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2 1.1. Introduction:

Overview

In this unit, we will illustrate the basic concepts of countable

sets, compact sets and connected sets. Also, we concentrate the concepts

of convergent sequence and convergent series.

Objectives

After successful completion of this lesson, students will be able to

� understand the concept of countable sets and uncountable sets.

� classify and explain the di�erent types of functions.

� de�ne metric spaces with an appropriate example.

� understand the concept of limit point, closed, neighborhood,

dense set.

� understand the concept of compact sets and connected sets.

� understand the concept of convergent sequence and divergent

sequence.

1.1. Introduction:

In this chapter, we shall recall some basic concepts which we were

studied in the lower classes.

1.2. Finite, Countable and Uncountable Sets:

De�nition 1.1. Consider any two sets A and B; whose elements may be any di�erent

objects. Then a rule or correspondence, which associates each element of A to a unique

element of B; is called a function from a set A to set B; which we denote by f (x): The

set A is called the domain of f (we can also f is de�ned on A ), and the elements of f (x)

are called the values of f : The set of all values of f is called the range of f :

Real Analysis M.Sc.(Mathematics)-I Year-I Sem



1.2. Finite, Countable and Uncountable Sets: 3

Di�erent type of functions:

(i) Onto function: Let A and B be two sets and let f be a mapping of A

into B: If E � A; then f (E) is de�ned to be the set of all elements of

f (x) for x 2 E: Simply, we call f (E) is the image of E under f : In

this way, we can say that f (A) is the range of f : It is very clear that

f (A) � B: If f (A) = B ( i:e:; range of f = B); then we say that f maps

A onto B:

(ii) If E � B; f �1(E) denotes the set of all x 2 A such that f (x) 2 E: We

call f �1(E) the inverse image of E under f :

(i) One-One function: If y 2 B; f �1(y) is the set of all x 2 A such that

f (x) = y; then f is said to be 1� 1 (one-to-one) mapping of A into B:

This may also be expressed as, f is a 1� 1 mapping from set A into

set B provided that f (a) 6= f (b) whenever a 6= b; a; b 2 A:

In other words, A function f from a set A into B: i:e:; f : A ! B is

said to be one-to-one (or) injective if and only if distinct elements of A

have distinct images in B:

De�nition 1.2. Two sets A and B are said to be equivalent (or have the same cardinal

number), if there exists a 1�1 mapping of A onto B and symbolically, we write A � B:

Note 1.1. The relation � is an equivalance relation.

Notation: For any positive integer n;

let Jn = f1; 2; 3; : : : ; ng; a set containing n elements.

J = f1; 2; 3; : : :g the set of all positive integers.

De�nition 1.3. For any set A; we say

(a) A is �nite, if A � Jn for some n (the empty set is also considered to be �nite).

(b) A is in�nite, if A is not �nite.

(c) A is countable, if A � J:

(d) A is uncountable if A is neither countable nor �nite.

(e) A is at most countable if A is �nite or countable.

Countable sets are sometimes called enumerable or denumberable.
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4 1.3. Metric Spaces:

Remark 1.1. Two �nite sets A and B are said to be equivalent if and only if they have

the same number of elements.

For in�nite sets, however the idea of having the same number of elements becomes

quite vague, whereas the concept of 1 � 1 correspondence retains its clarity.

Some important results related to countable or uncountable sets are

listed below:

� The set of integers Z is countable.

� Any in�nite subset of countable set is countable.

� The set of all rational numbers is countable.

� The set of all real numbers is uncountable.

� Countable Union of countable sets is countable.

1.3. Metric Spaces:

De�nition 1.4. A set X whose elements are called points, is said to be metric space if

with any two points p and q of X there is associated a real number d(p; q); called the

distance function from p to q; such that

a) d(p; q) > 0 if p 6= q; d(p; p) = 0 ;

b) d(p; q) = d(q; p)

c) d(p; q) � d(p; r) + d(r; q) for any p; q; r 2 X:

Note 1.2. Any function with these three properties is called a distance function

Example: Euclidean space Rk (especially R1 -real line; R2 - complex plane)

together with the distance function is de�ned by d(x; y) = jx � yj (x; y 2 Rk)

is a metric space.

Remark 1.2. It is very important to observe that every subset Y of a metric space X is

a metric spaces in its own right with the same distance function.

Thus, every subset of a euclidean space is a metric space.

Real Analysis M.Sc.(Mathematics)-I Year-I Sem



1.3. Metric Spaces: 5

De�nition 1.5.

(i) (a; b) = fxj a < x < bg is called an segment,

(ii) [a; b] = fxj a � x � bg is called the interval,

(iii) [a; b) = fxj a � x < bg is called the Half open intervals

(iv) (a; b] = fxj a < x � bg is also called the Half open intervals

De�nition 1.6.

(a) k -cell:

If ai < bi; i = 1; ; 2; : : : ; k and ai; bi 2 R1; then the set of points

fx 2 Rk : x = (x1; x2; : : : ; xk) ; ai � xi � bi; i = 1; 2; 3; : : : ; kg is called a k-cell.

Note 1.3. 1� cell is an interval in R1 ; 2 -cell is a rectangle in R2 ; 3 -cell is a

cuboid in R3:

(b) Open ball:

If x 2 Rk and r > 0; the open ball B with centre at x and radius r is de�ned

by fy 2 Rk : jy � xj < rg:

(c) Closed ball:

If x 2 Rk and r > 0; the open ball B with centre at x and radius r is de�ned

by fy 2 Rk : jy � xj � rg:

De�nition 1.7. A subset E � Rk is said to be convex if �x + (1 � �) y 2 E; whenever

x; y; 2 E and 0 < � < 1:

Example of convex sets:

Open balls, closed balls and k -cells are convex sets in Rk:

De�nition 1.8. Let X be a metric space. All points and sets mentioned below are

understood to be an elements and subsets of X:

(1) A neighborhood of p is a set Nr(p) consisting of all q such that d(p; q) < r; for

some r > 0: The number r is called the radius of Nr(p):

(2) A point p is a limit point of the set E if every neighborhood of p contains a

point q 6= p such that q 2 E:

(3) If p 2 E and p is not a limit point of E; then p is called an interior point of E:

(4) E is closed if every limit point of E is a point of E:

(5) A point p is an interior point of E if there is a neighborhood N of p such that

N � E:
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6 1.3. Metric Spaces:

(6) E is open if every point of E is an interior point of E:

(7) The complement of E (denoted by Ec ) is the set of all points p 2 X such that

p =2 E:

(8) E is perfect if E is closed and if every point of E is a limit point of E:

(9) E is bounded if there is a real number M and a point q 2 X such that

d(p; q) < M for all p 2 E:

(10) E is dense in X if every point of X is a limit point of E or a point of E (or

both).

(11) If E0 denotes the set of all limit points of E in X; then the closure of E is the

set E = E [ E0:

Some important results about open sets, closed sets and neighborhood

are given below:

� Every neighborhood is an open set.

� If p is a limit point of a set E; then every neighborhood contains

in�nitely many points of E:

� A �nite point set has not limit points.

� A set E is open if and only if its complement Ec is closed.

� For any collection fG�g of open sets,
[
�

G� is open.

� For any collection fF�g of closed sets,
\
�

F� is closed.

� For any �nite collection G1;G2; : : : ;Gn of open sets
n\
i=1

Gi is open.

� For any �nite collection F1; F2; : : : ; Fn of closed sets
n[
i=1

Fi is closed.

� A set E is closed if and only if E = E:

De�nition 1.9. Let X be a metric space and E � Y � X is said to be open relative to

Y if to each p 2 E; there is an associated r > 0 such that q 2 E whenever d(p; q) < r

and q 2 Y i:e:; fq 2 Y : d(p; q) � Eg:

Remark 1.3. Suppose E � Y � X and X be a metric space. E is open relative to Y if

E � Y \G for some open subset G of X:

Real Analysis M.Sc.(Mathematics)-I Year-I Sem



1.4. Compact sets and Connected sets: 7

1.4. Compact sets and Connected sets:

De�nition 1.10. Let X be a metric space. A collection of open sets fG�g of X is called

an open cover of E; if E �
[
�

G�:

De�nition 1.11. A subset K of a metric space X is said to be compact, if every open

cover of K contains a �nite sub cover. More explicitly, if fG�g is an open cover of K;

then there are �nitely many indices �1; �2; : : : ; �n such that

K � G�1 [G�2 [G�3 [ : : : [G�n

Remark 1.4. Every �nite set is compact.

Some important results related to compact sets are given below:

� Compact subsets of metric spaces are closed.

� Closed subsets of a compact sets are compact.

� If F is closed and K is compact, then F \ K is compact.

� If fK�g is a collection of compact subsets of a metric space X

such that the intersection of every �nite sub collection of fK�g is

non-empty, then
T

K� is non empty.

� Any in�nite subset of a compact set K has a limit point.

� Every k -cell in Rk is compact.

Now, let us see two important theorem in compact spaces without proof.

Theorem 1.1 (Heine-Borel Theorem).

If E is a subset of Rk; then the following one equivalent.

(a) E is closed and bounded.

(b) E is compact.

(c) Every in�nite subset of E has a limit point in E :

Theorem 1.2 (Weierstrass Theorem).

Every bounded in�nite subset of Rk has a limit point in Rk:

De�nition 1.12. Two subsets A and B of a metric space X are said to be separated, if

both A \ B = ; and A \ B = ;

M.Sc.(Mathematics)-I Year-I Sem Real Analysis



8 1.5. Sequences

De�nition 1.13. A set E � X is said to be connected if E is not a union of two

non-empty separated sets.

Note 1.4. A subset E of the real line R1 is connected if it has the following property if

x 2 E; y 2 E and x < z < y; then z 2 E:

1.5. Sequences

1.5.1. Convergent Sequences:

De�nition 1.14. A sequence fpng in a metric space X is a function of f from J into

X: If f (n) = pn; we represent this function by its image; p1; p2; p3; : : : ; or simply fpng:

Example:

(a) 1;
1

2
;
1

3
; : : : ;

1

n
; : : : is a sequence in R1:

(b) �1; 1
2
;�1

3
; : : : ;

(�1)n
n

; : : : is also a sequence in R1:

(c) 1;�1; 1;�1; : : : ; (�1)n+1; : : : is also a sequence in R1:

De�nition 1.15. A sequence fpng in a metric space X is said to converge if there is a

point p 2 X with the following property:

For every � > 0 there is an integer N such that n � N implies that d(pn; p) < �

(Here d denotes the distance function).

In this case, we say that fpng converges to p or that p is the limit point of fpng:

Symbolically, we can write lim
n!1

pn = p (or) pn ! p:

If fpng does not converge, it is said to be diverge.

De�nition 1.16. If fpng is a sequence, then the set of points pn is called the range of

the sequence fpng: The range may be �nite or in�nite.

The sequence fpng is said to be bounded if its range is bounded.

Now, we shall list out some important results on sequence below:

� If limit of a sequence exists, then it is unique.

� Let fpng be a sequence in a metric space X; then fpng converges

to p 2 X if every neighborhood of p contains all but �nitely many

points.

Real Analysis M.Sc.(Mathematics)-I Year-I Sem



1.5. Sequences 9

� If E � X and if p is a limit point of E; then there exists a sequence

fpng in E such that p = lim
n!1

pn:

� Every convergent sequence is a bounded sequence.

� Suppose fsng and ftng are complex sequence, and lim
n!1

sn = s;

lim
n!1

tn = t: Then

(a) lim
n!1

(sn + tn) = s + t

(b) lim
n!1

csn = cs

(c) lim
n!1

sntn = st

(d) lim
n!1

1

sn
=

1

s
provided sn 6= 0 and s 6= 0:

1.5.2. Subsequences:

De�nition 1.17. Given a sequence fpng; consider a sequence fnkg of positive integers,

such that n1 < n2 < n3 < : : : Then a sequence fpni g is called a subsequence of fpng: If
fpni g converges, its limit is called a subsequential limit of fpng:

Important Results on Subsequences:

F If fpng is a sequence in a compact metric space X; then some

subsequence of fpng converges to a point of X:

F Every bounded sequence in Rk contains a convergent subsequence.

1.5.3. Cauchy Sequences:

De�nition 1.18. A sequence fpng in a metric space X is called a Cauchy sequence if for

every � > 0 there is an integer N such that d(pn; pm) < � if n � N and m � N:

De�nition 1.19. Let E � X be a subset of a metric space X; then the diameter of a

subset E is de�ned by diamE = supfd(p; q) : p; q 2 Eg:

Remark 1.5.

(a) If fpng is a sequence in X and if EN consists of the points PN ; PN+1; : : : : Then

fpng is a Cauchy sequence if and only if lim
N!1

diam EN = 0:

M.Sc.(Mathematics)-I Year-I Sem Real Analysis



10 1.6. Series

(b) Every Cauchy sequence in a metric space is bounded.

De�nition 1.20. A metric space in which every Cauchy sequence converges is said to be

complete.

De�nition 1.21. A sequence fsng of real numbers is said to be

(a) monotonically increasing if sn � sn+1 (n = 1; 2; 3; : : :)

(b) monotonically decreasing if sn � sn+1 (n = 1; 2; 3; : : :)

Remark 1.6. Every monotonic sequence fsng converges if and only if it is bounded.

De�nition 1.22. Let fsng be a sequence of real numbers with the property: For every real

M there is an integer N such that n � N implies sn � M: We write sn ! +1:

Similarly, if for every real M there is an integer N such that n � N implies sn � M:

We write sn ! �1:

De�nition 1.23. Let fsng be a sequence in R1: Let E be the set of all subsequential

limits of fsng plus possibly the numbers +1; �1:

The numbers s� = sup E and s� = inf E are called the upper limits and the lower

limits of fsng respectively and written as

lim
n!1

sup sn = s� and lim
n!1

inf sn = s�
Remark 1.7.

F Let fsng be a sequence of real numbers. Let E and � have the same meaning as

in the above de�nition. Then s� have the following two properties:

(a) s� 2 E

(b) If x > s�; there is an integer N such that n � N implies sn < x:

Moreover, s� is the only number with the above two properties.

The same result is true for s� also.

F If fsng � ftng for n � N is �xed then

lim
n!1

inf sn � lim
n!1

inf tn

lim
n!1

sup sn � lim
n!1

sup tn

1.6. Series

De�nition 1.24. Given a sequence fang; we associate a sequence fsng
where sn = a1 + a2 + : : : (or)

1X
n=1

an:

Real Analysis M.Sc.(Mathematics)-I Year-I Sem
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Remark 1.8.

(i) The symbol

1X
n=1

an is called an in�nite series or just a series.

(ii) The numbers sn are called the partial sums of the series.

(iii) If sn converges to s; we say that the series

1X
n=1

an converges and write

1X
n=1

an = s:

(iv) The number s is called the sum of the series.

(v) If sn diverges, then the series is said to be diverge.

Cauchy Criterion of Convergence of Series:
1X
n=1

an converges if for every � > 0 there is an integer N such that,

if m � n � N;

�������
mX
k=n

ak

������� < �

Remark 1.9.

F If

1X
n=1

an converges, then lim
n!1

an = 0

F If lim
n!1

an 6= 0; then

1X
n=1

an diverges.

F A series of non-negative terms converges if and only if its partial sum forms a

bounded sequence.

De�nition 1.25. Given a series fcng of complex numbers, the series

1X
n=0

cnz
n is called

a power series, the number cn are called the coe�cients of the series; z is a complex

number.

Let us Sum up:

In this unit, the students acquired knowledge to

� countable and uncountable sets.

� metric spaces, convex sets, open balls and closed balls.

� Compact sets and Connected sets with their properties.
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12 1.6. Series

� basic concepts of Sequences, Convergent Sequences, Cauchy

Sequences and Series.

Choose the correct or more suitable answer:

1. Let A and B be any two sets and f (A) = B; then we say that f maps

A : : : : : : B .

(a) into

(b) one-one function

(c) onto

(d) many to one.

2. The set of integers is

(a) �nitely countable

(b) in�nitely countable

(c) in�nitely uncountable

(d) none of these.

3. E is : : : : : : if every limit point of E is a point of E .

(a) Open

(b) Half open

(c) closed

(d) none of these.

4. Closed subsets of a : : : : : : are compact.

(a) connected sets

(b) compact sets

(c) closed sets

(d) open sets.

5. A sequence of real number fsng is said to be monotonically

decreasing if : : : : : : .

(a) sn � sn+1 (b) sn < sn+1 (c) sn � sn+1 (d) sn > sn+1:
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Answer:

(1) c (2) b (3) c (4) b (5) c

Glossaries:

1. Line Segment: It is a straight line has two endpoints, one at a

beginning and other at an end.

2. Closed sets: It is a set which contains all its limit points.

Suggested Readings:

1. Rudin, W., �Principles of Mathematical Analysis�, Mc Graw-Hill,

Third Edition, 1984.

2. Avner Friedman, �Foundations of Modern Analysis�, Hold Rinehart

Winston, 1970.
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Glossaries
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Overview

In this unit, we will explain the concepts of a limit of a function

and continuity of a function. Further, we studied more detailed about the

concepts of Continuity and Compactness.
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16 2.1. Limits of functions:

Objectives

After completion of this unit, students will be able to

F understand the concept of limits and continuity and also identity

whether the given function is continuous or not at a point.

F understand the concept of components of continuous vector

functions are continuous.

F understand the concept of uniform continuity and also

they identify the di�erence between continuity and uniform

continuity.

F explain the concept of compactness and its properties.

2.1. Limits of functions:

De�nition 2.1. Let X and Y be metric spaces, Suppose E � X; f maps E into Y

and p is a limit point of E: We write f (x) ! q as x ! p; (or) lim
x!p

f (x) = q; if there

is a point q 2 Y with the following property:

For every � > 0 there exists a � > 0 such that

dY ( f (x); q) < � (2.1)

for all points x 2 E for which

0 < dX(x; p) < � (2.2)

Remark 2.1.

(1) The symbols dX and dY refer to the distances in metric spaces X and Y

respectively.

If X and/or Y are replaced by the real line, the complex plane, or by the euclidean

space Rk; the distances dX ; dY are replaced by absolute values or by norms of

di�erences.

(2) In the above de�nition, we observed that p 2 X; but that p need not be a point of

E: Moreover, even if p 2 E; lim
x!p

f (x) 6= f (p):

Theorem 2.1. Let X and Y be a metric spaces, Suppose E � X; Suppose f maps E

Real Analysis M.Sc.(Mathematics)-I Year-I Sem



2.1. Limits of functions: 17

into Y and p is a limit point of E : Then

lim
x!p

f (x) = q (2.3)

if and only if lim
n!1

f (pn) = q (2.4)

for every sequence fpng in E such that pn 6= p; lim
n!1

pn = p: (2.5)

Proof. Assume that lim
x!p

f (x) = q holds good.

Choose fpng in E such that pn 6= p; lim
n!1

pn = p:

Let � > 0 be given.

lim
x!p

f (x) = q

) there exists a � > 0 such that dY ( f (x); q) < �; ifx 2 E and

0 < dX(x; p) < � (2.6)

pn 6= p; lim
n!1

pn = p

) for given � > 0 there exist N such that n > N implies

0 < dX(pn; p) < � (2.7)

For n > N ) 0 < dX(pn; p) < � (from (2.7))

) dY ( f (pn); q) < � (from (2.6))

) lim
n!1

f (pn) = q (2.8)

Converse Part:

Given: lim
n!1

f (pn) = q for every sequence fpng in E such that pn 6= p; lim
n!1

pn = p:

To Prove: lim
x!p

f (x) = q:

Assume that lim
x!p

f (x) 6= q

Then there exists some � > 0 such that for every � > 0 there exists a point

x 2 E (depending on � ) for which dY ( f (x); q) � � but 0 < dX(x; p) < �:

Taking �n =
1

n
(n = 1; 2; 3; : : :) there exists a sequence in fxng in E such that

0 < dX(xn; p) <
1

n
and dY ( f (xn); q) > � which is a contradiction.

Therefore lim
x!p

f (x) = q �

Corollary 2.1. If f has a limit at p; then it is unique.

Proof. Suppose that lim
x!p

f (x) = q1; lim
x!p

f (x) = q2: i:e:; f has two di�erent limits.

lim
x!p

f (x) = q1 ) there exists a sequence fpng in E such that

pn 6= p; lim
n!1

f (pn) = q1 (By previous theorem).

Similarly, lim
x!p

f (x) = q2 ) there exists a sequence fpng in E such that

pn 6= p; lim
n!1

f (pn) = q2:

We know that, if the limit of a sequence exists and it is unique.
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18 2.1. Limits of functions:

) q1 = q2: �

De�nition 2.2. Let X be a metric space, E be a subset of X and f ; g are two complex

functions de�ned on E: Then f + g; f � g; f g;
f

g
are also de�ned on E and they are

de�ned on E as follows:

(a) ( f � g) (x) = f (x) � g(x) 8x 2 E:

(b) ( f � g) (x) = f (x) � g(x) 8x 2 E:

(c)

 
f

g

!
(x) =

f (x)

g(x)
; if g(x) 6= 0; 8x 2 E:

(d) (c f )(x) = c f (x); 8x 2 E and c is a constant.

De�nition 2.3. Suppose f and g map E into Rk; if x 2 E; then f + g and f � g and

�f are functions de�ned on E and they are de�ned as follows:

(a) (f + g) (x) = f(x) + g(x) 8x 2 E:

(b) (f � g) (x) = f(x) � g(x) 8x 2 E:

(c) (�f) (x) = �f(x) 8x 2 E; where � is real.

Theorem 2.2. Suppose E � X; a metric space and p is a limit point of E ; f and g

are complex functions de�ned on E and lim
x!p

f (x) = A; lim
x!p

g(x) = B: Then

(a) lim
x!p

( f + g) (x) = A + B:

(b) lim
x!p

( f � g) (x) = A � B:

(c) lim
x!p

( f g) (x) = AB:

(d) lim
x!p

 
f

g

!
(x) =

A

B
; if B 6= 0

Proof. Assume that lim
x!p

f (x) = A and lim
x!p

g(x) = B:

lim
x!p

f (x) = A ) there exists a sequence fpng in E such that pn 6= p and

lim
n!1

f (pn) = A:

Similarly, lim
x!p

g(x) = B ) there exists a sequence fpng in E such that pn 6= p and

lim
n!1

g(pn) = B:

(a) lim
n!1

( f + g) (pn) = lim
n!1

�
f (pn) + g(pn)

�
= lim

n!1
f (pn) + lim

n!1
g(pn) = A + B:

(b) lim
n!1

( f � g) (pn) = lim
n!1

�
f (pn) � g(pn)

�
= lim

n!1
f (pn) � lim

n!1
g(pn) = A � B:

(c) lim
n!1

( f g) (pn) = lim
n!1

�
f (pn)g(pn)

�
= lim

n!1
f (pn) lim

n!1
g(pn) = AB:

(d) lim
n!1

 
f

g

!
(pn) = lim

n!1

"
f (pn)

g(pn)

#
=

lim
n!1

f (pn)

lim
n!1

g(pn)
=

A

B
: �

Remark 2.2. If f and g maps E into Rk; then (a) and (b) remains good always,

but (c) remains true if we can write lim
x!p

(f � g) (x) = A � B:
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2.2. Continuous functions:

The theory of continuity of a function plays a crucial role in examining

the properties of a function. In this section, we are going to discuss the

concept of continuity of a function.

De�nition 2.4. Suppose X and Y are metric spaces; E � X; p 2 E and f maps E

into Y: Then f is said to be continuous at p if for every � > 0 there exists a � > 0

such that dY ( f (x); f (p)) < � for all points x 2 E for which dX(x; p) < �:

If f is continuous at every point of E then f is said to be continuous on E:

Theorem 2.3. If p is a limit point of E; then f is continuous at p if and only if

lim
x!p

f (x) = f (p):

Proof.
f is continuous , for every � > 0 there exists a � > 0

such that dY ( f (x); f (p)) < � whenever x 2 E; dX(x; p) < �

, lim
x!p

f (x) = f (p) �

De�nition 2.5. Suppose X; Y; Z are metric space, E � X; f maps E into Y and g

maps f (E) into Z; and h is the mapping of E into Z de�ned by h(x) = g( f (x)); x 2 E:

Then h is called the composition of f and g:

Remark 2.3. The function h is called the composition or composite of f and g and it

is denoted by h = g � f :

Theorem 2.4. Suppose X; Y; Z are metric space, E � X; f maps E into Y and g maps

f (E) into Z; and h is the mapping of E into Z de�ned by h(x) = g( f (x)); x 2 E: If

f is continuous at a point p 2 E and if g is continuous at f (p); then the composite

function h is continuous at g( f (p)):

Proof. Given that f is continuous at p and g is continuous at f (a):

To Prove: h is continuous at p:

Let � > 0 be given.

g is continuous at f (p) ) there exists � > 0 such that dz(g(y); g( f (p))) < �

whenever y 2 f (E); dY (y; f (p)) < � (2.9)

f is continuous at p ) for given � > 0 there exists � > 0 such that

dY ( f (x); f (p)) < �

whenever x 2 f (E); dX(x; p) < � (2.10)
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20 2.2. Continuous functions:

From (2.9) and (2.10), we get

For x 2 E and dX(x; p) < � ) dY ( f (x); f (p)) < � and hence

dz(g( f (x)); g( f (p))) = dz(h(x); h(p)) < �

which shows that h(x) is continuous at p:

This completes the proof of the theorem. �

Remark 2.4. The above theorem can also be state as the composite of two continuous

function is also continuous.

Next, we shall discuss very useful characterization of continuity.

Theorem 2.5. A mapping f of a metric space X into a metric space Y is continuous

on X if and only if f �1(V) is open in X for every open set V in Y: In other words, f

is continuous if and only if inverse image of an open set is open.

Proof. Given: Assume that f is continuous on X and V is open in Y:

To Prove: f �1(V) is open in X; i:e:; it is enough to prove that every point of f �1(V)

is an interior point of f �1(V):

For this, Let p 2 X ) f (p) 2 f (V)

Since V is open, then there exists a � > 0 such that y 2 V if dY ( f (p); y) < �:

Also, given that f is continuous at p; then there exists a � > 0 such that

dY ( f (x); f (p)) < � if dX(x; p) < �:

If dX(x; p) < � ) dY ( f (x); f (p)) < �

) y 2 V

) f (x) 2 V

) x 2 f �1(V)

That is N�(p) � f �1(V) and p is an interior point. Since p is an arbitrary point, thus

every point is an interior point. Therefore f �1(V) is open.

Converse part: Assume that f �1(V) is open in X for every open set V in Y:

Fix p 2 X and � > 0; let V be the set of all y 2 Y such that dY (y; f (p)) < �:

Clearly, V is open and hence f �1(V) is open (by given condition).

Let x 2 f �1(V) then there exists a � > 0 such that dX(p; x) < �:

But if x 2 f �1(V) ) f (x) 2 V and thus dY (y; f (p)) < �:

i:e:; Given � > 0 there exists a � > 0 such that dY (y; f (p)) < � if dX(p; x) < �:

Thus f is continuous at p and hence f is continuous on X (since p is an arbitrary

point) �

Real Analysis M.Sc.(Mathematics)-I Year-I Sem
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Corollary 2.2. A mapping f of a metric space X into a metric space Y is continuous

if and only if f �1(C) is closed in X for every closed set C in Y:

Proof. Assume that C is closed in Y; then Cc is open in Y:

Thus, by previous theorem

f is continuous , f �1(Cc) is open in X if Cc is open in Y

,
�
f �1(C)

�c
is open in X if Cc is open in Y

, f �1(C) is closed in X if C is closed in Y �

Theorem 2.6. Let f and g be complex continuous functions on a metric space X; then

f + g; f g and f =g are also continuous on X:

Proof. Assume that f and g are continuous at p; then lim
x!p

f (x) = f (p) ; and

lim
x!p

g(x) = g(p)

(a) lim
x!p

( f + g) (x) = lim
x!p

�
f (x) + g(x)

�
= lim

x!p
f (x) + lim

x!p
g(x) = f (p) + g(p)

Thus f + g is continuous.

(b) lim
x!p

( f g) (x) = lim
x!p

�
f (x)g(x)

�
= lim

x!p
f (x) lim

x!p
g(x) = f (p)g(p)

Thus f g is continuous.

