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Partial Differentiation



Unit 1

Functions of Several

Variables

Learning Outcomes :
After studying this unit, students will acquire knowledge

F To evaluate partial derivatives of functions of several variables.

F To identify the relationship between continuous and differentiable func-

tions.

F To derive basic mean value theorem which is of fundamental importance

in the theory of partial differentiation.

F To understand under what condition the cross derivatives are equal.




1.1  Introduction

Constants and Variables

The quantity or parameters that does not change their value through-
out a particular mathematical investigation are called constants and the

guantities which take different values are called variables or arguments .

Functions

For finding the area of a triangle the base and altitude are multiplied.
Here the base and the altitude can be of any value but the area of the
triangle depends on these two values. So area of the triangle is called a
function of the base and altitude of the triangle. The base and altitude
are called the independent variables and the area is called the dependent
variable.

In this unit we shall be dealing with real functions of several variables
suchasu =1 (x, y), u =f (x, y, @) etc., The variables x, y, B, ... are called
the independent variables or arguments of the function, u is the dependent

variable or value of the function.

Single valued and many valued functions

If the value of a function is uniquely determined by the argument we
call the function single-valued or one valued function . For example
3x+5

16x + 3’
If the value of a function is not uniquely determined that is to each value

of the argument, if there correspond more than one value of the function
the function is called many-valued function or multiple-valued function.

As an example,

u2 + x2 + y2 = g2 (11)



Multiple valued functions may be studied as combinations of single-valued
functions. For example the equation (1.1) defines two single valued func-
tions

qa
u=+ g2 —x2—y? (1.2)

q_
Uu=—a2—-x2—-y2 x*+y2<a? (1.3)
A function of two variables clearly represents a surface in the space of

the rectangular coordinates x, y, u.

Explicit and Implicit functions

If we consider a set of n independent variables x, y, B, ..., t and one de-

pendent variable u, the equation

u=flxyB..r1t) (1.4)

denotes the functional relation, where u depends for its valueson x, y, &, ..., t.
Then, we say that the function represented by equation (1.4) is an explicit
function.

But in case of several variables it is rarely possible to obtain an equation
expressing one of the variables explicitly in terms of the other. Thus most
of the functions of more than one variable are implicit functions, that is
to say we are given a functional relation ¢(x, y, B, ..., t) = 0 connecting n
variables x, y, B, ..., t, and it is not in general possible to solve this equation
to find an explicit function which expresses one of these variables say x, in
terms of the other n — 1 variables.

For example, the equation (1.1) defines two functions (1.2) and (1.3)
which are said to be defined implicitly by (1.1) or explicitly by (1.2) and
(1.3).

In other cases, a function may be defined implicitly eventhough it is

impossible to give its explicit form. For example, the equation

u+logu=xy (1.5)

3



defines one single valued function u of x and y. Given real values for the
arguments, the equation could be solved by approximation methods for u.
Yet u cannot be given in terms of x and y by use of a finite number of the

elementary functions.

Partial derivatives

The ordinary derivative of a function of several variables with respect
to one of the independent variables, keeping all other independent variables
constant is called the partial derivative of the function with respect to the
variable. Partial derivatives of u = f (x, y, B) with respect to x is generally

denoted by

o o o
7u =filx, y, B) = f - C fxy.B)=1,

ox Ox Ox
while those with respect to y and & are given by

du:f2(x,y,)=g=i ?) =
5 o dyf (v, B) =1,

and

dU:f(X,y,):dfzd N =
o 2 f(X/ Y, ) _f

Example 1.1.1 If f(x, y, B) = 2x> — xy + xy>, then

fikoy) =4x —y+y?

and fs(x, y) = —x + 2xy
Example 1.1.2 If f(x, y, B) = x&, then f.(x, y, B) = x2 log

Note : The partial derivatives at a particular point (xo, yo, Po) are often

denoted by
ou df
7|X=Xo,y=yo,=0 = cr}xo,yo,o = fl(Xo, Yo, O);
3 f
diy |X=Xo,y=yo,=0 = d?tx°'y°'° = fo(Xo, Yo, Bo)
au 0o _
and |X=Xo,y:yo;=o = |x0,y0,0 —f3(X oYo O)



d
For example, f3(xo, Yo, Bo) = " of (xo, Yo, B) | & &
Example 1.1.3 If f(x, y, B) = xsin(y@), then

f3(x, y, Bl) = xy cos(y&)

and fs(a,1, ) =acosm = —a.

Example 1.1.4 Consider equation (1.1)
u2 + X2 + y2 = a2

Differentiating partially with respect to x and y

du _ ou _  x
2udx+2X_0’ ox - v
du _ ou _ y
2udy+2y—0, oy - u

0
Example 1.1.5 Ifv+logu =xy,u+logv =x _y, find & and F2,
ox ox

Solution: Differentiating partially with respect to x

dv+1du_
ox " uox ¥
du+1dv_

Ox vOx ’
ov + ou _
Uax © ox ~ W
10v Jdu
+ =1.

v Ox E

and

Subtracting we get
ov_ v(uy — 1)

Ox uv —1
Similarly, we can find

ou _u(ly —v)

ox 1—uv



Higher order derivatives

By successive application of the differentiation, we can obtain partial
derivatives of higher order. The notations used are sufficiently illustrated

by the following examples. If u = f(x, y, B)
o2u 0 Jdu

= - =
oxdy  Ox 0y far oy, @)

03u 0 O2u )
= = f322 (X, Y, );
1

0y>0p dy dyob
04u o) ou

and = o = Frams Gy, ).

Remarks

1. A function of two variables has two derivatives of order one, four

derivatives of order two and 2" derivatives of order n.

2. A function of m independent variable will have m" derivatives of

order n.

3. Many of the derivatives of a given order will be equal under very

general conditions. In fact,

Number of distinct derivatives of order n
= Number of terms in a homogeneous polynomial in m variables

of degree n:
1

n+m—1-_§n+m—1)!

n n'(m — 1)! '

2
Example 1.1.6 Find log(rz + s).
or?

Solution:

Let u=log(rz+s)
ou _ 2r

or r2+s




o2u _ (rz +5s)2 — 2r(2r)

or2 (r2 +s)2
_2(s—r?)
(2 + )
93
y show that “o_ osu

Example 1.1.7 If u=x’, = .
P 7Y Ox30y 0x0yox

Solution: Given

y

u=x
o
: = x" log x
oy
o2u Jd Jdu

o)
=T T =7 lo
oxdy  Ox Oy ox (" 10gx)

1
= xy.; + log x.x’-1.y = x’-1(1 + y log x)
1

o3u a o2u
0x2dy  Ox Oxoy

d_x x’-1(1 + y log x)
y

= V-1

x T = x2(1 +ylog x)
=x2(y+(y — 1)(1 +y log x))
=x"2(2y — 1+ (y — 1)y logx)

W = yXy_l

02u _ 0 dy )

= = = yxy_l
dyox Jdy Ox oy

= yx’-1log x + x’-1

=x"-1(ylogx+ 1)

1
odsu _ a 9%y = 9
Oxdyox  Ox Oydx  Ox

x*H(ylog x + 1)

= (v — D¥=3(ylog x+ 1) +x1

=x2((y — D(ylogx+1)+y)
=x"2(2y — 1+ (y — 1)y logx)
o3u o3u

So =
Ox*0y 0x0yox




1.2 Functions of One variable

In this section, we recall some definitions and theorems without proof.

Limits and continuity

A function f(x) approaches a limit A as x approaches a if, and only if,

for each positive number € there is another, &, such that whenever

0 < |x —al <6we have [f(x) — Al <€

In symbols we write
lim f(x) = A.
xX—er

Note :

We make use of the following symbols / notations.

1. €: belongs to or is a member of
2. =:implies
3. «<: implies and implied by or if, and only if

4. C: the class of continuous functions

Definition 1.2.1 f(x) ¢ C at x=a ., lim f(x) = f(a).

77

This may be read as " f (x) belongs to the class of functions continuous at
x =a or f(x) is continuous at x = a if, and only if the limit f (x) is f (a)
as x approaches a.”

Also, we have

N 79 =F limx

Derivatives : We now introduce classes of functions, which have deriva-

tives of certain order.

Definition 1.2.2 The derivative of f(x) at x=a is

fo(a) = lim Ha+A) =f(a)
Ax—e AX



the right and left derivatives of f(x) at x = a are

. fla+Ax) — f(a)
=

f+ (a) Alxline"' AX 7

fo(a) = lim fl@a+Ax) —f(a)

Ax—o Ax

Definition 1.2.3 .
fx)el < fi(x) € G n=1, 2 .. Whenf 8(x) exist, then f (x) € C.

Hence if f (x) € C" we also have f (x) € C* fork=0,1,2,..,n—1 (=
C.

Theorem 1.2.1 (Rolle’s Theorem)

1. fx) €C a=<x<b

2. fB(x) exists, a <x < b and

3. fla=f(b)=0
= f2(§) =0 for some §, a<§&<b.
Theorem 1.2.2 (Law of the Mean)

1. fx) € C a<x<band

2. fB(x) exists, a<x<b

= f(b) — f(a) = f2(§)(b — a) for some § a<&<b.

1.3 Functions of several variables

In this unit we shall be mainly concerned with the applications of dif-
ferential calculus to functions of more than one variable. The characteristic
properties of a function of n independent variables may usually be under-
stood by the study of a function of two or three variables and this restriction
of two or three variables will be generally maintained. This restriction has
the considerable advantage of simplifying the formulae and of reducing the

mechanical labour.



1.3.1 Limits and continuity
We now define the limit of a function of two variables.

Definition 1.3.1 We say that a function f(x,y) approaches a limit A as
x approaches a and y approaches b,

lim £(x, y) = A,

y—b
if, and only if, for each positive number € there is another, 6, such that

If(x, y)—A| <€, whenever [ x—a| <8, |y—bl <6bor0<(x—a)>+(y—b)2

In otherwords, a function tends to a limit A when (x, y) tends to (a, b) if
to every positive number € there corresponds a neighborhood with center
at (g, b) such that [f(x, y) — A| < € for every point (x, y) other than (g, b)

of the neighborhood.

Example 1.3.1 If f(x, y) = x> + y2 find lim f(x, y).
x—O0
y—o
€

q_
Solution: Given € >0 we may choose 6 = ¢

qi
so that |x|] < Syl < €5

Consider

x2+y2 = [x2| + |y2|

Hence,

lim x2 +y2 = 0.

x—0

y—o
Example 1.3.2

X~y x -
Let fOoy)= X+VY Y (1.6)
' 1, x=-y

Then f(x, y) approaches no limit as (x, y) approaches the origin.

10



Solution: f(x, y) approaches no limit as (x, y) approaches the origin. Be-

cause, f(x, y) is as large as we like at points near the line x = —y.

On the other hand, we see that

lim limf(xy) =lim lim *—%
x—0 y—o x—o y—-o Xxty
=lim1l=1,
X—6
and
lim limf(y) =lim lim Y
y—6 x—0 y— x—o x+ty
=lim_1=_1
y—6
Note :
The iterated limits lim |jm f(xy) and lim lim f(xy) are not
X—% Yo Y=  X—%o
necessarily equal. Although they must be equal if lim £(x y) is to exist,
X—Xo
Y—o

their equality does not guarantee the existence of this last limit. In the

above example the iterated limits are not equal. Hence Xllrep f(x, y) does

. y—o
not exist.

Definition 1.3.2
F(xy) € Cat(a,b) & lim £(x y) = f(a,b)
y—b
We note that three conditions must be satisfied in order for f(x,y) to be

continuous at (a, b).

(1) )!i_rrlf(x, y) must exist
y—b

(ii) f(a, b) must exist and

(iii) Jim £(x y) = £(a, b).
y—b

Example 1.3.3 If

3xy, / 1,2
flxy)= v, Coy) (12) ,

0, (xy)=(2)

then f(x, y) is not continuous at (1, 2).

11



Solution: Given f(1,2) = 0.

im £0oy) =6 /= £(1,2).

y—=2

Hence f(x, y) is not continuous at (1, 2).

Note: If we redefine the function, so that f(x, y) = 6 for (x,y) = (1, 2),
then the function is continuous at (1,2).

NEIGHBORHOODS

Point set : Any collection of points (x, y) is called a point set.

6— neighborhood : The set of points [x — a| < 6§, |y — b| <&, where § >0
is called an open square or two-dimensional interval or a §— neighborhood
of the point (a, b).

Deleted 6— neighborhood : The set of points 0 < [x — a| <6,

0 < |y — b| < &, where 6§ > 0 which excludes (g, b) is called a deleted §—
neighborhood of the point (a, b).

Circular 6— neighborhood : The set of points (x — a)? + (y — b)? < 62,
where 6 > 0, is called circular 6— neighborhood of (a, b).

Limit point : A point (a, b) is a limit point of a set S if every §— neigh-
borhood of (a, b) contains points of S.

Closed set : A set S is closed if it contains all its limit points.
REGIONS

Interior point : A point is an interior point of S, if it is the centre of a

6— neighborhood composed entirely of points of S.

Exterior point : A point is an exterior point of S if there exist a

6— neighborhood which does not contains any point of S.

Figure 1.1

Boundary point : A point is a boundary point of S, if there exist a 6—

12



neighborhood which contains points belonging to S and also points not be-
longing to S. The boundary of a set is the set of all limit points not interior
points.
Open set : AsetS iscalled an open set, if every point of S is an interior
point of S. For example, if S is the set of points (x, y) for which x2+y2 < a2,
then S is open.
Domain : A domain is an open set,such that any two of whose points can
be joined by a broken line having a finite number of segments, all of whose
points belong to the set. We shall use the letter D to indicate a domain.
Region : A region is either a domain or a domain with some or all of its
boundary.

If a region contains all of its boundary, it is a closed region. We use the
letter R to indicate a region.

Remark :

1. f(x,y) € C in a domain D if and only if f(x,y) € C at every point
of D.

2. f(x, y) € Cat aboundary point (a, b) of a region R where f (x, y) is
defined if, and only if,

im=r@b), () eR
y—b

That is, the point (x, y) approaches (a, b) only through the points of

R.

3. f(x,y) € Cin R if f(x, y) € C at each point of R.

Uniform continuity : In the definition of continuity of f (x, y) at (a, b)
the choice of 6 depends on € and also on (a, b). If in a region R we can find
a & which depends only on € but not on any particular point (a, b) in R,

then f(x, y) is said to be uniformly continuous in R.

13



1.3.2 Derivatives
We now define the classes C” for functions of several variables.

Definition 1.3.3
fi(a, b) = Of | y= lim f(a+Ax b) — f(a, b)
b

ox ¢ Ax—o Ax
fo(a,b) = Of|¢ y= lim f(a, b+ Ay) — f(a, b)
oy ab Ay—o Ay

Definition 1.3.4
n o'f Oof o"f
f(x,y) €C inR <

ox"’ oxn=1gy’ 7 dy" € CinR.

Note: If f(x, y) satisfies the condition of this definition, then f(x, y)
c, k=012.,n—1

1.3.3 Basic mean value theorem

We now prove a theorem analogous to the law of the mean for functions
of a single variable. This theorem is of fundamental importance in the theory

of partial differentiation.
Theorem 1.3.1
1. f(x,y) € Ctin D and
2. The circle (x — a)? + (y — b)®> < &2 lies in D
= f(at+Ax, b+Ay)—f(a, b) = fi(a+T:Ax, b)Ax+f(a+Ax, b+TAy)Ay,

where Ax2+Ay2 <62 and 0<%, <1,0< 9. < 1.

Proof: Let
Af = f(a+ Ax, b+ Ay) — f(a, b) (1.7)
Then
Af =f(a+Ax, b+ Ay) — f(a + Ax, b) + f(a + Ax, b) — f(a, b)

=[f(a+Ax, b+ Ay) — f(a+ Ax, b)] + [f(a + Ax, b) — f(a, b)]

14



Applying law of the mean to the function f(x, b) of the single variable x,

its derivative is fi(x, b), and we have

f(a+ Ax, b) — f(a, b) = fi(a + 8:Ax, b)Ax,

where 0 <9, < 1.

Applying law of the mean to the function f(a + Ax, y), we have

f(a"'AX,b"‘Ay) _.f(a+AX1b) :fz(a+AX,b+02Ay)Ay,

where 0 < 9. < 1. Thus,

Af = fo(a + Ax, b + 9=Ay)Ay + fi(a + G1Ax, b)Ax.

Hence,

fla+Ax, b+Ay) — f(a, b) = fi(a + ©:1Ax, b)Ax+fo(a+ Ax, b+ G2Ay)Ay.

(1.8)
Here the two numbers 8, and 9. are different. Q
Remark : If we replace the hypothesis 2 by the hypothesis that (a, b) and
(a + Ax, b + Ay) are both points of D, then equation (1.8) might not be

true . It will be clear from the following figure.

(a+ax,b+ay

Figure 1.2

Example 1.3.4 Using basic mean value theorem, find the numbers &, and

To, if fOG,y) =x2+3xy+y2, a=b=0Ax=1Ay=—1

15



Solution: From basic mean value theorem,
fla+Ax, b+ Ay) — f(a, b) = fi(a + 51Ax, b)Ax + fo(a + Ax, b+ TAy)Ay
Here
f(1, =1) = f(0,0) = fi(¥, 0) — f(1, —0-) (1.9)
f(x,y) =x2+3xy +y2
filx, y) =2x+3y, fi(8, 0) = 2%
f2(6y) =3x+2y, fol—-0:)=3-20
f(L-1)=-1, f(00)=0
Hence we have from (1.9)
-1=26,-3+2%
= 20 +0.) =2

>0 +0=1
1

=

>0 = 5 O 7

Example 1.3.5 Using basic mean value theorem, find the numbers 9, and

O if f(x,y) =x2+y2+x3, (a,b)=(,2).

Solution: From basic mean value theorem,

fla+Ax, b+ Ay) — f(a, b) = fi(a + O1Ax, b)Ax + fo(a + Ax, b+ T.Ay)Ay
Here

f(A+Ax 2+ Ay) — f(1, 2) = (1 + 0:Ax, 2)Ax + fo(1 + Ax, 2+ T2Ay)Ay
(1.10)
floy) =x=+y2 +x3
F(1+Ax2+Ay) =(1+Ax)* + (2 + Ay)* + (1 + Ax)3
=1+ Ax> + 2Ax + 4 + 4Ay + Ay + 1 + Ax3
+3Ax2 + 3Ax

=AX3 + 4AX2 + Ay> + 5Ax + 4Ay + 6

16



f(1,2)=6.
filx, y) = 2x + 3x2
fi(l + 81Ax, 2) = 2(1 + %1Ax) + 3(1 + G,Ax)*
=2+ 20,Ax + 3 + 302Ax? + 601 Ax

= 302Ax2 + 80,Ax + 5

fox, y) = 2y

fo(1+ Ax, 2 + OuAy) = 4 + 20.Ay

Hence we have from (1.10)
Ax3 + 4Ax2 + Ay? + 5Ax + 4Ay

=(392Ax2 + 80:Ax + 5)Ax + (280:Ay + 4)Ay
AX(Ax2 + 4Ax + 5) + Ay(Ay + 4)

=(392Ax2 + 8%1Ax + 5)Ax + (29:Ay + 4)Ay.

We have

Ax? + 4Ax + 5 = 5 + 89, Ax + 302Ax
Ax2(302 — 1) + Ax(85, — 4) = 0 = Ax[(392 — 1)Ax+ 88, —4] =0
1 1

2 2

= (3%, — NAx+89, —4=0= 39 ,Ax — Ax+8%, —4=0

\/
9 _ —8x 64+12(4+ Ax)Ax _ —4 = 16+ 3(4 + Ax)Ax
L= =

6AX 3AX
9 = —4+ 16+ 12Ax+ 3Ax?
! 3Ax
Also, 28.=1
1
= 1?2 -_ é.

1.3.4 Composite functions

The Basic mean value theorem can be used to differentiate composite
functions.
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Theorem 1.3.2 f(x,y), g(r,s), h(r,s) € C*

> 3@ 1) = 0. i) e (e 9)

gf(g, h) = fi(g, h)g=(r, s) + f2(g, h)ha(r, s)

Proof: Giventhatg and h are functions of r and s, f is a function of x
and y, but the regions in which the given function € C* are not specified.
So it is understood that the region for (r, s) and the region for (x, y) must
be such that we can form a function £ (g(r, s), h(r, s)) by substituting x = g
and y = h. From the definition of partial derivative we have

gk"o/so) = Ilm Af’

or Ar—e Ar

where Af = f(g(ro + Ar, so), h(ro + Ar, s0)) — f(g(ro, so), h(ro, So)).
Let

g(ro + Ar, so) = xo + AX, Xo = g(ro, So)

and h(ro + Ar, so) = yo + Ay,  yo = h(ro, So).

Now, Af = f(xo + Ax, yo + Ay) — f(Xo, Yo).

Applying mean value theorem, we have
Af = fi(xo + B1AX, Yo)AX + fa(Xo + AX, Yo + T2AY)Ay

where 0 < 9, 3, < 1.

Since g and h are continuous Ax and Ay tends to zero as Ar tends to zero,

We have
A Ax A
—f :fl(XO + 01AX, yO)_ +f2(Xo + AX, Vo + l?sz)_z
Ar Ar Ar
where 0 < 9, 9. < 1.

. Af _

lim = = 1im f,(xo + 91Ax, yo) AX + lim fo(xo + AX, yo + F2Ay) AV,
Ar—e Ar  Ar—e Ar Ao ~
where 0 < 9, 9. < 1.

2 ro + Ar, sg) — g(reo, s

_f|( y= lim fi(g(ro + ShAr, so), h(ro, s0)) g(ro 0) — 9(ro, So)

Or “roso Ar—o

Ar
h(ro + Ar/ S — h(ro, s
+ lim f2(g(ro + Ar, so), h(ro + 92Ar, s0)) (ro o) (ro, o)
Ar—e Ar

=f1(X0; yo)gl(ro, 50) + f2(X0/ yo)hl(rO, 50)/ O0<,0 <1

18



Replacing xo, yo by their values and omitting subscripts, we have

;ﬂgm=MQMm@Q#M@mm@9
.

Similarly, we can obtain

:ﬂgm=MQMw@Q#Mgmm@$
S

Remark : The above results can be put in a simpler form as follows:

of _ of ox _ of oy

or Oxdr Odyor
of _9ofox  ofdy

0s Ox0s Oyos

Example 1.3.6 [f B =x3 — xy +y3,x = rcos &,y = rsind, find %, 5.

Solution:
on ox 0Bdy _ . . ) i
or “oxort dydr_(3x —y)cosY + (3y2 — x)sing
Jo &l dx 0B dy

and 55 = ox g0 oy 99 (3x2 — y)(—rsin ) + (3y> — x)rcos o.

Remark : We can prove the following case using the method used in
theorem 1.3.2. If u = f(x, y,B), x = g(r, s), y = h(r, s), @ = k(r, s), then

Ou Odudx OJOudy  duol
= + +

or Oxor cTyE o8 or’

. o}
Example 1.3.7 If u = x>+ y2,x = rcosd,y = rsin9, compute i and
r
ou

5
Solution:

0 ouo ouo .
! ii+ iiz 2xcos ¢ + 2y sin g
Oor Oxdr OJdyor
ou Jduodx Jdudy

00 dxdl9+ dy 09" 2xrsin @ + 2ry cos §.
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Example 1.3.8 If u=f(x y),x =rcosd,y = rsing, show that

u *, Qu *_ odu* 1 du?

ox oy or r2 00
Solution:
du _ 9u ox  du oy
or ddx' or Odyor
= icosﬁ+ isinﬁ
Oox oy
ou _ 0u ox , du dy
0% Jx 09 Jdy 08
du . du
= dX(—rs.|n0)+ dy(rcos:&‘)
l1ou  du . ou
Therefore, _rdz? = - dX5|n19+ dy cos &
2 2 2 2
Then, Q4 *,1 Qu*_ ou*  ou?®
or r ou¢ ox oy

Example 1.3.9 If u = Bsin Y

o ououf

=2r* _ 3s?, find and .
or Os

, where x = 3r>2 +2s,y = 4r _ 2s3 and

Solution:

du_dudx+dudy+dud
or ~ 0x0r dyor OFor
= Beos?y —Y 6r+ mcos? 1 4+ sin¥ ar
X X2 X X X
:—ﬂy—cosz+4—acosz+4rsinz
X2 X X X X
du_dudx+dudy+dud
Os  Ox0s Odyds OF0ds

1 .
= mcos?Y —¥ 2+mcost = (—6s2) + sin ¥ (—6s)
$% X2 X )S’ X
2 65202 6 sin
= —Lcosx s Cos}i _ _
— s .
x2 X X X X

1.3.5 Higher Derivatives

We can compute higher order derivatives of composite functions by the

principles that we know already.
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For clear understanding consider the function u = f(e(r, s), Y(r, s)),
where the three functions involved belong to C=.

We now compute three derivatives of order two for the above function.

O = Filo(r, 5), Wt ) @r(r, 5) + Fal(r, 8), bt )l ),

or

O~ 1(or, s), b, )alr, 5) + Fal(t, ), Wity (s, 5).

os
Note: In each ¢ or ¢ with any subscript, we omit the arguments (r, s) and

in each fwe omit the arguments (¢(r, s), Y(r, s)).
Differentiating both l and : partially with respectively to r and s.

or Os
we have,
SQTZ = f1@u + folfin + @ilfui@r + fioa] + Yalforpr + foothi],
:Szgr = fiprz + folhio + @i[fu@z + fiaa] + Yi[forpa + footh],
::TUS = fio1 + folhor + @a[fuipr + fiaha] + Pofforpr + foothi],
2
andzs: T fipos + folhoo + @offupe + frotho] + Yalfae + forho].

Example 1.3.10 Ifu=f(x,y) =¥, x=@(r,s) =r+s,
u 02u

ords

. d
y=w(s)=r—s, find 5z "

Solution: Givenu = f(x,y) =e“, x=(r,s) =r+s,y = (r,s) =r—s.

flzyexy/ (.01:1, (plzl
fo = xe”, p>=1, Yo = —
fu= VQexy, ©®u=@2=0, Yiu:=¢Y.1.=0

f12 = f21 = (1 +Xy)exy, P21 = P22 = 0, (,021 = (,022 =0
f22 = x2e™

o2u
or2

= fipu * foPun + Qilfuipr + fraha] + Palforr + footh]
= y2e™ + (1 + xy)e™” + (1 + xy)e™” + x2e™”

=e(y2 + 2 + 2xy + x2)

=eU+I=D(r —s)> +2+2(r+s)(r —s) + (r +s)?]

=e 5 [4r> + 2].
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o02u

=f1(P21 +f2¢21 + (P2[f11(P1 +f12¢’1] + ¢2U21<P1 +f22¢’1]
ords

= y2e” + (1 + xy)e” — 1[(1 + xy)e” + x2e™]

= (2 — x?)

eI (r — 5)* — (r +5)?)

e’ (—4rs)

2_ 2
—4rse” *,

1.3.6 Differentiable functions

The class of differentiable functions lie between C and C.

Definition 1.3.5 f(x, y) is differentiable at (a, b) if, and only if fi(a, b), f-(a, b)
exist and if
f(a+Ax, b+ Ay) — f(a, b) = fi(a, b)Ax + fo(a, b)Ay + @(Ax, Ay)Ax
+P(Ax, Ay)Ay,
(1.11)

where @(Ax, Ay) and Y(Ax, Ay) — 0 as (Ax, Ay) — (0, 0).

Example 1.3.11 Prove that f (x, y) =2 — y + 2x> — x?y is differentiable

at every point .

Solution: Given f(x,y) =2 —y + 2x2 — x2y
fi=dx—2xy,fo=—-1—x2
At (0,0, f=2f=0f.=-1
f(Ax, Ay) — f(0,0) = 2 — Ay + 2(Ax)® — (Ax)*Ay — 2
= —Ay + (2Ax — AxAy)Ax
= (= DAy + (2Ax — AxAy)Ax
= £2(0, 0)Ay + (2Ax — AxAy)Ax

= f2(0, 0)Ay + (2Ax)Ax — Ax2Ay.
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Hence we may take

@(Ax, Ay) = 2Ax — AxAy and Y(Ax, Ay) =0

or

@(Ax, Ay) = 2Ax and P(Ax, Ay) = —(Ax)>.
In either case ¢(Ax, Ay) and (Ax, Ay) — 0 as (Ax, Ay) — 0.
Hence f is differentiable at every point.

Result : If f(x,y) € C* in D, then f(x, y) is differentiable at every point
of D.

Proof: Suppose that f(x, y) € C* in D.
Then f; and f. are continuous.

