cos θ 
.

 

= r(cos2 θ + sin2 θ) 

= r 

 

 
Hence, 

∂(x, y) 
 

 

∂(r, θ) 

∂(r, θ) 
. 
∂(x, y) 

∂(r, θ) 

∂(x, y) 
= 

1 
. 

r 
 
 

 

Example 3.4.2 If u = x + y + �, uv = y + �, uvw  = �, then show that 
∂(u, v, w) 

= 
 1  

.
 

∂(x, y, �) u2v 
 

Solution: Given that u = x + y + �, uv = y + �, uvw = � 

 
u = x + y + � 

= x + uv 

⇒ x = u − uv 

y = uv − � 

y = uv − uvw 

∂x ∂x ∂x 
. . 

 
∂(x, y, �) 
∂(u, v, w) ∂u ∂y 

. ∂� 

. 

∂v ∂y 
∂v 
∂� 
∂v 

∂w ∂y 
∂w 
∂� 

∂w 
. 

. 
1 − v −u 0 . . 

 

vw uw uv 

   

∂u 

= 1 

. 
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2 

y 

( ∂y) 

. . 

= −  
u
2 

.

.=

 .

.

 

1 u 

= (1 − v)(u2v − u2vw + u2vw) + u(v2u − v2uw + uv2w) 

= (1 − v)u2v + u2v2 

= u2v2 

Since 
∂(u, v, w) 

. 
∂(x, y, �) = 1, 

∂(x, y, �) ∂(u, v, w) 

 
we have 

∂(u, v, w) 
= 

 1  
.
 

∂(x, y, �) u2v 
 
 
 

Example 3.4.3 If x = uv, y = 
u

, prove that 
∂(x, y) 

. 
∂(u, v) 

= 1. 

v ∂(u, v) ∂(x, y) 

 

Solution:  
x = uv, y = 

u
 

v 

⇒ xy = u 

⇒ u = 
√

xy = (xy) 
1

 

Also 
y 

=  
1

 
x v2 

 
 

Now 

⇒ v = 

r 
x

 

∂(x, y) 
∂x ∂x 

. . 
 
 
= ∂u 

∂ u, v 
∂u 

. 

∂v 
∂y 

∂v 
.

.
 

v u 
. . 
. 
v 

− 
v2 . 

v 

 ∂(u, v) 

∂(x, y) 

∂u 
∂x 
∂v 

. ∂x 

∂u 
∂y 
∂v 
∂y . 

 

 

√
y 

√
x

 . . 

2
√

x 2
√

y = 
.  √ . 

 
 

  

1 1 x 1 
. 
2 

− .   . .  √xy 2 
√

y y . 

2 

= 
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− 
4
 

− 
2
 

( ) 

. .
= 

 =
 

f φ  + f ψ g φ + g ψ 

∂(r, θ) 

y x . . 

2u 

= 
.  

1

 

. 
2

 

2u 

x  

. 

− 
2 

. .  vy vy2 . 
 

= 
2x 
uvy 

= 
x 

xy 
 1 

2y 

∂(x, y) 
. 
∂(u, v) 

= − 
2u 

  

−
 1 

 
 

∂(u, v) ∂(x, y) v 2y 

= 
y 

y 

= 1. 
 
 
 

3.5 Change of Variable 
 

 
If 

 

 
and 

 

 
u = f (x, y), v = g(x, y) 

 

 
x = φ(r, s), y = ψ(r, s), 

 

then u and v may be regarded as functions of r and s. 

We compute the Jacobian 
∂(u, v) 

. 
∂ r, s 

Direct computation gives 

 
∂(u, v) f1φ1 + f2ψ1 g1φ1 + g2ψ1 ∂(u, v) ∂(x, y) 

∂(r, s) . 1   2 2   2 1   2 2   2. 
∂(x, y) ∂(r, s) 

 

This result is analogous with the formula for the differentiation of a com- 

posite function of one variable. It generalizes easily to functions of more 

variables. 

Example 3.5.1 Find the value of the Jacobian  
∂(u, v) 

, where u = x2 − 

y2, v = 2xy and x = r cos θ, y = r sin θ. 

= − 

. 
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. . 

( ∂y) 
∂θ  = 

. . 

( ) = 

( ) = 

∂v 
. ∂x 

∂v 

∂y . 

=  ∂r 
∂ r, θ . ∂y . . . 

2y 2x 

Solution:  
u = x2 − y2,  v  = 2xy 

x = r cos θ, y = r sin θ 

  ( ) 
 

 

∂u ∂u 
. . 

 

  

.2x   −2y. 

 

∂ u, v  
= .

 
. = . . 

 

= 4(x2 + y2) = 4r2 

 
∂(x, y) 

∂x ∂x 
. . 

 
  

.cos θ −r sin θ. 

. 
∂r ∂θ 

.
 

sin θ r cos θ 

= r cos2 θ + r sin2 θ = r. 

Then 
∂(u, v) 

= 
∂(u, v) 

. 
∂(x, y) 

 

 

 
Summary 

∂(r, θ) ∂(x, y) 

= 4r2.r 

= 4r3. 

∂(r, θ) 

 

• If 

1. f (x, y), F (x, y, �) ∈ C1 

2.  F (x, y, f (x, y)) ≡ 0, (x, y) in D and 

3. F3(x, y, f (x, y)) /= 0,  (x, y) in D 

 

F1(x, y, f (x, y)) 
⇒ f1  x, y − 

F3(x, y, f (x, y)) 

F2(x, y, f (x, y)) 
f2  x, y − 

F3(x, y, f (x, y)) 

• Jacobian is a determinant whose constituents are the derivatives of 

a number of functions with respect to each of the same number of 

variables 

 
• Jacobians are useful in obtaining partial derivatives of implicit func- 

tions 

∂y ∂x 
∂(x, y) 
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= 

.

.   

.

.G

 G  G1  3 

  6 

. . 

• Jacobian of three functions F, G, H of six variables u, v, w, x, y, � ap- 

proaches in that order, respect to u, w, � is 

   F1 F3 F6 

∂(F, G, H) 
(u, w, �) 

. . 
H1 H3 H6 

 

• In the statement of a given problem involving several variables, it is 

not always possible to determine from the notation which variables 

are intended to be independent and which dependent. We must state 

clearly which variables are dependent and which are independent or 

else one must treat all possible cases. 

• A set of equations of the form u =  f (x, y, �), v  =  g(x, y, �), w  = 

h(x, y, �) transforms a point with coordinates (x, y, �)  into  another 

with coordinates (u, v, w). If these equations can be solved for x, y, � 

we have three functions of u, v, w. The three corresponding equations 

constitute the inverse of the original transformation. 

 
• The relationship between the Jacobians J and j of a transformations 

and its inverse is J.j = 1. 

• Change of variable 

If u =  f (x, y), v  =  g(x, y) and x  =  φ(r, s), y  =  ψ(r, s) we have 

∂(u, v) 
= 

∂(u, v) 
. 
∂(x, y) 

∂(r, s) ∂(x, y)  ∂(r, s) 
 

Multiple Choice questions 

 

1. The relationship between the Jacobians J and j of a transformation 

and its inverse is 

a) J − j = 1 b) J + j = 1 c) Jj = 1 
 

 

2. In the notation
 ∂ux,y

 

∂x 
what does the subscripts represents 

a) x and y are dependent variables 

∂ 
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∂(x, y) 

( ) 

(a) = −4 

( ) 

b) x and y are independent variables 

c) x is dependent variable and y is independent variable 

3. If u and v are functions of x and y while x and y are functions of r 

and s, then which of the following is an example of a chain rule for 

Jacobians. 

a) 
∂(u, v) 

= 
∂(u, v) 

. 
∂(x, y) 

∂(r, s) ∂(x, y)  ∂(r, s) 

b)  
∂(x, y) 

= 
∂(u, v) 

. 
∂(x, y) 

∂(u, v) ∂(x, y)  ∂(r, s) 

c) Both (a) and (b) 

4. If u and v are functions of x and y such that
 ∂(u, v) 

= −4 then 
 

∂(x, y) 

∂(u, v) 

(b) 
∂(x, y) 

= 4
 

∂ u, v 

(c)  
∂(x, y) 

= − 
1 

∂(u, v) 4 

5. If x = eu cos v, y = eu sin u then the value of
 ∂(x, y)

 
∂ u, v 

at u = 1 and 

v = 0 is 

(a) 
1
 

e 

(b) e 

(c) e2 

 
Ans: 1. c) 2. b) 3. a) 4. c) 5. c) 
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. .
∆ =

 

G G 

. . . . 

. . . . 

G G G G 

− 

2 
∆ 

2 
∆ 

Exercises 3 

 
1.  If F (u, v, x, y), G(u, v, x, y), f (x, y), g(x, y) ∈ C1, 

F (f (x, y), g(x, y), x, y) ≡ 0, G(f (x, y), g(x, y), x, y) ≡ 0, 

F1 F2 

.  1 2. 

0, prove that 

 
 

F3 F2 

f  = −
.G3 G2. 

, g 
 

 

 
 
 
 

F1 F3 

= −
.G1 G3. 

,
 

 
 

1 
∆ 

1 

F4 F2 

∆ . 

F1 F4 
 

f  = −
.  4 2. 

, g  = −
.  1 4. 

, 
 

2. Consider five functions P, Q, R, S, T of six variables u, v, w, x, y, � ap- 

pearing in that order. Find the Jacobian of P, Q, R, S, T with respect 

to u, w, x, �. 

3. Find 
∂u 

if u = f (x, y), y = g(x, �), where u is the dependent variable 
∂x 

and x is the independent variable. 
 

4. If x2 + y2 + �2 + u2 = 1, xy − �u = 2 compute 
∂�xy

 and 
∂�xu . 

 
Ans: 

x� + uy 

u2 − �2 
,
 

y2 x2 

yu  + x� 

∂x ∂x 

5. If J and j are Jacobians of a transformation and its inverse then prove 

that J.j = 1 

6. If u = f (x, y), v = g(x, y) and x = φ(r, s), y = ψ(r, s) then prove that 

∂(u, v) 
= 

∂(u, v) 
. 
∂(x, y) 

∂(r, s) ∂(x, y)  ∂(r, s) 
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Learning Outcomes : 

 
Upon completion of this unit, students will acquire knowledge 

 

F To differentiate implicit functions. 

F To understand the concept of functional dependence of two functions. 

F To state and prove inverse function theorem for single variable. 

F To state and prove the existence theorem for implicit functions. 

 

 

 

 

 

 

 

Unit 4 

 
Inverse Functions and 

Implicit Functions 

 
 
 
 

 

 

4.1 Inverse functions 

 
We shall confine ourselves to the existence theorem and inverse function 

theorem for single variable only. 

So far we have seen situations in which a function has constructed as the 

inverse of an already known function. 
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( ) 

For example, the equation x = sin y is used to define y as a function arcsin x 

of x. This illustration shows that for a given x, there are inifinitely many 

values of y and we are to keep to single valued functions we must impose 

some restriction on the permitted values of y. 

We shall now give an existence theorem which assure us that, if certain 

simple conditions are fulfilled, we can obtain a new function inverse to a 

known function. 

To proceed further we need the following definition and intermediate value 

theorem. 

 

Definition 4.1.1 f is increasing for a ≤ x ≤ b if f (x1) ≤ f (x2) for all 

x1, x2 such that a ≤ x1 ≤ x2 ≤ b. If f (x1) < f (x2), we say that f is strictly 

increasing. 

 
Theorem 4.1.1 (Intermediate value theorem) Suppose that f is con- 

tinuous in the closed interval [a, b] and that f (a) /= f (b). Then f takes every 

value which lies between f (a) and f (b). 

 

Theorem 4.1.2 (Inverse function theorem) Let y = f (x) be continu- 

ous and strictly increasing for a ≤ x ≤ b. If, for a given x in a < x < 

b, f �(x) /= 0, then the inverse function x = g(y) is differentiable for the 

corresponding value of y and g�(y) =
 1 

. 
f � x 

 

Proof: We shall first prove the existence theorem: 

Existence theorem: 

Let f  be  continuous  and  strictly  increasing  for  a  ≤ x  ≤ b.  Let  f (a)  = 

c, f (b) = d. Then there is a function g, continuous and strictly increasing 

for c ≤ y ≤ d, such that f (g(y)) = y so that g(y) is the function inverse to 

f (x). 

Proof of existence theorem: 

Let k be any number such that c < k < d. 

Then by intermediate value theorem, there is a value h such that f (h) = k. 



79  

Since f is strictly increasing, there is only one such h corresponding to a 

given k. 

The inverse function g is defined by h = g(k). 

To prove g is strictly increasing: 

Let y1 < y2 and y1 = f (x1), y2 = f (x2). 

Then x1 and x2 are uniquely defined. 

If x1 < x2, then, since f is increasing, f (x2) ≤ f (x2) that is y1 ≤ y2 which 

contradicts the assumption y1 < y2. 

So x1 < x2 and g is strictly increasing. 

To prove that g is continuous : 

Given ϵ > 0, let f (h − ϵ) = k1 and f (h + ϵ) = k2 

Then, Since f is increasing, k1 < k < k2 and h − ϵ < g(y) < h + ϵ if 

k1 < y < k2. 

Since ϵ is arbitrary, g is continuous at y = k. 

Here k is any number in the open interval (c, d). A similar argument estab- 

lishes one sided continuity at the end points c and d. 

Proof of the main theorem: 

If h =/ 0 is given, define k  by y + k = f (x + h). 

Then k /= 0 and, if k is given, h is determined uniquely from g(y+k) = x+h. 

This shows that 
 

g(y + k) − g(y) 
= 

h 
= 

h 
.
 

k k f (x + h) − f (x) 

Let k → 0. Then, since g is continuous h → 0. 

Hence, we have 

g�(y) = 
   1  

. 
f �(x) 

Q 

Remark : We now state the inverse function theorem (without proof) 

for vector valued functions which represents one of the most important 

consequences of analysis. 
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f 

Theorem 4.1.3  Assume  f→ =  (f1, f2, ..., fn)  ∈ C1  on  a  open  set  S  in  Rn 

and  let  T  = f→(S).  If  the  Jacobian  J→→(→a) 0  for  some  point →a  in  S,  then 

there are two open sets X ⊆ S, Y  ⊆ T  and a uniquely determined function 

→g  such that 

 

a) →a ∈ X  and f→(→a) ∈ Y 

b) Y  = f→(X) 
 

c) f→ is one-one on X 

d) →g  is defined on Y, →g(Y ) = X  and →g 
h

f→(→x)
i 

= →x  for every →x ∈ X 

e) →g ∈ C1  on Y 

 
4.2 Implicit Functions 

 
In unit 1 we have studied briefly the method of obtaining the derivatives 

of functions defined implicitly. We now study the method in more detail. 

Consider an equation of the form 

F (x, y, �) = 0 (4.1) 

It cannot necessarily be solved for one of the variables in terms of the other 

two .  For example, the equation x2 + y2 + �2 + a2 = 0 has no solution if 

a /= 0. Even if a = 0,  the equation does not define �  as a function of (x, y) 

in any domain but only at the point (0, 0). 

We shall give later a sufficient condition that there should be a solution. 

Here we shall discuss the method of finding the derivatives of the implicit 

function if it is known to exist. We  shall  assume  that �  = f (x, y)  exists 

and satisfy equation (4.1) 

F (x, y, f (x, y)) = 0 

 
We shall compute the partial derivatives of f (x, y) in terms of F. 
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and f (x, y) = −  
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− 

√ √ 

( ) = 

4.2.1 Differentiation of Implicit functions 

 
Theorem 4.2.1 

 
1. f (x, y), F (x, y, �) ∈ C1 

2. F (x, y, f (x, y)) ≡ 0, (x, y) in D and 

3. F3(x, y, f (x, y)) /= 0,  (x, y) in D 

F1(x, y, f (x, y)) 
⇒ f1  x, y − 

F3(x, y, f (x, y)) 

F2(x, y, f (x, y)) 
f2  x, y − 

F3(x, y, f (x, y)) 

 
Proof: Consider F (x, y, f (x, y)) ≡ 0. 

Differentiating partially with respect to x and y, we have 

 
F1(x, y, f (x, y)) + F3(x, y, f (x, y)).f1(x, y) = 0 

and F2(x, y, f (x, y)) + F3(x, y, f (x, y)).f2(x, y). = 0 
 

We have  

F1(x, y, f (x, y)) 
f1  x, y − 

F3(x, y, f (x, y)) 

F2(x, y, f (x, y)) 

F3(x, y, f (x, y)) 

Q 
 

Example 4.2.1  If F (x, y, �) = x2 + y2 + �2 6, compute 
∂�

 
∂x 

at (1, −1, 2). 

 

Solution: Equation (4.1) now defines the two explicit functions 

� = 6 − x2 − y2, � = −   6 − x2 − y2. 

From Theorem 4.2.1, we have 
 

F1(x, y, f (x, y)) 
f1  x, y − 

F3(x, y, f (x, y)) 
.
 

F1(x, y, f (x, y)) = 2x ⇒ F1(1, −1, 2) = 2. 

F3(x, y, f (x, y)) = 2� ⇒ F3(1, −1, 2) = 4. 
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2 

∂x 4 2 Now 
∂� 

= − 2 = − 1 . 

By the explicit method, 

� = 
q

6 − x2 − y2 = (6 − x2 − y2) 
1 

, 
 ∂� = 

1  
6 2

 
2

  − 1   

(
 2 ) = 

  x 
 

 

   
∂� 

∂x 2
 − x − y 

1 
 

 

. − x 
1 

 
 

−√
6 − x2 − y2 

∂x 
|(1,−1,2)  = −√

6 − 1 − 1  
= − 

2 
. 

 
Remark : Consider the equation 

 
F (x, y) = 0. (4.2) 

 
Suppose y is a function of x, then we can compute its derivative in terms 

of F. 

We have 
 

F1 + F2 
dy

 
dx 

= 0 (4.3) 

dy 
= 

−F1 
, F2 0

 

dx F2 
 
 

Example 4.2.2 If u = f (x, u), find 
du

. 
dx 

 

Solution: This is a special case of equation (4.2) where F (x, u) = f (x, u)− 

u. 

Then 
du 

= − 
F1  

= −
  f1(x, u)   

, f2(x, u) 1. 

dx F2 f2(x, u) − 1 
 

 

Example 4.2.3 If u = log(x + u), find 
du

. 
dx 

 

Solution: Given u = log(x + u). 

We have F (x, u) = f (x, u) − u. 
1 

du 
= −

  f1(x, u)    
= 

− 
x + u 

 

 
=

 −1 
.
 

dx f2(x, u) − 1 
    1  

x + u 
−

 
1 − x − u 

2 

1 
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F 

1 

F 3 
2 1 

− 2 

− 

Example 4.2.4 If u = f (g(x, u), h(y, u)), find 
∂u

, 
∂u

. 
∂x ∂y 

 

Solution: This is a special case of equation (4.1). We have 

 
F (x, y, u) = f (g(x, u), h(y, u)) − u. 

 
 

∂u 
= −

 f1g1 , f1g2 + f2h2 − 1 0 

∂x f1g2 + f2h2 − 1 
∂u 

= −
 f2h1 

, f1g2 + f2h2 − 1 /= 0. 

∂y f1g2 + f2h2 − 1 
 

 

 

 

4.2.2 Higher order derivatives 

 
We may compute the higher derivatives of functions defined implicitly. 

Consider the equation F (x, y) = 0, where y is a function of x. 

Then 
 

dy 
= − 

F1 , F2 /= 0 
dx F2 

dy dy 

d2y 

dx2 

F2(F11 + F12 
dx 

) − F1(F21 + F22 
dx 

) 

2 
2 

F2 

  

F11 + F12 

  

− 
F1 

      

− F1 

  

F21 + F22 

  

− 
F1 

  

 
 

= 
F2 

2 
F2 

2 

= 
F2F11 − F12F1 − F1F21 + 

2 

F 2F22 
 

 

F2 

= 
F 11F 2 − (F12 + F21)F1F2 + F22F 2 

2 
 

Remark  :  Consider the equation F (x, y, �) = 0.  If  
∂x

 
∂y 

is required, we 

may be sure that x is the dependent variable and y and � are independent 

variables. Then we find 

 

F F 
, F1 /= 0 

F F  
, F2 /= 0. 

= 
F 

F 

− 

− 

∂x 
=

 

∂y 

F 
− 

2 , 

1 

∂x 
=

 

∂� 

F 
− 

3 

1 

∂y 
=

 

∂x 

F 
− 

1 , 
2 

∂y 
=

 

∂� 

F 
− 

3 

2 
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4.3 Existence Theorem for Implicit Functions 

 
Let F (x, y) be a function of two variables and y  = f (x) be a function 

of x such that for every value of x for which f (x) is defined, F (x, f (x)) 

vanishes identically, that is, y = f (x) is a root of the functional equation 

F (x, y) = 0. Then y = f (x) is an implicit function defined by the functional 

equation F (x, y) = 0. 

It is only in elementary cases, such as those given above, that it may be 

possible to express y as a function of x (i.e., determine the implicit func- 

tion). For more complicated functional equations no such determination 

of implicit function is possible. The difficulty of actual determination of 

an analytical expression does not rule out the possibility of the existence 

of the implicit function or functions, defined by a functional equation; the 

actual determination may demand new processes or may be, from a prac- 

tical standpoint, too laborious. We now consider an existence theorem, a 

theorem that specify condition which guarantee that a functional equation 

does define an implicit function even though actual determination may not 

be possible. For many purposes, however, it is the fact that an equation 

does define a function, rather than an expression for the implicit function 

thus defined, that is of real importance; hence the significance of Existence 

theorem. 

We shall show that if F (x0, y0) = 0, F2(x0, y0) /= 0, then the equation 

F (x, y) = 0 can be solved for y when x is in a two sided neighborhood of 

x0. 

 

Theorem 4.3.1 (Existence Theorem for implicit functions) 

 
1.  F (x, y) ∈ C1, |x − x0| ≤ δ, |y − y0| ≤ δ 

2. F (x0, y0) = 0 and 

3. F2(x0, y0) /= 0 

⇒ There exists a unique function f (x) and a positive number η such that 
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2 

A. y0 = f (x0) 

 

B. F (x, f (x)) = 0, |x − x0| < η 

C. f (x) ∈ C1, |x − x0| < η 
 
 

Figure 4.1 

 

 
Proof: We now prove the existence of a function f (x) and a positive num- 

ber η satisfying hypothesis A, B, C. 

Given that F1 and F2 are continuous in the neighbourhood 

|x − x0| ≤ δ, |y − y0| ≤ δ of the point (x0, y0). 

Then F is differentiable and hence continuous in this neighbourhood. 

Given F2(x0, y0) /= 0. 

Suppose that F2(x0, y0) > 0. 

Since F2 is continuous we have, F2(x, y) > 
F2(x0, y0) 

in a whole neighbor- 

hood of (x0, y0). 

Let us assume that neighbourhood to be original δ− neighbourhood. 
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Clearly F (x0, y) is a strictly increasing function for |y − y0| ≤ δ. 

Hence F (x0, y0 + δ) > F (x0, y0) = 0, F (x0, y0 − δ) < F (x0, y0) = 0. 

By continuity of F (x, y0 + δ) and of F (x, y0 − δ), there exists a positive 

number η such that 

 

F (x, y0 + δ) > 0, F (x, y0 − δ) < 0, |x − x0| < η. 

 
A continuous function passing from positive to negative values must pass 

through zero. 

Thus for each x in the interval x0 − η < x < x0 + η, there is just one value 

of y, which we call f (x) between y0 − δ and y0 + δ where F (x, y) = 0. 

To prove uniqueness 

We now show that y = f (x) is a unique solution of F (x, y) = 0. That is 

F (x, y) cannot be zero for more than one value of y between y0 − δ and 

y0 + δ. 

Suppose there are two such values of y1 and y2 between y0 − δ and y0 + δ 

such that 
 

F (x, y1) = 0 and F (x, y2) = 0. 

Also F (x, y) considered as a function of a single variable y is derivable 

between y0 − δ and y0 + δ. 

So that by Roll’s theorem F2 = 0 for a value between y1 and y2. This 

contradicts the fact that F2(x0, y0) 0. 

Hence our assumption is wrong. There cannot be more than one such y. 

From the definition of f (x) we have 

 

f (x0) = y0 and F (x, f (x)) = 0, |x − x0| < η 

 
To prove C. Let 

 
y1 = f (x1), x0 − η < x1 < x0 + η. 

y1 + ∆y = f (x1 + ∆x), x0 − η < x1 + ∆x < x0 + η. 
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Then, by the law of the mean for functions of two variables, 

 
F (x1 + ∆x, y1 + ∆y) = 0 

= F1(x1 + θ∆x, y1 + θ∆y)∆x + F2(x1 + θ∆x, y1 + θ∆y)∆y, 0 < θ < 1. 

 
This equation shows first that ∆y → 0 as ∆x → 0. 

For, the first term, and hence the second, approaches zero as ∆x does. 

But since the first factor of the second term is greater than F2(x0, y0)/2, 

that term cannot approach zero unless ∆y does. 

Secondly, the above equation enables us to compute ∆y/∆x. 

Finally, using the continuity of F1 and F2, we obtain 

f �(x1) = lim ∆y  
= − 

F1(x1, y1) 

∆x→0 ∆x F2(x1, y1) 

This quotient is a continuous function of x1, [y1 = f (x1)], so that f ∈ C1. 

This completes the proof of the theorem. Q 

Remark : The theorem can easily be generalized to include functions of 

more than two variables. 

For example, the equation F (x, y, �) = 0 can be solved for � when (x, y) is 

near (x0, y0) if F (x0, y0, �0) = 0, F3(x0, y0, �0) 0. 

We now state the implicit function theorem (without proof) for vector val- 

ued functions. 

Theorem 4.3.2  Let f→ = (f1, f2, ..., fn) be a vector valued function defined 

on  a  open  set  S  in  Rn+k  with  values  in  Rn.  Suppose  that  f→  ∈ C1  on  S. 

Let (x→0; t→0) be a point in S  for which f→(x→0; t→0) = →0 and for which the n × n 

determinant det   Djfi(x→0; t→0)   =/   0.  Then there exist a k  dimensional open 

set T0 containing t→0  and one, and only one, vector valued function →g defined 

on T0 and having values in Rn such that 

 
a)  →g ∈ C1  on T0 

b)  →g(t→0) = t→0 

 

c)  f→(→g(→t); →t) = →0 
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= = =  = 0 
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 2 

∂(x, y) 

g1 f1F �, g2 f2F �, . 

4.4 Functional Dependence 

 
Two function f (x, y) and g(x, y) may be functionally dependent if there 

exists a function of a single variable F (�) such that 

g(x, y) = F (f (x, y)). 
 

Example: 

Suppose 

f (x, y) = sin(x2 + y2), g(x, y) = cos(x2 + y2), 
 

there exists a function of a single variable F (�) such that 

 
g(x, y) = F (f (x, y)) (4.4) 

 
that is F (�) = cos(sin−1 �). 

The Jacobian 

 

∂(f, g) 2x cos(x2 + y2) 2y cos(x2 + y2) . 
∂(x, y) 

2  sin(x2 + y2)   −2y sin(x2 + y2) 

Note: We shall see that the vanishing of this Jacobian is a characteristic 

of functional dependence. 

Remark: 

We observe by virtue of equation (4.4) that if f and g are functionally 

dependent, then their Jacobian is identically zero: 

∂(f, g) f1 f1F � 

∂(x, y) f f F � 
 

We shall now prove the converse part, that is under certain conditions the 

vanishing of this Jacobian implies the functional dependence of f and g. 

 
Theorem 4.4.1 

 
1. f (x, y), g(x, y) ∈ C1 |x − x0| < δ, |y − y0| < δ 

2.  
∂(f, g) 

= 0, |x − x0| < δ, |y − y0| < δ and 
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( ) 

− 

− − 

f2 ∂(x, y) 

3.  f2(x0, y0) 0 

 

⇒ There exists a function F (�) and a number η such that 

g(x, y) = F (f (x, y)), |x − x0| < η, |y − y0| < η. 

 
Proof: Let �0 = f (x0, y0). Then by the generalization of Theorem 4.3.1 

to functions of three variables mentioned above, the equation 

f (x, y) − � = 0 (4.5) 

can be solved for y. That is, there exists a function φ(x, �) such that the 

equation 

y = φ(x, �) (4.6) 

 

is equivalent to (4.5) in an η− neighborhood of the point (x0, y0, �0). Also 

φ1(x, �) can be computed in terms of f by the usual rule: 

φ1(x, �) = 
−f1(x, y) 

, y = φ(x, �) (4.7) 
f2 x, y 

We shall now compute the derivative of g(x, φ(x, �)) with respect to x, using 

(4.7) and hypothesis 2: 

∂ 
g(x, φ(x, �)) = g1 + g2φ1(x, �) 

∂x 

= g1 

f1g2 

f2 

= 
g1f2 − f1g2 

f2 

= 
1 

[f1g2 g1f2] 
f2 

= −
 1 ∂(f, g) 

= 0, |x − x0| < η, |y − y0| < η. 
 

Integrating this equation, we obtain 

 

g(x, φ(x, �)) = F (�), |x − x0| < η, |� − �0| < η 

for some function F (�). 

Finally, substituting � = f (x, y) in this equation 

we have 

g(x, φ(x, �)) = F (f (x, y)). 
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. . 

. . 

. . 

∂x 
. ∂v 

∂� 
∂v . 

. . 

. 

∂(u, v, w) 
= 

x + y + � x + y + � x + y + � 

1 1 1 

= 0. 

Since equations (4.5) and (4.6) are equivalent near (x0, y0, �0) we have 

 
φ(x, �) = φ(x, f (x, y)) = y 

so g(x, φ(x, �)) = g(x, y) = F (f (x, y)), |x − x0| < η, |y − y0| < η. 

This completes the proof. Q 

Remark 1: Hypothesis 3 could be replaced by f1(x0, y0) /= 0. Then equa- 

tion f (x, y) − � = 0 can be solved for x and we have the same conclusion. 

Remark 2: Suppose g1(x0, y0) /= 0 or g2(x0, y0) 0 we would show that 

f (x, y) = G(g(x, y)) for some G(�). 
 

Example 4.4.1 If u = xy + y� + �x, v = x2 + y2 + �2 and w = x + y + �, 

determine whether there is a functional relationship between u, v, w  and if 

so, find it. 

 

Solution: 

u = xy + y� + �x 

v = x2 + y2 + �2 

w = x + y + � 

∂u ∂u ∂u 
. . 

∂(x, y, �) ∂x 
∂w 

∂x 

∂y ∂� 
∂w ∂w 

∂y ∂� 

 

 

= 2x 2y 2� 
. . 

1 1 1 
. . 

= 2 x y � 
. . 

. 
. . 

. 

1 1 1 

= 2(x + y + �) 
.

x   y �
.

 

1 1 1 
 

y + � � + x   x + y 

   

. 

∂y 
∂v 
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.

 

1 − xy 

2 

Hence the functional relationship exists between u, v and w. 

Now, 

w2 = (x + y + �)2
 

= x2 + y2 + �2 + 2(xy + y� + �x) 

= v + 2u 

⇒ w − v − 2u = 0 

which is the required relationship. 

 
Example 4.4.2 Verify whether the following functions are functionally de- 

pendent, and if so, find the relation between them. 

u =  
x + y 

, v = tan−1 x + tan−1y 
1 − xy 

 

Solution: 
u =  

x + y 
, v = tan−1 x + tan−1y 

1 − xy 

 ∂(u, v) 

∂(x, y) 

∂u 
∂x 
∂v 

. ∂x 

∂u 
∂y 
∂v 

∂y . 

 
1 + y2 . 

 
 

1 + x2 
. 

 

= . (1 − xy)2 (1 − xy)2 
. 

1 1 
. 2 2  . = 
(1 

1 + x 
1 

1 + y 

1 
2 

− 
2 

− xy) 
= 0 

(1 − xy) 

Hence u, v are functionally dependent. 

tan−1 x + tan−1 y = tan−1 

   
x + y  

  

= tan−1 u 
 

⇒ v = tan−1 u 

⇒ u = tan v. 

 
Example 4.4.3  Verify whether the functions u = xy, v  = x + y + �, w  = 

xy +2(x+y +�) are functionally dependent , if so, find the relation between 

them. 
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. 

. . 

∂x 
. ∂v 

∂� 
∂v . 

. 

∂(u, v, w) 
= 

Solution: 

u = xy, v = x + y + �, w = xy + 2(x + y + �) 

∂u ∂u ∂u 
. . 

∂(x, y, �) ∂x 
∂w 

∂x 

∂y ∂� 
∂w ∂w 

∂y ∂� 

y x 0 

= 1 1 1 
. . 

y + 2  x + 2   2 

= y(2 − x − 2) − x(2 − y − 2) 

= 0 

Hence u, v are functionally dependent. 

 
u = xy 

v = x + y + � 

w = xy + 2(x + y + �) 

w = u + 2v. 

 

 
4.5 Simultaneous Equations 

 
We denote a set of four numbers (u0, v0, x0, y0) as a point in four dimen- 

sions and to the set of values (u, v, x, y) for which |u − u0| < δ, 

|v−v0| < δ, |x−x0| < δ, |y−y0| < δ, as a δ− neighbourhood, Nδ(u0, v0, x0, y0), 

of that point. 

 
Theorem 4.5.1 

 
1.  F (u, v, x, y), G(u, v, x, y) ∈ C1 in Nδ(u0, v0, x0, y0) 

2.  F (u0, v0, x0, y0) = G(u0, v0, x0, y0) = 0 and 

∂(F, G) 

∂(u, v) 

 

0 at (u0, v0, x0, y0) 

   

3. 

∂y 
∂v 
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∂(u, v) 

− 

    

⇒ There exists a unique pair of functions f (x, y), g(x, y) and a positive 

number η such that 

 

A  f (x, y), g(x, y) ∈ C1, |x − x0| < η, |y − y0| < η 

B  f (x0, y0) = u0, g(x0, y0) = v0 

 

C F (f, g, x, y) = G(f, g, x, y) = 0, |x − x0| < η, |y − y0| < η 

 

Proof: Given that  
∂(F, G) 

/= 0 at (u0, v0, x0, y0). So not both F 

are zero at (u0, v0, x0, y0). 

Assume that Fu /= 0 there. 

and Fv 

Then from the generalization of Theorem 4.3.1 , there exists a unique func- 

tion h(v, x, y) such that h(v0, x0, y0) = u0 and F (h, v, x, y) = 0 in some 

neighborhood of (v0, x0, y0). 

Differentiating partially with respect to v, we have 

 
Fuhv + Fv = 0 

h  = 
Fv 

. 
v 

Fu
 

 

We now solve the following equation for v. 

 
G(h(v, x, y), v, x, y) = 0 (4.8) 

 
To solve this we need the derivative of the function with respect to v is not 

equal to zero at (v0, x0, y0). 

Differentiating partially with respect to v we have, 
 

Guhv + Gv = Gu 
−Fv 

+ G
 

Fu 
v

 

= 
−GuFv − GvFu 

Fu 
 1  ∂(F, G) 

Fu  ∂(u, v) 
0 at (v0, x0, y0) 

Hence, there exists a unique function g(x, y) which is equal to v0 at (x0, y0). 

g(x0, y0) = v0, which makes equation (4.8) an identity near (x0, y0) when it 

is substituted for v. 

= 

u 
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Now set f (x, y) = h(g, x, y). 

It is easy to prove that 

f (x, y) ∈ C1, |x − x0| < η, |y − y0| < η 

f (x0, y0) = u0 

and F (f, g(x, y)) = 0. 