(c) lim
x!p

 
f

g

!
(x) = lim

x!p

"
f (x)

g(x)

#
=

lim
x!p

f (x)

lim
x!p

g(x)
=

f (p)

g(p)
(if g(x) 6= 0 for all x 2 X )

Thus
f

g
is continuous. �

Theorem 2.7 (Components of continuous vector functions are continuous) .

(a) Let f1; f2; : : : ; fk be real functions on a metric space X and let f be the mapping

of X into Rk de�ned by

f (x) = ( f1(x); f2(x); : : : ; fk(x)) (x 2 X);

then f is continuous if and only if each of the functions f1; f2; : : : ; fk is continuous.

(b) If f and g are continuous mapping of X into Rk; then f+g and f � g are continuous
on X:

Proof. Assume that f = ( f1; f2; : : : ; fk) is continuous and let x 2 X and � > 0 be given.

f is continuous at x , there exists a � > 0 such that

jf(x) � f(y)j < � if d(x; y) < � (2.11)

Now, if d(x; y) < � then for each i; by (2.11), we have

j fi(x) � fi(y)j <

0BBBBB@
nX
i=1

j fi(x) � fi(y)j2
1CCCCCA
1=2

= jf(x) � f(y)j < �
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Thus each fi (i = 1; 2; : : : ; k) is continuous.

Converse part: Assume that each fi (i = 1; 2; : : : ; k) is continuous. It remains to prove

that f is continuous.

For if, let x 2 X and � > 0 be given.

since fi is continuous at x; then there exists a �i > 0 such that

j fi(x) � fi(y)j <
�p
k

if d(x; y) < �i

Choose � = min f�i : i = 1; 2; : : : ; kg: Then,

j fi(x) � fi(y)j <
�p
k

if d(x; y) < �

Thus, jf(x) � f(y)j =

kX
i=1

h
j fi(x) � fi(y)j2

i1=2
<

 
k�2

k

!1=2
= � if d(x; y) < �

Hence f is continuous. This completes the proof of the theorem. �

2.3. Continuity and Compactness:

In this section, let us discuss the properties of continuous functions

de�ned on compact metric space. In this regard, �rst we shall recall the

de�nition of compact set of a metric space.

De�nition 2.6. If X is a metric space and E � X is a compact subset if every open cover

of E has a �nite sub-cover.

De�nition 2.7. A mapping f of a set E into Rk is said to be bounded if there is a real

number M such that jf(x)j � M for all x 2 E:

Theorem 2.8. Suppose f is a continuous mapping of a compact metric space X into

a metric space Y: Then f (X) is compact. In other words, continuous image of compact

space is compact.

Proof. Given that f is a continuous mapping of a compact metric space X into Y:

Let fV� : � 2 Ig is an open cover of f (X):

Since f is continuous, then f �1(V�) is an open set in a compact set X:

Thus, f f �1(V�) : � 2 Ig is an open cover of a compact set X: Hence, there are �nitely

many indices say �i 2 I (i = 1; 2; 3; : : : ; n) such that X �
n[
i=1

f �1(V�i
) and hence

f (X) �
n[
i=1

V�i
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2.3. Continuity and Compactness: 23

Since f
�
f �1(E)

�
� E for every E � Y; So f (X) is compact.

This completes the proof of the theorem. �

Remark 2.5. Here we used the relation f
�
f �1(E)

�
� E; is valid for E � Y: If E � X;

then f �1( f (E)) � E; in both the case equality does not holds good.

Theorem 2.9. If f is a continuous mapping of a compact metric space X into Rk; then

f(X) is closed and bounded. Thus f is bounded.

Proof. This result proves directly from Heine-Borel theorem (1.1). �

The following shows that a real continuous function on a compact metric

space attain the bounded.

Theorem 2.10. Suppose f is a continuous real function on a compact metric space X

and

M = sup
p2X

f (p); m = inf
p2X

f (p) (2.12)

Then there exists points p; q 2 X such that f (p) = M and f (q) = m:

Proof. Given that f is a continuous function on a compact metric space X and thus

f (X) is compact. (since continuous image of a compact set is compact).

Thus f (X) is a compact subset of R1 and hence by Heine-Borel theorem (1.1), f (X)

is closed and bounded. Hence sup and inf value of f (X) exists.

Let M = sup
p2X

f (p); m = inf
p2X

f (p):

Also, we know that, if E � Rk; then sup E and inf E are limits points of E:

Therefore M and m are the limit points of f (X) and Moreover f (X) is closed. Hence

m 2 f (X) and M 2 f (X): Thus M = f (p); m = f (q) for some p; q 2 X: �

Remark 2.6. The statement of the above theorem can also be stated as follows:

Suppose f is a continuous real function on a compact metric space X; then there

exists points p and q in X such that f (q) � f (x) � f (p) for all x 2 X: i:e:; f attains

its maximum value at p and minimum value at q:

Theorem 2.11. Suppose f is a continuous 1-1 mapping of a compact metric space X

onto a metric space Y: Then the inverse mapping f �1 de�ned on Y by

f �1( f (x)) = x (x 2 X)

is a continuous mapping of Y onto X:

Proof. Given f is a continuous 1-1 mapping of compact metric space X onto a metric

space Y: Now, our aim is to prove that f �1 is continuous on Y:

The inverse mapping f �1 is de�ned by f �1( f (x)) = x (x 2 X):
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Let V be an open set in X; then Vc is closed subset of a compact metric space X:

But, we know that a closed subset of a compact metric space is compact and thus Vc

is compact.

Also, we know that a continuous image of a compact metric space is compact and

hence, we get f (vc) is compact subset of Y:

But, a compact subset is closed and thus, we have f (Vc) is closed subset of Y: Since

f is 1-1 and onto, f (Vc) = f (V)c and hence f (V) is open in Y: Thus f �1 is continuous

on Y: �

De�nition 2.8. Let f be a mapping of a metric space X into a metric space Y; We say

that f is uniformly continuous on X if for every � > 0 there exists a � > 0 such that

dY ( f (p); f (q)) < � (2.13)

for all p and q in X for which dX(p; q) < �:

Remark 2.7. Let us now discuss the di�erences between the concept of continuity and

uniform continuity.

1. Uniform continuity is a property of a function on a set, where as continuity can be

de�ned at a single point.

2. If f is continuous on X; then it is possible to �nd, for each given � > 0 and for

each point p of X; there exists a � depends on � and point p 2 X: But, in the

case of uniform continuity on X then it is possible for each given � > 0; to �nd

a � > 0 which depends only on � and independent of the points.

Note 2.1. It is very clear that, every uniformly continuous function is continuous. Now,

we shall see some examples uniformly continuous and not uniformly continuous.

Example 2.1. Consider f : [a; b] ! R de�ned by f (x) =
c

x � 1
; where a; b; c are all

positive constants with a > 1:

Now, we shall prove that f is uniformly continuous on [a; b]:

For this, let � > 0 be given, then

f (x) � f (y) =
c

x � 1
� c

y � 1
=

c(y � x)

(x � 1)(y � 1)

Since a > 1 ) a = 1 + � for some � > 0:

If x; y 2 [a; b]; then jx � 1j= x � 1 � �; similarly jy � 1j= y � 1 � �:

Choose � <
�2�

c
and thus, if jx � yj< � and x; y 2 [a; b]; then

j f (x) � f (y)j =
cjy � xj

jx � 1jjy � 1j �
c�

�2
< �

Thus, f is uniformly continuous on [a; b]:
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Example 2.2. Let f : (0; 1) ! R be de�ned by f (x) = x2 + x � 1: Now, we shall prove

that f is uniformly continuous.

For this, let � > 0 be given, then

f (x) � f (y) = (x � y) (x + y + 1)

If x; y 2 (0; 1); then x + y + 1 < 3

Choose � <
�

3
and thus, if jx � yj< � and x; y 2 (0; 1); then

j f (x) � f (y)j = jx � yjjx + y + 1j< 3� < �

Thus, f is uniformly continuous on (0; 1):

Example 2.3. Let f : R ! R be de�ned by f (x) = x2:

Fix � = 1 and � > 0 be given. Take xn = n and yn = n +
1

n
(n = 1; 2; 3; : : :):

If n >
1

�
; then we have

jxn � ynj =
1

n
< �;

but
���x2n � y2n

��� = j(xn � yn)(xn + yn)j =
1

n

 
2n +

1

n

!
> 2:

Thus, if jxn � ynj< �; but j f (xn) � f (yn)j > 2 > 1 = �:

Hence f is not uniformly continuous on R:

Example 2.4. Let f : (0;1) ! R be de�ned by f (x) =
1

x
: Note that the function f is

continuous, Now, we shall prove that the function f is not uniformly continuous.

For this, for given � > 0 and any � > 0:

Choose xn =
1

n
and yn =

1

2n
(n = 1; 2; 3; : : :) so that for n > max

(
�;
1

3

)
:

If jxn � ynj =

�����1n �
1

2n

����� = 1

2n
< �

but j f (xn) � f (yn)j = jn � 2nj= n > �

Thus, f is not uniformly continuous.

Remark 2.8. The last two example shows that the function is continuous but not

uniformly continuous.

The next theorem asserts that the continuity and uniformly continuity

are equivalent on compact sets.

Theorem 2.12. Let f be a continuous mapping of a compact metric space X into a

metric space Y: Then f is uniformly continuous on X:
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Proof. Given that f is a continuous mapping of a compact metric space X into metric

space Y:

Let � > 0 be given. Since f is continuous, to each p 2 X; there exists �(p) > 0

such that

q 2 X; dX(p; q) < �(p) implies dY ( f (p); f (q)) <
�

2
(2.14)

Let J(p) denote the set of all q 2 X such that

dX(p; q) <
1

2
�(p) (2.15)

For each p 2 X; p 2 J(p) and hence fJ(p)g is an open cover of X and X is compact,

there is a �nite set of points p1; p2; : : : ; pn in X such that

X � J(p1) [ J(p2) [ : : : [ J(pn) (2.16)

Choose � =
1

2
min

�
�(p1); �(p2); : : : ; �(pn)

�
(2.17)

Clearly � > 0: Now, let q and p be points of X such that dX(p; q) < �: By

(2.16), there is an integer m; 1 � m � n such that p 2 J(pm) and hence by (2.15)

dX(p; pm) <
1

2
�(pm):

Also, we have

dX(p; pm) � dX(q; p) + dX(p; pm)

� � +
1

2
�(pm) <

1

2
�(pm) +

1

2
�(pm) < �(pm):

Thus, from (2.14), we have

dY ( f (p); f (q)) � dY ( f (p); f (pm) + dY ( f (q); f (pm)) <
�

2
+
�

2
< �: �

Example 2.5. If E is not compact, then there exists a continuous function on E which

is not uniformly continuous on E:

Proof. Consider the function f (x) =
1

x
; (0 < x < 1) de�ned on the non-compact

set E = (0; 1) of R1: Since, it is not closed and bounded. Clearly, the function f is

continuous on (0; 1): However, the function f is not uniformly continuous on (0; 1):

For this, Let � = 1 > 0 and � > 0 be any positive real. Then there exists N such that
1

N
< �: Choose x =

1

4N
; y =

1

2N
: If x; y 2 (0; 1); then

jx � yj =

����� 1

4N
� 1

2N

����� = 1

2N
<

1

N
< �

But j f (x) � f (y)j = j4N � 2N j= 2N � 1 > �:

Thus, f is not uniformly continuous. �

Example 2.6. If E is not compact, then there exists a continuous function on E which
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is not bounded.

Proof. Consider the real continuous function f (x) =
1

x
(0 < x < 1) de�ned on

non-compact subset of R1: Since, it is unbounded. Now, we shall prove that f is not

bounded.

For this, if N > 0 there exists x0 =
1

N + 1
such that f (x0) =

1

x0
= N +1 > N: Hence

f is not bounded. This completes the proof. �

Example 2.7. If E is not compact, then there exists a continuous function on E which

is bounded but it has no maximum.

Proof. Consider the real continuous function g(x) =
1

1 + x2
(0 < x < 1) de�ned on

non-compact subset of R1: Since 0 < g(x) < 1; g is bounded and sup g(x) = 1:

But there is no x 2 (0; 1) such that g(x) = 1: Hence g has no maximum on E: This

completes the proof. �

Example 2.8. Let X be the half-open interval [0; 2�) on the real line and f be the

mapping of X onto the circle Y consisting of all points whose distance from the origin

is 1; is given by

f(t) = (cos t; sin t) (0 � t < 2�)

We know that the trigonometric functions sin and cos are continuous function and

hence by theorem (2.7), we have f is continuous. Thus f is continuous, 1-1 mapping of X

onto Y and inverse mapping exists. But, the f�1 is not continuous at the origin and also

X is not compact.

Hence, we conclude that f is 1-1, continuous from a non-compact X into Y but its

inverse mapping f�1 is not continuous.

Remark 2.9. The compactness property is essential to prove the theorems (2.10), (2.11),

(2.12)

Let us Sum Up:

In this unit, the students acquired knowledge to

� limits of functions and its properties.

� continuous functions and its properties.

� concept of continuity and compactness.
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Check Your Progress:

1. Show that the function f (x) =
1

x
is not uniformly continuous on

(0; 1]:

2. Prove that
f (x) = sin

1

x
; x 6= 0

= 0; x = 0

is not uniformly continuous on [0;1)

3. Show that f (x) = x3 is uniformly continuous in [1; 2]:

4. Show that f (x) =
p
x is uniformly continuous in [0; 2]:

5. If f and g are uniformly continuous on the same interval, prove that

f + g and f � g are also uniformly continuous on the same interval.

6. A real valued function f de�ned in (a; b) is said to be convex if

f (�x + (1 � �)y) � � f (x) + (1 � �) f (y) whenever a < x < b; a < y < b:

Prove that every convex function is continuous.

7. Assume that f is continuous real function de�ned in (a; b) such that

for all x; y 2 (a; b): Prove that f is convex.

Choose the correct or more suitable answer:

1. Let f be a continuous mapping of a compact metric space X into a

metric space Y . Then

(a) f is continuous on X .

(b) f is continuous on Y .

(c) f is uniformly continuous on Y .

(d) f is uniformly continuous on X .

2. Continuous image of a compact space is : : : : : :

(a) closed.

(b) open.
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(c) connected space.

(d) compact space.

3. f is continuous if and only if inverse image of : : : : : :

(a) closed set is open.

(b) open set is closed.

(c) open set is open.

(d) open set is half open.

Answer:

(1) d (2) d (3) c

Glossaries:

1. Continuous function: A function that is continuous at every point of

the set.

2. Compact Sets: A set E is compact if Every open cover of E admits

a �nite sub cover.

Suggested Readings:

1. Rudin, W., �Principles of Mathematical Analysis�, Mc Graw-Hill,

Third Edition, 1984.

2. Avner Friedman, �Foundations of Modern Analysis�, Hold Rinehart

Winston, 1970.
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UNIT-3

LIMITS AND CONTINUITY-II

Structure

Objective

Overview

3. 1 Continuity and Connectedness

3. 2 Discontinuities

3. 3 Monotonic Functions

3. 4 In�nite limits and limits at continuity

Let us Sum Up

Check Your Progress

Answers to Check Your Progress

Glossaries

Suggested Readings

Overview

In this unit, we discuss about the image of a connected set under a

continuous map. Further we discuss in detail about discontinuites of a

function at a point. Also, we explained about the limit of a function at
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32 3.1. Continuity and Connectedness:

in�nity.

Objectives

After completion of this unit, students will be able to

F explain the concept of connectedness and its properties.

F understand the di�erence between monotonically increasing and

monotonically decreasing.

F understand the concept of in�nite limits and limits at in�nity.

3.1. Continuity and Connectedness:

First, we recall the de�nition of connectedness. In this section, we

shall prove the result that image of a connected sets is connected under a

continuous mapping.

De�nition 3.1. A set E � X is said to be connected if E is not a union of two non-empty

separated sets.

Theorem 3.1. If f is a continuous mapping of a metric space X into a metric space

Y; and if E is a connected subset of X; then f (E) is connected. In other words,

�Continuous image of a connected subset is connected�.

Proof. Given that f is continuous mapping of X into Y and E is a connected subset of

X: Now, we shall prove that f (E) is connected. Let us prove this result by contradiction.

Assume that f (E) is not connected, then f (E) = A [ B; where A and B are

non-empty separated subsets of Y; A \ B = ; = A \ B:

Put G = E \ f �1(A) and H = E \ f �1(B): Then

G [ H =
�
E \ f �1(A)

�
[

�
E \ f �1(B)

�
= E \

�
f �1(A) [ f �1(B)

�
= E \ f �1(A [ B) = E \ E = E

and neither G nor H is non-empty.

Since A � A; G = E \ f �1(A) � f �1(A) and f is continuous.

f �1
�
A
�
is closed and hence G � f �1

�
A
�
: Since f (H) = B and A \ B = ;:

Thus, we have G \ H � f �1
�
A
�
\ f �1(B) = f �1(A \ B) = f �1(;) = ;

(* f (H) = B and A \ B = ;):

Real Analysis M.Sc.(Mathematics)-I Year-I Sem



3.2. Discontinuities: 33

Therefore G \ H = ;: Similarly, we can prove that G \ H = ;:

Thus, G and H are two separated subsets of E and G\H = ;; G\H = ;: i:e:; E

is not a connected subset of X; which is a contradiction. Hence f (E) is connected. This

completes the proof of the theorem. �

Theorem 3.2 (Intermediate value theorem for continuous functions).

Let f be a continuous real function on the interval [a; b]: If f (a) < f (b) and if c

is a number such that f (a) < c < f (b); then there exists a point x 2 (a; b) such that

f (x) = c:

Proof. Given that f is a continuous function on the interval [a; b]:

We know that �A subset E of the real line R1 is connected if and only if it has the

following properties: if x 2 E; y 2 E and x < z < y; then z 2 E: �

Hence, by this result, [a; b] is connected subset of R1:

Also, we known that �Continuous image of a connected subset is connected� and thus

f ([a; b]) is connected subset of R1: If c is a number such that f (a) < c < f (b): Then

by our �rst result, c 2 f ([a; b]): That is c = f (x) for some x 2 [a; b]: �

Remark 3.1. The above theorem holds good, if f (a) > f (b)

3.2. Discontinuities:

If x is a point in the domain of the function f at which f is not

continuous, then we say that f is discontinuous at x or that f has a

discontinuity at x:

De�nition 3.2. Let f be de�ned on (a; b): Consider any point x such that a � x < b:

We write f (x+) = q; if f (tn) ! q as n ! 1; for all sequences ftng in (x; b) such that

tn ! x:

De�nition 3.3. Let f be de�ned on (a; b): Consider any point x such that a < x � b:

We write f (x�) = q; if f (tn) ! q as n ! 1; for all sequences ftng in (a; x) such that

tn ! x:

Remark 3.2. If x is any point of (a; b); lim
t!x

f (t) exists if and only if

f (x+) = f (x�) = lim
t!x

f (t):

De�nition 3.4. Let f be a function de�ned on (a; b):

1. A function f is said to have a discontinuity of �rst kind at x; if both f (x+) and

f (x�) exist.

M.Sc.(Mathematics)-I Year-I Sem Real Analysis
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2. A function f is said to have a discontinuity of second kind at x; if either f (x+)

or f (x�) or both does not exist.

Example 3.1. Examine the nature of discontinuity of f (x) de�ned by

f (x) =

8>><>>:
1 x rational

0 x irrational

If x is rational, there exists � =
1

2
> 0 such that for any � > 0; x < t < x + � and t is

irrational then

j f (x) � f (t)j= j1 � 0j= 1 >
1

2
= �

So, f (x+) does not exists.

If x is rational, there exists � =
1

2
> 0 such that for any � > 0; x � � < t < x and t

is irrational then

j f (x) � f (t)j= j1 � 0j= 1 >
1

2
= �

So, f (x�) does not exists.

If x is irrational, there exists � =
1

2
> 0 such that for any � > 0; x < t < x + � and

t is rational then

j f (x) � f (t)j= j0 � 1j= 1 >
1

2
= �

So, f (x+) does not exists.

If x is irrational, there exists � =
1

2
> 0 such that for any � > 0; x � � < t < x and

t is rational then

j f (x) � f (t)j= j0 � 1j= 1 >
1

2
= �

So, f (x�) does not exists.

Thus, in all the cases both f (x+) and f (x�) does not exist and hence f has a

discontinuity of the second kind at all points.

3.3. Monotonic Functions:

De�nition 3.5. Let f be a real valued function de�ned on (a; b): Then f is said to be

monotonic function on (a; b); if either

1. f is monotonically increasing i:e:; if a < x < y < b ) f (x) � f (y) (or)

2. f is monotonically decreasing i:e:; if a < x < y < b ) f (x) � f (y)
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Theorem 3.3. Let f be monotonically increasing on (a; b): Then f (x+) and f (x�)
exist at every point of x of (a; b): More precisely,

sup
a<t<x

f (t) = f (x�) � f (x) � f (x+) = inf
x<t<b

f (t) (3.1)

Further, if a < x < y < b; then

f (x+) � f (y�) (3.2)

Proof. Given that f is monotonically increasing on (a; b): Our aims is to prove that

f (x+) and f (x�) exist at every point of x:

Let us prove,

sup
a<t<x

f (t) = f (x�) � f (x) � f (x+) = inf
x<t<b

f (t) (3.3)

Consider the set E = f f (t) : a < t < xg:

Since f is monotonically increasing and hence the set E is bounded above by f (x):

Therefore the set E has least upper bound say A = sup
a<t<x

f (t): Clearly, A � f (x): It

remains to show that A = f (x�):

For this, let � > 0 be given, then A � � cannot be an upper bound. So, there exists

� > 0 such that

a < x � � < x and A � � < f (x � �) � A (3.4)

Since f is monotonic, we have

f (x � �) � f (t) � A (x � � < t < x) (3.5)

Combining (3.4) and (3.5), we have

j f (t) � Aj < � (x � � < t < x)

Hence f (x�) = A = sup
a<t<x

f (t):

Next, we shall prove the right hand side inequality of (3.3).

For this, consider the set F = f f (t) : x < t < bg:

Since f is monotonically increasing and hence the set F is bounded below and hence

the set F is bounded below by f (x): Therefore the set F has greatest lower bound say

B = inf
x<t<b

f (x): Clearly B � f (x): It remains to prove that B = f (x+):

For this, let � > 0 be given, then B + � cannot be a lower bound, so there exists a

� > 0 such that

x < x + � < b and B < f (x + �) � B + � (3.6)

Since f is monotonic, we have
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B < f (t) < f (x + �) < B + � (x < t < x + �) (3.7)

Combining (3.6) and (3.7), we have

j f (t) � Bj < � (x < t < x + �)

Hence f (x+) = B = inf
x<t<b

f (t):

The monotonic increasing function f has right hand limit and left hand limit and

hence f has discontinuities of �rst kind. �

Remark 3.3. The above theorem remains holds good for monotonically decreasing

function. The proof is very similar.

Corollary 3.1. Monotonic functions have no discontinuities of the second kind.

Proof. Proof follows directly from the above theorem and remarks. �

Theorem 3.4. Let f be monotonic on (a; b): Then the set of points of (a; b) at which f

is discontinuous is at most countable.

Proof. Given that f is monotonic on (a; b): For the sake of convenience, assume that f

is monotonically increasing on (a; b): Then, by theorem (3.3), we have

sup
a<t<x

f (t) = f (x�) � f (x) � f (x+) = inf
x<t<b

f (t) (3.8)

If a < x < y < b; then from (3.8), we have

f (x+) = inf
x<t<b

f (t) � inf
x<t<y

f (t) � sup
x<t<y

f (t) � sup
a<t<y

f (y�) (3.9)

Let E be the set of points at which f is discontinuous.

With every point x of E we associate a rational number r(x) such that

f (x�) < r(x) < f (x+): (3.10)

Since x1 < x2 implies f (x1+) � f (x2�) (by using (3.9)).

Hence r(x1) 6= r(x2) if x1 6= x2: Certainly, we have

f (x1�) < r(x1) < f (x1+) � f (x2�) < r(x2) < f (x2+)

Thus, we have established a 1-1 correspondence between the set E and the subset of

the set of rational numbers which is countable.

Hence the set E is countable. This completes the proof of the theorem. �

Real Analysis M.Sc.(Mathematics)-I Year-I Sem



3.4. Infinite limits and limits at infinity: 37

3.4. In�nite limits and limits at in�nity:

In this section, we are going to investigate the extended real number

system in which we deals with in�nities.

De�nition 3.6. The extended real number system consists of the real �eld R and two

symbols +1 and �1: Maintaining the original order in R and de�ne �1 < x < +1 for

every x 2 R:

Remark 3.4. From the above de�nition, we observe that +1 is an upper bound of the

extended real number system and that E a non-empty subset of real number which is not

bounded above in R; then sup E = +1: Similarly, if E is not bounded below, then we

have inf E = �1:

For any real number x; we have already de�ned a neighborhood of x to

be any segment (x � �; x + �):

De�nition 3.7. For any real number c; the set of real numbers x such that x > c is

called a neighborhood of +1 and it is written as (c;+1): Similarly the set (�1; c) is a

neighborhood of �1:

Now, we are going to de�ne the limit of a real function in the extended

real number system.

De�nition 3.8. Let f be a real function de�ned on E � R; we say that f (t) ! A as

t ! x; where A and x are in the extended real number system, if for every neighborhood

U of A there is a neighborhood V of x such that V \ E is not empty and such that

f (t) 2 U for all t 2 V \ E; t 6= x:

Remark 3.5. When A and x are real, then it is quite interesting to observe that this

de�nition is coincides with the de�nition (2.1).

The analogue of theorem (2.2) is still true and the proof is also same. For

the sake of completeness, we will state the theorem for the extended real

number system.

Theorem 3.5. Let f and g be de�ned on E � R: Suppose f (t) ! A; g(t) ! B; as

t ! x: Then

(a) f (t) ! B implies B = A:

(b) ( f + g) (t) ! A + B:

(c) ( f g) (t) ! AB:
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(d)

 
f

g

!
(t) ! A

B
:

provided the right members of (b); (c); and (d) are de�ned.

Remark 3.6. Note that 1�1; 0 � 1; 11 ;
A

0
are not de�ned.

Let Us Sum Up:

In this unit, the students acquired knowledge to

� concept of continuity and connectedness.

� understand the di�erent types of discontinuity.

� concept of the in�nite limits and limits at in�nity.

Check Your Progress:

1. A function f is de�ned on R by

f (x) =

8>>>>>>>>>>><>>>>>>>>>>>:

�x2 if x � 0

5x � 4 if 0 < x � 1

4x3 � 3x if 1 < x � 2

3x + 4 if x � 2

Examine f for continuity at x = 0; 1; 2: Also discuss the kind of

discontinuity, if any.

2. Discuss the kind of discontinuity, if any of the function is de�ned as

follows:

f (x) =

8>>>><>>>>:
x � jxj
x

when x 6= 0

2 when x = 0

3. If [x] denotes the largest integer � x; then discuss the continuity at

x = 3 for the function f (x) = x � [x]; 8x � 0:
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Choose the correct or more suitable answer:

1. Let f be a function de�ned on (a; b) . Then a function f is said to

have a discontinuity of �rst kind at x , if

(a) f (x+) exist.

(b) f (x�) exist.

(c) both f (x+) and f (x�) exist.

(d) f (x+) exists and f (x�) does not exist.

Answer:

(1) c

Glossaries:

Connected Set: A set is disconnected, if it can be split into two disjoint

non-empty subsets such that neither contains a limit point of the other. A

set is connected, if it can be split in such a way.

Suggested Readings:

1. Rudin, W., �Principles of Mathematical Analysis�, Mc Graw-Hill,

Third Edition, 1984.

2. Avner Friedman, �Foundations of Modern Analysis�, Hold Rinehart

Winston, 1970.
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Block-I

UNIT-4

THE RIEMANN-STIELTJES INTEGRAL

Structure

Objective

Overview

4. 1 De�nition and Existence of the Integral

4. 2 Riemann-Stieltjes Integral

Let us Sum Up

Check Your Progress

Answers to Check Your Progress

Glossaries

Suggested Readings

Objectives

After completion of this unit, students will be able to

F understand the concept of partition and re�nement of partition.