Let
QD(AX/ Ay) = fl(a + l91AX/ b) - fl(a/ b)
LII(AX/ Ay) = f2(a + AX/ b + 02Ay) - f2(a/ b)/

By the basic mean value theorem ,we have

fla+Ax, b+ Ay) — f(a, b) = fi(a + 1Ax, b)Ax+ fo(a + Ax, b+ T.Ay)Ay,

where, 0 < 9, 9> < 1.
Now
f(a+Ax, b+ Ay) — f(a, b) = [@(Ax, Ay) + fi(a, b)] Ax
+[(Ax, Ay) + fo(a, b)] Ay,
which is same as equation (1.11).
Since f; and f, are continuous, the functions ¢ and ¢ tends to zero as
(Ax, Ay) = (0, 0).

Hence f(x, y) is differentiable at every point of D.

Example 1.3.12 Show by examples that continuity at a point need not
imply differentiability at that point.
Solution: (i). Consider f(x, y) = [x|(1 +y).
lim x,y) =0 =£(0, 0).
o Jim  fxy) =0=5(0,0)
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So f (x, y) is continuous at (0, 0).
But £1(0, 0) does not exist.
So f(x, y) is not differentiable at (0, 0).

. wh
(ii). Consider the function f(x y) = ¢ “Men vl <Ixl

—x, whenly| > |x|
f(x, y) is continuous at (0, 0).

Also £1(0,0) =0, (0, 0) = 0. Assume that f(x, y) is differentiable at (0, 0).
When Ay = Ax, equation (1.11) would become

F(Ax, Ax) = —Ax

= Ax + Axp(Ax, Ax) + Axip(Ax, Ax).

But this is a contradiction,as one sees by canceling Ax and letting Ax — 0.
So our assumption is wrong and hence f (x, y) is not differentiable at (0, 0).
Remark : From the above two examples we may conclude that there exist

continuous functions which are not differentiable.

Example 1.3.13 Show by an example that there exist differentiable func-

tions not belonging to C.

N
Solution: Consider the function f(x, y) = g( x2 +y?), g(x) = x*sin * ,

g(0)=0.
It is easy to prove that £,(0, 0) = (0, 0) = 0.

Now
q
f(Ax, Ay) = g( Ax2 + Ay?) 1 !
N
= (Ax2 + Ay?) sin Ax2 + Ay?

From equation (1.11) we have .
F(Ax, Ay) = (Ax* + Ay?) sin(Ax® + Ay?) 2
= @(Ax, Ay)Ax + P(Ax, Ay)Ay.
If ¢ = Axsin(Ax2 + Ay2)_§, Y = Ay sin(Ax2 + Ay2)_§,
then ¢(x), Y(x) — 0 as (Ax, Ay) — (0, 0).
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Hence the function is differentiable at (0, 0).

To prove the function does not belongs to C.

It is enough to show that fi(x, x) has no limit as x — 0™,
We have fi(x, x) = ¥5g2(x 2), x>0.

We can easily prove that g?(0*) does not

exist.So fi(x, x) does not belongs to C.

1.4 Equality of Cross Derivatives

In this section, we will find under what condition the cross derivatives
fi2(x, y) and fai(x, y) are equal. Also we shall show that the result is true
for all functions of class C2.

1.4.1 A preliminary Result

We define two operators A, and A, on a function f(x, y) as follows:

A (Xo, Yo) = f(Xo + Ax, yo) — f(Xo, Vo)

Ayf (X0, Yo) = f(Xo, Yo + Ay) — f(Xo, Yo)

Lemma 1.4.1 Prove that for any function f(x, y),

A)(Ay_f(XOI yO) = AyA)(f()(OI yO)

Proof: Consider

AN (Xo, Yo) =Ax{f(Xo, Yo + Ay) — f(Xo, Yo)}
=Af (Xo, Yo + Ay) — Af(Xo, Vo)
=f(xo + AX, yo + Ay) — f(Xo, Yo + Ay) — f(xo + Ax, yo)

+f(Xo; yo)-
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Consider

AYAS (Xo, Yo) =Ay {f (X0 + Ax, yo) — f(Xo, Yo)}
=A,f(xo + AX, yo) — Ayf(Xo, Yo)
=f(xo + Ax, yo + Ay) — f(xo + AX, Yo) — f(Xo, Yo + Ay)

+f(X0/ yo)-

Hence AAf (Xo, Vo) = AyAS (Xo, Vo). Q

1.4.2 The principle Result

Theorem 1.4.1

fxy) € C == fia(x y) = far(x, y).

Proof: Let (xo, yo) be an arbitrary point in the domain where f € C2.

Then by the previous lemma, we have
AXAyf(XOr y0) = AyAxf(Xo, yo) (1.12)

Let (P(y) :f(XO + Ax, y) _f(XOl y)
Then @(yo) = A (Xo, ¥o). Applying the law of the mean for functions of

one variable,

AYAS (Xo, Yo) = Ayp(yo)
= @(yo + Ay) — ¢(yo)
= p?(yo + HAY)Ay, 0<5; <1.
AAf (X0, Yo) = fa(xo + AX, yo + S1AY)Ay — fa(Xo, Yo + T1AY)Ay (1.13)

Let (x) = f(x yo + Ay) — f(x, yo).
Then ¢(xo) = Ayf(xo, yo). Applying the law of the mean for functions of

one variable,

AXAyf(Xo, yo) = A)<’~»L'(X0)

= P(xo + Ax) — Y(xo0)
= PB(xo + T2AX)AX, O0<U. <1
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AN (Xo, Vo) = filxo + T2A%, Yo TAY)AX — fi(xo + T2AX, yo)Ax (1.14)
Applying law of the mean to the right side of equations (1.13) and (1.14),
we have

AyAS (Xo, Yo) = fra(Xo + T3AX, yo + G:1Ay)AyAx,
where 0 <95 <1 and

AXAy,f(XO/ yO) = f21(XO + 192AX, Yo + 194Ay)AXAy,

where 0 <9, < 1.

From equation (1.12), we have
fiz(Xo + T3AX, yo + F1AY)AYAX = for(Xo + T2AX, Yo + T4AY)AxAy.
Then
fiz(Xo + T3Ax, yo + T1Ay) = fai(Xo + 24X, yo + T4AY).

Letting Ax — 0 and Ay — 0 and since fi» and f>; are continuous at

(xo, Yo), We have
fi2(xo, Yo) = fai(xo, Vo).

As (xo, Yo) is an arbitrary point in the domain, we have
le(X/ y) = f21(X/ y)

Q

We shall now give an example of a function for which the cross derivatives

are not equal.

X2 — y2 2 + 2 — O
XY 57— X y
Example 1.4.1 If f(xy) = 2 x*+y? , Prove that
0, (x y) =(0,0)

fiz for

Solution: When (x, y) is not the origin, then using formal rules of dif-
ferentiation we can easily prove that fi. = fo.. When (x, y) is the origin,

then

£(0,0)= lim £(Ax.0) — £(0,0) _
Ax—o Ax Ax—e AX
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£(0,0) = lim f(0.Ay) —f(0,0) _ . =~ — =0.
Ay—o Ay Ay—o Ay

If(xy) (00),

(2 —y?) (e +y)2x— (¢ — y?)2x
fl(le)=2y7+2Xy (X2+ 2\2
y?)
- (3(3 + X,%) dxy> ) .
+2xy —— + 0
(RS T T
folxy) = ZXW — 2xym, x +y O
f21(0, O) = lim f2(Ax, 0) — £-(0,0) = lim 2Ax =9
Ax—eo Ax Ax—e Ax
f12(0,0) = lim f1(0, Ay) — £1(0, 0) = 1im —2Ay -9
Ay—o Ay Ay—o Ay ’

Hence at (0, 0), f12(0, 0)  f21(0, 0).

Summary

- A function f(x, y) approaches a limit A as x approaches a and y

approaches b, that is lim f(x,y) = A <= for each positive number
y—b
€ there is another 6, such that [f(x, y) — A| < € whenever |x — a| <

S5 ly—bl<Sor0<(x—a)>+(y —b)2
. Floy) € C at (a,b) <= Jim 0o ) = £(a,b)

y—b
n o'f 9"f o'f
- f(x,y) €C inaregion R == Ox" Oxn-10y " dyn eCinR

- Basic mean value theorem:

1. f(x,y) € Ctin D and

2. The circle (x — a)*> + (y — b)*> < 62 lies in D

= f(a+ Ax, b+ Ay) — f(a, b) = fi(a + O1Ax, b)Ax + fo(a + Ax, b +
J.AY)Ay, where Ax2+Ay2 <é62and 0<%, <1,0< 9, < 1.

+ Basic mean value theorem can be used to differentiate composite func-

tions.

+ The class of differentiable function lie between C and Ct
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- Continuity at a point need not imply differentiability at that point
- If f € ¢ in D then f is differentiable at every point
. There exist differentiable functions not belonging to C

- f is differentiable = f € C

« There exist nondifferentiable functions having partial derivatives
cfxy) € C <= fia(x, y) = fai(x y)

Multiple Choice questions.

1. Choose the wrong statement.

(a) Continuity at a point need not imply differentiablity at that
point.
(b) There exist differentiable functions not belonging to C.

(c) Continuity at a point always imply differentiability at that point.

2. If f(x, y), g(r, s), h(r, s) € C, then
9f(q, h)

(@) 5 = fi(g, h)gu(r, s) + f2(g, h)h(r, 5)
(b) Qf‘jr—"'l = £i(g, W)aa(r, 9) + folg, Wha(r, 5)
(©) ﬂi’-”) = £i(g, (5, ) + fulg, WY(r, )

3. If f(x y) = x2 + 2, then the value of limf(x, ) is

y—6

a—1 b))l ¢)O0
Ans: 1. (¢) 2. (a) 3.(c)
Exercises 1

1. Define the following :

(a) limit of a function of two variables.

(b) continuity of a function of two variables.
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(c) interior point,exterior point and boundary point.

(d) the classes C” for functions of several variables.

(e) 6— neighbourhood and limit point.

(f) Domain and region.
2. State and prove basic mean value theorem.

3. Find the number 8; and 9. in Basic mean value theorem if f =
e’,a=b=Ax=Ay =1.

Ans: 8, = log(e — 1), 9, = flog(ez — 1) — log 2].

4. Show that if f(x, y) is differentiable at a point it is continuous there.

Hint : let (Ax, Ay) — (0, 0) in equation (1.11).

5. f(x,y) € Ct in D, then prove that f(x, y) is differentiable at every
point of D.

6. If f(x, ¥), g(r, s), h(r, s) € C* then prove that

)
Ef(g, h) = fi(g, h)g.(r, s) + f2(g, h)hi(r, s).

:f(g, h) = £u(g, h)ga(r, s) + fal(g, BYha(r, 5).
S

03%u

7.1f = v =sin( ) find
u e,v Xy, -

Ans: e'x cos(xy?) — e'x2yl sin(xy?) + e'x2yR cos>(xyE).

8. For any function f(x, y), prove that

AXAYf (Xo, Vo) = AyAxf(Xo, Vo).

9. If f(X, y) & C2, pI’OVE that f12(X, y) =f21(X, y).

10. If f(x, y) = x2tan™! zx — y2tan™! Ky ,xy /=0 and
f(X/ 0) =f(0/ y) = O, prove that f12(01 O) /=f21(0, 0)

11 If f(x,y) = (@ +y2)tant ¥ whenx 0 and f(x y) = Zy* when
X
x =0, Show that f1.(0,0) f..(0, 0).
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Unit 2

Homogeneous functions and

Differentials

Learning Outcomes :
After studying this unit, students will be able
F To explain homogeneous functions.
F To understand the concept of total derivatives.

F To describe the meaning of differentials.

F To know about directional derivatives and gradient.

2.1 Homogeneous functions

A polynomial in x and y is said to be homogeneous if all its terms are of

same degree. We generalize this property to functions of several variables.

Definition 2.1.1 A function f(x, y) is homogeneous of degree n in a region
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R if, and only if , for (x,y) in R and for every positive value of A
FAx Ay) = Af(x, y) (2.1)

The number n is positive, negative, or zero and need not be an integer.
The region R must be such that (Ax, Ay) is a point of it for all positive A

whenever (x,y) is a point of it.

Remark : The definition can be extended to a function of any number of

variables.

Example 2.1.1 Consider f(x, y) = x4 + 2xy3 — Sy4,
fAx Ay) = (A)* — 2(Ax)(Ay)3 — 5(Ay)* = A4(x4 +2xy3 — 5y4) = A4f(x, y).

Hence f(x, y) is homogeneous of degree 4.

Example 2.1.2 Consider f(x, y) = X3y Stan! Y ,

X
Here n=1; R is any quadrant without the axes,
FAx Ay) = (AxE (Ay) 5 tan™ A = A-u3y "3 tant ¥ = A-if(x, y).

Hence f(x, y) is homogeneous of degree —1.

Example 2.1.3 Consider f(x,y) = ley_zﬁ +X32y_§,

FAx, Ay) = Ax)zAy) 75 + (Ax)3 (AY) 3 = A-5x3y "3 + Asxsy ™ 5.

So the function is not homogeneous.

N
Example 2.1.4 Consider f(x,y) =  x2+y2 8
Here n=3; R is the whole plane.

\/— 3 \/ 3
FAxAy) = (Ax)2+@Ay)2 =23 x2+y2 " =A3f(xy) = [ABf(x y).

If Ais a negative number, then equation (1.12) is not satisfied for this func-

tion.

Example 2.1.5 Consider f(x,y) =3+log *,
Here n=0; R is the first or third quadrant without the axes.
fAxAy)=3+log % =3+log % =2Af(x y).

The function is homogeneous of order 0.
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2.2 Euler’s Theorem

Theorem 2.2.1 (Euler)

1. f(x,y) € C, (x,y) in R

2. f(x, y) is homogeneous of degree n in R.

=  filx y)x+fo(x, y)y =nf(x,y), (xy)inR (2.2)

Proof: Since f(x, y) is homogeneous of degree n, we have

f(Ax, Ay) = A"f(x, y).

Differentiating partially with respect to A

xfi(Ax, Ay) + yf2(Ax, Ay) = nA"-'f(x, y)

Let A =1, we have  xfi(x, y) + yfa(x, y) = nf(x, y). Q
Remark 1: Some of the authors may define homogeneity in a different
way , demanding that equation (2.1) should hold for all real values of A
with this definition the function in example 2.1.4 is not homogeneous.But
this definition would have two disadvantages that the converse of Euler’s
theorem would be false.

We now prove that converse of the Euler’s theorem is valid under definition

2.1.1.

Theorem 2.2.2

1. f(xy) €C, (xy)inR.

2. xfr+yfo=nf, ((xy)inR.

= f(x, y) is homogeneous of degree n, (x,y) in R.
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Proof: Let (xo, yo) be an arbitrary point of R. Then (Axo, Ayo) € R for

all positive values of A.
Let @(A) = f(Axo, Ayo) be defined for all positive values of A.

Differentiating partially with respect to A we have

®?(A) = xofi(Axo, Ayo) + yofa(Axo, Ayo).
Since (xo, Yo) € R, from hypothesis 2, we have

Xof1(Xo, Yo) + Yofa(Xo, Yo) = nf(Xo, Yo).
Since (Axo, Ayo) € R, replace xo by Axo and yo by Ay,

Axof1(Axo, Ayo) + Ayofa(Axo, Ayo) = nf (Axo, Ayo)
ApP(A) = np(A).
Differentiating ¢(A)A-" with respect to A, we have
(PAA")? = @BAA" — npAA-"-1
=A-"1 ApB(A) — ne(A)
=0.

Here @(A)A-" = C, a constant.
Let A =1, then ¢(1) = C and so f(xo, yo) = C.

Hence using ¢(A) = f(Axo, Ayo) in @(A)A-" = C, we have
f(Axo, Ayo)A~" = f(xo, yo)

== f(Axo, Ayo) = A"f (X0, Vo).
Since (xo, ¥o) is an arbitrary point of R, the theorem is true for all (x, y)

in R. Q

Remark : If f(x, y) is homogeneous of degree n,

we have x2fi; + xyfio + y2foo = n(n — 1)f.

Example 2.2.1 Verify Euler’s theorem for the function

a)u=x2+y2+2xy b)u=x3+y3+E8+ 3xyd
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Solution: a) Given u =x2+ y2 + 2xy.
This is a homogeneous function of degree 2.

To verify Euler’s theorem we have to prove

ou ou _
X—+ty—= 2u
ox gy
: =2x+ 2y
ddx
Xi = 2x2 + 2xy
gx
: =2y + 2x
0
ou
y__ =2y*+2xy
dy
Hence, we have
o] o]
xi + y: = 2(x2 + y2 + 2xy) = 2u.
ox oy

b) Given u = x3 + y3 + 3 + 3xyB.
This is a homogeneous function of degree 3.

To verify Euler’s theorem we have to prove

ou ou ou
4y~ +B—=3u
X ox ydy d
__ =3x2+ 3y
gx
xi = 3x2 + 3xyl
3x
l = 3y2 + 3xB2
0
ol
y__ = 3y3 + 3xyl
0
ol
__ =3B%+3xy
opl
B__ = 3BB + 3xy@

Hence, we have

(o] (o] o
X u+y7u+7u =3(x3+y3+3+3xy)

ox dy 0@

= 3u.
1
2 4 y2 .
Example 2.2.2 [f y = tan™! , Show that
x+y
ou ou .
X— +y— =sinucosu.
ox oy

35



Solution: 1

u=tan ' il e
xty
X2 + y2
tanu = = f(sa
xvy TEW)

Then tan v is a homogeneous function of degree 1.

Hence by Euler’s theorem, we get

o] 0
x__(tanu) + Y- (tanu) = 1.tanu

ox
2 u 2 dU —
xsec“u__ +yseccu__ =tanu
ox oy .

ou ou tanu sin u cos? u

X—+ —= =
ox ydy sec2u cosu
ou ou .

X— ty— =slnucosu
ox dy

2 4 2 du
Example 2.2.3 If y =sin™! X 7Y Show that x4 y@ = tan u.

x+y) ’ ox  dy
( )
. . - x> +y2 i X2+ y2
Solution: Giveny = sin™*! = siny = = £ (say).
u Gry) | =T Gy W)

£ is homogeneous function of degree 1.
So by Euler’s theorem for f, we have

o] o
de + ydf =1.f
J Y
X (sinu)+y__(sinu) =sinu
X ou y ou

XCOSU_— +yCOSU_—— =sjnuy
ox oy
u u

Hence x_ +y  =tanu.
ox oy

1
2 4 y2 -
Example 2.2.4 If u=log % , then prove that

o] o] 3
(i) x u +y Y= .
ox gy 2
(ii) =20%u 02u 502U 3

—+ —+ = 5
de2 2xy oxdy y oy? 2

1
2 4 y2 - 2 2
Solution: v =log AL\L = e = ’V)%% = f (say).

X+ 'y
Then f is homogeneous function of degree ?;
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To prove (i). By Euler’s theorem for f, we have

Differentiating (i) partially with respect to x.
02u du o02u
—+t —+y——=0
de2 ox ydxdy
Multiply by x
Py by 202U ou o2u
X ox2 +de +Xydxdy -
Differentiating (i) partially with respect to y
o02u 02u du

——+y—+ —=0.
Xdydx ydy2 y

0.

Multiply by y

o2u 502U ou
Xy Y, — =0
dyox 92 ydy =0.
Adding above two resulting equations, and using (i) we have
202U o2u 202U du ou
- - X +y =0

X 5, t2xy

Ox ty + 4 oy

X
oxe¥y 0)/262“ 202u 3

X . . +2x +y _ _+_=0
c3x22 dzuydxdy dzZ dy22023 3

X ox2 + 2xy

oxay Y oy T 2

2.3 Total derivatives

Let x = (t), y = ¢(t) define two functions for t, t, <t < t,. Then the

pair (x, y) define a corresponding region R in the xy— plane.

Let v be the function of x and y defined on the region R such that u =

fOy) and x = (t), y = Y(t), for to <t < t..
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I . du
Now u may vary because of variations in tand __ a¢ 3 point, if it exists
dt H 1

is called the total derivative of u with respect to t.

Let Ax, Ay and Au be the corresponding changes, for a change At in t.

We have, dx _ Ay
= lim Ax, dy =lim
E‘ At—o E Ft At—o E
and du ] Au
=lim .
dt  At—e At

Now Au = f(x + Ax, y + Ay) — f(x, y).

Therefore,

du _ li Au
gt~ A AF
. f(x+Ax, y+ Ay) ;f(x, V)

Ax—o0 At
Ay—o
At—o
= lim fx Ay +Ay) — fxy+ A + fx. y + Ay) — f(x y)
Ax—0 At

lim f(x+Ax y+Ay) — f(x, v+ Ay) Ax

X—

Ay—é) AX At
At-e Loy +AY) — £ v) Ay
Ay At

So,
du _dudx oudy

dt  Oxdt Odydt

Remark 1: If uis a function of x, y, @ which are functions of a single

variable t, then
du _ dudx + ou dy + ou dP

dt Oxdt Odydt OJBdt
Remark 2: Suppose t = x, that is u is a function of x and y, where y is

itself a function of x, then we have

du_du_'_ducﬂ

dx Ox Fydx'
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., du
Example 2.3.1 Find di Zf u= Sin(X2 + yz) where a2x2 + b2y? = c2.
X

Solution:
du _ou , oudy
dx Ox Oydx
Given u = sin(x2 + y?)

ou 2 2 ou 2 2
—= +y )2x and —— =COS(X +y )2y.
=, = cos(x y) dy y )2y

Consider a2x> + b2y> = c2. Differentiating with respect to x, we have

5 2 > dy dy ax
+ - = = -
a x+2b ydx 0> dx b2y’

Now :
du azx
= =9 24 ,2) + 24 .2y —

dx x COS(x* + y?) + 2y cos(x” + y°) 7y

!
2

= 2xcos(x* + y3) 1- 2—2

. ,du
Example 2.3.2 Find — if u = x3y4 where x=t3 and y = t2.
t

Solution:
du _ dudx+ oudy

dt dtdt dydt
= 3x2y4(3t2) + 4x3y3(2t)
= 3tot8(3t2) + 4t9to(2t)
= 9Ot16 + 816

=17t

d
Example 2.3.3 If u = x2y3 where x =logt and y = €', find l
dt

Solution:
du _ dudx+ Judy

dt  otdt dydt
1
= 2xy3.= + 3x2y2.e’
t
1
= 2log t.e3.” + 3(log t)%e?'.e’

2 3t

_ 2logt.e3t
[ t) .e

+ 3(log
t
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. d
Example 2.3.4 If u =sin(e* +y), x = f(t), y = g(t), compute :
dt

Solution:

du _ dudx+dudy

__ = ___ +__ 7 =cos(e +y)e’fi(t) + cos(e” + y)gh(t).
dt Oxdt Odydt

Example 2.3.5f u=x/,x=ty =t 0 =13, compute __.
dt
Solution:

du OJdudx Oudy Ouda
= + +

= T+ T T+ T T =P+ Exy1(2t) + xy” log y(3t2)
dt Oxdt Odydt o@Edt

=y” + 2Bxty”™ 1 + 3xy"t2 log y.

Example 2.3.6 If u = f(x,y), x = g(r,s),y = h(r,s), r = @(t), s = ¢(1),
find i’
dt

Solution:

du _ dudx+dudy
dt ~ oxdt = dydt

oxdr Oxds dydr Odyds
=filxy) =+ +fax +
filo ) ordt Os dt F2l0 ) ordt Osdt

= f1 g10% + g% +fo hi? + hop? |

2.4 Differentials

We shall introduce briefly the idea of differential of a function of several
variables. It will be sufficient to give our definitions for functions of two

variables.
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2.4.1 The Differential

Definition 2.4.1 Let u = f(x, y) be a function of C', where x and y are

independent variables. Form the following function of four variables:

(p(X/ v,r, S) =f1(X/ y)r +.f2(xl y)S

If r = Ax, s = Ay are variables whose range is a neighborhood of

r=0,s =0, then the differential du of u, is defined as @(x, y, Ax, Ay) :
du = @(x, y, Ax, Ay) = fi(x, Y)Ax + fo(x, y)Ay (2.3)

Thus there is associated with each point (x, y) where f(x,y) € C, a differ-

ential which is itself a linear function of two variables Ax, Ay.

Example 2.4.1 Compute the differential du for the function
X
u=flxy)=

y
Solution: x
u=fx,y)="_
1 y X
fi= ;/ fa= _)F'

(p(xl v, r 5) :f1(X, y)r +_f2()(, y)s = y, y?

Ax  xAy
du = fi(x, Y Ax + fo(x, y)Ay = 7— )2

Example 2.4.2 Compute the differential du for the function u = f(g(x, y), h(x, y)).

Solution: du = (flgl +f2h1)AX + (f1g2 +_f2h2)Ay-

2.4.2 Meaning of the Differential

The equation of the tangent plane to the surface B = f(x, y) at the

point (xo, Vo, Plo) Of the surface is

— Blo = fi(xo, Yo)(X — Xo) + fa(Xo, Yo)(¥ — Vo).
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Figure 2.1

By the definition of differential,
dB = fi(x, y)Ax + fa(x, y)Ay.

at (xo, Yo) is

dBl = fi(Xo, Yo)AX + fa(Xo, Yo)Ay.

The point Q lies on that plane and its coordinates are

(Xo + AX, yo + Ay, Bo + dB). If

Al =f(X0 + AX, Yo + Ay) _f(XOI yO)l

then the point N (xo +Ax, yo +Ay, Blo +AR), lies on the surface B = f(x, y).
Hence MN = AR, MQ = dB&.
That is, |d@l| = the length of the ordinate x = xo + Ax, y = yo + Ay cutoff

between the tangent plane and the plane & = Fl.
It is clear from the property of a tangent plane that d& will be nearly equal

to AR for small values of Ax and Ay.

So for simplicity we have assumed that f(x,y) € C. But if we assume

only that f(x, y) is differentiable at (a, b), the differential df is equally well
defined at (a, b) by equation (2.3). Then from the equation

fla+Ax, b+ Ay) — f(a, b) = fi(a, b)Ax + fo(a, b)Ay + p(Ax, Ay)Ax
+ Y (Ax, Ay)Ay,

42



where @(Ax, Ay) and ¢(Ax, Ay) — 0 as (Ax, Ay) — (0, 0).
We have

AR = Af = dBl + Axp(Ax, Ay) + Ay (Ax, Ay).

So d@ is nearly equal to AR, when (Ax, Ay) is near (0, 0).
Thus,

AR — dPl

lim _A8 —dd _
Ax—g |Ax| + [Ay|

Example 2.4.3 Find approximately how much x>+y3 changes when (x, y)

changes from (1, 1) to (1.1, 0.9).

Solution: Let u = x2 +ys3.

Then
filky) =2x, fo(x,y) =3y2 and

Ax=11-1=01 Ay=09-1=-0.1

du = fi(x, Y)Ax + fo(x, y)Ay
So d(x2 + y3) = 2xAx + 3y2Ay.

d(X2 + ys)ar (1,1) = 2Ax + 3Ay.

Approximate change in (x2 + y3) = |2(0.1) + 3(—0.1)| = 0.1.
Actual change in x2 +y3 =2 — (1.12 + 0.93) = 0.061.

2.5 Directional Derivatives

The partial derivatives describes the rate of change of a function in
the direction of each coordinate axis. A natural generalization of partial
derivatives is the directional derivative, which studies the rate of change of

a function in an arbitrary direction.
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In the definition of fi(xo, ¥o), the numerator of the difference quotient
used involves the values of f (x, y) at two points (xo + Ax, yo) and (xo, Yo).
As Ax approaches zero , the first point approaches the latter along the line
Yy =Vyo. For fa(xo, yo) a point (xo, yo + Ax) approaches (xo, yo) along the
line x = x,. In the definition of directional derivative we replace these two
special lines by an arbitrary line through (xo, yo).

A direction &, is defined as the direction of any directed line which

makes an angle o with the positive x— axis (positive angle measured in the

counterclockwise sense). For example the line segment directed from the

point (0, 0) to the point (—1, —1) has the direction &5 OF f_af-

Definition 2.5.1 The directional derivative of f(x,y) in the direction &,

at (a, b) is

Qf|( y= lim f(a+ Ascosa, b+ Assina) — f(a, b)
08, “b  Ase As '

Example 2.5.1 Find directional derivative of f(x,y) = x> — 2y in the

direction &ax at (1, 2).
4

Solution: Given f(x, y) = x2 — 2y.
f(a+ Ascosa, b+ Assina) = (a + Ascosa)® — 2(b + Assina).

Ata=1,b=2,a=3;—r,

2

~2 2+%‘§ ,
flab)y=a2—2b,f(1,2)=1—4=-3.