Hence all the conclusions of the theorem are satisfied. Similarly we can 

prove the theorem if Fv /= 0. Q 

Summary 

 
• We can compute higher derivatives of implicit functions 

• We are given a functional relation φ(x, y, �, ..., t) = 0 connecting n 

variables and it is not in general possible to solve this equation to 

find an explicit function which expresses one of these variable say x 

in terms of the other n − 1 variables such function are called implicit 

functions 

• The inverse function theorem for single variable Let y = f (x) 

be continuous and strictly increasing for a ≤ x ≤ b. If, for a given 

x in a < x < b, f �(x) /= 0, then the inverse function x = g(y) is 

differentiable for the corresponding value of y and g�(y) =
 1 

. 
f � x 

• Existence theorem for implicit functions 

1.  F (x, y) ∈ C1, |x − x0| ≤ δ, |y − y0| ≤ δ 

2. F (x0, y0) = 0 and 

3. F2(x0, y0) /= 0 

⇒ There exists a unique function f (x) and a positive number η such 

that 

A) y0 = f (x0) 

B) F (x, f (x)) = 0, |x − x0| < η 
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∂(x, y) 

( ) 

C) f (x) ∈ C1, |x − x0| < η 

• Two variables f (x, y) and g(x, y) may be functionally dependent if 

there exists a function of a single variable F (�) such that g(x, y) = 

F (f (x, y)) 

 

• 1. f (x, y), g(x, y) ∈ C1 |x − x0| < δ, |y − y0| < δ 

2.  
∂(f, g) 

= 0, |x − x0| < δ, |y − y0| < δ and 

3.  f2(x0, y0) 0 
 

⇒ There exists a function F (�) and a number η such that 

g(x, y) = F (f (x, y)), |x − x0| < η, |y − y0| < η. 

• If f and g are functionally dependent, then their Jacobian is identi- 

cally zero. 

• If f (x, y), g(x, y) ∈ C1, |x − x0| < δ, |y − y0| < δ and f2(x0, y0) /= 0 

then vanishing of the jocobian implies the functional dependence of 

f and g. 

 
Multiple Choice questions 

 

1. If u = f (x, u), then 
du 

is 
dx 

a) 
F1 
F2 

b) −F2 
F1 

c) −F1 
F2 

2. Choose the correct statement. 

a) If f and g are functionally dependent, then their Jacobian is iden- 

tically zero. 

b) If f and g are functionally dependent, then their Jacobian is never 

zero. 

c) If f and g are functionally dependent, then their Jacobian is either 

non-zero or 1 

3. If u = xy, v = x + y + �, w = xy + 2(x + y + �) then 

(a) 
∂(u, v, w) 

= 0
 

∂ x, y, � 
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( ) 

( ) 

2 

∂(x, y) 

∈ 

(b) 
∂(u, v, w) 

= 1
 

∂ x, y, � 

(c) 
∂(u, v, w) 

= 8
 

∂ x, y, � 
 

Ans: 1. c) 2. a) 3. a) 

 
Exercises 4 

 
1. If f (x, y), F (x, y, �) ∈ C1, F (x, y, f (x, y)) = 0, (x, y) in D and 

F3(x, y, f (x, y)) /= 0, (x, y) in D, then prove that 

f1(x, y) = 
−F1(x, y, f (x, y)) 

, f2(x, y) = 
−F2(x, y, f (x, y)) 

F3(x, y, f (x, y)) F3(x, y, f (x, y)) 

2. If log uy + y log u = x, find 
∂y 

and 
∂y 

. 

(y2 + y) ∂u ∂x y 
Ans: − 

u + yu log u
, 

1 + y log u 

3. Find 
d2u 

if 
dx 

u = log(x + u). 

4. If sin �y = cos �x, compute 
∂�  

when � = π, x = 1 , y = 1 . 
∂x 3 6 

Ans: −2π. 

5. State and prove inverse function theorem for single variable. 

6. State and prove existence theorem for implicit functions. 

7. If f (x, y), g(x, y) ∈ C1,  
∂(f, g)  

=  0,  |x − x0| <  δ, |y − y0| <  δ, 

f2(x0, y0) /= 0, then prove that there exists a function F (�) and a 

number η such that 

g(x, y) = F (f (x, y)), |x − x0| < η, |y − y0| < η. 

8.  If F (u, v, x, y), G(u, v, x, y) C1 in Nδ(u0, v0, x0, y0), 
∂(F, G) 

F (u0, v0, x0, y0) = G(u0, v0, x0, y0) = 0, 
∂(u, v) 

0 at (u0, v0, x0, y0), 

then prove that there exists a unique pair of functions f (x, y), g(x, y) 

and a positive number η such that 

A  f (x, y), g(x, y) ∈ C1, |x − x0| < η, |y − y0| < η 

B  f (x0, y0) = u0, g(x0, y0) = v0 

C F (f, g, x, y) = G(f, g, x, y) = 0, |x − x0| < η, |y − y0| < η. 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

BLOCK III 

 
Taylor’s Theorem and 

Applications 
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n 
x 

 
Learning Outcomes : 

 
After studying this unit, students will be able 

 

F To derive Taylor’s theorem for two variables. 

F To find Taylor’s expansion of given functions. 

F To find the Maclaurin’s expansion of given functions. 

 
 
 
 
 
 

 

Unit 5 

 
Taylor’s Theorem 

 
 
 
 

 

 

5.1 Taylor’s Theorem for functions of a single vari- 

able 

We state below Taylor’s theorem for functions of a single variable and 

also the familiar Lagrange and Cauchy remainder. 

Theorem 5.1.1 (Taylor’s Theorem) 

 
1.  f (x) ∈ Cn+1, |x − a| ≤ h. 

Σ f (k)(a) 
 

 

k 
 

n+1 (x − t)n 
 

⇒ f (x) = 
k=0 k! 

(x − a)  + f 
a 

(t) 
n! 

dt, |x − a| ≤ h. 
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k! 

∫ − 

k! 

− 
( ) 

n 

 

=

   

n 

! 

n 

h k 

X − 

Lagrange remainder 

 
1.  f (x) ∈ Cn+1, |x − a| ≤ h. 

n 

 
 
 
 
 (k) 

⇒ f (x) = 
Σ f (a)

(x − a)k + R , 

 
where Rn = f 

n+1
(   ) 

x (x t 

a n 

k=0 

n 

dt = f 

 

(n+1) 

 
(X) 

(x a)n+1
 

 

 

(n + 1)! 

 

, a < X < x. 

Cauchy remainder 

 
1.  f (x) ∈ Cn+1, |x − a| ≤ h. 

n 

 
 
 

 
(k) 

⇒ f (x) = 
Σ f (a)

(x − a)k + R , 

 
where 

 
Rn = f 

 
n+1 

 
(X) 

k=0 

(x X)n 

n! 
x − a , a < X < x. 

 

5.2 Taylor’s Theorem for Functions of two vari- 

ables 

Theorem 5.2.1 

 
1. f (x, y) ∈ Cn+1, |x − a| ≤ |h|, |y − b| ≤ |k| 

 

Σ 1
 

∂ 
∂  

 j 

 

where 

⇒ f (a + h, b + k) = 
j=0  

j! 

h + k 
∂x ∂y 

f (a, b) + Rn (5.1) 

 
Rn = 

 1  (1 − t)n 
∂ 

 
 + 

∂  
 n+1  

f (a + ht, b + kt)dt 

0 n! ∂x ∂y 

  1  

(n + 1)! 
h 

∂  
+ 

∂x 

∂ n+1 

k 
∂y 

f (a + 
 

θh, b + θk), 0 < θ < 1 

 

Proof: Let (x, y) be a point in the domain under consideration such that 

x = a + th, y = b + tk (5.2) 

where 0 ≤ t ≤ 1 is a parameter. 

Consider a new function, 

 
F (t) = f (x, y) = f (a + th, b + tk) (5.3) 

) 
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! 

    

  

  

  

    

  

j! 0 n! 
F n t dt 

j! (n + 1)! 

Clearly F (t) is a function of a single variable. Since the partial derivatives 

of f (x, y) of order (n + 1) are continuous in the domain under consideration 

F (n+1)(t) is continuous in [0, 1]. 

Expanding F (t) in Taylor’s series 

� t2 
 

 

 �� 
tn 

(n) 
 

 

tn+1  (n+1) 

F (t) = F (0)+tF (0)+ 
2! 

F 
(0)+....+ F 

n (0)+ 
(n + 1)! 

F
 

(θt),  (5.4) 

(1) = 
Σ
 

F (j)(0) 
+ 

 1 (1 − t)n (  +1)( ) 

 
n (j) (n+1) 

= 
Σ F (0) 

+ 
F (θ) 

,
 

 

= F (0) + F �(0) +
 1 

F ��(0) + .... +
 1 

F (n)(0) +
 1 

F (n+1)(θ),  (5.5) 

2! 

where 0 < θ < 1. Now 

n! (n + 1)! 

 

F (t) = f (a + th, b + tk) 

F �(t) = 
∂f

 = 
∂f ∂x 

+ 
∂f ∂y 

∂t ∂x ∂t ∂y ∂t 

= h
∂f 

+ k
∂f  

∂x 

= h 
∂

 
∂x 

∂y 

+ k 
∂ 

f (a + th, b + tk) 
∂y 

F �� (t) = h 
∂  

+ k 
∂

 
∂x ∂y 

f (a + th, b + tk) 

F (n) (t) = h 
∂  

+ k 
∂

 
∂x ∂y 

f (a + th, b + tk) 

F (n+1) (t) = h 
∂ 

+ k 
∂x 

∂ n+1 

∂y 
f (a + th, b + tk) 

Putting t = 0 in the above results upto nth derivative 

 

F (0) = f (a, b) 

F �(0) = h 
∂

 
∂x 

 
+ k 

∂ 
f (a, b) 

∂y 

F �� (0) = h 
∂  

+ k 
∂

 
∂x ∂y 

f (a, b) 

F (n) (0) = h 
∂  

+ k 
∂

 
∂x ∂y 

f (a, b) 

Putting t = θ in F (n+1)(t), 0 < θ < 1 

 
F (n+1) 

 
(θ) = h 

∂ 
+ k 

∂x 

∂ n+1 

∂y 

 
f (a + θh, b + θk), 

j=0 

n 

  

  

F 
j=0 

2 

n 

2 

n 
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0 

 

 

=

   

  

  

 

=

   

2! 

  

−

  

−

 

2! ∂x ∂y 
f a, b 

... 
n! ∂x ∂y 

f a, b 

h k 

2! 

x 
∂ 

Also F (1) = f (a + h, b + k). 

Using all the above in (3.5) 

Σ 

 
1

 
∂ 
 

∂  
 j 

 

where 

⇒ f (a + h, b + k) = 
j=0  

j! 

h + k 
∂x ∂y 

f (a, b) + Rn 

Rn = 
 1  (1 − t)n 

∂ 
 

 + 
∂  

 n+1  
f (a + ht, b + kt)dt 

0 n! ∂x ∂y 

  1  

(n + 1)! 
h 

∂  
+ 

∂x 

∂ n+1 

k 
∂y 

f (a + 
 

θh, b + θk), 0 < θ < 1 

 

Here Rn is called the remainder after �n� terms, the theorem is called 

Taylor’s theorem with remainder or Taylor’s expansion about the point 

(a, b). Q 

Remark 1: Maclaurin’s Theorem or Maclaurin’s expansion 

 
f (x, y) = f (0, 0)+ x 

∂  
+ y 

∂
 

∂x ∂y 
f (0, 0) +

 1
 x 

∂  
+ y 

∂
 

∂x ∂y 

 
f (0, 0) 

+ .... 
1 ∂ 

n! ∂x 

n 
+ y f 

∂y 
(0, 0) + Rn 

where Rn 
  1  

(n + 1)! 
x 

∂  
+ 

∂x 

∂ n+1 

y 
∂y 

f (θx + θy), 0 < θ < 1. 

Remark 2: Taylor’s Theorem can also be put in the form: 

f (a + h, b + k) =f (a, b) + df (a, b) +
 1 

d2f (a, b) 

+ .... +
 1 

dnf (a, b) +
 1 

dn+1f (a + θh, b + θk), 

n! 

where 0 < θ < 1. 

(n + 1)! 

Remark 3: The Theorem can be extended to any number of variables. 

Remark 4: Another form of Taylor’s expansion about the point (a, b) in 

powers of x − a and y − b. 

Putting, t = 1 in (5.2) we have 

x = a + h ⇒ h = x − a y = b + h ⇒ k = y − b 

From (5.1) 

f (x, y) = f (a, b) +  (x a) 
∂

 
∂x 

 
+ (y b) 

∂ 
f (a, b) 

∂y 

+
 1 

 

(
 

) 
∂ 

+ ( ) 
∂  

  2    

( ) 

+ +
 1 

 

( ) 
∂ 

+ ( ) 
∂  

 n    

( ) + 

n 

    

+ 

x − a y − b 

x − a y − b Rn 

2 
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1 

 

n 

2! 

2! 

3! 

(x − a) 
∂x 

+ (y − b) 
∂y

 

Rn = 
(n + 1)! 

(x − a) 
∂x 

+ (y − b) 
∂y

 

where 
 

 

  
  1  

    
∂

 

 

∂  
  n+1 

0 < θ < 1. 

That is  
Σ 1

 
∂ 
 

∂  
 j 

f (x, y) = 

 
  1  

 
 

j=0  
j! 

∂ 

(x − a) 
∂x 

+ (y − b) 
∂y

 

∂  
 n+1 

f (a, b) + Rn 

 

where r = a+θ(x− a), s = b +θ(y − b), 0 < θ < 1 after the differentiation. 

Remark 5: Taking n = 0 in equation (5.1), we have 

f (a + h, b + k) = 

0 < θ < 1. 

h 
∂  

+ k 
∂

 
∂x ∂y 

 
f (a, b) + h 

∂  
+ k 

∂
 

∂x ∂y 

 
f (a + θh, b + θk), 

f (a + h, b + k) = f (a, b) + hf1(a + θh, b + θk) + kf2(a + θh, b + θk) 

f (a + h, b + k) − f (a, b) = hf1(a + θh, b + θk) + kf2(a + θh, b + θk) (5.6) 

where 0 < θ < 1. This equation is known as the law of the mean for function 

of two variables. 

 
Note 1 : For third and more order derivatives are zero, 

 

f (x, y) =f (a, b) + (x − a)f1(a, b) + (y − b)f2(a, b) 

+
 1  

(x − a)2f11(a, b) + 2(x − a)(y − b)f12(a, b) 

+(y − b)2f22(a, b)
 

 

Note 2: For n = 3, (higher derivatives are not zero) 

 

f (x, y) =f (a, b) + (x − a)f1(a, b) + (y − b)f2(a, b) 

+
 1 h

(x − a)2f11(a, b) + 2(x − a)(y − b)f12(a, b) 

+(y − b)2f22(a, b)
i

 

+
 1 h

(x − a)3f111(θx, θy) + 3(x − a)2(y − b)f112(θx, θy) 

+3(x − a)(y − b)2f122(θx, θy) + (y − b)3f222(θx, θy)
i

 

Example 5.2.1 Expand f (x, y) = x2 + xy + y2 in powers of (x − 2) and 

(y − 3). 

(n + 1)! 
Rn = 

    

f (a +(x − a)θ, b +(y − b)θ), 

f (r, s), 

0 
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2 

 

2! 

2 

2! 

3! 

Solution: 

 

Function Value at (2, 3) 

f (x, y) = x2 + xy + y2 f (2, 3) = 19 

f1 = 2x + y f1(2, 3) = 7 

f2 = x + 2y f2(2, 3) = 8 

f11 = 2 f11(2, 3) = 2 

f22 = 2 f22 = 2 

f12 = 1 f12 = 1 

 
The values of third and higher order partial derivatives of f are zero. 

By Taylor’s expansion about the point (2, 3) 

f (x, y) = f (2, 3) + (x − 2)f1(2, 3) + (y − 3)f2(2, 3) 

+
 1  

(x − 2)2f11(2, 3) + (y − 3)2f22(2, 3) + 2(x − 2)(y − 3)f12(2, 3)
 

 
 

we have 

f (x, y) = 12+[7(x−2)+8(y−3)]+ 
1 

2(x − 2)2 + 2(y − 3)2 + 2(x − 2)(y − 3)
  

. 

 
Example 5.2.2 Obtain Taylor’s formula for the function ex+y at (0, 0) for 

n = 2 and write the remainder. 

 
Solution: The values of third and higher order partial derivatives are not 

zero. 

For n = 2, the Taylor’s formula about (0,0) is 

 
f (x, y) =f (0, 0) + [xf1(0, 0) + yf2(0, 0)] 

+ 
 1  h

x2f11(0, 0) + 2xyf12(0, 0) + y2f22(0, 0)
i

 

+ 
 1  h

x3f111(θx, θy) + 3x2yf112(θx, θy) + 3xy2f122(θx, θy) 

 

 
where 0 < θ < 1. 

+y3f222(θx,  θy)
i

 



10

3 

 

1 

2 ( ) 

 

Function Value at (0, 0) 

f (x, y) = ex+y f (0, 0) = 1 

f1 = ex+y f1(0, 0) = 1 

f2 = ex+y f2(0, 0) = 1 

f11 = ex+y f11(0, 0) = 1 

f22 = ex+y f22(0, 0) = 1 

f12 = ex+y f12(0, 0) = 1 
 

Function Value at (x = θx, y = θy) 
 

f111 = ex+y f111(θx, θy) = e(θx,θy)
 

f222 = ex+y f222(θx, θy) = e(θx,θy)
 

f112 = ex+y f112(θx, θy) = e(θx,θy)
 

f122 = ex+y f122(θx, θy) = e(θx,θy)
 

 

Hence, 

e(x+y) = 1 + (x + y) +
 1 

(x2 + 2xy + y2) +
 1 

(x3 + 3x2y + 3xy2 + y3)eθ(x+y) 
2! 3! 

= 1 + (x + y) +
 1 

(x + y)2 +
 1 

(x + y)3eθ(x+y) 

2! 3! 
 

 

Example 5.2.3  If f (x, y) ∈ C1, g(x, y) ∈ C1, f (0, 0) = g(0, 0) = 0, g2(0, 0)+ 

g2(0, 0) 0, Find lim 
f (x, y) 

as (x, y) approaches (0, 0) along line y = λx. 
g x, y 

 

Solution: By Taylor’s theorem 

 
f (x, y) = f (0, 0) + f1(θx, θy)x + f2(θx, θy)y 

= f1(θx, θy)x + f2(θx, θy)y 

g(x, y) = g(0, 0) + g1(θ1x, θ1y)x + g2(θ1x, θ1y)y, 0 < θ, θ1 < 1. 

Taking limits (x, y) → (0, 0) along the line y = λx. 

lim 
f (x, y) 

= lim 
   f1(θx, θλx)x + f2(θx, θλx)λx  

g(x, y) x→0 g1(θ1x, θ1λx)x + g2(θ1x, θ1λx)λx 

= 
f1(0, 0) + λf2(0, 0) 

.
 

g1(0, 0) + λg2(0, 0) 

where g1(0, 0) + λg2(0, 0) /= 0. 
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4 

 

2 

2 

2 

2 2 2 2 

2! 2 2 2 

2 2 

2 
− 

4
 y − 

2
 y − 

2
 

2 

− 
8 

− 
2
 y − 

2
 

2 
y − 

2
 

Example 5.2.4 Expand sin xy in powers of (x−1) and (y − π ) upto second 

degree terms. 

 
Solution: By Taylor’s expansion about the point (1, π ) upto second order 

f (x, y) = f (1, 
π 

) +

 

(x − 1)f1(1, 
π 

) + (y − 
π 

)f2(1, 
π 

)

 

 

+
 1  

  

(x − 1)2f11(1, 
π 

) + (y − 
π 

)2f22(1, 
π 

) 

+2(x − 1)(y − 
π 

)f12(1, 
π 

)

   

+ ... 

 

Function Value at (1, π ) 
2 

f (x, y) = sin xy f (1, π ) = 1 
2 

f1 = y cos xy f1(1, π ) = 0 
2 

f2 = x cos xy f2(1, π ) = 0 
2 

f11 = −y2 sin xy 
2 

f11(1, π ) = − π 
2 4 

f22 = −x2 sin xy f22(1, π ) = −1 
2 

f12 = cos xy − xy sin xy f12(1, π ) = π
 

2 2 

Therefore, 

sin xy = 1 + 

 

(x − 1)(0) + 

  

y − 
π 

  

(0)

 

 

+ 
1 

 

( 1)2 

 

 
π2 

! 

+ 

  
π 

  2 

(

  
1) + 2( 1) 

 

 
π 

      
π 

  ! 

+

 

= 1 
π2 

( 1)2 1 
 

 
π

 2 

+ 
π 

(
 

1) 

 

 
π 

  

+

 

 

 

Example 5.2.5 If f (x, y) = x2 − 3xy + 2y2 use the equation 

f (a+h, b+k)−f (a, b) = f1(a+θh, b+θk)h+f2(a+θh, b+θk)k, 0 < θ < 1 

to express the difference f (1, 2)−f (2, −1) by partial derivatives and compute 

θ. 

 
Solution: Here a + h = 1, b + k = 2, a = 2, b = −1. So h = −1, k = 3. 

 
a + θh = 2 − θ 

b + θk = 3θ − 1. 

x − − x − ... 

x − x − ... 
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5 

 

f (x, y) = x2 − 3xy + 2y2 

f1(x, y) = 2x − 3y 

f2(x, y) = −3x + 4y 

f (1, 2) = 3, f (2, −1) = 12 

f (1, 2) − f (2, −1) = −9 

By using the given equation 

f (1, 2) − f (2, −1) = (−1)[2(2 − θ) − 3(3θ − 1)] + 3[−3(2 − θ) + 4(3θ − 1)] 

= 4 − 2θ + 9θ−3 − 18 + 9θ + 36 θ − 12 

= 56 θ − 37. 

So 56 θ − 37 = −9, θ = 
28 

= 
1 

. 

56 2 
 

Example 5.2.6 Expand x3 − 2xy2 in Taylor’s series (a = 1, b = −1) and 

check by algebra. 

 
Solution: 

 

Function Value at (1, −1) 

f (x, y) = x3 − 2xy2 f (1, −1) = −1 

f1 = 3x2 − 2y2 f1(1, −1) = 1 

f2 = −4xy f2(1, −1) = 4 

f11 = 6x f11(1, −1) = 6 

f22 = −4x f22(1, −1) = −4 

f12 = −4y f12(1, −1) = 4 

f111 = 6 f111(1, −1) = 6 

f222 = 0 f222(1, −1) = 0 

f112 = 0 f112(1, −1) = 0 

f122 = −4 f122(1, −1) = −4 

 
All the partial derivatives of order four are zero.  Hence the remainder 

R4 = 0. 
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6 

 

2 

6 

2! 

3! 

The required Taylor’s expansion will be 

 
f (x, y) =f (1, −1) + [(x − 1)f1(1, −1) + (y + 1)f2(1, −1)] 

+
 1 h

(x − 1)2f11(1, −1) + 2(x − 1)(y + 1)f12(1, −1) 

+(y + 1)2f22(1, −1)
i

 

+
 1 h

(x − 1)3f111(1, −1) + 3(x − 1)2(y + 1)f112(1, −1) 

+3(x − 1)(y + 1)2f122(1, −1) + (y + 1)3f222(1, −1)
i

 

Substituting all the values we have, 

f (x, y) = − 1 + (x − 1) + 4(y + 1) + 
1 h

6(x − 1)2 + 8(x − 1)(y + 1) − 4(y + 1)2
i

 

+ 
1 h

6(x − 1)3 − 12(x − 1)(y + 1)2
i

 

We can check the above result by algebra. 

RHS of the above equation 

= − 1 + x − 1 + 4y + 4 + 3(x2 − 2x + 1) + 4(xy − y + x − 1) − 2(y2 + 2y + 1) 

+ x3 − 3x2 + 3x − 1 − 2xy2 − 4xy − 2x + 2y2 + 4y + 2 

=x3 − 2xy2 

=f (x, y). 

 
 

Example 5.2.7 Expand the function f (x, y) = x3 + 3x2y + 4xy2 + y3 by 

Taylor’s theorem in powers of (x − 1) and (y − 1) and check by algebra. 

Solution: 

 

Function Value at (1, 1) 

f (x, y) = x3 +3x2y +4xy2 +y3 f (1, 1) = 9 

f1 = 3x2 + 6xy + 4y2 f1(1, 1) = 13 

f2 = 3x2 + 8xy + 3y2 f2(1, 1) = 14 

f11 = 6x + 6y f11(1, 1) = 12 

f22 = 8x + 6y f22(1, 1) = 14 
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7 

 

2 

2! 

3! 

2! 

3! 

 

Function Value at (1, 1) 

f12 = 6x + 8y f12(1, 1) = 14 

f111 = 6 f111(1, 1) = 6 

f222 = 6 f222(1, 1) = 6 

f112 = 8 f112(1, 1) = 8 

f122 = 6 f122(1, 1) = 6 
 

All the partial derivatives of order four are zero.  Hence the remainder 

R4 = 0. 

The required Taylor’s expansion will be 

f (x, y) =f (1, 1) + [(x − 1)f1(1, 1) + (y − 1)f2(1, 1)] 

+
 1 h

(x − 1)2f11(1, 1) + 2(x − 1)(y − 1)f12(1, 1) + (y − 1)2f22(1, 1)
i

 

+
 1 h

(x − 1)3f111(1, 1) 

+3(x − 1)2(y − 1)f112(1, 1) + 3(x − 1)(y − 1)2f122(1, 1) + (y − 1)3f222(1, 1)
i

 

Substituting all the values we have, 

f (x, y) = 9 + [13(x − 1) + 14(y − 1)] +
 1 h

12(x − 1)2 + 28(x − 1)(y − 1) + 14(y − 1)2
i

 

+
 1 h

6(x − 1)3 + 18(x − 1)2(y − 1) + 24(x − 1)(y − 1)2 + 6(y − 1)3
i

 

= 9 + 13(x − 1) + 14(y − 1) + 6(x − 1)2 + 14(x − 1)(y − 1) + 7(y − 1)2
 

+ (x − 1)3 + 3(x − 1)2(y − 1) + 4(x − 1)(y − 1)2 + (y − 1)3
 

We can check the above result by algebra. 

RHS of the above equation 

=9 + 13x − 13 + 14y − 14 + 6x2 − 12x + 6 + 14xy − 14x − 14y + 14 + 7y2 − 14y + 7 

+ x3 − 1 + 3x − 3x2 + y3 − 1 − 3y2 + 3y + 3x2y − 6xy + 3y − 3x2 + 6x − 3 + 4xy2 

− 8xy + 4x − 4y  + 8y − 4 

= x3 + 3x2y + 4xy2 + y3. 

 
 

Example 5.2.8 Expand (1 − 3x + 2y)3 in powers of x and y. 

Solution: 
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8 

 

2 

6 

2! 

3! 

 

Function Value at (0, 0) 

f (x, y) = (1 − 3x + 2y)3
 f (0, 0) = 1 

f1 = −9(1 − 3x + 2y)2
 f1(0, 0) = −9 

f2 = 6(1 − 3x + 2y)2
 f2(0, 0) = 6 

f11 = 54(1 − 3x + 2y) f11(0, 0) = 54 

f22 = 24(1 − 3x + 2y) f22(0, 0) = 24 

f12 = −36(1 − 3x + 2y) f12(0, 0) = −36 

f111 = −162 f111(0, 0) = −162 

f222 = 48 f222(0, 0) = 48 

f112 = 108 f112(0, 0) = 108 

f122 = −72 f122(0, 0) = −72 
 

All the partial derivatives of order four are zero, so the remainder R4 = 0. 

The required Taylor’s expansion will be 

f (x, y) = f (0, 0) + [xf1(0, 0) + yf2(0, 0)] 

+ 
 1  h

x2f11(0, 0) + 2xyf12(0, 0) + y2f22(0, 0)
i

 

+ 
 1  h

x3f111(0, 0) + 3x2yf112(0, 0) + 3xy2f122(0, 0) + y3f222(0, 0)
i

 

f (x, y) =1 − 9x + 6y + 
1 h

54x2 − 72xy + 24y2

i

 

+ 
1 h

−162x3 + 324x2y − 216xy2 + 48y3

i

 

Example 5.2.9 Expand (1 − 3x + 2y)3 in powers of (x + 1) and (y + 1). 

Solution: 
 

Function Value at (−1, −1) 

f (x, y) = (1 − 3x + 2y)3
 f (−1, −1) = 8 

f1 = −9(1 − 3x + 2y)2
 f1(−1, −1) = −36 

f2 = 6(1 − 3x + 2y)2
 f2(−1, −1) = 24 

f11 = 54(1 − 3x + 2y) f11(−1, −1) = 108 

f22 = 24(1 − 3x + 2y) f22(−1, −1) = 48 
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9 

 

2 

6 

2! 

3! 

  

3! 
x 

∂x 
y 

∂y 
f θx, θx , < θ < 

2! 

 

f12 = −36(1 − 3x + 2y) f12(−1, −1) = −72 

f111 = −162 f111(−1, −1) = −162 

f222 = 48 f222(−1, −1) = 48 

f112 = 108 f112(−1, −1) = 108 

f122 = −72 f122(−1, −1) = −72 
 

All the partial derivatives of order four are zero, so the remainder R4 = 0. 

The required Taylor’s expansion will be 

f (x, y) = f (−1, −1) + [(x + 1)f1(−1, −1) + (y + 1)f2(−1, −1)] 

+
 1 h

(x + 1)2f11(−1, −1) + 2(x + 1)(y + 1)f12(−1, −1) + (y + 1)2f22(−1, −1)
i

 

+ 
 1 h

(x + 1)3f111(−1, −1) + 3(x + 1)2(y + 1)f112(−1, −1) 

+3(x + 1)(y + 1)2f122(−1, −1) + (y + 1)3f222(−1, −1)
i

 

f (x, y) =8 + [−36(x + 1) + 24(y + 1)] + 
1 h

108(x + 1)2 − 144(x + 1)(y + 1) + 48(y + 1)2
i

 

+ 
1 h

−162(x + 1)3 + 324(x + 1)2(y + 1) − 216(x + 1)(y + 1)2 + 48(y + 1)3
i

 

 
Example 5.2.10 Expand ex sin y in powers of x and y upto second degree 

terms and write the remainder. 

 

Solution: By Taylor’s expansion about (0, 0) for n = 2, we have 

 
f (x, y) =f (0, 0) + x 

∂  
+ y 

∂
 

∂x ∂y 
f (0, 0) +

 1
 x 

∂  
+ y 

∂
 

∂x ∂y 

 
f (0, 0) 

+
 1

 
∂  

+
 ∂  

  2    

(

 

) where 0 1 
 
 

Function Value of f at (0, 0) 

f (x, y) = ex sin y 0 

f1(x, y) = ex sin y 0 

f2(x, y) = ex cos y 1 

f11(x, y) = ex sin y 0 

f22(x, y) = −ex sin y 0 

f12(x, y) = ex cos y 1 

    

. 

2 
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0 

 

i 

2 

6 

2! 

3! 

2! 

 

Function Value of f at x = θx, y = θy 

f111(x, y) = ex sin y eθx sin θy 

f222(x, y) = −ex cos y −eθx cos θy 

f122(x, y) = −ex sin y −eθx sin θy 

f112(x, y) = ex cos y eθx cos θy 

 

f (x, y) =f (0, 0) + (xf1(0, 0) + yf2(0, 0)) 

+ 
 1  h

x2f11(0, 0) + 2xyf12(0, 0) + y2f22(0, 0)
i

 

+ 
 1  h

x3f111(θx, θy) + 3x2yf112(θx, θy) + 3xy2f122(θx, θy) 

+y3f222(θx, θy) 

=0 + [x(0) + y(1)] + 
1 

[x2(0) + 2xy + y2(0)] 

+ 
1 

[x3eθx sin θy + 3x2yeθx cos θy − 3xy2eθx sin θy − y3eθx cos θy] 

= 
eθx 

3 2 2 3 
 

y + xy +   
6  

[sin θy(x   − 3xy  ) + cos θy(3x  y − y )]. 

 

 

Example 5.2.11 Find the first six terms of the expansion of the function 

ex log(1 + y) in a Taylor’s series in the neighbourhood of the point (0, 0). 

 
Solution: The required Taylor’s expansion will be 

 
f (x, y) = f (0, 0) + (xf1(0, 0) + yf2(0, 0)) 

+ 
 1  h

x2f11(0, 0) + 2xyf12(0, 0) + y2f22(0, 0)
i 

+ ... 
 
 

Function Value of f at (0, 0) 

f (x, y) = ex log(1 + y) 0 

f1(x, y) = ex log(1 + y) 0 

ex 

f2(x, y) = 
1 + y

 1 

f11(x, y) = ex log(1 + y) 0 

−ex 
f22(x, y) = 

(1 + y)2
 −1 

ex 

f12(x, y) = 
1 + y

 1 
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x 
+ 

n 

 

=

   

  

  

 

=

   

n 

2! 

(x − a) 
∂x 

+ (y − b) 
∂y

 

Rn = 
(n + 1)! 

(x − a) 
∂x 

+ (y − b) 
∂y

 

h k 

2! 

x 
∂ 

⇒ e  log(1 + y) = y + xy − 
y2 

2 
... 

 

Summary 

 
• Taylor’s theorem for function of two variables 

1. f (x, y) ∈ Cn+1, |x − a| ≤ |h|, |y − b| ≤ |k| 
 

Σ 1
 

∂ 
∂  

 j 

 
 

where 

⇒ f (a + h, b + k) = 
j=0  

j! 

h + k 
∂x ∂y 

f (a, b) + Rn 

 
Rn = 

 1  (1 − t)n 
∂ 

 
 + 

∂  
 n+1  

f (a + ht, b + kt)dt 

0 n! ∂x ∂y 

  1  

(n + 1)! 
h 

∂  
+ 

∂x 

∂ n+1 

k 
∂y 

f (a + 
 

θh, b + θk), 0 < θ < 1 

 

• Maclaurin’s Theorem or Maclaurin’s expansion 

 
f (x, y) = f (0, 0)+ x 

∂  
+ y 

∂
 

∂x ∂y 
f (0, 0) +

 1
 x 

∂  
+ y 

∂
 

∂x ∂y 

 
f (0, 0) 

+ .... 
1 ∂ 

n! ∂x 

n 
+ y f 

∂y 
(0, 0) + Rn 

 
where Rn 

  1  

(n + 1)! 
x 

∂  
+ 

∂x 

∂ n+1 

y 
∂y 

 
f (θx + 

 
θy), 

 
0 < θ < 1. 

• Taylor’s expansion about the point (a, b) in powers of (x − a) and 

(y − b) 

Σ 1
 

∂ ∂  
 j

 

  

  1  
  

∂ ∂  
  n+1 

 

where r  =  a + θ(x − a), s  =  b + θ(y − b), 0 < θ < 1 after the 

differentiation. 

• Taylor’s expansion for third and more order derivatives are zero, 

f (x, y) =f (a, b) + (x − a)f1(a, b) + (y − b)f2(a, b) 

+
 1  

(x − a)2f11(a, b) + 2(x − a)(y − b)f12(a, b) 

+(y − b)2f22(a, b)
 

 

j! 
j=0 

    

+ 

f (x, y) = f (a, b) + Rn 

f (r, s), 

2 
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2! 

3! 

  

−

 

  

−

 

 

−

 

 

−

 

• Taylor’s expansion for n = 3, (higher derivatives are not zero) 

f (x, y) =f (a, b) + (x − a)f1(a, b) + (y − b)f2(a, b) 

+
 1 h

(x − a)2f11(a, b) + 2(x − a)(y − b)f12(a, b) 

+(y − b)2f22(a, b)
i

 

+
 1 h

(x − a)3f111(θx, θy) + 3(x − a)2(y − b)f112(θx, θy) 

+3(x − a)(y − b)2f122(θx, θy) + (y − b)3f222(θx, θy)
i

 

• Putting n = 0 in the Taylor’s theorem we get the Law of mean for 

function of two variables 

f (a + h, b + k) − f (a, b) = hf1(a + θh, b + θk) + kf2(a + θh, b + θk) 

where 0 < θ < 1. 

Multiple Choice questions 

 
1. Law of the mean for functions of two variables 

 

(a) f (a + h, b + k) − f (a, b) = f1(a + θh, b + θk)k + f2(a + θh, b + 

θk)h, 0 < θ < 1. 