F explain the concept of upper sum and lower sum.

F explain the basic di�erence between Riemann integral and

Riemann Stieltjes integral.
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42 4.1. Definition and Existence of the integral:

German mathematician Riemann was the �rst to introduce the process

of integration on purely arithmetical treatment which is broad based and

free from dependence on geometrical concepts. This concept is known as

Riemann integration, which was later on generalized by The Dutch astronomer

and Mathematician Stieltjes.

Overview

In this unit, we will illustrate the condition for the existence of

Riemann integral.

4.1. De�nition and Existence of the integral:

De�nition 4.1. Let I = [a; b] be a closed and bounded interval. Then a �nite set of

points P = fx0; x1; x2; : : : ; xng such that a = x0 < x1 < x2 < : : : < xn�1 < xn = b is

called a partition or division of the interval I = [a; b] :

For example: Consider the interval [0; 1] be a closed and bounded

interval. Then P =

(
0;

1

4
;
1

2
;
3

4
; 1

)
is a partition of [0; 1]:

De�nition 4.2. The closed sub-interval I1 = [x0; x1] ; I2 = [x1; x2] ; : : : ; In = [xn�1; xn] :

are called the segment of the partition.

De�nition 4.3. The length of the sub-interval Ir is denoted by 4xr de�ned by

4xr = xr � xr�1:

De�nition 4.4. The norm of the partition P is the maximum of the length of the segments

of a partition P denoted by kPk; de�ned by kPk= maxf4xi : i = 1; 2; : : : ; ng:

De�nition 4.5. We say that the partition P� is a re�nement of P if P� � P (that is every

point of P is a point of P�): Given two partition P1 and P2; we say that P� is their

common re�nement if P� = P1 [ P2:

De�nition 4.6. Let f be bounded real function de�ned on [a; b]: Let P be a partition

of [a; b]: We de�ne U(P; f ) called the upper sum of f corresponding to P as

U(P; f ) =

nX
i=1

Mi4xi

and the lower sum of f corresponding to P; denoted by L(P; f ) is de�ned as

L(P; f ) =

nX
i=1

mi4xi
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4.2. Riemann-Stieltjes Integral: 43

Where Mi and mi are de�ned by

Mi = supf f (x) : (xi�1 � x � xi)g
mi = inff f (x) : (xi�1 � x � xi)g

Remark 4.1. From the de�nition, clearly we can see that U(P; f ) � L(P; f ):

De�nition 4.7. Let f bounded real function de�ned on [a; b]: We de�ne

Z b

a

f (x) dx

is called the upper Riemann integral of f over [a; b] asZ b

a

f (x) dx = inf U(P; f )

where the inf are taken over all partitions P of [a; b]:

De�nition 4.8. Let f bounded real function de�ned on [a; b]: We de�ne

Z b

a

f (x) dx

is called the lower Riemann integral of f over [a; b] asZ b

a

f (x) dx = supU(P; f )

where the sup are taken over all partitions P of [a; b]:

De�nition 4.9. Let f bounded real function de�ned on [a; b]: We say that f is Riemann

integrable on [a; b] and we write f 2 R; if
Z b

a

f (x) dx =

Z b

a

f (x) dx

In this case, we write
R b

a
f (x) dx =

R b

a
f (x) dx =

R b

a
f (x) dx

Remark 4.2. If f is the Riemann integral over [a; b]: Since f is bounded, then there

exists two numbers m and M; such that

m � mi � Mi � M

) m4xi � mi4xi � Mi4xi � M4xi

Putting i = 1; 2; : : : ; n and adding all the inequalities, we get

m (b � a) � L(P; f ) � U(P; f ) � M(b � a)

Hence, the numbers L(P; f ) and U(P; f ) form a bounded set. This shows that the upper

and lower integrals are de�ned for every bounded function f :

4.2. Riemann-Stieltjes Integral:

De�nition 4.10. Let � be a monotonically increasing function on [a; b] and P be a

partition of [a; b]: Corresponding to each partition P of [a; b]; de�ne

4�i = �(xi) � �(xi�1); i = 1; 2; : : : ; n:

Since each �(a) and �(b) are �nite and � is monotonically increasing. Thus, we

have � is bounded on [a; b] and 4�i � 0:
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De�nition 4.11. Let f be bounded real function de�ned on [a; b]: Let P be a partition

of [a; b]: We de�ne U(P; f ; �) called the upper sum of f corresponding to P as

U(P; f ; �) =

nX
i=1

Mi4�i

and the lower sum of f corresponding to P; denoted by L(P; f ; �) is de�ned as

L(P; f ; �) =

nX
i=1

mi4�i

Where Mi and mi are de�ned by

Mi = sup f (x) (xi�1 � x � xi)

mi = inf f (x) (xi�1 � x � xi)

De�nition 4.12. Let f bounded real function de�ned on [a; b]: We de�ne

Z b

a

f d� is

called the upper Riemann Stieltjes integral of f with respect to � over [a; b] as

Z b

a

f d� = inf U(P; f ; �)

where the inf are taken over all partitions P of [a; b]:

De�nition 4.13. Let f bounded real function de�ned on [a; b]: We de�ne

Z b

a

f d� is

called the lower Riemann Stieltjes integral of f with respect to � over [a; b] as

Z b

a

f d� = supU(P; f ; �)

where the sup are taken over all partitions P of [a; b]:

De�nition 4.14. Let f bounded real function de�ned on [a; b]; We say that f is

Riemann Stieltjes integrable with respect to � on [a; b] and we write f 2 R(�); if

Z b

a

f d� =

Z b

a

f d�

In this case, we write

Z b

a

f d� =

Z b

a

f d� =

Z b

a

f d� (or some times written

by)

Z b

a

f (x) d�(x)

Remark 4.3. If we take �(x) = x; then the Riemann-Stieltjes integral is reduced to

Riemann integral. Thus, Riemann integral is a special case of Riemann-Stieltjes integral.

Hence, all the theorem and properties of Riemann-Stieltjes integral are holds good for

Riemann integral.
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Example 4.1. Consider the function f : [0; 1] ! [0; 1]; de�ned by

f (x) =

8>><>>:
0 x rational

1 x irrational

Let P be a partition of [0; 1]; a set of points x0; x1; : : : ; xn such that

0 = x0 � x1 � x2 � : : : � xn = 1: Let 4xi = xi � xi�1; i = 1; 2; : : : ; n:

Corresponding to each partition P of [0; 1];

Mi = supf f (x) : xi�1 � x � xig = supf0; 1g = 1

mi = inff f (x) : xi�1 � x � xig = inff0; 1g = 0;

for each i = 1; 2; : : : ; n

U(P; f ) =

nX
i=1

Mi4xi =
nX
i=1

Mi (xi � xi�1)

=

nX
i=1

(xi � xi�1) = xn � x0 = 1 � 0 = 1

L(P; f ) =

nX
i=1

mi4xi =
nX
i=1

mi (xi � xi�1) = 0

Z 1

0

f (x) dx = inffU(P; f ) : P is a partition of [0; 1]g = 1

Z 1

0

f (x) dx = supfL(P; f ) : P is a partition of [0; 1]g = 0

Thus,

Z 1

0

f (x) dx 6=
Z 1

0

f (x) dx ) f =2 R on [0; 1]:

Hence f is not Riemann integrable on [0; 1]:

Theorem 4.1. If P� is a re�nement of P; then

L(P; f ; �) � L(P�; f ; �) (4.1)

and U(P�; f ; �) � U(P; f ; �) (4.2)

Proof. Let P be the partition of [a; b]; i:e:; P = fa = x0; x1; : : : ; xi�1; xi; : : : ; xn = bg:

Let P� be the re�nement of P by just adding one more point x� in P;

i:e:; P� = fa = x0; x1; : : : ; xi�1; x�; xi; : : : ; xn = bg:

Let w1 and w2 be respectively the supremum of the functions f (x) in [xi�1; x�] and

[x�; xi] :

Then clearly, w1 � Mi and w2 � Mi where Mi is the supremum of the function in

[xi�1; xi] :

Let � be a non-increasing function on [a; b]:

Clearly �(x�) � �(xi�1) and �(xi) � �(x�):
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U(P; f ; �) =

nX
k=1

Mk4�k

=

i�1X
k=1

Mk4�k + Mi [�(xi) � �(xi�1)]

+

nX
k=i+1

Mk4�k

U(P�; f ; �) =

i�1X
k=1

Mk4�k + w1

�
�(x�) � �(xi�1)

�

+w2

�
�(xi) � �(x�)

�
+

nX
k=i+1

Mk4�k

Hence, U(P; f ; �) � U(P�; f ; �) = Mi [�(xi) � �(xi�1)] � w1

�
�(x�) � �(xi�1)

�
�w2

�
�(xi) � �(x�)

�
= (Mi � w2) (�(xi) � �(x�)

�
+ (Mi � w1]

�
�(x�) � �(xi�1)

�
� 0

[* Mi � w1 � 0; : Mi � w2 � 0;

�(xi) � �(x�); �(x�) � �(xi�1)
�

) U(P; f ; �) � U(P�; f ; �)

Hence U(P�; f ; �) � U(P; f ; �):

In a similar way, we can prove L(P; f ; �) � L(P�; f ; �): �

Theorem 4.2.

Z b

a

f d� �
Z b

a

f d�

Proof. Let P1 and P2 be the two partitions on [a; b] and P� be the common re�nement

of P1 and P2:

Then by theorem (4.1), we have

L(P1; f ; �) � L(P�; f ; �) � U(P�; f ; �) � U(P2; f ; �)

hence L(P1; f ; �) � U(P2; f ; �) (4.3)

If P2 is �xed and the sup is taken over all P1 in (4.3),then we haveZ b

a

f d� � U(P2; f ; �) (4.4)

Taking the inf over all P2 in(4.4), then we have

Z b

a

f d� �
Z b

a

f d�
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This completes the proof of the theorem. �

Theorem 4.3. Let f be a bounded real function de�ned on [a; b]: f 2 R(�) if and only

if for every � > 0 there exists a partition P such that

U(P; f ; �) � L(P; f ; �) < �

Proof. Assume that f 2 R(�): Then,

Z b

a

f d� =

Z b

a

f d� (4.5)

Now;

Z b

a

f d� = supfL(P; f ; �) : P is a partition of [a; b]g

) 9 a partition P1 of [a; b] such thatZ b

a

f d� < L(P1; f ; �) +
�

2
(4.6)

Similarly;

Z b

a

f d� = inffU(P; f ; �) : P is a partition of [a; b]g
) 9 a partition P2 of [a; b] such that

U(P2; f ; �) <

Z b

a

f d� +
�

2
(4.7)

If P = P1 [ P2; then P is the common re�nement of both P1 and P2; then by

theorem (4.1), equations (4.6) and (4.7), we have

U(P; f ; �) < U(P2; f ; �) <

Z b

a

f d� +
�

2
< L(P1; f�) + �

< L(P; f ; �) + �

) U(P; f ; �) < L(P; f ; �) + �

) U(P; f ; �) � L(P; f ; �) < �

Converse Part:

Let � > 0; 9 a partition P such that U(P; f ; �) � L(P; f ; �) < � (4.8)

Z b

a

f d� = inffU(P; f ; �) : P is a partition of [a; b]g

)
Z b

a

f d� � U(P; f ; �)

Z b

a

f d� = supfL(P; f ; �) : P is a partition of [a; b]g

)
Z b

a

f d� � L(P; f ; �)

i:e:; L(P; f ; �) <

Z b

a

f d� �
Z b

a

f d� � U(P; f ; �) (4.9)

Using (4.8) in (4.9), we have
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Z b

a

f d� �
Z b

a

f d� < �

)
Z b

a

f d� <

Z b

a

f d� + �

)
Z b

a

f d� <

Z b

a

f d� (* � is arbitrary) (4.10)

Always

Z b

a

f d� <

Z b

a

f d� (4.11)

From(4.10) and (4.11); we get (4.12)Z b

a

f d� =

Z b

a

f d�

) f 2 R(�) �

Theorem 4.4.

(a) If for some partition P and some � > 0; the inequality

U(P; f ; �) � L(P; f ; �) < � (4.13)

holds good then it is also holds good for partition P� (with the same � ).

(b) If (4.13) holds for P = fx0; x1; : : : ; xn and if si; ti are arbitrary points in [xi�1; xi]

then
nX
i=1

j f (si) � f (ti)j 4�i < �:

(c) f 2 R(�) and the hypothesis of (b) hold, then

�������
nX
i=1

f (ti) �
Z b

a

f d�

�������4�i < �:

Proof.

(a) If P� is a re�nement of P; then we have

L(P; f ; �) � L(P�; f ; �) (4.14)

and U(P�; f ; �) � L(P; f ; �) (4.15)

Using (4.13), (4.14) and (4.15), we get

U(P�; f ; �) � L(P�; f ; �) � U(P; f ; �) � L(P; f ; �) < �
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(b) Given that f (si) and f (ti) lie in [mi;Mi] ; so that j f (si) � f (ti)j � Mi � mi:

Therefore;

nX
i=1

j f (si) � f (ti)j 4�i �
nX
i=1

(Mi � mi)4�i

=

nX
i=1

Mi4�i �
nX
i=1

mi4�i

= U(P; f ; �) � L(P; f ; �) < �

)
nX
i=1

j f (si) � f (ti)j 4�i < �

(c) we have

L(P; f ; �) �
nX
i=1

f (ti)4�i � U(P; f ; �) (4.16)

and L(P; f ; �) �
Z b

a

f d� � U(P; f ; �) (4.17)

From (4.16) and (4.17), we get
nX
i=1

f (ti)4�i �
Z b

a

f d� � U(P; f ; �) � L(P; f ; �) < � (4.18)

and

Z b

a

f d� �
nX
i=1

f (ti)4�i � U(P; f ; �) � L(P; f ; �) < � (4.19)

From (4.18) and (4.19), we get;

�������
nX
i=1

f (ti) �
Z b

a

f d�

�������4�i < �: �

Theorem 4.5. If f is continuous and � is monotonically increasing on [a; b] then

f 2 R(�) on [a; b];

Proof. Let � > 0 be given.

Since � is monotonically increasing on [a; b] we can choose � > 0 such that

�(b) � �(a) < �

�
(4.20)

Since [a; b] is compact and f is continuous on [a; b]: Thus, f is uniformly

continuous on [a; b]:

Hence, by de�nition of uniform continuity, there exists � > 0 such that x 2 [a; b];

y 2 [a; b]:

jx � yj < � ) j f (x) � f (y)j < � (4.21)

Let P = fx0; x1; : : : ; xng be a partition on [a; b] such that 4xi < � (i = 1; 2; 3; : : : ; n):

De�ne Mi = supf f (x) : xi�1 � x � xig
and mi = inff f (x) : xi�1 � x � xig
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Then by (4.21), we have

Mi � mi < �; i = 1; 2; : : : ; n (4.22)

From (4.20) and (4.22), we conclude that

U(P; f ; �) � L(P; f ; �) =

nX
i=1

Mi4�i �
nX
i=1

mi4�i

=

nX
i=1

(Mi � mi)4�i

�
nX
i=1

�4�i = � [�(b) � �(a)] < �
�

�
< �

) f 2 R(�) �

Theorem 4.6. If f is monotonic and � is monotonically increasing and continuous on

[a; b]; then f 2 R(�):

Proof. Given that � is monotonically increasing and continuous on [a; b]:

Let � > 0: Then for any positive integer n there exists a partition P of [a; b] such

that
4�i = �(xi) � �(xi�1) (i = 1; 2; : : : ; n)

=
�(b) � �(a)

n
(4.23)

Assume that f is monotonically increasing on [a; b]: Then, we have

Mi = f (xi); mi = f (xi�1) (i = 1; 2; : : : ; n) (4.24)

From (4.23) and (4.24), we conclude that

U(P; f ; �) � L(P; f ; �) =

nX
i=1

(Mi � mi)4�i

=
�(b) � �(a)

n
� � f (b) � f (a)

�

Choose n su�ciently large, then

U(P; f ; �) � L(P; f ; �) =
�(b) � �(a)

n
� � f (b) � f (a)

�
< �

Thus, f 2 R(�) �

Remark 4.4. The proof is similar in the case of f is monotonically decreasing.

Theorem 4.7. Suppose f is bounded on [a; b]; f has only �nitely many points of

discontinuity of [a; b]; and � is continuous at every point at which f is discontinuous.

Then f 2 R(�):

Proof. Let E = fc1; c2; : : : ; cng be the �nite set of points at which f is discontinuous.
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Since E is �nite and � is continuous at each point ci (i = 1; 2; : : : ; n): Hence E can

be covered by n disjoint intervals [u j; v j] � [a; b] such that

nX
i=1

h
�(v j) � �(u j)

i
< �

We can construct these intervals in such a way that every point of E \ [a; b] lies in the

interior of some [u j; v j]:

Let K = [a; b] �
n[
j=1

(u j; v j)

Clearly, the set K is compact and also f is continuous in each sub-intervals

[a; u1]; [v1; u2]; [v2; u3] : : : [vm; b]; therefore f is uniformly continuous on K:

Hence, by de�nition of uniformly continuity, there exists a � > 0 such that for

s 2 K; t 2 K:

js � tj< � ) j f (s) � f (t)j< �

Form a partition P = fx0; x1; x2; : : : ; xng of [a; b] such that

(i) each u j occurs in P:

(ii) each v j occurs in P:

(iii) no points of any segment (u j; v j) occurs in P:

(iv) If xi�1 is not one of the u j; then 4x j < �:

De�ne Mi = supf f (x) : x 2 [xi�1; xi]g (i = 1; 2; : : : ; n)

mi = in f f f (x) : x 2 [xi�1; xi]g (i = 1; 2; : : : ; n)

M = supf f (x) : x 2 [a; b]g

Now; Mi � mi = jMi � mij
� jMij+jmij
� 2jMij
= 2 supf f (x) : x 2 [xi�1; xi]g
� 2 supf f (x) : x 2 [a; b]g

) Mi � mi � 2M

and Mi � mi � �; unless xi�1 one of the u j

Therefore, U(P; f ; �) � L(P; f ; �) =
X

xi�1 6=u j

(Mi � mi)4�i +
X

xi�1=u j

(Mi � mi)4�i

= �
X

4�i + 2M
Xh

�(v j) � �(u j)
i

< � [�(b) � �(a)] + 2M�
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Since � is arbitrary, thus we have U(P; f ; �) � L(P; f ; �) < �

) f 2 R(�) �

Theorem 4.8. Suppose f 2 R(�) on [a; b]; m � f � M; � is continuous on [m;M]

and h(x) = �( f (x)) on [a; b]: Then h 2 R(�) on [a; b]:

Proof. Since � is continuous on a closed and bounded interval [m;M] and hence � is

uniformly continuous on [m;M]:

Therefore, by de�nition of uniformly continuous, given � > 0; there exists a � > 0

such that � < �:

j�(s) � �(t)j < � if js � tj < � and s; t 2 [m;M] (4.25)

Again if f 2 R(�) if and only if 9 a partion P = fx0; x1; : : : ; xng of [a; b] such that

U(P; f ; �) � L(P; f ; �) < � = �2 (4.26)

Let Mi = supf f (x) : x 2 [xi�1; xi]g; (i = 1; 2; : : : ; n)

mi = inff f (x) : x 2 [xi�1; xi]g; (i = 1; 2; : : : ; n)

M�
i = supf�(t) : f (t) 2 [ f (xi�1); f (xi)]g; (i = 1; 2; : : : ; n)

m�
i = inff�(t) : f (t) 2 [ f (xi�1); f (xi)]g; (i = 1; 2; : : : ; n)

Divide the number 1; 2; 3; : : : ; n into two classes A and B such that

Mi � mi < � ) i 2 A

Mi � mi � � ) i 2 B

Then if i 2 A; then Mi � mi < �
) j�(Mi) � �(mi)j � �

)
����(sup f (x)) � �(inf( f (x))

��� � �

)
���sup(�(x)) � inf(�(x))

��� � �

)
���M�

i � m�
i

��� � �

) M�
i � m�

i � �

And if r 2 B; then

) M�
i � m�

i �
���M�

i

��� + ���m�
i

��� � 2K if K = supf�(t) : m � t � Mg

From (4.26), we haveX
i2B

(Mi � mi)4�i < �2

)
X
i2B

�4�i < �2 (* Mi � mi � �; if r 2 B)

)
X
i2B

4�i < �

Therefore,
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4.2. Riemann-Stieltjes Integral: 53

U(P; h; �) � L(P; h; �) =
X
i2A

�
M�

i � m�
i

�4�i +X
i2B

�
M�

i � m�
i

�4�i
� �

X
i2A

4�i + 2K
X
i2B

4�i

� � [�(b) � �(a)] 2K�
� � [�(b) � �(a) + 2k] (* � < �)

Since � is arbitrary, thus we have

U(P; h; �) � L(P; h; �) < �

) h 2 R(�) on [a; b]

This completes the proof of the theorem. �

Let Us Sum Up:

In this unit, the students acquired knowledge to

� concept about Upper Sum and Lower Sum.

� existence of Riemann-Stieltjes integral.

Check Your Progress:

1. De�ne Norm of the partition.

2. De�ne Upper Riemann Integral.

3. De�ne Upper sum and Lower sum.

4. De�ne Upper Riemann Stieltjes integral.

5. If f is monotonic and � is monotonically increasing and continuous

on [a; b]; then f 2 R(�):

6. Suppose f is bounded on [a; b]; f has only �nitely many points of

discontinuity of [a; b]; and � is continuous at every point at which f

is discontinuous. Then f 2 R(�):
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54 4.2. Riemann-Stieltjes Integral:

Choose the correct or more suitable answer:

1. f 2 R(�) if and only if

(a)

Z b

a

f d� �
Z b

a

f d�

(b)

Z b

a

f d� <

Z b

a

f d�

(c)

Z b

a

f d� �
Z b

a

f d�

(d)

Z b

a

f d� =

Z b

a

f d�

Answer:

(1) d

Glossaries:

1. Partition: Partition of a set is a grouping of its elements into

non-empty subsets.

2. Supremum: Supremum of a set is its least upper bound.

Suggested Readings:

1. Rudin, W., �Principles of Mathematical Analysis�, Mc Graw-Hill,

Third Edition, 1984.

2. Avner Friedman, �Foundations of Modern Analysis�, Hold Rinehart

Winston, 1970.
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Block-I

UNIT-5

PROPERTIES OF INTEGRAL

Structure

Objective

Overview

5. 1 Properties of the Integral

5. 2 Integration and Di�erentiation

Let us Sum Up

Check Your Progress

Answers to Check Your Progress

Glossaries

Suggested Readings

Objectives

After completion of this unit, students will be able to

F understand the properties of Riemann Stieljes integral.

F understand the integration and di�erentiation are inverse process

for real function.
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56 5.1. Properties of the integral:

Overview

In this unit, we will illustrate the properties of Riemann integral.

5.1. Properties of the integral:

Theorem 5.1. If f1 2 R(�) and f2 2 R(�) then f1 + f2 2 R(�) andZ b

a

( f1 + f2) d� =

Z b

a

f1d� +

Z b

a

f2d�:

Proof. Given that f1 2 R(�) and f2 2 R(�):

f1 2 R(�) ) 9 a partition P1 of [a; b] such that U(P1; f1; �) � L(P1; f1; �) < � (5.1)

f2 2 R(�) ) 9 a partition P2 of [a; b] such that U(P2; f2; �) � L(P2; f2; �) < � (5.2)

Let P = P1 [ P2; then P is the common re�nement of both P1 and P2: Hence (5.1)

and (5.2) can be written as

U(P; f1; �) � L(P; f1; �) < � (5.3)

U(P; f2; �) � L(P; f2; �) < � (5.4)

Adding (5.3) and (5.4), we get

U(P; f1; �) + U(P; f2; �) � L(P; f1; �) � L(P; f2; �) < 2� (5.5)

Put h(x) = f1(x) + f2(x):

Let Mi = supfh(x) : x 2 [xi�1xi]g; (i = 1; 2; : : : ; n)

mi = inffh(x) : x 2 [xi�1xi]g; (i = 1; 2; : : : ; n)

M�
i = supf f1(x) : x 2 [xi�1xi]g; (i = 1; 2; : : : ; n)

m�
i = inff f1(x) : x 2 [xi�1xi]g; (i = 1; 2; : : : ; n)

M��
i = supf f2(x) : x 2 [xi�1xi]g; (i = 1; 2; : : : ; n)

m��
i = inff f2(x) : x 2 [xi�1xi]g; (i = 1; 2; : : : ; n)

In the ith interval, we have

f1(x) + f2(x) � M�
i + M��

i

) Mi � M�
i + M��

i (* max( f1 + f2) � max f1 + max f2)

Similarly, mi � m�
i + m��

i

Therefore, we have
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5.1. Properties of the integral: 57

U(P; h; �) =

nX
i=1

Mi4�i �
nX
i=1

�
M�

i + M��
i

�4�i

) U(P; h; �) �
nX
i=1

M�
i 4�i +

nX
i=1

M��
i 4�i

U(P; h; �) � U(P; f1; �) + U(P; f2; �) (5.6)

Similarly; L(P; h; �) � L(P; f1; �) + L(P; f2; �) (5.7)

Hence, from (5.5), we get

U(P; h; �) � L(P; h; �) < 2�

) h 2 R(�) i:e:; f1 + f2 2 R(�)

Now, for a partition P; we have

U(P; f1; �) <

Z b

a

f1d� + �

U(P; f2; �) <

Z b

a

f2d� + �

Adding these, we get

U(P; f1; �) + U(P; f2; �) <

Z b

a

f1d� +

Z b

a

f2d� + 2�

Z b

a

hd� < U(P; f1; �) + U(P; f2; �)

<

Z b

a

f1d� +

Z b

a

f2d� + 2�

Since � is arbitrary;

Z b

a

hd� <

Z b

a

f1d� +

Z b

a

f2d� (5.8)

Replace f1 by � f1 and f2 by � f2; we getZ b

a

hd� �
Z b

a

f1d� +

Z b

a

f2d� (5.9)

Thus, from (5.8) and (5.9), we getZ b

a

hd� =

Z b

a

f1d� +

Z b

a

f2d�

i:e:;

Z b

a

( f1 + f2) d� =

Z b

a

f1d� +

Z b

a

f2d� �

Remark 5.1. In a similar way we can prove that, if f1 2 R(�) and f2 2 R(�) then

f1 � f2 2 R(�) and
R b

a
( f1 � f2) d� =

R b

a
f1d� �

R b

a
f2d�:

Theorem 5.2. If f 2 R(�) on [a; b] then c f 2 R(�); where c is any constant.