1—%% 2—2 2+%‘; +3

the above value becomes 1 — %%

Of |a2= lim
afgn As—o AS
4
2As  (As)? 2As
1_ ;VLi + —4—JVL7 +3
= lim 2 2
As—o AS
_ i As Vi V=
=lim = 572 =22
As—o

Remark 1: At each point (x, y) a function has infinitely many directional
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] . of
derivatives so thatT is a function of the three variables x, y, a.

a

Remark 2: In computing a directional derivative of higher order, the
variable a must be held constant.

For example, ifd— = xcos a + y sina, then
o} __ 0 Of
083 0§, 0O&,
lim (x+Ascosa)cosa+ (y+ Assina)Sina — xcosa — ysSina
As—o AS

cos®a +sina = 1.
Weseethat,QIf:fl,Q‘f=fz,Qf=_f, o I
d‘fo df% dfn d5377.' T

Th%o em 2.5.1 f(x,y) € C

=

JF, = fi(x, y) cos a + fo(x, y) sin a.

Proof: By the Basic mean value theorem, we have

f(a+ Ascosa, b + Assina) — f(a, b)
AS

= fi(a + 9;As cos a, b) cos a

+ fo(a + Ascos a, b + 9.Assin a) sin a

where0<9;<1,0<39. < 1.

Taking limit as As approaches zero, we obtain,

of

oF, = fi(x, y) cos a + fo(x, y) Sin a.

Q

Remark : This theorem enables us to compute directional derivatives

without reverting to the defining limiting process.

In example (2.5.1), we have f(x, y) = x2 — 2y, fi(x, y) = 2x, fo(x, y) = —2,

so for any point (x, y) and any direction a,

of : :
o = filx, y)cos a + fo(x, y) Sina = 2xcos o — 2sin a.

In particular, for x =1,y =2, a = 3&

47
of 3n . 3m 1 1 —4 V_

=2c0s >, —2sin~ =2 _/_ _o J =v_=-2 2
dfa (1,2) 4 4 2 2 2
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Also, we have
ozf

—~ =2c05°q, d—=0.
0&2 0

Definition 2.5.2 A vector # is a triple of numbers (ry, ro, r3). Its length is
rhors ra

I8l = |r| = (r1+r2+r332 The direction cosines of the vector are 7 P \r\ | rl

Its components are ry, ro, rs. It is clear that a vector is completely deter-

mined by its length and its direction cosines.
We now define directional derivatives for functions of three variables.

Definition 2.5.3 Let & = (ay, a2, a3) be a given vector and # = (ry, ro, rs)
a given point. Let &, be the direction of the vector. Let its direction cosines
be cos a4, COS a5, COS .

Then the directional derzvué;-_ve of the fungf_on F (x1, X2, x3) at the point #

in the direction € will be | = (r,r,r),
a dfa (ryrs,rs) dEa 1 2 3
OF .
(ry ra, rs) = lim F(ri + Ascosay, r. + AsCOS Qs, r3 + AsCOS a3) — F(ry, ra, r3)
o0&, As—o As '

. . oF
For example if & is taken successively as (1,0, 0), (0,1, 0), (0,0, 1), then ___

. . o OF OF oF 9%
is successively the partial derivatives__ , .

Ox; OX2 OXs
Now we state a theorem analogous to that of theorem 2.5.1 without proof.

Theorem 2.5.2

9F  5F oF of
F(Xl, Xo, X3) c Cl = — Ccos (041 + Cos as + CcoSs 0[3.

T g, Ox 02 Oxs

E 1 C 9f
Xample 2.5.2 omputeaf at # = (1,1, —1) for the function F = x% —

X3 + 2x.x5 in the direction & = (1,0, —2).

Solution: F =x2 —x2 +2x.x3 #:(1,1,-1), &:(10 -2).

1 2
N . 1
The direction cosines of & are J"E, \7—2, 9%
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Then

OF _ OF oF
= cosa;+_  CcoSas +_
. Ox1 ' % : 0xs cos as
1

= 2x M; + 2x5 702 +2x5 —%5
OF 2 4 2
- = —+0 - _ = — Al
dfa |(1,1, 1) */Ls 2’VL5 ‘v%

That is F is decreasing at a rate \7% in the direction &,.

Consider the function 7 : R” — R™. We shall find the directional derivative

of this function at ¢ in the direction &.

Definition 2.5.4 The directional derivative of 7:S — R™ where S C R",
at ¢ in the direction #, denoted by the symbol (¢, &) is defined by the

equation

a _ . F@+ hia) — 7(8)
f'(e,a)—hlg - ,

whenever the limit on the right exists.

Definition 20.5.5 (Operator 11.) The operator 1 is a symbolic vector with
0 o]

components , ;
Ox: OX2 OXj

or to a vector function y(x1, X2, X3) with components y;(x1, X2, X3),

i=1,2, 3.

. It may be applied to a scalar function F(xi, X2, X3)

Definition 2.5.6 T1F (x1, X2, X3) is a vector function with components
of TRt 5P ba, x2, ) f P

— , T, . 1Itis called gradient of F : Grad F = UIF.
OXx1 OXs2 OXs

Definition 2.5.7
=W e Oy

Ox: Ox2 Ox3

This scalar function is called the divergence of the vector function y

Divy = 1.y.

Definition 2.5.8 ¢ X y is a vector function with components

Oys Oy. Oyi Odyz OyY> Owi

Oxa  Oxs’ Oxs Ox.’ Oxi  Oxa
This vector function is called the Curl of the vector function y :

Curly=lﬁ X y.
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2.5.1 The Gradient

Definition 2.5.9 The gradient of f(x, y) atua point (a, b), Gradf(x, y)| s
is a vector of magnitude ? (a, b)? +f ga, b))2 - 1]1’21 the direction & a}éﬁné’d
1 2 2 L
by the equations
sing =22, cosa ___fi (2.4)
1 9 3 f.43 1 9 3 3
sinas = 43— cosa, = et (2.5)
g g

Example 2.5.3 Find Grad f(x, y)|q3) for the function
fy) =x2 —xy +y2

Solution: Consider f(x, y) = x2 — xy + y2.

filk, y) =2x —y, fo(x, y) = —x + 2y.

The magnitude of Grad f(x, y) |9 is

! J
(@1, 3)2+f2(1, 3)321 (1+25)s = 26.

The direction &,, of Grad f(x, y)|a3) is

5
sin =7f2 =— , csa __ f, 1

oy - -

q
T+fx \/26 v 9f +f, \/26

Example 2.5.4 Find the Grad f(x, y)|(s4) for the function f(x,y) = x>+

y2.

Solution: Given

fOoy) =x2+y2

filky) =2x,  falx, y) = 2y .
The magnitude of «( ) = p (3 4) +f (34)

’

Gradf Xy |}3,4) 1 2
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= (36 + 64)= = 10.
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The direction &,, 0of Grad f(x, y)|(s,4) is

4
sin =—22—=% cosa ___fi _3

M Af+fn s Y A

Theorem 2.5.3

1. fxy) €t
2. f1(a, b)2 +f2(a, b)2 0

max 2L
=> o=z o0&, |(a,b)

1 o)
= (fl(a, b)2 +f2(a/ b)z)E = dé-cl(ﬂ,b)’

where &, is the direction of Gradf(x, y)|w») defined by equation (2.4) and
(2.5).

Proof: Since f(x,y) € C,

dd;c = fi(x, y) cos a + fo(x, y) sin a.
. . of
For a fixed point (g, b), we determine the direction &, Which will make FT

a maximum.
Let F(a) = fi(a, b) cos a + f»(a, b) sin a.
Then F(a) will have a maximum or minimum when F2(a) = 0.

So

—fisina+ f,cosa = 0.

Case (i). If f1 and f. are not both zero.
Then the above equation will have just two distinct solutions a;, and a-

between ¢ and 2r determined by the equations

) fo
sina = , cosa __ fi

1 9 1 9
3 3 3
sinas = _frr . COSas = e

g g
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For these directions, we have
_Of ﬁfl-fl N “fz-fz a

3 =4 € = f3+r3
S fi+fz 23
and

df —q 2 2

se. T

of
HenceT is maximum in the direction &, and is minimum in the

a

direction &,,.
Here oy and a. differ by .

Case (ii). If fi=f>.=0,
Then the maximum and minimum values ofi

o

directional derivative is constantly zero. Q

are both zero,since the

Summary

+ A function f (x, y) is homogeneous of degree n in a region R <= for
(x, y) in R and for every positive value of A, f (Ax, Ay) = A"f (x, y),

the number n is positive, negative and need not be an integer
+ Euler’s theorem :

1 f(x,y) €C, (x,y) inR

2. f(x, y) is homogeneous of degree n in R.

= f1(X,y)X+f2(X,y)y=nf(X,y), (X/y)inR

« Let x = @(t), y = ¢(t) define two functions for t, to <t < t;. Then
the pair (x, y) define a corresponding region R in the xy— plane.
Let u be the function of x and y defined on the region R such that

u=f(x y)and x=q@(t),y = g(t), forto <t < t..
I . du
Now u may vary because of variations in tand __ 5t 3 point, if it

exists, is called the total derivative of u with respect to t

+ Let u = f(x, y) be a function of Ct, where x and y are independent
variables. Form the following function of four variables:

©x y,r,5) = fi(x, y)r + f2(x, y)s.
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If r = Ax, s = Ay are variables whose range is a neighborhood of

r =0, s =0, then the differential du of u, is defined as ¢(x, y, Ax, Ay) :

du = @(x, y, Ax, Ay) = fi(x, y)Ax + fa(x, y)Ay

+ There is associated with each point (x, y), where f € ¢, a differential

which itself is a linear function of two variables Ax, Ay.

+ The directional derivative of f(x, y) in the direction &, at (a, b) is

Qf|( y= lim f(a+ Ascosa, b+ Assina) — f(a, b)
06, P Ase As '

of
. fxy) c ct - o = fi(x, y) cos a + fo(x, y) sin a.

a

. The gradient of f(x, y) at a point (a, b), Grad f(x, y) |, |savector
of mggnltude fJE((J b)s)z (IO b)2( |n)the dlr]ecc(:tlo)ﬁ)éb) defined by

the equations

sing =22—, cosa _ fi
1 9 3 g3 1 9 1 2
sinae = — 94 2F—  cosas = frf—f—
= =
1 2 1 2

Multiple Choice questions.

1. The function f(x, y) = x3y " 3tan! }i is homogeneous of degree.

—4
a) 3 b) 3 ) -1
2. Suppose u is a function of x and y where y is itself a function of x

then

du du ou dy
@ - =

dx dx dy dx

du du ou d
b) & = =

dx dy X dx
du Jdu d
(© ==
dx dy dx
of .
3. If f(x y) c C' then of is
(o138

@ filx y) + f2(x y)
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(b) fi(x, y) cosa + fa(x, y) sina

(©) filx, y)sina + fao(x, y) cos a

4. What is the magnitude of the gradient of f(x, y) at a point (a, b)

(@) (fia, b) +f(a, b) )=
(b) (fila, b)* + f2(a, b))
() (fia, b) + f2(a, b))

5. The directional derivatives describes

The rate of change of a function in the direction of each coordi-

(a)
nate axes.
(b) The rate of change of a function in an arbitrary direction.
© The rate of change of a function in fixed direction.
6. Ifu=rf(xy)= thhen the value of du is
y
Ax  xAy
@ " =,
v
Ax — XA
Ol Ay
XAy
() ~, —
v y

Ans: 1. () 2 (3 3. () 4 (3 5 (b) 6. (a
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Exercises 2

1. Define homogeneous function of degree n.

2. Which of the following functions are homogeneous ? Also find its

degree .
VARG

a x— 'y

b) logy — log x

C) X3 +y3 2§

h 7 el =
d) S+ x3el y=%
e) xf L +yg )‘;,

Ans: a) n=], b) n=0, ¢) n=2, d) no, e)n=1
3. State and prove Euler’s theorem and its converse.

4. Verify Euler’s theorem for

(i) £ y) =3+1log .
(i) fOoy) = xsy stan"t ¥ .
5. Explain the concept of total derivatives.

.. d
6. If u=xlog(xy) where x3 +y3 +3xy = 1, find i

x(x2 +y) o
Ans: 1+ Iog(Xy)_
X9#  x
) ., du
7. Ifu=e™(y M),y =msinx and B = cos x, find o
X

Ans: e™(m2 + 1)sinx.
8. Explain the meaning of differential.

9. Define (i) directional derivative, (ii) gradient.

10. If f(x, y) c C* prove that of

oc, = fi(x, y) cos a + fo(x, y) sin a.

11. If
@ fxy) e
(b) fi(a, b)* + fo(a, b)* /=0
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prove that

max i
osas2n 0€, o)

= (f(a, b)> +f2(a, b)?)2 =

where &,, is the direction of Grad f(x, y)| (4,
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BLOCK II

Implicit Functions and

Inverse Functions
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Unit 3

Jacobians

Learning Outcomes :
Upon completion of this unit, students will acquire knowledge

F To understand the notation of Jacobian.
F To distinguish between dependent and independent variables.
F To find inverse of a transformation.

F To find the relationship between Jacobians of a transformation and its

inverse

F To use the change of variable property of Jacobians.

In this unit we discuss the method of finding the derivatives of the solutions
of the system of equations, assumed to exist. We can use Cramer’s rule for
solving simultaneous linear equations.

In solving simultaneous equations we may come across determinants whose
elements are partial derivatives. If the order of the determinants is higher

than two it is worth having a notation for them. Hence the Jacobians were
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introduced.

3.1 Jacobians

Theorem 3.1.1

1. F(u,v,xy), Gu v, xy),f(xy)aglxy € C

2. Ff(x, v), a(x, v), x, ¥)

0, GUf(xy),axy,xy) =0

Fi F2
3. A=

.@: &=

Fs Fo Fi Fs
.G3 Go.
= f - = ’ g Gl GB
1 A 1= = A
G, G, G, G,
=X @=—x

Proof: Consider F(f(x, y), g(x, y), x, ¥) = 0, G(f(x, y), g(x, y), x, y) = O.
Differentiating partially with respect to x we have

Fi(f(x y), a(x v), x, Y)fi(x, y) + F2(f(x, v), g(x, ), X, y)gi(x, y)

+F3(f(x, ¥), g y), x y) =0

and

G(f(x ¥), a(x, ¥), x, V)fi(x, y) + G=(f (%, ¥), g(x, ¥), X, y)g1(x, y¥)

+Gs5(f(x y), g(x, ¥), x, y) = 0.

We can solve the following equations for f; and g, by Cramer’s rule.

F1f1+F2g1+F3:O

and G + G.g: +G3; =0
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Given that,

Fi Fo
A = F1G2 = F2G1 0.
G G,
A —F3 F Fy F
Then fi = ‘A, where A, = ° 2 =—-% 7%
._Gg G2. G3 G2'
A FL —F F. F
g1=A2,whereA2=‘1 S
G, -G, .G G,
Fy Fo Fi F3?
G, G, G, G
Hence fi= —————,g1=— ————

A
Similarly considering

F(fx v), g(x y), x y) = 0,G(f(x y), g(x, ¥), x, y) = 0.
Differentiating partially with respect to y we have

F1f2+F2g2+F4:O

G1f2 + Gggz + G4 = 0

Solving for f, and g. by Cramer’s rule we have

Fi Fa» R R
G, G G. G,
T Q

The notation for jacobian is illustrated below:

Ilustration 1:
Consider three functions F, G, H of six variables u, v, w, x, y, @ appearing in

that order. The Jacobian of F, G, H with respect to u, w, B is

.F1 F3 F6
o(F, G, H) =
S wE) ©
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Ilustration 2:

Suppose we add a fourth function K of the same six variables then

Gz G4 Ge Gi
oG, FKH) _ F3 Fq4 Feo Fu
ow, x B u) :K3 K. Ke K0
Hy Hs He Ha.
Remark 1: Jacobians are often prove useful in obtaining partial derivatives
of implicit functions. We could express the results of theorem 2.4.1 in
Jacobian notation.

Consider F(u,v,x,¥) =0, G(u, v, x,¥) =0, u=f(x, y) and v = g(x, y).

Fy F»
G G -
Then 52 S e,
fl_du_ , where_G G 0
= ox =
Fi Fs 1 2
G: G:
In Jocobian notation we have,
_0(F, G)
f= @ B alx, v)
YT ox O G)’
o(u, v)
Similarly
o(F, G) o(F, G) _0(F, G)
PR ) _ov_ 0uxX) and g.=% _ °@W
T oy 0(FG) - 9T ox o 6) oy  O(FG)’
o(u, v) o(u, v) o(u, v)

Remark 2: We now express the results of theorem 3.1.1 using the same

rule. We have considered the function F(x, y, &) = 0, where B = f(x, y).

fi=——, fo=——", whereF; [=0.
F3 F3
oF oF
. onl -—
Thatisfi=~ = Oox andfo=" = o
ox oF oy oF

. 0 ol
IMustration 3: Consi d er the system

F(uv,w,x)=0,G(u,v,w,x) =0, H(u, v, w, x) = 0.
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Let u, v, w be the dependent variables and x is the independent variable.

Since there is single independent variable, the method gives us the total

du dv dw
dx dx’ dx—

O(F, G, H)
o(u, v, w)

derivatives

We have, for /=0,

9(F, G, H)
du _ (% v, w)
dx o(F, G, H)’

o(u, v, w)

9(F, G, H)

av _ o(u, x, w)
dx o(F, G, H)’
o(u, v, w)

O(F, G, H)
R A7

dx o(F, G, H)
o(u, v, w)

INlustration 4: Consider the system

F(uv,w,xyB) =0
F(uv,w,xyB) =0
F(uv,w,xyB) =0
F(uv,w,xyB) =0

and letu, v, w,x be the dependent variables.

then
O(F, G, H, K)
ox _ Oy v,wi) O(F, G, H, K)
= ’ where
oa  I(F, G H K) o(u, v, w, x)

o(u, v, w, x)
Remark : We can observe that the number of dependent variables is equal
to number of simultaneous equations.
The following results concerning Jacobians are found to be useful in the
problems of change of variable.
INlustration 5:

Let f(u,v,w,x,y,B) = 0,g(u,v,w,x y,B) =0,h(u,v,w,x yB) = 0. The
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above equations define three functions u, v, w of the variables x, y, B. Then
ou ov ow

fl%( +f237)( +f337¢/= _f4.

v

gloig( + g2§( + g3%= —9a.

h1a+h2&+h3&: _h4.

Solving these linear equations, we obtain

ou _ Ofah) 1
Ox ox, v, w) A
ov _ Jd(agh) 1
ox  O(u x w) A
ow _ d(fgh) 1 whereA= olf.q. h) 0.
Ox o(u, v, x) A o(u, v, w)
du dv du 9
Example 3.1.1 If u>—v = 3x+y and u—2v? = x—2y, find u’ _V, u, _V.
Ox Ox Jdy Oy

Solution: The given equations are
Fuv,x,y)=uz2—v—3x—y =0,

Guv,xy)=u—2v2 —x+2y=0.
Then we have o(F. G)
ou _ B o(x, v)
ox o(F, G)
o(u, v)
Fs Fo

Gy G

Fi F2

.G1 Go.

= 1 _4V

1—-12v
= 1 - 8uv’ 1—-8uv O.
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ov o(u, x)

ox o(F, G)
o(u, v)
Fi Fs
G, G
Fi F2
G: G..

2u =3

1 -1

2u -1

1 4.

2u—3

= 1 — 8uyv’ 1—-8uv 0.

.. ., 0 —-2-4 5} —4u—1
Slmllarlywecanfmd—uziv, & - 4 . 1—8uv

oy 1—8uv oy 1 —8uv

3.2 Dependent and independent variables

In the statement of a given problem involving several variables, it is

not always possible to determine from the notation which variables are

intended to be independent and which dependent. One must then state

clearly which variables are dependent and which variables are independent

or else one must treat all possible cases.

. I 0 .
If a partial derivative, such as L appears in the statement of a prob-

ox

lem, we may be sure that one of the dependent variables is y and one of

the independent variables is x. We shall illustrate by use of a number of

examples.
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3.2.1 Illustration 1:

Find di if
ox
u=f£(xy),

y = g(x B).

Here u is the dependent variable and x is the independent variable.
We can have only two cases, since there must be two dependent variables

corresponding to the two equations.

Case ().
Dependent variables : u,

Independent variables: x, y
Differentiating

u =fxy)
(3.1)
y =40

partially with respect to x, we have

du oP]
= fu 0= g1 t0g>
ox ox
So, we get
ou
__=f
ox
op
= _&, where g-> = 0.
ox g-
Case (ii).

Dependent variables :  u, y

Independent variables :  x,
Differentiating (2.4) partially with respect to x, we have

ou o
_ =fitf l’
ox ox
oy
___ =401
ox
Hence
ou o)
= fi + f204, 7)/ = g1
ox ox
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Sometimes, we can use the following notations to distinguish between such

cases:

Case (i). Oy .

ox ox

du&! dyx!

ox ox
The independent variables are used as subscripts against the dependent

Case (ii).

ones.

3.2.2 Illustration 2:

Consider u =f(x, y), y = g(x B).

Find ou
oy
0 )
Case (i). _“y,_ _Xz,_
oy 0oy
ou ox
_ =fi_ tfy
oy ay
X
1= gi___
oy
Ouvp = f, +£,
dy g1
ox 7l 1
—¥E£ == whereg, O.
oy g:
_z,_ CE
Case (i1).
ay dy

In this case the two equations are independent of each other. The first

equation defines u and the second equation defines .

B, 1
—Ldu =f2/ d X:_l g2 0

oy oy g-

3.2.3 Illustration 3:

Find dl, if
ox

v=Ff(xyB),x=g(y,uv).
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dyXUV

ox
The second equation alone is sufficient.

Case (1).

o} o} 1
1=g," = ==, g, /=0
ox ox a1
OYy
Case (ii). Yx
ox
The first equation alone is sufficient
o]
f1 +f2 l =0
ox
oy fi
=> ; = —E fo 0.
cesn OVxi
Case (iii). Yxpu
ox
Both equations are necessary
dy Ov oy ov

fza_a:_fb 9154‘93&:1

Then

d 7] 1 -
Yx,B,u - f1gf; . g1+ fa0s 0.

ox g1+ f203

3.3 The inverse of a transformation

A set of equations of the form
u =f(X, y/ )/ V = g(XI yl )I W = h(XI yl )

is known as a transformation. These equations transforms a point with co-
ordinates (x, y, ) into another with coordinates (u, v, w). If these equations
can be solved for x, y, B, we have three functions of u, v, w. The three cor-
responding equations constitute the inverse of the original transformation.
They would give explicitly the point or points (x, y, B) from which (u, v, w)
could have come in the original transformation.

By using the following method we obtain the derivatives of x, y, @ with re-

spect to u, v, w without actually knowing the inverse transformation.
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Let

F(uv,w,x y B)=u—f(xy Q).
G(u, v, w,xy,B) =v—g(xy,B).

H(u,v, w,x, y,B) =w — h(x, y, B).
Now I(F, G, H)
oy _ o(x,w,D)

ow  O(F, G, H)
o(x, y, B)

fi 0 f3
g 0 g;
hy 1 hg.
o f £
g1 02 (03
h hs hs
o(f, 9)

a(x, B)) a(f, g, h)
3G o, hY where o(x, y, B)

d(x, y, B)

0.

o)} 0
Example 3.3.1 If x=4u+3v, y=3u+2y, find i and 7‘/

oy oy

Solution:
Method (i). Instead of using the above formula, we can find the partial
derivative by direct method.

Differentiating the above equations partially with respect to y we have,

0= 4% + 3@,

dy oy
1= 3? + Zi

dy oy

. 0
Solving for %Y we have
oy
8% + 6i =0,
dy Oy
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9 +6__ =3
oy dy
So
0
M=s
oy
. ov
Solving for __, we have
oy 5
= 4
dy

Method (ii). To find the partial derivative by finding the inverse trans-
formation
xX=4u+3v
= 4u=x— 3v

and y =3u+2v

= 2v=y—3u.
So

and

v —i(—2x+3y)=3x—4y.

-2

Then@=3andﬂz—

dy dy 4.

Example 3.3.2 If F(u, v, g(u, v, x)) =0, G(u, v, h(u, v, y)) = 0, find di
dy

Solution: Differentiating the above equations partially with respect y, we

have

F@+FQ+F d_u+ ov -0
Yoy 2oy 3 g9, '
P 9 P P
G+ T 4Gy T +h S +h, =0
dy dy dy dy
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That is
du ov
(Fr + F3g1) __ + (F2+Fs3g2) _ =0.
dy oy

ou ov
(G1 + G3h1)7y + (Gz + G3h2)gy = —Ggh3.

., Ou
To find 5, we must solve the above equations. This will be possible if
y

_F1+F391 F2+F392_ 0

.Gl + Ggh1 Gz + Gghz.

3.4 Relationship between Jacobians of a transfor-

mation and its inverse

Result 1: Consider the transformation

u =fkxy) (32)
v =g(xy)
o(u, v)

with Jacobian J = a(x V) /= 0. The inverse of the transformation (3.2)

have the Jacobian j = .
o(u, v)
We now find the relationship between the Jacobian of the given transfor-

mation (3.2) and its inverse. Computing the derivatives,we have

0xX _ g»
ou J’
o4_ &
ou J’
ox _ —f
ov  J’
oy _f
ov J
So that
j= g —9. 1 _ J _1
B J2 g2y
—f> fi-
J.j=1
Hence
o(u, v) d(x, y)

o0 ) 0w, v) -
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The above can be generalized to three functions.

Result 2: Consider the transformation

u= f(X/ Y, )
ouv,w) . _ 9dx y, B)
= D =S m LT 50 v
v g(X/ Y, ) d(xl Y, ) J d(u, v, W)

and w = h(x, y, B)

Ji f2 f3
For the determinantJ = g, g» g5,
hy hy hs.
-Fl Fo F3.
the determinant of co-factors is given by K = .Gl Go GSI.
Hy Ha Hs,
LA

For example, the co-factor of g5 is Gs, G3 = — .
- ho.

o . .. .
Then 2% _h 9 _F @ _ Fs \ith similar equations for the
ou J’ Odu J’  Jdu J
derivatives with respect to v and w.

Then

But

.fl f2 f3_ _F1 F2 F3_ J O 0
JK = ‘g1 g2 gs--Gi G» G = 0 J =4
hi h> hs. Hi H> H;, 0 0 J,

we have JK = J3

k=K.
J
so that Jj = 1.
. ., 90(r,.0)
Example 3.4.1 If x=rcos8,y = rsin9, find L2
a(x, y)
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Solution:
x=rcosd, y=rsing

ox Ox
Q()—(’—Z)': 'dr oV
d(l’,ﬂ QX dl
or a9

cosd —rsing

:sin g rcost
= r(cos® 9 + sin® V)

=r
we have,
o(x, y) 09 _
o(r,9) 0lx y)
Hence,
ar.0) =1,
oxy) r

Example 3.4.2 If u = x+y +Buv=y+B uvw = B then show that

ou,v,w) 1

ox y,B)  uv
Solution: Giventhat u =x+y+B,uv =y +B, uvw =B
u=x+y+Pp
=x+uv
=>X=u-—uv
y=uv—0B&

Yy = uv — uvw

Ox Ox 0x
déx, y, % = .
o(u, v, w . gg ?% |
3 on o
' o Iw
1—-v —u 0
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=1 — v)(urv — vrvw + urvw) + u(viu — v2uw + uvcw)

= (1 — v)urv + urv?

= y2y2
ou v, w) oxyB) =1,
d(X/ y/ ) ' d(ul V’ W)

Since

oluv,w) 1

we have .
o(x, y, B) u2v

Example 3.4.3 If x=uv,y = u’ prove that

v d(u, v) o(x, )
Solution:
u
XxX=uv, y=_
v
2
=>Xxy=u
BT
Also ~ =
X v2
ri
=> v = X
y
Now
o(x, y) ox ox
( = oy
ouv Qv
ou Oy-
dv_'
S A7)
v
=_ 4
v
du du
d(u, v) ox OJy
o y) T Ov ov
x Oy’
v Ve
- 2 X 2y
Y
b 1T
VN T2y

0% y) A, v) _ |



oxy) duv)  2u 1

ouv) dxy) v 2

3.5 Change of Variable

u=fxy)v=glxy)
and
x=e(r,s),y =4(rs),

then u and v may be regarded as functions of r and s.