(b) f (a + h, b + k) − f (a, b) = f1(a + θh, b + θk)h + f2(a + θh, b + 

θk)k, 0 < θ < 1. 

(c) f (a + h, b + k) − f (a, b) = f11(a + θh, b + θk)k + f22(a + θh, b + 

θk)h, 0 < θ < 1. 

 

2. If the Taylor’s series expansion of f (x, y) in powers of (x − a) and 

(x − b) is 

1
 

∂ ∂  
 2

 

f (a, b) + βf (a, b) + 
2 

(x − a) 
∂x 

+ (y − b) 
∂y

 

then β is 

f (a, b) 

 

(a) (x b)
 ∂

 
∂x 

(b) (x a)
 ∂

 
∂y 

+ (y a) 
∂

 
∂y 

+ (y b) 
∂

 
∂x 
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−

  

−

 

2! 

2! 

2! 

2 

2 

6 6 

 

(c) (x a)
 ∂

 
∂x 

+ (y b) 
∂

 
∂y 

3. Constant term in Taylor’s series expansion of f (x, y) = 3y3 − 4xy + 

x3 − 2x in powers (x − 1) and (y − 1) is 

(a) 0 

(b) −2 

(c) 9 

 
4. Taylor’s series expansion of the function f (x, y) = ex+y at (0, 0) upto 

second degree term is 

(a)  1 + (x − y) +
 1 

(x2 − 2xy + y2) 

(b) 1 + (x + y) +
 1 

(x2 + 2xy + y2) 

(c) 1 − (x − y) +
 1 

(x2 − 2xy + y2) 

Ans: 1. b) 2. c) 3. b) 4. b) 

 
Exercises 5 

 
1. State and prove Taylor’s theorem for function of two variables. 

 

2. Expand f (x, y) = x2 + xy − y2 in Taylor’s series (a = 1, b = −2). 

Ans: f (x, y) = −5+5(y+2)+ 1  
 
2(x − 1)2 + 2(x − 1)(y + 2) − 2(y + 2)2

 
 

3. Expand (1 − 3x + 2y)3  in powers of (x − 1) and (y + 1). 

4. Expand x2y + sin y + ex in powers of (x − 1) and (y − π) through 

quadratic terms and write the remainders, without computing θ. 

Ans : x2y+sin y+ex = (π+e)+(2π+e)(π−1)+(π+ e )(π−1)2 +2(x− 

1)(y − π) + 1 (x − 1)3eθx−θ+1 +(x − 1)2(y − π) + 1 (y − π)3 cos(θy − θπ). 
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Learning Outcomes : 

 
After studying this unit, students will be able 

 

F To understand, define and identify saddle points, extremum points. 

F To fit a straight line by the method of least squares. 

F To determine extrema of functions of two and three variables. 

 
 
 
 
 
 
 

Unit 6 

 
Maximum and Minimum of 

functions of two and three 

variables 

 
 
 
 

 
 

6.1 Maxima and Minima of functions of two vari- 

ables 

In this unit we shall discuss certain applications of partial differentia- 

tion. We shall prove a result for functions of two variables which provides a 
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sufficient condition for the existence of an absolute maximum or minimum 

at an interior point of the region of definition. 

 

6.1.1 Absolute maximum or minimum 

 
Definition 6.1.1 A function f (x, y) has an absolute maximum at a point 

(X, Y ) of a region R ⇐⇒ f (X, Y ) ≥ f (x, y) for all (x, y) in R. 

 
Definition 6.1.2 A function f (x, y) has a relative maximum at a point 

(X, Y ) of a region R ⇐⇒ there exists a positive number δ such that 

f (X, Y ) > f (x, y) for all (x, y) of R 

at which 0 < (x − X)2 + (y − Y )2 < δ. 

 
Definition 6.1.3 A function f (x, y) has an absolute minimum at a point 

(X, Y ) of a region R ⇐⇒ f (X, Y ) ≤ f (x, y) for all (x, y) in R. 

 
Definition 6.1.4 A function f (x, y) has a relative minimum at a point 

(X, Y ) of a region R there exists a positive number δ such that 

f (X, Y ) < f (x, y) for all (x, y) of R at which 0 < (x − X)2 + (y − Y )2 < δ. 

 
Theorem 6.1.1 

 

1. f (x, y) ∈ C1 in a bounded region R consisting of a domain D and a 

boundary curve Γ. 

 

2. f (a, b) > f (x, y) for some (a, b) ∈ D and all (x, y) ∈ Γ. 

 
⇒ There exists a point (X, Y ) ∈ D such that 

 
A. f (x, y) ≤ f (X, Y ) for all (x, y) ∈ R. 

B. f1(X, Y ) = f2(X, Y ) = 0. 
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∆x 

∆x 

∆x 

∆x 

∆y 

∆y 

∆y 

∆y 

√ 

Proof: Since f (x, y) is continuous in the closed region R it has a maxi- 

mum there. Let it attains its maximum at (X, Y ). 

By hypothesis (2), (X, Y ) ∈ D, 

we have f (X, Y ) ≥ f (x, y) for all (x, y) ∈ R. 

Then we have f (X + ∆x, Y ) ≤ f (X, Y ) for some (X + ∆x, Y ) ∈ R. 

Then 
 

f (X + ∆x, Y ) − f (X, Y ) 
≥ 0 if ∆x < 0

 

f (X + ∆x, Y ) − f (X, Y ) 
≤ 0 if ∆x > 0

 

 

Let ∆x → 0 then we have 

 
lim 

∆x→0 

lim 
∆x→0 

f (X + ∆x, Y ) − f (X, Y ) 
≥ 0 if ∆x < 0

 

f (X + ∆x, Y ) − f (X, Y ) 
≤ 0 if ∆x > 0

 

 

Hence f1(X, Y ) ≥ 0 and f1(X, Y ) ≤ 0. 

So f1(X, Y ) = 0. 

We also have f (X, Y + ∆y) ≤ f (X, Y ) for some (X, Y + ∆y) ∈ R. Then 

f (X, Y + ∆y) − f (X, Y ) 
≥ 0 if ∆y < 0

 

f (X, Y + ∆y) − f (X, Y ) 
≤ 0 if ∆y > 0.

 

 

Let ∆y → 0. We have 

 
lim 

∆y→0 

lim 
∆y→0 

f (X, Y + ∆y) − f (X, Y ) 
≥ 0 if ∆y < 0

 

f (X, Y + ∆y) − f (X, Y ) 
≤ 0 if ∆y > 0.

 

 

Hence f2(X, Y ) ≤ 0 and f2(X, Y ) ≥ 0 implies f2(X, Y ) = 0. Q 

 
Example 6.1.1 If f (x, y) = 4 − x2 − y2, x2 +y2 ≤ 1, find the absolute 

maximum or minimum. 

Solution:  Choose  a  =  b  =  0.  Then  f (0, 0)  =  2  >  f (x, y)|x2+y2=1  =  
√

3. 

Hence the absolute maximum exists at an interior point (X, Y ). 
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√ 

√f    X, Y  ,1 

√f    X, Y  .2 

2 2 

0 0 

To find the absolute maximum 

We have, 

( ) = 
  −X 

= 0 

4 − X2 − Y 2 

( ) = 
  −Y 

= 0 

4 − X2 − Y 2 

This is true for (X, Y ) = (0, 0). Hence the absolute maximum for f (x, y) 

occurs at the origin. At the origin (0, 0), we have f (x, y) = 2 at (0, 0). 

Example 6.1.2 If f (x, y) = 1 − x2 + y2, x2 + y2 ≤ 1, find the absolute 

maximum or minimum. 

 

Solution:  We cannot apply theorem (6.1.1) because f (x, y) ∈/ C1. 

But inspection we can see 

 

f (0, 0) = 1 > f (x, y)|x2+y2=1  = 0. 

So the function has the absolute maximum value at (0, 0). 

 
Example 6.1.3  If f (x, y) = x + y, x2 + y2 ≤ 1, find the absolute maxi- 

mum or minimum. 

 

Solution: f (x, y) = x + y ⇒ f1(x, y) = 1, f2(x, y) = 1. 

So the first order partial derivatives does not vanish. Hypothesis 2 fails 

here.  The function attains an absolute maximum at 
  

√1  , √1  
  

. 

 

Example 6.1.4  If f (x, y) = x4 + y4 − x2 − y2 + 1, x2 + y2 < ∞, find the 

absolute maximum or minimum. 

 

Solution: Using polar coordinates x = r cos θ, y = r sin θ, 0 ≤ θ ≤ 2π, we 

have 

f (r cos θ, r sin θ) = r4 cos4 θ + r4 sin4 θ − r2 cos2 θ − r2 sin2 θ + 1 

= r4(cos4 θ + sin4 θ) − r2(cos2 θ + sin2 θ) + 1 

= r4(cos4 θ + sin4 θ) − r2 + 1 

On the circle r = r0, we have 

r4(cos4 θ + sin4 θ) − r2 + 1 = r4(cos4 θ + sin4 θ) − r2 + 1 
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So the first term should be ≥ r . 

2 1 

2 

2 2 2 2 2 2 2 2 2 2 

2 2 2 2 2 2 2 

4 
0 

2 

Hence on the circle r = 2, 

f ≥ 8 − 4 + 1 = 5 and f (0, 0) = 1. 

So that the absolute minimum exists. 

To find absolute minimum 

 

f1(x, y) = 4x3 − 2x, f2(x, y) = 4y3 − 2y. 
 
 

For absolute minimum 

 
3 2 1 

4X   − 2X = 0 ⇒ 2X(2X   − 1) = 0 ⇒ X = 0, X = ±√
2

 

4Y 3 − 2Y  = 0 ⇒ 2Y (2Y   − 1) = 0 ⇒ Y  = 0, Y  = ±√
2

 

 

There are nine points where both equations hold (0, 0), (0, √1  ), (0, − √1  ), 
  

2 2 

( √1  , 0), ( √1  , √1  ), ( √1  , − √1  ), (− √1  , 0), (− √1  , √1  ), (− √1  , − √1  ) 
 

 
 

Point Value of f 

(0, 0) 1 

(0, √1  ) 
2 

3 
4 

(0, − √1  ) 
2 

3 
4 

( √1  , √1  ) 
2 2 

1 
2 

( √1  , − √1  ) 
2 2 

1 
2 

(− √1  , 0) 
2 

3 
4 

(− √1  , √1  ) 
2 2 

1 
2 

(− √1  , − √1  ) 
2 2 

1 
2 

( √1  , 0) 
2 

3 
4 

 

Hence we find that there are absolute minimum at four points ( √1  , √1  ), 
  

2 2 

(− √1  , − √1  ), (− √1  , √1  ), ( √1  , − √1  ) and value of the function =  1 . 

So f ≥ 1 in all the plane. 
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12 

2 

2 

2! 

6.2 Sufficient conditions 

 
A sufficient condition for relative maxima and minima is obtained in 

this section. 

 
6.2.1 Relative Extrema 

 
Theorem 6.2.1 

 
1. f (x, y) ∈ C2 

2. f1 = f2 = 0 at (X, Y ) 
 

1. f 2 − f12f22 < 0 at (X, Y ) 
 

4. f11 < 0 at (X, Y ) 

 
⇒ f (x, y) has a relative maximum at (X, Y ). 

 
Proof:    Suppose f1(X, Y ) = 0 and f2(X, Y ) = 0. 

Suppose that f (x, y) possesses continuous second order partial derivatives 

in a certain neighborhood of (X, Y ) and these derivatives at (X, Y ) are 

f11(X, Y ), f22(X, Y ), f12(X, Y ) and not all zero. 

Choose a point (X + h, Y + k) in the neighborhood of (X, Y ). 

By Taylor’s theorem with remainder we have for 0 < θ < 1, 

f (X+h, Y +k) = f (X, Y )+[hf1(X, Y ) + kf2(X, Y )]+ 
 1  h

h2f11(X + θh, Y  + θk) 

+2hkf12(X + θh, Y  + θk) + k2f22(X + θh, Y  + θk)
i 

. 

Since f1(X, Y ) = 0, f2(X, Y ) = 0 

f (X + h, Y  + k) − f (X, Y ) =  
1 h

h2f11(X + θh, Y  + θk) 

+2hkf12(X + θh, Y  + θk) + k2f22(X + θh, Y  + θk)
i 

. 

Let ∆f = f (X + h, Y  + k) − f (X, Y ) = 
1 h

Ah2 + 2Bhk + Ck2

i 

(6.1) 
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12 

2A 

12 

where 

A = f11(X + θh, Y + θk) 

B = f12(X + θh, Y + θk) 

  

 
(6.2) 

C  = f22(X + θh, Y  + θk), 0 < θ < 1 

Suppose A =/ 0, then 

∆f = 
1 

(Ah2 + 2Bhk + Ck2) 

= 
  1  

[A2h2 + 2ABhk + ACk2 + B2k2 − B2k2] 

= 
  1 

[(Ah + Bk)2 + (AC − B2)k2] 
 

Since f (x, y) ∈ C2, inequalities f 2 − f11f22 < 0 and f11 < 0 will also hold 

in some circle of radius δ and center at (X, Y ), 

This circle will contain in its interior the point (X+θh, Y +θk) if h2+k2 < δ2 

and hence A < 0, AC − B2 > 0. Then 

∆f =
 1 

[(Ah + Bk)2 + (AC − B2)k2] < 0. 

So f (X + h, Y + K) − f (X, Y ) < 0 implies f (X + h, Y + k) < f (X, Y ). 

That is f (x, y) has a relative maximum at (X, Y ). Q 

Remark : For relative minimum we have following theorem. 

 
Theorem 6.2.2 

 
1. f (x, y) ∈ C2 

2. f1 = f2 = 0 at (X, Y ) 
 

3. f 2 − f11f22 < 0 at (X, Y ) 
 

4. f11 > 0 at (X, Y ) 

 
⇒ f (x, y) has a relative minimum at (X, Y ). 

 
6.2.2 Saddle points 

 
Definition 6.2.1 A function f (x, y) has a saddle point at (X, Y ) if 

f1(X, Y ) = f2(X, Y ) = 0 and if ∆f = f (X + h, Y + k) − f (X, Y ) will have 
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2 

λ    0 2 

both positive and negative values in every neighborhood of (X, Y ), where 

(X + h, Y + k) is a point in the neighborhood of (X, Y ). 

 
Theorem 6.2.3 

 
1. f (x, y) ∈ C2 

2. f1 = f2 = 0 at (X, Y ) 
 

3. f 2 − f11f22 > 0 at (X, Y ) 
 

⇒ f (x, y) has a saddle point at (X, Y ). 

 
Proof: Suppose f (x, y) ∈ C2, f1 = f2 = 0 at (X, Y ). 

By Taylor’s theorem with remainder we have for 0 < θ < 1, 

f (X+h, Y +k) = f (X, Y )+[hf1(X, Y ) + kf2(X, Y )]+ 
 1  h

h2f11(X + θh, Y  + θk) 

+2hkf12(X + θh, Y  + θk) + k2f22(X + θh, Y  + θk)
i 

. 

Since f1(X, Y ) = 0, f2(X, Y ) = 0 

f (X + h, Y  + k) − f (X, Y ) =  
1 h

h2f11(X + θh, Y  + θk) 

+2hkf12(X + θh, Y  + θk) + k2f22(X + θh, Y  + θk)
i 

. 

∆f = f (X + h, Y + k) − f (X, Y ) = 
1 

[Ah2 + 2Bhk + Ck2] 

where  
A = f11(X + θh, Y + θk) 

B = f12(X + θh, Y + θk) 

C = f22(X + θh, Y + θk), 0 < θ < 1. 

Let a = f11(X, Y ), b = f12(X, Y ), c = f22(X, Y ). As h and k approach 

zero, A, B and C approach a, b and c respectively. 

We have three cases. 

Case (i).  Suppose a =/ 0. First set h = λ, k = 0 then, 

∆f = 
1 

[Aλ2] 

∆f 1 Aλ2 A a 
lim 
λ→0 λ 

= lim 
λ→0 

2   
2 

= lim 
λ → 

= 
2 

. 
2 
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2  
A B C 

Now set h = −λb, k = λa then 

∆f  = 
1 

[A(−λb)2 + 2B(−λb)(λa) + C(λa)2] 

= 
1 

[Aλ2b2 − 2Bλ2ab + Cλ2a2] 
 

Now 

∆f 
 

λ2 
[Ab2 − 2Bab + Ca2] 

 
 

 
 lim 

2  
= lim  2 

2
 

λ→0 λ λ→0  

1 2 
λ 

2
 

= lim 
λ→0 

2 [Ab − 2Bab + Ca  ] 

λ2 

= 
1 

lim Ab2 − lim Bab + 
1 

lim Ca2 
2 λ→0 λ→0 2 λ→0 

= 
1 

b2a − b2a + 
1 

ca2 = − 
1 

b2a + 
1 

ca2 = 
a 

(ac − b2). 

2 2 2 2 2 

By hypothesis 3, f 2 − f11f22 > 0 that is b2 − ac > 0 we have ac − b2 < 0. 

If a < 0, then 
a 

(ac − b2) > 0. 

If a > 0, then 
a 

(ac − b2) < 0. 

So the above two limits have opposite signs. Since f (x, y) ∈ C2, ∆f will 

have opposite signs for small λ in the two cases. 

Case (ii). Suppose c /=0 

Set h = 0, k = λ, then 

lim 
∆f

 = lim 
C 

= 
c

 
 

  

λ→0 λ2 

Now set, h = λc, k = −λb. 

λ→0  2 2 

lim 
∆f

 
= lim 

λ2 Ac2 − 2Bcb + Cb2 
 

 

λ→0  λ2 λ→0  2 λ2 

= 
ac2 − b2c 

= 
c 

(ac − b2). 

So as in case (i) ∆f will have opposite signs for small λ in the two cases 

c < 0 and c > 0. 

Case (iii). Suppose a = c = 0, then b /= 0. 

First set h = k = λ. Then 

∆f = 
2 

[Aλ2 + 2Bλ2 + Cλ2] = 
λ2 

( + 2 + ) 
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lim 
∆f 

= lim 
1 

(A + 2B + C) = 
1 

(a + 2b + c) = b 

λ→0  λ2 λ→0 2 2 

Then set h = −k = λ then 

lim 
∆f 

= lim 
1 

(A − 2B + C) = 
1 

(a − 2b + c) = −b 

λ→0  λ2 λ→0 2 2 

Again from case (i) we have the desired result. So in all cases ∆f will have 

both positive and negative values in every neighborhood of (X, Y ). 

Hence f (x, y) has a saddle point at (X, Y ). Q 

Example: Consider f (x, y) = xy. f1 = y, f2 = x, f11 = 0, f12 = 1, 

2 − f11f22 = 1 > 0. The origin is a saddle point. 

 

Summary of the results : 

Suppose that 

 

1. f (x, y) ∈ C2 

2. f1 = f2 = 0 at (X, Y ) 

 

(i) If f 2 − f11f22 < 0 at (X, Y ) and f11 < 0 at (X, Y ), then f (x, y) has 

a relative maximum at (X, Y ). 
 

(ii) If f 2 − f11f22 < 0 at (X, Y ) and f11 > 0 at (X, Y ), then f (x, y) has 

a relative minimum at (X, Y ). 
 

(iii) If f 2 − f11f22 > 0 at (X, Y ) and f1 = f2 = 0 at (X, Y ), then f (x, y) 

has a saddle point at (X, Y ). 

 
Example 6.2.1 Find the maximum and minimum of the function 

f (x, y) = x4 + y4 − x2 − y2 + 1. 

Solution: 

 

f1 = 4x3 − 2x and f2 = 4y3 − 2y. 

For stationary points f1 = 0, f2 = 0 

4x3 

4y3 

− 2x = 0 ⇒ 2x(2x 

− 2y = 0 ⇒ 2y(2y 

− 1) = 0 ⇒ x = 0, x = ±√
2

 

− 1) = 0 ⇒ y = 0, y = ±√
2

 

f 

2 

2 
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2 2 2 2 2 

11 

There are nine points (0, 0), (0, √1  ), (0, − √1  ), ( √1  , 0), ( √1  , √1  ), ( √1  , − √1  ), 
       

2 

(− √1  , 0), (− √1  , √1  ), (− √1  , − √1  ) 

2 2 2 2 2 2 

f11 = 12x2 − 2, f22 = 12y2 − 2, f12 = 0, , f21 = 0 

2  − f11f22 = −(12x2 − 2)(12y2 − 2) 

 

 
Point f 2 − f11f22 

12 

 
f11 

Extreme 

value 

 
Value of f 

 
(0, 0) −4 < 0 −2 < 0 

Relative 

maximum 

 
1 

(0,  √1   ) 
2 

 
8 −2 < 0 

Saddle 

point 
− 3 

4 

(0, −  √1   ) 
2 

 
8 −2 < 0 

Saddle 

point 
− 3 

4 

(  √1   

2 
, 0) 

 
8 

 
4 > 0 

Saddle 

point 
− 3 

4 

(−  √1   

2 
, 0) 

 
8 

 
4 > 0 

Saddle 

point 
− 3 

4 

(  √1       √1   

2 
, 

2 
) −16 

 
4 

Relative 

minimum 

 
1 
2 

(−  √1    √1   

2 
, − 

2 
) −16 

 
4 

Relative 

minimum 

 
1 
2 

(−  √1       √1   

2 
, 

2 
) −16 

 
4 

Relative 

minimum 

 
1 
2 

(  √1    √1   

2 
, − 

2 
) −16 

 
4 

Relative 

minimum 

 
1 
2 

 

Hence there is relative maximum at (0, 0) and there are relative minimum 
1 1 1 1 

at the four points (±√
2 

, ±√
2 

) and (0, ±√
2 

), (±√
2 

, 0) are saddle points. 

f 
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i=1 

Σ 
−

 

Σ 
−

 

Σ
f    (a, b) = 2 

 x11 
Σ 

Σ 

12 

n Σ
x

 
 
Σ
 

2 

2 

3 3 

Σ .

.

 

i 

.

Σ
x

 Σ Σ 

.

 

n n 

xi 
i=1 j=1 

j 

1 2 3 1 2 3 

1 2 3 

2 
i 

i=1 

! 

.

Σ Σ 

xiyi 
i=1 

xi 
i=1 

6.2.3 Least Squares 

 
For fitting a straight line y = ax+b through the points (x1, y1), (x2, y2), ..., 

(xn, yn) by the method of least squares, we have to determine constants a 

and b so that f (a, b) = 
Σn

 (axi + b − yi)
2  should be minimum. We have 

n 

f1(a, b) = 2 (axi + b yi)xi = 0 
i=1 
n 

f2(a, b) = 2 (axi + b yi) = 0 
i=1 
n 

2 
i 

 
 
 
 

Also 

i=1 
n 

f12(a, b) = 2 xi 
i=1 
n 

f22(a, b) = 2 1 = 2n 
i=1 

f11f22 − f 2  = 
Σ

i=1 

n 
2 
i 

i=1 

n 2 

xi 
i=1 

= 
1 Σ Σ

(
 

− x )  > 0. 

So we can apply theorem 6.2.1 and theorem 6.1.1 is also applicable, be- 

cause the unique relative minimum thus assumed must also be an absolute 

minimum. 

If n = 3, 

Σ Σ 
2

 
 
Σ3 

!2 
2 2 2 2 

1 
i=1 i=1 

xi − xi 
i=1 

=3(x1 + x2 + x3) − (x1 + x2 + x3) 

=3(x2 + x2 + x2) − x2 − x2 − x2 − 2x1x2 

− 2x2x3 − 2x3x1 

=2(x2 + x2 + x2 − x1x2 − x2x3 − x3x1). 

We now solve equations f1(a, b) = 0 and f2(a, b) = 0 for a and b and 

substitute these values in the equation of the line. We obtain 

x y 1 
. . 

  

xi 
=1 

yi 
i=1 

n 
1 

= 0. 
i=1 

. n n n . 

n n 

1 − 
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. . 

3 
. . 

1 

2 

3 

Σ Σ 

. i=1 i=1 1  
=  3 4 3 = 0 

. .
Σ

x2 
Σ

xiyi 
Σ

xi. 
3 3 

3 3 3 

i 

 

 
 

Example 6.2.2 Find the line through the points (1, 2), (0, 0), (2, 2). 

 
Solution: Given x1 = 1, y1 = 2, x2 = 0, y2 = 0, x3 = 2, y3 = 2. 

 

x y 1 . . . 1.  

  
.Σ Σ 

x   y Σ . . . 
. . . . 

 

.
i=1 i=1 i=1    

.
 

x(12 − 18) − y(9 − 15) + (18 − 20) = 0 

−6x + 6y − 2 = 0 

3x − 3y + 1 = 0. 

 

6.3 Functions of Three Variables 

 
6.3.1 Quadratic forms 

 
Definition 6.3.1 Quadratic form in three variables is defined by 

 

3 3 

F (x1, x2, x3) = aijxixj, aij = aji 
i=1 j=1 

= a11x2 + a12x1x2 + a13x1x3 

+ a21x2x1 + a22x2 + a23x2x3 

+ a31x3x1 + a32x2x3 + a33x2
 

 
 
 
 
 

(6.3) 
 

 
(i) Positive definite A quadratic form is positive definite if, and only if 

F (x1, x2, x3) > 0 except when x1 = x2 = x3 = 0. 

Clearly F (0, 0, 0) = 0. 

(ii) Positive semi- definite A quadratic form is positive semi-definite 

if, and only if, F (x1, x2, x3) ≥ 0, the equality holds for certain values of 

x1, x2, x3 not all zero. 

yi xi 

=1 

5 6 3 

i 
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. .
0  0 (6.4) 

B C 

1 

2 

Σ Σ 

3 

. . 

. . 

. 

. . a a 

Example: Consider F = x2 + x2 + x2, G = x2 + x2. 
1 2 3 1 2 

Here F (x1, x2, x3) > 0 except when x1 = x2 = x3 = 0. 

So F is positive definite. 

If G is considered as a form of three variables then G(0, 0, 1) = 0. So G 

is positive semi-definite. But if we consider G as a form of two variables 

x1, x2, then G is positive definite. 

Remark 1: We can also define negative definite forms. 

Remark 2: The form in two variables Ax2 + 2Bx1x2 + Cx2 is positive 
1 2 

definite if, and only if, 
 

A B 
A >  , > 

. . 
 

that is A > 0 and AC − B2 > 0. 

 
Lemma 6.3.1 The form 

 

3 3 

F (x1, x2, x3) = aijxixj, aij = aji 
i=1 j=1 

= a11x2 + a12x1x2 + a13x1x3 

+ a21x2x1 + a22x2 + a23x2x3 

 
 

is positive definite ⇐⇒ 

+ a31x3x1 + a32x2x3 + a33x2
 

 
.a a 

.
 

 
 

a11 a12 a13 
 

  

a11 > 0, 
11 12 

.a21 a22 a23. 

. 21 22. 
.a31 a32 a33 

Proof: We only prove the sufficient part. 

a11 a12 a13 .a 
a 

. 
 

 .a21 a22 a23. 11 
 

  

11 12 . . 
a33 a32 

> 0. 

> 0. > 0, 

Let ∆ = > 0, a > 0, 
a a . 21 22. 

. 
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.a31 

Aij = co-

.

factor of aij. 

.
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. 

. . . . 

a11 a a21  31 

. . 

. 

. 

          .22

 23 . . 

. 
. 
= ∆ 

A A 

3 

1 

. 22 23. . 12    22 13    32 22    22 23    32 32    22 33   32. 

Now collecting the terms in x2 and x1 in the form (6.3) as 

. . 

. . 

. 

So ∆ 0   A A = a11∆
2

 

1 

By using the formula for the product of two determinants, we have 
 

1 0 0 a11 a21 a31 
 

 

0   A32 A33 a12A23 + a33A13 a22A23 + a23A33 a32A23 + a33A33 
 

a11 a21 a31 

= 
.−a11A21 ∆ − a21A21 −a31A21   . 

.−a11A31 −a21A31 ∆ − a31A31. 

= 

. 

0 ∆ 0 

.

 
. 

0 0 ∆ 

.

 

= a11∆
2. 

 

1 0 0 

0   A32 A33 

. 

Hence 
A22 A23 

a11 . 
. 32 33. 

 

 

F = x2(a11) + x1(a12x2 + a13x3 + a21x2 + a31x3) + a22x2 + a23x2x3 
1 2 

+ a32x3x2 + a33x2
 

 

F = Ax2 + 2Bx1 + C 

 
where, A = a11, B = a12x2 + a13x3, C = a22x2 + 2a23x2x3 + a33x2. 

2 3 

To prove that F is positive definite. we have to prove F > 0 except when 

x1 = x2 = x3 = 0. 

For this we shall prove that AC − B2 > 0 unless x2 = x3 = 0, by (6.4) this 

will imply F > 0. 

Suppose x2 = x3 = 0. Then A = a11, B = 0, C = 0. 

So F = Ax2 = a11x2. This is positive unless x1 = 0. 
1 1 

So F is positive definite. 

∆  0  =A A  a    A + a    A a    A + a    A
 a    A + a    A 

. 
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. .
= 

 0
 

. . 

. . 

2 3 

2 3 12 2 13 3 

2 3 

. 21 22. 

. 32 33. .a31 a32 a33 
. 

. . 

. 

a a 

A A 

f f 

Consider AC − B2 and collect the terms with x2, x2x3 and x2. 

 

AC − B2 = a11(a22x2 + 2a23x2x3 + a33x2) − a2  x2 − a2  x2 − 2a12a13x2x3 

=x2[a11a22 − a12a21] + 2x2x3[a11a23 − a12a13] + x2[a11a33 − a13a31] 
2 3 

AC − B2 = A33x2 − 2A23x2x3 + A22x2. 

 

To show that this is always positive, unless x2 = x3 = 0, we use (6.4), we 

need 

 

a11 a12 

A33 > , 

 

.A A  . 
 
 

a11 a12 a13 
 

 

22 23 
. . 11 11 .a21 a22 a23. 

This is true by hypothesis. Hence F is p

.

ositive definit

.

e. Q 

6.3.2 Relative Extrema 

 
Theorem 6.3.1 

 

1. f (x, y, �) ∈ C2 

2. f1 = f2 = f3 = 0 at (X, Y, Z) 
 

.f f  
.
 

 
 

f11 f12 f13 
 

  

3. f11 > 0, 
11 12

 

.f21 f22 f23. 

. 21 22. 
.f31 f32 f33 

 

⇒ f (x, y, �) has a relative minimum at (X, Y, Z). 

 
Proof: Suppose that f (x, y, �) ∈ C2 and f1 = f2 = f3 = 0 at (X, Y, Z) 

Choose a point (X + h1, Y + h2, Z + h3) in the neighbourhood of (X, Y, Z). 

> 0 at  (X, Y, Z) > 0, 

= a  ∆ = a > 0. 
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ij 1 2 3 i  j 

2 

. .    

  .f f f21  22 

 23 

.           .21
 22 

. . 

where 0 < θ < 1.. Since f (x, y, .�) ∈ C2, it is clear that inequalities f11 > 

. 

. . 

. 

f f 

By Taylor’s formula with remainders we have for 0 < θ < 1, 

 
f (X + h1,Y + h2, Z + h3) 

=f (X, Y, Z) + [h1f1(X, Y, Z) + h2f2(X, Y, Z) + h3f3(X, Y, Z)] 
3 3 

+
 1 Σ Σ 

f (X + θh , Y + θh , Z + θh )h h 
i=1 j=1 

Since f1 = f2 = f3 = 0 at (X, Y, Z), 

∆f =f (X + h1, Y + h2, Z + h3) − f (X, Y, Z) 
3 3 

= 
1 Σ Σ 

fij(X + θh1, Y  + θh2, Z + θh3)hihj 
i=1 j=1 

 
 

.f11 f12
. 

f11 f12 f13 
. . 

0, > 0, > 0 also hold in some neighbourhood of 
. 
f f 

 
(X, Y, Z). 

.f31 f32 f33 

If the point (X + h1, Y + h2, Z + +h3) is in this neighbourhood, the coeffi- 

cients of the quadratic form ∆f will satisfy the conditions of lemma 6.3.1, 

so that ∆f > 0 throughout the neighbourhood, except at h1 = h2 = h3 = 0 

where ∆f = 0. 

Hence, f has a relative minimum at (X, Y, Z). Q 

Remark : For relative maximum we have the following theorem. 

 
Theorem 6.3.2 

 
1. f (x, y, �) ∈ C2 

2. f1 = f2 = f3 = 0 at (X, Y, Z) 
 

.f f  
.
 

 
 

f11 f12 f13 
 

  

3. f11 < 0, 
11 12

 

.f21 f22 f23. 

. 21 22. 
.f31 f32 f33 

 

⇒ f (x, y, �) has a relative minimum at (X, Y, Z). 

Example 6.3.1 Prove that the function f (x, y, �) = x2 + y2 + 3�2 − xy + 

2x� + y� has a relative minimum at (0, 0, 0). 

< 0 > 0, 
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. . 

.11 

. . 

1 2 

. . . . 

.
f21 f22 f23. = .−1 2 1. = 2(12 − 1) + 1(−6 − 2) + 2(−1 − 4) 

f f 

Solution:  
f1 = 2x − y + 2�, f11 = 2,   f12 = −1,   f13 = 2. 

f2 = −x + 2y + �, f21 = −1,    f22 = 2,    f23 = 1. 

f3 = 2x − y + 6�, f31 = 2, f32 = 1, f33 = 6. 

f (0, 0, 0) = 0. 

.f f  
.
 

 
 

 

 
f11 f12 f13 

 

 

Now we will check the conditions, f > 0, 
11

 

12 . .f21 f22 f23. for X = Y = Z = 0. 
. 

. 21 22. 
. . . 

.f31 f32 f33 

f11 = 2 > 0, 

f11 f12  
= 

2 −1 
=3 > 0, 

. . . . 
 

 

 

f11 f12 f13 

. 21 22. 

. 2 −1   2. 

.− . 

 

 
f31 f32 f33 

 
2 1 6  

= 22 − 8−10 = 4 > 0 
 

Hence f (x, y, �) ≥ f (0, 0, 0) = 0. 

Therefore f (x, y, �) has a relative minimum at (0, 0, 0). 

 
Example  6.3.2  Show that f (x, y, �) = (x+y+�)3 −3(x+y+�)−24xy�+a3 

has a relative minima at (1, 1, 1) and relative maxima at (−1, −1, −1). 

Solution: We have 
 

f1 = 3(x + y + �)2 − 24y� − 3 

f2 = 3(x + y + �)2 − 24�x − 3 

f3 = 3(x + y + �)2 − 24xy − 3 

The stationary points are given by 

 

(x + y + �)2 − 8y� − 1 = 0 

(x + y + �)2 − 8�x − 1 = 0 

(x + y + �)2 − 8xy − 1 = 0 

f f 

> 0 > 0 

. 
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. . 

6 18 

. . 

. . 

. . 

.
f21 f22 f23. = .−6 18 −6. = 5184 − 864 − 864 = 3456 > 0. 

Subtracting second equation from the first, �(x − y) = 0. 

Similarly x(y − �) = 0, y(� − x) = 0. 

⇒ Either x = 0, y = 0, � = 0 or x = y = �. 

Therefore stationary points are (0, 0, 0), (1, 1, 1), (−1, −1, −1). 

Again, we have 

 

 

 

 

 

At (1, 1, 1), 

f11 = 6(x + y + �) = f22 = f33 

f12 = 6(x + y + �) − 24� = f21 

f23 = 6(x + y + �) − 24x = f32 

f31 = 6(x + y + �) − 24y = f13. 

 
f11 = f22 = f33 = 18 

f12 = f23 = f31 = −6 

f11 = 18 > 0, 
.f11 f12. 

= 
. 18 −6. 

= 288 > 0 
 

 

 

f11 f12 f13 

. 21 22. 

. 18 −6 −6. 

.− . 

 

f31 f32 f33 −6  −6 18 . 
. 

 

Therefore the function has a relative minimum at (1, 1, 1). 

At (−1, −1, −1) 

f11 = f22 = f33 = −18 

f12 = f23 = f31 = 6 
 

f11 = −18 < 0, .
f11 f12. 