Also
R b

a
c f d� = c

R b

a
f d�:

Proof. Given that f 2 R(�) on [a; b]:

If c = 0; then the theorem is quite obvious, so we may assume that c 6= 0:
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f 2 R(�) if and only if 9 a partition P such that

U(P; f ; �) � L(P; f ; �) <
�

jcj (5.10)

Put h(x) = c f (x):

Let Mi = supfh(x) : x 2 [xi�1xi]g; (i = 1; 2; : : : ; n)

mi = inffh(x) : x 2 [xi�1xi]g; (i = 1; 2; : : : ; n)

M�
i = supf f(x) : x 2 [xi�1xi]g; (i = 1; 2; : : : ; n)

m�
i = inff f (x) : x 2 [xi�1xi]g; (i = 1; 2; : : : ; n)

In the ith interval, we have

Mi = supf(c f )(x) : xi�1 � x � xig � supfjcj f (x) : xi�1 � x � xig = jcjM�
i

and mi = inff(c f )(x) : xi�1 � x � xig � inffjcj f (x) : xi�1 � x � xig = jcjm�
i

Therefore, we have

U(P; h; �) � L(P; h; �) =

nX
i=1

(Mi � mi)4�i

�
nX
i=1

�jcjM�
i � jcjm�

i

�4�i

= jcj
nX
i=1

�
M�

i � m�
i

�4�i
= jcj�U(P; f ; �) � L(P; f ; �)

�
< jcj �jcj < � (using (5.10))

i:e:; U(P; h; �) � L(P; h; �) < �

) h 2 R(�) i:e:; c f 2 R(�)

Note for any constant c; we have U(P; c f ; �) = cU(P; f ; �):

U(P; c f ; �) = cU(P; f ; �) < c

Z b

a

f d� + c � �

)
Z b

a

(c f )d� � c

Z b

a

f d� (5.11)

Replace f by � f in (5.11), we getZ b

a

(c f )d� � c

Z b

a

f d� (5.12)

From (5.11) and (5.12), we conclude thatZ b

a

(c f )d� = c

Z b

a

f d� �

Theorem 5.3. If f 2 R(�) on [a; b] and if a < c < b: then f 2 R(�) on [a; c] and

f 2 R(�) on [c; b]:
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5.1. Properties of the integral: 59

Also,

Z b

a

f d� =

Z c

a

f d� +

Z b

c

f d�:

Proof. Given that f 2 R(�) on [a; b]:

f 2 R(�) if and only if 9 a partition P on [a; b] such that

U(P; f ; �) � L(P; f ; �) < �: (5.13)

Let P = P1 [ P2 where P1 is a partition of [a; c] and P2 is a partition of [c; b]:

Then

U(P; f ; �) = U(P1; f ; �) + U(P2; f ; �) (5.14)

and L(P; f ; �) = L(P1; f ; �) + L(P2; f ; �) (5.15)

So by (5.13), we have�
U(P1; f ; �) � L(P1; f ; �)

�
+

�
U(P2; f ; �) � L(P2; f ; �)

�
=

�
U(P1; f ; �) + U(P2; f ; �)

�
� �

L(P1; f ; �) + L(P2; f ; �)
�

= U(P; f ; �) � L(P; f ; �) < �

) U(P1; f ; �) � L(P1; f ; �) < � and U(P2; f ; �) � L(P2; f ; �) < �

) f 2 R(�) on [a; c] and f 2 R(�) on [c; b]:

It remains to prove that

Z b

a

f d� =

Z c

a

f d� +

Z b

c

f d�:

By (5.15), we have

L(P1; f ; �) + L(P2; f ; �) = L(P; f ; �) �
Z b

a

f d� (5.16)

Keeping P2 �xed and taking the supremum over all the partitions of P1; we haveZ c

a

f d� + L(P2; f ; �) �
Z b

a

f d�

Now taking the supremum over all the partitions of P2; then we have

Z c

a

f d� +

Z b

c

f d� �
Z b

a

f d� (5.17)

Similarly, from (5.15), we have

U(P1; f ; �) + U(P2; f ; �) = U(P; f ; �) �
Z b

a

f d�

Keeping P2 �xed and taking the in�mum over all the partitions of P1; we haveZ c

a

f d� + L(P2; f ; �) �
Z b

a

f d�
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Now taking the in�mum over all the partitions of P2; then we haveZ c

a

f d� +

Z b

c

f d� �
Z b

a

f d� (5.18)

From (5.17) and (5.18), we conclude thatZ c

a

f d� +

Z b

c

f d� =

Z b

a

f d� �

Theorem 5.4. If f1(x) � f2(x) on [a; b]; then

Z b

a

f1d� �
Z b

a

f2d�:

Proof. Given that f1(x) � f2(x) on [a; b] which implies that f2(x) � f1(x) � 0 on

[a; b]:

Since � is monotonically increasing on [a; b] so that �(b)� �(a) > 0; then we haveZ b

a

( f2(x) � f1(x)) d� � 0

)
Z b

a

( f2 � f1) d� � 0

Z b

a

f2d� �
Z b

a

f1d� � 0

)
Z b

a

f2d� �
Z b

a

f1d�

i:e:;

Z b

a

f1d� �
Z b

a

f2d�

This completes the proof of the theorem. �

Theorem 5.5. If f 2 R on [a; b] and if j f (x)j� M on [a; b] then������
Z b

a

f d�

������ � M [�(b) � �(a)] :

Proof. Given that f 2 R on [a; b] and j f (x)j� M on [a; b]:

Let P = fa = x0; x1; x2; : : : ; xn = bg be a partition of [a; b]; and

Mi = supf f (x) : xi�1 � x � xig (i = 1; 2; : : : ; n):

jU(P; f ; �)j =

�������
nX
i=1

Mi4�i
�������

�
nX
i=1

jMij4�i

�
nX
i=1

M4�i

� M

nX
i=1

4�i = M [�(b) � �(a)]

Taking in�mum over all partitions P; then we have������
Z b

a

f d�

������ � M [�(b) � �(a)] �

Real Analysis M.Sc.(Mathematics)-I Year-I Sem



5.1. Properties of the integral: 61

Theorem 5.6. If f 2 R(�1) on [a; b] and f 2 R(�2) on [a; b]; then f 2 R(�1 + �2)

on [a; b]:

Also,
R b

a
f d (�1 + �2) =

R b

a
f d�1 +

R b

a
f d�2:

Proof. Given that f 2 R(�1) and f 2 R(�2):

f 2 R(�1) if and only if 9 a partition P1 on [a; b] such that U(P1; f ; �1) <
�

2
(5.19)

f 2 R(�2) if and only if 9 a partition P2 on [a; b] such that U(P2; f ; �2) <
�

2
(5.20)

Let P be the common re�nement of P1 and P2; then (5.19) and (5.20) also holds

good.

) U(P; f ; �1) � L(P; f ; �1) <
�

2
(5.21)

U(P; f ; �2) � L(P; f ; �2) <
�

2
(5.22)

Since �1 and �2 is a monotonic increasing function and hence �1 + �2 is also a

monotonic increasing function. Take � = �1 + �2:

Now, consider

nX
i=1

Mi [�(xi) � �(xi�1)] =

nX
i=1

Mi [(�1 + �2) (xi) � (�1 + �2) (xi�1)]

=

nX
i=1

Mi [(�1(xi) � �1(xi�1)) + (�2(xi) � �2(xi�1))]

=

nX
i=1

Mi (�1(xi) � �1(xi�1)) +
nX
i=1

Mi (�2(xi) � �2(xi�1))

U(P; f ; �) = U(P; f ; �1) + U(P; f ; �2) (5.23)

Similarly, L(P; f ; �) = L(P; f ; �1) + L(P; f ; �2) (5.24)

From (5.21) , (5.22), (5.23) and (5.24) we get

U(P; f ; �) � L(P; f ; �) =
�
U(P; f ; �1) � L(P; f ; �1)

�
+

�
U(P; f ; �2) � L(P; f ; �2)

�
<

�

2
+
�

2
) U(P; f ; �) � L(P; f ; �) < �

) f 2 R(�) i:e:; f 2 R(�1 + �2)

Now, from (5.23), we have

inf U(P; f ; �) = inf
�
U(P; f ; �1) + U(P; f ; �2)

�
inf U(P; f ; �) � inf U(P; f ; �1) + inf U(P; f ; �2)

i:e:;

Z b

a

f d� �
Z b

a

f d�1 +

Z b

a

f d�2

Similarly from (5.24), we can easily �nd that
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Z b

a

f d� �
Z b

a

f d�1 +

Z b

a

f d�2

Thus, we have

Z b

a

f d(�1 + �2) =

Z b

a

f d�1 +

Z b

a

f d�2 �

Theorem 5.7. If f 2 R(�) and g 2 R(�) on [a; b] then f g 2 R(�) on [a; b]:

Proof. If f 2 R(�) on [a; b]; then by theorem (4.8), we have �( f (x)) 2 R(�) on

[a; b]:

Let �(t) = t2 i:e:; �( f (x)) =
�
f (x)

�2
Then f 2 R(�) on [a; b] ) �

f (x)
�2 2 R(�) on [a; b]:

Also, we know that if f 2 R(�) on [a; b] and g 2 R(�) on [a; b] then f +g 2 R(�)

on [a; b] and f � g 2 R(�) on [a; b]:

Thus, we have ( f + g)2 2 R(�) on [a; b] and ( f � g)2 2 R(�) on [a; b]:

From the identity

f g =
1

4

h
( f + g)2 � ( f � g)2

i

We can easily see that f g 2 R(�) on [a; b]: �

Theorem 5.8. If f 2 R(�) on [a; b] then j f j2 R(�) on [a; b] and����R b

a
f d�

���� � R b

a
j f j d�:

Proof. If f 2 R(�) on [a; b]; then by theorem (4.8), we have �( f (x)) 2 R(�) on

[a; b]:

Let �(t) = jtj i:e:; �( f (x)) = j f (x)j :

Then f 2 R(�) on [a; b] ) j f (x)j 2 R(�) on [a; b]:

Choose c = �1; so that c
R b

a
f d� � 0: Then

������
Z b

a

f d�

������ = c

Z b

a

f d� =

Z b

a

(c f )d� �
Z b

a

j f jd� (* c f � j f j)

This completes the proof. �

Remark 5.2. Converse of the above theorem is not true. i:e:; j f j2 R(�) does not imply

f 2 R(�):

For example: Let f (x) =

8>><>>:
�1 x irrational

1 x rational

Here, we can easily see that

Z b

a

j f jdx exists, but

Z b

a

f (x)dx does not exist.

De�nition 5.1. The unit step function I is de�ned by I(x) =

8>><>>:
0 x � 0

1 x > 0
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5.1. Properties of the integral: 63

Theorem 5.9. If a < s < b; f is bounded on [a; b]; f is continuous at s and

�(x) = I(x � s); then

Z b

a

f d� = f (s):

Proof. Let a < s < b and f is bounded on [a; b]: Given that f is continuous at s:

Consider the partition P = fx0; x1; x2; x3g of [a; b]

where a = x0 < x1 = s < x2 < x3 = b:

Mi = supf f (x) : xi�1 � x � xig; i = 1; 2; 3

mi = inff f (x) : xi�1 � x � xig; i = 1; 2; 3

Then U(P; f ; �) = M1 [�(x1) � �(x0)] + M2 [�(x2) � �(x1)] + M3 [�(x3) � �(x2)]
= M1(0 � 0) + M2(1 � 0) + M3(1 � 1) = M2

and L(P; f ; �) = m1 [�(x1) � �(x0)] + m2 [�(x2) � �(x1)] + m3 [�(x3) � �(x2)]
= m1(0 � 0) + m2(1 � 0) + m3(1 � 1) = m2

Since f is continuous at s; lim
x2!s

M2 = f (s) = lim
x2!s

m2:

Thus sup
P

L(P; f ; �) = lim
x2!s

m2 = f (s) and inf
P
U(P; f ; �) = lim

x2!s
M2 = f (s):

i:e:;

Z b

a

f d� = f (s) =

Z b

a

f d�

Hence

Z b

a

f d� = f (s): �

Theorem 5.10. Suppose cn � 0 for n = 1; 2; 3; : : : ;
P
cn converges, fsng is a sequence

of distinct points in (a; b) and

�(x) =

1X
n=1

cnI(x � sn) (5.25)

Let f be continuous on [a; b]: Then

Z b

a

f d� =

1X
n=1

cn f (sn):

Proof. Suppose cn � 0 for n = 1; 2; 3; : : : ;
P
cn converges. Let fsng be a sequence of

distinct points in (a; b) so that �(x) =

1X
n=1

cnI(x � sn) and f is continuous on [a; b]:

Since cnI(x � sn) � cn n = 1; 2; : : : and hence by comparison test,

�(x) =

1X
n=1

cnI(x � sn) converges for every x:

Moreover, �(x) is monotonic and �(a) = 0 and �(b) =
P
cn:

Since I(a � sn) = 0 and I(b � sn) = 1 for n = 1; 2; 3; : : : :

Since
P
cn converges. Let � > 0 be given. Then there exists N such that

1X
n=N+1

cn < �:
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Now �(x) = �1(x) + �2(x): By theorem (5.6) and (5.9), we haveZ b

a

f d�1 =

1X
n=N+1

cn f (sn);

and �(b) � �(a) =
1X

n=N+1

cn � 0 =

1X
n=N+1

cn < �:

Hence by theorem (5.5), we have������
Z b

a

f d�2

������ � M[�2(b) � �2(a)] < M� where M = supf f (x) : x 2 [a; b]g

Since �1 + �2 = �; then�������
Z b

a

f d� �
NX
n=1

cn f (sn)

������� =
������
Z b

a

f d� �
Z b

a

f d�1

������ =
������
Z b

a

f d�2

������ � M�

When N ! 1;
Z b

a

f d� =

1X
n=1

fn f (sn): �

Theorem 5.11. Assume � increases monotonically and �0 2 R on [a; b]: Let f be a

bounded real function on [a; b]: Then f 2 R(�) if and only if f�0 2 R: In that caseZ b

a

f d� =

Z b

a

f (x)�0(x)dx (5.26)

Proof. Let � increases monotonically and �0 2 R on [a; b]: Let f be a bounded real

function on [a; b]:

Let � > 0 be given and by theorem (4.1), there exists a partition P = fx0; x1; x2; : : : ; xn
of [a; b] such that

U(P; f ; �0) � L(P; f ; �0) < � (5.27)

If si; ti are arbitrary points in [xi�1; xi] then

nX
i=1

����0(si) � �0(ti)���4�i < �
By the mean value theorem, there are points ti 2 [xi�1xi] such that

4�i = �0(ti)4xi:

Put M = sup j f (x)j : Then we have�������
nX
i=1

f (si)4�i �
nX
i=1

f (si)�
0(si)4xi

������� =

�������
nX
i=1

f (si)�
0(ti)4xi �

nX
i=1

f (si)�
0(si)4xi

�������
� M

nX
i=1

����0(si) � �0(ti)���4�i
< M�

In particular,

nX
i=1

f (si)4�i � U(P; f ; �0) + M� for all choices of si 2 [xi�1; xi]:

So that, U(P; f ; �) � U(P; f ; �0) + M�:

On the other hand, we have U(P; f ; �0) � U(P; f ; �) + M�:

Thus, jU(P; f ; �) � U(P; f�0)j� M� and for any partition P and so its re�nement.
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Hence

������
Z b

a

f d� �
Z b

a

f (x)�0(x) dx

������ � M�

Since � is arbitrary, it follows thatZ b

a

f d� =

Z b

a

f (x)�0(x) dx:

Similarly, we get
Z b

a

f d� =

Z b

a

f (x)�0(x) dx:

Thus,Z b

a

f (x)�0(x) dx =
Z b

a

f d� =

Z b

a

f d� =

Z b

a

f d� =

Z b

a

f (x)�0(x) dx

Hence f 2 R(�) on [a; b] if and only if f�0 2 R on [a; b]: i:e:; Riemann

stieltjes integral of f with respect to � on [a; b] is equal to Riemann integral of f�0 on

[a; b]: �

Theorem 5.12 (change of variable). Suppose � is a strictly increasing continuous

function that maps an interval [A; B] onto [a; b]: Suppose � is monotonically increasing

on [a; b] and f 2 R(�) on [a; b]: De�ne � and g on [A; B] by

�(y) = �(�(y)); g(y) = f (�(y)) (5.28)

Then g 2 R(�) and Z B

A

gd� =

Z b

a

f d� (5.29)

Proof. Given that f 2 R(�) on [a; b]:

Let � > 0 be given.

f 2 R(�) on [a; b] such that U(P; f ; �) � L(P; f ; �) < � (5.30)

Hence

������U(P; f ; �) �
Z b

a

f d�

������ < � and

������L(P; f ; �) �
Z b

a

f d�

������ < �:
To each partition P = fx0; x1; : : : ; xng of [a; b]; corresponds a partition

Q = fy0; y1; : : : ; yng of [A; B]; such that xi = �(yi) for i = 1; 2; : : : ; n: All partitions of

[A; B] are obtained in this way.

For i = 1; 2; : : : ; n; let

Mi = supf f (x) : xi�1 � x � xig
mi = inff f (x) : xi�1 � x � xig
M�

i = supfg(y) : yi�1 � y � yig
m�
i = inffg(y) : yi�1 � y � yig

Since M�
i
= g(y�

i
) = f

�
�(y�

i
)
�
= f (x�

i
) = Mi and

4�i = �(yi) � �(yi�1) = �(�(yi)) � �(�(yi�1)) = �(xi) � �(xi�1) = 4�i:
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Then U(Q; g; �) =

nX
i=1

M�
i 4�i =

nX
i=1

Mi4�i = U(P; f ; �):

Similarly, we can get L(Q; g; �) = L(P; f ; �):

Hence by (5.30), we have

U(Q; g; �) � L(Q; g; �) = U(P; f�) � L(P; f ; �) < �

Thus, f 2 R(�) and further,

Z B

A

g d� = inf
Q
U(Q; g; �) = inf

P
U(P; f ; �) =

Z b

a

f d� =

Z b

a

f d�

Z B

A

g d� = sup
Q

L(Q; g; �) = sup
P

L(P; f ; �) =

Z b

a

f d� =

Z b

a

f d�

Hene,

Z B

A

g d� =

Z B

A

g d� =

Z B

A

gd� =

Z b

a

f d�

So, g 2 R(�) on [A; B] and

Z B

A

gd� =

Z b

a

f d�: �

5.2. Integration and Di�erentiation:

For real functions integration and di�erentiation are in a certain sense,

inverse operations. In this section, let us establish this result.

Theorem 5.13. Let f 2 R on [a; b]: For a � x � b; put

F(x) =

Z x

a

f (t)dt (5.31)

Then F is continuous on [a; b]; furthermore, if f is continuous at a point x0 of [a; b];

then F is di�erentiable at x0 and

F0(x0) = f (x0) (5.32)

Proof. Since f 2 R on [a; b] and hence it is bounded.

Therefore, 9 a real number M such that

j f (t)j� M for a � t � b

If a � x � y � b; then
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jF(y) � F(x)j =

�����
Z y

a

f (t)dt �
Z x

a

f (t)dt

�����
=

�����
Z x

a

f (t)dt +

Z y

x

f (t)dt �
Z x

a

f (t)dt

�����
=

�����
Z y

x

f (t)dt

����� �
Z y

x

j f (t)j dt
� M(y � x)

For given � > 0; we have

jy � xj< �

M
) jF(y) � F(x)j < �
) F is uniformly continuous on [a; b]

) F is continuous:

Suppose, f is continuous at a point x0 of [a; b]: Given � > 0; we can choose a

� > 0 such that a � t � b with

jt � xj< � ) j f (t) � f (x0)j< �

Therefore, if x0 � � � s � x0 + � and a � s � t � b; we have�����F(t) � F(s)

t � s
� f (x0)

����� =

������
1

t � s

Z t

s

f (u)du � f (x0)

������
=

������
1

t � s

Z t

s

�
f (u) � f (x0)

�
du

������
� 1

t � s

Z t

s

j f (u) � f (x0)j du

< �
1

t � s

Z t

s

du = �

Hence F0(x0) = f (x0): �

Theorem 5.14 (The fundamental theorem of calculus). If f 2 R on [a; b] and if there

is a di�erentiable function F on [a; b] such that F0 = f then

Z b

a

f (x)dx = F(b) � F(a) (5.33)

Proof. Let f be continuous on [a; b] and F0(x) = f (x) 8x 2 [a; b]:

Since f 2 R on [a; b] and hence F0 2 R on [a; b]:

Let � > 0 be given.

Hence, by theorem (4.4), 9 a partition P of [a; b] such that�������
nX
i=1

F0(ti)(xi � xi�1) �
Z b

a

F0(x)dx

������� < � where ti 2 [xi�1; xi] (5.34)

By Lagrange's mean value theorem, we can say that there exists ti 2 [xi�1; xi] such

that
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68 5.2. Integration and Differentiation:

F(xi) � F(xi�1) = (xi � xi�1)F0(ti)

)
nX
i=1

�
(xi � xi�1)F0(ti)

�
=

nX
i=1

[F(xi) � F(xi�1)] = F(b) � F(a)

Using the above equations in (5.34), then we have������F(b) � F(a) �
Z b

a

F0(x)dx

������ < �

) F(b) � F(a) =

Z b

a

F0(x)dx

=

Z b

a

f (x)dx (* F0(x) = f (x))

Hence,

Z b

a

f (x)dx = F(b) � F(a) �

Theorem 5.15 (integration by parts). Suppose F and G are di�erentiable functions on

[a; b]; F0 = f 2 R and G0 = g 2 R: ThenZ b

a

F(x)g(x)dx = F(b)G(b) � F(a)G(a) �
Z b

a

f (x)G(x)dx: (5.35)

Proof. Let F and G be di�erentiable functions on [a; b] so that F0 = f 2 R on [a; b]

and G0 = g 2 R on [a; b]:

Let H(x) = F(x)G(x)

then H0(x) = F(x)G0(x) + F0(x)G(x)

= F(x)g(x) + f (x)G(x)

Hence, by fundamental theorem of calculus, we haveZ b

a

H0(x)dx =

Z b

a

�
F(x)g(x) + f (x)G(x)

�
dx

= H(b) � H(a)

i:e:;

Z b

a

F(x)g(x)dx +

Z b

a

f (x)G(x)dx = F(b)G(b) � F(a)G(a)

i:e:;

Z b

a

F(x)g(x)dx = F(b)G(b) � F(a)G(a) �
Z b

a

f (x)G(x)dx �

Let Us Sum Up:

In this unit, the students acquired knowledge to

� properties of Riemann Stieltjes integral.

� change of variables.

� integration by parts.
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� fundamental theorem of calculus.

Check Your Progress:

1. Suppose � increases on [a; b]; a � x0 � b; � is continuous at x0;

f (x0) = 1 and f (x) = 0; if x 6= x0: Prove that f 2 R(�) on [a; b]:

2. Suppose f � 0; f is continuous on [a; b]; and

Z b

a

f (x)dx = 0; prove

that f (x) = 0 for all x 2 [a; b]:

3. If f (x) = 0 for all irrational x; f (x) = 1 for all rational x; prove that

f =2 R on [a; b] for any a < b:

4. Suppose f is a bounded real function on [a; b]; and f 2 2 R on [a; b]:

Does it follows that f 2 R ?

Choose the correct or more suitable answer:

1. The value of

Z 1

0

x2dx2 is

(a) 1

(b) �1

(c)
1

3

(d)
1

2

2. The value of

Z 2

0

[x]dx2 is

(a) 1

(b) 2

(c) 3

(d) 4

Answer:

(1) d (2) c
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Glossaries:

Change of variables: It is a basic technique used to simplifying

problems in which original variables are replaced with functions of other

variables.

Suggested Readings:

1. Rudin, W., �Principles of Mathematical Analysis�, Mc Graw-Hill,

Third Edition, 1984.

2. Avner Friedman, �Foundations of Modern Analysis�, Hold Rinehart

Winston, 1970.
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72 6.1. Discussion of Main problem:

Objectives

After completion of this unit, students will be able to

F classify pointwise convergent and uniform convergent sequence

of functions.

F understand the concept of term by term di�erentiation for

uniform convergent series.

F construct a continuous function which is nowhere di�erentiable

on real line.

Overview

In this unit we focus our attention to complex-valued functions

(including the real-valued functions), although many of the theorems and

proofs which follow extend without di�culty to vector valued functions

and even to mappings into general metric spaces.

6.1. Discussion of Main problem:

De�nition 6.1. Suppose f fng; n = 1; 2; 3; : : : ; is a sequence of functions de�ned on a set

E and suppose that the sequence of numbers f fn(x)g converges for every x 2 E; we can

then de�ne a function f by

f (x) = lim
n!1

fn(x) (x 2 E) (6.1)

We say that f fng converges on E and that f is the limit or the limit function, of f fng:
We say that f fng converges to f pointwise on E; if (6.1) holds.

De�nition 6.2. Suppose that

1X
n=1

fn(x) converges for every x 2 E and if we de�ne

f (x) =

1X
n=1

fn(x) (x 2 E) (6.2)

the function f is called the sum of the series
P

fn

Remark 6.1. If the point-wise limit of a sequence of functions f fng de�ned on [a; b];

then to each � > 0 and to each x 2 [a; b]; there corresponds an integer N such that

j fn(x) � f (x)j < � 8n � N
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The main problem which arises is to determine whether important

properties of functions (such as boundedness, continuity, integration,

di�erentiation, etc.,) are preserved under the limit operations (6.1) and (6.2).

Now, we shall discuss by means of several examples that limit process

cannot in general be interchanged without a�ecting the result.

Example 6.1. Consider the double sequence:

For m = 1; 2; 3; : : : ; n = 1; 2; 3; : : : : Let

sm;n =
m

m + n

Then for any �xed n; we have lim
m!1

sm;n = 1:

So that lim
n!1

lim
m!1

sm;n = 1:

But, on the other hand, for every �xed m; we have

lim
n!1

sm;n = 0

so that lim
m!1

lim
n!1

sm;n = 0

Thus, lim
n!1

lim
m!1

sm;n 6= lim
m!1

lim
n!1

sm;n:

Hence, we conclude that limit process cannot be interchanged in general without

a�ecting the results in double sequence

Example 6.2. Consider the series

1X
n=0

fn; where fn(x) =
x2�

1 + x2
�n ( x real).

At x = 0; each fn(x) = 0; so that the sum of the series f (0) = 0:

For x 6= 0; it forms a geometric series with common ratio
1

1 + x2
; so that its sum is

f (x) = 1 + x2:

Hence f (x) =

8>><>>:
1 + x2 x 6= 0

0 x = 0

Each term of the series is continuous but the sum f is not continuous.

Thus, we conclude that a convergent series of continuous function may have

discontinuous sum.

Example 6.3. Consider the sequence of functions f fm(x)g: For m = 1; 2; 3; : : : ;

fm(x) = lim
n!1

(cosm! �x)2n =

8>><>>:
1 m! x integer

0 otherwise

Let f (x) = lim
n!1

fm(x):

For irrational x; we have m! x is not an integer, so fm(x) = 0 8m and hence

f (x) = 0:
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74 6.1. Discussion of Main problem:

For rational x; put x =
p

q
; and m! x is an integer, when m � q; so fm(x) = 1 and

hence f (x) = 1:

Thus, f (x) = lim
m!1

�
lim
n!1

(cosm! �x)2n
�
=

8>><>>:
0 x rational

1 x irrational

which is not Riemann integrable[Refer Page No.62], but for each m; fm(x) is

Riemann integrable.

Hence, limit of a sequence of Riemann integrable function is need not be Riemann

integrable.

Thus, we conclude that limits and integration cannot be changed.

Example 6.4. The sequence fn where fn(x) =
sin nxp

n
(x real) has the limit

f (x) = lim
n!1

fn(x) = 0

) f 0(x) = 0 and so f 0(0) = 0

But f 0n(x) =
p
n cos nx

so that f 0n(0) =
p
n ! 1 as n ! 1

Hence at x = 0; the sequence f f 0n(x)g diverges whereas the limit function f 0(x) = 0:

Thus, we conclude that the limit of di�erentials is not equal the di�erential of the limit.

Example 6.5. Consider the sequence f fng where

fn(x) = nx
�
1 � x2

�n
0 � x � 1; n = 1; 2; 3; : : : (6.3)

For 0 < x � 1; lim
n!1

fn(x) = 0:

At x = 0; each fn(0) = 0; so that lim
n!1

fn(0) = 0:

Thus, the limit function f (x) = lim
n!1

fn(x) = 0; for 0 < x <� 1

)

Z 1

0

f (x)dx = 0

Again,

Z 1

0

fn(x)dx =

Z 1

0

nx
�
1 � x2

�n
dx =

n

2n + 2

so that lim
n!1

(Z 1

0

fn(x)dx

)
=

1

2

]Thus, lim
n!1

(Z 1

0

fn(x)dx

)
6=

Z 1

0

f (x)dx =

Z 1

0

�
lim
n!1

f fng(x)dx
�

Thus, the limit of integral is not equal to the integral of the limit.

Hence, we conclude that the sequence of integrals may not converge to the integral of

the limit of the sequence.

These examples, which show what can go wrong if limit process are interchanged

carelessly. We have to investigate under what conditions these or other properties of the
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terms fn are transferred to the limit function. A concept of great importance in this regard

is known as Uniform convergence of a sequence (series).

6.2. Uniform Convergence:

De�nition 6.3. A sequence of functions f fng; n = 1; 2; 3; : : : converges uniformly on E

to a function f if for � > 0 there is an integer N such that n � N implies

j fn(x) � f (x)j � � (6.4)

for all x 2 E:

From the above de�nition, it is very clear that every uniformly

convergent sequence is pointwise convergent.