.0
We compute the Jacobian e .
a(r, s)
Direct computation gives

ouv) Ffiertfohr gyt 92(1’:1 o(u, v) 9(x, y)
o(r, s) i +fohs g +gopo. Ix y) o(r. s)

This result is analogous with the formula for the differentiation of a com-
posite function of one variable. It generalizes easily to functions of more

variables.

o)
Example 3.5.1 Find the value of the Jacobian (i(r‘_%;) where u = x2 —

y2,v=2xy and x =rcosd,y =rsind.
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Solution:
u=x2—y2 v =2xy
x=rcosd, y=rsing

() ou Jdu
._ _.

Oox Oy

oxy) Qv Ov
0 uv _0x 0oy

2x =2y

.= .2y 2x.

=4(x2 + y?) = 4r?

ox Ox
d(x,z)z-dr ga-_-cosﬂ —rsin%
oy 9y W Ghe reosd -
‘or 9%’

=rcos?29+rsin?9=r.
o(u,v) _ d(u,v) d(x, y)

Th = .
o) "o y) o 9)
=4r2r
= 4rs,
Summary
If

1. fxy), Fix y,B) € C
2. Fx, v, f(xy)) =0, (xy)inD and

3' FS(X/ y/f(X/ y)) /= 0/ (X/ y) in D

Filx, v, f(x, v))

= fixy)= — F3(% v, £(x, ¥))
Falx, v, f(x. 1))
fa(x y) =

" Fs(x, v, F(x )

.+ Jacobian is a determinant whose constituents are the derivatives of

a number of functions with respect to each of the same number of

variables

« Jacobians are useful in obtaining partial derivatives of implicit func-
tions
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- Jacobian of three functions F, G, H of six variables u, v, w, x, y, B ap-
proaches in that order, respect to u, w, @ is

F, G H
((u o )) G

- In the statement of a given problem involving several variables, it is
not always possible to determine from the notation which variables
are intended to be independent and which dependent. We must state
clearly which variables are dependent and which are independent or

else one must treat all possible cases.

- Asetof equationsoftheformu = f (x, y, B), v = gx, y, @), w =
h(x, y, B) transforms a point with coordinates (x, y, B) into another
with coordinates (u, v, w). If these equations can be solved for x, y,
we have three functions of u, v, w. The three corresponding equations

constitute the inverse of the original transformation.

+ The relationship between the Jacobians J and j of a transformations
and its inverse is J.j = 1.

- Change of variable
If u= fxy)v = glxy) and x = o(r,s),y = ¢(r,s) we have
oy, v) _ 9(u,v) O(x y)
o(r,s)  olx,y) o, s)

Multiple Choice questions

1. The relationship between the Jacobians J and j of a transformation

and its inverse is

a)J —j=1 b)yJ+j=1 oJj=1

ou
i Z7Xy .
2. In the notation 5, What does the subscripts represents
X

a) x and y are dependent variables
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b) x and y are independent variables

c) x is dependent variable and y is independent variable

3. If u and v are functions of x and y while x and y are functions of r
and s, then which of the following is an example of a chain rule for

Jacobians.

o(u,v) _ 9(u,v) 9(x.y)
D 9(r,s) = 9 y)"o(r, 5)
b) olx.y) _ 9y, v) 9(x,y)
oy, v)  d(xy) o(r,s)
¢) Both (a) and (b)

4. If u and v are functions of x and y such that 9w, v) = —4 then
A(x y)
o(u, v)
o(x, y)
b =4
® o v)
odxy) 1
© ou,v) 4
. o)
5 If x = e“cosv,y = e“sinu then the value of oy ) atu = 1 and
o(u, v)
v=0Iis
1
(@ ~
e
(b) e
(c) e

Ans: 1.¢c) 2. b) 3.a 4.c¢) 5 0
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Exercises 3

1.

ol
D xe+y2+ B2 +u2 =1, xy — Bu =2 compute —% and

If F(u, v, x,¥), G(u, v, x, ¥), f(x, ¥), alx, y) € C,
F(f(x, v), a(x y), x y) = 0,G(f(x, ¥), g(x, ¥), x, y) =0,

Fi F>
A= 0, prove that
G Go.
. F3 FQ .F]_ F3
G; G
f=- , g .G G3
1 A 1= A 7
F4 F2. Fi F,
G, G, G, G,
f2 = - A ’ 02} - A ’

. Consider five functions P, Q, R, S, T of six variables u, v, w, x, y, B ap-

pearing in that order. Find the Jacobian of P, Q, R, S, T with respect

tou,w,x [

Find dl if u=f(xy),y=g(x B), where u is the dependent variable
ox
and x is the independent variable.

OB,

d o
_— o X X
S:
u2 —me’ yu + &

If J and j are Jacobians of a transformation and its inverse then prove
thatsj=1
Ifu=f(xy),v=g(xy)and x = ¢@(r,s),y = Y(r, s) then prove that

o(u,v) _ 9(u,v) A(x.y)
o(r,s)  9A(xy) o, s)
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Unit 4

Inverse Functions and

Implicit Functions

Learning Outcomes :
Upon completion of this unit, students will acquire knowledge
F To differentiate implicit functions.

F To understand the concept of functional dependence of two functions.

F To state and prove inverse function theorem for single variable.

F To state and prove the existence theorem for implicit functions.

4.1 Inverse functions

We shall confine ourselves to the existence theorem and inverse function

theorem for single variable only.

So far we have seen situations in which a function has constructed as the

inverse of an already known function.
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For example, the equation x = sin y is used to define y as a function arcsin x
of x. This illustration shows that for a given x, there are inifinitely many
values of y and we are to keep to single valued functions we must impose
some restriction on the permitted values of y.

We shall now give an existence theorem which assure us that, if certain
simple conditions are fulfilled, we can obtain a new function inverse to a
known function.

To proceed further we need the following definition and intermediate value

theorem.

Definition 4.1.1 f is increasing for a < x < b if f (x1)) < f (x2) for all
X1, X2 suchthata < x; < xo < b. If f (x1) < f (x2), we say that f is strictly

increasing.

Theorem 4.1.1 (Intermediate value theorem) Suppose that f is con-
tinuous in the closed interval [a, b] and that f (a) /=f (b). Then f takes every
value which lies between f(a) and f(b).

Theorem 4.1.2 (Inverse function theorem) Let y = f (x) be continu-

ous and strictly increasing for a < x < b. If, for a given x ina < x <

b, f B(x) /= 0O, then the inverse function x = g(y) is differentiable for the
. 1

corresponding value of y and g2(y) ?x)

Proof: We shall first prove the existence theorem:

Existence theorem:

Let f be continuous and strictly increasing for a <x < b. Let f(a) =

¢, f (b) = d. Then there is a function g, continuous and strictly increasing

for ¢ <y < d, such that f (g(y)) =y so that g(y) is the function inverse to

F(x).

Proof of existence theorem:

Let k be any number such that c < k <d.

Then by intermediate value theorem, there is a value h such that f(h) = k.
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Since f is strictly increasing, there is only one such h corresponding to a

given k.

The inverse function g is defined by h = g(k).

To prove g is strictly increasing:

Let y: <y. and y: = f(x1), y= = f(x2).

Then x, and x, are uniquely defined.

If x1 < xo, then, since f is increasing, f(xz=) < f(x=) that is y; < y. which

contradicts the assumption y; < y..

So x; <x. and g is strictly increasing.

To prove that g is continuous :

Given €>0, let f(h — €) =k, and f(h+ €) = ko

Then, Since f is increasing, k; < k < ko and h — € < g(y) < h+ € if
ki <y < ko.

Since € is arbitrary, g is continuous at y = k.

Here k is any number in the open interval (c, d). A similar argument estab-

lishes one sided continuity at the end points ¢ and d.

Proof of the main theorem:

If h £ 0 is given, define k by y + k = f(x + h).

Then k /=0and, if k is given, h is determined uniquely from g(y+k) = x+h.

This shows that

h
fx+h) — f(x)

Let kK — 0. Then, since g is continuous h — 0.

aly +k) —a(y) _
k

h _
k

Hence, we have

go(y) = .
200

Q

Remark : We now state the inverse function theorem (without proof)
for vector valued functions which represents one of the most important

consequences of analysis.
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Theorem 4.1.3 Assume f = (fi, fo, ... fn) € C* on a open set S in R"
and let T = F(S). If the Jacobian ji(a) 0 for some point & in S, then

there are two open sets X =S, Y S T and a uniquely determined function
¢ such that
a) 4 € X and f(@) €Y
b) Y =7F(X)
c) f is one-one on X
h i
d) ¢ is defined on Y, §(Y) = X and § F(x) = x for every x € X

e)geCrtonyY

4.2 Implicit Functions

In unit 1 we have studied briefly the method of obtaining the derivatives
of functions defined implicitly. We now study the method in more detail.

Consider an equation of the form
F(x,y,@)=0 (4.1)

It cannot necessarily be solved for one of the variables in terms of the other
two . For example, the equation x2 + y2 + P2 + g2 = 0 has no solution if
a /=0. Evenifa =0, theequation does not define & as a function of (x, y)
in any domain but only at the point (0, 0).

We shall give later a sufficient condition that there should be a solution.
Here we shall discuss the method of finding the derivatives of the implicit
function if it is known to exist. We shall assume that@ = f (x, y) exists

and satisfy equation (4.1)

F(xy,f(x y)) =0

We shall compute the partial derivatives of f(x, y) in terms of F.
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4.2.1 Differentiation of Implicit functions
Theorem 4.2.1
1. f(x,¥),F(x,y,B) € C*

2. Fxy,f(,¥)) =0, (xy)in D and

3' FS(X/ y/f(X/ y)) /: O/ (X/ y) in D

Fi(x, v, f(x, ¥))

ZhON =T 0 f )
Fa(x, v, f(x, ¥))
fa2(xy) =

" Fs(x, v, F(x V)

Proof: Consider F(x, y, f(x, y)) = 0.

Differentiating partially with respect to x and y, we have

Fi(x, v, f(x, v)) + F3(x, v, f(x, ¥)).fai(x, y) =0

and F2(X/ y/f(xl y)) + F3(Xl y;f(xz )/))-fz(X, y)' = o

We have

Fi(x, v, f(x, ¥))

 Fs(x v, f(x )
Fa2(x v, f(x, ¥))
and f (% ¥) =~ £« ) F(x )

Lk y)=

Q

onrl
Example 4.2.1 If F(x, y,B) = x> +y>+B> _ 6, compute — at (1, —1,2)
ox s

Solution: Equation (4.1) now defines the two explicit functions

N N
= 6—x2—y2 B=-— 6—x2—y2

From Theorem 4.2.1, we have

B Fi(x, v, f(x, v))
Fs(x, v, f(x, v))

f1(X,y):

FI(X/ ,V,f(X/ y)) = 2X = Fl(l, _1, 2) = 2
FS(X/ y;f(X/ y)) =208 = Fg(l, —1, 2) = 4,
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oe
Now = = —2= -4

Oox
By the explicit method,
X (
B=,6—x2—y2=(6—x2—y2)s2,
= L 2 _1 2 )= x
Ox 2 —X — VY2 "> - X
o] 1 1 B 6 — x2 — y2
oxlo—="Ve 1=,
Remark : Consider the equation
F(x,y) =0. (4.2)

Suppose y is a function of x, then we can compute its derivative in terms

of F.
We have
dy
Fi+F” =0 (4.3)
dx
dv_=—E o
dx Fs
) du
Example 4.2.2 If u = f(x, u), find __.
dx

Solution: This is a special case of equation (4.2) where F(x, u) = f(x, u)—

u.

Then
F
dU _ 1 _ fl(X/ U) , fz(X, U) 1

dx F- folx, u) — 1

Example 4.2.3 If u = log(x + u), find °

dx
Solution: Given u = log(x + u).
We have F(x, u) = f(x, u) — u.
1
du _ _filxuw) _  x+uy —— =1
dx foouy—1 ——_ 1 1-x-—u
x+u
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ou 0
Example 4.2.4 If u = f(a(x u), h(y, v)), find °°, °".
Ox dy

Solution: This is a special case of equation (4.1). We have

F(x, y, u) = f(g(x, u), h(y, u)) — u.

Q
<

f194

, figa+foho—1 O

QY
%

f192 "}f?.’h2 -1
= — 21 , f1g2 +f2h2_1/= 0-
oy fig2 + faho — 1

4.2.2 Higher order derivatives

We may compute the higher derivatives of functions defined implicitly.
Consider the equation F(x, y) = 0, where y is a function of x.

Then

dy  F
F=_7 RJ/=0

- 7

d F.
X * dy dy
d2y F2(F11+F126E)_F1(F21+F22d7)
ax> F2
Fi Fi
Fo FutF —— —F1 Far+Fax ——
_ - e FL Fs
F2F
FoFii — FioFy — FiFoy + 222
= _ 2
F3
_ FuFg — (Fio+ Fo)FiFo + FouF?
— F:23

. . (o)
Remark : Consider the equation F(x, y,2) = 0. If bl is required, we
dy ’

may be sure that x is the dependent variable and y and & are independent

variables. Then we find
ox 52 ox -3
—=_"° —=_ F. /=0
dy Fi om F1 '
o) F o) F
_z = _ l/ _Z = _ ?: F2 /: 0-
ox F o onrl F >



4.3 Existence Theorem for Implicit Functions

Let F (x, y) be a function of two variables and y = f (x) be a function
of x such that for every value of x for which f (x) is defined, F (x, f (x))
vanishes identically, that is, y = f (x) is a root of the functional equation
F (x, y) =0. Theny = f (x) is an implicit function defined by the functional
equation F(x, y) = 0.
It is only in elementary cases, such as those given above, that it may be
possible to express y as a function of x (i.e., determine the implicit func-
tion). For more complicated functional equations no such determination
of implicit function is possible. The difficulty of actual determination of
an analytical expression does not rule out the possibility of the existence
of the implicit function or functions, defined by a functional equation; the
actual determination may demand new processes or may be, from a prac-
tical standpoint, too laborious. We now consider an existence theorem, a
theorem that specify condition which guarantee that a functional equation
does define an implicit function even though actual determination may not
be possible. For many purposes, however, it is the fact that an equation
does define a function, rather than an expression for the implicit function
thus defined, that is of real importance; hence the significance of Existence
theorem.
We shall show that if F(xo, yo) = 0, Fa(xo, ¥o) /= 0, then the equation
F(x, y) = 0 can be solved for y when x is in a two sided neighborhood of

Xo.
Theorem 4.3.1 (Existence Theorem for implicit functions)

1. Fxy) €C, |x—xo| <6, ly—yol <6

2. F(Xo, ¥Yo) =0 and

3. Fa(xo, ¥0) /=0

= There exists a unique function f(x) and a positive number n such that
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A. Yo = f(xo0)
B. F(x,f(x)) =0, [x—xol<n

C.fx)ec, |x—xl<n

X= xo
++4+++ [+ +++ 4+ .
X8, Yo +0)
Xo—5 Xo—ﬂ Xo Xg 4 n xc+6 y= yo
X+, Yo—4)

Figure 4.1

Proof: We now prove the existence of a function f (x) and a positive num-
ber n satisfying hypothesis A, B, C.

Given that F; and F, are continuous in the neighbourhood

Ix — xo| <6, |y — vo| < & of the point (xo, yo).

Then F is differentiable and hence continuous in this neighbourhood.

Given Fa(xo, yo) /= 0.

Suppose that Fa(xo, yo) > O.

Fo(Xo Vo)

Since F. is continuous we have, Fz(x, y) > ”

in a whole neighbor-

hood of (xo, yo).

Let us assume that neighbourhood to be original 6— neighbourhood.
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Clearly F(xo, y) is a strictly increasing function for |y — yo| < 6.
Hence F (xo, Yo + 8) > F(xo, ¥o) = 0, F(xo, Yo — ) < F(xo, ¥o) = 0.
By continuity of F(x, yo + 6) and of F(x, yo — &), there exists a positive

number n such that

F(x,yo+8)>0,F(x,yo —86) <0, |x—xol <n.

A continuous function passing from positive to negative values must pass
through zero.
Thus for each x in the interval xo — n < x < xo + n, there is just one value

of y, which we call f(x) between y, — 6 and y, + & where F(x, y) = 0.

To prove uniqueness
We now show that y = f (x) is a unique solution of F (x, y) = 0. That is

F (x, y) cannot be zero for more than one value of y between y, — 6 and
Vo + 6.
Suppose there are two such values of y; and y. between yo, — 6 and y, + 6

such that

F(x,y.) =0 and F(x, y.)=0.

Also F(x,y) considered as a function of a single variable y is derivable

between y, — 6 and y, + 6.

So that by Roll’s theorem F, = 0 for a value between y; and y.. This
contradicts the fact that Fa(xo, yo) 0.
Hence our assumption is wrong. There cannot be more than one such y.

From the definition of f(x) we have

f(xo) =yoand F(x, f(x)) =0, |x—xol<n

To prove C. Let

yl:f(xl)/ XO_r’<X1<X0+r’.

yi+t Ay =f(x1 +Ax), Xo—nN<xi+Ax<xo+n.
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Then, by the law of the mean for functions of two variables,

FOa+Ax,yi +Ay) =0

= Fi(x1 + OAX, y1 + OAY)Ax + Fo(0q + OAXx, yi + FAY)AY, 0 < 0 < 1.

This equation shows first that Ay — 0 as Ax — 0.

For, the first term, and hence the second, approaches zero as Ax does.
But since the first factor of the second term is greater than Fa(xo, y0)/2,
that term cannot approach zero unless Ay does.

Secondly, the above equation enables us to compute Ay/Ax.

Finally, using the continuity of F, and F,, we obtain

fo0¢) = lim Ay _ Rl
AX—@AX F2(X1, )/1)

This quotient is a continuous function of x;, [y: = f (x1)], so that f € C.
This completes the proof of the theorem. Q
Remark : The theorem can easily be generalized to include functions of
more than two variables.

For example, the equation F(x, y, @) = 0 can be solved for B when (x, y) is
near (xo, o) if F(xo, Yo, Blo) = 0, F5(xo, Yo, Blo) 0.

We now state the implicit function theorem (without proof) for vector val-

ued functions.

Theorem 4.3.2 Let f = (fi, f, ..., f) be a vector valued function defined
on a open set S in R"+* with values in R". Suppose that § € C* on S.
Let (%o; th) be a point in S for which F%; t) = 0 and for which the n X n
determinant deth D, f(%o; 1.‘90)I £ 0. Then there exist a k dimensional open
set To containing to and one, and only one, vector valued function ¢ defined

on To and having values in R" such that

a) §€Cron T,
b) g(ﬁo) = ﬁo

) Fg@);t) =10
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4.4 Functional Dependence

Two function f(x, y) and g(x, y) may be functionally dependent if there

exists a function of a single variable F(&) such that

glx y) = F(f(x y))-

Example:

Suppose
f(x y) =sin(xz +y2), g(x, y) = cos(x? + y2),

there exists a function of a single variable F (&) such that

alx y) = F(f(x, y)) (4.4)

that is F(&) = cos(sin™* &).
The Jacobian
o(f g) . 2xcos(x*+y2)  2ycos(x®+y?)
%Y 5 sinxe+y2) —2ysin(x +y2)0
Note: We shall see that the vanishing of this Jacobian is a characteristic
of functional dependence.
Remark:
We observe by virtue of equation (4.4) that if f and g are functionally
dependent, then their Jacobian is identically zero:
of.a) fi LE

9. f1F% B> FFL =
d(X/ y) f fFE

2
We shall now prove the converse part, that is under certain conditions the

vanishing of this Jacobian implies the functional dependence of f and g.

Theorem 4.4.1

1. f(le)lg(le)Ecl |X_X0|<5; |y_y0|<(s

o(f, a)

2 o0y =

0, Ix—xl<6ly—yol <6 and

88



3. falxo,¥0) O

= There exists a function F(B) and a number n such that

g y) = FUxy), Ix—xl<nly—yol <n.

Proof: Let B, = f(x,, ¥o). Then by the generalization of Theorem 4.3.1

to functions of three variables mentioned above, the equation

flxy) —B=0 (4.5)

can be solved for y. That is, there exists a function ¢(x, B) such that the

equation
y = ¢(x B) (4.6)

is equivalent to (4.5) in an n— neighborhood of the point (x,, yo, Bl,). Also

@.(x, @) can be computed in terms of f by the usual rule:

o) = TN - o) 4.7)

f2 6(1 y )
We shall now compute the derivative of g(x, ¢(x, @)) with respect to x, using

(4.7) and hypothesis 2:

0
ch(X’ o(x, B)) = g, + g.:(x, B)
X

fa-
f-

2 142

fo
1
£ [f.g- — g.f]

10(fq) _
_de(X,y) —0/ |X_Xo|<’7; |y_y0|<’7'

=0, -

Integrating this equation, we obtain

glx @(x B) = F@), [x— x| <n, |B—Bl<n

for some function F(@).
Finally, substituting B = f (x, y) in this equation

we have

a(x, (x, @) = F(f(x, y)).
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Since equations (4.5) and (4.6) are equivalent near (xo, yo, B,) we have
o(x,B) =@ f(x,y) =y
so gl @(xB) =gxy) = F(f(xy)), Ix—=Xl|<n, |y —yol<n.
This completes the proof. Q
Remark 1: Hypothesis 3 could be replaced by fi(xo, yo) /= 0. Then equa-

tion f(x, y) — @ = 0 can be solved for x and we have the same conclusion.

Remark 2: Suppose gi(x,, ¥o) /= 0 or g.(x, yo) 0 we would show that
f(x y) = G(g(x, y)) for some G(®).

Example 4.4.1 I[fu=xy +yBl +Bx, v=x2+y2+BPand w=x +y + B,
determine whether there is a functional relationship between u, v, w and if

so, find it.

Solution:

u=xy+yel + Blx
V=X2+y2+2

w=x+y+0

ou Ju Ju
— ‘ox gy e#’
o(u,v,w) _.ov Q¥ Q.
d(X, Y, ) - ox dy orl
.Ox

y+B B+x x+y,
= 2x 2y 2P

1 1 1

x+y+ x+y+ x+y+

=2 x y
1 1 1
1 1 T
=2x+y+B) x y @
:1 1 l:
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Hence the functional relationship exists between u, v and w.

Now,

w2 = (x+y +0B)?
=x2+y2 + @2 + 2(xy + y& + Blx)
=v+2u

>w'—v—2u=0

which is the required relationship.

Example 4.4.2 Verify whether the following functions are functionally de-

pendent, and if so, find the relation between them.

Xty
u= ,v=tan"'x + tan-ly
1—xy
Solution:
X + y
u= ,v=tan"!'x + tan-ty

1—xy
ou Jdu

ou, v) © ox oy’
oxy) ~ v ov
'ox Oy

Lty TEx
.(1W)2 (L—l*ﬁz.

(1 2 2
lIx 1+y
— 1
2 2
—q ) (1 -x)
Hence v, v are functionally gependent.
+
tan"'x+tan"'y = tan™* XY —tanty

1_
=>v=tanlu

= u=tanv.

Example 4.4.3 Verify whether the functionsu =xy, v =x+y +B w =
xy +2(x+y +B) are functionally dependent , if so, find the relation between

them.

91



Solution:

u=xy,v=x+y+Bw=xy+2(x+y+[)

ou OQu Jdu
‘ox ey 68’

d(U, v, W) _ ov M M

olx y,B)  Ox dy

ow
.0X
4 X
= 1 1
y+2 x+2 2.

=y2-x—-2)—x(2—y —2)
=0
Hence v, v are functionally dependent.
u=xy
v=x+y+PQ
w=xy+2(x+y+B)

w=u+2v.

4.5 Simultaneous Equations

We denote a set of four numbers (u, Vo, Xo, ¥o) as a point in four dimen-

sions and to the set of values (u, v, x, y) for which |u — u,| < 6,

[v—vo| < 68, | x—xo| < 6, ly—yol| < 6, as a 6— neighbourhood, Ns(uo, Vo, Xo, Vo),

of that point.

Theorem 4.5.1

1. F(uv,xy),GU,v,xy) € C in Ns(ue, Vo, Xo, Vo)

2. F(Uq, Vo, Xo, Yo) = G(Uq, Vo, Xo, Yo) = 0 and

O(F, G)

3. a(u, v)

0 at (Uo, VO/ XO/ yO)
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= There exists a unique pair of functions f(x,y), g(x, y) and a positive

number n such that

A fxy),agxy)€C,  Ix—xl<nly—vyol<n

B f(XOI yO) = UO/ g(xo, yo) = Vo

CF(f;g/X/y):G(f;g/X/y):O/ |X_Xo|<’7/|y_yo|<’7

d(F, G)
o(u, v)
are zero at (U, Vo, Xo, Yo)-

Proof: Given that /=0 at (Uo, Vo, Xo, Yo). SO Not both & and F,

Assume that F, /=0 there.

Then from the generalization of Theorem 4.3.1 , there exists a unique func-
tion h(v, x, y) such that h(ve, Xo, ¥o) = Uoand F (h, v, x, y) = 0 in some
neighborhood of (vo, xo, Vo).

Differentiating partially with respect to v, we have

F.h, +F, =0

We now solve the following equation for v.
G(h(v, x, ¥),v,x,y) =0 (4.8)

To solve this we need the derivative of the function with respect to v is not
equal to zero at (vo, Xo, Vo)-

Differentiating partially with respect to v we have,

G,h, +G, =G, -+ Gy
Fu
— _(;u,_:g__c;gfu
Fu
1 o(F, G
1 o(£.G) 0 at (vo, Xo, Yo)
F, 0(u,v)

Hence, there exists a unique function g(x, y) which is equal to v, at (x,, yo).
g(x., ¥o) = vo, Which makes equation (4.8) an identity near (xo, yo) When it

is substituted for v.
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Now set £ (x, y) = h(g, x, ).

It is easy to prove that

fy) € Ix—xl <n ly —yol <n
S (X0, ¥o) = Uo
and  F(f, g(x, y)) = 0.
Hence all the conclusions of the theorem are satisfied. Similarly we can

prove the theorem if F, /= 0. Q

Summary

+ We can compute higher derivatives of implicit functions

- We are given a functional relation ¢(x, y, B, ..., t) = 0 connecting n
variables and it is not in general possible to solve this equation to
find an explicit function which expresses one of these variable say x
in terms of the other n — 1 variables such function are called implicit

functions

- The inverse function theorem for single variable Lety = f (x)
be continuous and strictly increasing for a < x < b. If, for a given

x ina < x < b, f 2(x) /=0, then the inverse function x = g(y) b

. . . 1
differentiable for the corresponding value of y and g2(y) =__

)

Existence theorem for implicit functions

1. F(x,y) €C, |x—xo| <6 1ly—yol <6

2. F(xo, ¥o) = 0 and

3. Fa(xo, ¥0) /=0

= There exists a unique function f(x) and a positive number n such
that

A) yo = f(xo)

B) F(x, f(x)) =0, [x—xol <n
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C) fx) e, |x—xl<n

+ Two variables f (x, y) and g(x, y) may be functionally dependent if

there exists a function of a single variable F () such that g(x, y) =

F(f(x v))

L fey)agxy) €C Ix—xl <8 |y —yl <6

of.a) _
To(xy) T
3. fz(Xo, yo) 0

2 0, Ix—xl<6|y—yol<6and

= There exists a function F(&) and a number n such that
ax y) = FFx ),  Ix—=xl <n, ly —yol <n.

« If f and g are functionally dependent, then their Jacobian is identi-
cally zero.

* Iff (X/ y)/ g(X/ y) € Cl/ |X - X0| < 6/ |y - y0| < 6andf2(Xo, yO) /:O

then vanishing of the jocobian implies the functional dependence of

f and g.
Multiple Choice questions

1. If u=f(x, u), then di is
dx

Lt b) —F ) =F
F. Fi Fa

2. Choose the correct statement.
a) If fand g are functionally dependent, then their Jacobian is iden-
tically zero.
b) If f and g are functionally dependent, then their Jacobian is never
zero.
c) If f and g are functionally dependent, then their Jacobian is either

non-zero or 1

. Ifu=xy,v=x+y+0 w=xy+2(x+y+0) then

olu,v,w)
@ o(xy,B) 0
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(b) o(u, v, w) _q
o(x, y, @)

o(u, v, w) _

T

Ans: 1.c) 2. a) 3.3

Exercises 4

1L Iff(xy), Fixy,B) € C, F(x,y,f(x,y)) =0, (x,y) in D and

Fs(x, v, f(x, ¥)) /=0, (x, y) in D, then prove that
—Fi(x v, f(x, ¥)) —Fa(x, v, f (X, ¥))

filx y) = , falx y) =
N = e P T TRy foo )
., 0 0
2. If loguy +ylogu = x, find land L
(v +v) you o
Ans: — ,
u+tyulogu 1+ylogu
. d?u .
3. Find F if u= |Og(X+ U).
X
. orl
4. If sinBy = cosBlx, compute whenB =mx="'y ="
ox 3 5
Ans: -2

5. State and prove inverse function theorem for single variable.

6. State and prove existence theorem for implicit functions.

o(f, q)
7. If .f(xly)lg(xly) € Cll d(X,y): 0/ |X - X0| < 6/ |y - yOl < 5;

fa(xo, ¥o) /= 0, then prove that there exists a function F(&) and a

number n such that

g(x, y) = F(f(X, y))l |X_X0| <n, |y _y0| <n.