= 
.−18 6

 
 

 

. 
= 288 > 0 

. 21 22. . 6 −18 
 

f11 f12 f13 .−18 6 6 . 
 

 
.f21 f22 f23. . 6 −18 6 . = −5184 + 864 + 864 = −3456 < 0. 
f31 f32 f33 6 6 −18. 

. 
 

Hence the function has a relative maximum at (−1, −1, −1). 

= 

f f 

f f 

. 
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Summary 

 
• A function f (x, y) has an absolute maximum at a point (X, Y ) of a 

region R ⇐⇒ f (X, Y ) ≥ f (x, y) for all (x, y) in R. 

• A function f (x, y) has a relative maximum at a point (X, Y ) of a 

region R ⇐⇒ there exists a positive number δ such that 

f (X, Y ) > f (x, y) for all (x, y) of R 

at which 0 < (x − X)2 + (y − Y )2 < δ. 

• A function f (x, y) has an absolute minimum at a point (X, Y ) of a 

region R ⇐⇒ f (X, Y ) ≤ f (x, y) for all (x, y) in R. 

• A function f (x, y) has a relative minimum at a point (X, Y ) of a 

region R there exists a positive number δ such that 

f (X, Y ) < f (x, y) for all (x, y) of R at which 0 < (x−X)2 +(y−Y )2 < 

δ. 

 

• A function f (x, y) has a saddle point at (X, Y ) if 

f1(X, Y ) = f2(X, Y ) = 0 and if ∆f = f (X + h, Y + k) − f (X, Y ) 

will have both positive and negative values in every neighborhood of 

(X, Y ), where (X +h, Y +k) is a point in the neighborhood of (X, Y ). 

 
• Suppose that 

1. f (x, y) ∈ C2 

2. f1 = f2 = 0 at (X, Y ) 

 

(i) If f 2 − f11f22 < 0 at (X, Y ) and f11 < 0 at (X, Y ), then f (x, y) 

has a relative maximum at (X, Y ). 
 

(ii) If f 2 − f11f22 < 0 at (X, Y ) and f11 > 0 at (X, Y ), then f (x, y) 

has a relative minimum at (X, Y ). 
 

(iii) If f 2 − f11f22 > 0 at (X, Y ) and f1 = f2 = 0 at (X, Y ), then 

f (x, y) has a saddle point at (X, Y ). 
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• For fitting a straight line y = ax+b through the points (x1, y1), (x2, y2), ..., (xn, yn) 

by the method of least squares. We have to determine constants a 
n 

and b so that f (a, b) = (axi + b yi)
2 should be minimum 

i=1 

• By the method of least square, the straight line y = ax + b through 

the points (x1, y1), (x2, y2), ..., (xn, yn) is given by 

x y 1 
. . 

n 

xi 
=1 

. n 

n 

yi 
i=1 
n 

n 
 
 

i=1 
n 

1 
. 

= 0 

. 
 

  

• Quadratic form in three variables 
3 3 

F (x1, x2, x3) = aijxixj, aij = aji 
i=1 j=1 

• A quadratic form is 

(i) Positive definite  if,  and  only  if  F (x1, x2, x3)  >  0  expect  when 

x1 = x2 = x3 = 0. 

(ii) Positive semi-definite if, and only if F (x1, x2, x3) ≥ 0, the equality 

holding for certain values of x1, x2, x3 not all zero. 

• The quadratic form in two variables Ax2 + 2Bx1x2 + Cx2 is positive 
1 2 

A B 
A >  , > 

. . 
 

The quadratic form F (x1, x2, x3) = aijxixj, aij = aji is pos- 
i=1 j=1 

itive definite if, and only if 

 
.a a 

.
 

 
 

 
 

a11 a12 a13 
 

 

a > 0, 
11

 

12 . .a21 a22 a23. . 21 22. 2 .a31 a32 a33 

• If f (x, y, �) ∈ C , f1 = f2 = f3 = 0 at (X, Y, Z) then at (X, Y, Z) 

 

.f f  
.
 

 
 

 

f11 f12 f13 
 

  

(i) if f11 > 0, 
11 12

 

.f21 f22 f23. 

. 21 22. f31 f32 f33 

 
135 

> 0 > 0, 

> 0, > 0 

xi 
i=1 

xiyi 
i=1 

.
.
 

. 
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. . 

. .
(a) 0 

 0 C D 

. 21 22. .f31 
. 

. . 
f f 

 

 
then f (x, y, �) has a relative minimum at (X, Y, Z) 

 
 

.f f  
.
 

 
 

f11 f12 f13 
 

  

(ii) if f11 < 0, 
11 12

 

.f21 f22 f23. 

  

then f (x, y, �) has a relative maxi

.

mum at (X, Y

.

, Z) 

Multiple Choice questions 

 

1. Choose the incorrect statement. 

 
(a) A function f (x, y) has an absolute maximum at a point (X, Y ) 

of a region if and only if f (X, Y ) ≤ f (x, y) for all (x, y) in R. 

(b) A function f (x, y) has an absolute minimum at a point (X, Y ) 

of a region if and only if f (X, Y ) ≤ f (x, y) for all (x, y) in R. 

(c) A function f (x, y) has a relative maximum at a point (X, Y ) of a 

region R iff there exists a positive number δ such that f (X, Y ) < 

f (x, y) for all (x, y) of R at when 0 < (x − X)2 + (y − Y )2 < δ. 

2. The saddle point of function f (x, y) = xy is 

a) (−1. − 1) b) (1, 1) c) Origin 

3. A quadratic form in three variables is positive definite if and only if 

 
(a) F (x1, x2, x3) > 0, except when x1 = x2 = x3 = 0. 

(b) F (x1, x2, x3) ≥ 0 for certain values of x1, x2, x3 not all zero. 

(c) F (x1, x2, x3) < 0 for certain values if x1, x2, x3 not all zero. 

 
4. The form in two variables Ax2 + 2Bx1x2 + Cx2 is positive definite if, 

1 2 

and only if 

 
A B 

A <  , < 
. . 

f33 f32 

< 0 > 0, 
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. . 

. . 

. .
(b) 0 

 0 

. .
(c) 0 

 0 

 

A B 
A >  , > 

C D 
 

A B 
A <  , > 

C D 

 
Ans: 1. a) 2. c) 3. a) 4. b) 

 
Exercises 6 

 
1. Define absolute maximum and absolute minimum. 

 
2. If 

 

(a) f (x, y) ∈ C1 in a bounded region R consisting of a domain D 

and a boundary curve Γ. 

(b) f (a, b) > f (x, y) for some (a, b) ∈ D and all (x, y) ∈ Γ. 

then prove that there exists a point (X, Y ) ∈ D such that 

A. f (x, y) ≤ f (X, Y ) for all (x, y) ∈ R. 

B.  f1(X, Y ) = f2(X, Y ) = 0. 

 
3. Find the absolute maximum and absolute minimum of f (x, y) = x2 + 

2y2 − x on the set x2 + y2 ≤ 1. 

4. Show that the function x4+y4−2x2+8y2+4 has an absolute minimum. 

5. Define relative maximum and relative minimum. 

 
6. Define saddle point. 

 
7. Explain principle of least squares. 

 
8. Find the relative maxima and minima of 

f (x, y) = x3 + y3 − 3x − 12y + 20. 

Ans: Relative maximum at (1, −2), Relative minimum at (1, 2), 

Saddle points: (−1, 2), (−1, −2). 
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a a 

f f 

9. Test the following functions for relative maxima,relative minima and 

saddle points. 

(i) x2 + 2xy + 2y2 + 4x 

(ii) x3 − y3 + 3x2 + 3y2 − 9x 

10. Pass a line through the following points by least squares: 

 

(−2, 0), (−1, 0), (0, 1), (1, 3), (2, 2). 

 
11. Define quadratic forms. 

 
12. Define positive definite and positive semi-definite. 

 
13. Prove that the form 

 

3 3 

F (x1, x2, x3) = aijxixj, aij = aji 
i=1 j=1 

= a11x2 + a12x1x2 + a13x1x3 + a21x2x1 + a22x2
 

1 2 

+ a23x2x3 + a31x3x1 + a32x2x3 + a33x2
 

 

is positive definite if and only if 

 

.a a 
.
 

 
 

a11 a12 a13 
 

  

a11 > 0, 
11 12 

.a21 a22 a23. 

. 21 22. 
.a31 a32 a33 

 
 

 
14. If 

 

(a) f (x, y, �) ∈ C2 

(b) f1 = f2 = f3 = 0 at (X, Y, Z) 
 

.f f  
.
 

 
 

f11 f12 f13 
 

  

(c) f11 > 0, 
11 12

 

.f21 f22 f23. 

  

then prove that f (x, y, �) has a r

.

elative minimu

. 

m at (X, Y, Z). 

f33 f32 

> 0 > 0, 

> 0. > 0, 

. 
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Learning Outcomes : 

 
After studying this unit, students will be able 

 
F To determine extrema of function using Lagrange’s multipliers. 

 
 
 
 
 
 
 

Unit 7 

 
Lagrange’s Multipliers 

 
 
 
 

 

 
 
 

7.1 Lagrange’s Multipliers 

 
A problem of considerable importance for applications is that of max- 

imizing or minimizing a function of several variables, where the variables 

are related by one or more equations. To handle such problems, if possible 

we can eliminate some of the variables by using the given conditions and 

reduce the problem to an ordinary maximum and minimum problem. 

This procedure is not always feasible and the following procedure by in- 

troducing extreneous parameters, known as Lagrange’s multipliers is often 

more convenient. It also treats the variables in a more symmetrical way, so 

that various simplifications may be possible. We shall illustrate the method 

in several cases. 
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1 2 

7.1.1 One relation between two variables 

 
To maximize a function 

 
u = f (x, y) (7.1) 

 
where x and y are connected by an equation 

 
g(x, y) = 0 (7.2) 

 

Let us suppose f, g ∈ C1 and g2 + g2 > 0 in a region of the xy− plane. 

Case:(i). Suppose g2 is not zero, we solve equation (7.2) for y and substi- 

tute in equation (7.1) thus treating x as the independent variable. 

In this case a necessary condition for maximum or minimum is 

 
du 

= 0
 

dx 

f1 f2 
g1 

= 0 
g2 

 
The simultaneous solutions of the equations 

∂(f, g) 
= 0, g(x, y) = 0 

∂ x, y 
 

gives the desired points. 

Case:(ii).  Suppose g1 =/ 0, we take y  as the independent variable.  But in 

this case also we are led to the same pair of equation 

∂(f, g) 
= 0, g(x, y) = 0. 

∂ x, y 
 

To solve the same problem by the method of Lagrange, introduce the La- 

grange multiplier λ, forming the function 

Let V = f (x, y) + λg(x, y). 
 

∂V  
= f1 + λg1, 

∂V
 

∂x ∂y 
= f2 + λg2. 

For maxima and minima , we have 
∂V

 
∂x 

= 0, 
∂V

 
∂y 

= 0. We must solve the 

three equations g(x, y) = 0, f1 + λg1 = 0, f2 + λg1 = 0 for x, y and λ. 
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Theorem 7.1.1 

 
1. f (x, y), g(x, y) ∈ C1 in a domain D 

2. g2 + g2 > 0 in D 
1 2 

 

⇒ The set of points (x, y) on the curve g(x, y) = 0,  where  f (x, y)  has 

maxima or minima, is included in the set of simultaneous solutions (x, y, λ) 

of the equations 

f1(x, y) + λg1(x, y) = 0 

f2(x, y) + λg2(x, y) = 0 

g(x, y) = 0 

 

Proof:   Given f (x, y), g(x, y) ∈ C1. 

To find the maxima or minima of the function 

 
u = f (x, y) (7.3) 

 
where x and y are connected by an equation 

 
g(x, y) = 0 (7.4) 

 
To find the solution of these we use Lagrange multipliers λ. 

Let V = f (x, y) + λg(x, y) 
∂V  

= f1 + λg1, 
∂V

 
∂x ∂y 

= f2 + λg2. 

For maxima and minima , we have 
∂V

 
∂x 

= 0, 
∂V

 
∂y 

= 0. So 

 

f1(x, y) + λg1(x, y) = 0 (7.5) 

f2(x, y) + λg2(x, y) = 0 (7.6) 

We can solve atleast one of these equations for λ and substitute in the other 

equation.   Combining the result with g(x, y) = 0,  we arrive at equations 
∂(f, g) 

= 0, g(x, y) = 0. Also we must solve the three equations (7.4),(7.5) 
∂ x, y 

and (7.6) for x, y and λ. Q 
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Example 7.1.1 Find the rectangle of perimeter l which has maximum 

area. 

 

Solution: Let x and y be the lengths of the sides of the rectangle. 

Area of the rectangle = xy = f (x, y) 

Perimeter of the rectangle l = 2x + 2y = g(x, y) 

Then if λ is the Lagrange multiplier, we have 

V = f (x, y) + λg(x, y) = xy + λ(2x + 2y − l) 
∂V 

= y + 2λ 
∂x 
∂V 

= x + 2λ 
∂y 
∂V  

= 2x + 2y l 
∂λ 

For extremum values 
∂V

 
∂x 

= 0, 
∂V

 
∂y 

= 0, 
∂V

 
∂λ 

= 0, we have 

 

y + 2λ = 0 (7.7) 

x + 2λ = 0 (7.8) 

2x + 2y − l = 0 (7.9) 

Solving (7.7) and (7.8), we have x = y. 

Using in (7.9) we have 

 

x + y = 
2 

, 

2x = 
l 

, 

x = 
4 

. 

From (7.8), 
l 

+ 2λ = 0, so λ = − 
l 
. 

4 

Hence if x = y  =  
l
 

8 

and λ =  − 
l 

,  the  rectangle  of  maximum  area  is 

obtained, which is a square. 

 
Example 7.1.2 Find the shortest distance from the origin to the hyperbola 

x2 + 8xy + 7y2 = 255, � = 0. 

Solution: Distance from (0, 0) to a point (x, y) on the hyperbola = 
√

x2 + y2. 

f (x, y) = x2 + y2, g(x, y) = x2 + 8xy + 7y2 − 225. 
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We must minimize the function f (x, y) = x2 + y2 subject to the condition 

x2 + 8xy + 7y2 = 225. 

Consider the function 

 
V = f (x, y) + λg(x, y) 

= x2 + y2 + λ(x2 + 8xy + 7y2 − 225), where λ is the Lagrangian multiplier. 
∂V 

= 2x + 2λx + 8λy 
∂x 
∂V 

= 2y + 8λx + 14λy 
∂y 

For extremum values  
∂V  

= 0, 
∂V 

∂x ∂y 

 
 
= 0 and g(x, y) = 0 

(1 + λ)x + 4λy = 0 

4λx + (1 + 7λ)y = 0, x2 + 8xy + 7y2 = 225 

Solving we have λ = 1, − 
1 

. 

when λ = 1, x = −2y, using in x2 + 8xy + 7y2 = 225 

we have y2 = −45, which is not real solution. 

when λ = − 
1 

, y = 2x, using in x2 + 8xy + 7y2 = 225 

we have x2 = 5, y2 = 20, so x2 + y2 = 25. 

 
So the shortest distance from the origin to the given hyperbola = 5. 

 
Example 7.1.3 Find the shortest distance from the point (1, 0) to the 

parabola y2 = 4x. 

 
Solution: Distance from (1, 0) to a point (x, y) on the parabola y2 = 4x 

is 
√
(x − 1)2 + y2. 

f (x, y) = (x − 1)2 + y2, g(x, y) = y2 − 4x. 

We must minimize the function (x − 1)2 + y2 subject to the condition 

y2 = 4x. 
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Form the following function using Lagrange’s multiplier λ. 

 

V = f (x, y) + λg(x, y) 

= (x − 1)2 + y2 + λ(y2 − 4x) 
∂V  

= 2(x 1) 4λ 
∂x 
∂V 

= 2y + 2yλ 
∂y 

 

For extremum values 
 
 

∂V  
= 0, 

∂V 

∂x ∂y 
= 0 and y2 = 4x. 

 
 
 

⇒ 2(x − 1) − 4λ = 0 

2y + 2yλ = 0 

y2 − 4x = 0 

 

From 2y + 2λy = 0 we have 

 

2y(1 + λ) = 0 

⇒ either y = 0 or λ = −1. 

when λ = −1, 

2(x − 1) − 4λ = 0 

⇒ x = −1 

 
The parabola has no real point with negative abscissa. The valid range is 

x ≥ 0. 

Therefore λ = −1 must be rejected. 

1

 

Hence, the only real solution is x = 0, y = 0, λ = − 
2 

and the required 

minimum distance is attained at (0, 0) and the minimum distance = 1. 

This is shortest because any other point say (1, 2) on y2 = 4x gives distance 

= 
√

0 + 4 = 2 > 1. 
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7.1.2 One relation between three variables 

 

Now we consider the case 

 
u = f (x,y, �) 

g(x, y, �) = 0 

g2 + g2 + g2 > 0 
1 2 3 

It is easily seen by elimination that the desired extrema will lie among the 

simultaneous solutions of one the three systems: 

Suppose 

g = 0 

∂(f, g) 

∂(x, y) 

∂(f, g) 
= 0,

 

∂ x, � 

g = 0 

∂(f, g) 

∂(y, x) 

∂(f, g) 
= 0,

 

∂ y, � 

g = 0 

∂(f, g) 

∂(�, x) 

∂(f, g) 

∂(�, y) 

according as it is g1, g2, or g3 which is different from zero. 

To solve the same problem by the method of Lagrange, we introduce the 

Lagrange multiplier λ, forming the function 

V = f (x, y, �) + λg(x, y, �) 

Treating x, y, � as independent variables and set 
∂V

 
∂x 

= 0, 
∂V

 
∂y 

= 0, 
∂V

 
∂� 

= 0, 

we are led to the system 

g = 0 

f1 + λg1 = 0 

f2 + λg2 = 0 

f3 + λg3 = 0 

= 0 

= 0 

= 0 

= 0 
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a 

We can solve at least one of these for λ and thus arrive at one of the above 

systems. 

 

Example 7.1.4 Find the rectangular paralleopiped of surface area a2 and 

maximum volume. 

 
Solution: 

The volume of the rectangular paralleopiped = xy�. 

Surface area of the rectangular paralleopiped = a2 = 2xy + 2y� + 2�x. 

We form the following function using Lagrange’s multiplier λ 

V = xy� + λ(2xy + 2y� + 2�x − a2). 
 

Now the extremum of xy�  is given by  
∂V

 
∂x 

= 0, 
∂V

 
∂y 

= 0, 
∂V

 
∂� 

= 0 and 

2xy + 2y� + 2�x = 0.  

∂V 
 

 

∂x 
∂V 

 
 

∂y 
∂V 

 

∂� 

 

= y� + λ(2y + 2�) = 0 

= x� + λ(2x + 2�) = 0 

 
= xy + λ(2x + 2y) = 0 

Since the variables x, y, � must all be positive, no coefficient of λ is zero, so 

that 

x 
= 

x + � 
, 

y 
= 

x + y 

 
Consider 

y y + � � x + � 

 
x 

= 
x + � 

 
  

y y + � 

x(y + �) − y(x + �) = 0 

x(x − y) = 0 

� = 0, x = y 

� cannot be zero, so x = y. Similarly we have y = �. so x = y = �. 

Now 2xy + 2y� + 2�x = a2 

gives 

6x2 = a2 

x = √
6
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λ = 
−

 

Also 
 

a a a 
y = √

6 
, � = √

6 
, λ = − 

4
√

6 
. 

Then the box is a cube. 

 
Example 7.1.5 Find the miminum value of x2 + y2 + �2, given that ax + 

by + c� = p. 

 
Solution: Let f (x, y, �) = x2 + y2 + �2. 

Given ax + by + c� = p. 

Let g(x, y, �) = ax + by + c� − p. 

Form the following function using the Lagrange’s multiplier λ. 

 
V = f (x, y, �) + λg(x, y, �) 

= x2 + y2 + �2 + λ(ax + by + c� − p) 

For extremum values, 

∂V  
= 0, 

∂V 

∂x ∂y 
= 0, 

∂V
 

∂� 
= 0 and ax + by + c� = p 

 

⇒ 2x + λa = 0 

2y + λb = 0 

2� + λc = 0 

ax + by + c� = p 

Solving the above equations we have 

 

x = 
−λa

, y = 
−λb

, � = 
−λc 

2 2 2 

Using the above values of x, y, � in ax + by + c� = p, we have 

a 

  
−λa 

  

+ b 

  
−λb 

  

+ c 

  
−λc 

  

= p
 

2 2 2 
2 2 2 

 
 

 
Therefore, we have 

−λ(a + b + c ) = 2p 

     2p  

a2 + b2 + c2 

 
ap bp cp 

x = 
a2 + b2 + c2 

, y = 
a2 + b2 + c2 

, � = 
a2 + b2 + c2 
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Using the above values of x, y, � in f (x, y, �) = x2 + y2 + �2 

 
f (x, y, �) = x2 + y2 + �2 

a2p2 + b2p2 + c2p2 

a2 + b2 + c2 

p2 

a2 + b2 + c2 

 
Hence, the minimum value of x2 + y2 + � 

p2 

a2 + b2 + c2 
.
 

 

Example 7.1.6 Divide 24 into three positive numbers x, y, � such that 

xy2�3 is a maximum. 

 
Solution: Let f (x, y, �) = xy2�3. 

Given x + y + � = 24. 

Let g(x, y, �) = x + y + � − 24. 

Form the following function using the Lagrange’s multiplier λ 

 
V = f (x, y, �) + λg(x, y, �) = xy2�3 + λ(x + y + � − 24) 

For extremum values, 

∂V  
= 0, 

∂V 

∂x ∂y 
= 0, 

∂V
 

∂� 
= 0 and x + y + � = 24 

 

⇒ y �  + λ = 0 

2xy�3 + λ = 0 

3xy2�2 + λ = 0 

x + y + � = 24 

Solving the above equations we have 2x = y and 3x = �. Using the above 

values of x, y, � in x + y + � = 24 we get 

x + 2x + 3x = 24 

6x = 24 

x = 4 
 

Therefore y = 8, � = 12. 

Hence, the maximum value of f (x, y, �) = xy2�3 is 442368. 

= 

= 

2 is 
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x2 

y2 

�2 

   
3

 

b 

   
3+

 

b 

Example 7.1.7 Find the minimum value of 

 
(i)  f (x, y, �) = a3x2 + b3y2 + c3�2 

(ii) f (x, y, �) = x2 + y2 + �2 if 
1 

+ 
1 

+ 
1 

= 1 

 

Solution: (i) 

x y � 

f (x, y, �) = a3x2 + b3y2 + c3�2 
1 1 1 

g(x, y, �) = 
x 

+ 
y 

+ 
� 

− 1 

Form the following function using the Lagrange’s multiplier λ 

 
V = f (x, y, �) + λg(x, y, �) 

= a3x2 + b3y2 + c3�2 + λ 

  
1 

+ 
1 

+ 
1 

− 1

 

 

 
For extremum values 

x y � 

 

∂V  
= 0, 

∂V 

∂x ∂y 
= 0, 

∂V
 

∂� 
= 0 and g(x, y, �) = 0 

2a3x − 
λ 

= 0 

2b3y − 
λ 

= 0 

2c3� − 
λ 

= 0 

and 
1 

+ 
1 

+ 
1 

= 0 
x y � 

Solving the above equations we get 
 

a3x3 = b3y3 = c3�3 

or ax = by = c� = k , say 
k k k 

⇒ x = 
a

, y = 
b 

, � = 
c

 

Substituting these values in 
1 

+ 
1 

+ 
1 

= 1 

we get a + b + c = k. 

Therefore 

x y � 

a + b + c 
x 

a 
, y = 

a + b + c 

b 
, � = 

a + b + c 

c 

Hence the extreme value of a3x2 + b3y2 + c3�2 is 

a + b + c  2 
a 

a 
+ 3 

    
a + b + c 

  2
 a + b + c   2 

c 
c 

= 
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= a(a + b + c)2 + b(a + b + c)2 + c(a + b + c)2 or (a + b + c)3
 

 
The extremum is a minimum because, if we increase x, y, � satisfying 

1 
+ 

1 1 3   2 3   2 3   2 

x
 

+ 
y � 

= 1, a x + b y + c � increases indefinitely. 

(ii) To prove this, set a = b = c = 1. 

Then min(x2 + y2 + �2) = (1 + 1 + 1)3 = 27. 

 

Example 7.1.8 A rectangular open box, open at the top is to have a vol- 

ume of 32 cubic feet. Find the dimensions of the box requiring least material 

for its construction. 

 
Solution: Let the length, breath and height of the box be x, y, �. 

Surface area of the box = f (x, y, �) = xy + 2x� + 2y� 

Volume of the box = xy� = 32 

Let g(x, y, �) = xy� − 32. 

Form the following function using the Lagrange multiplier λ 

 
V = f (x, y, �) + λg(x, y, �) 

= xy + 2x� + 2y� + λ(xy� − 32) 

Since xy� = 32, we can choose xy = k, � = 
32 

, where k is any large number. 
k 

Thus the surface area xy + 2x� + 2y� which contains the term xy can be 

increased to any extent. So the surface area has no maximum and it has a 

minimum. The minimum is given by, 

 

∂V  
= 0, 

∂V 

∂x ∂y 
= 0, 

∂V
 

∂� 
= 0 and g(x, y, �) = 0 

 

 

⇒ y + 2� + λy� = 0 

x + 2� + λ�x = 0 

2x + 2y + λxy = 0 

and xy� − 32 = 0 
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Solving the above equations we have, x = y, y = 2�. 

Using in xy� = 32 we have, 

4x3 = 32 

�3 = 8 

� = 2 

⇒ x = 4, y = 4, � = 2. 

The minimum surface area = xy + 2x� + 2y = 48. 

 

Example 7.1.9 Find the positive numbers such that their sum is a con- 

stant and their product is maximum. 

 
Solution: Let x, y, � be the three numbers. 

We have to maximize xy� subject to x + y + � = a. 

Let 

f (x, y, �) = xy� 

g(x, y, �) = x + y + � − a 

Form the following function using Lagrange’s multiplier λ. 

 
V = f (x, y, �) + λg(x, y, �) 

= xy� + λ(x + y + � − a) 

For extremum values 
 

∂V  
= 0, 

∂V 

∂x ∂y 
= 0, 

∂V
 

∂� 
= 0 and x + y + � = a. 

 

 
 
 

 
We have 

 

 
Solving for x, y, �, 

⇒ y� + λ = 0 

x� + λ = 0 

xy + λ = 0 

 

xy = y� = �x = −λ 

 
x = y = � 
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Hence 
 

 
a a a 

x + y + � = a =⇒ x = 
3 

, y = 
3 

, � = 
3 

. 

 
The maximum value of 

 
f (x, y, � 

a3 

27 
.
 

 

Example 7.1.10 Find the greatest and the least distances of the point 

(3, 4, 12) from the unit sphere whose centre is at the origin. 

 
Solution: The equation of the unit sphere is x2 + y2 + �2 = 1. 

Distance of (3, 4, 12) from any point of the sphere is 

q

(x − 3)2 + (y − 4)2 + (� − 12)2. 

Let f = (x − 3)2 + (y − 4)2 + (� − 12)2. 

We have to find the maximum and minimum of f subject to 

 
x2 + y2 + �2 − 1 = 0. 

 
Form the following function using Lagrange’s multiplier λ. 

 
V = f (x, y, �) + λg(x, y, �) 

= (x − 3)2 + (y − 4)2 + (� − 12)2 + λ(x2 + y2 + �2 − 1). 

For extremum values 

 

∂V  
= 0, 

∂V 

∂x ∂y 
= 0, 

∂V
 

∂� 
= 0 and x2 + y2 + �2 = 1. 

 

⇒ 2(x − 3) + 2xλ = 0 

2(y − 4) + 2yλ = 0 

2(� − 12) + 2�λ = 0 
 

Solving for x, y, � we have, 

 
x = 

3
 

 

 

, y = 

 
4 

, � = 
12 

 
  

λ + 1 λ + 1 λ + 1 

) = 
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13 13 13 

13 13 13 

− 
13 

− 
13 

− 
13 

13 13 13 

Substituting in x2 + y2 + �2 = 1 we get 

 

( 

9 
2  

+ 
16 

 
 

2  
+ 

144 
2  

= 1 

λ + 1) (λ + 1) (λ + 1) 

(λ + 1)2 = 169 

(λ + 1) = ±13 

⇒ λ = −14, 12 

At λ = −14, (x, y, �) = 

 

−
 3 

, −
 4 

, − 
12 

 

 

At λ = 12, (x, y, �) = 

  
 3 

, 
 4 

, 
12 

 

 

 

Minimum distance = 

s 

3 
3 

  2 

+ 

 

4

 
4 

  2 

+ 

 

12 
12 

 2 

= 12 

Greatest distance = 

s  

3 +  
3 

 2 

+ 

  

4 +  
4 

  2 

+ 

  

12 + 
12 

 2 

= 14 
 

 

 

7.1.3 Two relations between three variables 

 
Now we consider the following case 

 
 

u = f (x,y, �) 

g(x, y, �) = 0 

h(x, y, �) = 0 
 

 

 
  
∂(g, h) 

 2 

+ 

  
∂(g, h) 

 2 

+ 

  
∂(g, h) 

 2
 
 
> 0 (7.10) 

∂(x, y) ∂(y, �) ∂(�, x) 

 

There is now a single independent variable which must be chosen in ac- 

cordance with the Jacobian which is not zero. All three cases lead to the 

system 

 

 
g = h = 

∂(f, g, h) 
 

 

∂(x, y, �) 

 
= 0. (7.11) 

. 

. 
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2 

5 

25 

x � 
4 5 25 

−
 

µ x y − � . 

The Lagrange method introduces two parameters λ and µ and leads to the 

system of five equations in x, y, �, λ, µ, 

f1 + λg1 + µh1 = 0 

f2 + λg2 + µh2 = 0 

f3 + λg3 + µh3 = 0 

g = 0 

h = 0 

 
Under conditions (7.10) this system is easily seen to reduce to the system 

(7.11) when λ and µ are eliminated. 

Example 7.1.11 Find the maximum and minimum values of x2 + y2 + �2 
subject to the constraint conditions 

x2 

+ 
y2 

+ 
�2  

= 1 and = + 

 
Solution: Let 

4 5 25 
� x y. 

f (x, y, �) = x2 + y2 + �2 

x2 y2 �2 

g(x, y, �) = 
4  

+  
5  

+ 
25 

− 1 

h(x, y, �) = x + y − �. 

Form the following function using the Lagrange’s multipliers λ and µ. 

V = f (x, y, �) + λg(x, y, �) + µh(x, y, �) 

= 2 + 2 +  2 + 

  
x2  

+ 
y2  

+ 
�2 

1

! 

+   (   + ) 
 

For extremum values, 
 

∂V  
= 0, 

∂V 

∂x ∂y 
= 0, 

∂V
 

∂� 
= 0, g(x, y, �) = 0, h(x, y, �) = 0. 

⇒ 2x + 
λx 

+ µ = 0 

2y + 
2λy 

+ µ = 0 

2� + 
2λ� 

− µ = 0 
x2 

+ 
y2  

+ 
�2  

= 1 + = 0 

4 5 25 
, x y − � 

Solving these equations for x, y, �, we find 

2µ 5µ 25µ 
x = − 

λ + 4 
, y = − 

2λ + 10 
, � = 

2λ + 50 

y λ 
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17 

µ  = 

19 

= 

= 

17 

19 19 19 19 19 19 

√
646 

, √
646 

, √
646 

√
646 

, √
646 

, √
646 

Substituting all the above values in x + y − � = 0 we get, 

    2  
+

 5 
+

     25 
= 0

 

λ + 4 2λ + 10 2λ + 50 

2(2λ + 10)(2λ + 50) + 5(λ + 4)(2λ + 50) + 25(λ + 4)(2λ + 10) = 0 

(2λ + 10)(2λ + 50) + 5(λ + 4)(λ + 25) + 25(λ + 4)(λ + 5) = 0 

4λ2 + 120λ + 500 + 5λ2 + 500 + 145λ + 25λ2 + 500 + 225λ = 0 

34λ2 + 490λ + 1500 = 0 

17λ2 + 245λ + 750 = 0 
 

 
 

When λ = −10, 

⇒ (λ + 10)(17λ + 75) = 0 

⇒ λ = −10 or 
−75 

. 

µ µ 5µ 
x = 

3 
, y = 

2 
, � = 

6 
. 

Substituting in the first constraint condition 
x2 

+ 
y2 

+ 
�2

 
 

   

= 1 yields 

4 

2 180 
19 

⇒ µ = ±6

r 
 5 

. 

5 25 

This gives two points 

 

2

r 
5 

, 3

r 
5 

, 5

r 
5 
! 

and 

 

−2

r 
5 

, −3

r 
5 

, −5

r 
5 
! 

. 

At these points f (x, y, �) = x2 + y2 + �2 = 10. 

When λ = − 
75 

, 
17 

34µ 
x = 

7  
, y − 

17µ 

4 
, � 

17µ 

28 
.
 

Substituting in the first constraint condition 
x2

 
 

 + 
y2 

 + 
�2 

 

= 1 yields 

    140  
µ ± 

17
√

646 
.
   

   40  
 

 

 
−35  

 
 

    5     
 

 
 

 

4 5 

 
  

−40  
 

 

25 

 
−35  

 
 

  −5   
 

 
 

 

At these points f (x, y, �) = x2 + y2 + �2 = 
75 

. 
75 

Thus the required maximum value is 10 and the minimum value is 
17 

. 

Example 7.1.12 Show that the extreme values of x2 + y2 + �2 constrained 

as ax2 + by2 + c�2 = 1, px + qy + r� = 0 are given by the quadratic equation 

in λ 

p2 

1 − aλ 
+ 

q2 

1 − bλ 
+ 

r2 

1 − cλ 
= 0. 

= 

This gives two points and . 
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2 2 2 

2 2 2 

2 2 2 2 2 2 

Solution: Let  
f (x, y, �) = x2 + y2 + �2, 

g(x, y, �) = ax2 + by2 + c�2 − 1, 

h(x, y, �) = px + qy + r�. 

Form the following function using the Lagrange’s Multipliers λ and µ. 

 
V = f (x, y, �) + λg(x, y, �) + µh(x, y, �) 

= x2 + y2 + �2 + λ(ax2 + by2 + c�2 − 1) + µ(px + qy + r�) 

For extremum values 

∂V  
= 0, 

∂V 

∂x ∂y 
= 0, 

∂V
 

∂� 
= 0, g(x, y, �) = 0 and h(x, y, �) = 0 

 

⇒ 2x + 2λax + µp = 0 

2y + 2λby + µq = 0 

2� + 2λc� + µr = 0 

ax2 + by2 + c�2 = 1 

px + qy + c� = 0 

From the above equations we have, 

x
∂V 

+ y
∂V  

∂x ∂y 

 
+ � 

∂V  
= 0

 

∂� 

⇒ 2(x  + y  + � ) + 2λ((ax  + by  + c� )) + µ(px + qy + r�) = 0 

⇒ 2(x  + y  + � ) + 2λ = 0 

⇒ λ = −(x + y  + � ). 

Hence, we have 
 

µp µq µr 

x = 
2(1 − aλ) 

, y = 
2(1 − bλ) 

, � = 
2(1 − cλ) 

Using the values of x, y, � in px + qy + r� = 0 we have 

p2 

1 − aλ 
+ 

q2 

1 − bλ 
+ 

r2 

1 − cλ 
= 0. 

 
 

 

Example 7.1.13 Maximize or minimize the function f (x, y, �) = 3x − y − 

3� subject to the constraints x + y − � and x2 + 2�2 − 1. 
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µ 
 2 

Solution: Let f (x, y, �) = 3x − y − 3�, g(x, y, �) = x + y − �, h(x, y, �) = 

x2 + 2�2 − 1. 

Form the following function using the Lagrange’s Multipliers λ and µ. 