Remark 6.2. The main di�erence between the pointwise convergent and uniform

convergent is as follows:

If f fng converges pointwise on E; then there exists a function f such that, for every

� > 0 and for every x 2 E; there is an integer N; depending on � and on x; such that

(6.4) holds if n � N:

If f fng converges uniformly on E; it is possible to for each � > 0 to �nd one integer

N; which do for all x 2 E:

De�nition 6.4. The series
P

fn(x) converges uniformly on E if the sequence fsng of

partial sums de�ned by
nX
i=1

fi(x) = sn(x)

converges uniformly on E:

Theorem 6.1 (Cauchy criterion for uniform convergence). The sequence of functions f fng
de�ned on E; converges uniformly on E if and only if for every � > 0 there exists an

integer N such that m � N; n � N; x 2 E implies

j fn(x) � fm(x)j < �

Proof. Assume that f fng converges uniformly on E and f (x) be the limit function.

Let � > 0 be given.

Then by de�nition, there exists an integer N such that

n � N; x 2 E ) j fn(x) � f (x)j < �=2 (6.5)

If n � N;m � N; x 2 E; then by (6.5), we have
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j fn(x) � fm(x)j = j fn(x) � f (x) + f (x) � fm(x)j
� j fn(x) � f (x)j + j f (x) � fm(x)j
< �=2 + �=2 = �

Converse Part: Assume that for every � > 0; 9 an integer N such that m � N;

n � N; x 2 E implies

j fn(x) � fm(x)j < � (6.6)

Thus, for every x 2 E; f fng is a Cauchy sequence and hence converges to a limit

function f (x): Hence the sequence of functions f fng converges uniformly to f on E:

Certainly, let � > 0 be given and choose N such that (6.6) holds.

Fix n and letting m ! 1 in (6.6), as fm(x) ! f (x); it follows that

x 2 E and n � N ) j fn(x) � f (x)j < �

This completes the proof. �

Theorem 6.2. Suppose lim
n!1

fn(x) = f (x) (x 2 E):

Put Mn = sup
x2E

j fn(x) � f (x)j :

Then fn ! f converges uniformly on E if and only if Mn ! 0 as n ! 1:

Proof. Suppose the sequence f fng of functions converges uniformly to f on X: Then

by de�nition, for a given � > 0; 9 a positive integer N such that

n � N ) j fn(x) � f (x)j < �; 8x 2 X

Also; Mn = sup
x2E

j fn(x) � f (x)j

) j fn(x) � f (x)j < � 8 n � N; 8x 2 X

) Mn = sup
x2E

j fn(x) � f (x)j < � 8n � N

) Mn ! 0 as n ! 1

Converse Part: Suppose Mn ! 0 as n ! 1:
Let � > 0 be given. Then there exists N such that

n � N ) Mn = sup
x2E

j fn(x) � f (x)j < �:

Hence n � N; x 2 E ) j fn(x) � f (x)j < �:

Thus, fn ! f uniformly on E: Hence the proof. �

Theorem 6.3 (Weierstrass M-test for uniform convergence). Suppose f fng is a sequence
of functions de�ned on E and suppose

j fn(x)j � Mn (x 2 E; n = 1; 2; 3; : : :) (6.7)
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Then
P

fn converges uniformly on E if
P

Mn converges.

Proof. Assume that
P

Mn converges.

Let � > 0 be given and S n(x) =

nX
i=1

fi(x):

Since
P

Mn converges, by de�nition there exists an integer N such that

m � n � N )
mX

i=n+1

Mi < �

But, if m � n � N and x 2 E; then

�������
mX

i=n+1

fi(x)

������� �
mX

i=n+1

j fi(x)j �
mX

i=n+1

Mi < �

i:e:; m � n � N and x 2 E ) jsm(x) � sn(x)j < � (6.8)

This implies that, if x 2 E; fsn(x)g is a Cauchy sequence and hence converges to a

limit function say f (x):

Keeping m �xed and let n ! 1 in (6.6), we get

if m � N; x 2 E; jsm(x) � f (x)j < �:

Thus, fsn(x)g converges uniformly on E and hence
P

fn(x) converges uniformly on

E: �

Example 6.6. Let the function fn de�ned by fn : R ! R such that fn =
x

n
8x 2 R;

n = 1; 2; 3; : : : : Show that the sequence f fng converges pointwise to the zero function.

Solution:We want to show that the sequence f fng converges pointwise
to the function

f (x) = 0 8x 2 R:

Let � > 0 be given, we can �nd m such that

8n � m )
����� xn � 0

����� = jxj
n

(6.9)

Let us choose m >
jxj
�
: Then (6.9) gives

8n � m )
����� xn � 0

����� = jxj
n
< �

Hence, the sequence f fng converges pointwise to the zero function.

Example 6.7. Show that the sequence f fng = fnx (1 � x)ng does not converge uniformly

on [0; 1]:
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Solution:

f (x) = lim
n!1

fn(x) = lim
n!1

nx

(1 � x)�n

= lim
n!1

x

�(1 � x)�n log(1 � x)

= lim
n!1

�x(1 � x)n

log(1 � x)
= 0

) f (x) = 0 8x 2 [0; 1]

Now, Mn = supfj fn(x) � f (x)j: x 2 [0; 1]g

= supfnx(1 � x)n : x 2 [0; 1]g

Taking x =
1

n
2 [0; 1]; we have

Mn � n � 1
n

 
1 � 1

n

!n

! 1

e
as n ! 1:

Hence, Weierstrass M test, f fng does not converge uniformly on [0; 1]:

Example 6.8. Show that the sequence of functions fn(x) =
x

1 + nx2
8x 2 R converges

uniformly on R:

Solution:

f (x) = lim
n!1

x

1 + nx2
= 0 8x 2 R

Mn = sup
x2R

fj fn(x) � f (x)jg

= sup

������ x

1 + nx2
� 0

�����
�

= max

�
x

1 + nx2

�
=

1

2
p
n
! 0 as n ! 1

Hence, Weierstrass M test, the sequence fn(x) =
x

1 + nx2
8x 2 R

converges uniformly on R:

6.3. Uniform convergence and Continuity:

Theorem 6.4. Suppose fn ! f uniformly on a set E in a metric space. Let x be a limit

point of E; and suppose that
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lim
t!x

fn(t) = An; (n = 1; 2; 3; : : :) (6.10)

Then fAng converges, and lim
t!x

f (t) = lim
n!1

An (6.11)

In other words, lim
t!x

lim
n!1

fn(t) = lim
n!1

lim
t!x

fn(t)

Proof. Let � > 0 be given.

Since fn ! f converges uniformly on E: By Cauchy's condition for uniform

convergence, there exists N such that

n � N; m � N; t 2 E ) j fn(t) � fm(t)j< � (6.12)

Suppose that lim
t!x

fn(t) = An; n = 1; 2; 3; : : : and x is a limit point of E:

Letting t ! x in (6.12), we get jAn � Amj< � n � N; m � N:

Thus, fAng is a Cauchy sequence and therefore converges to A (say).

Next j f (t) � Aj� j f (t) � fn(t)j+j fn(t) � Anj+jAn � Aj (6.13)

Since fn ! f uniformly on E; then by de�nition 9 N1 such that

n � N1; t 2 E ) j fn(t) � f (t)j< �=3 (6.14)

Since An ! A; then by de�nition, 9 N2 such that

n � N2 ) jAn � Aj< �=3 (6.15)

Choose N0 = maxfN0;N1g: Then (6.14) and (6.15) are holds good for N0:

Then for this N0; we choose a neighborhood V of x such that

j fN0
(t) � AN0

j� �=3 if t 2 V [ E; t 6= x (6.16)

Substituting (6.14), (6.15) and (6.16) in (6.13), we get

j f (t) � Aj< � provided t 2 V \ E; t 6= x

Hence, lim
t!x

f (t) = A = lim
n!1

An = lim
n!1

lim
t!x

fn(t):

Thus, lim
t!x

lim
n!1

fn(t) = lim
n!1

lim
t!x

fn(t): This completes the proof. �

Theorem 6.5. If f fng is a sequence of continuous functions on E and if fn ! f

uniformly on E; then f is continuous on E :

Proof. For each n = 1; 2; 3; : : : since fn is continuous on E: Then

for each x 2 E; lim
t!x

fn(t) = fn(x)

By theorem (6.4), we have
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lim
t!x

f (t) = lim
t!x

lim
n!1

fn(t)

= lim
n!1

lim
t!x

fn(t)

= lim
n!1

fn(x) = f (x)

i:e:; lim
t!x

f (t) = f (x)

Thus, f is continuous at x and hence f is continuous on E: This completes the

proof. �

Remark 6.3. The converse of the above theorem is not true. i:e:; a limit of a continuous

function is continuous, but not uniformly convergent. This will be explained in the

following example.

Example 6.9. Consider the function fn(x) = n2x (1 � x)n ; 0 � x � 1 for each

n = 1; 2; 3; : : : : Show that the limit function is continuous, but f fng is not uniformly

convergent to f :

Solution: We have lim
n!1

n2x (1 � x)n = 0 (0 � x � 1):

Thus, f fng converges to 0 on [0; 1] which is also a continuous function.

Mn = sup
0�x�1

j fn(x) � f (x)j= sup
0�x�1

n2x (1 � x)n

= maxfn2x (1 � x)ng = n

�
n

n + 1

�n+1

and lim
n!1

Mn = lim
n!1

n

 
1 � 1

n + 1

!n+1
= lim

n!1
n

e
= 1 6= 0

Therefore, by Weierstrass's M -test, the sequence f fng is not uniformly

convergent on [0; 1]:

Hence, f fng converges to a continuous limit function on [0; 1]; but f fng
does not converges uniformly on [0; 1]:

Theorem 6.6. Suppose K is compact and

(a) f fng is a sequence of continuous function on K:

(b) f fng converges pointwise to a continuous function f on K:

(c) fn � fn+1(x) for all x 2 K; n = 1; 2; 3; : : : :

Then fn ! f uniformly on K:

Proof. Let � > 0 be given.

Put gn = fn� f : Then by the given conditions, gn is continuous and gn ! 0 pointwise

on compact K:

Now, it remains to prove that gn ! 0 uniformly on K:

Real Analysis M.Sc.(Mathematics)-I Year-I Sem



6.3. Uniform convergence and Continuity: 81

Let Kn = fx 2 K : gn(x) � �g:

Since each gn is continuous and also Kn is a closed subset of K:

Since, closed subset of a compact set is compact and hence Kn is compact.

Since gn � gn+1; it follows that Kn � Kn+1 (n=1,2,3,. . . ).

Fix x 2 K; since gn(x) ! 0; x =2 Kn; if n is su�ciently large.

Thus x =2
1\
n=1

Kn:

In other words,

1\
n=1

Kn is empty.

We know that if fKng is a sequence of non-empty compact sets such that

Kn � Kn+1 (n = 1; 2; 3; : : :); then

1\
n=1

Kn 6= ;: Thus, it follows that KN is empty for

some N:

i:e:; 0 � gn(x) < � for all x 2 K and for all n � N:

This shows that gn ! 0 uniformly. i:e:; fn converges uniformly to f on K: This

completes the proof of the theorem. �

Remark 6.4. The following example explains how the importance of compactness is

needed in the hypothesis of the above theorem.

Example 6.10. Consider the function fn(x) =
1

nx + 1
(0 < x < 1; n = 1; 2; 3; : : :):

Then fn(x) ! 0 monotonically in (0; 1); but the convergence is not uniform.

Choose � =
1

2
and given n; choose x =

1

2n
in (0; 1): Then

j fn(x) � f (x)j =

���������
1

1 +
n

2n

� 0

��������� =
2

3
>

1

2
= �

Thus, for given =
1

2
> 0 there exist n such that for every x 2 E; j fn(x) � f (x)j> �:

i:e:; The sequence f fng does not converge uniformly in (0; 1); which is not compact.

De�nition 6.5. Let X be a metric space. Then C (X) will denote the set of all complex

valued, continuous, bounded functions with domain X:

De�nition 6.6. If X is a compact, then C (X) consists of all continuous functions on X:

Supremum norm on C (X) is de�ned by

k f k = sup
x2X

j f (x)j if f 2 C (X)

It is well de�ned, since X is a compact.

Example 6.11. If X is a compact metric space, sup norm de�nes a metric space on C (X)

by d( f ; g) = k f � gk; where k f k= sup
x2X

j f (x)j: Then prove that C (X) is a metric space.
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Proof.

(a) d( f ; g) = k f � gk� 0 ,
�
* j f (x)j� 0 for everyx 2 X:

�

(b) d( f ; g) = 0 , sup
x2X

j f (x) � g(x)j= 0 , f (x) = g(x) for everyx 2 X:

(c) d( f ; g) = k f � gk= sup
x2X

j f (x) � g(x)j= sup
x2X

jg(x) � f (x)j= d(g; f ):

(d) d( f ; g) = sup
x2X

j f (x) � g(x)j= sup
x2X

j f (x) � h(x) + h(x) � g(x)j

� sup
x2X

j f (x) � h(x)j+ sup
x2X

jh(x) � g(x)j= d( f ; h) + d(h; g): �

Theorem 6.7. A sequence f fng converges to f with respect to the metric of C (X) if and

only if fn ! f uniformly on X:

Proof. Let f fng be a sequence of functions in C (X):

We know that By Weierstrass's M test for uniform convergence of function, fn ! f

uniformly on X if and only if Mn ! 0 as n ! 1:
Then f fng converges uniformly to f on E , Mn ! 0 as n ! 1

, sup
x2X

j fn(x) � f (x)j! 0 as n ! 1

, k fn � f k! 0 as n ! 1
, fn ! f in C (X) �

Theorem 6.8. The metric space C (X) is a complete metric space.

Proof. We know that a metric space (X; d) is said to be complete if every Cauchy

sequence in X converges.

Let f fng be a Cauchy sequence in C (X): Then by de�nition, for given � > 0; there

exists an integer N such that

n � N; m � N ) k fn � fmk< �:
n � N; m � N ) sup

x2X
j fn � fmj< �:

n � N; m � N ) j fn � fmj< �:

Thus by Cauchy's criteria, f fng converges uniformly to f (say).

It remains to prove that f 2 C (X):

Since f fng is of continuous function, f is also continuous and also it is bounded.

For if, since there is an n such that j f (x)� fn(x)j< 1 for all x 2 X and fn is bounded.

j f (x)j = j f (x) � fN(x) + fN(x)j
< j f (x) � fN(x)j+j fN(x)j
< 1 + j fN(x)j
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and hence f is bounded.

Thus f 2 C (X) and hence fn ! f in C (X) and hence C (X) is complete. �

6.4. Uniform convergence and Integration:

Theorem 6.9. Let � be monotonically increasing on [a; b]: Suppose fn 2 R(�) on

[a; b]; for n = 1; 2; 3; : : : and suppose fn ! f uniformly on [a; b]: Then f 2 R(�) on

[a; b] and

Z b

a

f (x)dx = lim
n!1

Z b

a

fnd� (6.17)

Proof. suppose that � is monotonically increasing on [a; b] ; fn 2 R(�) on [a; b] for

n = 1; 2; 3; : : : :

It su�ces to prove the theorem for the case of real fn:

Put �n = sup
a�x�b

j fn(x) � f (x)j

= sup
a�x�b

j f (x) � fn(x)j

) j f (x) � fn(x)j < �n

) ��n < f (x) � fn(x) < �n

) fn(x) � �n < f (x) < fn(x) + �n

Since f 2 R(�) on [a; b]; so that the upper and lower integral of f satisfyZ b

a

( fn � �n) d� �
Z b

a

f (x) d� �
Z b

a

f (x) d� �
Z b

a

( fn + �n) d� (6.18)

) 0 �
Z b

a

f (x) d� �
Z b

a

f (x) d� �
Z b

a

�
fn + �n � fn + �n

�
d�

) 0 �
Z b

a

f (x) d� �
Z b

a

f (x) d� � 2�n

Z b

a

d� = 2�n [�(b) � �(a)]

Letting �n ! 1; then the upper integral and lower integral are equal.

i:e:;

Z b

a

f (x) d� =

Z b

a

f (x) d�

) f 2 R(�)

Hence, (6.18) can be written as
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Z b

a

( fn � �n) d� �
Z b

a

f (x) d� �
Z b

a

( fn + �n) d�

)
Z b

a

fnd� � �n [�(b) � �(a)] �
Z b

a

f (x)d� �
Z b

a

fnd� + �n [�(b) � �(a)]

) ��n [�(b) � �(a)] �
Z b

a

f (x)d� �
Z b

a

fnd� � �n [�(b) � �(a)]

)
������
Z b

a

f (x)d� �
Z b

a

fnd�

������ � �n [�(b) � �(a)]

Letting, n ! 1; we get Z b

a

f (x)dx = lim
n!1

Z b

a

fnd�

This completes the proof of the theorem. �

Corollary 6.1. If fn 2 R(�) on [a; b] and if

f (x) =

1X
n=1

fn(x) (a � x � b);

the series converging uniformly on [a; b]; then

Z b

a

f d� =

1X
n=1

Z b

a

fnd�

In other words, the series may be integrated term by term.

Proof. Let fn 2 R(�) on [a; b]; n = 1; 2; 3; : : : and

f (x) =
P

fn(x); a � x � b the series converges uniformly on [a; b]:

Let sk( f ) =

kX
n=1

fn(x);

Then fsk( f )g be the sequence of partial sums converges uniformly to f on [a; b]:

Hence, by above theorem f (x) 2 R(�) on [a; b] and

Z b

a

f d� = lim
k!1

Z b

a

skd�

= lim
k!1

Z b

a

kX
n=1

fnd�

= lim
k!1

kX
n=1

Z b

a

fnd� =

1X
n=1

Z b

a

fnd� �
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6.5. Uniform convergence and Di�erentiation:

We have already seen in Example (6.4) that uniform convergence of f fng
implies nothing about the sequence f f 0ng: Thus strong hypothesis is required
for the claim that f 0n ! f 0 if fn ! f :

Theorem 6.10. Suppose f fng is a sequence of functions, di�erentiable on [a; b] and

such that f fn(x0)g converges for some point x0 on [a; b]: If f f 0ng converges uniformly

on [a; b] then f fng converges uniformly on [a; b]; to a function f and

f 0(x) = lim
n!1

f 0n(x) (a � x � b) (6.19)

Proof. Let � > 0 be given. Since f fn(xo)g converges for some x0 in [a; b] and f f 0ng
converges uniformly on [a; b]:

Thus, both the series f fng and f f 0ng satis�es Cauchy's criteria for convergence.

Therefore, we can choose N such that n � N; m � N such that

j fn(x0) � fm(x0)j < �=2 (6.20)

and
��� f 0n(t) � f 0m(t)

��� <
�

2(b � a)
(a � t � b) (6.21)

By mean value theorem, we have

�
fn(x) � fm(x)

� � �
fn(t) � fm(t)

�
= (x � t)

�
f 0n(�) � f 0m(�)

�
(6.22)

for any x and t on [a; b] and for some � 2 [x; t]; if n � N;m � N:

Thus, the equation (6.22), can be written as

j fn(x) � fm(x) � fn(t) + fm(t)j � jx � tj� f 0n(�) � f 0m(�)
�

< jx � tj �

2(b � a)
(* � 2 [a; b])

< (b � a)
�

2(b � a)
(* x; t 2 [a; b])

< �=2 (6.23)

The inequality

j fn(x) � fm(x)j � j fn(x) � fm(x) � fn(x0) + fm(x0)j + j fn(x0) � fm(x0)j (6.24)

Using (6.20) and (6.23) in (6.24), we get

j fn(x) � fm(x)j < �=2 + �=2 = �

Thus, f fng converges uniformly on [a; b]:
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Let f (x) = lim
n!1

fn(x) (a � x � b):

Fix a point x on [a; b] and de�ne

�n(t)=
fn(t) � fn(x)

t � x
; �(t) =

f (t) � f (x)

t � x
for a � t � b; t 6= x: (6.25)

Then, lim
t!x

�n(t)= f 0n(x) (n = 1; 2; 3; : : :) (6.26)

Using (6.26) in (6.23), we get

j�n(t) � �m(t)j<
�

2(b � a)
(n � N; m � N) (6.27)

Therefore, f�ng converges uniformly for t 6= x: Since f fng converges to f ; we

conclude from (6.25) that

lim
n!1

�n(t) = �(t) (6.28)

uniformly for a � t � b; t 6= x:

From (6.26) and (6.28),we get

lim
t!x

�(t) = lim
n!1

f 0n(x)

i:e:; lim
t!x

f (t) � f (x)

t � x
= lim

n!1
f 0n(x)

i:e:; f 0(x) = lim
n!1

f 0n(x) �

Theorem 6.11. There exists a real continuous function on the real line which is nowhere

di�erentiable. In other words, every where continuous but nowhere di�erentiable function

exists on the real line.

Proof. De�ne a function:

�(x) = jxj (�1 � x � 1) (6.29)

and we can extend the de�nition of �(x) to entire real axis by periodicity such that

�(x + 2) = �(x):

Then for all s and t; we have

j�(s) � �(t)j = jsj�jtj� js � tj (6.30)

Clearly, � is continuous on R1:

De�ne f (x) =

1X
n=0

 
1

4

!n
�(4nx) =

1X
n=0

Fn(x) (6.31)

where Fn(x) =

 
1

4

!n
�(4nx) (6.32)

Since 0 � � � 1; so that

jFn(x)j =

������
 
1

4

!n
�(4nx)

������ �
�����14

�����
n

= Mn (say)
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since
P

Mn is a geometric series with common ratio less than 1 and hence
P

Mn is

convergent.

Thus, by Weierstrass's M test, we have
P
Fn(x) converges uniformly and hence F

is continuous at x:

Let m be a �xed positive integer and let x be a �xed real number. Put

�m = �1
2
4�m (6.33)

where the sign is so chosen that no integer lies between 4mx and 4m(x + �m):

This can be done because 4m�m =

������12
����� = 1

2
:

De�ne 
n =
� (4n(x + �m)) � �(4nx)

�m
(6.34)

When n > m; then 4n�m is an even integer, so that 
n = 0:

When 0 � n � m; then (6.30) gives

j
nj =
j� (4n(x + �m)) � �(4nx)j

j�mj
� j4n(x + �m) � 4nxj

j�mj
=
j4n�mj
j�mj

= 4n:

Also j
mj= 4m:

Therefore, we conclude that

����� f (x + �m) � f (x)

�m

����� =

�������
1X
n=0

 
3

4

!n
�(4n(x + �m)) � �(4nx)

�m

�������
=

�������
mX
n=0

 
3

4

!n

n +

1X
n=m+1

 
3

4

!n

n

�������
=

�������
mX
n=0

 
3

4

!n

n

������� (* 
n = 0 (n > m))

=

�������
 
3

4

!m
4m �

0BBBBBB@�
m�1X
n=0

 
3

4

!n

n

1CCCCCCA
�������

� j3mj�
�������
m�1X
n=0

 
3

4

!n

n

�������
� 3m �

m�1X
n=0

 
3

4

!n
4n

= 3m �
m�1X
n=0

3n =
1

2
(3m + 1)

As m ! 1; �m ! 0; it follows that f is not di�erentiable at x: �
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Let Us Sum Up:

In this unit, the students acquired knowledge to

� interchange of limits and di�erentiation.

� interchange of limits and integration.

Check Your Progress:

1. Prove that every uniformly convergent sequence of bounded

functions is uniformly bounded.

2. If f fng and fgng converges uniformly on a set E; prove that f fn + gng
converges uniformly on E:

3. Show by an example that for term by term di�erentiation, the

condition of uniform convergence is su�cient but not necessary.

4. Show that the series
P 1

n2 + n4x2
is uniformly convergent for all real

values of x and it can be di�erential term by term.

Glossaries:

Uniform convergence: It is a property involving the process of

convergence of an order of continuous function.

Suggested Readings:

1. Rudin, W., �Principles of Mathematical Analysis�, Mc Graw-Hill,

Third Edition, 1984.

2. Avner Friedman, �Foundations of Modern Analysis�, Hold Rinehart

Winston, 1970.
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Block-II

UNIT-7

Equicontinuous families of functions

Structure

Objective

Overview

7. 1 Equicontinuous families of functions

7. 2 The Stone-Weierstrass theorem

Let us Sum Up

Check Your Progress

Answers to Check Your Progress

Glossaries

Suggested Readings

Objectives

After completion of this unit, students will be able to

F understand the concept of equicontinuous families of functions.

F distinguish between uniformly pointwise bounded sequence of

functions and pointwise bounded sequence of functions.

F derive the Stone-Weierstrass theorem.
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90 7.1. Equicontinuous families of functions:

Overview

In this unit, we will illustrate the ideas of equicontinuous

families of functions and explained in detail about uniformly pointwise

bounded sequence of functions.

7.1. Equicontinuous families of functions:

We have seen that every bounded sequence of complex numbers has a

convergent subsequence, and the question arises as to whether something

similar is true for the sequence of functions.

De�nition 7.1. Let f fng be a sequence of functions de�ned on a set E: We say that f fng
is pointwise bounded on E if the sequence f fn(x)g is bounded for every x 2 E; that is if

there exists a �nite-valued function � de�ned on E such that

j fn(x)j< �(x) (x 2 E; n = 1; 2; 3; : : :) (7.1)

De�nition 7.2. Let f fng be a sequence of functions de�ned on a set E: We say that f fng
is uniformly bounded on E if there exists a number M such that

j fn(x)j< M (x 2 E; n = 1; 2; 3; : : :) (7.2)

Remark 7.1.

� If f fng is pointwise bounded on E and E1 is a countable subset of E then it is

always possible to �nd a subsequence f fnk g such that f fnk (x)g converges for every
x 2 E1:

� If f fng is uniformly bounded sequence of continuous function on a compact set E;

then it is not necessary that there exists a subsequence which converges pointwise

on E:

Example 7.1. Let fn(x) = sin nx (0 � x � 2�; n = 1; 2; 3; : : :): Suppose there exists

a sequence fnkg such that fsin nkxg converges, for every x 2 [0; 2�]:

In that case lim
n!1

(sin nkx � sin nk+1x) = 0; (0 � x � 2�) (7.3)

and hence lim
n!1

(sin nkx � sin nk+1x)
2 = 0; (0 � x � 2�) (7.4)

By Lebesgue's dominated convergence theorem, then (7.4) implies

lim
n!1

Z 2�

0

(sin nkx � sin nk+1x)
2 dx = 0 (7.5)

But, a direct integration of (7.5), we have
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Z 2�

0

(sin nkx � sin nk+1x)
2 dx = 2� (7.6)

which is a contradiction to (7.5).

Hence, uniformly bounded sequence of continuous function on a compact set E; may

not have a convergent subsequence.

Example 7.2. Let fn(x) =
x2

x2 + (1 � nx)2
(0 � x � 1; n = 1; 2; 3; : : :):

Then j fn(x)j� 1; so that f fng is uniformly bounded on compact set [0; 1]:

Also; lim
n!1

fn(x) = 0 (0 � x � 1) (7.7)

but fn

 
1

n

!
= 1 (n = 1; 2; 3; : : :) (7.8)

so that f fng has no subsequence can converge uniformly on [0; 1]:

Hence a convergent and uniformly bounded sequence of functions on a compact set

need not contain a uniformly convergent subsequence.

De�nition 7.3. A family F of complex functions f de�ned on a set E in a metric

space X is said to be equicontinuous on E if for every � > 0 there exists a � > 0 such

that

j f (x) � f (y)j< � (7.9)

whenever d(x; y) < �; x 2 E; y 2 E and f 2 F : Here d denotes the metric of X:

Remark 7.2. From the de�nition, it is very clear that every member of equicontinuous is

uniformly continuous. but the converse is not true. i:e:; Example (7.2) shows that f fng
is uniformly continuous but it is not equicontinuous.

Theorem 7.1. If f fng is a pointwise bounded sequence of complex function on a

countable set E; then f fng has a subsequence f fnk g such that f fnk g converges for every
x 2 E:

Proof. Let f fng be a pointwise bounded sequence of complex valued function on a

countable set E:

Let fxig; i = 1; 2; 3 : : : be the points of E; arranged in a sequence.