8. If Flu,v,x y),G(u, v, x, y) ¢ Ct in N5(u8,(l\__/o,G)§o, Yo),

o(u, v)

then prove that there exists a unique pair of functions f (x, y), g(x, y)

F (Uo, Vo, Xo, Yo) = G(Uo, Vo, Xo, Yo) = 0, 0 at (uo, Vo, Xo, Yo),

and a positive number n such that

A fxy),axy) €C,  Ix—xol<nly—vyol <n

B f(X0; yo) = Uo, g(Xo, yo) = Vo

CF(axy)=G{Fagxy)=0|Ix—xl<nly—yol<n.
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BLOCK III

Taylor’s Theorem and

Applications






Unit 5

Taylor’s Theorem

Learning Outcomes :
After studying this unit, students will be able

F To derive Taylor’s theorem for two variables.

F To find Taylor’s expansion of given functions.

F To find the Maclaurin’s expansion of given functions.

5.1 Taylor’s Theorem for functions of a single vari-

able

We state below Taylor’s theorem for functions of a single variable and

also the familiar Lagrange and Cauchy remainder.
Theorem 5.1.1 (Taylor’s Theorem)

1. f(x)eCc™, |x—al<h
A C) I N

= f(x) = T k—a) + f (1)
k=0 . a

dt, |x—al <h.
n!
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Lagrange remainder

1. f(x) e CcC™y,  |x—al| <h

n (k)
= f() = Zf_l@(x —a)“ +R,
eo k!
— gn+1 }x (X - t)n — f(n+1 (X — a)n+1
where R, = f"(X) ) Tdt—f( )(X) oo <X <x

Cauchy remainder

1. f(x)eCc™y, |x—al <h
n (k)
>
= f) =
k=0
(x—Xx)"
where R,, = f1+1(X) T(x —a), a<X<x

k! "

5.2 Taylor’s Theorem for Functions of two vari-

ables

Theorem 5.2.1

1. foy) € C™  x—al < |hlly — bl < |k

21 e} j

0
= fla+hb+k)= ., h_*+k= f(ab)+R, (5.1)
j=OJ! ox oy

where

R,= '@-%) ; 9 2 "fla+ht b+kt)dt
0 n! ox oy
1 o) n+1

= h_+k—
(n +1)! Ox dy fla+8hb+9k), O0<v<l

Proof: Let (x, y) be a point in the domain under consideration such that
x=a+thy=b+tk (5.2)

where 0 < t < 1 is a parameter.

Consider a new function,
F(t) =f(x y) =f(a+th, b+tk) (5.3)
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Clearly F (¢t) is a function of a single variable. Since the partial derivatives
of f (x, y) of order (n +1) are continuous in the domain under consideration
F(+1(¢t) is continuous in [0, 1].

Expanding F(t) in Taylor’s series

2 t? n) tn+1 (n+1)
—r (O)+....+—F — (9t), (5.4)
_ + + , (5.
F(t) = F(O)+tF (0)+,,F n (0)+ (n+ 1)
E .
F (l) — F(/)QIOQ N 1 (1 — It)" F(n +1)(t)dt
j=p / 0 n:
)] (n+1)
_=F (0 +E )
=0 ! (n+1)!’
= F(0) + F2(0) st Fo2(0) +.... w1 F(™M(0) + FO+1(9), (5.5)
2! n! (n+1)!
where 0 <9 < 1. Now
F(t) = f(a+ th, b + tk)
Fo(y =~ _ of ox  of oy
ot Ox Ot dy ot
= hci + kci
ox oy
e} 9
= h~ +k f(a+th, b+ tk)
ox dy
g g =2
FP()= h~ +k f(a+th, b+ tk)
ox o)
o] Jd n
FO@y= h— +k= fa+th b+tk)
ox oy

n+1

9 .0
F+0(¢) = ha + kcﬂ/ f(a +th, b+ tk)
X

Putting t = 0 in the above results upto n derivative

F(0) =f(a, b)

) 0
F2(0)= h~ +k~ f(ab)
ox oy
o) d =2
FOP@)= h_—~ +k- ,b
© ox o f(a, b)
D he +k 2 "
F(m () = L b
© ox oy f(a, b)

Putting t =9 in F"+1(t), 0<9<1

Q o n+t
F(n+1)(0) — hd + k d_y f(a +Oh, b+ Uk),
X
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Also F(1) = f(a + h, b+ k).

Using all the above in (3.5)
=1 9

b J
h +k=  f(ab)+R,

= fla+h b+k) = .
jeodt Ox dy

where

R, = 1 (1 - t)n A Q e Q n+1f(a +ht,b+kt)dt
o n! ox oy
1 o) n+1
= (n+1)| hd +kd_y f(a+0h/b+l9k), O0<o<1
! X

Here R, is called the remainder after n® terms, the theorem is called

Taylor’s theorem with remainder or Taylor’s expansion about the point

(a, b). Q
Remark 1: Maclaurin’s Theorem or Maclaurin’s expansion
(0,0 1 ,9,,9 ¢
,y) = (0, 0)+ 0,0)+_ 0,0
feo) =FO.0+ X FY 0,047, X Y f(0,0)
1 o) g "
+o+ - ty= f +R,
nl de dy (0’ O)
1 o g n+t
where R, = x ty= f(Ox+ %), 0<O<Ll

~(n+1)! ox oy
Remark 2: Taylor’s Theorem can also be put in the form:
1
fla+h,b+k)=f(a, b) + df(a, b) +_2,d2f(a, b)

1 1
+...+ d'f(a, b))+  d"*f(a + Oh, b+ k),
n! (n+ D!

where 0 <9 < 1.

Remark 3: The Theorem can be extended to any number of variables.
Remark 4: Another form of Taylor’s expansion about the point (a, b) in
powers of x —a and y — b.

Putting, t =1 in (5.2) we have

x=at+h=>h=x—a y=b+h=>k=y—0>b

From (5.1)

foon =fab)+ x_a)2 +( _b)2
Oox oy

f(a, b)

1 9 9 *
"'2! (X_a)dx+(y_b)dy f(a,b)

1 o) o "
..o+ (h—g) *(y_p) T +
S (x a)dx (y b)dy f(ab) + R,
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where

— 1 _ o) _ 0o n+1 B -
Ro= Thanyn O Do T, F(a+(x — a)d, b+(y — b)J),
O<d<l
That is

1 2] 5 J
fxy) :jzoj! (x—a), +(— b)d_y f(a, b) +R,

_ 1 _ 0 B g n+t

Rn = (n+1)! (x—a), *+—b) oy £(r,s),

where r = a+9(x—a),s = b+9(y—b), 0 < 9 < 1 after the differentiation.

Remark 5: Taking n =0 in equation (5.1), we have

o} 0 o o} o)
fla+hb+k= h_ *k fla,b)+ h— *k~  f(a+0h b+0k),
ox oy ox oy

O<Uo<l
f(a+ h, b+ k) =f(a, b) + hfi(a + Sh, b + 8k) + kf(a + Sh, b + 9k)
fla+h b+k)—f(a b) = hfi(a +Oh, b + 9k) + kf-(a + Oh, b + k) (5.6)

where 0 < 8 < 1. This equation is known as the law of the mean for function

of two variables.

Note 1 : For third and more order derivatives are zero,

£00v) =F(a, b) + (x — afla, b) + (v — b)fu(a, b)
t5 (x— 0)*fula, b) + 2(x — a)(y — b)fia(a, b)
+(y — b)*f22(a, b)

Note 2: For n =3, (higher derivatives are not zero)

00 y) =f(a, b) + (x — a)fi(a, b) + (v — b)fu(a, b)
h
+r (= @)%fu(a, b) + 20— o)y — b)fulc, b)
i
+(y — b)*fz2(a, b)
h

+3_]!- (X — G)3f111(0X, 19'y) + 3(X — a)2(y _ b)fuz(l?X, 0y)

1
+3(X - G)(y - b)2f122(19'X, l?y) + (y — b)3f222(0X; 19}/)

Example 5.2.1 Expand f(x,y) = x> + xy + y? in powers of (x — 2) and
(v —3).
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Solution:

Function Value at (2, 3)
foy) =x2+xy +y2 f(2,3)=19
fi=2x+y f(2,3)=7
fa=x+2y f2(2,3)=8
fu=2 fu(2,3)=2
for =2 for =2
fiz=1 fia=1

The values of third and higher order partial derivatives of f are zero.

By Taylor’s expansion about the point (2, 3)

fxy) =f(2,3)+(x = 2)/1(2,3) + (v — 3)f(2,3)

"‘i (x = 2)%fu(2,3) + (v — 3)*f2(2,3) + 2(x — 2)(y — 3)f1=(2, 3)

we have

fxy) = 12+[7(X—2)+8(y—3)]+lz 2x—2)*+2(y —3)*+2(x — 2)(y — 3) .

Example 5.2.2 Obtain Taylor’s formula for the function e+’ at (0, 0) for

n = 2 and write the remainder.

Solution: The values of third and higher order partial derivatives are not

Zero.

For n =2, the Taylor’s formula about (0,0) is

f(x, y) =£(0, 0) + [xf:(0, 0) + y£(0, 0)] _
+ le hXzf 11(0, 0) + 2xyf12(0, 0) + y2f22 (0, 0)I

+31! hx3fm(0x, 8y) + 3x2yfi12(0x, Oy) + 3xy2fiza (0, ﬁy)_

[

+y3fana(9X, Oy)

where 0 <9 < 1.
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Function Value at (0, 0)

fxy) =e* f(0,0)=1

fr=ex £(0,0)=1

fa=exY f2(0,0)=1

S = e fu(0,0) =1

f22 =Y f22(0,0) = 1

fiz = f2(0,0) =1

Function Value at (x = 9x,y = 0y)

fin = ety Fia(Ox, Oy) = @)

faoo =V fana(9x, Oy) = e@x%)

Sz =& f12(Ox, By) = e@*%)

S22 = VY Froa(9x, By) = @)
Hence,
et =1+ (x+y) +—l l(X2 + 2xy + y?) _,_—1I(x3 + 3x2y + 3xy2 + y3)e )

=1+ (x+y) +—- (x+y)*? +—1 (x+ 5)-36'9(’(#)

2! 3!

Example 5.2.3 Iff(x y) € C, g(x y) € ¢, f(0,0) =g(0,0) =0, g2(0, 0)+

g3(0,0) O, Find lim J;%('_S as (x, y) approaches (0, 0) along line y = Ax.

Solution: By Taylor’s theorem

fx y) = (0, 0) + fu(Ox, Oy)x + f2(9x, Oy)y
= fi(Ox, Oy)x + fo(Ox, Oy)y
g(x, y) = g(0, 0) + g:(F:x, Ouy)x + g=(Fx, By)y, 0<9 0y <1.

Taking limits (x, y) — (0, 0) along the line y = Ax.

. fey) . f1(Ox, OAX)x + fo(9x, GAx)Ax
lim = lim
glx, y) x—e gi(F:x, HAX)x + go(F:x, F:1AX)Ax
_ (0, 0) + A£»(0, 0)
91(0, 0) +g=(0, 0)

where g¢4(0, 0) + Ag»(0, 0) /= 0.
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Example 5.2.4 Expand sinxy in powers of (x—1) and (y —%) upto second

degree terms.

Solution: By Taylor’s expansion about the point (1, ) upto second order
JT T It Tt
FoM) =fL 5)+ (= DAL )+ = 5 )
1 /5 b/ b/
ol (x — 1)%fu(3, _2) +(y — E)Zfzz(li _2)

20— D)y — 5 Mfuall, ) oo

Function Value at (1, 5)

f(x y) =sinxy fL%=1

fi =ycosxy f1(1, 32)=0

fa = xCOS xy f2(4, i) =0

f11 = —y2 Sian f11(1, 22) = —%

f22 = —x2sinxy f22(1, i) =-1

fiz = cosxy — xy sinxy fi2(1, i) = i
Therefore,

sinxy =1+ (x—1)(©0)+ y— 5 (0)
! '

1 2’ m 2 non
G0 T+ oy, (DF2A-D) vy, + .

NN

2 1 n % n i3
=1 —x-1>-2 y—7 +7 1 -+
Example 5.2.5 If f(x, y) = x> — 3xy + 2y use the equation
f(a+h, b+k)—f(a, b) = fi(a+5h, b+Ik)h+f.(a+5h, b+3k)k, 0<o<1

to express the difference f(1, 2)—f(2, —1) by partial derivatives and compute
0.

Solution: Herea+h=1,b+k=2,a=2,b=—-1.S0h=-1,k=3.

a+tvdh=2-13

b+ 0k =39 -1
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fxy) =x2 — 3xy + 2y
fi(x, y) = 2x — 3y
folx, y) = —3x + 4y

f(1,2)=3f(2 -1)=12

f(l, 2) _f(2; _1) =-9

By using the given equation

f,2) = (2 -1) = (=122 — 9) - 339 — 1)] + 3[-3(2 — 9) +4(30 — 1)]

=4-20+990-3-18+90+360 — 12

=569 — 37.

S0 569 —37=-9, z9=£=

56

Example 5.2.6 Expand x3 — 2xy? in

check by algebra.

Taylor’s series (a =1, b = —1) and

Solution:
Function Value at (1, —1)
f(x y) = x3 — 2xy> f(1,-1)=-1
fi=3x> —2y? fi(l, 1) =1
fo=—4xy f(1,-1) =4
fi1 = 6x fu(l, —1)=6
fao = —4X for(l, —1) = -4
Jfiz=—4y fia(1, —1) =4
fi11=6 fin(1, —1)=6
fo22=0 fos2(1, —1) =0
fu2=0 fu2(l, —1) =0
fi2 = —4 fiea(1, —1) = —4

All the partial derivatives of order four are zero. Hence the remainder

R, =0.
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The required Taylor’s expansion will be

) L ~1) [~ DAL ~1)+ ¢+ DF(L ~ )]
47 O 1l 1)+ 200~ )y + DfialL, —1)

) i

HY + DFeell, ~1)

h
+_;! (x = D3fin(L, —1) + 3(x — 1(y + Dfia(L, —1)
i

+3(X — l)(y + 1)2f122(1; _1) + (y + 1)3f222(1r _1)

Substituting all the values we have,

h .

f(X,y)=—1"'()(—1)‘*4()""1)"‘126()(—1)2"‘8(X—1)()""1)—4()""1)2I
H .

+% 6(x —1)3 — 12(x — 1)(y + 1)2I

We can check the above result by algebra.

RHS of the above equation

=—1+x—1+4y+4+3(x> —2x+1)+4(xy —y+x—1) —2(y>+2y +1)
+x3 —3x2+3x — 1 —2xy2 —4xy — 2x+2y2 +4y +2

=x3 — 2xy?

=f(x y).

Example 5.2.7 Expand the function f(x,y) = x3 + 3x2y + 4xy> + y3 by

Taylor’s theorem in powers of (x — 1) and (y — 1) and check by algebra.

Solution:

Function Value at (1, 1)

flx y) = x3+3x2y+axy2+y3 | f(1,1)=9

Jfi = 3x2 + 6xy + 4y f(4,1) =13
fo = 3x> + 8xy + 3y f(1,1) =14
fin=6x+6y fu(1,1) =12
fa2 =8x+ 6y f22(1,1) = 14
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Function Value at (1, 1)
fiz = 6x+ 8y fie(1, 1) = 14
fii =6 fu(L, 1) =6
f222=6 f222(1,1) =6
fi2=8 fus(1,1) =8
fi22 =6 fi22(1,1) =6

All the partial derivatives of order four are zero. Hence the remainder
R, =0.

The required Taylor’s expansion will be

fxy) =f(1, 1)h+ [(x = DAL 1) + (v — Df(L, 1)]

+_;-! (x — 1)2fu(1, 1) + 2(x — 1)(y — D)fi=(L, 1) + (v — 1)fan(1, 1)
h
+_;-! (X - 1)3f111(1, l)
i
+3(x — 1)%(y — Dfui=(1, 1) + 3(x — 1)(y — 1)%fi22(1, 1) + (v — 1)3f200(1, 1)

Substituting all the values we have,

1 h i
floy) =9+ [13(x = 1) + 14(y — D] +7,, 12(x — 1)* + 28(x — 1)(y — 1) + 14(y — 1)°
1 h i
+7g B =12 +18(x — 1)*(y — 1) + 24(x — 1)(y — 1)* + 6(y — 1)°
=90+ 13(x — 1)+ 14(y — 1) +6(x — 1)*>+14(x — D)(y — 1) + 7(y — 1)?
Fx— 1P +3(x -1y —D+HAx -1y - 1)+ (v — 1)
We can check the above result by algebra.
RHS of the above equation
=0+13x — 13+ 14y — 14+6x> — 12x+ 6+ 1dxy — 14x — 14y + 14 + 7y2 — 14y + 7
+x3 —1+3x—3x2+y3 —1—3y2+3y+3x2y — 6xy +3y — 3x2 +6x — 3 + 4xy?
— 8xy +4x — 4y*+ 8y — 4

= x3 + 3x2y + 4xy2 + y3,

Example 5.2.8 Expand (1 — 3x + 2y)3 in powers of x and y.

Solution:
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Function Value at (0,0)
floy) = (1 — 3x+2y)3 f(0,0)=1

= —9(1 — 3x +2)° £(0,0) = —
fo = 6(1 — 3x+2y)2 £2(0,0) =6
fir = 54(1 — 3x + 2y) fu(0, 0) = 54
for = 24(1 — 3x + 2y) f22(0,0) = 24
fiz = —36(1 — 3x + 2) £2(0,0) = —
fin = —162 Fi(0, 0) = —162
faza =48 fo22(0, 0) = 48
fu= =108 fu2(0, 0) = 108
fiaz = —T72 fi22(0,0) = —

All the partial derivatives of order four are zero, so the remainder R, = 0.

The required Taylor’s expansion will be

flxy) = f(0 0) + [x£1(0, 0) + yf2(0, 0)]

1 i
— X2f11(0 0) + 2ny12(0 0) + y2f22(0 0)
i i
+ gl X3f111(0, 0) + 3x2yf112(0, 0) + 3xy2f122(0, 0) + y3f2..(0, 0)
' h i

1
f(x, y) =1 — 9x + 6y + _2 54x2 — 72xy + 24y?
1h i
+ B —162x3 + 324x2y — 216xy2 + 48y3

Example 5.2.9 Expand (1 — 3x + 2y)3 in powers of (x+ 1) and (y + 1).

Solution:
Function Value at (-1, —1)
flxy)=(1—3x+2y)3 f(-1,-1)=8
fi=—9(1—3x+2y)? fi(=1,-1) = -
fo = 6(1 — 3x +2y)* fo(=1,-1) =24
fi1 =54(1 — 3x+ 2y) fu(—1,—-1) =108
fao = 24(1 — 3x + 2y) faa(—1, —1) = 48
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fio = —36(1 — 3x + 2y) fio(=1, —1) = =72
fin = —162 fin(—1, —1) = —162
fo20 =48 fosa(—1, —1) = 48
fi12 =108 fue(—1, —1) = 108
Jizo = =72 frea(—1, =1) = =72

All the partial derivatives of order four are zero, so the remainder R, = 0.

The required Taylor’s expansion will be

flxy) = f(—hl, —1) +[(x+ DA(=L —1) + (v + Dfe(=1, —1)]

2!

3!

= (x+1)%fu(=1, —1) + 2(x + 1)(y + Dfia(—1, 1) + (v + 1)*faa(—1, —1)

h
+g G D3fin(—1 —1) + 300+ 10 + Dfina(~1, ~1)

+3(x + 1)(y + 1)%fioa(—1, —1) + (y + 1)3funa(—1, —1)I

h _
flx, y) =8 +[—-36(x+1)+24(y +1)] + 12 108(x + 1)* — 144(x + 1)(y + 1) + 48(y + 1)2I

h
6

Example 5.2.10 Expand e*siny in powers of x and y upto second degree

terms and write the remainder.

1 1
+ . —162(x+1)3 +324(x+ 1)*(y + 1) — 216(x + 1)(y + 1)* + 48(y + 1)3

Solution: By Taylor’s expansion about (0, 0) for n = 2, we have

o}

o) J 2

124 124 1 124 124
= X + y — X + y

1
3! ox

1 9 9
+ X + yd f(9x 9x), Wwhere0<9 <1
y

Function Value of f at (0,0)
flx,y) =€'siny 0
filx, y) = €*siny 0
fo(x, y) = e*cosy 1
fulx, y) = e*siny 0
fao(x, y) = —€*siny 0
fia(x, y) = e*cosy 1
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Function Value of f at x=0x,y = %y
fiu(x, y) = €*siny e™ sin 9y

fa20(x, y) = —€* cosy —e™ cos 9y

fiaa(x, y) = —€*siny e™ sin 9y

fu=(x, y) = e“cosy e™ cos 9y

f(x y) =f(0, 0) + (x£1(0, 0) + yf>(0, 0))
h i
+ 2% X2Fux (0, 0) + 2xyFua (0, 0) + y2F2a(0, 0)
“h
+ Sl' X3f111(0x, 8y) + 3x2yfr12(0x, By) + 3xy2fi122(9x, Gy)

i
+Y3f00(0x, Ty)
1
=0+ [x(0) + y(1)] + ° [x*(0) + 2xy + y=(0)]
6[xi”e Sln Oy + 3x2ye™ cos 9y — 3xyze™ sin 9y — yse™ cos dy]

— 3 2 2 3
y+xy+ 6ﬁsin Oy(x —3xy )+cosOy(3x y —y )]

Example 5.2.11 Find the first six terms of the expansion of the function

e log(1 +y) in a Taylor’s series in the neighbourhood of the point (0, 0).

Solution: The required Taylor’s expansion will be

fxy) =f(,0) + (Xf1(0 0) + yf2(0, 0)) |
l - X2F11(0,0) + 2012 0, 0) + yFn(0, 0) +.

Function Value of f at (0,0)

flx, y)=€e"log(l+y) 0
filx, y) =e*log(l+y) | O

X

f2(X/ y) = 1_+_ye 1

fulx, y) = €log(1+y) | O
_e,\

f22(X; y) = (1+—VYZ _1

f12(X/ y) = 1__'__yex 1
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2

y
= |Og(1+y)=y+xy—7+...

Summary

. Taylor’s theorem for function of two variables

L fGoy) € €™, |x—al < [h],ly = bl < [k

= h +k=
+h b+k)= . f(a, b) + R,
= fla ) j=oj! ox dy ( )
where
0
R, = 1(1—t)” hQ +kQ n+1f(a+ht,b+kt)dt
[} n! ox dy
1 a n+1
h=+k>  fla+ohb+ok), O0<d<l

T (n+1)! ox oy

+ Maclaurin’s Theorem or Maclaurin’s expansion
o) o) o) o)

194 194 1 194 g 2
= + Xty +— Xty
fx y) =£(0,0) Ox oy f(0,0) o ox dy f(G,0)
1 o) g "
= — + —_—
Tt X ydy f(0,0)+R,
1 o] g n+t
where R, = x ty= f@@x+vy), 0<O<l

"~ (n+1)! ox oy
+ Taylor’s expansion about the point (a, b) in powers of (x — a) and

(v — b)

1 o o/
fx y) = ;!u—m&+@—m£ f(a, b) + R,

j=0

n+

1 1
= e D F(r,s),

where r = a+9(x —a),s = b+ 3y — b), 0<0U<1afterthe

0 o)
Rn (X_a)d_x-i-(y_b)d;

differentiation.

+ Taylor’s expansion for third and more order derivatives are zero,

£ ¥) =f(a, b) + (x — a)fi(a, b) + (¥ — b(a, b
#31 (= a)*fu(a,b) + 2(x — a)y — bfiu(a, b)

+(y — b)*f2o(a, b)
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+ Taylor’s expansion for n =3, (higher derivatives are not zero)

f(x y) =f(a, b) + (x — a)fi(a, b) + (v — b)f=(a, b)
+i h(X — a)°fu(a, b) +2(x — a)(y — b)fiz(a, b)_
+W—W@@d
*a h(X — a)*fin(9x, 9y) + 3(x — a)*(y — b)fu=(Vx, Oy)
ﬂa—mw—m%ﬂmw»+w—m%ﬂmm5
« Putting n = 0 in the Taylor’s theorem we get the Law of mean for

function of two variables

f(a+h,b+k) — f(a, b) = hfi(a + Oh, b + 9k) + kfu(a + Oh, b + OK)

where 0 < 9 < 1.
Multiple Choice questions

1. Law of the mean for functions of two variables
@) f(a+h,b+k)—f(a b) = fi(a+ Sh, b+ 9k)k + fo(a + h, b +
Uk)h,0 < 9 < 1.

(b) f(a+h, b+ k) — f(a, b) = fila+Yh, b+ 9k)h + fo(a +Oh, b +
9k)k,0 <9 < 1.

(¢) f(a+h,b+k) —f(a, b) = fu(a+ Oh, b+ Fk)k + fon(a + Oh, b +

Uk)h,0 < 0 < 1.

2. If the Taylor’s series expansion of f(x, y) in powers of (x — a) and

(x — b) is
1 0 o 2
flab)+6f@b)+, (x—a), +(~b), fab)

then 8 is

@ «_02+y_a?

dc;( 0 3/
0 x_a)” +(y _b)~
dy ox
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© «_a2+y_n?2
ox oy

3. Constant term in Taylor’s series expansion of f(x, y) = 3y3 — 4xy +

x3 — 2x in powers (x — 1) and (y — 1) is

(@ o0
(b) -2
(c) 9

4. Taylor’s series expansion of the function f(x, y) = e+ at (0, 0) upto

second degree term is

(@) 1+ (x— y) +5; 0 — 219 +2)
() 1+ (x4 y) 47 (xt + 20y + )

(© 1= (x—y) 5 0 — 20y +y?)

Ans: 1. b) 2.¢) 3.b) 4D
Exercises 5

1. State and prove Taylor’s theorem for function of two variables.

2. Expand f(x, y) = x2 + xy — y2 in Taylor’s series (a =1, b = —2).
Ans: f(x,y) = =5+5(y+2)+% 2(x — 1)* + 2(x — 1)(y +2) — 2(y + 2)*

3. Expand (1 — 3x + 2y)3 in powers of (x — 1) and (y + 1).

4. Expand x2y +siny + e*in powers of (x — 1) and (y — m) through
quadratic terms and write the remainders, without computing .
Ans : x2y+sin y+e* = (m+e)+(2m+e)(m—1)+(r+ € ) (g—1)* +2(x—
Dy —m) + ¢ (x — 1)3e™"1 +(x — 1)2(y — m) + * (y — )3 cos(dy — On).
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Unit 6

Maximum and Minimum of
functions of two and three

variables

Learning Outcomes :
After studying this unit, students will be able

F To understand, define and identify saddle points, extremum points.

F To fit a straight line by the method of least squares.

F To determine extrema of functions of two and three variables.

6.1 Maxima and Minima of functions of two vari-

ables

In this unit we shall discuss certain applications of partial differentia-

tion. We shall prove a result for functions of two variables which provides a
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sufficient condition for the existence of an absolute maximum or minimum

at an interior point of the region of definition.

6.1.1 Absolute maximum or minimum

Definition 6.1.1 A function f(x, y) has an absolute maximum at a point

(X, Y) of aregion R <= f(X,Y) = f(x, y) for all (x,y) in R.

Definition 6.1.2 A function f(x,y) has a relative maximum at a point

(X, Y) of a region R <= there exists a positive number 6 such that
FXY)>f(xy) for all (x,y) of R
at which 0 < (x — X)2+(y — Y)2 <é.

Definition 6.1.3 A function f(x, y) has an absolute minimum at a point

(X, Y) of aregion R <= f(X,Y) < f(x, y) for all (x,y) in R.

Definition 6.1.4 A function f(x,y) has a relative minimum at a point

(X, Y) of a region R there exists a positive number & such that

fX,Y) <f(x y) for all (x,y) of R at which 0 <(x—X)*>+(y —Y)* <é.

Theorem 6.1.1

1. f(x,y) € C' in a bounded region R consisting of a domain D and a

boundary curve I'.

2. f(a, b) > f(x, y) for some (a,b) € D and all (x,y) €T.