 

V = f (x, y, �) + λg(x, y, �) + µh(x, y, �) 

= 3x − y − 3� + λ(x + y − �) + µ(x2 + 2�2 − 1) 

For extremum values, 

 

∂V  
= 0, 

∂V 

∂x ∂y 
= 0, 

∂V
 

∂� 
= 0, x + y − � = 0 and x2 + 2�2 − 1 = 0 

 

 

 

⇒ 3 + λ + 2µx = 0 

−1 + λ = 0 

−3 − λ + 2�µ = 0 

x + y − � = 0 

x2 + 2�2 − 1 = 0 

 
Solving these equations we have, 

 

 
2 3 1 

λ = 1, x = − 
µ

, y = 
µ

, � = 
µ

. 

 
Using the above values in x2 + 2�2 = 1 we have, 

 

2  2 

+ 2 
µ 

 4 

µ2 

  
1 

 2 

= 1

 

µ2 
= 1 

⇒ µ = ±
√

6 

√ 2 3 1   
 If µ = 6, x = −√

6 
, y = √

6 
, � = √

6 
. 

+ 

− 
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= 

= 

√ 2 3 1   
 If µ = −  6, x = √

6 
, y = −√

6 
, � = −√

6 
. 

 
  

  2 3 1   
 

 
 At √

6 
, −√

6 
, −√

6
 

f (x, y, �) = 3x − y − 3� 
6 3 3 

 

 

 

 
  2   3   

 
  

 
 
  1   

 
 

 
 

= √
6 

+ √
6 

+ √
6 

12 
√

6
 

= 2
√

6 

At −√
6 

, √
6 

, √
6
 

f (x, y, �) = 3x − y − 3� 
6 3 3 

= −√
6 

− √
6 

− √
6 

12 
−√

6
 

= −2
√

6 

Therefore the maximum value is 2
√

6 and minimum value is −2
√

6. 

 
Summary 

 
 

• If 

 
1. f (x, y), g(x, y) ∈ C1 in a domain D 

2. g2 + g2 > 0 in D 
1 2 

 

then the set of points (x, y) on the curve g(x, y) = 0, where f (x, y) has 

maxima or minima, is included in the set of simultaneous solutions 

(x, y, λ) of the equations 

 
f1(x, y) + λg1(x, y) = 0 

f2(x, y) + λg2(x, y) = 0 

g(x, y) = 0 
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• To solve  

 
u = f (x,y, �) 

g(x, y, �) = 0 

g2 + g2 + g2 > 0 
1 2 3 

 

by the method of Lagrange, we introduce the Lagrange multiplier λ, 

forming the function 

 

V = f (x, y, �) + λg(x, y, �) 

Treating  x, y, �  as  independent  variables  and  set  
∂V

 
∂x 

 
= 0, 

∂V  
= 

∂y 

0, 
∂V 

∂� 
= 0, we are led to the system 

 
g = 0 

f1 + λg1 = 0 

f2 + λg2 = 0 

f3 + λg3 = 0 

We can solve at least one of these for λ and thus arrive at one of the 

above systems. 

• Consider the following case 
 

u = f (x,y, �) 

g(x, y, �) = 0 

h(x, y, �) = 0 

 
  
∂(g, h) 

 2 

+ 

  
∂(g, h) 

 2 

+ 

  
∂(g, h) 

 2
 

 
 
 
 
 
 
> 0 (*) 

∂(x, y) ∂(y, �) ∂(�, x) 

There is now a single independent variable which must be chosen in 

accordance with the Jacobian which is not zero. All three cases lead 

to the system 

g = h = 
∂(f, g, h) 

 
 

∂(x, y, �) 
= 0. (**) 
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3 

8 

3 

10 

10 

27 

The Lagrange method introduces two parameters λ and µ and leads 

to the system of five equations in x, y, �, λ, µ, 

f1 + λg1 + µh1 = 0 

f2 + λg2 + µh2 = 0 

f3 + λg3 + µh3 = 0 

g = 0 

h = 0 

 
Under conditions (*) this system is easily seen to reduce to the system 

(* *) when λ and µ are eliminated. 

Multiple Choice questions 

 
1. In determining the minimum value of x2 + y2 + �2 subject to the con- 

dition x+y +� = 5 by Lagrange’s method of undetermined multiplier 

the value of undetermined multiplier λ is 

(a) − 
10

 

(b) 
 3

 

(c) −
 3

 

2. Extreme value of xy� subject to x + y + � = 1 is 

(a) 
1
 

(b) 8 

(c) 
 1

 

3. In determining the minimum value of x2 +y2 +�2 subject to condition 

y� + �x + xy = 3a2 by Lagrange’s method of undetermined multiplier 

the value of undetermined multiplier λ is 

a) 1 b) −1 c) 
2

 

4. In determining the extreme value of f (x, y, �) subject to the condition 

f (x, y, �) = 0 by Lagrange’s method of undetermined multiplier the 

value of undetermined multiplier λ satisfies the equation 
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(a) Fx + λfx 

(b) Fy + λfy 

(c) F� + λf� = 0 

(d) all the above 

 
Ans: 1. a) 2. c) 3. b) 4. d) 

 
Exercises 7 

 
1. If 

 

(a) f (x, y), g(x, y) ∈ C1 in a domain D 

(b) g2 + g2 > 0 in D 
1 2 

 

then prove that the set of points (x, y) on the curve g(x, y) = 0, where 

f (x, y) has maxima or minima, is included in the set of simultaneous 

solutions (x, y, λ) of the equations 

f1(x, y) + λg1(x, y) = 0 

f2(x, y) + λg2(x, y) = 0 

g(x, y) = 0 

 
2. The temperature T at any point (x, y, �) is 400xy�. Find the highest 

temperature on x2 + y2 + �2 = 1. 

3. Show that the minimum and maximum distances of the origin from 

the ellipse 5x2 + 6xy + 5y2 = 8 are 1 and 2 respectively. 

4. Find the greatest and the least distances of the point A(3, 4, 12) from 

the sphere x2 + y2 + �2 = 1. 
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BLOCK IV 

 
Line and Surface Integrals 



 

 



163  

 
Learning Outcomes : 

 
After studying this unit, students will be able 

 

F To define and evaluate line integrals. 

F To know the applications of line integrals. 

 
 
 
 
 
 

 

Unit 8 

 
Line Integral 

 
 
 
 

 

 
 
 
 

 

8.1 Introduction 

 

In block IV we study two new concepts line integrals and surface in- 

tegrals . These integrals have important applications to geometry and 

physics. If the function to be integrated is defined along an arc of a curve 

in two or three dimensions, we can define an integral over that region, the 

result is called a line integral or curvilinear integral over the arc. In the 

same manner if the region of integration of a double integral is taken as a 

region on a curved surface, the result is called a surface integral. 
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8.1.1 Curves 

 
We shall be dealing with curves of various types. For easy reference let 

us introduce names for them. 

Curve : A curve in the xy-plane is a set of points (x, y) for which 

x = φ(t), y = ψ(t), a ≤ t ≤ b (8.1) 

where φ(t) ∈ C, ψ(t) ∈ C in a ≤ t ≤ b. 

Closed curve : If φ(a) = φ(b), ψ(a) = ψ(b), the curve is called closed 

curve. 

Jordon curve : A closed curve is called a Jordan curve if it has no double 

points.  That is, no two distinct values t  in a ≤ t ≤ b yield the same point 

(x, y). 

Jordon curve theorem : Any continuous simple closed curve in the plane 

separates the plane into two disjoint regions the inside and the outside. 

 
Definition 8.1.1 The curve (8.1) is regular if it has no double points and 

if the interval (a, b) can be divided into a finite number of subintervals in 

each of which φ(t) ∈ C1, ψ(t) ∈ C1 and [φ�(t)2 + ψ�(t)2] > 0. 

It is clear that a regular curve is sectionally smooth because it consists of 

a finite number of arcs, each of which has a continuously turning tangent 

whose direction is determined by the quotient of φ�(t) and ψ(t) as they do 

not vanish simultaneously. 

Remark : 

 

1. A regular curve may have corners where the arcs are joined together. 

Example : The boundary of a rectangle. 

2. A Jordan curve can fail to be regular. For example, when it contains 

a piece of the curve y = x sin(
 1 

) near the origin. 
x 

 
3. A regular curve has arc length. 
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n 

∆ǁ→0 
k=1

 

Definition 8.1.2 A region is regular if it is bounded and closed and if its 

boundary consists of a finite number of regular Jordan curves which have 

no points in common with each other. We shall denote such a region by the 

letter S. 

 
Example : The set of points (x, y) for which 1 ≤ x2 + y2 ≤ 4 is a region 

S. If from this region the points on the x-axis in the interval 1 < x < 2 

were removed, the region is not closed and hence not regular. 

 

8.1.2 Definitions and Theorems 

 
In this section we shall see some definitions and theorems needed for 

further study. 

 
Definition 8.1.3 A subdivision ∆ of an interval (a, b) is a set of numbers 

{xk}k=0 or points, such that 

 
a = x0 < x1 < ... < xn = b. 

 

A subdivision involving n + 1 points divides the interval into n adjoining 

subintervals (x0, x1), (x1, x2), ..., (xn−1, xn). 

 
Definition 8.1.4 The norm ǁ∆ǁ of a subdivision ∆ is 

ǁ∆ǁ = max {x1 − x0, x2 − x1, ..., xn − xn−1} 

In otherwords, it is also the length of the largest of the subintervals. 

 
Definition 8.1.5 The Stieltjes integral of f (x) with respect to α(x) from 

a to b is 
 

b 

f (x)dα(x) =  lim 
ǁ  

f (ξk)[α(xk) − α(xk−1)] 

 

where xk−1 ≤ ξk ≤ xk, k = 1, 2, ..., n. 

n 

a 

 Σ 
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n 

Σ 

Definition 8.1.6 Divide the interval a ≤ x ≤ b into n subintervals by 

points 

 

and set 

a = x0 < x1 < x2 < ... < xn = b 

 
 

δ = max((x0, x1), (x1, x2), ..., (xn−1, xn)). 
 

Choose point ξk, xk−1 ≤ ξk ≤ xk, k = 1, 2, ..., n. Then the Riemann integral 

of f (x) with respect to x from a to b is 

b 
f (x)dx = lim f (ξk)(xk − xk−1) 

a 
 

if this limit exists. 

δ→0 
k=1

 

 

 
Theorem 8.1.1 

 
1. f (x) ∈ C, a ≤ x ≤ b 

2. α(x) ∈ class of non-decreasing functions,a ≤ x ≤ b 

 b 

  
 

Definition 8.1.7 Let f (x) ∈ C and α(x) ∈ C1 in a ≤ x ≤ b. Then 
 

b 

f (x)dα(x) = 
a 

b 

f (x)α�(x)dx 
a 

The integral on the right is an ordinary Riemann integral. 

 
Theorem 8.1.2 (Dhahamel’s Theorem) 

 
1. f (x, y), g(x, y) ∈ C 

2. A subdivision ∆ divides R into subregions Rk, k = 1, 2, ..., n. 

 
3. (xk, yk), (ξk, ηk) are points of Rk, k = 1, 2, ..., n. 

 

⇒ 
ǁ  

lim   
Σ 

f (xk, yk)g(ξk, ηk)∆Sk =  
 
f (x, y)g(x, y)dS 

∆ǁ→0 
k=1 R

 

a 
⇒ 

n 

  

f (x)dα(x) exists. 
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0 

∆ǁ→0 
k=1

 

Theorem 8.1.3 (Duhamel’s theorem for Riemann integrals) 

 
1.  f (x), g(x) ∈ C, a ≤ x ≤ b 

2. α(x) ∈ class of non-decreasing functions 

3. {xk}
n is a subdivision ∆ of (a, b) 

4. xk−1 ≤ ξk ≤ xk, xk−1 ≤ ηk ≤ xk, k = 1, 2, ..., n 
 

⇒ 
ǁ  

lim  
Σ
 

f (ξk)g(ηk)[α(xk) − α(xk−1)] = 

b 

f (x)g(x)dα(x). 
 

 

Definition 8.1.8 Let φ(x) and ψ(x) ∈ C in a ≤ x ≤ b and φ(x) < ψ(x) in 

a < x < b. Then the region Rx or R[a, b, φ(x), ψ(x)] is the region bounded 

by the curves x = a, x = b, y = φ(x), y = ψ(x). 

 
Remark : 

 
1. If (x1, y1) is a point of Rx, then a ≤ x1 ≤ b and φ(x1) ≤ y1 ≤ ψ(x1). 

2. A line x = x1, a < x1 < b cuts the boundary of Rx in just two points. 

Example:  The region R[−1, 1, −
√

1 − x2, 
√

1 + x2] is the circle x2 + 

y2 ≤ 1. 

3. The region Ry can be defined in an obvious way. 
 

 
Theorem 8.1.4 

 
1. f (x, y) ∈ C in Rx 

2.  Rx = R[a, b, φ(x), ψ(x)] 

 

 

 
 
b  ψ(x) 

⇒ 
Rx 

 

Theorem 8.1.5 

f (x, y)dS = dx 
a 

 
φ(x) 

f (x, y)dy 

 

1. f (x, t) ∈ C1, a ≤ t ≤ b, A ≤ x ≤ B 

a 

n  
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n 

n 

G (x) = f1(x, t)dt − f (x, g(x))g (x) + f (x, h(x))h (x) 

 
2. ( ) = 

 �   

( ) 
F x, y, � f 

y 

 � 

 
 

x, t dt, a ≤ y, � ≤ b, A ≤ x ≤ B 

a ≤ y, � ≤ b, A ≤ x ≤ B. 

 
Example 8.1.1 Suppose 

( ) = 

 h(x)  

(
 

 

 
) and ( 

 

 
) is as defined 

G x 

in Theorem 8.1.5 then 
g(x) 

f x, t dt F  x, y, � 

� 
 h(x) 

 

 

 
� � 

 

8.1.3 Definition of line integrals 

Let Γ be the curve given by x  =  φ(t), y  =  ψ(t),   a  ≤ t  ≤ b  where 

φ(t), ψ(t) ∈ C in a ≤ t ≤ b. Let f(x, y) be a function defined at every point 

of the curve Γ and ∆ be a subdivision of the interval (a, b) by the points 

t0, t1, ..., tn so that a = t0 < t1 < t2 < < tn = b. 

Then we define two types of line integrals 

  x1,y1 
Σ 

� � 

f (x, y)dx = 

Γ 

 
x0,y0 

f (x, y)dx =   lim 
ǁ∆ǁ→0 
i=1

 

f (φ(ti), ψ(ti))[φ(ti) − φ(ti−1)] 

(8.2) 
  x1,y1 

Σ 
� � 

f (x, y)dy = 

Γ 

 
x0,y0 

f (x, y)dy =   lim 
ǁ∆ǁ→0 
i=1

 

f (φ(ti), ψ(ti))[ψ(ti) − ψ(ti−1)] 

(8.3) 
 

Here x0 = φ(a), y0 = ψ(a), x1 = φ(b), y1 = ψ(b), ti−1 ≤ ti
� ≤ ti. For the line 

integrals to be defined the defining limits must exist. The line integrals 

(8.2) and (8.3) are, in fact, 
 

b 

a 

respectively. 

 
Theorem 8.1.6 

f (φ(t), ψ(t)dφ(t), 
b 

f (φ(t), ψ(t)dψ(t) 
a 

 

1. Γ is a regular curve 

g(x) 

y 

  

⇒ F1(x, y, �) = f1(x, t)dt, F2(x, y, �) = −f (x, y), F3(x, y, �) = f (x, �), 



169  

Σ 
− −

 

n 

n 

 

 

 

f (x, y)dx =  lim 
ǁ∆ǁ→0 
i=1

 

f (φ(ti), ψ(ti))φ (ti)(ti − ti−1) 

f (x, y)dy =  lim 
ǁ∆ǁ→0 
i=1

 

f (φ(ti), ψ(ti))ψ (ti)(ti − ti−1) exists. 

Γ 

Γ 

2. f (x, y) ∈ C on Γ 

⇒ 

 

f (x, y)dx and 

 

f (x, y)dy exist. 
Γ Γ 

 

Proof: Consider the curve Γ :  x = φ(t), y  = ψ(t), a  ≤ t  ≤ b.  where 

φ(t), ψ(t) ∈ C in a ≤ t ≤ b. 

Given that Γ is a regular curve. So φ(t), ψ(t) ∈ C1 in a ≤ t ≤ b. 

Let ∆ = {a = t0, t1, ..., tn = b} be any subdivision of [a, b] and ti
� ∈ (ti−1, ti). 

Consider the sum 

n 

f (φ(ti), ψ(ti))[φ(ti) φ(ti 1)] 
i=1 

since φ(t) ∈ C1, applying the law of mean we have 

φ(ti) − φ(ti−1) = φ�(t�
i)(ti − ti−1) 

where ti−1 < ti
� < ti. So, by Duhamel’s theorem the limit exists and 

 Σ 
�  � 

 

Similarly we have for ti−1 < t�
i < ti 

 Σ 
�  � 

 

Note : We have the following remarks if we alter hypothesis 1 a variety of 

ways. 

Remark 1: If the curve Γ is monotonic that is φ(t) and ψ(t) are both 

monotonic in (a, b) then by Theorem 8.1.1 the limits (8.2) and (8.3) both 

exist as Stieltjes integrals 

f (x, y)dx = 

Γ 

 
f (x, y)dy = 

Γ 

b 

f (φ(t), ψ(t))dφ(t) 
a 

 
b 

f (φ(t), ψ(t))dψ(t) 
a 

Remark 2: If φ(t) = t and ψ(t) ∈ C instead of to C1, we see that 

 
f (x, y)dx = 

Γ 

 

b 

f (x, ψ(x))dx (8.4) 
a 
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2 

2 

 

 

− 

 

 π 

− 

      

Γ 

2 sin 2θ 

2 
dθ − 

2 1 cos 2θ 

2 

cos 2θ 

4 

θ 

2 

sin 2θ 

2 

− 
4 

− 
4
 − 

4
 − 

2 
− 

4
 

Γ 
x y dx 

1 
x x 

− 
2 

− 
2
 

2 
− 

2 
− 

4
 

− 

= 

Thus it will be possible to extend the integral (8.2) over the boundary 

of a region Rx or the integral (8.3) over the boundary of a region Ry if 

f (x, y) ∈ C there. Q 

Example 8.1.2  Compute 
Γ
(x + y)dx  if Γ is x = cos θ, y = sin θ, 

0 ≤ θ ≤ π . 

 
Solution: Given x = cos θ, y = sin θ, 0 ≤ θ ≤ π

 

Here the integration is intended to be from (1, 0) to (0, 1) along an arc of 

the unit circle. 

dx = sin θdθ 
 

Γ
(x + y)dx = − 

 

π 
2 

(cos θ + sin θ) sin θdθ 
0 

π 

= 
2 

cos θ sin θdθ 
0 

π 
2 

sin2 θ 
0 

 π       

        π π     π 

= 

    
1 1

 
π 

= 
1 π 

.
 

 
 

 

Note : The above example can also be solved by using equation (8.4), 

x = cos θ, y = sin θ = 
√

1 − cos2 θ = 
√

1 − x2 and x varies from 1 to 0. So 
 

 

( +  ) = 

 0

(  + 
√
1 −  2) 

 

= 

  
x2  

+ 
sin−1 x 

+ 
x
√

1 − x2 
!0

 
2 2 2 

1
 

= 
1 1 

  
π 

   

= 
1 π 

.
 

 
 
 

 

Example 8.1.3 Compute 

 

(x + y)dx if Γ is the two line segments 

y = 0, 0 ≤ x ≤ 1; x = 0, 0 ≤ y ≤ 1. 

dθ 
0 0 

= − 

2 

0 
− 

2  

+
 

0 

2 

 
0 

dx 
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2 
1

 

 

2 

2 

 

 

0 
 

0 
 

      

  

0 

2 
1

 
2 

0
 

2 

(cos 2θ − sin 2θ)dθ 

sin 2θ 
+ 

cos 2θ 

Solution: The integration is intended to be from (1, 0) to (0, 1) over the 

broken line. 

 
(x + 

Γ 

 
y)dx 

0 

xdx 
1 

= 

  
x2 

!0  

=

 1 
− 

2 
. 

 

Remark : From the above two examples we see that the values of the 

integral may depend upon the path and not merely on the end points of 

the path. 

Example 8.1.4 Extend the integral    (x + y)dx + (x − y)dy over the two 
Γ 

paths Γ if (i) Γ is x = cos θ, y = sin θ, 0 ≤ θ ≤ π , (ii) Γ is the two line 

segments y = 0, 0 ≤ x ≤ 1; x = 0, 0 ≤ y ≤ 1. 

Solution: (i) If Γ is x = cos θ, y = sin θ, 0 ≤ θ ≤ π , then 
 

(x + y)dx + (x − y)dy 
Γ 

π 

= 
2 

(cos θ + sin θ)(− sin θ) + (cos θ − sin θ) cos θdθ 

π 

= 
2 

(− cos θ sin θ − sin2
 θ + cos2

 θ − sin θ cos θ)dθ 
π 

= 
2 

(cos2
 

0 
 π 

 
 

θ − sin2
 θ − 2 sin θ cos θ)dθ 

    π 
 

 
2 2 0 

= −1 
 

(ii) If Γ is the broken line 

y = 0, 0 ≤ x ≤ 1, x = 0, 0 ≤ y ≤ 1. 

 
(x + 

Γ 

 
y)dx + (x − 

 
y)dy 

 
0 

= xdx 
1 

− 
 1 

 
ydy 

= 

  
x2 

!0   
y2 

!1 

=

 

−1. 
 

 

We will prove later that in this case the value of the integral is independent 

of the path. 

= 

0 
= 

=

 

2 

− 



172  

π 

 

2 

− 

 

− 
 π 

1 

π 

 

− 

   

Γ 

2  

sin θ cos θ + 
2 1 + cos 2θ 

2 
dθ + 

2
 

2 

sin 2θdθ 

2 

cos 2θdθ 

sin 2θ 

2 

0 

Example 8.1.5 Compute the following integral over the curve Γ if Γ is 

x = cos θ, y = sin θ, 0 ≤ θ ≤ 
2 

, 

xydx + (x + y)dy. 

Γ 

Solution: Suppose Γ is x = cos θ, y = sin θ, 0 ≤ θ ≤ π . 

Here the integration is intended to be form (1, 0) to (0, 1) along an arc of 

the unit circle. x = cos θ ⇒ dx = − sin θdθ, y = sin θ ⇒ dy = cos θdθ 

Γ 
xydx + (x + y)dy = 

π 
2 

(cos θ sin θ)( sin θ)dθ + (cos θ + sin θ) cos θdθ 
0 

π 

= 
2 

( sin2
 

0 
θ cos θ + cos2 θ + sin θ cos θ)dθ 

 π 

2 
      π 

 

 

   
= − 

1 
+ 

π 
+ 

1
 

3 4 2 

= 
π 

+ 
1 

. 
4 6 

 

 

Example 8.1.6 Compute 

 

ydx + xdy over the curve Γ, if Γ is x = cos θ, 

Γ 

y = sin θ, 0 ≤ θ ≤ 
2 

. 

Solution: 

Γ 
ydx + xdy = 

 

 

π 
2 

( sin2
 

0 
 π 

 

 

θ + cos2
 θ)dθ 

    π 
 

  

 

Example 8.1.7 Compute 

 

x2ydx + x3dy, if Γ is the path given by 

x = cos t, y = sin t, 0 ≤ t ≤ 2π. 

Solution:  
2 3 

 2π 
2 2 4 

x ydx + x dy = 

Γ 

= 

0 
(− cos 

 π 

cos2
 

t sin t − cos t)dt 

 

= −π. 

= 0. = 

0 
= 

0 0 0 

 

= − 

2 

 
0 

− tdt 
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0 
t t tdt 

a 
0 

− t dt 

− 
2
 

0 

− 

 

 

Example 8.1.8 Evaluate the integral I = 

 

xdx + ydy + �d� where Γ is 

the circle x2 + y2 + �2 = a2, � 
Γ 

= 0. 

 

Solution: The parametric equations of the circle are x  =  a cos t, y  = 

a sin t, � = 0, where 0 ≤ t ≤ 2π. 

Also dx = −a sin tdt, dy = a cos tdt, d� = 0. 
 

I = xdx + ydy + �d� 
Γ 

= 

 2π 
(
 

cos )( sin ) + ( sin )( cos ) 

= 2 
 2π 

(
  

sin 

 
cos 

 
+ sin 

 
cos ) 

= 2 
 2π 

0
 

a dt 
0 

= 0. 
 
 

Example 8.1.9 Evaluate I = 

 

xdx + ydy where Γ is the ellipse 

x2 + 4y2 
Γ 

= 4. 

 

Solution: The equation of the ellipse is x2 + 4y2 = 4. 

x2 y2 

⇒ 
22 

+ 
12 

. 

The parametric equations are x = 2 cos t, y = sin t where 0 ≤ t ≤ 2π. 

Therefore, 

I  = 
Γ 

xdx + ydy 
= 

 2π 

(2 cos )( 2 sin ) + (sin )(cos ) 
t 

0 

= 
2π 

3 sin 
0 

− 

t cos 

 

 
tdt 

tdt t t dt 

= 
3 

 2π 

sin 2 

= 
3 

(cos 2t)2π 

4 0 

= 0. 

a −a tdt a a 

t t t 

tdt 
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4 

= . 

(x + x 3 )dx + (y 
0 

(x + x )dx + (x 
1 

Example 8.1.10 Find the value of I = 

 

(x + y2)dx + (x2 − y)dy taken 
Γ 

in the clockwise sense along the closed curve Γ formed by y3 

chord joining (0, 0) and (1, 1). 

= x2 and the 

 
 

Solution: Equation of the chord joining (0, 0) and (1, 1) is y = x. 

The curve Γ consist of the arc OA, y3 = x2 and the line AO, y = x. 
3 2 2 

Along OA, y  = x , y = x 3 , 

Along AO, y = x. 

Therefore 
 

I  = 
Γ
(x + y  )dx + (x   − y)dy 

2 2 

 1 
4 3

  0 
2 2 

 

1 

= x 3 dx + y3 
0 

 
dy + 

0 

2x2dx 
1 

 1 

84 

 

 
 

 

Figure 8.1 

 

 

Example 8.1.11 Find the value of I = 

 

x2ydx + xy2dy taken in the 
C √ 

clockwise sense along the hexagon whose vertices are (±3a, 0), (±2a, ± 3a). 

 

= − y)dy + − x)dx 
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√ 

 

√ 

 

− 
−2 

a dx − 
−

√
3 

y 
3a 

−3 
x ( 3x + 3 √

3 
− 3a dy 

x (− 3x + 3 √
3

 y √
3 

+ 3a 

x ( 3x − 3 √
3 

+ 3a dy 

Solution: Equations of the line forming the curve Γ are 

 

AB : y = −
√

3a 

BC : y − 
√

3x + 3
√

3a = 0 

CD : y + 
√

3x − 3
√

3a = 0 

DE : y = 
√

3a 

EF  : y − 
√

3x − 3
√

3a = 0 

FA : y + 
√

3x + 3
√

3a = 0 

 
Therefore 

 
 

 
Figure 8.2 

 

 

 
IΓ =IAF + IFE + IED + IDC + ICB + IBA 

=

  −3a 

 

2(
√

3 + 3
√

3 ) 

 0 
2  

     
y 

+ 3 
 

 
 

 

(  −2a     
2  

√ √ 
 

 

 3a 

2
  

  y 
)

 

+ 
2a √

3
 

−2a 
ax2dx 

  3a  
2 

√ √ 
 

 

 0 
2  

   
−y 

 
 

 
 

 
 

 

(  2a     
2  

√ √ 
 

 −  3a 

2
  

  y 
)

 

−2a √ 
− 

2a 
3ax2dx 

a 3 

a a 2 

a 

a a 
x x a dy 

+ 3a)dx − y 
0 

+ 3a)dx + dy 

+ 
3a)dx + 

y 
0 
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2 

3 

2  
(−x) ( 3x − 3 √

3 
− 3a 3a x dx 

√ 

y 

 3a 
2 

√ √ 
 

 
 

 

 3a 
2

  
  y √  2a 

2
 

 

 
 

 

4 

   

65
√

3 

√ 
! 

4 
    

9 √ 
 

 

 
 

32  4 
 

= 4a 
4 

− 19 3 + 4a 
4
√

3 
− 3 3   + √

3 
a 

38 4 
= √

3 
a . 

 
Example 8.1.12 Evaluate (x2 + xy)dx + (x2 + y2)dy where Γ the square 

Γ 

formed by the lines x = ±1, y = ±1. 

Solution: Equations of the line following the curve Γ are AB : y = 1, BC : 

x = −1, CB : y = −1, DA : x = 1. Therefore 
 

Figure 8.3 

 

IΓ = IAB + IBC + ICD + IDA 

= 

 −1

( 2 +  ) + 

 −1

(1 +  2) + 

 1 

( −  ) + 

 1 

(1 +  2) 
x x dx 

1 1 
y   dy x x dx 

−1 −1 
y   dy 

= 

  
x3 

+ 
x2 

!−1 

+ 

    

+ 
y3 

!−1 

+ 

  
x3

 
    x2 

!1   

+ 

    

+ 
y3 

!1 
  

3 2 
1 

3 
1
 

2 8 8 
3 

− 
2 

y 
3 

−1 −1 

= − 
3 

− 
3 

+ 
2 

+ 
3

 

= 0. 

 

 
8.1.4 Work 

 
One of the natural application of a line integral is to the problem of 

defining the work done by a field of force on a particle moving along a 

a −2 a 
= 4 3a)dx + 4 y 

0 
dy + 2 



177  

    

n 

 

 

ǁ∆ǁ→0 
i=0

 

Xi θi 

Xi + Yi . [φ (ti)] + [ψ (ti)] 

si φ ti ψ ti dt ti φ ξi 

∆ǁ
→ 

i=1 

curve through the field. 

Let the field be given by two functions X(x, y) and Y (x, y) which are to 

be the x- and y-components, respectively, of a force at the point (x, y). 

The magnitude of the force at the point = 
√

X2 + Y 2, 

Direction of the force = tan−1 Y 
. 

X 
Let us have the following assumptions: 

(i) The particle describe the regular curve x = φ(t), y = ψ(t), 

a ≤ t ≤ b where φ(t), ψ(t) ∈ C. 

(ii) ∆ be the subdivision of the interval (a, b) by the points t0, t1, ..., tn 

such that a = t0 < t1 < ... < tn = b. 

(iii) ∆si = Arc length of the curve between the points t = ti−1 and t = ti. 

(iv) θi = Angle between the direction of the force of the field at the point 

ti and the direction of the tangent to the curve at ti directed in the 

line of motion. 

Now, work done on the particle as it traverses the whole path is 

=  lim  
Σ
 

q  
2 +

 
2 cos ∆ 

 
(8.5) 

 

Xi = X(φ(ti), ψ(ti)), Yi = Y (φ(ti), ψ(ti)) 

The direction components of the tangent are φ�(ti), ψ�(ti) and of the 

direc- tion of the force, Xi, Yi, so that 

 cos 
= 

Xiφ�(ti) + Yiψ�(ti) 
 

 θi q   
2

 
2  

√  
� 2 

� 2 

 

∆ = 

 ti    q

[  �(  )]2 + [ �(  )]2 = ∆ 
q

[ �(  )]2 + 

[ 

�

( 
)]2 

where ti−1 < ξi < ti. Then equation (8.5) becomes 

Workdone  = 
ǁ  

lim 
0 

Σ
(Xiφ�(ti) + Yiψ�(ti))∆ti 

By Duhamel’s theorem we see that the limit (8.5) is the line integral 
 

 

 
that is 

X(x, y)dx + Y (x, y)dy 

Γ 

 

Work done on the particle = 

Γ 

X(x, y)dx + Y (x, y)dy. 

n 

Yi si 

ti−1 

ψ ξi 
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2 

! 

 

 

 

5 

0 
x x x 

0 
x dx x dx 

x 

  

Example 8.1.13 If X(x, y) = x + y, Y (x, y) = x − y, find the work done 

by the field on a particle moving from (1, 0) to (0, 1) along the straight line 

x + y = 1. 

 
Solution: x + y = 1 ⇒ y = 1 − x ⇒ dy = −dx. Now, 

Work done = 
Γ 
X(x, y)dx + Y (x, y)dy 

0 

= dx 
1 

− (2x − 1)dx 

= 
1

(2 
0 

+ 2)dx 

= 2 
x2  

+ 2 

0 

= 

1 

−1. 

 
 
 

Example 8.1.14 If X(x, y) = 2x2y, Y (x, y) = 3xy, find the work done by 

the field on a particle moving from (0, 0) to (1, 4) along the curve y = 4x2. 

 
Solution: Given X(x, y) = 2x2y, Y (x, y) = 3xy 

 

Work done = 

Γ 

= 

Γ 

X(x, y)dx + Y (x, y)dy 

 
2x2ydx + 3xydy 

= 

 1 

2  2(4  2) + 3  (4 2)8 

= 

 1 

8 4
 + 96 4

 

= 
1 

104 
0 

 
x4dx 

= 104 

  
x5 

!1

 

5 
0

 

= 
104 

.
 

 
 
 
 

Example 8.1.15 If X(x, y, �) = 3xy, Y (x, y, �) = x + y, Z(x, y, �) = −�, 

Find the work done by the field on a particle moving from (2, 0, 1) to (4, 2, 9) 

along the curve x = t + 1, y = t − 1, � = t2. 

dx x xdx 

x 
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2 
t 

n 

n 

1 
t dt t t dt 

1 
t t 

f (x, y)dx = f (x, y)dx =  lim 
ǁ∆ǁ→0 
i=1

 

f (φ(ti), ψ(ti))[φ(ti) − φ(ti−1)] 

f (x, y)dy = f (x, y)dy =  lim 
ǁ∆ǁ→0 
i=1

 

f (φ(ti), ψ(ti))[ψ(ti) − ψ(ti−1)] 

Solution: The parametric equation of Γ are x = t + 1, y = t − 1, � = t2. 

Evidently t = 1 gives (2, 0, 1) and t = 3 gives (4, 2, 9). 

Also dx = dt, dy = dt, d� = 2tdt. 

Workdone = X(x, y, �)dx + Y (x, y, �)dy + Z(x, y, �)d� 
Γ 

= 

 3 

3( 2 − 1) + 2 − 2(2 ) 

= 

 3

(−2 3 + 3 2 + 2 − 3) 

= 

" 
−t4 

+
 
t3 + t2 3 

#3 

1 

= −12. 

 

Remark 1 : When the work is independent of the path the field is called 

conservative. 

Remark 2 : The negative sign indicates the particle has done work on the 

field, that is if the particle moved as a result of the forces of the field only, 

it would move in the opposite direction over most of the path. 

 
Summary 

• Line integral : Let Γ be the curve given by x = φ(t), y = ψ(t),      a ≤ 

t ≤ b where φ(t), ψ(t) ∈ C in a ≤ t ≤ b. Let f(x, y) be a function 

defined at every point of the curve Γ and ∆ be a subdivision of the 

interval (a, b) by the points t0, t1, ..., tn so that a = t0 < t1 < t2 < 

... < tn = b. 

Then we define two types of line integrals 

  x1,y1 

 

  

Σ 
� � 

  x1,y1 

 

  

Σ 
� � 

Here x0 = φ(a), y0 = ψ(a), x1 = φ(b), y1 = ψ(b), ti−1 ≤ t�
i ≤ ti. For 

the line integrals to be defined the defining limits must exist. 

x0,y0 
Γ 

x0,y0 
Γ 

tdt 

t dt 

− 
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2 

2 

 

 

• If 

1. Γ is a regular curve 

2. f (x, y) ∈ C on Γ 

⇒ 

 

f (x, y)dx and 

 

f (x, y)dy exist. 