Since f fn(x1)g is bounded, there exists a subsequence f f1;kg such that f f1;kg converges
as k ! 1:

Let us consider sequence S 1; S 2; S 3; : : : which we represented by the array

S 1: f1;1 f1;2 f1;3 f1;4 . . .

S 2: f2;1 f2;2 f2;3 f2;4 . . .

S 3: f3;1 f3;2 f3;3 f3;4 . . .

. . . . . . . . . . . . . . . . . .

and which have the following properties:
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92 7.1. Equicontinuous families of functions:

(a) S n is a subsequence of S n�1; for n = 2; 3; 4; : : :

(b) f fn;k(xn)g converges as k ! 1:

(c) When going from one row in the above array to the next below, functions may

move to the left but never to the right.

We now go do down the diagonal of the array.

Consider the sequence S : f1;1 f2;2 f3;3 f4;4 : : : :

By (c); the sequence S (except possibly, its �rst n� 1 terms) is a subsequence of S n

for n = 1; 2; 3; : : :

Hence (b) implies that f fn;n(xi)g converges as n ! 1 for every xi 2 E: �

Theorem 7.2. If K is a compact metric space, if fn 2 C (K) for n = 1; 2; 3; : : : and if

f fng converges uniformly on K; then f fng is equicontinuous on K:

Proof. Let � > 0 be given.

Then by de�nition of uniformly convergent of f fng; there exists a positive integer N

such that

n � N ) j fn � fN j< �=3 (7.10)

We know that every continuous function is uniformly continuous on the compact set,

therefore 9 � > 0 such that

1 � i � N; d(x; y) < � ) j fi(x) � fi(y)j< �=3 (7.11)

If n > N and d(x; y) < �; it follows that

j fn(x) � fn(y)j = j fn(x) � fN(x) + fN(x) � fN(y) + fN(y) � fn(y)j
� j fn(x) � fN(x)j+j fN(x) � fN(y)j+j fN(y) � fn(y)j
< �=3 + �=3 + �=3 = �

Thus, the f fng is equicontinuous on K: �

Theorem 7.3. Let K be a compact metric space, if fn 2 C (K) for n = 1; 2; 3; : : : and if

f fng is pointwise bounded and equicontinuous on K; then

(a) f fng is uniformly bounded on K:

(b) f fng contains a uniformly convergent subsequence.

Proof.

(a) Let � > 0 be given.

Since each f fng is equicontinuous on K; then by de�nition there exists a � > 0

such that
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d(x; y) < �; x 2 K; y 2 K ) j fn(x) � fn(y)j< � 8n (7.12)

Since K is compact, therefore there are many points p1; p2; : : : ; pr in K such

that to every x 2 K; there corresponds at least one pi with d(x; pi) < �:

Also, f fng is pointwise bounded, 9 Mi < 1 such that

j fn(pi)j< Mi 8n = 1; 2; 3; : : : (7.13)

If M = maxfM1;M2; : : : ;Mrg; then we have

j fn(pi)j< M + � 8x 2 K; n = 1; 2; 3; : : : (7.14)

Thus f fng is uniformly bounded on K:

(b) We know that if (X; d) is a compact metric space, then there always exist a countable

dense subset.

Let E be a countable dense subset of K: Then f fng has a subsequence f fni g such that
f fni g converges for every x 2 E:

Put fni = gi: Now, we shall prove that fgig is converges uniformly on K:

Let � > 0 and choose � > 0 as in (7.12). Let V(x; �) be the set of all y 2 K with

d(x; y) < �:

Since E is dense subset in K and K is compact, there exists �nitely many points

x1; x2; : : : ; xm in E such that

K � V(x1; �) [ V(x2; �) [ : : : [ V(xm; �) (7.15)

Since fgi(x)g converges for every x 2 E; then there is an integer N such that

i � N; j � N; 1 � s � m ) jgi(xs) � g j(xs)j< �=3: (7.16)

If x 2 K; then (7.15) shows that x 2 V(xs; �) for some s; so that

jgi(x) � gi(xs)j< �=3 for every i (7.17)

If i � N; j � N; then from (7.16), we have

jgi(x) � g j(x)j = jgi(x) � gi(xs) + gi(xs) � g j(xs) + g j(xs) � g j(x)j
� jgi(x) � gi(xs)j+jgi(xs) � g j(xs)j+jg j(xs) � g j(x)j
� �=3 + �=3 + �=3 = �

Hence, for given � > 0; there exists a positive integer N such that

i � N; j � N; x 2 E ) j fni (x) � fn j
(x)j< �

) f fni g converges uniformly on K

Thus, f fng contains a uniformly convergent subsequence. �
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94 7.2. The Stone-Weierstrass theorem:

7.2. The Stone-Weierstrass theorem:

Theorem 7.4. If f is a continuous complex function on [a; b]; there exists a sequence

of polynomials Pn such that

lim
n!1

Pn(x) = f (x) (7.18)

uniformly on [a; b]: If f is real, then Pn may be taken real.

Proof. Without loss of generality, we may assume that [a; b] = [0; 1]: Also, we may

assume that f (0) = f (1) = 0:

Consider
g(x) = f (x) � f (0) � x

�
f (1) � f (0)

�
(0 � x � 1) (7.19)

Then, g(0) = g(1) = 0 (7.20)

Also, g can be obtained as the limit of a uniformly convergent sequence of

polynomials, it is clear that the same is true for f ; since f � g is a polynomial.

We de�ne f (x) to be zero for x outside [0; 1]: Then f would be uniformly

continuous on the whole real line.

We put
Qn(x) = cn

�
1 � x2

�n
(n = 1; 2; 3; : : :) (7.21)

Where cn is chosen so thatZ 1

�1
Qn(x)dx = 1 (n = 1; 2; 3; : : :) (7.22)

In order to determine, the magnitude of cn; the following inequality is needed.�
1 � x2

�n � 1 � nx2

Thus, 1 =

Z 1

�1
cn

�
1 � x2

�n
dx = 2cn

Z 1

0

�
1 � x2

�n
dx

� 2cn

Z 1=
p
n

0

(1 � x2)ndx

� 2cn

Z 1=
p
n

0

(1 � nx2)dx

= 2cn

"
x � nx3

3

#1=pn
0

=
4cn

3
p
n

>
cnp
n

) cn <
p
n (7.23)
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Therefore, for any � > 0; equation (7.23) becomes

Qn(x) �
p
n
�
1 � �2

�n
; when � � jxj� 1 (7.24)

so that Qn ! 0 uniformly in � � jxj� 1:

Let Pn(x) =

Z 1

�1
f (x + t)Qn(t)dt

=

Z �x

�1
f (x + t)Qn(t)dt +

Z 1�x

�x
f (x + t)Qn(t)dt +

Z 1

1�x
f (x + t)Qn(t)dt

If �1 � t � �x; then �1 + x � x + t � 0; so that x + t lies outside [0; 1] and hence

f (x + t) = 0:

Thus, the �rst integral on the R.H.S. becomes zero. Similarly, the third integral also

becomes zero.

) Pn(x) =

Z 1�x

�1
f (x + t)Qn(t)dt (7.25)

=

Z 1

0

f (t)Qn(t � x)dt (7.26)

which is a polynomial in x:

Thus, fPng is a sequence of polynomials, which are real if f is real.

It remains to show that fPn(x)g converges uniformly to f on [0; 1]:

Since the continuous function de�ned on a compact set [0; 1] is bounded and

uniformly continuous, therefore f is uniformly continuous on [0; 1]:

) 9 M such that M = sup
x2[0;1]

j f (x)j (7.27)

and for any given � > 0; we can choose � > 0 such that for any two points x; y 2 [0; 1]:

j f (x) � f (y)j< �=2 whenever jx � yj< � (7.28)

For 0 � x � 1; we have

jPn(x) � f (x)j =

������
Z 1

1

f (x + t)Qn(t)dt � f (x)

������
=

������
Z 1

1

�
f (x + t) � f (x)

�
Qn(t)dt

������ (using (7.22))

�
Z 1

�1
j f (x + t) � f (x)jQn(t)dt

=

Z ��

�1
j f (x + t) � f (x)jQn(t)dt +

Z �

��
j f (x + t) � f (x)jQn(t)dt

+

Z 1

�

j f (x + t) � f (x)jQn(t)dt
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� 2M

Z ��

�1
Qn(t)dt +

�

2

Z �

��
Qn(t)dt + 2M

Z 1

�

Qn(t)dt

� 4M
p
n
�
1 � �2

�n
+
�

2
(using (7.22) and (7.24))

< � for su�ciently large n:

Therefore, for any given � > 0; 9 N such that jPn(x) � f (x)j< � 8n � N:

) lim
n!1

Pn(x) = f (x) uniformly on [0; 1]: �

Corollary 7.1. for every interval [�a; a] there is a sequence of real polynomials Pn

such that Pn(0) = 0 and such that

lim
n!1

Pn(x) = jxj (7.29)

uniformly on [�a; a]:
Proof. By theorem (7.4), there is a sequence of real polynomials fP�ng which converges

to jxj uniformly on [�a; a]:

In particular, P�n(0) ! 0 as n ! 1:

Consider Pn(x) = P�n(x) � P�n(0):

Clearly, Pn(x) will converge uniformly to jxj such that Pn(0) = 0: Hence the

proof. �

De�nition 7.4. A family A of complex functions de�ned on a set E is said to be an

algebra, if
(i) f + g 2 A

(ii) f g 2 A

(iii) c f 2 A for all f ; g 2 A and for all complex constants c:

De�nition 7.5. If f 2 A whenever fn 2 A (n = 1; 2; 3; : : :) and fn ! f uniformly on

E; then A is said to be uniformly bounded

De�nition 7.6. Let B be the set of all functions which are limits of uniformly convergent

sequences of members of A : Then B is called the uniform closure of A :

For Example, the set of all polynomials is an algebra.

Remark 7.3. The Weierstrass theorem may be stated that the set of continuous functions

on [a; b] is the uniform closure of the set of polynomials of [a; b]:

Theorem 7.5. Let B be the uniform closure of an algebra A of bounded functions.

Then B is a uniformly closed algebra.

Proof. Let f ; g 2 B; then there exists uniformly convergent sequence f fng and fgng
such that fn ! f ; gn ! g and fn 2 A ; gn 2 A :

Since fn + gn ! f + g; fngn ! f g; c fn ! c f ; where c is any constant, the

convergent being uniform in each case.
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Hence f + g 2 B; f g 2 B and c f 2 B and hence B is an algebra.

Since A = B and thus, B is a uniform closed algebra. �

De�nition 7.7. Let A be a family of functions on a set E: Then A is said to separate

points on E if to every pair of distinct points x1; x2 2 E there corresponds a function

f 2 A such that f (x1) 6= f (x2):

Example 1: The algebra of all polynomials in one variable have separated

points E � R:

Consider the function P(x) =
x � a

b � a
is a polynomial in one variable.

Choose two distinct points a; b 2 E such that P(a) = 0; P(b) = 1

i:e:; P(a) 6= P(b): Hence A is a separate points on E:

Example 2: Consider the algebra of even polynomials.

LetP(x) = x2 + 1: Choose two distinct points x1 = �1
2

and x2 =
1

2
on

E = [�1; 1] � R1:

Clearly, P

 �1
2

!
= P

 
1

2

!
: Thus, A have no separate points on [�1; 1]:

De�nition 7.8. If to each x 2 E there corresponds a function g 2 A such that g(x) 6= 0;

we say that A vanishes at no point of E:

Example: The algebra of polynomials in one variable vanishes at no point

of E � R1:

Consider P(x) = x + 2 is a polynomial of one variable, such that P(0) 6= 0:

Thus A vanishes at no points of [0; 1]:

Theorem 7.6. Suppose A is an algebra of functions on a set E ; A separate points

on E; and A vanishes at no points of E : Suppose x1; x2 are distinct points of E ; and

c1; c2 are constant (real if A is a real algebra). Then A contains a function f such

that

f (x1) = c1; f (x2) = c2: (7.30)

Proof. Suppose A separate points on E; then there exists a function g 2 A such that

g(x1) 6= g(x2):

Also, A vanishes at no points of E; then there exists a function h(x); k(x) 2 A such

that h(x1) 6= 0 ; k(x2) 6= 0:

Put u = gk � g(x1)k; v = gh � g(x2)h:

Then u 2 A ; v 2 A such that
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98 7.2. The Stone-Weierstrass theorem:

u(x1) = g(x1)k(x1) � g(x1)k(x1) = 0

u(x2) = g(x2)k(x2) � g(x1)k(x2) =
�
g(x2) � g(x1)

�
k(x2) 6= 0

v(x1) = g(x1)h(x1) � g(x2)h(x1) 6= 0

v(x2) = g(x2)h(x2) � g(x2)h(x2) = 0

Let f =
c1v

v(x1)
+

c2u

u(x2)
: Then,

f (x1) =
c1v(x1)

v(x1)
+
c2u(x1)

u(x2)
= c1

f (x2) =
c1v(x2)

v(x1)
+
c2u(x2)

u(x2)
= c2

This completes the proof. �

Theorem 7.7 (Stone Weierstrass theorem). Let A be an algebra of real continuous

functions on a compact set K: If A separate points on K and if A vanishes at no

point of K; then the uniform closure B of A consists of all real continuous functions

on K:

Proof. Suppose A be an algebra of real continuous function on compact set K:

Suppose that A separate points of K and A vanishes at no point of K:

Our aim is to prove that the uniform closure B of A consists of all real continuous

functions on K:

Now, we shall divide the proof into four steps.

Step 1: If f 2 B; then j f j2 B:

Proof:

Let a = supj f (x)j; (x 2 K) (7.31)

and let � > 0 be given. Then by Weierstrass theorem, there exist a real numbers

c1; c2; : : : ; cn such that �������
nX
i=1

ciy
i � jyj

������� < � (�a � y � a) (7.32)

Since B is an algebra, then the function g =

nX
i=1

ci f
i 2 B:

By (7.31) and(7.32), we have

jg(x) � j f (x)jj < � (x 2 K) (7.33)

Since B is uniformly closed and hence j f j2 B:

Step 2: If f 2 B and g 2 B; then max( f ; g) 2 B and min( f ; g) 2 B:

Proof: By max( f ; g) we mean the function h is de�ned by
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h(x) =

8>><>>:
f (x) if f (x) � g(x)

g(x) if f (x) < g(x)

Similarly min( f ; g) we mean the function k is de�ned by

k(x) =

8>><>>:
g(x) if f (x) � g(x)

f (x) if f (x) < g(x)

Also, max( f ; g) and min( f ; g) are also de�ned by

max( f ; g) =
f + g

2
+
j f � gj

2
;

min( f ; g) =
f + g

2
� j f � gj

2

Since f ; g 2 B ) f + g

2
2 B and by step 1, we have

j f � gj
2

2 B:

Thus, max( f ; g) 2 B: Similarly, we have min( f ; g) 2 B:

By iteration, the result can be extended to any �nite set of functions.

Step 3: Given a real function f ; a continuous on K; a point x 2 K and � > 0; there

exists a function gx 2 B such that gx(x) = f (x) and

gx(t) > f (t) � � (t 2 K) (7.34)

Proof: Since A � B and A separate points on K and A vanishes at no point of K:

Thus, B separate points on K and B vanishes at no point of K:

Hence by theorem (7.6), for every g 2 K there exists a function hy 2 B such that

hy(x) = f (x); hy(y) = f (y) (7.35)

By the continuity of hy there exists an open set Jy containing y; such that

hy(t) > f (t) � � (t 2 Jy) (7.36)

Since K is compact, then there is a �nite set of points y1; y2; : : : ; yn such that

K �
n[
i=1

Jyi (7.37)

Put gx = maxfhy1 ; hy2 ; : : : ; hyn :

By step 2, we have gx 2 B and the relations (7.35), (7.36) and (7.37) show that

gx(x) = f (x) and gx(t) > f (t) � �:

Step 4: Given a real function f ; continuous on K and � > 0; there exists a function

h 2 B such that

jh(x) � h(y)j< � (x 2 K) (7.38)

Proof: Let us consider the function gx; for each x 2 K constructed in step 3. By the

continuity of gx; there exists an open sets Vx containing x such that
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100 7.2. The Stone-Weierstrass theorem:

gx(t) < f (t) + � (t 2 Vx) (7.39)

Since K is compact, there exists a �nite set of points x1; x2; : : : ; xm such that

K � Vx1 [ Vx2 [ Vx3 [ : : : [ Vxm (7.40)

put h = minfgx1 ; gx2 ; : : : ; gxm g:

By step 2, we have h 2 B and by (7.34), it follows that

h(t) > f (t) � � (t 2 K) (7.41)

From (7.39) and (7.40), it follows that

h(t) < f (t) + � (r 2 K) (7.42)

Thus, from (7.41) and (7.42), we have

jh(t) � f (t)j< � (t 2 K) (7.43)

Since B is uniformly closed, by step (4), B is the set of all real continuous functions

on K: Hence the proof. �

Remark 7.4. Theorem (7.7) does not hold for complex algebra. However, the conclusion

of the theorem hold good, even for complex algebra, if an addition condition is imposed

on A i:e:; A be self-adjoint.

De�nition 7.9. A is said to be self-adjoint, if for every f 2 A ; its complex conjugate

f must also belong to A : f is de�ned by f (x) = f (x):

Theorem 7.8. Suppose A is a self-adjoint algebra of complex continuous functions on a

compact set K; A separates points on K; and A vanishes at no point of K: Then the

uniform closure B of A consists of all complex continuous functions on K: In other

words, A is dense in C (K) which belong to A :

Proof. Suppose A separate points on K and A vanishes at no points on K: Let AR

be the set of all real functions on K:

If f 2 A and f = u + iv; with u; v real then 2u = f + f :

Since A is self-adjoint, it follows that u 2 AR:

If x1 6= x2 and A separate points on K; it follows that there exists f 2 A such that

f (x1) = 1; f (x2) = 0 and hence 0 = u(x2) 6= u(x1) = 1:

Thus AR separate points on K:

Since A vanishes at no points of K; if x 2 K then g(x) 6= 0 for some g 2 A and

there is a complex number � such that �g(x) > 0: If f = �g; f = u + iv; it follows that

u(x) > 0 and hence AR vanishes at no points of K:

Thus, AR satis�es the hypothesis of the theorem (7.7). It follows that every real

continuous function on K lies in the uniform closure of AR and hence lies in B:
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If f is a complex continuous function on K; f = u + iv; then u 2 B; v 2 B; hence
f 2 B: Hence the proof. �

Let Us Sum Up:

In this unit, the students acquired knowledge to

� pointwise bounded, uniform bounded, equicontinuuous and Stone

Weierstrass theorem.

Check Your Progress:

1. De�ne Pointwise bounded sequence.

2. De�ne equicontinuous.

3. If K is a compact metric space, if fn 2 C (K) for n = 1; 2; 3; : : : and if

f fng converges uniformly on K; then f fng is equicontinuous on K:

4. State and Prove Stone-Weierstrass theorem.

5. De�ne separation points.

Choose the correct or more suitable answer:

1. The algebra of polynomials in one variable vanishes at : : : : : : of

E � R1

(a) no point (b) one point

(c) two points (d) three points

Answer:

(1) a

Glossaries:

Equicontinuous: Family of functions is equicontinuous if all the

functions are continuous and they have equal variations over a given

neighborhood.
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Suggested Readings:

1. Rudin, W., �Principles of Mathematical Analysis�, Mc Graw-Hill,

Third Edition, 1984.

2. Avner Friedman, �Foundations of Modern Analysis�, Hold Rinehart

Winston, 1970.
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Block-III

UNIT-8

MEASURABLE SETS

Structure

Objective

Overview

8. 1 Lebesgue Outer Measure

8. 2 Measurable Sets

Let us Sum Up

Check Your Progress

Answers to Check Your Progress

Glosseries

Suggested Readings

Objectives

After completion of this unit, students will be able to

F understand the concept of Lebesgue outer measure and its

properties.

F de�ne measurable sets.
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104 8.1. Lebesgue Outer Measure:

Overview

In this unit, we will discuss the basic concepts of measure theory.

8.1. Lebesgue Outer Measure:

All the sets consider in this chapter are subsets of the real line unless

stated otherwise.

We will be concerned partial with intervals I of the form I = [a; b);

where a and b are �nite and unless speci�ed, by an interval we shall only

mean an interval of the above type.

If a = b; then I is the empty set ;; we will denote the length of the

interval i:e:; (b � a) by l(I):

De�nition 8.1. Let A be a subset of R and let [In] be a �nite or countable collection

of intervals such that A � S
In: The outer measure of A; denoted by m�(A); de�ned as

m�(A) = inf
X

l(In)

where the in�mum is taken over all [In]:

Note 8.1. In De�nition (8.1),

1. A �nite collection of intervals In means In = fI1; I2; : : : ; Ing (and)

A countable collection of intervals In means In = fI1; I2; : : :g
Where each In is of the form In = [an; bn):

2. Without loss in generality, we may assume that the collection is countably in�nite,

the �nite case is included we may take In = ; except for a �nite number of

integers n:

Theorem 8.1.

(i) m�(A) � 0

(ii) m�(;) = 0

(iii) m�(A) � m�(B) if A � B

(iv) m�([x]) = 0 for any x 2 R:

Proof. By de�nition, m�(A) = inf
P
l(In); where the in�mum is taken over all countable

collection of intervals [In] such that A � [In:
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(i) Since, l(In) � 0 8 In

)
X

l(In) � 0 for every every countable collection [In] of intervals

) inf
X

l(In) � 0

i:e:; m�(A) � 0

(ii) Consider the collection [In]; where In = ; for all n: From, this we can easily see

that ; � S
In:

Since, l(In) = 0 8 In

)
X

l(In) = 0 for every every countable collection [In] of intervals

) inf
X

l(In) = 0

i:e:; m�(A) = 0

(iii) Let [In] be the countable collection of intervals such that B � [In:

Since A � B; then it follows that A � S
In and hence m�(A) � P

l(In):

Thus, m�(B) = inf
P
l(In) � m�(A):

(iv) Let x be any real number.

Consider the intervals, In =

"
x; x +

1

n

!
; n = 1; 2; 3; : : :

We have x 2 In for each n and l(In) =
1

n
:

) By de�nition, m�([x]) = 0: �

Example 8.1. Show that for any set A; m�(A) = m�(A+x); where A+x = fy+x : y 2 Ag
is invariant. In other words, the outer measure is translation invariant.

Solution: For any set A and A + x = fy + x : y 2 Ag: Now, we have to show
that m�(A + x) = m�(A):

By de�nition, m� = inf
P
l(In); where [In] is a countable collection of

intervals such that A � S
In:

For every � > 0; there exists [In] is a countable collection of intervals

such that

m�(A) + � �
X

l(In) (8.1)

Since A � [In ) A + x � [(In + x)

) m�(A + x) �
X

l(In + x)

=
X

l(In)

� m�(A) + � (using (8.1))

So, for every � > 0;) m�(A + x) � m�(A) (8.2)
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To prove the opposite inequality, Take A = (A + x) � x = B � x; where

B = A + x:

Hence by (8.2), we have

m�(B � x) � m�(B)

) m�(A) � m�(A + x) (8.3)

Combining (8.2) and (8.3), we get

m�(A + x) = m�(A)

Theorem 8.2. The outer measure of an interval equal its length.

Proof. Let I be any interval in R; now we must show that m�(I) = l(I):

We consider all the cases separately.

Case 1: Suppose, that I is a closed interval i:e:; [a; b]; then we must show that

m�([a; b]) = b � a:

For every � > 0; we have I = [a; b] � [a; b + �):

By (8.1), we have

m�(I) � m�[a; b + �) � b � a + �

i:e:; m�(I) � b � a + �; 8� > 0

) m�(I) � b � a = l(I) (8.4)

so, it remains to prove that m�(I) � l(I):

For given � > 0; by de�nition of outer measure, there is a sequence of intervals

[an; bn) such that I = [a; b] � [an; bn) and

m�(I) >

1X
n=1

l(In) � � =
1X
n=1

(bn � an) � �

For each n; let I0n =
�
an �

�

2n
; bn

�
; then I �

1[
n=1

I0n:

i:e:; [I0n] is an open cover for I:

Since I is compact and hence by Heine-Borel theorem, 9 a �nite sub-collection of

the intervals I0n say J1; J2; : : : ; JN where Jk = (ck; dk) covers I: i:e:; I �
N[
k=1

Jk:

Without loss of generality, we may assume that no Jk is contained in any other.

Suppose that c1 < c2 < : : : < cN : Then
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8.1. Lebesgue Outer Measure: 107

dN � c1 =

NX
k=1

(dk � ck) �
N�1X
k=1

(dk � ck+1)

<

NX
k=1

(dk � ck)

i:e:; dN � c1 <

NX
k=1

(dk � ck) (8.5)

Hence

m�(I) >

1X
n=1

(bn � an) � �

=

1X
n=1

(bn � an) +

1X
n=1

�

2n
� 2�

=

1X
n=1

�
bn � an +

�

2n

�
� 2�

=

1X
n=1

l

�
an �

�

2n
; bn

�
� 2�

=

1X
n=1

l
�
I0n
� � 2�

�
NX
k=1

Jk � 2�

> (b � a) � 2�

Since � is arbitrary, then we have
m�(I) � (b � a) (8.6)

From (8.4) and (8.6), we have
m�(I) = l(I) (8.7)

Case 2: Suppose that I = (a; b]:

If a = b; then I = ; and hence by theorem (8.1), we have

) m�(I) = m�(;) = 0 = l(I)

So, we may assume that a < b: Let 0 < � < b � a:

Put I0 = [a + �; b] : Then,

I0 � I ) m�(I0) � m�(I) (by theorem (8.1))

) l(I0) � m�(I) (by using case(1))

i:e:; b � a � � � m�(I)

i:e:; m�(I) � l(I) � � (8.8)

Let I00 = [a; b + �) ; then I � I00:
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) m�(I) � l(I00) = b + � � a

i:e:; m�(I) � l(I) + � (8.9)

Since (8.8) and (8.9) are true for same �:

) m�(I) = l(I)

Similarly, the cases I = [a; b) and I = (a; b) are considered.

Case 3: Suppose that I is an in�nite interval. Four types of intervals occur, say

(�1; a]; (�1; a); [a;1); (a;1); where a is �nite.

First, let us prove the theorem for the case I = (�1; a]; then the other cases are

considered in a similar way.

Let M > 0 be arbitrary, then we can �nd a k such that the �nite interval

IM = [k; k + M] is contained in I:

i:e:; [k; k + M] � I

) m�(IM) < m�(I)

i:e:; m�(I) > M for every M > 0

) m�(I) = 1 = l(I)

This completes the proof of the theorem. �

Theorem 8.3. For any sequence of sets fEig; m�
0BBBBB@
1[
i=1

Ei

1CCCCCA �
1X
i=1

m�(Ei)

Proof. If one the sets Ei has an in�nite measure. i:e:;m�(Ei) = 1 for some i; then
1X
i=1

m�(Ei) = 1 and hence

m�
0BBBBB@
1[
i=1

Ei

1CCCCCA = 1 =

1X
i=1

m�(EI)

Suppose each m�(Ei) is �nite. i:e:;m�(Ei) < 1 for each i:

Let � > 0 be given. For each i; 9 a sequence of intervals fIi; j; j = 1; 2; : : :g such

that

Ei �
1[
j=1

Ii; j and m�(Ei) �
1X
j=1

l(Ii; j) �
�

2i

Then,
1[
i=1

Ei �
1[
i=1

1[
j=1

Ii; j

that is, the collection [Ii; j] form a countable class of covering for

1[
i=1

Ei: So
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m�
0BBBBB@
1[
i=1

Ei

1CCCCCA �
1X

i; j=1

l(Ii; j)

�
1X
i=1

�
m�(Ei) +

�

2i

�

=

1X
i=1

m�(Ei) +

1X
i=1

�

2i

=

1X
i=1

m�(Ei) + �

1X
i=1

1

2i

=

1X
i=1

m�(Ei) + �

i:e:; m�
0BBBBB@
1[
i=1

Ei

1CCCCCA �
1X
i=1

m�(Ei) + �

Since � is arbitrary and hence we have

m�
0BBBBB@
1[
i=1

Ei

1CCCCCA �
1X
i

m�(Ei)

Hence the proof. �

Example 8.2. Show that, for any set A and any � > 0; there is an open set E containing

A and such that m�(E) � m�(A) + �:

Solution: Given � > 0; we can �nd a collection of intervals [In] such

that

A �
1[
n=1

In and
1X
n=1

l(In) �
�

2
� m�(A)

If In = [an; bn); let I0n =
�
an �

�

2n+1
; bn

�
; so that A �

1[
n=1

I0n:

Take E =

1[
n=1

I0n; then E is an open set and

m�(E) �
1X
n=1

l(I0n) =
1X
n=1

�
bn � an +

�

2n+1

�

=

1X
n=1

(bn � an)

1X
n=1

+
�

2n+1

=

1X
n=1

l(In) +
�

2

�
�
m�(A) +

�

2

�
+
�

2
= m�(A) + �

Hence, for a given set A and � > 0; there is an open set E containing A

and m�(E) � m�(A) + �:

Example 8.3. suppose that in the de�nition of outer measure,

m�(E) = inffP l(In) : E � Ing for sets E � R; we stipulate (i) In = (an; bn) ,
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(ii) In = [an; bn); (iii) In = (an; bn] (iv) In = [an; bn] (or) (v) mixtures are allowed for

di�erent values of n: Show that the same m� is obtained.