= There exists a point (X, Y) € D such that

A. f(x,y) < f(XY) for all (x,y) €R.

B. fi(X,Y)=f(X,¥)=0.
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Proof: Since f(x, y) is continuous in the closed region R it has a maxi-
mum there. Let it attains its maximum at (X, Y).

By hypothesis (2), (X,Y) € D,

we have f(X,Y) = f(x, y) for all (x,y) € R.

Then we have f(X + Ax, Y) < f(X,Y) for some (X + Ax, Y) € R.
Then

fX+AxY) —f(X. Y)
Ax
fX+AY)—f(XY)
Ax

>0 ifAx<O0

<0 ifAx>0

Let Ax — 0 then we have

lim X +AxY) —f(X. Y)

>0 ifAx<O

Ax—eo Ax

Hence fi(X,Y) = 0 and fi(X, Y) < 0.
So f1()(, Y) =0.

We also have f(X, Y + Ay) < f(Xx, Y) for some (X, Y + Ay) € R. Then

XY +Ay) —f(X. Y)
Ay

XY +Ay) —f(X. Y)
Ay

>0 ifAy<O

<0 ifAy>0.

Let Ay — 0. We have

lim fXY XA —FXCY) o o ny <0

Ay—o Ay
Ao Ay <0 ifAy>0.
Hence fo(X, Y) < 0 and fo(X, Y) = O implies fo(X, Y) = 0. Q

N
Example 6.1.1 Iff(x,y)= 4—x2—y? x2+y> <1, find the absolute

maximum or minimumni.

v
Solution: Choose a = b = 0. Then f(0,0) = 2 > f(x, y)|xz4y2=1 = 3.

Hence the absolute maximum exists at an interior point (X, Y).
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To find the absolute maximum

We have,
)= ¢=0
Xy ——
—Y
Gey)=—————=0
£y 4-x2—y2

This is true for (X, Y) = (0, 0). Hence the absolute maximum for f(x, y)

occurs at the origin. At the origin (0, 0), we have f(x, y) = 2 at (0, 0).

_\/
Example 6.1.2 Iff(x,y) =1— x2+y2 x>+y> <1, find the absolute

maximum or minimum.

Solution: We cannot apply theorem (6.1.1) because f(x, y) £ C*.
But inspection we can see
f(O, O) =1 >f(X, y)‘x2+y2=1 =0.

So the function has the absolute maximum value at (0, 0).

Example 6.1.3 If f(x,y) =x+y, x*>+y?> <1, find the absolute maxi-

mum or minimum.

Solution: f(x,y) =x+y = fi(x,y) =1, fo(x, y) = 1.

So the first order partial derivatives does not vanish. Hypothesis 2 fails

here. The function attains an absolute maximum at ”Lz \LE

Example 6.1.4 If f(x, y) = x4+y4+ —x> —y2+1, x>+ y2 < oo, find the

absolute maximum or minimum.

Solution: Using polar coordinates x = rcos 3,y = rsind, 0 < 9 < 2m, we

have
f(rcos 9, rsin®) = ricos* 9 + risin® 9 — r2cos* 9 — r2sin> 9 + 1
= r4(cos* 9 + sin* 9) — rz(cos® 9 +sin*9) + 1
=r4cos* g +sint9) —rr +1
On the circle r = ro, we have
r4(cost @ +sin*9) — r2 + 1 = ri{cos? I +sin*9) —rz + 1
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So the first term should be > ’23.
Hence on the circle r=2,

f=8—-4+1=5and f(0,0)=1.
So that the absolute minimum exists.

To find absolute minimum

filk y) =4x3 — 2x,  fa(x, y) = 4y3 — 2y.

For absolute minimum

1
3 2

4X —2X =0 = 2X(2X —1)=o:x=o,x=4_r\#2,

AY3 —2y =0 = 2¥(2Y2—1)=0=v =0,v = +/=

There are nine points where both equations hold (0, 0), (0, \Q (o} —\L),
2 2

(\%’ O)/ (\%/ %)/ (%} _\%)/ (_\%; 0); (_ \%’ VT?)I (_\%’ _\%)

Point Value of f
(0,0) 1
%) |3
©-¥) |
. ¥) |1
%, %) |1
(-+£,0 |
(L) |1
(L, -L)|
50 |3

Hence we find that there are absolute minimum at four points (¥, ¥ ),
2 2

(-5, —%5), (-5, ¥5), (¥5, —¥5) and value of the function = %,

So f > % in all the plane.
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6.2 Sufficient conditions

A sufficient condition for relative maxima and minima is obtained in

this section.

6.2.1 Relative Extrema

Theorem 6.2.1

1. f(x,y) € C

2. fi=fa=0at (X, Y)

f122 _f12f22 <0 at (X, Y)

4. f1<0at (X Y)

= f(x, y) has a relative maximum at (X, Y).

Proof: Suppose fi(X,Y) =0 and fo(X,Y) = 0.

Suppose that f (x, y) possesses continuous second order partial derivatives
in a certain neighborhood of (X, Y ) and these derivatives at (X, Y ) are
Ffu(X, Y), f22(X, Y), fi=(X, Y) and not all zero.

Choose a point (X + h, Y + k) in the neighborhood of (X, Y ).

By Taylor’s theorem with remainder we have for O<9 <1,

h
SF(X+h, Y+k) = f(X, Y)+[hfi(X, V) + kfa(X, Y)]J“_;. h2f1.(X + 0h, Y + 0k)
' i
+2hkfio(X + Oh, Y + Ok) + k2fou(X + Oh, Y + Ok) .

Since fi(X, Y) =0, f2(X, Y) =0

h
FX+hY +k)—f(XY)= 12 h2f11(X + 0h, Y + 0k)

i
+2hkfio(X + Oh, Y + Ok) + k2faa(X + Oh, Y + OK) .

1h i
Let Af=f(X+hY +k —f(XY)=", Ah*+2Bhk+Cke (6.1)
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where
A= fu(X+ Oh, Y+ 9k)

B =f12(X +3%h,Y + l?k) (62)
C=fo(X+0hY+Uk), 0<i<l1

Suppose A £ 0, then
Af = lZ(Ah2 + 2Bhk + Ck?)
- 2—’14 [A2h2 + 2ABhk + ACk? + B2k> — B2k?]
= 71A [(Ah + Bk)* + (AC — B>)k?]

Since f(x, y) € C?, inequalities ff — fi1f2- < 0 and fi; < 0 will also hold

in some circle of radius 6 and center at (X, Y),
This circle will contain in its interior the point (X+8h, Y +0k) if h2+k2 < 62

and hence A <0, AC — B2 >0. Then
1
Af =7, [(Ah + Bk)? + (AC — B2)k2] < 0.

Sof(X+h Y+K)—f(X Y)<O0impliesf(X+h Y+ k) <f(X V).

That is f(x, y) has a relative maximum at (X, Y). Q

Remark : For relative minimum we have following theorem.
Theorem 6.2.2

1. f(x,y) €
2. fi=f2=0 at ()(/Y)
3. f122 _f11f22 <0 at ()(/ Y)

4. fu>0at (X, Y)

= f(x, y) has a relative minimum at (X, Y).

6.2.2 Saddle points

Definition 6.2.1 A function f(x,y) has a saddle point at (X, Y) if
X Y)=fo(X,Y)=0and if Af =f(X+h, Y +k) — f(X, Y) will have
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both positive and negative values in every neighborhood of (X,Y), where

(X +h, Y +k) is a point in the neighborhood of (X, Y).
Theorem 6.2.3

1. f(x,y) €

2. fi=fa=0at (X/Y)
3. % — fife2 >0 at (X; Y)

= f(x, y) has a saddle point at (X, Y).

Proof: Suppose f(x,y) € 2, fi=fo=0at (X, Y).
By Taylor’s theorem with remainder we have for 0 <9 <1,

1 h
S(X+h, Y+k) = £(X, Y)+[hfi(X, V) + kfa(X, Y)]+_2I h2f11(X + 0h, Y + 0k)

' i

+2hkfio(X + Oh, Y + Ok) + k2foo(X + Oh, Y + 0k) .

Since fi(X, Y) =0, (X, Y)=0
1N

FX+hY+k)—f(XY)= 5 h2f (X + 0h, Y + 0k)
i
+2hkfio(X + Oh, Y + Ok) + k2fou(X + Oh, Y + Ok) .

Af=f(X+h,Y +k)—f(X,Y)= lz[Ah2 + 2Bhk + Ck2]

where
A= fu(X+ Oh, Y + 9k)

B = fio(X + Oh, Y + 9k)

C=fos(X+0Oh, Y +0k), 0<9<l
Leta=fu(X,Y), b=fi(X,Y), c¢=f(XY). As h and k approach
zero, A, B and C approach g, b and c respectively.

We have three cases.

Case (i). Suppose a # 0. First set h = A, k = 0 then,

1
Af = 5 [Ax]
Af 1AA2 A a
lim___ =[im 2 =lim — = _.
Ao A2 Ao A A—e2 2
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Now set h = —Ab, k = Aa then

Af = lZ[A(—Ab)z + 2B(—Ab)(Aa) + C(Aa)?]

1
= 5[AA2b2 — 2BA2ab + CA2a?]

Now
Af A [Ab> — 2Bab + Ca?]
lim = lim =
r—eA%  ie AZ
=lim l2[Ab2 — 2Bab + CGQ]
—o A2 1
=~ lim Ab2 — lim Bab + ~— lim Ca?
A—6 A-o A—o 1 a
= "b2a — b2a+ “ca?2 = — " b2a+ “ca? = " (ac — b2).
2 2 2 2 2

By hypothesis 3, f2, — fi,fo- > 0 that is b2 — ac > 0 we have ac — b2 < 0.

Ifa<0, then 5(ac — b?) >0.
Ifa>0, then %(ac— b?) < 0.

So the above two limits have opposite signs. Since f(x, y) € €2 Af will

have opposite signs for small A in the two cases.

Case (ii). Suppose ¢ /=0
Set h=0, k =A, then
Af .. C ¢

lim =lim =
A—e A2 o 2 2

Now set, h = Ac, k = —Ab.

lim N — lim A2 Ac? — 2Bcb + Cb?
Ao A2 i-e 2 A2
_ac? — b3c
2
= gz(ac — b2).

So as in case (i) Af will have opposite signs for small A in the two cases
c<0andc>0.

Case (iii). Suppose a=c=0, thenb /=0

First set h = k = A. Then

2

1 A
Af = 2_[A/\2 + 2BA2 + CA?] = E(A +2B + C)
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. A 1 1
Ilm_fz Iim ~(A+2B+C)="(a+2b+c)=b
1—e A2 1o 2 2

Thenseth=—k=A then1 L
. A .
lim —fz Iim ~(A—-2B+C)="(a—2b+c)=—b
A—e A2 A—o2 2

Again from case (i) we have the desired result. So in all cases Af will have

both positive and negative values in every neighborhood of (X, Y).

Hence f(x, y) has a saddle point at (X, Y). Q
Example: Consider f(x,y) =xy. fi=y,fo=xfi1=0,fi. = 1,

f% — fuf2o =1 > 0. The origin is a saddle point.

Summary of the results :

Suppose that

1. fxy) e

2. fi=fa=0at (X, Y)

() Iff2 —fufeo<Oat (X, Y)and fi, <0 at (X, Y), then f(x, y) has

a relative maximum at (X, Y).

(i) If f& — fifoa <O at (X, Y) and fi; >0 at (X, Y), then f(x, y) has

a relative minimum at (X, Y).

(iii) If fA— fufeo>0at (X, Y)and f1 = f. =0 at (X, Y), then f(x, y)
has a saddle point at (X, Y).

Example 6.2.1 Find the maximum and minimum of the function

X, y) =x4t+y+ —x2 —y2+1,
fxy) y y

Solution:

fi =4x3 — 2x and fo = 4y3 — 2y.

For stationary points f; =0, f. =0

43 —2x=0=2x(2x*—1)=0=>x=0,x==*

Nﬁ\'_‘ Nﬁﬁ—‘

4ys _2y=0=2y2y°—1=0=>y=0y==«
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There are nine points (0, 0), (0, ¥ ), (0, =¥/ ), (¥, 0), (¥, ¥), (¥, -¥),
2 2

2 2 2 2 2

(=¥5,0), (=¥5, %), (Y5 - %)

fuu=12x2 -2, foo=12y2 -2, f1o=0, ,f1 =0
f121 - f11f22 = _(:I.ZX2 — 2)(12y2 — 2)

Extreme
Point I3, —fufee | £y Value of f
value
Relative
(0,0) —4<0 —-2<0 _ 1
maximum
Saddle
(0, V) 8 —2<0 _3
2 point 4
Saddle
(0, —¥) 8 —2<0 _ -3
2 point
- Saddle
,0 8 4>0 -3
2 0) point 4
Saddle
(=¥ 0) 8 4>0 —3
2 point 4
Relative
G5y | -16 4 i 2
minimum
Relative
¥, -y -16 4 . 2
minimum
Relative
(=¥ vy | -16 4 » 2
27 2 minimum
Relative
-y | -16 4 N >
minimum

Hence there is relative1 maxiinum at (0, 0) 1and therle are relative minimum

at the four points (iv% i’v%) and (0, J_w%), (ix,% 0) are saddle points.
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6.2.3 Least Squares

For fitting a straight line y = ax+b through the points (xy, y1), (x2, y2), ..,

(xn, vn) by the method of least squares, we have to determine constants a

>
and b so that f(a, b) = _,(ax; + b — y;)? should be minimum. We have

p-i
fl(a, b) =2 (aX,' +b — y,')X,' =0

1

~.

f2(a/ b) =2 (ax;+b _y/) =0
= 1
f (a,b)=2 2

1

s

P {
flg(a, b) = 2 Xi

1

~

fos(a,b) =2 1=2n

i=1

Also
> n s Y2
>
fiifoo — fi3 = X 1- X
=1  j=1 i=1
15
—_ = 2
i—xj) >0.
i=1j=1

So we can apply theorem 6.2.1 and theorem 6.1.1 is also applicable, be-

cause the unique relative minimum thus assumed must also be an absolute

minimum.
Ifn=3,
1
= 3=, = 2 2 2 2 2
1 x— Xi =3(xy + X2 + x3) — (X1 + X2 + X3)
i=1 i=1 i=1

=3(x3 + X%+ x2) — X21— X% — X3 — 2X1X2
— 2XaX3 — 2X3X1

=2(x3 + X%+ X% — XaX2 — XaX3 — X3X1).
We now solve equations fi(a, b) = 0 and f»(a, b) = 0 for a and b and

substitute these values in the equation of the line. We obtain

X y 1
n n

b h-2 1

X Vi =0.
c=1 i=1 i=1 -
1
=,

X i XiYi Xi
Ti=1 i=1 i=1 -



Example 6.2.2 Find the line through the points (1, 2), (0, 0), (2, 2).

Solution: Given x; =1,y; =2, x2 =0,y> =0,x3 =2, y3 = 2.

X y 1
1.

3 3 3

Xi Vi
- > Xy .
=1 (=1 1 _ . .
5. % Fleggg=0

i

i=1 i=1 i=1

x(12 —18) —y(9—15)+(18 —20) =0
—6x+6y —2=0

3x—3y+1=0.

6.3 Functions of Three Variables

6.3.1 Quadratic forms

Definition 6.3.1 Quadratic form in three variables is defined by

>3
F(xy, X2, x3) = a;XiX;, Q= aj
i=1j=1
— 2
= aux; t gi12xX1X2 + 013X1X3

+ go1XoX1 t+ 022X22+ d23X2X3

+ d31X3X1 + d32X2X3 + 033X23 (63)

(i) Positive definite A quadratic form is positive definite if, and only if
F (x4, X2, x3) > 0 except when x; = x> = x3 = 0.

Clearly F(0,0,0) = 0.

(ii) Positive semi- definite A quadratic form is positive semi-definite
if, and only if, F(x, x2, x5) = 0, the equality holds for certain values of
X1, X2, X3 not all zero.
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Example: Consider F =x2+x2+x2, G = x2 + x2.
1 2 3 1 2

Here F (xi, x», x3) > 0 except when x; = x. = x5 = 0.

So F is positive definite.

If G is considered as a form of three variables then G(0, 0, 1) = 0. So G
is positive semi-definite. But if we consider G as a form of two variables
x1, X2, then G is positive definite.

Remark 1: We can also define negative definite forms.
Remark 2: The form in two variables Ax2 + 2Bx.x. + Cx2 is positive

1 2
definite if, and only if,
A B
A>", 0 > 0 (6.4)
that is A >0 and AC — B2 > 0.
Lemma 6.3.1 The form
>3
F(X1, X2, X3) = aiXiX;, aj; — daj;
i=1j=1

— 2
= auXy t G12XiX2 + 013X1X3
+ Q21X2X1 + 020X + A23X2X3

+ d31X3X1 + d32X2X3 + CISSX%

is positive definite <=

a a 011 012 013,

>0, oy Ooo 023,>O.

c 3 B
di = 0; 031 0432 dgzgz,

Proof: We only prove the sufficient part.

011 O12 013, .a :
a
Let A = \do1 Qoo 023. > 0, ai > 0, >0.
031 a33.
U32 033
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.as31 .
A;; = co- factor of a;,.
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By using the formula for the product of two determinants, we have

1 0 0 . ai doy dsi

A0 22 23" Ao 2o 13 32 0,,A,, + anggz C’32’422 + 033A32_

0 Asgo Ags. .012Aog +033A13  U20Aog t 023A33  O30A23 + A33A33.

(251 doy d31
= __011A21 A — 021A0; —da31Aoq )
._011A31 _021A31 A - 031A31.

‘a1 4 G <

=0 A
0 0 A
= auAZ.
1 0 0
So AQD A A =C711A2
0 As A%
Aso A23
Hence . "= anA
As2 Ass

Now collecting the terms in x2 and x; in the form (6.3) as

F = x2(a11) + x1(A12X2 + Q13X5 + Q21X2 + A31X3) + A2oX2 + Ao3XaXs
1 2

+ d32X3X2 + GSSX%

F=Ax2+2Bx; +C

where, A = a1, B = Q12X2 + Qi3X3, C = Q20X + 2023XoX35 + Q33X2.
2 3

To prove that F is positive definite. we have to prove F > 0 except when
X1 =X = x3 = 0.
For this we shall prove that AC — B2 > 0 unless x. = x; = 0, by (6.4) this
will imply F > 0.

Suppose x. =x3 =0. Then A=a;;,B=0,C=0.

So F = Ax2 = a..x2. This is positive unless x; = 0.
1 1

So F is positive definite.
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Consider AC — B2 and collect the terms with x2, x-x3 and x3.

AC — B2 = a11(020X%0+ 2023X2X5 + 033X2 )3 — 021%%0— 033X3 — 2012013X2X3

:X2[011C722 - 012021] + 2X2X3[C711C723 - 012013] + X2[011033 - 013031]
2 3

AC — B2 = A33X% — 2A23X2X3 + A22X23

To show that this is always positive, unless x. = x5 = 0, we use (6.4), we

need
Jdi1 Qdi2
Azz’ = >,
021 Cp22-
A A dy1 012 Oi3
=a A=a >0
A A
32 33 a .
2 23- 11 11 -Gg} 33522 2113‘233
This is true by hypothesis. Hence F is p ositive definit e. Q
6.3.2 Relative Extrema
Theorem 6.3.1
1 f(xyB) €C
2. i=fo=f3=0at (X, Y,2)
f f . _f11 f12 f13,
>0, o1 fao f23- >0 at (X’ Y’Z)

3. fu>0 [F 2
fu 21 22 far fao f33.

= f(x, ¥, P) has a relative minimum at (X, Y, 2).

Proof: Supposethatf(x, y,B) € CCandfi=fo=f;=0at (X, Vv, 2)
Choose a point (X + h,, Y + ho, Z + h3) in the neighbourhood of (X, Y, 2).
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By Taylor’s formula with remainders we have for 0 <9 <1,

f(X+h,Y +hs, Z+ h3)

=f(X Y, 2) + [Mfi(X Y, 2) + haofo(X, Y, 2) + hafs(X, Y, 2)]
L &2
o fX+Ch,Y +6h Z+0h )hh;

i=1j=1

Since fi=fo=f;=0at (X V,2),

Af =f(X+h,Y +hs,, Z+h3) —f(X Y, 2)
3 3
1=

) [/ (X +0hy, Y + 0hy, Z + Oh3)h;h;

i=1j=1
where 0 < ¢ < 1. Since f(x,y, B) € €2 it is clear that inequalities fi, >
'f11 f12' .f11 f12 f13.
0, >0, > 0 also hold in some neighbourhood of
f f 2 f f_fl 22
22 2§31 f32 f33-
X v, 2.
If the point (X + h,, Y + h,, Z + +h3) is in this neighbourhood, the coeffi-
cients of the quadratic form Af will satisfy the conditions of lemma 6.3.1,
so that Af > 0 throughout the neighbourhood, exceptat hy =h. =hy; =0
where Af = 0.

Hence, f has a relative minimum at (X, Y, 2). Q

Remark : For relative maximum we have the following theorem.
Theorem 6.3.2

1. f(x, y,B) € ¢
2. i=fa=f3=0at (XY, 2

f f . ,f11 f12 f13_
>0, 'f21 f22 f23' <0
-f31 f32 f33,

" A1 12"

3. fu<0, -f21 f22-
= f(x, y, @) has a relative minimum at (X, Y, 2).

Example 6.3.1 Prove that the function f(x,y, B) = x> +y> + 382 — xy +

2xB + yP@l has a relative minimum at (0, 0, 0).
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Solution:
f1:2X_y+2,f11:2/ f12:_1l f13:2‘
f2=—X+2y+,f21:_1, f22:21 f23:1'
f3=2x—y+60,f31 =2, foo =1, f33=6.

£(0,0,0) = 0.

f f ' If11 fi2 f13.

11 > O >O
Now we will check the conditions, f >0, e
forx=y=z=0. s oo a1 fse fag
fll f12. _ ' 2 _1 _
fu=2>0, T =320,
f21 f22' —1 2

Ju fiz iz 2 -1 2
_f21 fa2 f23-= —1 2 1-=2(12_1)+1(_6_2)+2(_1_4)
S31 fa2 faz. .2 1 6
=22—-8-10=4>0
Hence f(x, y, @) = f(0,0,0) = 0.

Therefore f(x, y, @) has a relative minimum at (0, O, 0).

Example 6.3.2 Show that f(x, y, B) = (x+y+@)3 —3(x+y+B) —24xyP+a3

has a relative minima at (1,1, 1) and relative maxima at (—1, —1, —1).

Solution: We have

fi=3(x +y +B)>— 24yA — 3
fo=3(x+y+BE)> —24Bx — 3
f3=3(x+y+E)>—24xy — 3
The stationary points are given by
(x+y+@)?>— 8yl —1=0
(x+y+@)>—8ex —1=0

(x+y+BE)?>—8xy—1=0
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Subtracting second equation from the first, Bi(x — y) = 0.
Similarly x(y —#) =0, y@ —x)=0.
= Eitherx=0,y =0, =0o0rx=y =0.
Therefore stationary points are (0, 0, 0), (1, 1, 1), (-1, -1, —1).
Again, we have
f11=6(x+y+B) = for = fa3
f12 = 6(X + y + ) — 24P :f21
foz=6(x +y +B) — 24x = f3o
fa1 =6(x+y +B) — 24y = fis.
At (1,1,1),

fi1=f22 = f33 =18
fiz2 =fo3=f31=—6
fll f12_ 18 _6

fu=18>0," =" .=288>O
fo Fu 6 18

_f11 fi2 f13_ 18 -6 —6
for fon fo3-=.—6 18 —6.=5184 — 864 — 864 = 3456 > 0.

_f31 f32 f33. _6 —6 18

Therefore the function has a relative minimum at (1, 1, 1).

At (-1, -1, —1)

Ji1=f22=f33=-18
fi2=fo3=f31=6

18 6
f11=—18<0,'f11 Sz, _. =288 >0

fo Tooo 6 -—18
S fie frz. 18 6 6

for fo» fag - 6 —18 6 .= —5184+864+864 = —3456 < 0.
_f31 f32 f33. . 6 6 —18

Hence the function has a relative maximum at (-1, —1, —1).
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Summary

- A function f(x, y) has an absolute maximum at a point (X, Y) of a

region R == f(X,Y) = f(x, y) for all (x,y) in R.

« A function f(x, y) has a relative maximum at a point (X, Y) of a
region R <= there exists a positive number § such that
X Y)>f(x y) forall (x, y) of R

at whichO<(x—X)2+(y —Y)?2<6é.

A function f(x, y) has an absolute minimum at a point (X, Y) of a

region R == f(X, Y) < f(x, y) for all (x,y) in R.
- A function f(x, y) has a relative minimum at a point (X,Y) of a
region R there exists a positive number 6 such that

Ff(X, Y)<f(x y) forall (x, y) of Rat which 0 < (x—X)>+(y—Y)%<
6.

-+ A function f(x, y) has a saddle point at (X, Y) if
fiXY) =foXY) =0and if Af= f(X+h Y+k —f(XY)
will have both positive and negative values in every neighborhood of

(X, Y), where (X +h, Y +k) is a point in the neighborhood of (X, Y).
+ Suppose that

1. f(xy) € C

2. i=fo=0at (X v)
() Iff& —fufoo <Oat (X, Y)and fis <0 at (X, Y), then f(x, y)
has a relative maximum at (X, Y).

(i) If f& — fufeo <Oat (X, Y) and fi. >0 at (X, Y), then f(x, y)

has a relative minimum at (X, Y).

(i) If f&2— fufoo >0at (X, Y) and f; = fo = 0 at (X, Y), then
f(x, y) has a saddle point at (X, Y).
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« For fitting a straight line y = ax+b through the points (xi, y1), (X2, ¥2), ..., (X0, ¥»)

by the method of least squares. We have to determine constants a

>
and b so that f(a, b) =  (ax; + b — y,)* should be minimum
i=1

- By the method of least square, the straight line y = ax + b through
the points (x,, y1), (X2, y2), ..., (Xn y») is given by

X y 1
;” an .
<

X Vi 1 =0
- =1 i=1 i=1

) >

X j XiVi Xi

“i=1 i=1 =1

+ Quadratic form in three variables
> >3

F (X1, X2, X3) = agXix, a; = aj
i=1j=1
- A quadratic form is
(i) Positive definite if, and only if F(x, xs2, x3) > 0 expect when
X1 = X2 = x3 = 0.
(ii) Positive semi-definite if, and only if F(x, xo, x3) = 0, the equality

holding for certain values of x,, x., x3 not all zero.

+ The quadratic form in two variables Ax2 + 2Bx.x. + Cx2 is positive

1 2
- - - - A B
‘definite if, and oalyif, 0 >
0 B C.
== 3 3
The quadratic form F(xi, xs, x3) = Capxx,  a;=aj is pos-
i=1j=1
itive definite if, and only if
q a Gu1 OGi2 Oi3
>0, >0
11 1
a >0, a a
5 Do ow 631 fgz bsy

M fxyB)ec fi=fa=f;=0at (X VY, 2) then at (X, ¥, 2)

f f Ju fiz fis
. .>O, 'f21 f22 f23->0
i) if fi. >0, f; f1222
)1 f > fa fi fs
135
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then f(x, y, @) has a relative minimum at (X, Y, 2)

f f ’ .fll f12 f13

. >0 far foo foy <O
(i) iffu<0, [ 12 _:1 Fae Tas
31 B

then f(x, y, B) has a relative maxi mum at (X, Y, 2)

Multiple Choice questions

1. Choose the incorrect statement.

(@) A function f (x, y) has an absolute maximum at a point (X, Y )
of a region if and only if f(X, Y) < f(x, y) for all (x, y) in R.

(b) A function f (x, y) has an absolute minimum at a point (X, Y )
of a region if and only if f(X, Y) < f(x, y) for all (x, y) in R.

(c) A function f (x, y) has a relative maximum at a point (X, Y ) ofa

region R iff there exists a positive number & suchthat f (X, Y) <

f(x,y) forall (x,y) of Ratwhen0<(x—X)2+(y —Y)?2 <é.
2. The saddle point of function f (x, y) = xy is
a) (—1. — 1) b) (1, 1) ¢) Origin

3. A quadratic form in three variables is positive definite if and only if

(@) F(x1, x2, x3) > 0, except when x; = x, = x5 = 0.
(b) F(xy, x2, x3) = 0 for certain values of x,, x», x3 not all zero.

(c) F(xy, x2, x3) < O for certain values if x;, x», x3 not all zero.

4. The form in two variables Ax2 + 2Bx.x. + Cx2 is positive definite if,
1 2

and only if

A B
A 4a),0 <
o C D.
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®

A
A %b)0 >
0 .