Γ Γ 

• Work done by a field given by two functions X(x, y) and Y (x, y) of a 

force at the point (x, y) on a particle moving along a curve through 

the field = 
Γ 
X(x, y)dx + Y (x, y)dy 

• If the work is independent of the path then the field is called conser- 

vative 

 
Multiple Choice questions: 

 
1. When the work is independent of the path then the field is called 

a) solenoidal  b) irrotational field   c) conservative field 

2. The value of 

 

ydx + xdy where Γ is x = cos θ, y = sin θ, 0 ≤ θ ≤
 π 

is 

a) 0 b) π
 

Γ 
π

 

c) 
4 

. 

3. The line integral is denoted by 

 
(a) Triple integral 

(b) Double integral 

(c) Integral along a curve 

Ans: 1. c) 2. a) 3. c) 

Exercises 8 

1. Define line integral 

 

2. If Γ is a regular curve and f (x, y) ∈ C on Γ, then prove f (x, y)dx 
Γ 

and f (x, y)dy exist. 

Γ 
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2 

 

3 

 

2 

 

 

3. Compute the integral xydx + (x + y)dy over the curve Γ if Γ is the 

Γ 

two line segments y = 0, 0 ≤ x ≤ 1, x = 0, 0 ≤ y ≤ 1. 

Ans : 1 

 
4. Compute xydx + (x + y)dy where Γ is the boundary of the triangle 

Γ 

with vertices (0, 0), (0, 2), (1, 0) integration in the clockwise direction. 

Ans:− 2 . 

5. Compute (x2 + y)dx + (2x + y2)dy over the boundary of the square 

Γ 

with vertices (1, 1), (1, 2), (2, 2), (2, 1) in the clockwise sense. 

Ans : −1. 

6. If X(x, y) = 3xy, Y (x, y) = −y3, find the workdone by the field on 

the particle moving from (0, 0) to (1, 2) along the curve y = 2x2 in 

the xy−plane. 

Ans : − 5 . 

7. Prove that the workdone by the field given by the two function 

X(x, y) and Y (x, y) in moving a particle along a regular curve Γ 

is X(x, y)dx + Y (x, y)dy. 

Γ 
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Learning Outcomes : 

 
After studying this unit, students will be able 

F To acquire knowledge about Green’s theorem which provides a formula 

connecting a line integral over its boundary with a double integral over 

a region. 

 

F To know the applications of Green’s theorem. 

 
 
 
 
 
 

 

Unit 9 

 
Green’s Theorem 

 
 
 
 

 

 

 

9.1 Green’s Theorem 

 
We shall now discuss Green’s theorem which provides a formula con- 

necting a line integral over its boundary with a double integral over a region. 

It is sometimes refered to as Gauss’s theorem. 

If a region is bounded by one or more curves the positive direction over the 

boundary is the one that leaves the region to the left. Thus for the region 

between two concentric circles the positive direction is counterclockwise for 

the outer boundary, clockwise for the inner one. 
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F (x)dx = dx = 

 

φ1(x) 

Γ R 

Definition 9.1.1 An iterated integral is an integral of the form 
 

b φ2(x) 

dx 
a φ1(x) 

 
f (x, y)dy 

 

where φ1 or φ2 or both are functions of x or constants. 

This means that for each fixed x between a and b, the integral 

 φ2(x) 
 

is evaluated and then the integral 

 b 

( ) 

 
So 

 b  b 
  φ2(x) 

 

   

F x dx. 
a 

 

!  b
 

 
 

 
 φ2(x) 

 
 

and the other repeated integral 
 

d φ2(y) 
dy 

 
f (x, y)dx or 

 d 
   φ2(y) 

f (x, y)dx

! 

dy 

c φ1(y) c φ1(y) 
 

is defined in the same way. 

 

9.1.1 First form of Green’s theorem 

 
Theorem 9.1.1 

 
1. R is a region Rx and also Ry 

 
2. Γ is the boundary of R 

 

3. P (x, y), Q(x, y) ∈ C1 in R 
 

⇒ Pdx + Qdy = 

 

[Q1(x, y) − P2(x, y)]dS (9.1) 

the line integral being taken in the positive sense. 

 

Proof: Rx = R[a, b, φ(x), ψ(x)] is a region bounded by the curves 

x = a, y = b, y = φ(x), y = ψ(x), where φ(x), ψ(x) ∈ C in a ≤ x ≤ b and 

φ(x) < ψ(x) in a < x < b. 

φ1(x) 
dx 

a φ1(x) a a 

 

F (x) = f (x, y)dy 

f (x, y)dy f (x, y)dy 
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)) dx 

 

  

 

Q x, y φ(y) 
dy 

Q ψ y , y dy − Q φ y , y dy 

ψ y , y dy Q φ y , y dy 

 

 
 

Figure 9.1 

 
Given that the function P (x, y) along with its partial derivative P2 is con- 

tinuous in the region R, and Γ is the boundary of R then by Theorem 8.1.4 

we have, 

 

P2(x, y)dS = 
b ψ(x) 

dx 
a φ(x) 

P2(x, y)dy 

= 

 b 

( 

 
(x, y 

 
ψ(x) 
φ(x) 

a 

= 

 b 

(  ( )) 
 b 

(

  ( )) 
P 

a 

= 

 a 

x, ψ x 

 ( ( 

dx − 

)) 

P  x, φ x   dx 
a  b 

( (  )) 

 

Using equation (8.4), 

P x, ψ x 
b 

dx − P  x, φ x   dx 
a 

⇒ 
 

 

 

P2(x, y)dS = − 

Γ 

 
P (x, y)dx (9.2) 

Similarly considering Ry = R[c, d, φ(y), ψ(y)], a region bounded by 

y = c, y = d, x = φ(y), x = ψ(y), where φ(y), ψ(y) ∈ C in c ≤ y ≤ d and 

φ(y) < ψ(y) in c < y < d. 

 

Q1(x, y)dS = 

 
d ψ(y) 

dy 
c φ(y) 

 
Q1(x, y)dx 

= 

 d 

( ( 
 

))
ψ(y) 

= 

 d 
 

 
(  ( ) ) 

 d 

(  (  ) ) 
 

= 

 d 
 

 
(  ( ) ) 

+ 

 d 
 

 
(  ( ) ) 

⇒ 
 

 

 

 
Q1(x, y)dS = 

Γ 

 
Q(x, y)dy (9.3) 

R 

c c 

c c 

c 

R 

R 

P 

R 

P 

− 
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Adding (9.2) and (9.3) we have 

 

Pdx + Qdy = 

Γ R 

(Q1(x, y) − P2(x, y)) dS. 

Q 

 

9.1.2 Second form of Green’s theorem 

 
Theorem 9.1.2 

 
1. R is a region Rx and a regular region S 

 
2. Γ is the boundary of R 

 

3. P (x, y), Q(x, y) ∈ C1 in R 
 

⇒ Pdx + Qdy =  
 

  

(Q1(x, y) − P2(x, y)) dS 

the line integral being taken in the positive sense. 

 

Proof: Given that R is a region Rx and a regular region S and Γ is 

boundary of R. So Γ is a regular curve. 

Hence we can apply previous proof as for as it concerns P (x, y), 

⇒ 
 

 

 

P2(x, y)dS = − 
Γ 

 
P (x, y)dx (9.4) 

 

To find Q(x, y)dy. 

Γ 

The boundary Γ consists of four regular arcs. Hence 

 

Q(x, y)dy = 

Γ 

b 

Q(x, φ(x))φ�(x)dx 
a 

b 

Q(x, ψ(x))ψ�(x)dx 
a 

+ 

 ψ(b) 

( )
  ψ(a) 

( )
 (9.5) 

 

and 
 

φ(b) 

 

 b 

Q b, y dy − 

 
 ψ(x) 

φ(a) 
Q a, y dy 

Q1(x, y)dS = 

R 

dx 
a φ(x) 

Q1(x, y)dy (9.6) 

R 

R Γ 

 

− 
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xdy, A = 

 (−y)dx + xdy 

F (x) = Q1(x, y)dy + Q(x, ψ(x))ψ (x) − Q(x, φ(x))φ (x) 

Q1(x, y)dy = F (x) − Q(x, ψ(x))ψ (x) + Q(x, φ(x))φ (x) 

Q1(x, y)dS = F (x) − Q(x, ψ(x))ψ (x) + Q(x, φ(x))φ (x) 

x dx − 
Q x, ψ x x dx Q x, φ x x dx 

F 
a − 

Q x, ψ x x dx Q x, φ x x dx 

F b 
a − Q x, ψ x 

x dx Q x, φ x x dx 

φ(b) 
Q b, y dy − 

φ(a) 

Q a, y dy − Q x, ψ x ψ x dx 

Q x, φ x φ x dx 

2 

a 

Γ R 

Let  

F (x) = 

 

ψ(x) 

φ(x) 

 

Q(x, y)dy 

Then by Example 8.1.1 we have, 

� 
 ψ(x) 

 

 

 
� � 

 ψ(x)
 
�

 

 

� � 

From (9.5) and (9.6), we have 

  b     �
 

 

  

 
� � 

= 

 b 

 

 
�( 

) 

 b 

(

 

 

 
( )) 

 
�( 

) 

+ 

 b 

( 
 

 
( )) 

 
�(  ) 

= [ ( )]
b 

 b 

(

 
 

 
( )) �( 

) 
+ 

 b 

( 
( )) �(  ) 

= ( ) 
(  ) 

 b 

( 
( )) �( 

) 
+ 

 b 

( 
( )) �(  ) 

 

= 

 ψ(b) 

( )
  ψ(a) 

( )
  b 

(

 

 

 

( )) �( ) 

+ 

 b 

( ( ))  �(  ) 

⇒ 
 

 

 

Q1(x, y)dS = 

Γ 
Q(x, y)dy (9.7) 

From (9.4) and (9.7) we have 

Pdx + Qdy = 

 

(Q1(x, y) − P2(x, y))dS. 

Q 

Remark 1: If a regular region S is such that it can be divided into a finite 

number of regions Rx (or Ry) by cross cuts, equation (9.1) still holds where 

Γ is the total boundary, consisting of one or more regular closed curves. 

Remark 2: We can apply Green’s theorem to find the area of a region 

defined by the equations of its boundary curves. Suppose R is a region to 

which Green’s theorem applies and which is bounded by Γ, then the area 

of R is given by any of the three formulas 

A = − 
Γ 

R 

a 

a 

a a a 

a 
R 

φ(x) 

φ(x) 

 

dx 

F ψ φ 

x ψ 

a 

φ 

− F 

a 
ψ 

a 
φ 
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ydx, A = 
1

 

Γ Γ 
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2 

 

 

ab 
2 

− 

− 

Γ R 

the integration being in the positive sense. 

For, In Green’s theorem from equation (9.1) we have,if 
 

 
(i) P = y, Q = 0 

 

 

(ii) Q = x, P = 0 

− 

 

ydx =  
 

 

 
 
dS = A. 

 

(iii) P = −y, Q = x 

xdy =  
 

  

dS = A 

xdy − ydx = 2 

 

dS = 2A =⇒ A = 
1 

 

xdy − ydx. 

 

Example 9.1.1 Find the area of the ellipse x = a cos θ, y = b sin θ. 

 
Solution: Given x = a cos θ =⇒ dx = −a sin θdθ 

Area A = − 
Γ 

ydx 

2π 

= b sin 
0 

θ(−a sin θ)dθ 

= ab 2π sin2
 

0 
θdθ 

= 

 2π  
1 − cos 2θ 

 
 

ab 
0 

= 
θ
 

2 
dθ 

sin θ
 2π

 

  

= ab(π − 0) 

= πab. 

 
 

 
Example 9.1.2 Find the area enclosed by the folium x3 + y3 = 3axy. 

 
Solution: The parametric equation are got by putting y = tx. 
We have   3at 3at2 

 x = 
1 + t3 

, y = 
1 + t3 

Since t = 
y 

= tan θ, θ varies from 0 to 
π 

, t varies from 0 to ∞. 

x 2 

0 4 

R Γ 

R 



190  

3a(1 − 2t ) − 

2 

2 Γ 

2 0 1 + t3 (1 + t3)2 (1 + t3)2 

 

 
 

Figure 9.2 
 

 

 

 
dx = 

3 

(1 + t3)2   
dt, dy = 

3a(2t t4) 

(1 + t3)2 
dt

 

Hence Area of the loop is 
 

A = 
1 

 

xdy − ydx 

= 
1 

 ∞         3at 
     

2t − t4 
!
 

 

   
3at2 

!   
3a(1 − 2t3)

!
 

 

= 
9a2 

 ∞ t2 

2 0 (1 + t3)2 
dt

 

= 
3 

a2. 
 
 
 
 

 

9.2 Verification of Green’s Theorem 

 
Example 9.2.1 Verify Green’s theorem for 

Γ
(2xy − x2)dx + (x + y2)dy 

where Γ is the closed curve of the region bounded by y = x2 and y2 = x. 

dt − 
1 + t3 

dt 
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6 

1 

 

15 

Γ R 

 

 
 

Figure 9.3 

 
Solution: By Green’s Theorem we have, 

Pdx + Qdy = 

 

(Q1(x, y) − P2(x, y))dxdy. 

The plane curve y = x2 and y2 = x intersect at (0, 0) and (1, 1). The 

positive direction in traversing Γ is an shown in the above figure. 

Evaluation of 

 

Pdx + Qdy 
Γ 

2
 

We shall take Γ in two different paths namely, (i). along y = x , (ii). along 

y2 = x. 

(i).Along y = x2. 

y = x2, =⇒ dy = 2xdx. 
 1  

(2  )(  2) −  2
 

 
 

+ (  +  4)2 = 

 1
(2 3 +  2 + 2  5) 

x  x x dx 
0 

x x xdx x x 
0 

= 
7 

. 

x  dx 

 

(ii).Along y2 = x. 

y2 = x, =⇒ 2ydy = dx. 

The line integral 

 0 

(2 

 
2)y − y4

   
2 

 

ydy 

 
+ (y2 + 

 
y2)dy = 

0

(4 
1 

− 2y 

 
5 + 2y 

 
2)dy 

= − 
17 

. 
 

(2xy − x2)dx + (x + y2)dy = 
7 

− 
17 

=
 1 

. 

6 15 30 
Γ 

4 y y 



192  

R 
 

 

= . 

 

 

  

 

x=0 
xy y=x2  dx 

(x 2 − 2x 2 − x + 2x )dx 

Evaluation of  (Q1(x, y) − P2(x, y)) dxdy 
 

 
 

( ( )  ( )) 
= 

 
( 
∂(x + y2) ∂(2xy − x2)

)
 

 
  Q1 x, y 

R 
− P2 x, y dxdy 

R ∂x 
− 

∂y 
dxdy 

= 

 

(1 − 2x)dxdy 

= 

 1 
√

x 

(1 
2 

− 2x)dydx 
x=0 

= 

 1 

( 

y=x 

− 2 )
y=

√
x 

 1 
1

 

 

 

 

3 2 3 

 1 

30 

Hence Green’s Theorem is verified. 

 
Example 9.2.2 Verify Green’s Theorem for x2dx + xydy where Γ is the 

Γ 

curve given by x = 0, y = 0, x = a, y = a, a > 0. 

 
Solution: By Green’s theorem we have, 

 

 

 
Here 

Pdx + Qdy = 

 

(Q1(x, y) − P2(x, y))dxdy. 
 

  

P = x2, Q = xy. 

P2 = 0, Q1 = y. 

Evaluation of Pdx + Qdy. 

Γ 

We shall take Γ in four different segments namely, (i). along OA (y = 0) 

(ii). along AB (x = a) (iii). along BC (y = a) (iv). along CO (x = 0). 

(i). Along OA (y = 0), x varies from 0 to a. 

 

x2dx + xydy = 

Γ OA 

= 
a 

0 

= 
a3 

 
 

x2dx + xydy 

 
x2dx 

3 
. 

R Γ 

x=0 

R 

y 

= 
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Figure 9.4 

 
(ii). Along AB (x = a), y varies from 0 to a. 

 

x2dx + xydy = 

Γ AB 

x2dx + xydy 

a 

= a ydy 
0 

a3 

2 
. 

(iii). Along BC (y = a), x varies from a to 0. 

 

x2dx + xydy = 

Γ BC 

= 
0 

a 

x2dx + xydy 

 
x2dx 

 
 

(iv). Along CO, x = 0 

a3 

= − 
3 

. 

 
 
 

Γ 

 

 
So 

 
x2dx + xydy = 

Γ OA 

x2dx + xydy = 

CO 
 

= 0. 

 
 
x2dx + xydy + 

AB 

x2dx + xydy 

 
 
 

x2dx + xydy + 

BC 

 
 
 
 

x2dx + xydy 

+ 

CO 

= 
a3 

 
 

x2dx + xydy 

2 
. 

= 





Figure 9.5 
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2 

Γ 

Evaluation of 

 

(Q2(x, y) − P1(x, y))dxdy. 

 

(Q2(x, y) − P1(x, y))dxdy = 

 

ydxdy 
Γ R 

= 

 a  a 

 

ydxdy 
0 

= 

 a 
0 

( )
a 

0   
y  x 0 

a 

= a ydy 
0 

a3 

2 
. 

Hence Green’s theorem is verified. 
 

Example 9.2.3 Evaluate by Green’s theorem 

 

e−x
(sin ydx+cos ydy), where 

Γ 
Γ is the rectangle with vertices (0 0) ( 0) ( 

π 
) (0 

π 
) 

, ,  π, ,  π, 
2  

, , 
2 

. 

 

Solution: By Green’s theorem, we have 

 

 

 
Here 

Pdx + Qdy = 

 

(Q1(x, y) − P2(x, y))dxdy. 
 

  

P = e−x sin y, Q  = e−x cos y. 

P2 = e−x cos y, Q1 = −e−x cos y. 

From the figure x various from (0, π) and y various from (0, 
π 

). 
 

 

R Γ 

= 
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2 

2 

0 

 

    −y= −2  

−e sin y + sin y 

2 

So 

 

e−x sin ydx + e−y cos ydy = 
 π  π 

 
(−e−x cos y − e−x cos y)dxdy 

Γ 
0

 

= −2 

0 

 π  π  
e−x cos ydxdy 

0 0 
 π   

 
 

   

= −2 

π 
2 

(e−π cos y + cos y)dy 
0 

π 
2 

0 

= 2(e−π − 1). 
 
 
 
 

9.3 Applications 

 
In this section, we will study 

(i) When P (x, y)dx + Q(x, y)dy is the differential of a function F (x, y)? 

(ii) Under what conditions will F exist such that F1 = P, F2 = Q ? and 

(iii) How can one find F if it exists ? 

 

 
9.3.1 Existence of Exact Differentials 

 
Simply connected domain: A domain D is simply connected if no Jordan 

curve in D contains in its interior a boundary point of D.We shall denote a 

simply connected domain by using the sign ∗ as a superscript. 

Theorem 9.3.1 

 

1. P (x, y), Q(x, y) ∈ C1 in D∗  

2.  Q1(x, y) = P2(x, y) in D∗  

 
⇔ there exists F (x, y) ∈ C2 in D∗  such that F1 = P,   F2 = Q. 

−e−x cos y  
π 

dy 
0 

= −2 



Figure 9.5 
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a,b 

Proof: Necessary condition: 

Suppose there exists F (x, y) ∈ C2 in D∗  such that F1 = P, F2 = Q. 

Consider 

 

 
and 

F1 = P =⇒ F12 = P2 

 
F2 = Q =⇒ F21 = Q1. 

 

Since F (x, y) ∈ C2 in D∗ , F12 = F21 in D∗  

So P2(x, y) = Q1(x, y) in D∗  

 
Since F ∈ C2 and F1 = P, F2 = Q, 

P (x, y), Q(x, y) ∈ C1. 
 

Sufficient condition : 

Conversely, suppose  that  P (x, y), Q(x, y)  ∈ C1  in  D∗   and  Q1(x, y)  = 

P2(x, y) in D∗ . We define F (x, y) explicitly. 

Let (a, b) and (x0, y0) be points of D∗ . Then 

 x0,y0 

 

where the path of integration is a broken line. 

Such a line exists by the definition of a domain. 

In fact it is easy to see that the segments of the broken line may be taken 

parallel to the axes. 

 

F (x0, y0) = P (x, y)dx + Q(x, y)dy (9.8) 
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∆ 

=

 

∆ 

∆x a,b 
P x, y dx Q x, y dy − P x, y dx Q x, y dy 

∆x 
P x, y dx Q x, y dy P x, y dx Q x, y dy 

∆x ∆x 
P x, y dx 

∆ 

We choose the path in this way in order to simplify the type of region that 

can be enclosed between two such broken lines . 

Claim : We first prove that F is a single-valued function and the value of 

the integral does not depend upon the path. 

Consider two broken lines in D∗  with segments parallel to the axes and 

joining (a, b) with (x0, y0). 

They will form the boundaries of a finite number of rectangles. 

We have assumed that Q1(x, y) = P2(x, y) in D∗ . So Q1(x, y) = P2(x, y) in 

these finite number of rectangles also. By second form of Green’s theorem 

we have the line integral (9.8) extended around the boundary of each rect- 

angle will be zero. 

Therefore,the line integral (9.8) is independent of the path. 

Hence the claim. 

We now prove F1 = P and F2 = Q. 

We shall compute F1 and F2 at the point (x0, y0) of D∗ . 

Since D∗  is simply connected, this point is the center of a circle K which 

lies entirely in D∗ . Choose a point (x0 + ∆x, y0) inside K. Then 

∆F 
= 

F (x0 + ∆x, y0) − F (x0, y0) 
x x 

=  
  1   

(  x0+∆x,y0 

(
  

) + ( ) 

 x0,y0 

(
 

 

) + ( ) 

)

 

=  
  1   

(  x0+∆x,y0 

(
 

) + ( ) + 

 a,b 
(
 

 

) + ( ) 

)

 

  1 x0+∆x,y0 

∆x x0,y0 
Pdx + 

 

Qdy 

 

If the path of integration is taken to be a straight line, it is evident that 

the integral of Q is zero. So 

∆F  
= 

  1  
 x0+∆x,y0 

( )
 

 

 
(9.9) 

 

But by the law of the mean we have 

 
F (x0  + ∆x, y0) − F (x0, y0) 

= F1(x0  + θ∆x, y0) (9.10) 
x 

x0,y0 

x0,y0 

a,b 

a,b 
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∆ 

where 0 < θ < 1. From (9.9) and (9.10) 
 

 
∆F 

= P (x0 + θ∆x, y0) 
x 

lim 
∆F  

=  lim  P (x0 + θ∆x, y0) 

∆x→0 ∆x ∆x→0 

F1(x0, y0) = P (x0, y0). 

 
As the point (x0, y0) is an arbitrary point of D∗ , we have F1 = P  in D∗  

Similarly, we can prove F2 = Q. Q 

 
9.3.2 Exact Differential Equations 

 
we now integrate the exact differential equation 

 
P (x, y)dx + Q(x, y)dy = 0 

 
where Q1 = P2 in D∗ . The primitive is F (x, y) = c, where c is an arbitrary 

constant. 

 
Theorem 9.3.2 

 
1. P (x, y), Q(x, y) ∈ C1 in D∗  

2.  Q1(x, y) = P2(x, y) in D∗  

 
3. Γ is a regular curve in D∗  joining (a, b) with (x0, y0) 

 
⇒ the integral 

 

F (x0, y0) = 
x0,y0 

a,b 
P (x, y)dx + Q(x, y)dy 

extended over Γ is independent of Γ. 

 

Proof: Let Γ be a regular curve in D∗  joining (a, b) with (x0, y0). 

Let Γ have equations 

 

x = φ(t), y = ψ(t) 0 ≤ t ≤ 1 
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0 

+ 

 

 

Pdx + Qdy = [F1(φ(t), ψ(t))φ (t) + F2(φ(t), ψ(t))ψ (t)]dt 

φ t , ψ t 

a,b 0 

Suppose that P (x, y), Q(x, y) ∈ C1 in D∗  and Q1(x, y) = P2(x, y) in D∗ . 

Then by Theorem 9.3.1 , F1 = P and F2 = Q in D∗ . 

Also we have , x = φ(t) ⇒ dx = φ�(t)dt and y = ψ(t) ⇒ dy = ψ�(t)dt 

 x0,y0  1 
� �

 

= 

 1 d
 

 

( ( ) ( )) 

= (F (φ(t), ψ(t)))1 

= F (x0, y0) − F (a, b). 

Since the final result does not depend on φ(t) or ψ(t), the integral given in 

the hypothesis extended over Γ is independent of Γ. Q 

Example 9.3.1 Consider the example 8.1.4. Regrouping terms we have 

 

(x + y)dx + (x − y)dy = xdx − ydy + ydx + xdy 

= d(x2/2) − d(y2/2) + d(xy) 
 

Hence 
 

 
0,1 

1,0 

 
(x + y)dx + (x − y)dy = 

 

x2 y2 

2  
− 

2 
xy 

 
 

(0,1) 

 
(1,0) 

 
= −1. 

 

Theorem 9.3.3  If P (x, y), Q(x, y) ∈ C1 in a domain D∗ , then Q1 = P2 

in D∗  ⇐⇒ Pdx + Qdy = 0 for every regular closed curve Γ in D∗ . 
Γ 

 

Proof: Suppose that P (x, y), Q(x, y) ∈ C1 in a domain D∗  then by the- 

orem 9.3.2 we have, Q1 = P2 in D∗ . 

Let (a, b) be any point of the curve Γ. then 
 

Pdx + Qdy = F (a, b) − F (a, b) = 0. 
Γ 

Conversely, suppose that 
Γ
P dx + Qdy  = 0 for every regular closed curve 

Γ in D∗  

To prove Q1 = P2 in D∗  (i.e). Q1 − P2 = 0 

Suppose that Q1 − P2 > 0 at a point (x0, y0) of D∗ . 

0 

 " # 

dt 
F 
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Γ R 

By continuity (x0, y0) is the center of a circle K of D∗  with circumference 

C, throughout which Q1 − P2 > 0. 

By Green’s theorem 

 

(Q1 − P2)dS = 

 

Pdx + Qdy > 0 

K 
 

This contradicts the hypothesis. Similarly, if Q1 − P2 < 0 at (x0, y0), we 

obtain a contradiction. Hence, Q1(x0, y0) = P2(x0, y0). 

Since (x0, y0) is an arbitrary point in D∗ , Q1 = P2 in D∗ . Q 

Remark 1: Theorem 9.3.3 remains true if the curve Γ is allowed to cut 

itself. 

Remark 2: The results of the present section are applied to multiply con- 

nected regions by the introduction of cross cuts. 

 
Summary 

 
• Green’s theorem provides a formula connecting a line integral over its 

boundary with a double integral over a region. 

 

• First form of Green’s theorem: If 

1. R is a region Rx and also Ry 

2. Γ is the boundary of R 

3. P (x, y), Q(x, y) ∈ C1 in R 

⇒ Pdx + Qdy = 

 

[Q1(x, y) − P2(x, y)]dS (9.11) 

the line integral being taken in the positive sense. 

 
• Second form of Green’s theorem : If 

1. R is a region Rx and a regular region S 

2. Γ is the boundary of R 

3. P (x, y), Q(x, y) ∈ C1 in R 

C 
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xdy, A = 

 (−y)dx + xdy 

 

2 

⇒ Pdx + Qdy =  
 

  

(Q1(x, y) − P2(x, y)) dS 

the line integral being taken in the positive sense. 

• We can apply Green’s theorem to find the area of a region defined by 

the equations of its boundary curves. Suppose R is a region bounded 

by Γ then area of R is given by any one of the three formulas 

A = − 

Γ 

ydx, A = 
1

 

Γ Γ 

• Line integral is a useful tool in the investigation of exact differentials 

• If 

1. P (x, y), Q(x, y) ∈ C1 in D∗  

2.  Q1(x, y) = P2(x, y) in D∗  

 

⇐⇒ there exists F (x, y) ∈ C2 in D∗  such that F1 = P, F2 = Q. 

• If 
 

1. P (x, y), Q(x, y) ∈ C1 in D∗  

2.  Q1(x, y) = P2(x, y) in D∗  

3. Γ is a regular curve in D∗  joining (a, b) with (x0, y0) 

 

⇒ the integral 
 

F (x0, y0) = 
x0,y0 

a,b 
P (x, y)dx + Q(x, y)dy 

extended over Γ is independent of Γ. 

 

• If P (x, y), Q(x, y) ∈ C1 in a domain D∗ , then Q1 = P2 in D∗  ⇐⇒ 

Pdx + Qdy = 0 for every regular closed curve Γ in D∗ . 

Γ 

R Γ 
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2 

 

 

 
R 

 

R 

Multiple Choice questions: 

1. The value of the integral 

 0,1

(  +  ) + ( 

 

 
) is 

 
a) 1 b) 0 c) -1 

x 
1,0 

y dx x − y dy 

 

2. Suppose R is a region bounded by Γ then the area of R is given by 

a) A = 

 

xdx  b) A =
 1 

 

xdy − ydx   c) A = 

 

ydy 
Γ Γ Γ 

3. The statement of Green’s theorem is 

 
(a) 

Γ 

Pdx + Qdy = 

 

(Q1(x, y) − P2(x, y))dS 
 

 

(b) 

Γ 

(c) 

Γ 

Pdx + Qdy = 

 

Q1(x, y)dS 

Pdx + Qdy = 

 

P2(x, y)dS 
 

4. Green’s theorem connects 

 
(a) line integral to surface integral 

(b) surface integral to volume integral 

(c) line integral to volume integral 

Ans: 1. c) 2. b) 3. a) 4. a) 

Exercises 9 

1. State and prove first form of Green’s Theorem . 

 
2. Define iterated integral. 

 
3. State and prove second form of Green’s theorem. 

 
4. Find the area of the circle r = a cos θ. 

 

5. Verify Green’s theorem for (x2 − y2)dx + 2xydy where C  is the 
Γ 

boundary of the region bounded by the lines x = 0, x = a, y = 0, y = 

b. 

Ans: 2ab2 

R 
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2 

 

2 

 

6. Verify Green’s theorem for (3x2 − 8y2)dx + (4y − 6xy)dy  where Γ 
Γ 

is the region bounded by x = 0, y = 0 and x + y = 1. 

 

7. If P (x, y), Q(x, y) ∈ C1 in D∗  and Q1(x, y) = P2(x, y) in D∗ , then 

prove that there exists F (x, y) ∈ C2 in D∗  such that F1 = P, F2 = Q. 

8. If P (x, y), Q(x, y) ∈ C1 in D∗ , Q1(x, y) = P2(x, y) in D∗  and Γ is a 

regular curve in D∗  joining (a, b) with (x0, y0), then prove that the 

integral 

F (x0, y0) = 
x0,y0 

 
a,b 

P (x, y)dx + Q(x, y)dy 

extended over Γ is independent of Γ. 

 

9. If P (x, y), Q(x, y) ∈ C1 in a domain D∗ , then prove that Q1 = P2 in 

D∗  ⇐⇒ Pdx + Qdy = 0 for every regular closed curve Γ in D∗ . 
Γ 

10. Evaluate 
1,π

 
0,0 

 
ex cos ydx − ex sin 

 
ydy. 

Ans: 1 . 

11. Evaluate 
1,π 

2 
0,0 

 
 
cos 

 
xdy − y 

 

2 sin 

 

 

xdx. 

Ans: 1 . 

y 



203  

 
Learning Outcomes : 

 
After studying this unit, students will be able 

 

F To learn about surface integrals. 

F To state and prove Gauss’s theorem which relates the triple integral of 

a function on a three dimensional region of space to its double integral 

on the bounding surface. 

 
 
 
 
 
 
 

Unit 10 

 
Surface Integral and Gauss’s 

Theorem 

 
 
 
 

 
 

10.1 Surface Integrals 

 
In many physical problems we encounter functions defined on various 

surfaces. For example, density of a charge distribution over the surface of a 

conductor, intensity of illumination of a surface, velocity of the particles of 

a fluid passing through a surface etc., This section is devoted to studying 

integral of functions defined on surfaces, the so called surface integral. 
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1 

Σ 

The double integral over a plane area generalizes to a surface integral over 

an area of an arbitrary curved surface.  We define the surface integral and 

we prove generalization of Green’s theorem, which enable us to express a 

triple integral over a solid in terms of a surface integral over the surface 

bounding the solid. 

 
10.1.1 Definition of Surface Integrals 

 
Let R be a region on an arbitrary surface having area. Let Σ be a finite 

piece of such a surface. 

Definition 10.1.1 (Subdivision) A subdivision ∆ of Σ is a set of closed 

curves {Ck}
n lying on Σ and dividing it into a set of n subregions of areas 

∆Σk,   k = 1, 2, ..., n. 

 
Definition 10.1.2 (Diameter) The diameter of a region on Σ is the length 

of the largest straight line segment whose ends lie in the region. 

 
Remark : Since Σ may be curved, the intermediate points of the segment 

need not lie on Σ. 

Definition 10.1.3 (Norm) The norm of ∆, denoted by ǁ∆ǁ, is the largest 

of the n diameters of the subregions produced by the subdivision. 

 
Definition 10.1.4 (Surface Integral) Let P (x, y, �) be a function de- 

fined  at  every  point  of    and  let  (ξk, ηk, ζk )  be  a  point  on  Σ  inside  or 

on the boundary of the subregion bounded by Ck. Then the surface integral 

of P (x, y, �) over Σ is 
 

P (x, y, �)dΣ =   

lim  
Σ
 

P (ξk, ηk, ζk)∆Σk (10.1) 

Σ 

when this limit exists. 

ǁ∆ǁ→0 
k=1

 

 

Remark: If Σ is a region R of the xy-plane, the above limit reduces to the 

n 
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double integral of P (x, y, 0) over R. A double integral is a special case of a 
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Σ 

Σ 

where sec γ  = 
q

1 + f 2(x, y) + f 2(x, y), γ  is the acute angle between the 

surface integral. 

Note : Let V denote a three dimensional region. 

 
Theorem 10.1.1 

 
1. P (x, y, �) ∈ C in V 

2. Σ is the surface � = f (x, y) over the region R 

 

3. f (x, y) ∈ C1 in R 

4. Σ lies in V 
 

⇒ A.  

B. 
 

P (x, y, �)dΣ exists 

P (x, y, �)dΣ 
 

= 

 

P (x, y, f (x, y))
q

1 + f 2(x, y) + f 2(x, y)dS 
1 2 

R 

 

Proof: Given Σ is defined by the equation � = f (x, y) when (x, y) lies in 

a region R of the xy-plane. 

That is, Σ is cut in a single point by a line parallel to the z-axis and has 

the projection R in the xy-plane. 

Divide Σ into a set of n subregions of areas ∆Σk, k = 1, 2, ..., n. 

It induces a corresponding subdivision (which we still call ∆) of R into 

subregions Rk of areas ∆Sk. 

The point (ξk, ηk, ζk) of Σ becomes (ξk, ηk, f (ξk, ηk)), where (ξk, ηk) is a 

point of Rk. Then 

∆Σk = 

 q

1 + f 2(x, y) + f 2(x, y)dS 
1 2 

Rk 

 

1 2 

normal to Σ and �− axis. 

From the law of the mean for double integrals we have a continuous function 
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n 

1 2 

ǁ∆ǁ→0 
k=1

 

P ξk, ηk, f ξk, ηk f1 f2 ak, bk 

has a maximum and a minimum in a closed region R, and that it takes on 

each value between the two at same point of R and we have 

 

f (x, y)dS = f (ξ, η)A, (ξ, η) ∈ R and A is the area of R. 
 

So we have, 

∆Σk = 
q

1 + f 2(ak, bk) + f 2(ak, bk)∆Sk, 
 

where (ak, bk) is a point of Rk and ∆Sk is the area of that subregion. 

Substituting this value of ∆Σk in equation (4.16) we have, 
 

P (x, y, �)dΣ =   

lim  
Σ
 

P (ξk, ηk, f (ξk, ηk))∆Σk 

Σ 
ǁ∆ǁ→0 

k=1
 

=  lim  
Σ 

( ( ))
q

1 + 2( ) +  2( )∆ 
 

By using Duhamel’s theorem, we have, 
 

P (x, y, �)dΣ = 

 

P (x, y, f (x, y))
q

1 + f 2(x, y) + f 2(x, y)dS 
1 2 

Σ R 

Q 

Remark  1:  In the preceding we have assumed that Σ is decomposed into 

a finite number of parts each of which is such that any line parallel to the 

�− axis intersect it in only one point. 