Solution: If we consider the intervals in case (ii) we obtain m� of

de�nition (8.1). We denote the corresponding m� by m�
o in case (i); m�

oc

in case (iii); m�
c in case (iv) and m�

m in case (v):

Now, we must prove that

m�(E) = m�
o(E) = m�

oc(E) = m�
c(E) = m�

m(E)

We establish that each equals m�
m(E): For this, we consider m�

o; the proof

is similar for other cases.

Note that the set f[In] : In is any type of intervalg contains the set

f[In] : In is openg:

Hence,
m�
m(E) � m�

o(E) (8.10)

To prove the converse, let � > 0 be given and for each In and let I0n be

an open interval containing In with

l(I0n) = (1 + �)l(n)

Suppose that the collection [In] is such that E � S
In and

m�
m(E) + � >

1X
n=1

l(In): Then

m�
m(E) + � >

1X
n=1

l(I0n)
1 + �

=
1

1 + �

1X
n=1

l(I0n)

But E �
1[
n=1

I0n; a union of open intervals. So

m�
o(E) �

1X
n=1

l(I0n)

< (1 + �)
�
m�
m(E) + �

�
= (1 + �)m�

m(E) + (1 + �)�

Since, � is arbitrary, we get the opposite inequality

m�
o(E) � m�

m(E) (8.11)

Thus, we get m�
m(E) = m�

o(E):
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8.2. Measurable Sets

De�nition 8.2. A set E is said to be Lebesgue measure or simply measurable if for each

set A we have

m�(A) = m�(A \ E) + m�(A \ Ec) (8.12)

where Ec is the complement of E:

Note 8.2. For any set A; we have

(A \ E) [ (A \ Ec) = A \ (E [ Ec)

= A \ R = A

Since m� is subadditive

) m�(A) = m� �(A \ E) [ (A \ Ec)
�

� m�(A \ E) + m�(A \ Ec)

Hence, to prove a set E is measurable, it is enough to show that

m�(A) � m�(A \ E) + m�(A \ Ec) for every A (8.13)

Example 8.4. If m�(E) = 0; then show that E is measurable.

Solution: For any set A; we have A \ E � E:

A \ E � E

) m�(A \ E) � m�(E) (using theorem (8.1))

) m�(A \ E) = 0 (if m�(E) = 0)

Also A \ Ec � A

) m�(A \ Ec) � m�(A)

) m�(A) � m�(A \ Ec) + 0

) m�(A) � m�(A \ Ec) + m�(A \ E)

Hence, E is measurable.

De�nition 8.3. A collection S of subset of an arbitrary set X is said to be a � -algebra

or a � -�eld if S has the following properties:

(i) X 2 S :

(ii) If A 2 S ; then Ac 2 S where Ac is the complement of A relative to X:

(iii) If A =

1[
n=1

An; and if An 2 S for each n; then A 2 S :
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If (iii) is required for �nite unions, then S is called an algebra of sets.

Notation: We will write M for the collection of all measurable subsets

of R:

Note 8.3.

1. Let � be a � -algebra on a set. The � is closed for countable intersection.

For if, let fAig1i=1 be any countable collection of sets in �:

For every i; Ai 2 � ) Ac
i 2 � (* closed with respect to complement)

)
1[
i=1

Ac
i 2 � (* closed with respect to countable union)

)
0BBBBB@
1\
i=1

Ai

1CCCCCA
c

2 �

)
0BBBBB@
1\
i=1

Ai

1CCCCCA 2 �

2. We also note that empty set ; belong to a � -algebra.

Theorem 8.4. The class M is a � -algebra.

Proof.

(i) First we show that R 2 M:

For any set A;

A \ Rc = A \ ; = ;
) m�(A \ Rc) = m�(;) = 0 (using theorem (8.1))

Also, A \ R � A ) m�(A \ R) � m�(A)

Hence adding, we get

m�(A) � m�(A \ R) + m�(A \ Rc) for every set A

) R is measurable i:e:; R 2 M

(ii) Let R 2 M: By de�nition E is measurable if

m�(A) = m�(A \ E) + m�(A \ Ec) for every set A (8.14)

The symmetry in the relation (8.14) between E and Ec implies Ec is

measurable. i:e:; Ec 2 M:

(iii) Let fEig be a countable collection of measurable sets and let E =

1[
j=1

E j:

Now, our wish is to prove that E is measurable.

Let A be any arbitrary set.
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Since E1 is measurable, then by de�nition we have

m�(A) = m�(A \ E1) + m�(A \ Ec
1) (8.15)

Sine E2 is measurable with E replaced by E2 and A by A \ Ec
1
in (8.15), we get

m�(A \ Ec
1) = m�(A \ Ec

1 \ E2) + m�(A \ Ec
1 \ Ec

2) (8.16)

Substitute (8.16) in (8.15), we get

m�(A) = m�(A \ E1) + m�(A \ E2 \ Ec
1) + m�(A \ Ec

1 \ Ec
2) (8.17)

Similarly, we have

m�(A) = m�(A \ E1) + m�(A \ E2 \ Ec
1) + m�(A \ E3 \ Ec

1 \ Ec
2)

+m�(A \ Ec
1 \ Ec

2 \ Ec
3) (8.18)

Continuing the process in this way, for n � 2

m�(A) = m�(A \ E1) +

nX
i=2

m�
0BBBBBB@A \ Ei \

\
j<i

Ec
j

1CCCCCCA + m�
0BBBBBB@A \

0BBBBBB@
n\
j=1

Ec
j

1CCCCCCA
1CCCCCCA

= m�(A \ E1) +

nX
i=2

m�
0BBBBBB@A \ Ei \

0BBBBBB@
[
j<i

E j

1CCCCCCA
c1CCCCCCA

Since Ec =
�S1

j=1 E j

�c � �Sn
j=1 E j

�c
for every n: Hence by theorem (8.1), we have

m�(A) � m�(A \ E1) +

nX
i=2

m�
0BBBBBB@A \ Ei \

0BBBBBB@
[
j<i

E j

1CCCCCCA
c1CCCCCCA + m�(A \ Ec)

The inequality being true for n � 2; it follows that

m�(A) � m�(A \ E1) +

nX
i=2

m�
0BBBBBB@A \ Ei \

0BBBBBB@
[
j<i

E j

1CCCCCCA
c1CCCCCCA + m�(A \ Ec)

Using the fact that

E =

1[
i=1

Ei = E1 [ (E2 \ Ec
1) [ (E3 \ (E1 [ E2)

c) [ : : :

=

1[
i=1

0BBBBBB@Ei \
0BBBBBB@
[
j<i

E j

1CCCCCCA
c1CCCCCCA

and that A \
0BBBBB@
1[
n=1

Bn

1CCCCCA =
1[
n=1

(A \ Bn); we get
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114 8.2. Measurable Sets

m�(A) � m�(A \ E1) +

1X
i=2

m�
0BBBBBB@A \ Ei \

0BBBBBB@
[
j<i

E j

1CCCCCCA
c1CCCCCCA + m�(A \ Ec)

� m�
0BBBBBB@
1[
i=1

0BBBBBB@A \ Ei \
0BBBBBB@
[
j<i

E j

1CCCCCCA
c1CCCCCCA
1CCCCCCA + m�(A \ Ec)

= m�
0BBBBBB@A \

0BBBBBB@
1[
i=1

Ei \
0BBBBBB@
[
j<i

E j

1CCCCCCA
1CCCCCCA
1CCCCCCA + m�(A \ Ec)

m�(A) � m�(A \ E) + m�(A \ Ec) (8.19)

The opposite inequality always being true. we have equality in (8.19) and hence

E =

1[
i=1

Ei is measurable.

Thus M is � -algebra. Hence the proof. �

Note 8.4. If A; B 2 M; then A � B 2 M:

Proof. We know that A � B = A \ Bc:

Now B 2 M ) Bc 2 M
) A; Bc 2 M ) A \ Bc 2 M

i:e:; A � B 2 M �

Example 8.5. Show that if F 2 M and m�(F4G) = 0; then G is measurable.

Solution:Suppose F 2 M and let m�(F4G) = 0:

Hence, by example (8.4), we have

m�(F4G) = 0 ) F4G is measurable

Since, F �G � F4G; we get m�(F �G) � m�(F4G) = 0:

Hence, m�(F �G) = 0 implies F �G is measurable.

Similarly, we can prove that G � F is also measurable.

We know that F \ G = F � (F �G) ; where both F and F � G are

measurable.

Thus, F \G is measurable.

Now,G = (F \ G) [ (G � F) where F \ G and G � F are measurable and

hence G is measurable.
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Theorem 8.5. If fEig is any sequence of disjoint measurable sets, then

m�
0BBBBB@
1[
i=1

Ei

1CCCCCA =

1X
i=1

m�(Ei) (8.20)

that is, m� is countably additive on disjoint sets of M:

Proof. Since outer measure is subadditive

m�
0BBBBB@
1[
i=1

Ei

1CCCCCA �
1X
i=1

m�(Ei)

and hence it is enough to prove the theorem, it is su�cient to show that

m�
0BBBBB@
1[
i=1

Ei

1CCCCCA �
1X
i=1

m�(Ei)

Let A =

1[
i=1

Ei; since Ei \ E j = ; for i 6= j and A \ Ei = Ei and A \ Ei = Ei for

all i:

Also, A \
0BBBBBB@

k[
i=1

Ei

1CCCCCCA
c

=

1[
i=k+1

Ei; k = 1; 2; : : :

Using the fact that each Ei is measurable and thus we have

m�(A) = m�(A \ E1) + m�(A \ Ec
1)

= m�(E1) + m�(A \ Ec
1 \ E2) + m�(A \ Ec

1 \ Ec
2)

= m�(E1) + m�(E2) + m�(A \ Ec
1 \ Ec

2)

: : :

=

nX
i=1

m�(Ei) + m�
0BBBBB@A \

0BBBBB@
n\
i=1

Ec
i

1CCCCCA
1CCCCCA

=

nX
i=1

m�(Ei) + m�
0BBBBB@A \

0BBBBB@
n[
i=1

Ei

1CCCCCA
c1CCCCCA

�
nX
i=1

m�(Ei) + m�
0BBBBB@A \

0BBBBB@
1[
i=1

Ei

1CCCCCA
n1CCCCCA

=

nX
i=1

m�(Ei) + m� (A \ An)

=

nX
i=1

m�(Ei) + m� (;)

=

nX
i=1

m�(Ei)

Since this holds for all n; letting n ! 1; we have
m�(A) �

1X
i=1

m�(Ei)

i:e:; m�
0BBBBB@
1[
i=1

Ei

1CCCCCA �
1X
i=1

m�(Ei)
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Hence the proof. �

Note 8.5. Put En+1 = En+2 = : : : = ; in (8.20), we get the same results for �nite unions

as a special case. So, if E1; E2; : : : ; En are disjoint measurable sets, then

m�
0BBBBB@

n[
i=1

Ei

1CCCCCA =

nX
i=1

m�(Ei)

If E is a measurable set we write m(E) in place of m�(E) and m(E) is called the

Lebesgue measure of E: Thus, if E 2 M then m(E) = m�(E): Since the Lebesgue

measure m is de�ned for each E 2 M; m is a set function de�ned on the � -algebra M:

Theorem (8.5) states that m is countably additive set function.

Theorem 8.6. Every interval is measurable.

Proof. First, let us we consider the interval of the form I = [a;1): Now, our aim is to

prove that the interval I is measurable.

Hence, we have to prove that for any set A;

m�(A) � m�(A \ [a;1)) + m�(A \ [a;1)c)

i:e:; m�(A) � m�(A \ [a;1)) + m�(A \ (�1; a])

Let � > 0 be given. Then there exists intervals In such that

A �
1[
n=1

In (8.21)

and m�(A) + � >

1X
n=1

l(In) (8.22)

From (8.21), we have

A \ [a;1) �
0BBBBB@
1[
n=1

In

1CCCCCA \ [a;1)

) A \ [a;1) �
1[
n=1

(In \ [a;1))

Similarly, we have A \ (�1; a] �
1[
n=1

(In \ (�1; a])

Let In \ (�1; a) = I0n

and In \ [a;1) = I00n so that

A \ (�1; a) � S1
n=1 I

0
n

and A \ [a;1) � S1
n=1 I

00
n

9>>>=>>>; (8.23)

Note that I0n and I00n are disjoint and

I0n [ I00n = (In \ (�1; a)) [ (In \ [a;1))

= In \ [(�1; a) [ [a;1)]

= In \ (�1;1) = In

) l(I0n) + l(I00n ) = l(In)

Real Analysis M.Sc.(Mathematics)-I Year-I Sem



8.2. Measurable Sets 117

Thus, from (8.23), we have
m�(A \ (�1; a)) �

1X
n=1

l(I0n)

and m�(A \ [a;1)) �
1X
n=1

l(I00n )

Adding the above two inequalities, we get

m�(A \ (�1; a)) + m�(A \ [a;1)) �
1X
n=1

l(I0n) +
1X
n=1

l(I00n )

=

1X
n=1

l(In

< m�(A) + � (using (8.22))

This is true for every � > 0 and hence we have

m�(A \ (�1; a)) + m�(A \ [a;1)) � m�(A)

This shows that the interval [a;1) is measurable.

Now theorem (8.4), gives the result for other types of intervals. �

Theorem 8.7. Let A be a class of subsets of a space X: Then there exists a smallest

� -algebra S containing A : In this case, we say that S is the � -algebra generated

by A :

Proof. Let fS�g be any collection of � -algebras of subsets of X: Then by de�nition,

we get
\
�

S� is a � -algebra.

For if,
(i) X 2 S� for every �

) X 2
\
�

S�:

(ii) A1; A2; : : : 2
\
�

S�

) A1; A2; : : : 2 S� 8�
)

1[
n=1

An 2 S� 8�

)
1[
n=1

An 2
\
�

S�:

(iii) A 2
\
�

S�

) A 2 S� 8�
) Ac 2 S� 8�
) Ac 2

\
�

S�:

Consider the family of all � -algebras containing A : This family is non-empty as

the class of all subsets of X belong to this family. Let S be the intersection of all these

� -algebras. Then clearly S is a � -algebra containing A and in fact it is the smallest

such � -algebra. Hence the proof. �
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De�nition 8.4. The Borel � -algebra B is de�ned to be the smallest � -algebra of

interval of the form [a; b): In other words, B is the � -algebra generated by the class of

intervals of the form [a; b): The elements of B are called the Borel sets.

De�nition 8.5. A countable union of closed sets is called an F� set.

De�nition 8.6. A countable intersection of open sets is called G� set.

Theorem 8.8.

(i) B � M; that is every Borel set is measurable.

(ii) B is the � -algebra generated by each of the following classes: the open

intervals, the open sets, the G� -sets, the F� sets.

Proof. (i) By theorem (8.6), every interval is measurable and also by theorem (8.4),

the class of measurable sets M is a � -algebra. Hence B; the smallest � -algebra of

intervals of the form [a; b) � M: Thus, every Borel set is measurable.

(ii) Let B1 be the � -algebra generated by the open intervals. Every open interval

(a; b) is a Borel set, since (a; b) is union of sequence of intervals

"
a +

1

n
; b

!
;

n = 1; 2; 3 : : : So B1 � B: But every interval [a; b) is the intersection of sequence of

open intervals

 
a � 1

n
; b

!
; n = 1; 2; : : : : So B � B1: Thus B = B1:

A set is open if and only if it is union of a sequence of open intervals. Hence the

� -algebra generated by the open sets is equal to � -algebra generated by the open

intervals and hence it is equal to B:

By de�nition, a G� set is formed from open sets using countable intersection and a

F� set is formed from complements of open sets using countable union. Hence B is

equals to both the � -algebra generated by G� sets and by F� sets. �

Example 8.6. For any set A there exists a measurable set E containing A such that

m�(A) = m(E):

Solution: Given a set A and every � =
1

n
; n = 1; 2; : : : there exists open

sets Gn such that A � Gn and m�(Gn) � m�(A) +
1

n
:

Let E =

1\
n=1

Gn: Clearly E is a G� set and it is measurable. Hence

m(E) � m�(Gn) < m�(A) +
1

n
for every n

Thus, m(E) � m�(A)

Since A � Gn for each n; A � T
Gn = E: So,

m�(A) � m(E)

Thus, m�(A) = m(E):

Real Analysis M.Sc.(Mathematics)-I Year-I Sem



8.2. Measurable Sets 119

De�nition 8.7. For any sequence of sets fEig; we de�ne

lim sup Ei =

1\
n=1

0BBBBBB@
[
i�n

Ei

1CCCCCCA =
1\
n=1

0BBBBB@
1[
i=n

Ei

1CCCCCA (8.24)

lim inf Ei =

1[
n=1

0BBBBBB@
\
i�n

Ei

1CCCCCCA =
1[
n=1

0BBBBB@
1\
i=n

Ei

1CCCCCA (8.25)

If lim sup Ei = lim inf Ei = E (say), then E is called the limit of E; and we write

lim Ei = E:

Note 8.6.

1. From the de�nition, we can easily see that lim inf Ei � lim sup Ei:

Proof.
Let x 2 lim inf Ei; then by de�nition

) x 2
1[
n=1

0BBBBB@
1\
i=n

Ei

1CCCCCA
) x 2

1\
i=n

Ei for some positive integer n

) x 2 En; En+1; : : :

) x 2
1[
i=1

Ei;

1[
i=2

Ei; : : : ;

1[
i=n

Ei; : : :

) x 2
1\
n=1

0BBBBB@
1[
i=n

Ei

1CCCCCA
) x 2 lim sup Ei

Thus,we get lim inf Ei � lim sup Ei �

2. lim sup Ei is the set of points belonging to in�nitely many of the sets Ei:

Proof.
Let x 2 lim sup Ei; then by de�nition

, x 2
1\
n=1

0BBBBB@
1[
i=n

Ei

1CCCCCA
, x 2

1[
i=n

Ei for n = 1; 2; 3; : : :

, x 2 Ei for some i � n; n = 1; 2; : : :

, x 2 in�nitely many of the sets Ei �

3. lim inf Ei is the set of points belonging to all but �nitely many of the sets Ei:

Proof.
Let x 2 lim inf Ei; then by de�nition

, x 2
1[
n=1

0BBBBB@
1\
i=n

Ei

1CCCCCA
, x 2

1\
i=N

Ei for some positive integer N

, x 2 EN ; EN+1 : : : for some positive integer N

, x 2 belongs to all but �nitely many of the sets Ei �
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Theorem 8.9. Let Ei be a sequence of measurable sets. Then

(i) if E1 � E2 � : : : ; we have m(lim Ei) = limm(Ei):

(ii) if E1 � E2 � : : : and m(Ei) < 1; then we have m(lim Ei) = limm(Ei):

Proof.

(i) Suppose E1 � E2 � E3 : : :

Put F1 = E1; Fi = Ei � Ei�1 for i = 1; 2; 3; : : :

Then the sets F1; F2; : : : are measurable and are disjoints and

1[
i=1

Fi is

measurable and

m

0BBBBB@
n[
i=1

Fi

1CCCCCA =

1X
i=1

m(Fi)

Since E1 � E2 � E3 : : :
1[
i=1

Fi = E1 [
1[
i=2

(Ei � Ei�1) =
1[
i=1

Ei

and lim Ei =

1[
n=1

Ei: Hence,

m (lim Ei) = m

0BBBBB@
1[
i=1

Ei

1CCCCCA = m

0BBBBB@
1[
i=1

Fi

1CCCCCA
=

1X
i=1

m(Fi) = lim
n!1

nX
i=1

m(Fi)

= lim
n!1

m

0BBBBB@
n[
i=1

Fi

1CCCCCA
= lim

n!1
m (E1 [ (E2 � E1) [ (E3 � E2) [ : : : [ (En � En�1))

= lim
n!1

m (En)

(ii) Suppose E1 � E2 � E3 � : : : Then
E1 � E1 � E1 � E2 � E1 � E3 � : : :

Hence by (i); we have
m (lim E1 � Ei) = limm (E1 � Ei) (8.26)

Since Ei � E1; Ei are measurable and E1 � Ei = E1 \ Ec
i
; we have

m(E1) = m(E1 \ Ei) + m(E1 \ Ec
i )

= m(Ei) + m(E1 � Ei)

Hence, m(E1 � Ei) = m(E1) � m(Ei)

Thus, (8.26) implies

m(lim(E1 � Ei)) = m(E1) � limm(Ei)
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But,
lim(E1 � Ei) =

1[
i=1

(E1 � Ei)

= E1 �
1\
i=1

Ei

= E1 � lim Ei

Thus,
m(lim(E1 � Ei) = m(E1 � lim Ei)

= m(E1) � m(lim Ei) (8.27)

From (8.26) and (8.27) and m(E1) < 1; we have
m(lim Ei) = limm(Ei) �

Let Us Sum Up:

In this unit, the students acquired knowledge to

� lebesgue outer measure and � -algebra.

� measurable sets.

Check Your Progress:

1. Show that every countable set has measure zero.

2. Show that every non-empty open set has positive measure.

3. Show that there exists uncountable sets of zero measure.

Choose the correct or more suitable answer:

1. If m�(A) = 0; then : : : : : : for any set B:

(a) m�(A \ B) = m�(B)

(b) m�(A [ B) = m�(B)

(c) m�(B) = 0

(d) none of these
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Answer:

(1) b

Glossaries:

Measure: A measure is a function that assigns a number to certain

subsets of a given set. Their number is said to be measuring of the set.

Suggested Readings:

1. G. de Barra, �Measure Theory and Integration�, New Age

International Pvt. Ltd, Second Edition, 2013.

2. Rana I. K., �An Introduction to Measure and Integration�, Narosa

Publishing House Pvt. Ltd., Second Edition, 2007.

3. Royden H. L., �Real Analysis�, Prentice Hall of India Pvt. Ltd.,

Third Edition, 1995.
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UNIT-9

REGULARITY

Structure

Objective

Overview

9. 1 Regularity

9. 2 Measurable Functions

Let us Sum Up

Check Your Progress

Answers to Check Your Progress

Suggested Readings

Objectives

After completion of this unit, students will be able to

F de�ne measurable function.

F classify measurable sets and Borel sets.
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124 9.1. Regularity:

Overview

In this unit, we will illustrate the classi�cation between

measurable sets and Borel sets.

9.1. Regularity:

Theorem 9.1. The following statements regarding the set E are equivalent:

(i) E is measurable.

(ii) 8 � > 0;9 G; an open set, E � G such that m�(G � E) � �:

(iii) 9 a G� -set, E � G such that m�(G � E) = 0

(ii)� 8 � > 0;9 F; a closed set, F � E such that m�(E � F) � �:

(iii)� 9 F; an F� -set, F � E such that m�(E � F) = 0:

Proof.

(i) ) (ii) : Let E be a Lebesgue measurable and � > 0 be given.

Suppose that m�(E) = m(E) < 1: Then by de�nition, we can �nd intervals I1; I2; : : :

such that E �
1[
n=1

In and m(E) +
�

2
>

1X
n=1

m(In):

For every n; choose open intervals Jn � In such that

m(Jn) � �

2n+1
+ m(In) (9.1)

Let G =

1[
n=1

Jn: Then G is an open set with E � G and m(G) < 1: Also,

m�(G � E) = m(G � E) = m(G) � m(E)

�
1X
n=1

m(Jn) � m(E)

�
1X
n=1

�
�

2n+1
+ m(In)

�
� m(E) (using (9.1))

=

1X
n=1

�

2n+1
+

1X
n=1

m(In) � m(E)

<
�

2
+
�

2
= �

Hence (ii) proved in the case m(E) < 1:

Assume that m(E) = m�(E) = 1: Then, by de�nition we can �nd �nite intervals In

such that In \ Im = ; for n 6= m and E =

1[
n=1

In: i:e:; l(In) < 1:
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9.1. Regularity: 125

If En = E \ In; then we have m(En) < 1: Hence by the previous considered for

m�(E) = m(E) < 1; 9 an open set Gn such that En � Gn and

m�(Gn � En) <
�

2n
; n = 1; 2; 3; : : :

Put G =

1[
n=1

Gn: Clearly, G is an open set, E � G and

G � E =

1[
n=1

Gn �
1[
n=1

En =

1[
n=1

(Gn � En)

) m�(G � E) �
1X
n=1

m�(Gn � En) �
1X
n=1

�

2n
= �

Thus (ii) proved for m�(E) = 1:

(ii) ) (iii) For each n; choose an open set Gn; E � Gn such that m�(Gn � E) <
1

n
:

Take G =

1\
n=1

Gn: Clearly G is a G� -set, E � G and m�(G � E) � m�(Gn � E) <
1

n

for every n:

Hence m�(G � E) = 0:

(iii) ) (i) Given that 9 a G� -set with E � G with m�(G � E) = 0:

Now, we have E = G � (G � E) and m�(G � E) = 0: Hence, G � E is measurable

and also we know that every G� is measurable. Thus G is measurable.

Hence E = G � (G � E) is measurable.

(i) ) (ii)� Suppose E is measurable, then Ec is measurable.

Hence, by (ii); 9 an open set G such that Ec � G and m�(G � Ec) � �:
G � Ec = G \ E = E \G = E �Gc

Now, G is open ) Gc is closed

) F is closed (Take Gc = F)

Thus,
m�(E � F) = m�(E �Gc) = m�(G � Ec) � �

(ii)� ) (iii)� For each n; choose closed sets Fn such that Fn � E and m�(E�Fn) <
1

n
:

Put F =

1[
n=1

Fn: Then F is a F� -set, F � E and m�(E � Fn) <
1

n
for every n:

Hence m�(E � F) = 0:

(iii)� ) (i) Given there exists an F� -set, F � E such that m�(E � F) = 0:

Since m�(E � F) = 0 which implies, E � F is measurable.

Also, we know that every F� -set is measurable and hence F is measurable.

Hence, E = F [ (E � F); which is measurable. �
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Theorem 9.2. If m�(E) < 1; then E is measurable if and only if, 8 � > 0; 9 disjoint

�nite intervals I1; I2; : : : ; In such that m�
0BBBBB@E4

n[
i=1

Ii

1CCCCCA < �: We may stipulate that the

intervals Ii be open, closed or half-open.