0
O

A B
A £c),0 >
o -C

O

Ans: 1.a) 2.¢c) 3.a 4.b)

Exercises 6

1.

2.

Define absolute maximum and absolute minimum.

If

(@) f(x,y) € C* in a bounded region R consisting of a domain D

and a boundary curve I.

(b) f(a, b) > f(x, y) for some (a, b) € D and all (x,y) €T.
then prove that there exists a point (X, Y) € D such that

A. f(x, y) < f(x v) for all (x,y) € R.

B. i(X,Y)=fo(X, Y)=0.

. Find the absolute maximum and absolute minimum of f(x, y) = x2+

2y2 — x on the set x2 +y2 < 1.

. Show that the function x4+y4—2x2+8y2+4 has an absolute minimum.

. Define relative maximum and relative minimum.

. Define saddle point.

. Explain principle of least squares.

. Find the relative maxima and minima of

flx y) =x3+y3 —3x — 12y + 20.
Ans: Relative maximum at (1, —2), Relative minimum at (1, 2),

Saddle points: (-1, 2), (-1, —2).
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9. Test the following functions for relative maxima,relative minima and

saddle points.
(1) x2 +2xy +2y2 + 4x
(if) x3 — y3 + 3x2 + 3y2 — Ox
10. Pass a line through the following points by least squares:
(=2,0),(=1,0),(0,1),(3,3), (2 2).
11. Define quadratic forms.
12. Define positive definite and positive semi-definite.

13. Prove that the form

F (X1, X2, X3) = a;Xxix;, Qa; = aj
i=1j=1
= aux” + a1aX1X2 + ai13X1X3 + d21X2x1 + Q2ox>
1 2

+ d23X2X3 + d31X3X1 + G32X2X3 + 033X23
is positive definite if and only if

a a 011 012 Qi3

> OI '021 > O.

oo Qo3

-0 M B
an o’ .031 032 033.

14. If

@ fxyB) e

0) fi=f2=f=0at(XV,2)

f f fu fiz fis

. . >0, for foo fo3 >0
© fu>0, S T fi Taa
f31 :

then prove that f(x, y, @) has a relative minimum at (X, Y, 2).
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Unit 7

Lagrange’s Multipliers

Learning Outcomes :

After studying this unit, students will be able

F To determine extrema of function using Lagrange’s multipliers.

7.1 Lagrange’s Multipliers

A problem of considerable importance for applications is that of max-
imizing or minimizing a function of several variables, where the variables
are related by one or more equations. To handle such problems, if possible
we can eliminate some of the variables by using the given conditions and
reduce the problem to an ordinary maximum and minimum problem.

This procedure is not always feasible and the following procedure by in-
troducing extreneous parameters, known as Lagrange’s multipliers is often
more convenient. It also treats the variables in a more symmetrical way, so
that various simplifications may be possible. We shall illustrate the method

in several cases.
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=7.1.1  One relation between two variables

To maximize a function

u=f(xy) (7.1)
where x and y are connected by an equation
glxy)=0 (7.2)

Let us suppose f, g € C* and gz + g3 > 0 in a region of the xy— plane.

Case:(i). Suppose g- is not zero, we solve equation (7.2) for y and substi-
tute in equation (7.1) thus treating x as the independent variable.

In this case a necessary condition for maximum or minimum is

Q

u

QR

0
fl_ 2 1=0
go

The simultaneous solutions of the equations

o(f, qg)
o(x, y)

=0, gxy)=0

gives the desired points.

Case:(ii). Suppose g. # 0, we take y as the independent variable. But in
this case also we are led to the same pair of equation
o(f. q)
a(x, y)

=0,g(x,y) =0.

To solve the same problem by the method of Lagrange, introduce the La-

grange multiplier A, forming the function

Let V = f(x, y) + Ag(x, y).

ov ov
_ =f1 +Agl, _ :f2 +/\92-
ox dy

. .. ov oV
For maxima and minima , we have __ =0,
ox oy

three equations g(x, y) =0, fi + Ag: =0, fo + Ag, =0 for x, y and A.

= 0. We must solve the
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Theorem 7.1.1

1. f(x, y),g(x,y) € Ct in a domain D

2.g2+g2>0in D

1 2

= The set of points (x, y) on the curve g(x, y) =0, where f (x, y) has

maxima or minima, is included in the set of simultaneous solutions (x, y, A)

of the equations

filk y) + Agi(x, y) = 0
fo(x, y) + Ag2(x, y) = 0

aglxy)=0

Proof: Given f(x, y), g(x, y) € C.

To find the maxima or minima of the function

u=fxy)

where x and y are connected by an equation

glx,y)=0

To find the solution of these we use Lagrange multipliers A.

Let V = f(x, y) + Ag(x, )
Vv

—_=htAgL, = f + Ag..
ox dy f. gz

. . ov ov
For maxima and minima , we have =0,
ox dy

=0. So

filx, y) +Agi(x, y) =0

fo(x, y) +Aga(x, y) =0

(7.3)

(7.4)

(7.5)

(7.6)

We can solve atleast one of these equations for A and substitute in the other

equation. Combining the result with g(x, y) = 0, we arrive at equations

a(f g)

a(x, y)
and (7.6) for x, y and A.
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Example 77.1.1 Find the rectangle of perimeter | which has maximum

areda.

Solution: Let x and y be the lengths of the sides of the rectangle.
Areaoftherectangle = xy = f(x, y)

Perimeter of the rectangle /= 2x+ 2y = g(x, y)
Then if A is the Lagrange multiplier, we have

V=Ff(xy) +Ag(x, y) = xy + A(2x+ 2y — )

"4
_ =y+2A
%
_ =x+2A
oy
av
— =2x+2y |
oA
v ov ov
For extremumvalues __ =0, __ =0, __ = we have
ox dy oA ’
y+21=0 (7.7)
X+2A=0 (7.8)
2x+2y —1=0 (7.9)

Solving (7.7) and (7.8), we have x =y.

Using in (7.9) we have

x+y=1
y = 2/
/
2x = =
X 2,
X_ 1
l l 4
From (7.8), " +2A=0,s0A=—".
4 | 8
. / . .
Hence if x = y = ;1 and A = — g the rectangle of maximum area is

obtained, which is a square.

Example 77.1.2 Find the shortest distance from the origin to the hyperbola

x2 + 8xy + 7y2 = 255, = 0.

N
Solution: Distance from (0, 0) to a point (x, y) on the hyperbola = x2 + y2.
foy) =x2+y%  g(xy) =x2+8xy+ Ty — 225,
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We must minimize the function f(x, y) = x2 + y2 subject to the condition
x2 + 8xy + 7Ty2 = 225.
Consider the function

V=f£(xy)+2Ag(x y)

=x2 +y2 + A(x2 + 8xy + 7y2 — 225), where A is the Lagrangian multiplier.

07‘/: 2x + 2Ax + 8Ay

St

__ =2y +8Ax+ 14Ay

oy

For extremum values
ov 1%
— =0, —=0andg(kxy)=0
Oox oy

(L+A)x+4Ay =0

AAx+(1L+7A0)y =0, x2+8xy+7y2=225

. 1
Solving we have A =1, —5.

when A =1, x = —2y, using in x2 + 8xy + 7y2 = 225
we have y2 = —45, which is not real solution.
1 .
when A = —g/ V= 2x, using in x2 + 8xy + 7y2 = 225
we have x2 =5, y2 = 20, so x2 + y2 = 25,
So the shortest distance from the origin to the given hyperbola = 5.

Example 7.1.3 Find the shortest distance from the point (1,0) to the

parabola y? = 4x.

Solution: Distance from (1, 0) to a point (x, y) on the parabola y2 = 4x
N
iIs (x—1)2+y2
fOoy)=(x—1)2+y2  g(xy) =y> — 4x.

We must minimize the function (x — 1) + y2 subject to the condition

y2 =4x.
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Form the following function using Lagrange’s multiplier A.

V=Ff(xy)+Ag(x y)

= (x—1)*+y2 + A2 — 4x)

av
— =2(x _1) 4A
i
_ =2y +2yA
oy
For extremum values
d—V=0, d—v=0andy2=4x.
ox dy

> 2(x—1)—41=0

2y +2yA =0
y2—4x=0
From 2y + 2Ay = 0 we have
2y(1+A)=0

= eithery=0o0rA=—1.
when A = —1,
2x—1)—41=0

=>x=-1

The parabola has no real point with negative abscissa. The valid range is
x = 0.
Therefore A = —1 must be rejected.

Hence, the only real solution is x= 0,y= 0,A= — *ldnd the required

2
minimum distance is attained at (0, 0) and the minimum distance = 1.

Th\ij is shortest because any other point say (1, 2) on y2 = 4x gives distance
= 0+4=2>1.
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7.1.2 One relation between three variables

Now we consider the case

u=flxy, B)

aglx,y, @) =0
g>2+g>+g2>0

1 2 3

It is easily seen by elimination that the desired extrema will lie among the
simultaneous solutions of one the three systems:

Suppose
g=0
of. a) _
ox y)
ota) _

o(x, )

0

g=0
ot a) _,
a(y, x)
of.q) _
o, @)

g=0
off. a) _
o x)
of. q) _
0@ y)

according as it is g, g», Or g; which is different from zero.

To solve the same problem by the method of Lagrange, we introduce the
Lagrange multiplier A, forming the function

V=75(xy B) +Ag(x, y, B)

. . . ov ov oV
Treating x, y, Bl as independent variables and set _ =0, =0, =0,

Ox oy ol

we are led to the system

g=0
fi+Ag. =0
fa+2g2=0
fs+Ag; =0



We can solve at least one of these for A and thus arrive at one of the above

systems.

Example 7.1.4 Find the rectangular paralleopiped of surface area a> and

maximum volume.

Solution:
The volume of the rectangular paralleopiped = xyfl.
Surface area of the rectangular paralleopiped = a2 = 2xy + 2yl + 2BIx.

We form the following function using Lagrange’s multiplier A

V = xy@ + A(2xy + 2y@ + 2BIx — a?).

. ov
Now the extremum of xy@ is given by __ =0,

= = 0 and
ox oy orl

2xy + 2yR + 20x = 0.
ov
— = yRA+ A2y + 20) =
o - YBARy+20) =0
ov

=xB+A(2x+22) =0

ov _ _
=xy+A(2x+2y)=0

Since the variables x, y, B must all be positive, no coefficient of A is zero, so

that
X _x+DB y _x+y
y y+@ C x+0
Consider
X _x+Q
y y+@

x(y +B) —y(x+B) =0
x(x—y)=0
B=0,x=y
cannot be zero, so x = y. Similarly we have y =[B. so x =y =Bl

Now 2xy + 2yRl + 2Px = g2

gives
6x2 = g2
3
X~V%
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Also

=~

a a a
= _ P = 7,/\:—%7'
y=eP= g 1'%

Then the box is a cube.

Example 7.1.5 Find the miminum value of x> +y? + B2, given that ax +

by + cl2l = p.

Solution: Let f(x, y,B) = x2 + y2 + B2
Given ax + by + cfl = p.
Let g(x,y,B) = ax + by + @ — p.
Form the following function using the Lagrange’s multiplier A.
V=75(xy B) +Ag(x, y, B)
=x2+y2+[@2 +A(ax + by + cll — p)
For extremum values,

oV
dl = O, dl = 0/
Ox dy onl

=0and ax+by+cll =p

= 2x+Aa=0
2vy+Ab =0
28+ Ac=0

ax+by +cl =p

Solving the above equations we have

—Aa —Ab —Ac
27 2

Using the above values of x, y, @ in ax + by + c@ = p, we have

a —Aa +h —Ab te —Ac
2 2 2 P

2 2 2

—AMa +b *tc)=2p

_ =2
a2+ b2+ c2
Therefore, we have
ap bp cp
= Y= =
a2 + b2 + ¢c2 a2 + b2 + ¢c2 a2 + b2 + ¢c2
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Using the above values of x, y, @ in f(x, y, B) = x2 + y2 + (2

X2 + y2 + 2

f(x y,B)
a2p? + b2p? + c2p2
a2+ b2 +c2

N
a%+ b2 +c?
p2
ini 242 +p2js ———
Hence, the minimum value of x2 + y is P

Example 7.1.6 Divide 24 into three positive numbers x,y,B such that

xy2B1B is a maximum.

Solution: Let f(x, y, B) = xy2EB.
Given x+y +0 = 24,

Let g(x, y, @) =x+y +@ — 24.

Form the following function using the Lagrange’s multiplier A

sz(xlyl )+/\g(X/y/ ) :Xy23 +/\(X+y+ - 24)

For extremum values,

ov
ov =0 dl=0,

— =0, =0and x+y+&@ =24
Oox dy ol

= y2E'13 +A=0
2xyPB + A =0
3xy22 +A =0
x+y+B =24
Solving the above equations we have 2x =y and 3x = B. Using the above
values of x, y, @ in x+y + @ = 24 we get
X+2x+3x=24
6x =24
x=4
Therefore y = 8,8 = 12.

Hence, the maximum value of f(x, y, E) = xy2@83 is 442368.

148



Example 77.1.7 Find the minimum value of

(1) f(x, y, B) = a3x2 + b3y2 + c3BER

1 1 1
(i) f(x, y, ) =x2+y2+2 if — +~ +~ =1

Xy

M~

Solution: (i)

f(x vy, B) = a3x2 + b3y2 + 302
1 1 1

//=7+7+7—1
gl y, B) = v

Form the following function using the Lagrange’s multiplier A

V= f(X, vy, ) + Ag(xl Y, )

=
=
=

a3+ b3y + 3R +A T+ T+ —1

X
<
=

For extremum values

oV

=0and g(x, y,@) =0

ox 9y e

A
2a3x — — =0

X2
2b3y—/_\=0

V2

A
2c3—g=0

1 1 -
and "+~ 4+~ =0

X y

Solving the above equations we get
a3x3 = b3y3 = ¢33

or ax = by = cPl = k , say

k k k
> X= Sy= S B= -
a b c
I .1 1 1
Substituting these valuesin =+~ + 7 =1
X y
wegeta+b+c=k
Therefore
a+b+c a+b+c a+b+c
X=———F—y= LB =
a b c

Hence the extreme value of a3x2 + b3y2 + ¢3B2 is

at+b+c 2 a+b+c 2 atb+c 2
a S o+ —b c ¥
a c
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=a(a+b+c)*+bla+b+c)>+cla+b+c)*or (a+b+c)3

The extremum is a minimum because, if we increase x, y, @ satisfying x +
l 1 3 2 3 2 3 2
+ = l,ax +by +c increases indefinitely.
y fi
(i) To prove this, seta=b=c= 1.

Then min(x2 +y2 +@2) = (1 + 1+ 1)3 = 27.

Example 7.1.8 A rectangular open box, open at the top is to have a vol-
ume of 32 cubic feet. Find the dimensions of the box requiring least material

for its construction.

Solution: Let the length, breath and height of the box be x, y, B.
Surface area of the box = f(x, y, @) = xy + 2xE + 2y0l
Volume of the box = xy = 32

Let g(x, y, @) = xy@l — 32.

Form the following function using the Lagrange multiplier A

V=f(xy B)+Ag(x y, &)

= xy + 2x@ + 2y@ + A(xyBl — 32)

. 32 .
Since xy@ = 32, we can choose xy = k, B = ~—, where k is any large number.
k

Thus the surface area xy + 2xB + 2y@ which contains the term xy can be
increased to any extent. So the surface area has no maximum and it has a
minimum. The minimum is given by,

oV
dl = O’ dl = OI
ox oy on

=0and g(x, y,@) =0

= y+28+AyA=0
x+ 20+ APx =0

2x + 2y + Axy =0
and xy?l — 32=0
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Solving the above equations we have, x =y, y = 20.

Using in xyBl = 32 we have,

4x3 = 32
E3 =8
B=2

=>x=4,y=4R=2.

The minimum surface area = xy + 2x@ + 2y = 48.

Example 7.1.9 Find the positive numbers such that their sum is a con-

stant and their product is maximum.

Solution: Let x, y, @ be the three numbers.
We have to maximize xy® subjectto x+y + B = a.

Let
f(x y, B) = xyBl

g(xlyl) :X+y+ —a
Form the following function using Lagrange’s multiplier A.
V=f(x y B) +Ag(x, y, B)
=xyP+A(x+y +E — a)
For extremum values

ov
oV _, 9V =g

=0and x+y+B=aq.

ox oy e
=>yrI+A=0
xA+A=0
xy+A=0

We have
xy =yRl =[klx = —A

Solving for x, y, B,



Hence

Q
Q
Q

X+ty+R=a==x=

N
M~
1

37)’

W
W]

3
The maximum value of f(x, y,B ) = %.

Example 7.1.10 Find the greatest and the least distances of the point

(3,4,12) from the unit sphere whose centre is at the origin.

Solution: The equation of the unit sphere is x2 + y2 + @2 = 1.

Distance of (3, 4, 12) from any point of the sphere is

q
(x—3)2+(y — 4)2 + (@ — 12)2.

Let f = (x — 3)2+ (y — 4)2 + (@ — 12)2.

We have to find the maximum and minimum of f subject to

x2+y2+p2 —1=0.
Form the following function using Lagrange’s multiplier A.
V=Ff(xy B)+2Ag(x y, B)
=(x—3)2+(y —4)*+([@— 12)> +A(x2 +y2 + 2 — 1).
For extremum values

ov
dl =0, dl =0,
ox dy ol

=0and x2 +y2+pR2 =1,

= 2(x—3)+2xA =0
2(y —4)+2yA=0
28 — 12) +28A = 0
Solving for x, y, @ we have,
3

X = ,V = 4 ,= 12
A+l A+l A+1
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Substituting in x2 +y2 + 22 = 1 we get

o 16 . 1 =1
(A+1)2 (A+1)2 @A+1)
A +1) = 169
A+1)=+13
:>A:—14,12
3 4 12
AtA=—-14, (xyB)= —7a —713, 713
3 4 12

AtA=12, (xy0B)= 13”1313

S
.. . 3 2 4 2 12 2
M = -2 _ T _ e T
inimum distance . 3 13 + 4 13 + 12 13 12,
. 3 2 4 2 12 2
Greatest distance = 3+ — + 4+ __ + 12+ __ =14 .
13 13 13

7.1.3 Two relations between three variables

Now we consider the following case

u=f(xy, 2)
gx,y,B) =0

h(x, y, &) =0

og.h) >, dah) * dah * >0 (7.10)
a(x, y) o(y, B) 0@ x)

There is now a single independent variable which must be chosen in ac-

cordance with the Jacobian which is not zero. All three cases lead to the

system

_,=90ah _, (7.11)
o(x, y, B)
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The Lagrange method introduces two parameters A and y and leads to the
system of five equations in x, y, B, A, u,

fl +Ag1+uh1:0

fo+Ag. + uh, =0

fs+Ags +uh; =0

g=0

h

0

Under conditions (7.10) this system is easily seen to reduce to the system

(7.11) when A and u are eliminated.

Example 7.1.11 Find the maximungand minﬁﬂum values of x> +y? + 2

subject to the constraint conditions ~ +° +  =landg= + y.

4 5 25

Solution: Let
fOy,B) =x2+y> +B2
X2 y2 B
)= —+ —+ — —

h(x,y,®) =x+y —B.
Form the following function using the Lagrange’s multipliers A and .

V=F£f(xy B)+Ag(x, y, B) + uh(x, y, &)
X2 y2 2
0 NS L S A )

For extremum values,

oV oV _qg 9V
207—0, =0,g(X,y;):0,h(X/yr):0'

ox oy om
A
= 2x+7x +u=0
2A
2AR
20 + —u=0
x2 y2 @8
+ + =1 + =0
- , X y-
4 5 25
Solving these equations for x, y, B, we find
2u S5u 25u
= - = — =
XTTxwaY T T2+ T 24+ 50
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Substituting all the above values in x+y — B = 0 we get,
2 5 25
+ + =0
A+4  2A+10 2A+50

2(24 + 10)(2A + 50) + 5(A + 4)(24 + 50) + 25(A + 4)(24 + 10) = 0

(2 + 10)(24 + 50) + 5(A + 4)(A + 25) + 25(A + 4)(A +5) = 0
42 + 1204 + 500 + 572 + 500 + 1454 + 2542 + 500 + 2251 = 0
342 + 490\ + 1500 = 0

17A2 + 2454+ 750 = 0

= (A+10)(17A+75) =0

5
=>A=-10or —17.

When A = —-10,
u u Su
= _ = _ =
X 3I 4 2, ? 6X2 2 2
Substituting in the first constraint condition = + . 1 yields
4 5 25
. _ 180
H =19
"5
= u==6 E

5 ts T s s 's
This gives t\/\{o points 2 EB 1{5' Eg\nd -2, 7 , —% T
At these pm%s flx, y,B) = x2+y2+[@2 = 10.

When A = ——,
17
L 34u _ _gg _ 1
7Y 4 .
Substituting in the first constraint condition N yz N = 1 yields
140 4 5 25
u== .
17 646
o : 40 35 9 40 35 .5
v, 22, v o,
This gives two points 576 626 " 646 and 516 626 V616
. 75
=x2+y2+E2 =" _,
At these points f(x, y, B) = x2 + y2 + [ 17 -

Thus the required maximum value is 10 and the minimum value is 17°

Example 7.1.12 Show that the extreme values of x> + y> + B2 constrained
as ax? + by? + c@? = 1, px + qy + rid = 0 are given by the quadratic equation
inA

p2 q2 r2

+ + =0
1—ad 1-0bA 1—cA
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Solution: Let
floy, B) =x2+y2 + 2

g(X/ VZ ) =ax® + by2 + PP — 1/
h(x,y, B) = px +qy + r2.
Form the following function using the Lagrange’s Multipliers A and u.
V=f(xy B)+Ag(x y, B) + uh(x, y, B)
=x2+y2+ P2+ A(ax2 + by? + cB2 — 1) + u(px + qy + i)
For extremum values

oV
dl =0, dl =0,
Oox dy orl

=0,g(x,y,@)=0and h(x,y, @) =0

= 2x+2Aax+up =0
2y + 2Aby + ug =0
200+ 2AcBl+ ur=0
ax2 + by2 +cP2 =1
px+qy+cl=0

From the above equations we have,

ov ov ov
X—+y—+B0—=0
ox oy od

= 2(¢ +y* + &) +2A((ax” + by” + ¢ )) + u(px + qy + rd) = 0
=20 +y°+B)+21=0
> A= —(Xx +y* +@°).
Hence, we have

up uq ur
= = =
20—an)” T 20 —pA)Y T T 201 - )

X

Using the values of x, y, 2 in px + gy + r2 = 0 we have

2 2 2
p + q + r =0
l1—ad 1-0bA 1—cA

Example 7.1.13 Maximize or minimize the function f(x, y,B) = 3x—y —

38 subject to the constraints x+y — B and x* + 2B — 1.
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Solution: Let f(x,y,B) =3x —y — 36, g(x, y,B) = x+y — B, h(x, y, B) =
x2 + 2p2 — 1,

Form the following function using the Lagrange’s Multipliers A and u.

V=1f(xy B)+Ag(x, y, B) + uh(x, y, B)

=3x—y—3B+Ax+y —B) +u(x2+ 202 — 1)
For extremum values,

oV _, oV =g v 1
=V, 7 = — [Pl = ?| —_ =
Ox dy o7 0,x+y 0 and x2 + 0

= 3+A+2ux=0

—-1+A=0
—3—-A+28u=0
x+y—B=0

x2+22 —1=0

Solving these equations we have,

22 2
S ow2 iy
u u
4 2 _
u2+u2_1
v
>u==+ 6
V 2 3 1
= 6/ =__/ =_1= .
If u X J6y J& V%
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2 3 1
At VN . VN N
\/; \/6 \/6

f(X,y,)=3X—y—3

6 3 3
- g+ g Vs
j.z
N
=2 6

2 3 1

At —%g, \/g, %g

Ly, B) =3x —y — 3B
f(x y, @) XY 3 3
e Ve s
=_7
8
va
=—2 6

Therefore the maximum value is 2 6 and minimum value is —2 6.

Summary

1. f(x, ¥), g(x,y) € C* in a domain D
2. g2+g2>0in D

1 2

then the set of points (x, y) on the curve g(x, y) =0, where f (x, y) has
maxima or minima, is included in the set of simultaneous solutions

(x, y, A) of the equations

filx, y) +Agi(x, y) =0
fa(x, y) + Ag2(x, y) = 0

aglxy)=0
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« Tosolve

u=f(xy 1)

glx,y, @) =0

g2+g>+g>>0
1 2 3

by the method of Lagrange, we introduce the Lagrange multiplier A,

forming the function

V=f(xy B)+Ag(x y, &)

. . . ov ov
Treating x, y,@ as independent variables and set __ = 0, =
ox oy
ov _
0, — =0, we are led to the system
om
g=0
_fl + Ag1 =0
f2 + Agz =0
fs+Ags =0

We can solve at least one of these for A and thus arrive at one of the

above systems.
+ Consider the following case

u=f(xy, &)
glx,y,B) =0

h(x,y,2) =0

og.h) *, oah) *,  dah * >0 *)
o(x, y) a(y, ) o8 x)

There is now a single independent variable which must be chosen in
accordance with the Jacobian which is not zero. All three cases lead
to the system
o g, h
g=h=09" _g (=)
o(x, y, B)
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The Lagrange method introduces two parameters A and u and leads
to the system of five equations in x, y, B, A, i,

fi+Ag. +uh, =0

fo+Ag2 +uh, =0

fs+Ags +uh; =0

g=0

h=0

Under conditions (*) this system is easily seen to reduce to the system

(* *) when A and u are eliminated.
Multiple Choice questions

1. In determining the minimum value of x2 + y2 + B2 subject to the con-
dition x+y +B@ = 5 by Lagrange’s method of undetermined multiplier

the value of undetermined multiplier A is

10
(a) — 5
3
b) >
®) ",
3
(C) __10
2. Extreme value of xyB subjectto x+y+B =1 s
1
Q) =
@ g
(b) 8
1
Q) =
3. In determining the minimum value of x2 +y2 +@2 subject to condition
yB + Bx + xy = 302 by Lagrange’s method of undetermined multiplier
the value of undetermined multiplier A is
2
al b)-1 ¢ 3
4. In determining the extreme value of f (x, y, B) subject to the condition
f (x, y, B) = 0 by Lagrange’s method of undetermined multiplier the

value of undetermined multiplier A satisfies the equation
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(@) Fx+ Afi
(b) £y, +Af,
(c) Fe+Afz =0

(d) all the above

Ans: 1.a) 2.¢) 3. b)) 4.d

Exercises 7

(@) f(x, y),g(x, y) € Ct in a domain D
(b) g2+g2>0inD

1 2

then prove that the set of points (x, y) on the curve g(x, y) = 0, where
f (x, y) has maxima or minima, is included in the set of simultaneous

solutions (x, y, A) of the equations

filx, y) + Agi(x, y) = 0
fo(x, y) + Ag2(x, y) = 0

glx,y) =0

. The temperature T at any point (x, y, &) is 400xyR. Find the highest

temperature on x2 + y2 + P12 = 1.

. Show that the minimum and maximum distances of the origin from

the ellipse 5x2 + 6xy + 5y> = 8 are 1 and 2 respectively.

. Find the greatest and the least distances of the point A(3, 4, 12) from

the sphere x2 + y2 + 2 = 1.
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BLOCK IV

Line and Surface Integrals






Unit 8

Line Integral

Learning Outcomes :
After studying this unit, students will be able

F To define and evaluate line integrals.

F To know the applications of line integrals.

8.1 Introduction

In block 1V we study two new concepts line integrals and surface in-
tegrals . These integrals have important applications to geometry and
physics. If the function to be integrated is defined along an arc of a curve
in two or three dimensions, we can define an integral over that region, the
result is called a line integral or curvilinear integral over the arc. In the
same manner if the region of integration of a double integral is taken as a

region on a curved surface, the result is called a surface integral.
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8.1.1 Curves

We shall be dealing with curves of various types. For easy reference let
us introduce names for them.

Curve : A curve in the xy-plane is a set of points (X, y) for which

x=o@(t), y=y(), asts<b 8.1)

where p(t) e G Y(t) €Cina <t < b.

Closed curve : If ¢(a) = @(b), Y(a) = Y(b), the curve is called closed
curve.

Jordon curve : A closed curve is called a Jordan curve if it has no double
points. That is, no two distinct values ¢ ina < t < b yield the same point
(x, y).

Jordon curve theorem : Any continuous simple closed curve in the plane

separates the plane into two disjoint regions the inside and the outside.