Remark 2:  Suppose the surface Σ have the equation x = f (y, �) or y = 

f (x, �).   If Σ can be decomposed into a finite number of parts,  each of 

which is cut only once by a line parallel to some axis and has a continuously 

turning tangent plane. Also the surface integral over Σ is the sum of all 

the surface integral over these parts. 

Then the existence of the following surface integrals are are assured. 
 

P (x, y, �)dΣ = 

 

P (f (y, �), y, �)
q

1 + f 2(y, �) + f 2(y, �)dS 
1 2 

Σ R 

and 

 

P (x, y, �)dΣ = 

 

P (x, f (x, �), �)
q

1 + f 2(x, �) + f 2(x, �)dS 
1 2 

Σ R 

 

Remark 3: If cos α, cos β, cos γ are the direction cosines of the normal, 

R 

n 

ak, bk Sk 
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then we have cos αdS = dyd�, cos βdS = d�dx, cos γdS = dxdy. 
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Σ 

    

  

  

So sec β = 
q

1 + f 2(x, �) + f 2(x, �)dS = 
√

5 on Σ1. 

So sec β = 
q

1 + f 2(x, �) + f 2(x, �)dS = 
√

2 on Σ2. 

Example 10.1.1 Compute 

 

xy�dΣ, where Σ is the surface of the tera- 

hedron bounded by the planes 

x = 0, � = 0, x + y = 2, 2� = y. 

 
Solution: Consider x + y = 2, 2� = y 

 

 
Figure 10.1 

 
when x = 0, y = 2 and � = 

y = 2 = 1. So the point is (0, 2, 1). 
2 2 

when � = 0, x = 2 and y = 0. So the point is (2, 0, 0). 
 

xy�dΣ = 

Σ1 

xy�dΣ + 

Σ2 

xy�dΣ + 

Σ3 

xy�dΣ + 

Σ4 

xy�dΣ 

On the coordinate faces the integrand is zero. So two of the integrals are 

zero. 

We evaluate the other two, by projection onto the region Rx = R[0, 2, 0, (2− 

x)/2] of the x�− plane. 

We have f (x, �) = 2x�2, f1(x, �) = 2�2, f2(x, �) = 4x�. 
 

1 2 

xy�dΣ = 2
√

5 

Σ1 Rx 

2 2
√

5 

x� dS = 
15 

. 

Also f (x, �) = �(2x − x2), f1(x, �) = �(2 − 2x), f2(x, �) = 2x − x2. 

1 2 

xy�dΣ = 
√

2 

Σ2 Rx 

 

2 

√
2
 

�(2x − x )dS =  
5 

. 

Σ 
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2 

√ 

3 

Σ 

) 2 

0  
dθ 

R 

 
 

Example 10.1.2 Evaluate 

 

P (x, y, �)dS, where S is the surface of the 

paraboloid = 2 ( 2 + 2) 
Σ 

-plane and ( ) = 1 

� − x y above the xy P  x, y, � . 

 

Solution: We have 
 

P (x, y, �)dΣ = 

 

P (x, y, �)
q

1 + f 2(x, y) + f 2(x, y)dS, 
1 2 

Σ R 

where R is the projection of S on the xy-plane given by x2 + y2 = 2, � = 0. 

Here f1(x, y) = 2x, f2(x, y) = 2y. 

 

P (x, y, �)dΣ = 

 q

1 + 4x2 + 4y2dxdy 

Using polar coordinates (r, θ), we have 
√    

 

P (x, y, �)dΣ =  2π  √
1 + 4r2 rdrdθ 

Σ 
θ=0  0 

 2π 1 h 
 

 

2  3 
i 2 

= 
13π 

.
 

 

Example 10.1.3 Compute 

 

x2� cos γdΣ, where Σ is the unit sphere and 

γ is the angle between the exterior normal to the sphere and the positive 

z-axis. 

 

Solution: Σ is the unit sphere x2 + y2 + �2 = 1 and γ is the angle between 

the exterior normal to the sphere and the positive z-axis. 

Here the z-coordinate can be expressed as single-valued function of x and 

y for the whole surface. Let us break it into two parts: 

The upper hemisphere above the xy-plane and the lower hemisphere below 

it. Accordingly their equations are 

� = 
q

1 − x2 − y2, � = −
q

1 − x2 − y2. 

when x2 + y2 = 1 then both the radicals does not belong to C1. 

So theorem 10.1.1 is not directly applicable. However the decomposition 

0 

Σ 

= 
12 

(1 + 4r 
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| | 

√ 

→ 

R 

referred to above is easily performed here, so that the integral exists. 

we first cut out the equator by the cylinder x2 + y2 = (1 − ϵ)2 and then let 

ϵ 0. 
 1  

On the whole sphere cos γ = �. So | sec γ| = 
� 

. 

Now 

 

x2� cos γdΣ =  
 

  

x2

q

1 − x2 − y2dS +  
 

 

x2

q

1 − x2 − y2dS 

 

where R is the disc x2 + y2 ≤ 1. 

Of the two integrals on the right hand side, the first is over the upper side 

of the upper hemisphere in the upward direction and the second is over the 

lower side of the lower hemisphere in the downward directions. 

 

So, for lower hemisphere | sec γ|. cos γ < 0 and � = −  1 − x2 − y2 < 0. 

Hence 

 

x2� cos γdΣ = 2 

 

x2

q

1 − x2 − y2dS. 

Using polar coordinates 
 

x2� cos γdΣ = lim 2 
є→0 

2π 

cos2
 

0 

 
θdθ 

1−є 

0 
r3

√ 

1 − r2 

 
dr = 

4π 

15 
.
 

 
 
 
 

10.1.2 Gauss’s Theorem 

 
We use the following notations. 

A surface Σ will be denoted by Σ∗  if it has the following properties. 

(i). It is the boundary of a three dimensional region V, which is a region 

Vxy, Vy�, V�x. 

(ii). In each case the defining function should belong to C1. 

For example if 

Vxy = V (R, φ(x, y), ψ(x, y)). (10.2) 

 
This is the region bounded by the surfaces � = φ(x, y), � = ψ(x, y) and the 

cylinder whose rulings are perpendicular to the xy− plane on the boundary 

R R Σ 

Σ 

Σ 
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R 

 

φ(x,y) 

 
 

V 

of a region R of that plane. 

Then φ, ψ ∈ C1 in R 

Clearly Σ∗  will have a continuously turning tangent plane over the parts of 

the surface corresponding to the defining functions. 

Result : If 

 
1. f (x, y, �) ∈ C in Vxy 

2. Vxy = V [R, φ(x, y), ψ(x, y)] then 
 

we have 

 

( 
) = 

  ψ(x,y)    

( )
 

 

Vxy 

f x, y, � dV dS 
φ(x,y) 

R 

f x, y, � d� 

 

Theorem 10.1.2 (Gauss’s Theorem) 

 
1.  P (x, y, �), Q(x, y, �), R(x, y, �) ∈ C1 in V 

2. V is bounded by Σ∗  

 
3. α, β, γ are the direction angles of the exterior normal to Σ∗  

 

⇒ 

 

[P1(x, y, �) + Q2(x, y, �) + R3(x, y, �)]dV 

= [P (x, y, �) cos α + Q(x, y, �) cos β + R(x, y, �) cos γ]dΣ 

Σ∗  

 

Proof: V is bounded by Σ∗   given by the equation (10.2). 

Since Vxy = V [R, φ(x, y), ψ(x, y)] and R(x, y, �) ∈ C1 in V, we have 

 

R3(x, y, �)dV  = 

 

dS 

 
ψ(x,y) 

φ(x,y) 

 
R3d� 

= 

 

[R(x, y, �)]
ψ(x,y)dS 

R 

= 

 

R(x, y, ψ(x, y))dS −  

 
R(x, y, φ(x, y))dS 

 

  
 

= R(x, y, �)| cos γ|dΣ − 

Σ1 Σ2 

R(x, y, �)| cos γ|dΣ 

R R 

V 
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V 

V 

V 

V 

V 

Here Σ1 and Σ2 are the upper and lower nappes, respectively, of Σ∗ . 

we have cos γ > 0 on Σ1 and cos γ < 0 on Σ2, 

Suppose Case (i): φ = ψ on the boundary of R, 

 

 
 

 
R3(x, y, �)dV = 

Σ1 

 
R(x, y, �) cos γdΣ + 

Σ2 

 
R(x, y, �) cos γdΣ 

 

 
= R(x, y, �) cos γdΣ (10.3) 

Σ∗  

Case (ii):  If φ =/ ψ on the whole boundary of R, there is also a cylindrical 

surface bounding Vxy. 

To evaluate the surface integral. 

We can project the surface on the other coordinate faces. 

The factor cos γ = 0 everywhere on the cylindrical surface. 

Hence the corresponding surface integral will be zero. Hence equation (10.3) 

holds in either case. So We have 

 

 
 

 
R3(x, y, �)dV = 

Σ∗  

 
R(x, y, �) cos γdΣ 

Similarly by symmetry we can prove that 

 

 

 
and 

 

 
 

 

 
 

 
P1(x, y, �)dV = 

Σ
∗  

 
 
 
Q2(x, y, �)dV = 

Σ
∗  

 
P (x, y, �) cos αdΣ 

 

 

 
Q(x, y, �) cos βdΣ 

where α, β, γ are the direction angles of the exterior normal to Σ∗ . 

Hence we have 

 

[P1(x, y, �) + Q2(x, y, �) + R3(x, y, �)]dV 
 

= [P (x, y, �) cos α + Q(x, y, �) cos β + R(x, y, �) cos γ]dΣ 

Σ∗  

Q 
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Σ 

 

V 

Corollary 10.1.1 

 
1.  R(x, y, �) ∈ C1 in Vxy = V (R, φ(x, y), ψ(x, y)) 

2. φ, ψ ∈ C1 in R 

3. γ is the angle between the positive z-axis and the exterior normal to Σ, 

the boundary of Vxy 
 

⇒ 
Vxy 

R3dV =  
 

 

 
R cos γdΣ 

 

Proof: Here Vxy is neither Vy� nor a Vx�. 

So in the previous theorem Σ need not be a Σ∗ . 

Here Vxy = V (R, φ(x, y), ψ(x, y)), φ, ψ ∈ C1 in R, R(x, y, �) ∈ C1 and Σ is 

the boundary of Vxy. 

If γ is the angle between the positive �− axis and the exterior normal to 

Σ, applying previous theorem we have 

 

 

 

Vxy 

R3dV =  
 

 

 

R cos γdΣ. 

 
Q 

Remark: The corresponding corollaries hold for regions Vy� or Vx�. 

 
 

10.2 Verification of Gauss’s theorem 

Example 10.2.1 Compute 

 

x2� cos γdΣ, where Σ is the unit sphere and 

γ  is the angle between the exterior normal to the sphere and the positive 

� − axis. 

 
Solution: Take P = Q = 0, and R = x2� in hypothesis 3 of Theorem 

10.1.2. 

 
 
 

R3(x, y, �)dV  = 

Σ∗  

R(x, y, �) cos γdΣ 

Σ 

Σ 
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( ) 

  

 

V 

5 0 
θdθ 

0 

= 
5

 cos 
0 

θdθ − cos φ + 

5 0 
θdθ − 

3 
− 

3
 

= 
4 

 2π  
1 + cos 2θ 

 
 

30 

4 

V 

Here R3 = x2, Σ∗  = Σ. We can evaluate 
∫∫∫ 

x2dV using spherical coor- 
dinates 

 

 

 

 

 

 

 
Now 

 
x = r sin φ cos θ, 0 ≤ θ ≤ 2π 

y = r sin φ sin θ, 0 ≤ φ ≤ π 

� = r cos φ, r ≥ 0 

∂(x, y, �) 
= r2 sin φ, dV = r2 sin φdrdφdθ. 

∂ r, φ, θ 

  
x2dV = 

 2π  π  1  
(r sin φ cos θ)2 

 
r2 sin φdrdφdθ 

0 0 0 
V 

= 
2π 

cos2
 

0 
θdθ 

π sin3
 

0 
φdφ 

1 

r dr 
0 

= 
2π 

cos2
 

0 

 
θdθ π sin3

 
0 

 
φdφ 

" 
r5 

#1 

 0 

= 
1 

 2π 

cos2 
 π 

sin3
 

1 
 2π 

2 

"
 cos3 φ 

#π
 

  

= 
1 

 2π 

cos2 1 + 1 
1 1 

 

 
 

5   0 

= 
 4  

 
 

2 
dθ 

sin 2θ
 2π

 

  
=

 4 
(2π) = 

4π 
. 

30 15 
 

 

Example 10.2.2 Evaluate by two methods 

 

(xy + y� + �x)dV where 

V is the region bounded by the planes x = 0, y = 0, � = 0, � = 1 and the 

cylinder x2 + y2 = 1. 

Solution: First we will evaluate the given integral by iteration method. 

V is the region bounded by the planes x = 0, y = 0, � = 0, � = 1 and the 

cylinder x2 + y2 = 1. 

Rx = R[0, 1, 
√
1 − x2, 0]. 

0 2 

0 
3 

5 

 

 

φdφ 

θ − 
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2 

( ) 

2 

2 2 

+ 
   

r dr 
2 

cos θ sin θdθ + 
1
 r dr 

2 

sin θdθ + 
1
 r dr 

2 

cos θdθ 

2 sin 2θ 1 
dθ dr [− cos θ] 2   + 

1
 r dr [sin θ] 2 

− cos 2θ 2  

+ 
1 

r2dr + 
1

 

r 
0 

0 4 0 2 0 2 0 

We can evaluate I = 

 

(xy + y� + �x)dV using cylindrical coordinates 
 

(r, θ, �). 

x = r cos θ, y = r sin θ � = � 
 

where r ≥ 0, 0 ≤ θ ≤ π , −∞ < � < ∞. and 

∂(x, y, �) 
= r and dV = rdrdθd�. 

∂ r, θ, � 
 

Now 

I = 

 

  
xy + 

y 
+ 

x
  

dS 

2 2 
Rx 

 1  π     
 

 
2 

cos θ sin θ + 
r sin θ 

+ 
r cos θ 

 
 
 
rdrdθ 

0 0 

 1   
3 

 π 

 

  

2 2 
 1   

2 
 π 

 

 

  

 1   
2 

 π 

 

 

  
 1   

3 
 π   1  

2
 

     

π 
 1  

2 
π 

 
 1     π  1  1 

= 
2 

 1  
3

 

+ 
1 

  
r3 

!1 

+ 
1 

  
r3 

!1 
 

  

= 
2 

" 
r4 

#1 

+ 
1 

+ 
1 

4 4   
0 

6 6 

= 
1 

+ 
1 

= 
11 

8 3 24 
 

Now we can evaluate the given integral using Gauss’s theorem 

We have, 

P1 = xy, Q2 = y�, R3 = �x. 

 

 
Hence 

 

so P = 

 

  
x2y

 
 

 

x2y 

2 
, Q = 

 
y2� 

 
 

y2� 

2 
, R = 

 
�2x 

 
 

�2x 

2 
. 

! 

I = 
2   

cos α + 
Σ 2  

cos β + 
2 

cos γ dΣ (10.4) 

Here Σ consists of four plane faces and a cylindrical surface. The only plane 

face that contributes a value not zero is � = 1. If α, β, γ are the angles made 

by � = 1 with the positive x− axis ,positive y axis and positive �− axis 

0 0 

0 0 2 2 0 0 

0 0 0 0 0 0 

r 

V 

= 

= r dr r 0 2 0 

= r3dr r2dr 

4 
dr 

2 3 2 3 

= 
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6 

2 
r 

0 
θ 0 

2 
r 

0 

2 2 
d� 

0 0 
− y ydy 

8 

2 
βd 

2 
�d� 

0 0 
− x dx 

6 

r 

Σ 

respectively, then α = π , β = π , γ = 0. Then we obtain 
2 2 

 
�2x 

 
�2x 

 
x
 

 

2 
dΣ = 

Σ Σ 2  
dΣ = 

Rx 
2 

dS 

π 

= 
1 

 1  
2

 

 
2 cos 

2 0 
dr 

0
 θdθ 

π 

= 
1 

 1  
2

 
 

 

[sin ] 2 

= 
1 

 1  
2

 

= 
1 

  
r3 

!1 

2 3 
0

 

= 
1 

. 
 

Finally, for the cylindrical surface, cos α = x, cos β = y, cos γ = 0. Here we 

have only to consider the first two terms of the integral (10.4) in this case. 

The first can be expressed as a double integral over a unit square in the 

yz-plane, the second over a unit square in the xz-plane: 

 
x2y 

cos Σ = 
1 

 1

 

 1
(1 2) = 

1
 

 
y2� 

cos Σ = 
1 

 1  1

(1 2) = 
1

 

Hence I = 
1 

+ 
1 

+ 
1 

= 
11 

. 

6 8 6 24 
 

 

 

Example 10.2.3 Verify Gauss’s theorem for 

 

(4x cos α − 2y2 cos β + �2 cos γ)dΣ 

where Σ is the region bounded by x2 + y2 = 4, � = 0, � = 3 and α, β, γ are 

the angle between the exterior normal to the positive x− axis, y− axis and 

�− axis respectively. 

 
Solution: Take 

 

 
 

By Gauss theorem, 

P =4x,  Q = −2y2,  R = �2. 

P1 =4, Q2 = −4y, R3 = 2�. 

dr 

dr 

αd 
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−2 

0 

 

 

 

−2 =−
√

4−x2 

y� 2 

−2 =−
√

4−x2 

y dydx 

√ 

Σ 

 

 
 
 

Figure 10.2 

 
 

(P1 + Q2 + R3)dV = 

 

(P cos α + Q cos β + R cos γ)dΣ. 

V 

 

(4

 

 

 
4  + 2 ) 

Σ 

= 

 2  y= 4−x2   3  

(4
 

 
 

 

 
4 + 2 ) 

 − y � dV 
V 

−2  y =−
√

4−x2 y �=0 � d�dydx 

= 

 2  y=
√

4−x2   
  

4
 

4 + 2 
�2 

!3

 

= 

 2  y= 

 

√
4−x2  

(21 

 
12 ) 

√    2
 

12y2 
!

 
 

 

4−x2 

 
=  

−2 
21y − 

2
 

dx 
   − 4−x2 = 42 

 2 √
4 − 

= 84 

 2 √
4 − 

= 84

  
x √

4 

x2dx 

x2dx 

2 + 
4 

sin−1 

   
x 

    2

 

 
 
 

Now 

2 

= 84π. 

− x 
2 2 0

 

 

(4x cos α − 2y2 cos β+�2 cos γ)dΣ 

= (4x cos α − 2y2 cos β + �2 cos γ)dS1 

S1 

+ (4x cos α − 2y2 cos β + �2 cos γ)dS2 

S2 

+ (4x cos α − 2y2 cos β + �2 cos γ)dS3 

S3 

y 

− 

y 
� − 

0 dydx 

− 

√ 
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0 

 

S 

2 2 

On S2, � = 3, (α, β, γ) = 
  π , π , 0

  
, 

4(x2+y2) 4(x2+y2) 2 
, 

2 
, 

Σ 

On S1, � = 0, (α, β, γ) =
  π , π , 0

  
, 

So 4x cos α − 2y2 cos β + �2 cos γ = 0. 

(4x cos α − 2y2 cos β + �2 cos γ)dS1 = 0 

S1 
 

2   2 

So �2 cos γ = 9. 
 

(4x cos α − 2y2 cos β + �2 cos γ)dS2 = 9.Area of S2 = 9 × 4π = 36π. 
S2 

On S3, x2 + y2 = 4. 

So (cos α, cos β, cos γ) =  

  

√  2x , √  2y , 0

  

= 

  
x  y  

0

 

 

 

(4x cos α − 2y2 cos β + �2 cos γ)dS3 = 

 

(2x2 − y3)dS3. 
S3 S3 

Using polar coordinates x = 2 cos θ, y = 2 sin θ, 
 

(2x2 − y3)dS3 = 

 2π  3 
(2(2 cos θ)2

 − (2 sin θ)3)2 
 
d�dθ 

θ=0 
S3 

�=0 

= 
2π 

(16 cos2
 

θ=0 
θ.� − 16 sin3

 θ.�)3dθ 

= 
2π 

(48 cos2
 

θ=0 

= 

 2π 

48 cos2
 

48 sin3
 θ)dθ 

 

θ 

= 48π. 

So 

θdθ 

 

(4x cos α − 2y2 cos β + �2 cos γ)dΣ = 0 + 36π + 48π = 84π. 

Hence the Gauss theorem is verified. 

Example 10.2.4   Evaluate 

 

xy2dyd� +(x2y −�3)d�dx+(2xy +y2�)dxdy 

where S is the entire surface of the hemispherical region bounded by � = 

√
a2 − x2 − y2 and � = 0 the divergence theorem. 

Solution: We have dyd� = cos αdS, d�dx = cos βdS, dxdy = cos γdS. 

By divergence theorem 

 

(P cos α + Q cos β + R cos γ)dS = 

 

(P1 + Q2 + R3)dV 

S V 

θ − 
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V 

3 

 

V 

Here 

 

 
 

Hence 

 
P = xy2, Q = x2y − �3, R = 2xy + y2� P1 

= y2,  Q2 = x2,  R3 = y2. 

 

xy2dyd� + (x2y − �3)d�dx + (2xy + y2�)dxdy = 

 

(y2 + x2 + y2)dV 

= 

  
a2dV 

 

 

= a2.Volume of the hemisphere 

=  2  2 3 

a . 
3 

πa 

= 
2 

πa5. 

where V is the region bounded by the hemisphere and the xy−plane. 

 
10.3 Vector consideration 

 
Let →y = →y(x1, x2, x3) be a vector function, defining a vector field. 

Suppose (x1, x2, x3) = (P, Q, R). 

Let ζ→ = (cos α, cos β, cos γ) be the unit vector along the exterior normal to 

the surface Σ∗  of Theorem 10.1.2 . Then 

 
Div →y = P1 + Q2 + R3. 

→y.ζ→ = P cos α + Q cos β + R cos γ. 

 
Then the conclusion of that theorem becomes 

 

 
 

 
Div →ydV  = 

Σ∗  

 

→y.ζ→dΣ (10.5) 

Theorem 10.1.2 is often called the divergence theorem, since the divergence 

appears as the integrand of the triple integral . 

Physical meaning of equation (10.5) 

Suppose that →y  defines a velocity field for a fluid.  That is, the vector →y  at 

each point gives the velocity of the fluid there both in direction and mag- 

nitude (say, in feet per second). 

V 

S 
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1 

Σ 

Suppose R  is a plane region of area A  and if vectors →y  over R  are all per- 

pendicular to R and of constant magnitude, then 

A|→y| = Number of cubic feet per second of the fluid flowing through R. 

We know that 

→y.ζ→ = |→y| cos θ 

where θ  is the angle between →y  and ζ→, Then the integrand on the right of 

(10.5) is 

→y.ζ→ = |→y| cos θ  = component of the velocity vector →y  in 

the direction of the exterior normal. 

The integrand on the →y.ζ→ is multiplied by the surface element dΣ, 

The surface integral = the number of cubic feet per second flowing 

out of the whole surface Σ∗  if the number is 

positive 

= the number of cubic feet per second flowing 

into Σ∗  if the number is negative 

In particular if the fluid is incompressible the net rate of flow through 

Σ∗  = 0 for every Σ∗ , so that both integrals (10.5) must be zero. 

 
Definition 10.3.1  If div →y = 0, the fluid is incompressible . 

 
Summary 

 
• A subdivision ∆ of Σ is a set of closed curves {Ck}

n 
lying on Σ and 

dividing it into a set of n subregions of areas ∆Σk, k = 1, 2, ..., n. 

• The diameter of a region on Σ is the length of the largest straight line 

segment whose ends lie in the region. 

• The norm of ∆, denoted by ǁ∆ǁ, is the largest of the n diameters of 

the subregions produced by the subdivision. 

• Let  P (x, y, �)  be  a  function  defined  at  every  point  of     and  let 

(ξk, ηk, ζk ) be a point on Σ inside or on the  boundary  of  the  sub- 

region bounded by Ck. Then the surface integral of P (x, y, �) over Σ 
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Σ 

Σ 

 
V 

is  

P (x, y, �)dΣ =   

lim  
Σ
 

 
P (ξk, ηk, ζk)∆Σk 

Σ 

when this limit exists. 

 

• 1.  P (x, y, �) ∈ C in V 

ǁ∆ǁ→0 
k=1

 

2. Σ is the surface � = f (x, y) over the region R 

3. f (x, y) ∈ C1 in R 

4. Σ lies in V 
 

 

⇒ A.  

B. 
 

 
P (x, y, �)dΣ exists 

 
P (x, y, �)dΣ 

 

= 

 

P (x, y, f (x, y))
q

1 + f 2(x, y) + f 2(x, y)dS 
1 2 

R 
 

• Gauss’s theorem : If 
 

1. P (x, y, �), Q(x, y, �), R(x, y, �) ∈ C1 in V 

2. V is bounded by Σ∗  

3. α, β, γ are the direction angles of the exterior normal to Σ∗  

 

⇒ 

 

[P1(x, y, �) + Q2(x, y, �) + R3(x, y, �)]dV 

= [P (x, y, �) cos α + Q(x, y, �) cos β + R(x, y, �) cos γ]dΣ 

Σ∗  

• Vector consideration of Gauss’s theorem 

Let →y = →y(x1, x2, x3) be a vector function, defining a vector field. 

Suppose (x1, x2, x3) = (P, Q, R). 

Let ζ→ = (cos α, cos β, cos γ) be the unit vector along the exterior nor- 

mal to the surface Σ∗  of Theorem 10.1.2 . Then 

 
Div →y = P1 + Q2 + R3. 

→y.ζ→ = P cos α + Q cos β + R cos γ. 

n 
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Σ 

Σ 

1 2 

1 2 

V 

Then the conclusion of that theorem becomes 

 

 
 

 
Div →ydV  = 

Σ∗  

→y.ζ→dΣ 

• If div →y = 0, the fluid is incompressible . 

Multiple Choice questions: 

 
1. If Γ is the acute angle between the normal to the surface Σ and �− 

axis then the value of sec γ is 

a) 
q

1 + f 2(x, y) + f 2(x, y)dS 

b) (1 + f 2(x, y) + f 2(x, y))dS 
1 2 

c) 
q

f 2(x, y) + f 2(x, y)dS 
 

2. The surface integral is denoted by 

 
(a) Triple integral 

(b) Double integral 

(c) Line integral 

 
3. Gauss’s theorem connects 

 
(a) line integral to surface integral 

(b) surface integral to volume integral 

(c) line integral to volume integral 

 
Ans: 1. a) 2. b) 3. b) 

 
Exercises 10 

 

1. If P (x, y, �) ∈ C  in V, Σ is the surface � = f (x, y) over the region R, 

f (x, y) ∈ C1 in R and Σ lies in V, then prove that 

A. 
 

B. 
 

P (x, y, �)dΣ exists. 

 
P (x, y, �)dΣ 

 

= 

 

P (x, y, f (x, y))
q

1 + f 2(x, y) + f 2(x, y)dS 
1 2 

R 
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5 

Σ 

2. State and prove Gauss’s theorem. 

 

3. (a)  R(x, y, �) ∈ C1 in Vxy = V (R, φ(x, y), ψ(x, y)) 

(b) φ, ψ ∈ C1 in R 

(c) γ is the angle between the positive z-axis and the exterior normal 

to Σ, the boundary of Vxy, then prove that 

 
 
 

 

Vxy 

R3dV =  
 

 

 
R cos γdΣ 

4. Use divergence theorem to evaluate 

 

(x3 cos α+y3 cos β+�2 cos γ)dΣ 
Σ  

2 2 2 2 

where Σ is the surface of the sphere x   + y 

Ans: 12 πa5. 

 
5. Verify Gauss’s divergence theorem for 

+ � = a . 

 

((2xy + �) cos α + y2 cos β − (x + 3y) cos γ)dΣ 

taken over the region bounded by 2x + 2y + � = 6, x = 0, y = 0, � = 0. 

Ans: 27. 

6. Evaluate 

 

(x cos α + y cos β + � cos γ)dΣ where Σ is the surface of 
Σ 

2 2 

the region bounded by the cylinder x  + y   = 9 and the planes � = 0 

and � = 3 and α, β, γ are the angle between the exterior normal to 

the positive x−axis, y−axis and �−axis respectively. 

Σ 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BLOCK V 

 
Transformation and Line 

Integrals in Space 
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Learning Outcomes : 

 
After studying this unit, students will be able 

 

F To apply change of variable in evaluating multiple integrals. 

F To transform one set of coordinates to another. 

F To know about line integrals in space. 

F To state and prove Stokes’s theorem which relates a line integral over 

a closed space curve to a surface integral over a surface spanning the 

curve. 

 
 
 
 
 
 

 

Unit 11 

 
Transformation and Line 

Integrals in Space 

 
 
 
 

 

 

11.1 Introduction 

 
In evaluating multiple integral over a region R it is often convenient to 

use coordinates other than rectangular such as curvilinear coordinates. In 
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π 

this unit we study change of variable in multiple integral and line integrals 

in space. 

 
 

11.2 Change of Variable in Multiple Integrals 

 
For simple integrals, suppose x = φ(t), then 

 

φ(b) 

φ(a) 

 
F (x)dx = 

b 

F (φ(t))φ�(t)dt (11.1) 
a 

 

Here the interval (a, b) on the t-axis is transformed into the interval (φ(a), φ(b)) 

on the x-axis. In this section we will discuss corresponding formula for a 

change of variable in multiple integrals. 

 

11.2.1 Transformations 

 
Let u, v be the coordinates of a point of a Region Ruv in the uv− plane, 

bounded by a curve Γ1 and let x, y be the coordinates of a point of a region 

Rxy bounded by a curve Γ2 in the xy− plane . 

The transformation 

x = g(u, v)  

y = h(u, v)  

 

(11.2) 

 

where g and h are two single valued functions defined on the region Ruv, es- 

tablishes a one-to-one correspondence between the points of the two regions. 

The equations (11.2) can be solved for u and v, the resulting functions being 

single valued in Rxy. 

 
Example 11.2.1 Let g(u, v) = v cos u, h(u, v) = v sin u. The two regions 

would be as indicated in Figure 11.1. 

Let the boundary of Rxy be the curve Γxy such that, 

 
x = φ(t), y = ψ(t) 0 ≤ t ≤ 

2 
. (11.3) 
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Figure 11.1 
 

 
 

Then the boundary curve Γuv of Ruv will have the equations 

 

φ(t) = g(u, v)  

ψ(t) = h(u, v)  

 

 

 

(11.4) 

 

 

Solve these equations to obtain u and v as single valued functions of t. 

 

 
Solution: Consider the curve x2 − 2x + y2 = 0 whose parametric equations 

are 

 
x = 1 + cos t, y = sin t. 

 

 
Here φ(t) = 1 + cos t, ψ(t) = sin t. 

From equations (11.4) we have g(u, v) = 1 + cos t, h(u, v) = sin t. 

This implies 

 

 
v cos u = 1 + cos t 

v sin u = sin t 
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2 2  = 

2 

t 

2 2 

Solving these equations for u and v 

 
    sin t     

= 
sin u 

1 + cos t 

  sin t . cos t
 

  
1+cos 2( t ) 

 
 

 
 

cos u 

sin u 
 

 

cos u 
2 

sin t . cos t
 

2  
2 t  

2  = tan u 
cos 2 

t 

 
 

 
Also we have 

⇒ tan 
2 

= tan u 

⇒ u = 
2

 

 

sin t sin t 2 sin
 t . cos

 t t 
v = 

sin 
= t   = 2   

t 
2 = 2 cos 

u sin 2 sin 2 2 

We have v = 2 cos t  and u = t . This is a piece of the curve v = 2 cos u. 

 
Example 11.2.2 A region R in the xy−plane is bounded by x + y = 6, x − 

y = 2 and y  = 0.  Determine the region R1  in the uv−plane into which R 

is mapped under the transformation x = u + v, y = u − v. 

Solution: The region R is a triangle bounded by the lines x + y = 6, 
 

 
Figure 11.2 

 
x − y = 2 and y = 0. 

Given transformation is x = u + v, y = u − v. 
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0 
Q φ t , ψ t 

t dt 

0 
Q φ t , ψ t ψ t dt. 

Consider the line  
x + y = 6 

u + v + u − v = 6 

u = 3 

which is a line the uv−plane. 

Similarly x − y = 2 becomes 

u + v − u + v = 2 

2v = 2 

v = 1 
 

which is a line in the uv−plane. 

Also y = 0 ⇒ u = v, a line in the uv−plane. Thus the required region is 

bounded by u = 3, v = 1 and u = v. 

Remark : Let us now see how the transformation (11.2) affects the line 

integral. We show that 

 

 
Γxy 

Q(x, y)dy = 

Γuv 

Q(g(u, v), h(u, v))[h1(u, v)du + h2(u, v)dv] (11.5) 

We can fix the direction of integration in one of these integrals is arbitrary 

and the direction of the other integration is determined by the transforma- 

tion (11.2). 

In the above example discussed the clockwise description of Γxy corresponds 

to the counterclockwise description of Γuv. 

As x = φ(t) and y = ψ(t), 

Left hand side of equation (11.5) 

= 

 1  
( ( ) 

 
( )) 

 
�( 

) 

 
(11.6) 

 

To evaluate the right-hand side to equation (11.5) we use the equations 

(11.4) of the curve Γuv. Consider ψ(t) = h(u, v) 

ψ�(t) = h1(u, v) 
du 

+ h2(u, v) 
dv

 
dt dt 

So right hand side of equation (11.5) = 

 1    

(  ( ) ( )) �( ) 

ψ 
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(g, h) 

  

 

  

  

. ∂(u, v). 

11.2.2 Double Integrals 

 
We shall now obtain a formula connecting the areas of the two regions 

Ruv and Rxy. 

 
Theorem 11.2.1 

 
1. F (x, y) ∈ C in Rxy 

2. g(u, v), h(u, v) ∈ C2 in Ruv 

3. 
∂(g, h) 

/= 0 in R 

∂(u, v) 
uv 

 

4. Rxy and Ruv correspond in a one -to- one fashion under the transfor- 

mation x = g(u, v), y = h(u, v) and both are regular, simply connected 

region S 

⇒ 
 

 

 

 
F (x, y)dS = 

 

 

 

F (g(u, v), h(u, v)) 
. ∂ . 

dS 

 
(11.7) 

 

Proof: Let us first prove the theorem for the special case F = 1. Then 

 
 

 

Rxy 

F (x, y)dSxy = 

Rxy 

dSxy 

 
 
 
 

By Green’s theorem we have A = 

Γxy 

= Area of Rxy 

= A (say) 

 
xdy. 

Applying equation (11.5) when Q = x we have 

 
 

 
Γxy 

 

So 

xdy = 

Γuv 

g(u, v) [h1(u, v)du + h2(u, v)dv] 

 

A = 

Γxy 

xdy = 

Γuv 

g(u, v) [h1(u, v)du + h2(u, v)dv] 

Ruv Rxy 

xy uv 



229  

 

 

 

 

 

∂(g, h) 

( ) 

 

 

Here the integration is counterclockwise. Applying Green’s theorem to 

 

 
Γuv 

g(u, v) [h1(u, v)du + h2(u, v)dv] we obtain 

 

 

 
Γuv 

g(u, v) [h1(u, v)du + h2(u, v)dv] 

= g(u, v)h1(u, v)du + g(u, v)h2(u, v)dv 
Γuv 

= ± 
 
  

∂  
(gh2) − 

∂  
(gh1)

  

dS 
∂u ∂v uv 

Ruv 

= ± 
Ruv 

= ± 
Ruv 

[g1h2 + gh21 − g2h1 − gh12] dSuv 

J(u, v)dSuv 

where J(u, v) = 
∂(g, h)  

is the Jacobian of the transformation. 
∂ u, v 

If the sense of description of Γuv is counterclockwise and clock wise we have 

plus and minus sign respectively. But we are given g(u, v), h(u, v) ∈ C2 in 

Ruv  and  
∂(u, v)  

=/ 0 in Ruv, so the Jacobian never changes sign. 

Also the area is always positive. So we must choose plus sign when J is 

positive and minus sign when J is negative. 

We have 

A = 

Ruv 

|J(u, v)|dSuv 

Hence the theorem is true when F = 1. 

We observe that when J > 0 clockwise description of Γxy corresponds to 

clockwise descriptions of Γuv. 

Let ∆ be a subdivision of Rxy into subregions Rk of area ∆Sk, k = 1, 2, ..., n. 

By the transformation (11.2) there will correspond in the uv-plane a sub- 

division ∆�  of Ruv  into subregions Rk
�    of area ∆Sk

� . 

Now by the above proof the areas of these subregions are related as follows: 
 

∆Sk = 

Rk
� 

|J(u, v)|dSuv  = |J(uk, vk)|∆Sk
�

 

where the point (uk, vk) is in Rk
�  . 

By the hypothesis Rxy and Ruv corresponds in a one-one fashion. 
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∫∫
∈

 

n 

(g, h) 

 

(g, h) 

∂g . 

. . 

.   .

2

  2=  v sin  

u v cos  u 

. . 

   

∆�ǁ
→ 

k=1 

. ∂(u, v). 

∂(u, v) 

Let (xk, yk) be the point of Rk which corresponds to (uk, vk) under the 

transformation (11.2). 

Since F (x, y) C in Rxy, F (x, y)dSxy exists, we have 
Rxy 

 

F (x, y)dSxy =   

lim  
Σ
 

 
F (xk, yk)∆Sk 

 

Rxy 

ǁ∆ǁ→0 
k=1

 

= 
ǁ   

lim 
0 

Σ 
F (g(uk, vk), h(uk, vk))|J(uk, vk)|∆Sk

�
 

Since g(u, v) and h(u, v) are uniformly continuous in Ruv the norm of ∆ 

approaches zero when the norm of ∆� approaches zero follows. 

Hence 

 

F (x, y)dS 
 

 

= 

 

 

 

F (g(u, v), h(u, v)) 
. ∂ . 

dS 

This concludes the proof of the theorem. Q 

 
Example 11.2.3 Make the transformation x = v cos u, y = v sin u to ydSxy 

Rxy 

where Rxy is the region shown in Figure 11.1. 

 
Solution: Given x = v cos u y = v sin u (i.e). g(u, v) = v cos u h(u, v) = 

v sin u. By theorem 11.2.1 
 

ydS 
= 

 
v sin u 

. ∂ . 
dS 

 

Now 

 
Rxy 

xy 

Ruv 

. ∂(u, v). uv
 

 

∂(g, h) 
= 

. ∂u 

 

∂g 

∂v . 
 

 

=  
−v sin u  cos u 

v cos u sin u 

− − 

= −v. 

So 
 

 
 

Rx,y 

ydSxy = 
Ruv 

∂h 
∂v 

∂h 
∂u 

Ruv Rxy 

n 

xy uv 
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v sin u| − v|dSuv = 

Ruv 

v2 sin 

udSuv 
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= 
√

2
 

√
2

 

3 

3 

= = 

4 

4 

sin u 
8 cos u sec u 

− 

  

8 

= 

Hence,  
2 

√
2x−x2 

dx 
1 0 

 
 
 
 

π 

ydy = 
4

 

0 

 

 
sin udu 

 

 
2 cos u 

sec u 

 

 
v2dv 

π 

= 
4 

sin udu v3 
!2 cos u 

 

0 

 π 
" 

 

3 
sec u 

3 3  
#

 
 

 
0 3 3 

 π h 
3 3 

i
 

 

1 4 
3 0 

put t = cos u ⇒ dt = − sinudu, 

8 cos u sin u − sec u sin u  du 

1 
 1 

3
 

+
 1 

3  1 
− t dt 

t3 
dt  , 

 

= 
1 

" 
8t4 

 
 

  1 
# 1   

− 
3 4 

+ 
2t2 

= − 
1 

[−1] 

= 
1 

. 

 

Example 11.2.4 Evaluate 

 

(y − x)dxdy over the region Rxy in the xy− 

plane bounded by the straight lines 

y = x − 3, y = x + 1, 3y + x = 5, 3y + x = 7. 

 
Solution:  It is difficult to evaluate the double integral directly;however 

a simple change of coordinates reduces the domain of integration into a 

rectangle with sides parallel to the axes. 

Set y − x = u,   3y + x = v. 
so that x = 

1 
(v − 3u),    y = 

1 
(v + u) 

 
and 

4 4 

 
∂(x, y) 1 J 

.−3    1. 
= − 

1 
.
 

 

 

So |J | =  
1 

. 

∂(u, v) 16 4 . . 

The new domain is the rectangle Ruv in the uv− plane bounded by the 

lines u = −3, u = 1, v = 5, v = 7. 

1 1 

du = 

 

1 
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. . 

J = 
∂(x, y) 

= 
.cos θ −r sin θ. 

= r
 

∂(u, v) ∂(u, v) ∂(u, v) 1 2 3 

So 

 

(y − x)dxdy =  

 
1 

u. 
4 

dudv 

Rxy Ruv 

= 
1 

 1  7 

 
udv dv −3 5 

= −2. 

 
Example 11.2.5 Integrate x2 + y2 over the circle x2 + y2 = a2. 

 
Solution: Using polar coordinates, x = r cos θ, y = r sin θ 

so that 

 

∂(r, θ) 
sin θ r cos θ    

  

( 2 +  2) 
= 

 2π  a   
2
 

= 
πa4 

 

 
x 

x2+y2≤a2 

y  dxdy r .rdrdθ . 0 0 

 
 
 

11.2.3 Applications 

 
It is frequently required to evaluate a surface integral over a surface Σ 

which is given parametrically: 

x = g(u, v), y = h(u, v), � = k(u, v) 

 

Let 

j1 = 
∂(h, k) 

, j2 = 
∂(k, g) 

, j3 = 
∂(g, h) 

, D = 
q

j2 + j2 + j2
 

 

Let Σ correspond to the region Ruv of the uv-plane. Suppose that D /= 0 

in Ruv. Then j1, j2, j3 do not vanish simultaneously. 

Case (i) Suppose first that j3 does not vanish. If γ is the acute angle 

between the normal to Σ and the z-axis, then 

sec γ = 
D 

. 

|j3| 

2 

4 
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D 

 

 

.
.
 

. 

.
.
 

. 

.a cos φ sin θ a sin φ cos θ . 

Solution: If x = g(φ, θ), y = h(φ, θ), � = k(φ, θ), then D = 
q

j2 + j2 + j2 

If Rxy is the projection of Σ on the xy-plane, then by Theorem 10.1.1 and 

Theorem 11.2.1 we have 

 

 

P (x, y, �)dΣ =  
 
P (x, y, f (x, y)) dSxy 

Σ Rxy 
|j3| 

= 

Ruv 

P (g(u, v), h(u, v), k(u, v))DdSuv 

 

Case (ii) Suppose j1 or j2 which does not vanish, we may project Σ on 

y� or x� plane and obtain precisely the same formula. 

Case (iii) Suppose no one of the Jacobians is zero throughout Ruv, we may 

divide this region into subregion in each of which some Jacobian does not 

vanish. Hence in all cases we obtain 

 

P (x, y, �)dΣ = 

Ruv 

P (g(u, v), h(u, v), k(u, v))DdSuv (11.8) 

 

 

 

 

 

Example 11.2.6 Find the area of the sphere x = a sin φ cos θ, y = a sin φ sin θ, 

� = a cos φ, where 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π. 
 

 

where j1 = 
∂(h, k) 

, j2 = 
∂(k, g) 

, j3 = 
∂(g, h) 

.
 

1 2 3 

∂(φ, θ) ∂(φ, θ) ∂(φ, θ) 

 

j3 = 
∂(x, y) 

 
 

∂(φ, θ) 

∂x ∂x 

=  
∂φ ∂θ 

∂y ∂y 
∂φ ∂θ 

= 
.a cos θ cos φ  −a sin φ sin θ. 

= a2 cos2 θ cos φ sin φ + a2 sin φ cos φ sin2 θ 

= a2 sin φ cos φ. 

Σ 

 



235  

.
.
 

. 

.
.
 

. 

. . 

.
.
 

. 

.
.
 

. 

 

2
 

0 

= 
. . 

a 

j2 = 
∂(�, x) 

 
 

∂(φ, θ) 

∂� 

=  
∂φ 

∂x 
∂φ 

∂� 
∂θ 

∂x 
∂θ 

= 
. −a sin φ 0 . 

a cos φ cos θ −a sin φ sin θ 

= a2 sin2 φ sin θ. 

 

j1 = 
∂(y, �) 

 

 

∂(φ, θ) 

∂y 

=  
∂φ 

∂� 
∂φ 

∂y 
∂θ 

∂� 
∂θ 

a cos φ sin θ a sin φ cos θ 

. −a sin φ 0 . 

= a2 sin2 φ cos θ. 

 

D = 

q

a4 sin2 φ cos2 φ + a4 sin4 sin2 θ + a4 sin4 φ cos2 θ 

= 

q

a4 sin4 φ + a4 sin2 φ cos2 φ 

= 
q

a4 sin2 φ(sin2 φ + cos2 φ) 

= a2 sin φ. 
 

Hence, the area is  

 
A = 

Rθφ 

 
 
a2 sin φdSθφ 

2π 

= a dθ 
0 

π sin 
0 

φdφ 

= 2 
 2π [ cos   ]

π 

  
a dθ φ 

0 

= 2 2 
 2π 

= 2a2 [θ]2π 

= 4πa2. 

0 − 

 

0 
dθ 
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∂( θ u θy, 

�) 
. 

.
= = 

. . 

. . 

 
√

 

 

0 

( ) 

1 + [f (u)] du. 

j1 = = 
. . 

= f �(u).u cos θ. 

j3 = 
∂(x, y) 

= 
.cos θ −u sin θ. 

= u cos2 θ + u sin2 θ = u. 

D = 
q

j2 + j2 + j2 = 
q

[f �(u)]2u2 cos2 θ + [f �(u)]2u2 sin2 θ + 

u2 

1 + [f (u)] dudθ 

. 

u 
q 

u 

q 

Example 11.2.7 Show that the area of the surface of revolution x = u cos θ, y = 
 b √

 

 

 

� 2 

 

Solution: Given x = u cos θ, y = u sin θ, � = f (u). 
 

sin cos 

∂(u, θ) f �(u) 0 
 

∂(�, x) f �(u) 0 j2 
. 

= −f �(u).u sin θ. 

∂(u, θ) 
cos θ −u sin θ 

 
 

∂(u, θ) 
sin θ u cos θ 

 
  

1 2 3 

= u
q

[f �(u)]2 + 1. 

 

Hence the area is A = u   1 + [f �(u)]2dSuv. 

Ruv 

 b  2π   q 

   

� 2 

= 
b 

1 + [ 
a 

�(

u 
)]2 [θ]2πdu 

= 2π b 1 + [ 
a 

�(

u 
)]2 du. 

 
 
 

 
Remark : The transformation (11.2) has another useful interpretation. 

It may be regarded as a change of coordinates. Thus (x, y) and (u, v), con- 

nected by equations (11.2), may be thought of as different coordinates of 

the same point. 

Example 

(i) In cylindrical coordinates (r, φ, �), transformation equations 

 
x = r cos φ, y = r sin φ, � = � 

 

where r ≥ 0, 0 ≤ φ ≤ 2π, −∞ < � < ∞. 

∂(x, y, �) 
= r.

 

∂ r, φ, � 

u 
0 a 

a 

 

u sin θ, � = f (u), a ≤ u ≤ b, 0 ≤ θ ≤ 2π is 2π u 

A = 

f 

f 
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( ) 

( ) 

Element of volume dV = rdrdφd�. 

(ii) In spherical coordinates (r, θ, φ), transformation equations 

 
x = r sin θ cos φ, y = r sin θ sin φ, � = r cos θ 

 
where r ≥ 0, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π. 

∂(x, y, �) 
= r2 sin θ.

 

∂ r, θ, φ 
 

Element of volume dV = r2 sin θdrdθdφ. 

(iii) In polar coordinates (r, θ), transformation equations 

 

 
where r ≥ 0, 0 ≤ θ ≤ 2π 

x = r cos θ, y = r sin θ 

 
 

∂(x, y) 
= r2.

 

∂ r, θ 
 
 

11.3 Line Integrals in Space 

 
In this section we study Stokes’s theorem which relates a line integral 

over a closed space curve to a surface integral over a surface spanning the 

curve.   The relation reduces to Green’s theorem for the plane when the 

curve lies in the xy− plane and the spanning surface is the plane itself. 

11.3.1 Definition of the Line Integral 

 
Consider a curve Γ with parametric equations 

 
x = φ(t), y = ψ(t) � = ω(t), a ≤ t ≤ b (11.9) 

 
(i) It is regular if 

 
* it has no double points and 

 
* if the interval (a, b) can he divided into a finite number of subin- 

tervals in each of which φ(t) ∈ C1, ψ(t) ∈ C1, ω(t) ∈ C1 . 
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n 

 

    

= . 

x t , � = t t 

(ii) If f (x, y, �) is defined on Γ, then with obvious notations we define the 

line integral 

 Σ 
�
 � � 

f (x, y, �)dx =  lim 

Γ 
ǁ∆ǁ→0 

i=1
 

f (φ(ti), ψ(ti), ω(ti)) [φ(ti) − φ(ti−1)] , 

(11.10) 

ti−1 ≤ ti
� ≤ ti, i = 1, 2, ..., n whenever the limit exists. 

In the similar manner we can define 

 

f (x, y, �)dy and 

 

f (x, y, �)d�. 

Γ Γ 

(iii) When f ∈ C on the regular curve Γ then we show that 
 

f (x, y, �)dx = 

Γ 

b 

f (φ(t), ψ(t), ω(t))φ�(t)dt 
a 

In the similar manner we can define 

 

f (x, y, �)dy and 

 

f (x, y, �)d�. 

Γ Γ 

(iv) The direction of integration in (11.10) is that direction on Γ which 

corresponds to the motion of a point whose parametric value t moves 

from a to b. 

Example 11.3.1 Compute 

 

xdx+xydy+xy�d� where Γ is the piece of the 

twisted cubic = 
Γ 

=  2 3 corresponding to the interval 0 ≤ ≤ 1 
 

Solution: Given x = t ⇒ dx = dt, y = t2 ⇒ dy = 2tdt, 

� = t3 ⇒ d� = 3t2dt 

 
xdx + xydy + xy�d� = 

Γ 

1 

tdt + 2 
0 

1 

t4dt + 3 
0 

1 

t8dt 
0 

= 

  
t2 

!1 

+ 2 

  
t5 

!1 

+ 3 

  
t9 

!1 

2 
0 

5 
0 

9 
0

 

= 
1 

+ 
2 

+ 
3 

2 5 9 
37 

30 

 

t, y . 
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11.3.2 Stokes’s Theorem 

 
Theorem 11.3.1 

 
1. f (x, y) ∈ C2 

2. Σ is the surface � = f (x, y) bounded by the regular closed curve Γ 

 

3. P (x, y, �), Q(x, y, �), R(x, y, �) ∈ C1 on Σ 

4. α, β, γ are direction angles of a directed normal to Σ 

 

⇒ Pdx + Qdy + Rd� 
Γ 

= 

 

[(R2 − Q3) cos α + (P3 − R1) cos β + (Q1 − P2) cos γ] dΣ 
 

 

where the direction of integration is clockwise to an observer facing in the 

direction of the directed normal. 

 

Proof:    For definiteness we choose the direction of the normal to Σ so as 

to make an acute angle with the positive direction on the z-axis. Then we 

have 
cos α cos β 

f1(x, y) = − 
cos γ 

,     f2(x, y) = − 
cos γ 

(11.11) 

Let the projection of Σ on the xy− plane be Rxy and the projection of Γ 

on the xy− plane be Γxy. 

The sense of description of Γ will give rise to a counterclockwise direction 

on Γxy. 

Let the parametric representation of Γxy is x = φ(t), y = ψ(t). 

Then the parametric representation for Γ is 

 

x = φ(t), y = ψ(t), � = f (φ(t), ψ(t)) a ≤ t ≤ b 

dx = φ�(t)dt,  dy = ψ�(t)dt, d�  = 

f1φ�(t) + f2ψ�(t) 

Then 
 

 
P (x, y, �)dx = 

Γ 

Σ 
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b 

P (φ(t), ψ(t), f (φ(t), 
ψ(t)))φ�(t)dt 

a 
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Σ 

Σ 
cos γ 

  

 

Σ 

Σ 
cos γ 

Also 
 

 

 

 
Γxy 

 
 
P (x, y, f (x, y))dx = 

 

 
 

b 

P (φ(t), ψ(t), f (φ(t), ψ(t)))φ�(t)dt 
a 

Hence we have,  

 
P (x, y, �)dx = 

Γ Γxy 

 
 
P (x, y, f (x, y))dx 

where the sense of description over Γxy is counterclockwise. By Green’s 

theorem for the plane and using theorem 10.1.1 we have, 
 

P (x, y, f (x, y))dx = −  P (x, y, f (x, y))dS 
 

Γxy 

 
Rxy 

 

= − 
Rxy 

∂y 
xy 

 
[P2 + P3f2] dSxy 

= − 
 

= − 
 

= − 
 

[P2(x, y, �) + P3(x, y, �)f2(x, y)] cos γdΣ 

 

P2(x, y, �) + P3(x, y, �)

 
− cos β

 

cos γdΣ [P2(x, 

y, �) cos γ − P3(x, y, �) cos β] dΣ 

 

Hence the theorem is true if it concerns P (x, y, �). 

Similarly we have 
 

Q(x, y, �)dy = 

Γ Γxy 

Q(x, y, f (x, y))dy, 

where the sense of description of Γxy is counter clockwise. 

By using Green’s theorem in plane and theorem 10.1.1 we have 
 

Q(x, y, f (x, y))dy =  
 

Q(x, y, f (x, y))dS 
 

Γxy 

 
Rxy 

 

= 

Rxy 

∂x xy 

 
[Q1 + Q3f1] dSxy 

= 

 

= 

 

= 

 

[Q1(x, y, �) + Q3(x, y, �)f1(x, y)] cos γdΣ 

 

Q1(x, y, �) + Q3(x, y, �)

 
− cos α

 

cos γdΣ 

[Q1(x, y, �) cos γ − Q3(x, y, �) cos α] dΣ 

Σ 

 

∂ 

∂ 

Σ 
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Σ 

 

 

 

R(x, y, �)d� = + f2ψ 

This proves the theorem in so far as it concerns Q(x, y, �). 

Consider 
 

  b 

 

  

� �  

= 

 b 
[ ( ( ) ( ) ( ( ) ( )))] 

� + [ ( ( ) ( ) ( ( ) ( )))] �  
 

a 

= 

Γxy 

R φ t , ψ t , f 
 
Rf1dx + Rf2dy 

φ t , ψ t f1φ R φ t , ψ t , f φ t , ψ t f2ψ  dt 

= 

Rxy 

= 

 

= 

 

[R1f2 + R3f1f2 + Rf12 − R2f1 − R3f1f2 − Rf21] dSxy 

 
[R1f2 − R2f1] cos γdΣ 

 

R1  

   
− cos β 

   

− R2  

   
− cos α 

    

cos γdΣ
 

cos γ 
Σ 

cos γ 

= 
Σ 

[R2 cos α − R1 cos β] dΣ 

Thus we have, 

 

Pdx + Qdy + Rd� 

Γ 

= (−P2 cos γ + P3 cos β + Q1 cos γ − Q3 cos α + R2 cos α − R1 cos β) dΣ 
Σ 

= 

 

 

 

[(R2 − Q3) cos α + (P3 − R1) cos β + (Q1 − P2) cos γ] dΣ 

 
Q 

 

Corollary 11.3.1 

 

1. Σ is a surface bounded by the regular closed curve Γ 

 
2. Σ has the three equations � = f (x, y), x  = g(y, �), y  = h(�, x) with 

f, g, h ∈ C1 

3. P (x, y, �), Q(x, y, �), R(x, y, �) ∈ C1 on Σ 

4. α, β, γ are direction angles of a directed normal to Σ 

Σ 

a 
Γ 

R(φ(t), ψ(t), f (φ(t), ψ(t))) f1φ dt 
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Σ 

 

 

Γ Σ 

Γ Σ 

Γ Σ 

 

⇒ Pdx + Qdy + Rd� 
Γ 

= 

 

[(R2 − Q3) cos α + (P3 − R1) cos β + (Q1 − P2) cos γ] dΣ 
 

 

where the direction of integration is clockwise to an observer facing in the 

direction of the directed normal. 

 
Proof: For Stokes’s Theorem we required that Σ should be cut only once 

by lines parallel to a single axis and that the single-valued defining function 

should belong to C2 . 

But in the corollary we require Σ should be cut only once by lines parallel 

to all three axes and that the single-valued defining functions should belong 

only to C1. 

From the proof of the Stokes’s theorem we have 

P (x, y, �)dx = 

 

(P3 cos β − P2 cos γ)dΣ 

We permute symbols: 

P → Q → R, f → g → h, x → y → �, 1 → 2 → 3, α → β → γ. 

So 

Q(x, y, �)dy = 

 

(Q1 cos γ − Q3 cos α)dΣ. 

R(x, y, �)d� = 

 

(R2 cos α − R1 cos β)dΣ. 

Hence 

Pdx+Qdy+Rd� = 

 

[(R2−Q3) cos α+(P3−R1) cos β+(Q1−P2) cos γ]dΣ. 

Q 

 
 

11.4 Verification of Stokes’s theorem 

 
Example 11.4.1 Compute in two ways the line integral 

 
I = xy�d� 

Γ 

Σ 

 

Γ 
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sin t 

 

 

 

I = 
2
√

2
 sin 

0 
t cos tdt = 

8
√

2 
. 

� 
0 0 

dx = 
8
√

2 
. 

     √ 

Γ Σ 

over  the  circle  x  =  cos t, y  = 

direction of increasing t. 

sin t 
√

2 
, � √

2 
0 ≤ t ≤ 2π in the 

 

Solution: 

Method I: Substitution gives 

   1   
 2π 

2 2 π  

 

Method II : The direction cosines of the directed normal to Γ, the plane 

of the circle, are 0, −

√
2 

, 

√
2 

. By Stokes’s theorem 

2 2 

Pdx+Qdy+Rd� = 

 

((R2 − Q3) cos α + (P3 − R1) cos β + (Q1 − P2) cos γ) dΣ 

  

Here R = xy�. So 

I = xy�d� = 

 

(−y� cos β)dΣ 
 

  

To evaluate this integral, project on the xz-plane. We have then to compute 

I = 

  

�2dS, 
 

where S is the ellipse x2 + 2�2 = 1. Hence, 
 

1   
√

2      2
 

 1−2�2 π  
 

 

 
 

 

Example 11.4.2 Verify Stokes’s theorem for the integral 

 

ydx + �dy + 

xd�, where Γ is the upper half surface of the sphere x2 + y 

is the boundary. 

 
Solution: From Stokes’s theorem, 

Γ 

+ �2 = 1 and Γ 

Pdx + Qdy + Rd� = 

 

((R2 − Q3) cos α + (P3 − R1) cos β 

 
 

Here 

+ (Q1 − P2) cos γ)dΣ 

P = y; Q = �; R = x and P2 = 1; P3 = 0; Q1 = 0; Q3 = 1; R1 = 1; R2 = 0. 

S 

Σ Γ 

Σ Γ 

= 

2 

I = 4 d� 
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0 
θ − θ dθ 

 

−
 

0 

Σ 

Evaluation of L.H.S: 

Γ is the boundary of the upper half of the given sphere which is clearly a 

circle x2 + y2 = 1. 

Since Γ lies on xy− plane, � = 0 ⇒ d� = 0. 

We use the parametric representation of the circle x2 + y2 = 1 

x = cos θ, t = sin θ. dx = − sin θdθ, dy = cos θdθ where 0 ≤ θ ≤ 2π. 

Now 

ydx + �dy + xd� = 

Γ 

= 

 2π 

sin ( sin   ) 

2π 

sin2
 

 

 

Therefore 

 

 

 
Evaluation of RHS: 

= −π. 

 
ydx + �dy + xd� = −π. 

Γ 

 

((R2 − Q3) cos α + (P3 − R1) cos β+(Q1 − P2) cos γ)dΣ 

= − 
Σ

(cos α + cos β + cos γ)dΣ 

= − 
R

 
(dy d� + d� dx + dx dy) 

 

 

 

 
since the projection is the circle of radius one, 

= dyd� 
Rxy 

 
 

 

= −Area of the circle 

= −π. 
 

where Rxy is the region which is the projection of the surface on the xy 

plane. 

 

((R2 − Q3) cos α + (P3 − R1) cos β + (Q1 − P2) cos γ)dΣ = −π 

Hence Stokes’s theorem is verified. 

Σ 

xy 

− θdθ 
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Σ 

 

1 

 

Example 11.4.3 Evaluate by Stokes’s theorem the integral x2�dx+xydy, 
Γ 

where Γ is the rectangle in the plane � = 0, where the sides are along the 

lines x = 0, y = 0, x = a, y = b. 

 
Solution: Here 

P = x2�, Q = xy, R = 0 

P2 = 0, P3 = x3, Q1 = y, Q3 = 0, R1 = 0, R2 = 0. 

By Stokes’s theorem, 

x2�dx + xydy = 

 

(x2 cos β + y cos γ)dΣ 
 

= 

 

(x2d�dx + ydxdy) 

= 

 b  a  
ydxdy, 

 
(since � 

 
= 0) 

0 0 
a 

= dx 
0 

 
b 

ydy 
0 

 

 a 
  

y2 
!b 

   
= 

b2 

( )
a 

2   
x 0 

= 
ab2 

2 
. 

 

Remark 1: If Σ is divisible into a finite number of parts, each of which 

satisfies the conditions of the theorem or its corollary then even if Σ is more 

complicated in nature Stokes’s theorem remains true. 

For example, 

Suppose Σ is the part of the unit sphere lying in the first octant, as in 

the Figure 11.3. It is not possible to apply theorem 11.3.1 or its corollary 

directly. 

But if we take the equation of Σ as � = (1 − x2 − y2) 2 , f (x, y) is single- 

valued but f  ∈/ C�  along the unit circle of the xy-plane. 

The figure shows how Σ can be decomposed into three parts. 

To apply Theorem 11.3.1.  we may project Σ1, Σ2, Σ3  on the xy− plane, 

0 
2 0 

 

 

= dx 

Γ 



247  

 

 
 

Figure 11.3 

 

 

 

 

 
y�− plane, �x− plane respectively. 

It is noted that the line integrals over the auxiliary division lines cancel 

each other, being executed in opposite direction. 

Thus Stokes’s theorem is valid for the original surface Σ bounded by the 

three circular arcs. 

Remark 2: There are surfaces for which Stokes’s theorem is not appli- 

cable to the original uncut surface even if the theorem is applicable to its 

subdivisions. 

This is the ”one-sided” surface. A sample of such a surface can be made by 

joining together the opposite far edges of a long strip of paper after a half 

twist has been made in the paper. 

In the figure 11.4 the surface has been decomposed into two parts by intro- 

ducing two cuts. We can apply Stokes’s theorem to each cuts. But now the 

two line integrals over one of the cuts do not cancel each other. Moreover 

the single boundary of the surface is not described in the same sense over 

all its parts. 

Hence Stokes’s theorem is not applicable to the original uncut surface. 
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Figure 11.4 

 
11.4.1 Vector Considerations 

 
Both Green’s theorem and Stokes’s theorem take a particularly elegant 

form if vector notation is used. 

Stokes’s Theorem 

Let →y = →y(x1, x2, x3) be a vector function, defining a vector field. 

Suppose (x1, x2, x3) = (P, Q, R). 

Let ζ→ = (cos α, cos β, cos γ) be the unit vector along the exterior normal to 

the surface Σ∗  of Stokes’s theorem . 
 

→y.�→ × →y = (R2 − Q3) cos α + (P3 − R1) cos β + (Q1 − P2) cos γ 

→y.d→x = P dx + Qdy + Rd� 

Then we have, 

→y.d→x = 

  

Σ
 

 

ζ→.Curl →y dΣ (11.12) 

where  →x  is  the  unit  tangent  vector  to  Γ  in  the  sense  of  the  direction  of 

integration. 

Definition 11.4.1  If Curl →y ≡ 0, the field is called irrotational. 

 
Work 

 
As  another  interpretation  we  may  think  of  →y  as  defining  a  force  field. 

Then the line integral (11.12) is the work performed by the field on a unit 

 

Γ 
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(g, h) 
. ∂(u, v). 

particle  as  it  describes  Γ  in  the  sense  of  integration.   If  Curl →y  ≡ 0  this 

work is zero for every closed curve and the field is called conservative. The 

integral over part of the path may be positive (when the field has done work 

on the particle) and negative over the rest (when the particle has done an 

equal amount of work on the field); thus total energy is conserved. 

 

Summary 

 
• The transformation 

 
x = g(u, v)  

y = h(u, v)  

where g and h are two single valued functions defined on the region 

Ruv, establishes a one-to-one correspondence between the points of 

the two regions Ruv and Rxy. 

• Formula connecting the areas of the two regions Ruv and Rxy 

1. F (x, y) ∈ C in Rxy 

2. g(u, v), h(u, v) ∈ C2 in Ruv 

∂(g, h) 

∂(u, v) 
0 in Ruv 

4. Rxy and Ruv correspond in a one -to- one fashion under trans- 

formation x = g(u, v), y = h(u, v) and both are regular, simply 

connected region S 

⇒ 
 

 

 

F (x, y)dS = 

 

 

 

F (g(u, v), h(u, v)) 
. ∂ . 

dS 

• The area of the surface of revolution x = u cos θ, y = u sin θ, 
  b   q 
 

 

� 2 

� = f (u), a ≤ u ≤ b, 0 ≤ θ ≤ 2π is 2π u 

• Stokes’s theorem : If 

1. f (x, y) ∈ C2 

1 + |f  (u)| du 

2. Σ is the surface � = f (x, y) bounded by the regular closed curve 

Γ 

a 

Ruv Rxy 

3. 

xy uv 
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3. P (x, y, �), Q(x, y, �), R(x, y, �) ∈ C1 on Σ 

4. α, β, γ are direction angles of a directed normal to Σ 

 

⇒ Pdx + Qdy + Rd� 
Γ 

= 

 

[(R2 − Q3) cos α + (P3 − R1) cos β + (Q1 − P2) cos γ] dΣ 
 

 

where the direction of integration is clockwise to an observer facing 

in the direction of the directed normal. 

• If Σ is divisible into a finite number of parts, each of which satisfies 

the conditions of the theorem or its corollary then even if Σ is more 

complicated in nature Stokes’s theorem remains true. 

• There are surfaces for which Stokes’s theorem is not applicable to 

the original uncut surface even if the theorem is applicable to its 

subdivisions. 

 

• Vector consideration of Stokes’s theorem 

Let →y = →y(x1, x2, x3) be a vector function, defining a vector field. 

Suppose (x1, x2, x3) = (P, Q, R). 

Let ζ→ = (cos α, cos β, cos γ) be the unit vector along the exterior nor- 

mal to the surface Σ∗  of Stokes’s theorem . 
 

→y.�→ × →y = (R2 − Q3) cos α + (P3 − R1) cos β + (Q1 − P2) cos γ 

→y.d→x = P dx + Qdy + Rd� 
 

Then we have, 

→y.d→x = 

  

Σ
 

 
ζ→.Curl →y dΣ 

where →x  is the unit tangent vector to Γ in the sense of the direction 

of integration. 

• If Curl →y ≡ 0, the field is called irrotational. 

Σ 

 

Γ 
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( ) 

( ) 

u | du 

π u | du 

Multiple Choice questions 

 
1. If x = r cos θ, y = r sin θ, then find

 ∂(x, y) 
. 

∂ r, θ 

a) r2 b) r c) 0 

 
2. Choose the correct statement 

a) Stokes’s theorem is applicable to all surfaces. 

b) There are surfaces for which Stokes’s theorem is not applicable. 

c) We cannot apply Stokes’s theorem to surfaces if Σ is divisible into 

a finite number of parts, each of which satisfies the conditions of the 

theorem. 

3. Choose the wrong answer: 

A regular curve Γ with parametric equations x = φ(t), y = ψ(t), � = 

ω(t), a ≤ t ≤ b, 

(a) has double points 

(b) if the interval (a, b) can be divided into a finite number of sub- 

interval in each of which φ(t) ∈ C1, ψ(t) ∈ C1, ω(t) ∈ C1 

4. The area of surface of revolution x = u cos θ, y = u sin θ, � = f (u), 

a ≤ u ≤ b, 0 ≤ θ ≤ 2π 

 
(a) 2 

 b q

1 + 
 

�(  ) 2 

(b) 2π 
 b 
r 

 

 
 

q

(f �(

u 
))2du 

(c) 2 

 b
 

 

q

1 + �(  ) 2 

5. In spherical coordinates what is the value of
 ∂(x, y, �)

 
∂ r, θ, φ 

a) r2 sin θ b) r2 c) r2 cos θ 

 
Ans: 1. a) 2. b) 3. a) 4. c) 5. a) 

a 

a 
u 

a 
π |f 

u |f 
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(g, h) 

 

Γ 

. ∂(u, v). 

Exercises 11 

 
1. If F (x, y) ∈ C in Rxy 

 

, g(u, v), h(u, v) ∈ C2 in Ruv 

 
 

∂(g, h) 

∂(u, v) 

 

 
0 in Ruv, 

Rxy and Ruv correspond in a one -to- one fashion under transforma- 

tion x = g(u, v), y = h(u, v), and both are regular, simply connected 

region S, then prove that 

 

F (x, y)dS 
 

 

= 

 

 

 

F (g(u, v), h(u, v)) 
. ∂ . 

dS 

 

2. Evaluate (x + y)3dSxy where Rxy is the parallelogram shown in 

Rxy 

the figure 11.5. The sides of Rxy are straight lines having equations 
 

 
Figure 11.5 

 
of form x + y = c1, x − 2y = c2 for appropriate choices of c1, c2. 

3. Use the result of example 11.2.7 to find the area of sphere. 

4. Compute 

 

xdx + xydy + xyd�, where Γ is the curve x = cos t, 

y = cos t, � = sin t, 0 ≤ t ≤ 2π. 

5. State and prove Stokes’s theorem. 

 
6. If 

 
(a) Σ is a surface bounded by the regular closed curve Γ 

(b) Σ has the three equations � = f (x, y), x = g(y, �), y = h(�, x) 

with f, g, h ∈ C1 

(c)  P (x, y, �), Q(x, y, �), R(x, y, �) ∈ C1 on Σ 

Ruv Rxy 

, 

xy uv 
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x 

 

(d) α, β, γ are direction angles of a directed normal to Σ 

then prove that 

Pdx + Qdy + Rd� 
Γ 

= 

 

[(R2 − Q3) cos α + (P3 − R1) cos β + (Q1 − P2) cos γ] dΣ 
 

 

where the direction of integration is clockwise to an observer facing 

in the direction of the directed normal. 

7. Verify Stokes’s theorem for the integral 

 

(2x − y)dx − y�2dy − y2�d�, 
where Γ is the upper half of the sphere 

Γ 
2 + + = 1 and is its 

y2 �2 C 

boundary. 

 

8. Compute xdx + 2dy − yd� over the curve Γ : x = 1 + cos θ, y  = 
Γ 

sin θ, � = 14 − 2 cos θ where θ increasing from 0 to 2π. Then by the 

Stokes’s theorem express the integral as a surface integral over Σ : 

x2 + y2 + � = 16. Evaluate the surface integral by projection on the 

xy- plane. 

9. Evaluate by Stokes’s theorem 

 

exdx +2ydy − d� where Γ is the curve 

x2 + y2 
Γ 

= 4; � = 2. 

Σ 
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