Definition 8.1.1 The curve (8.1) is regular if it has no double points and

if the interval (a, b) can be divided into a finite number of subintervals in

each of which @(t) € C, Y(t) € C* and [@P()* + Yo(£)?] > O,

It is clear that a regular curve is sectionally smooth because it consists of
a finite number of arcs, each of which has a continuously turning tangent
whose direction is determined by the quotient of ¢?(t) and (t) as they do
not vanish simultaneously.

Remark :

1. A regular curve may have corners where the arcs are joined together.

Example : The boundary of a rectangle.

2. A Jordan curve can fail to be regular. For example, when it contains

. .1 .
a piece of the curve y = xsin(~) near the origin.
X

3. A regular curve has arc length.
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Definition 8.1.2 A region is regular if it is bounded and closed and if its
boundary consists of a finite number of regular Jordan curves which have
no points in common with each other. We shall denote such a region by the

letter S.

Example : The set of points (x, y) for which 1 < x> +y> < 4 is a region
S. If from this region the points on the x-axis in the interval 1 < x < 2
were removed, the region is not closed and hence not regular.

8.1.2 Definitions and Theorems

In this section we shall see some definitions and theorems needed for

further study.

Definition 8.1.3 A subdivision A of an interval (a, b) is a set of numbers

{x }o or points, such that
a=Xo <X1<..<X,=b.

A subdivision involving n + 1 points divides the interval into n adjoining

subintervals (xo, X1), (X1, X2), ..., (Xp-1, Xp)-

Definition 8.1.4 The norm Al of a subdivision A is
Al = max {x: — xo, Xa — X, ..., Xp — Xp-1}

In otherwords, it is also the length of the largest of the subintervals.

Definition 8.1.5 The Stieltjes integral of f(x) with respect to a(x) from

atobis
b =n
f(x)da(x) = lim FE)[alx) — alxi-1)]
a nall—e, .

where e < & <x, k=1,2,...,n.
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Definition 8.1.6 Divide the interval a < x < binto n subintervals by
points

d=Xo <X1<X2<..<X,=b

and set

& = max((xo, X1), (X1, X2), ..., (Xn-1, Xn)).

Choose point &, xi-1 < & < X, k= 1,2, ..., n. Then the Riemann integral

of f(x) with respect to x from a to b is

? Fgdx = 1im = FEQ(x — Xeon)

a 60,4

if this limit exists.
Theorem 8.1.1

1. fx) €C a=<x<b

2. a(x) € class of non-decreasing functions,a < x < b

b
=  f()da(x) exists.

Definition 8.1.7 Let f(x) € C and a(x) € C in a < x < b. Then
b Ub
fO)da(x) = fO)aP(x)dx

The integral on the right is an ordinary Riemann integral.
Theorem 8.1.2 (Dhahamel’s Theorem)

1. f(x y), alxy) € C

2. A subdivision A divides R into subregions R, k =1,2,..., n.
3. (%0 ¥«), (6w ni) are points of R, k = 1,2, ..., n.

= lim s (X )& ni)AS, = f(x y)a(x, y)ds

All —ek=1 "
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Theorem 8.1.3 (Duhamel’s theorem for Riemann integrals)

1. fx),gx) €€ a<x=<b
2. a(x) € class of non-decreasing functions
3. {x}"ds a subdivision A of (a, b)

4, Xp-1 = fk =< X, Xi-1 = N = Xg, k= 1, 2, ., N

n U

b
T’ o, [E9(01)[00) — alun] = F6Ig(Idat).
m

Definition 8.1.8 Let ¢(x) and Y(x) € Cina < x < b and o(x) < Y(x) in
a < x < b. Then the region R, or Rla, b, @(x), Y(x)] is the region bounded
by the curves x =a,x = b,y = @(x),y = ().

Remark :

1. If (x4, yu) is @ point of R,, then a < x; < b and @(x1) < y1 < P(x1).

2. Alline x = x;, a < x; < b cuts the boundary of R, in just two points.

Example: The region R[—1, 1, 1o x2, 1+ x2] is the circle x2 +

y2 < 1.

3. The region R, can be defined in an obvious way.
Theorem 8.1.4

1. f(x,¥y) € C in R,

2. Ry =Rla, b, o(x), Y(x)] B
b 9]
-~ flxy)ds = ] dx f(x, y)dy

o(x)

Theorem 8.1.5

1. f(x,t) eC, a<t<bA<x<B
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2. | )= ()
Fxy,@ fxtdt a<yB<bA<x<B
y

= Fl(Xl Y, ) = y fl(xl t)dtl F2(X/ Y, ) = _f(xl y)/ F3(X/ Y, ) = f(X/ )/

a<yBR<bA<x<B

Example 8.1.1 Suppose h09) and is as defined
P PP (0 = ]( X, t)dt F (x, V, ) f

in Theorem 8.1.5 then

h(x)
Glo=_  filk 9t = fix g(9)d() + fx h(Ih )

8.1.3 Definition of line integrals

Let I be the curve givenby x = ¢(t), y = ¢(t), a <t < b where
e(t), Y(t) € Cina < t < b. Let f(x, y) be a function defined at every point
of the curve I" and A be a subdivision of the interval (a, b) by the points
to, ty, ..., t,S0thata=to<t; <t < <t,=b.

Then we define two types of line integrals

X1,Y1 2,-,:
f(x y)dx = - fx y)dx = II'XITI‘_G flo(t), bt)le(t) — o(ti1)]
r vre i=1
| (8.2)
a X1, Y1 Xn:
foeydy = floy)dy = lim  flo(t), wt)P(t) — b(t-)]
r "o i=1
(8.3)

Here xo= @(a), yo= ¢(a), x1 = @(b), y1 = Y(b), ti-1 < t,® < t, For the line
integrals to be defined the defining limits must exist. The line integrals

(8.2) and (8.3) are, in fact,

b
abf(fp(t), bOde®,  F®), GO

respectively.
Theorem 8.1.6

1. I is a regular curve
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2. fxyyecConT

= f(x,y)dx and f(x, y)dy exist.
r r

Proof: Consider the curve T' : x= ¢@(t),y = ¢(t),a < t < b. where
), Y)eCina<t=<h
Given that I is a regular curve. So ¢(t), ¢(t) € Ct ina <t < b.
Let A={a =to, ty, ..., t, = b} be any subdivision of [a, b] and % € (ti-, t)).
Consider the sum

3

flot), p)e(t) —@(tii)]
i=1

since ¢(t) € ¢, applying the law of mean we have

o(t) — o(ti-1) = @2(t2)(t; — ti-1)

where t., <t <t,. So, by Duhamel’s theorem the limit exists and
0 -
H
f(x, y)dx = lim flo(t), NG (Yt — ti)
Al —e

T i=1

Similarly we have for t;,-, < t2; < t;

-
f(x, y)dy = .'.TL, f(o(t), )Y ULt — t-.) exists.
T i=1

Note : We have the following remarks if we alter hypothesis 1 a variety of
ways.

Remark 1: If the curve I' is monotonic that is ¢(t) and ¢(t) are both
monotonic in (a, b) then by Theorem 8.1.1 the limits (8.2) and (8.3) both
exist as Stieltjes integrals

L Up
fOoy)dx = f(e(t), Y(t))de(t)

r

; flx y)dy =
T

b
f(o(t), Y()di(t)

Remark 2: If ¢(t) =t and ¢(t) € C instead of to C', we see that

b
FOoy)dx = f(x, g(x))dx (8.4)

r
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Thus it will be possible to extend the integral (8.2) over the boundary

of a region R, or the integral (8.3) over the boundary of a region R, if

f(x, y) € C there. Q

Example 8.1.2 Compute (x+y)dx if I is x =cosd, y =sind,
T

0<9<i.

Solution: Given x =cosd,y =sing,0 <9 < %
Here the integration is intended to be from (1, 0) to (0, 1) along an arc of
the unit circle.

dx = sin 9dd

(x+y)dx = — E(cosﬁ+ sin ¥) sin 9dY
r

0

=_ 0_zcosﬁsin odo Ogsinzf)

_ %dﬁ % 1_cos20
(0] 2 (0] 2
_ (00 2]9 LQ[ _ Qﬂz + Si[lzi? Ez
4 (0] 2 0 2 0
_ 1 1 n_ 1 n
T 4T 4 T4 2w

Note : The above example can also be solved by using equation (8.4),

x=cosd,y=sind= 1-—cos29= 1—x2and x varies from 1to 0. So

o AN
r/("'y)dx: (x+ 1— »)dx

Vv !
X2 P 1 — 2 0
= 2+ 2 + 2 )
_ 1 1 n _ 1 =&
2 2 2 2 4

Example 8.1.3 Compute  (x +y)dx if I is the two line segments

T
y=00=<x=<1x=00=<y<1

170



Solution: The integration is intended to be from (1, 0) to (0, 1) over the
broken line.

o 270 1

X+ y)dx = xdx = ~— = — ..
F( y) . 2 =

Remark : From the above two examples we see that the values of the
integral may depend upon the path and not merely on the end points of

the path.

Example 8.1.4 Extend the integral  (x +y)dx + (x — y)dy over the two
r

paths T if (i) T is x = cos¥,y =sin%,0 < ¢ < 5, (ii) I is the two line

segments y=0,0<x<1;x=0,0<y <1

Solution: (i) f 'isx=cosd,y =sing, 0<8 <X, then

(x +y)dx + (x — y)dy
T

’ (cos @ + sin §)(— sin ¥) + (cos & — sin ¥) cos d
0

= 0;(_ cos dsin @ — sin? &+ C0S* 9 — sin ¥ cos 9)dd
= OE(COS2 9 — sin? & — 2sin ¥ cos 9)dd
= : (cos 28 — sin 28)dd
031W2ﬁ+ OS2 =
2 2 o
=-1
(ii) If T is the broken line

y=0,0<x<1 x=00<y<l1.

0 0, )
(x+y)dx + (x — y)dy = xdx - ydy
T 1 (0]
et Et
=2 _ %5 =
2 0

We will prove later that in this case the value of the integral is independent

of the path.

171



Example 8.1.5 Compute the following integral over the curve I if T is
s

x=cosgy=sing0<9 < 5

xydx + (x + y)dy.
r

Solution: Suppose I'is x=cosd, y=sing, 0<9<

NS

Here the integration is intended to be form (1, 0) to (0, 1) along an arc of

the unit circle. x =cos® = dx = —sindd9, y =sind = dy = cos 9dd
0

xydx + (x +y)dy = 7 E(cosﬁsin ) (_ sin §)dP + (cos & + sin J) cos 9dF
r 0

= OE( _sin® 9 cos® + cos? & + sin & cos 9)dd

n T Hn

z . 3z l1+cos20 1 =z .

- sin®9cos 9 + . ) d6+§ , sin20d9
1" o 1

=—"+= 4+~

3,4 2
+

n 1

4 6

Example 8.1.6 Compute  ydx + xdy over the curve I, if I is x = c0S ¥,

r

T

y=sinﬁ,0§ﬂs§.

Solution:
| ydx + xdy = *(_sin® 9 + cos? 9)dd
r 0

= 7 cos20dd

0
= =0.
2 0

b4
2

Example 8.1.7 Compute x2ydx + x3dy, if I' is the path given by

T
x=costy=sint,0 <t <2

2 3 o 2 2 4
X ydx+x dy = (—cos tsin ¢ _ cos t)dt
[0}

Solution:

T
_ c0S? tdt



Example 8.1.8 Evaluate the integral | = xdx + ydy + Bd@ where T is

r
the circle x2+ y2+ B2 = g2 B = 0.

Solution: The parametric equations of the circle are x = acost,y =

asint,@ =0, where 0 <t < 2m.

Also dx = —asintdt, dy =acostdt, d&=0.

I = xdx+ ydy + BdPl
r

L 2n ) ;
= (g cost)(_a Sin ¢g) + (g Sin P (5 COS¢yt)

0
2n

=g (_sintcost +sin tcost)dt
0
L2

=3 0 dt

0

=0.

Example 8.1.9 Evaluate | = xdx +ydy where I is the ellipse

r
x2+ 4y =4,

Solution: The equation of the ellipse is x2 + 4y2 = 4,

X2 y2

—+ —.

22 12

The parametric equations are x = 2cost, y =sint where 0 < t < 2.
Therefore,

xdx +ydy
I' (2cos )( 2sin )+ (sin )(cos )
t tdt t t dt

~
(L]

0_
U2

35sin ¢ cos tdt

21

3
- sin 2
5 tdt

0

=~ (cos 2t)?"
0

e |

I
© »~
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Example 8.1.10 Find the value of | = (x+ y?)dx + (x> — y)dy taken
r
in the clockwise sense along the closed curve I formed by y3 = x? and the

chord joining (0, 0) and (1, 1).

Solution: Equation of the chord joining (0, 0) and (1,1) is y = x.

The curve T consist of the arc OA, y3 = x2 and the line AO, y =x.
Along OA, y3= X fy = x;,

Along AO, y=x.

Therefore
0

1= (x+y)dx+(x_—y)dy
T 2 2

0 0

1 (0]
= (x+ xsi)dx + (2 —ydy+  (x+xddx+ (x*> — x)dx
0%, 0o .
= x3dx + y3dy + 2x2dx
0 1
_ 1
-84
A
1h- =tas
i (1.1
o
1
¥
\
!
\
|
4
Figure 8.1
Example 8.1.11 Find the value of I =  x?ydx + xy>dy taken in the

c
clockwise sense along the hexagon whose vertices are (+3a, 0), (20, £ 3q).
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Solution: Equations of the line forming the curve T are

AB:y=— 3a
SV
BC.:y— 3x+3 3a=0
CD:y+ 3x—3 3a=0
v _
DE :y= 3a
_ V_
EF .y — 3x—3 3a=0

i
FA:y+ 3x+3 3a=0

Therefore

(=2a, v3a)E D(22.v 3a)
_V_MF/!T v3al \ ¢ o
(=32 )N 22 [0 22 13/(3,. 0)
A I 8

(=23, - v 3a) 122, -v32)

Figure 8.2

It =larF + Ire + Iep + Ipc + IcB + IBa

O -3a B B 0 0 . ¥
= _ x°( 3x+3 3dx—  v_ y 3 +3, dy
_oa - a a
G _ - ovg
+ ‘j: &C/3x+3\/3a)dx— . 30y2 ‘\%—30 dy)
" 2a/_
+ 3ax2dx
—-2a
0 \/ 0
30 _ _ 0 _
+ X(— 3x+3 3a)dx+ Ve e v%+3a dy
3
M 0
0 o _ \/ - 3a )
+ - )56/3x 3 a)dx + v, ‘\Q3+3a dy
U —an/_
- 3ax2dx
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\/7 —
- 2a

30 V_
y? 4,5 —30 dy+2 30 x%dx

30 VAV
=4 (—x)*( 3x—3 3a)dx+4

2

1 0 -2a
A B VAR
=404 65 3190 3 +40 . -33 ++/
3?844 . a Vs JBa
= +a.
30

Example 8.1.12 Evaluate (x> + xy)dx + (x? + y2)dy where I the square
r
formed by the lines x = +1,y = +1.

Solution: Equations of the line following the curve I'are AB :y = 1, BC :

x=—-1,CB:y=—1 DA : x=1. Therefore

f'\}'
SELD ALY
£ i X
CaL D (1,1)
L
Figure 8.3
It =1ag + Iac + Icp + Ipa 0, 0,
= (*+) + (@+3 + (. -) + (@+?
x  xdx y dy x*  xdx y dy
1 1 -1 -1
B e ;é!_l R ;é!l
_ - y
= 3 H2 o, hyrs v 32 Tl
2
=—_ — + + =
3 3 3 3
=0.
8.1.4 Work

One of the natural application of a line integral is to the problem of

defining the work done by a field of force on a particle moving along a
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curve through the field.
Let the field be given by two functions X(x, y) and Y (x, y) which are to

be the x- and y-components, respectively, of ajorce at the point (x, y).
The magnitude of the force at the point = X2 +Y2,

X
Let us have the following assumptions:

Direction of the force =tan™!

(i) The particle describe the regular curve x = @(t), y = ¢(t),
a <t < b where ¢(t), Y(t) € C.
(i1) A be the subdivision of the interval (a, b) by the points to, t,, ..., t,
suchthata=to <ti<..<t,=b.
(iit) As; = Arc length of the curve between the points t = t,-, and t = t,.
(iv) ¢; = Angle between the direction of the force of the field at the point
t; and the direction of the tangent to the curve at t; directed in the
line of motion.

Now, work done on the particle as it traverses the whole path is

 Eq_
= lim X+ Y2cosgAs; (8.5)
nall—o

Xi = X(p(t), Y(t)), Yi=Y((t) Y(t))
The direction components of the tangent are ¢?2(t;), ¢2(t;) and of the

direc-tion of the force, X, Y, so that
cos _ Xip?(t) + YipB(t)
g, 7
ot va V@@ + WAL

T P

s = t T Ee - [w(t,- Nt = At,-q[(f,-)]z +ylg
where t;-; < &; < t;. Then equation (8.5) becomes

Workdone = ||Alli|m O.EZ(X,{,D(t,-) + Y;2(t;))At;
By Duhamel’s theorem we sgthalt:tlhe limit (8.5) is the line integral

X(x, y)dx +Y (x, y)dy

that is

Work done on the particle = X(x, y)dx + Y (x, y)dy.
r
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Example 8.1.13 If X(x,y) = x+y,Y(x y) = x — y, find the work done
by the field on a particle moving from (1,0) to (0, 1) along the straight line

x+y=1

Solution: x+y=1=y=1—x = dy = —dx. Now,

Work done = X(x, y)dx + Y (x, y)dy
r

0o

= . dx — (2x — 1)dx

1
. (2x + 2)dx

1
> =0

X
= 2 +2 = _
2 X . 1

Example 8.1.14 If X(x, y) = 2x?y, Y (x, y) = 3xy, find the work done by

the field on a particle moving from (0, 0) to (1, 4) along the curve y = 4x2.

Solution: Given X(x, y) = 2x2y, Y (x, y) = 3xy

Work done = X(x, y)dx + Y (x, y)dy

r
= 2x2ydx + 3xydy

r
1
= 2(4*)dx + 3x(4 x?)8xdx

0
1
8x*dx + 96 x%dx

0
1
= 104xa
. X fflx

5
=104 ¥

5

[0}

10

5

Example 8.1.15 If X(x, y, B) =3xy, Y (x, y, B) =x +y, Z(x, y, B) = —B
Find the work done by the field on a particle moving from (2, 0, 1) to (4, 2, 9)

along the curve x=t+1ly=t— 1,08 =t2
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Solution: The parametric equation of Tare x=t+ 1, y=t— 1,0 = t2
Evidently t = 1 gives (2,0,1) and t = 3 gives (4, 2, 9).
Also dx = dt, dy = dt, d&l = 2tdt.

Workdone =  X(x, y, B)dx + Y (x, y, B)dy + Z(x, y, B))d&
T

3
3(# — 1) dt + 2tdt — t*(2t)dt
1

-3
(—28+38+2t— 3ddt
nl
#3
—t4
= ___ +t3+t2 —3t
2
1

=-12.

Remark 1 : When the work is independent of the path the field is called
conservative.

Remark 2 : The negative sign indicates the particle has done work on the
field, that is if the particle moved as a result of the forces of the field only,

it would move in the opposite direction over most of the path.

Summary

+ Line integral : LetI be the curve givenby x = ¢(t), y = ¢(t), a <
t < b where @(t), Y(t) € Cina <t < b. Let flx, y) be a function
defined at every point of the curve I and A be a subdivision of the
interval (a, b) by the points to, t, ..., t, SOthat a = to < t; < t. <
...<t,=b.

Then we define two types of line integrals
0

Foodx= . floyax= lim = Fo(e, WMo — o(t)]
Xo,Yo ! —©
& oy =1 -
f(x, y)dy = f(x, y)dy = Illign" flo(t), vENY(t) — Y(ti)]
T XoYo i=1 @

Here xo = @(a), yo = Y(a), x1 = @(b),y: = Y(b), ti-x < t8;, < t. For

the line integrals to be defined the defining limits must exist.
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1. T is a regular curve

2. fx ) econT

= f(x, y)dxand f(x, y)dy exist.
r r

- Work done by a field given by two functions X(x, y) and Y (x, y) of a

force at the point (x, y) on a particle moving along a curve through
the field =  X(x, y)dx + Y (x, y)dy
r

- If the work is independent of the path then the field is called conser-

vative
Multiple Choice questions:

1. When the work is independent of the path then the field is called

a) solenoidal D) irrotational field c) conservative field

2. The value of  ydx+xdy where T'isx=cos9,y =sin$,0 < 9 < Ezis
r
TT
a0 b7 o 7
3. The line integral is denoted by

(a) Triple integral
(b) Double integral

(c) Integral along a curve
Ans: 1.c) 2. a) 3.0
Exercises 8

1. Define line integral

2. If T is a regular curve and f(x, y) € C on T, then prove f(x, y)dx
0 r

and f(x y)dy exist.
r
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. Compute the integral  xydx + (x + y)dy over the curve T if T is the
r
two line segments y=0,0<x<1,x=0,0<y <1

Ans :}
0
. Compute xydx+ (x+y)dy where I" is the boundary of the triangle
r
with vertices (0, 0), (0, 2), (1, 0) integration in the clockwise direction.

Ans:—

win

. Computei (x2 +y)dx + (2x + y2)dy over the boundary of the square

r
with vertices (1, 1), (1, 2), (2, 2), (2, 1) in the clockwise sense.

Ans : —1.

If X(x, y) = 3xy, Y (x, y) = —ys3, find the workdone by the field on
the particle moving from (0, 0) to (1, 2) along the curve y = 2x2 in
the xy—plane.

Ans : -3

. Prove that the workdone by the field given by the two function
X(x, y) and Y (x, y) in moving a particle along a regular curve T’

is X(x, y)dx + Y (x, y)dy.
r
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Unit 9

Green’s Theorem

Learning Outcomes :
After studying this unit, students will be able

F To acquire knowledge about Green’s theorem which provides a formula
connecting a line integral over its boundary with a double integral over

a region.

F To know the applications of Green’s theorem.

9.1 Green’s Theorem

We shall now discuss Green’s theorem which provides a formula con-
necting a line integral over its boundary with a double integral over a region.
It is sometimes refered to as Gauss’s theorem.

If a region is bounded by one or more curves the positive direction over the
boundary is the one that leaves the region to the left. Thus for the region
between two concentric circles the positive direction is counterclockwise for

the outer boundary, clockwise for the inner one.

183



Definition 9.1.1 An iterated integral is an integral of the form

) 0 @2(x)
dx f(x, y)dy

a @:(x)

where @1 or @2 or both are functions of x or constants.

This means that for each fixed x between a and b, the integral

@2(x)
F(x) = - f(x, y)dy

P1x
b
is evaluated and then the integral ()
F x dx.
a
So
1
b "b " pa(x) b @2(x)
F(x)dx = foy)dy dx=  dx f(x, y)dy
a a oi(x a pi(x

and the other repeated integral
1

2 d 2!
d dy (Y (Y) f(x, y)dX or @ (y) f(X, y)dx dy

c oY) c ei(y)
is defined in the same way.
9.1.1  First form of Green’s theorem
Theorem 9.1.1

1. Ris a region Ry and also R,

2. T is the boundary of R

3. P(x,y),Qxy) € Ct in R

= Pdx + Qdy = [Qi(x, y) — Pa(x, y)]dS
r R

the line integral being taken in the positive sense.

Proof: R, =R[a, b, p(x), Y(x)] is a region bounded by the curves

(9.1)

x=ay=hby=0kx),y =), where o), ¢(x) € Cina < x < b and

o(X) <ygx)ina<x<b.
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Figure 9.1

Given that the function P (x, y) along with its partial derivative P, is con-
tinuous in the region R, and I" is the boundary of R then by Theorem 8.1.4

we have,
o b e
Pa(x, y)dS = dx P.(x, y)dy
a ()

b

, (POoyNGES x
= b

. P(x, (,ll(x)) dx — . Pb(x, <p(x))dx

(x, Lp(x))dx — P (x, @ x dx

“p
b

Using equation (8.4),
> Po(xy)ds=— Pxy)dx (9.2)

R r
Similarly considering R, = R[c, d, ¢(y), ¢(y)], a region bounded by
y=c¢y=dx=ao),x =), where o(y), ¢(y) € Cinc <y < d and

e(y)<y(y)inc<y<d.

d Yy
dy Qi(x, y)dx

Qi(x, y)dS =
c o(y)

R .
- d
=, Gy
= d
= d
c Q(t,b(y),y)dy— c Q(cp(y),y)dy
S oWy, ¢ Q) y)dy

(9.3)

5 Quxy)dS =" qx y)dy

R r
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Adding (9.2) and (9.3) we have

Pdx +Qdy = (Qi(x, y) — P:(x y)) dS.
R

r
Q

9.1.2 Second form of Green’s theorem

Theorem 9.1.2

1. Ris a region Ry and a regular region S
2. I is the boundary of R

3. P(x,y),Qxy) € Cin R

= Pdx+Qdy = (Qi(x, y) — P2(x, v)) dS

r
the line integral being taken in the positive sense.

R

Proof: Given that R is a region R, and a regular region S and T is

boundary of R. So I is a regular curve.
Hence we can apply previous proof as for as it concerns P(x, y),

> Ps(x, y)dS=— P(x y)dx (9.4)
R r
To find Q(x, y)dy.
r
The boundary T consists of four regular arcs. Hence
0 b b
Qlx, y)dy = Qx @(x)e?(x)dx —  Q(x, Y(x))P=(x)dx
T a a
) .y ) Qe d (9.5)
— a,
oy QlYIy— o Q@y)dy
and .
b — ()
Qi(x, y)ds = dx Qu(x, y)dy (9.6)
a e()
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Let
Y
F(x) = Q(x, y)dy
()
Then by Example 8.1.1 we have,

(9]
FX) = :X) Qi(x y)dy + Q(x, ¢(x)¢ Tx) — Qx o(x))e%x)

e

Qi(x, y)dy = F (x) — Q(x $()) ) + Qlx o(x))e (%)

@(x)
From (9.5) and (9.6), we have
oo b
Qi(x y)ds = F(x) — Qlx Y)PHx) + Qlx 9(x)eTx) dx

R
b b b
= PP alowC)uPkaxt Qb o00)e k Hx
a ) a ) a
=FL _ PQx g0, Q@) et
a a ) a
_ — — QX Y b
=F) ~F " L) ¢;x ot aboto Sl
(b) (a) Sb
N by @Y al we0)P(ax
o(b) o(a) a ,

b
+ Q(x, cp(x)) (x)dx

Qi(x, y)dS =
= OB oy (9.7)

From (9.4) and (9.7) we have

Pdx+Qdy =  (Qiu(x, y) — Pa(x, y))dS.

Q

Remark 1: Ifaregular region S is such that it can be divided into a finite
number of regions R, (or R,) by cross cuts, equation (9.1) still holds where
I' is the total boundary, consisting of one or more regular closed curves.

Remark 2: We can apply Green’s theorem to find the area of a region
defined by the equations of its boundary curves. Suppose R is a region to
which Green’s theorem applies and which is bounded by T, then the area

of R is given by any of the three formulas

A=— xdy, A=2

(_\NAv 4+ vAh
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the integration being in the positive sense.

For, In Green’s theorem from equation (9.1) we have,if

() P=y, Q=0

I
(@)

(i) Q=x, P
xdy = dS=A

(iii) P=—y, Q=x

1
xdy — ydx =2 dS =2A==> A =",

2 xdy — ydx.

T R

Example 9.1.1 Find the area of the ellipse x = acos9, y = bsind.

Solution: Given x = acosd == dx = —asin 9d9

Area A= — ydx
r
0 on

= _ bsin §(—q Sin 9)dd

0

=ab 02”sin2 9do

_ an 1 —c0s28
ab
a 0 2 9
o sing **
B R R
=ab(t — 0)
= rtab.

Example 9.1.2 Find the area enclosed by the folium x3 +y3 = 3axy.

Solution: The parametric equation are got by putting y = tx.
We have , _ _3at 3at?

. y 1+1t3 Y 14 b1 .
Since t =~ =tan9, & varies from 0 to —, t varies from 0 to co.

' 2
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-+
N 4= ¢

43-.
Figure 9.2
3a(1 — 2t3) 3a(2t — t4)
= 7dt, =
(1+13)> (1 +t3)2
Hence Area of the loop is
1 0
A= xdy — ydx
2 at ! ! !
_1 ® _3at 2t — t4 3at? 3a(1 — 2t3)

2, 1+ ([@T+®) 9 11 1+ )2

9g2 = t2

L dt
2 o (1+13)2

9.2 Verification of Green’s Theorem

Example 9.2.1 Verify Green’s theorem for