Proof. Assume that E is measurable, by theorem (9.1) for every � > 0 there exists an

open set G; G � E such that m(G � E) < �: Also, m�(E) = m(E) < 1 which implies

m(G) < 1:

Every open set is union of disjoint open intervals, so we can write open set G as

G =

1[
i=1

Ii; where I0
i
s are disjoint open intervals and hence we have

m(G) = m

0BBBBB@
n[
i=1

Ii

1CCCCCA =
1X
i=1

m(Ii) =

1X
i=1

l(Ii)

i:e:;

1X
i=1

l(Ii) = m(G) < 1

Thus, there exist an integer n such that

1X
i=n+1

l(Ii) < �:

Put U =

n[
i=1

Ii: Then

E4U = (E � U) [ (U � E) � (G � U) [ (G � E)

Hence,

m�(E4U) � m�(G � U) + m�(G � E)

= m

0BBBBB@
1[

i=n+1

Ii

1CCCCCA + �

=

1X
i=n+1

l(Ii) + �

< � + � = 2�:

If we wish the intervals to be say, half-open, we �rst obtain open intervals I1; I2; : : : ; In

as above and then for each i choose a half-open interval Ji � Ii such that m(li � Ji) <
�

n
:

Then the intervals Ji are disjoint and we have
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m

0BBBBB@E4
n[
i=1

Ji

1CCCCCA = m

0BBBBB@
0BBBBB@E4

n[
i=1

Ii

1CCCCCA [
0BBBBB@

n[
i=1

Ii4
n[
i=1

Ji

1CCCCCA
1CCCCCA

� m

0BBBBB@E4
n[
i=1

Ii

1CCCCCA + m

0BBBBB@
n[
i=1

Ii4
n[
i=1

Ji

1CCCCCA
< � + m

0BBBBB@
n[
i=1

(Ii4Ji
1CCCCCA

= � + m

0BBBBB@
n[
i=1

(Ii � Ji

1CCCCCA
= � +

nX
i=1

m(Ii � Ji)

< � +

nX
i=1

�

n

= � + � = 2�

Thus, the intervals Ii be open, closed or half-open.

Converse part: Assume that for every � > 0 there exists disjoint intervals

I1; I2; : : : ; In such that

m�
0BBBBB@E4

n[
i=1

Ii

1CCCCCA < �

Put J =

n[
i=1

Ii; then m�(E4J) < �:

By example (8.2), there exist an open set G; E � G such that

m(G) � m�(E) + � (9.2)

In order to prove E is measurable, it is su�cient to prove that m�(G � E) can be

arbitrarily small. Let U = G \ J; we have

G4E = (G4U) [ (U4E)

By subadditivity, we have

m�(G4E) � m�(G4U) + m�(U4E) (9.3)

Since, U � J; we have U � E � J � E and also E � G; we have

E � U = E � (G \ J) = E � J:

Hence,
U4E = (U � E) [ (E � U)

� (J � E) [ (E � J)

= J4E

Given that m�(U4E) < �; But, E � U [ (U4E); so m�(E) < m�(U) + �:

Hence,
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m(G4U) = m(G � U)

= m(G) � m(U)

� m�(E) + � � m(U)

< m(U) + � + � � m(U) = 2�

Thus, from (9.3), we have

m�(G � E) = m�(G4E)
� m�(G4U) + m�(U4E)
< 2� + � = 3�

Thus, E is measurable. Hence the proof. �

9.2. Measurable Functions:

De�nition 9.1. Let f be an extended real-valued function de�ned on a measurable set

E: Then f is a Lebesgue measurable function or simply, a measurable function if, for

each � 2 R; the set [x : f (x) > �] is measurable.

Note 9.1. The domain of de�nition of f will usually be either R or R � F; where

m(F) = 0:

Note 9.2. The de�nition of measurable function states that f is a measurable function

if for every real number �; the inverse image (�;1) under f i:e:; f �1(�;1) is a

measurable set.

Theorem 9.3. The following statements are equivalent:

(i) f is a measurable function.

(ii) [x : f (x) � �] is measurable for all �:

(iii) [x : f (x) < �] is measurable for all �

(iv) [x : f (x) � �] is measurable for all �:

Proof.

(i) ) (ii) : Assume that f is measurable.

Then for each of the sets

"
x; f (x) > � � 1

n

#
(n = 1; 2; : : :):

Thus,

1\
n=1

"
x : f (x) > � � 1

n

#
is also measurable.

But,
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�
x : f (x) � �� = f �1 [�;1)

= f �1
0BBBBB@
1\
n=1

 
� � 1

n
;1

!1CCCCCA
=

1\
n=1

f �1
 
� � 1

n
;1

!

=

1\
n=1

"
x : f (x) > � � 1

n

#
; which is measurable:

Thus,
�
x : f (x) � �� is measurable.

(ii) ) (iii) Suppose [x : f (x) � �] is measurable.

We know that if E is measurable then Ec is measurable and hence it follows that

[x : f (x) � �]c is measurable. i:e:; [x : f (x) < �] is measurable. This proves (iii):

(iii) ) (iv) : Suppose
�
x : f (x) < �

�
is measurable.

Then for each of the sets

"
x : f (x) < � +

1

n

#
(n = 1; 2; : : :):

Thus,

1\
n=1

"
x : f (x) < � +

1

n

#
is also measurable.

But, �
x : f (x) � �� = f �1 (�1; �]

= f �1
0BBBBB@
1\
n=1

 
�1; � + 1

n

!1CCCCCA
=

1\
n=1

f �1
 
�1; � + 1

n

!

=

1\
n=1

"
x : f (x) < � +

1

n

#
; which is measurable:

Thus,
�
x : f (x) � �� is measurable.

(iv) ) (i) : Suppose
�
x : f (x) � �� is measurable.

Then, it complement is
�
x : f (x) > �

�
: Hence, by the de�nition of measurable

function, f is measurable. Hence the proof. �

Example 9.1. Show that if f is measurable, then
�
x : f (x) = a

�
is measurable for any

extended real number �:

Solution: Assume that � is �nite, then we have

�
x : f (x) = �

�
=

�
x : f (x) � �� \ �

x : f (x) � ��

By theorem (9.3),
�
x : f (x) � �� and �

x : f (x) � �� are measurable.

We know that, intersection of two measurable is measurable and hence

it follows that
�
x : f (x) � �� \ �

x : f (x) � �� is measurable.
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Thus,
�
x : f (x) = �

�
is measurable.

If � = 1; then

[x : f (x) = 1] =

1\
n=1

"
x : f (x) >

1

n

#

Since, a countable intersection of measurable set is measurable and

hence [x : f (x) = 1] is measurable.

Similarly, we can prove for the case � = �1:

Example 9.2. The constant functions are measurable.

Solution: Given that f (x) = c for all x: Then the set

�
x : f (x) > �

�
=

8>>><>>>:
R if � < c

; if � � c

Thus, the set
�
x : f (x) > �

�
is measurable for all � and hence the constant

function is measurable.

Example 9.3. The characteristic function �A of the set A; is measurable if and only if

A is measurable.

Solution:The set

�
x : f (x) > �

�
=

8>>>>>>><>>>>>>>:

; if � � 1

A if 0 � � < 1

R if � < 0

So, [x; �A(x) > � is measurable for all � if and only if A is measurable.

Thus �A is measurable if and only if A is measurable.

Example 9.4. Continuous functions are measurable.

Solution: Assume that f is continuous. For every � 2 R; the interval

(�;1) is an open set.

We know that an inverse image of an open set is open under a continuous

mapping. That is f �1(�;1) is open.

Further, every open set is measurable and hence f �1(�;1) =
�
x : f (x) > �

�
is measurable.

Thus, f is a measurable function.

Theorem 9.4. Let c be any real number and let f and g be real-valued measurable

functions de�ned on the same measurable set E : Then f + c; c f ; f + g; f � g and f g

are also measurable.

Real Analysis M.Sc.(Mathematics)-I Year-I Sem



9.2. Measurable Functions: 131

Proof. For any � 2 R: Consider the set�
x : f (x) + c > �

�
=

�
x : f (x) > � � c

�

Since, f is the measurable function on the right hand side and thus, it follows that the

set on the left hand side is also measurable. Thus, c + f is measurable.

For any � 2 R; then we have

�
x : c f (x) > �

�
=

8>>>>>>>>>><>>>>>>>>>>:

�
x : f (x) >

�

c

�
for c > 0

�
x : f (x) <

�

c

�
for c < 0

E or ; for c = 0

In any cases, the set
�
x : c f (x) > �

�
is measurable. Thus, the function c f is measurable.

Now, our wish is to prove that f + g is measurable. In order to prove this, we shall

apply some simple idea. i:e:; Two real numbers a and b satisfy a > b if and only if

there is some rational number r with a > r > b: Suppose r1; r2; : : : is a countable set of

rational numbers.

Then x 2 �
x : f (x) + g(x) > �

�
only if there exists a rational number ri such that

f (x) > ri > � � g(x)

So, for every � 2 R; we have

�
x : f (x) + g(x) > �

� �
1[
n=1

��
x : f (x) > rn

� \ �
x : rn > � � g(x)

��

=

1[
n=1

��
x : f (x) > rn

� \ �
x : g(x) > � � rn

��

Since f and g are measurable and hence the sets
�
x : f (x) > rn

�
and�

x : g(x) > � � rn
�
are measurable for each n: So,

�
x : f (x) + g(x) > �

�
is measurable.

Hence f + g is a measurable function.

If g is a measurable function and if c 2 R; then cg is also a measurable function. In

particular, taking c = �1; then �g is a measurable function. So, f � g = f + (�g) is

also a measurable function.

Finally, we have to prove that the function f g is measurable. For this, �rst we shall

prove that f 2 is measurable, if f is measurable.

If � < 0; then the set
h
x : f 2(x) > �

i
= R is measurable.

If � � 0; thenh
x : f 2(x) > �

i
=

h
x : f (x) >

p
�
i
[

h
x : f (x) <

p
�
i

Since f is measurable and hence each of the sets on the right hand side is

measurable. Thus
h
x : f 2(x) > �

i
is measurable for every � 2 R; which shows that

f 2 is a measurable function whenever f is a measurable function.
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If f and g are measurable functions, then f + g is a measurable function and also

( f + g)2 is a measurable function. Similarly, ( f � g)2 is also a measurable function.

Now,

f g =
1

4

h
( f + g)2 � ( f � g)2

i

Hence, f g is a measurable function, since the right hand side is a di�erence of two

measurable functions. �

Theorem 9.5. Let f fng be a sequence of measurable functions de�ned on the same

measurable set. Then

(i) sup
1�i�n

fi is measurable for each n:

(ii) inf
1�i�n

fi is measurable for each n:

(iii) sup fn is measurable.

(iv) inf fn is measurable.

(v) lim sup fn is measurable.

(vi) lim inf fn is measurable.

Proof.

(i) For any n; we have"
x : sup

1�i�n
f (x) > �

#
=

1[
n=1

�
x : f (x) > �

�
= a countable union of measurable sets

= a measurable set

Hence, sup
1�i�n

fi is measurable for each n:

(ii) We know that

inf
1�i�n

fi = � sup
1�i�n

(� fi)

Thus, from (i); we can easily see that inf
1�i�n

fi is measurable for each n:

(iii) For any � 2 R and any x; sup fn(x) > � means that fn(x) > � for

n = 1; 2; 3; : : : and hence

[x : sup fn(x) > �] =

1[
n=1

[x : fn(x) > �]

= a countable union of measurable sets

= a measurable set

Thus, sup fn is measurable.
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(iv) We know that

inf fn = � sup(� fn)

Hence, inf fn is measurable, by using (iii):

(v) We know that

lim sup fn = inf
n

 
sup
i�n

fi

!

Put Fi = sup
i�n

fi which is measurable, by using (iii):

Now, by applying (iv); we have lim sup fn = inf Fn is measurable.

(vi) Since lim inf fn = � lim sup(� fn):

Hence by applying (v); we have lim inf fn is measurable. Hence the proof. �

De�nition 9.2. Let f be an extended real valued function de�ned on a Borel set. We say

that f is Borel measurable or a Borel function if for each � 2 R the set
�
x : f (x) > �

�
is a Borel set.

De�nition 9.3. A property is said to hold almost every where (a:e) if it holds everywhere

except for a set of measure zero.

Theorem 9.6. Let f be a measurable function and let f = g a:e: Then g is measurable.

Proof. Suppose f is measurable and f = g a:e: Now, our wish is to prove that g is

measurable.

Since f is measurable and by de�nition [x : f (x) > �] is measurable.

Since f = g a:e which implies m[x : f (x) 6= g(x)] = 0:

Now,

[x : f (x) > �]4[x : g(x) > �] = ([x : f (x) > �] � [x : g(x) > �])

[ ([x : g(x) > �] � [x : f (x) > �])

� [x : f (x) 6= g(x)]

) m([x : f (x) > �]4[x : g(x) > �]) = 0

By example (8.4), we have [x : f (x) > �]4[x : g(x) > �] is measurable.

Since f is measurable and by example (8.5), we have g is measurable. �

Example 9.5. Let f fig be a sequence of measurable functions converging a:e: to f ; then

f is measurable.

Solution: Suppose f fig be a sequence of measurable functions

converging a:e to f :

By theorem (9.5), we have lim sup fi is measurable.
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Since, f = lim sup fi a:e:; then by theorem (9.6), f is measurable.

Example 9.6. If f is a measurable function, then so are f + = max( f ; 0) and

f � = min( f ; 0):

Solution:For any n;

If f1; f2; f3; : : : ; fn are sequence of measurable functions, then by theorem

(9.5) both lim sup
1�i�n

fi and lim inf
1�i�n

fi are measurable.

Put f1 = f and f2 � 0: Then f1 and f2 are measurable.

Thus,

f + = max( f ; 0) = max( f1; f2) which is measurable

f � = min( f ; 0) = min( f1; f2) which is measurable

Example 9.7. The set of points on which a sequence of measurable functions f fng
converges, is measurable.

Solution: Suppose the set of points on which a sequence of measurable

functions f fng converges.

Thus, the sequence f fn(x)g is converges for a �xed x if and only if

lim sup fn(x) = lim inf fn(x)

Now, our wish is to prove that [x : lim sup fn(x) � lim inf fn(x)] = 0 is

measurable.

Since each fn is measurable, then by theorem (9.5), both lim sup fn and

lim inf fn are measurable.

Thus, lim sup fn � lim inf fn is measurable.

We know that constant functions are measurable, thus the set

[x : lim sup fn � lim inf fn = 0] is measurable.

De�nition 9.4. Let f be a measurable function; then inf[� : f � � a:e] is called the

essential supremum of f ; denoted by ess sup f :

Example 9.8. Show that f � ess sup f ; a:e:

Solution:

If ess sup f = 1; then clearly f � ess sup f and the result is obvious.

Suppose ees sup f = �1: Then by de�nition (9.4), f � n a:e for all n 2 Z:

Thus f = �1 a:e: and hence the relation f � ess sup f holds.
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Suppose ess sup f is �nite.

Put

En =

"
x : f (x) > ess sup f +

1

n

#

and E =
�
x : f (x) > ess sup f

�

Then, E =

1[
n=1

En: But, by de�nition of ess sup f ; for every n = 1; 2; : : : there

exists �n such that ess sup f +
1

n
> �n and f � �n a:e:

Hence ess sup f +
1

n
> f a:e: and hence m(En) = 0 for all n:

Thus, m(E) = 0: So, f � ess sup f :

Example 9.9. Show that for any measurable functions f and g

ess sup( f + g) � ess sup f + ess sup g

and give an example of strict inequality.

Solution:

From example (9.8), we have

f � ess sup f a:e

and g � ess sup g a:e

) f + g � ess sup f + sup g a:e:

Hence, by de�nition (9.4), we have

ess sup f + g � ess sup f + ess sup g

Example for strict inequality: Consider f = �[�1;0] � �[0;1] and g = � f ; Then
f + g = 0: So, ess sup( f + g) = 0:

But,

ess sup f = 1 = ess sup g:

Hence,

ess sup( f + g) = 0 < 2 = ess sup f + ess sup f

De�nition 9.5. Let f be a measurable function; then sup[� : f (x) � � a:e:] is called

the essential in�mum of f :
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Example 9.10.

ess sup f = �ess inf(� f )

Solution: By de�nition (9.4), we have

ess sup f = inf[� : f � � a:e]

= inf[� : � f � �� a:e:]

= � sup[�� : � f � �� a:e:]

= �ess inf(� f )

De�nition 9.6. If f is a measurable function and ess supj f j< 1; then f is said to be

essentially bounded.

Example 9.11. Let f be a measurable function and B a Borel set. Then f �1(B) is a

measurable set.

Solution: We have

f �1
0BBBBB@
1[
i=1

Ai

1CCCCCA =

1[
i=1

f �1(Ai) and f �1(Ac) =
�
f �1(A)

�c
:

So the class of sets whose inverse image under f are measurable forms

a � -algebra. Since f is measurable, the inverse image of an interval under

f is measurable. So this class contains intervals. Thus, it must contain all

Borel sets.

Let Us Sum Up:

In this unit, the students acquired knowledge to

� measurable functions and its properties.

� lim sup and lim in f , essential supremum and essential in�mum.

Check Your Progress:

1. Show that for any measurable function f ; ess sup f � sup f :

2. Show that f � ess sup f ; a:e:
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Choose the correct or more suitable answer:

1. The characteristic function �A of the set A is

(a) not measurable, if A is measurable.

(b) measurable if A is not measurable.

(c) measurable if and only if A is measurable.

(d) none of these.

Answer:

(1) c

Suggested Readings:

1. G. de Barra, �Measure Theory and Integration�, New Age

International Pvt. Ltd, Second Edition, 2013.

2. Rana I. K., �An Introduction to Measure and Integration�, Narosa

Publishing House Pvt. Ltd., Second Edition, 2007.

3. Royden H. L., �Real Analysis�, Prentice Hall of India Pvt. Ltd.,

Third Edition, 1995.
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Block-III

UNIT-10

ABSTRACT MEASURE SPACES

Structure

Objective

Overview

10. 1 Measures and Outer Measures

10. 2 Extension of a Measure

10. 3 Measure Spaces

Let us Sum Up

Check Your Progress

Answers to Check Your Progress

Suggested Readings

Objectives

After completion of this unit, students will be able to

F de�ne � -algebra and � -ring.

F understand the concept of hereditary.

F understand the concept of measure space and its properties.
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Overview

In this unit, we will illustrate the basic concepts of � -algebra

and � -ring. Further we discuss in detail about the measure spaces and its

properties.

10.1. Measures and Outer Measures:

De�nition 10.1. A class of sets R of some �xed space is called a ring if whenever

E 2 R and F 2 R then E [ F and E � F belong to R:

Example 10.1. The class of �nite union of intervals of the form [a; b) forms a ring.

De�nition 10.2. A ring is called a � -ring if it is closed under the formation of countable

unions.

Example 10.2. Show that every algebra is a ring and every � -algebra is a � -ring but

that the converse is not true.

Solution: Let A be algebra on a set. Let E 2 A and F 2 A; then

) E [ F 2 A (* �nite union is closed in algebra)

Also, E 2 A ) Ec 2 A (* complement is closed)

) Ec [ F 2 A (* �nite union is closed in algebra)

) (Ec [ F)
c 2 A

i:e:; E � F 2 A

Thus, A is a ring on a set.

Let A be a � -algebra on a set. Then, it is closed with respect to

countable union. Thus, A is a ring and it is closed with respect to countable

union. Hence, A is a � -ring.

For proving the converse part, consider the � -ring of all subset of [0; 1]

which are at most countable.

If
S

A� 2 S ; where the A� are the sets of the � -ring S ; then S may

be regarded as a � -algebra on the space
S

A�:

Theorem 10.1. There exists a smallest ring and a smallest � -ring contained a class of

subsets of a space; we refer to these as the generated ring and the generated � -ring

respectively.
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Proof. Let fS�g be any collection of � -rings of subsets of X: Then by de�nition, we

get
\
�

S� is a � -ring.

For if,

(i) X 2 S� for every �

) X 2
\
�

S�:

(ii) A1; A2; : : : 2
T
�S�

) A1; A2; : : : 2 S� 8�
)

1[
n=1

An 2 S� 8�

)
1[
n=1

An 2
\
�

S�:

(iii) A 2 T
�S�

) A 2 S� 8�
) Ac 2 S� 8�
) Ac 2 T

�S�:

Consider the family of all � -rings containing A : This family is non-empty as the

class of all subsets of X belong to this family. Let S be the intersection of all these

� -rings. Then clearly S is a � -ring containing A and in fact it is the smallest such

� -ring. Hence the proof. �

Notation: We will write S (R) for the � -ring S generated by the ring

R ; we write K (R) for the class consisting of S (R) together with all

subsets of the sets of S (R): A class of sets with this property, namely

that every subsets of one of its members belongs to the class, is said to be

hereditary.

Clearly K (R) is a � -ring and is the smallest hereditary � -ring

containing R: Indeed K (R) = K (S (R)) = K (K (R)):

De�nition 10.3. A set function � de�ned on a ring R is a measure if

(i) � is non-negative

(ii) �(;) = 0

(iii) for any sequence fAng of disjoint sets of R such that

1[
n=1

An 2 R; we have

�

0BBBBB@
1[
n=1

An

1CCCCCA =

1X
n=1

�(An)

De�nition 10.4. A measure � on R is complete if whenever E 2 R; F � E and

�(E) = 0; then F 2 R:
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De�nition 10.5. A measure � on R is � -�nite, if for every E 2 R; we have

E =

1[
n=1

En for some sequence fErg such that En 2 R and �(En) < 1 for each n:

Example 10.3. Show that Lebesgue measure m de�ned on M ; the class of measurable

sets of R; is � -�nite and complete.

Solution: By Theorem 5.4, we have M is a � -algebra. But, every

� -algebra is a � -ring and hence it is ring on which m is de�ned.

Take En = E \ (�n; n); then we have �(En) < 1: Hence M is � -�nite.

Let F � E; then

��(F) � ��(E) = m(E) = 0

) ��(F) = 0

Since ��(F) = 0; we have that F is a Lebesgue measurable set.

Hence every subset of Lebesgue measurable set E with �(E) = 0 is also a

Lebesgue measurable. Thus, M is complete.

De�nition 10.6. If R is a ring, a set function �� de�ned on the class K (R) is an outer

measure if

(i) �� is non-negative.

(ii) If A � B; then ��(A) � ��(B);

(iii) ��(;) = 0

(iv) for any sequence fAng of sets of K (R);

��
0BBBBB@
1[
n=1

An

1CCCCCA �
1X
n=1

��(An)

that is, �� is countably subadditive.

Example 10.4. Show that if A; B 2 R and A � B; then �(A) � �(B):

Solution: Since, B = A [ (B � A); then clearly, �(B) � �(A):

10.2. Extension of a Measure:

Theorem 10.2. Let fAig be a sequence in a ring R; then there is a sequence fBig of

disjoint sets of R such that Bi � Ai for each i and

N[
i=1

Ai =

N[
i=1

Bi for each N; so that

1[
i=1

Ai =

1[
i=1

Bi:
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Proof. Let us prove the result by induction.

De�ne
B1 = A1

Bn = An �
n�1[
i=1

Bi for n > 1:

Since Bi 2 R and Bi � Ai:

Further, fBig is a sequence of disjoint set and thus Bn and

n�1[
i=1

Bi are disjoint sets.

Hence, we have Bn \ Bm = ; for n > m:

Finally, if we have B1 = A1 and

k[
i=1

Bi =

k[
i=1

Ai; then

Bk+1 [
0BBBBBB@

k[
i=1

Bi

1CCCCCCA =

0BBBBBB@Ak+1 �
k[
i=1

Bi

1CCCCCCA [
k[
i=1

Bi

= Ak+1 [
k[
i=1

Bi = Ak+1 [
k[
i=1

Ai

i:e:;

k+1[
i=1

Bi =

k+1[
i=1

Ai

Thus, we have

1[
i=1

Bi =

1[
i=1

Ai: �

Example 10.5. Show that K (R) =

2666664E : E

1[
n=1

En; En 2 R
3777775

Solution: It is easily veri�ed that the right hand side de�nes a class of

sets which is hereditary, contains R and is a � -ring. So, it contains K (R):

But, if En 2 R for each n; we have
1[
n=1

En 2 S (R) and so each subset

belong to K (R): So, we get equality.

Theorem 10.3. If � is a measure on a ring R and if the set �� is de�ned by K (R)

by

��(E) =

Z 2666664
1X
n=1

�(En) : En 2 R; n = 1; 2; : : : ; E �
1[
n=1

En

3777775 (10.1)

then (i) for E 2 R; ��(E) = �(E); (ii) �� is an outer measure on K (R):

Proof. (i) If E 2 R; then from equation (10.1) we have ��(E) � �(E):

Suppose that E 2 R and E �
1[
n=1

En where En 2 R:

By Theorem (10.2), we may replace the sequence fEi \ Eg by a sequence fFig of
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disjoint sets in R such that Fi � Ei \ E and

1[
i=1

Fi = E: Then by example (10.4), we

have �(Fi) < �(Ei) for each i:

So,

�(E) = �

0BBBBB@
1[
n=1

Fi

1CCCCCA
=

1X
i=1

�(Fi)

�
1X
i=1

�(Ei) = �
�(E)

i:e:; �(E) � ��(E)

Thus, �(E) = ��(E): This proves (i):

(ii) Clearly, �� is non-negative. Also, ��(;) = �(;) = 0: Next, we have to prove that

�� is countably subadditive.

Suppose that fEig is a sequence of sets in K (R): By de�nition of ��; for each

� > 0 we can �nd for each i a sequence fEi; jg of sets of R such that Ei �
S1

j=1 Ei; j

and

1X
j=1

�(Ei; j) � ��Ei) +
�

2i
:

The sets fEi; jg form a countable class covering

1[
i=1

Ei: So

��
0BBBBB@
1[
i=1

Ei

1CCCCCA �
1X
i=1

1X
j=1

�(Ei; j)

�
nX
i=1

��(Ei) + �

Since � is arbitrary, we have

��
0BBBBB@
1[
i=1

Ei

1CCCCCA �
nX
i=1

��(Ei)

Thus, �� is an outer measure on K (R): Hence the proof. �

De�nition 10.7. Let �� be an outer measure on K (R): Then E 2 K (R) is ��

measurable if for each A 2 K (R)

��(A) = ��(A \ E) + ��(A \ Ec) (10.2)

Theorem 10.4. Let �� be an outer measure on K (R) and let S � denote the class of

�� measurable sets. Then S � is a � -ring and �� is restricted to S � is a complete

measure.

Proof. Suppose �� be an outermeasure of K (R) and S � denote the class of

�� -measurable sets. First, we shall prove that �� is a measure on the � -ring S �:
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As in theorem (8.4), S � is closed under countable union. It remains to prove that if

E; F 2 S � then E � F 2 S �:

Let A 2 K (R); then A can be written as union of the four disjoint sets.

i:e:; A = A1 [ A2 [ A3 [ A4

Where A1 = A � (E [ F)

A2 = A \ E \ F

A3 = A \ (F � E)

A4 = A \ (E � F)

Since F is measurable, then equation (10.2) gives

��(A) = ��(A1 [ A4) + �
�(A2 [ A3) (10.3)

E is measurable and for any set A1 [ A4; then (10.2) gives

��(A1 [ A4) = ��(A1) + �
�(A4) (10.4)

F is measurable and for any set A1 [ A2 [ A3; then (10.2) gives

��(A1 [ A2 [ A3) = ��(A1) + �
�(A2 [ A3) (10.5)

Substitute equations (10.4) and (10.5) in (10.3), we have

��(A) = ��(A4) + �
�(A1 [ A2 [ A3)

i:e:; ��(A) = ��(A \ (E � F)) + ��(A \ (E � F)c

i:e:; E � F is measurable.

Suppose that fEig is a sequence of disjoint sets in S �; Then exactly as in theorem

(8.5), we have

��
0BBBBB@
1[
i=1

Ei

1CCCCCA =

1X
i=1

��(Ei)

Also, for every set E 2 K (R) such that ��(E) = 0 is �� measurable, for if

A 2 K (R);

��(A) � ��(A \ E) + ��(A \ Ec)

� ��(E) + ��(A) = ��(A)

So equality holds good and E is �� -measurable.

If E 2 S � and ��(E) = 0 and F � E then it follows that F 2 S �: Thus, �� is a

complete measure on S �: Hence the proof. �

Theorem 10.5. Let �� be the outer measure on K (R) de�ned by � on R; then S �

contains S (R); the � -ring generated by R:

Proof. Since S � is a � -ring. It is enough to prove that R � S �:
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If E 2 R; A 2 K (R) and � > 0 then by the de�nition of �� there exists a sequence

fEng of sets of R such that A �
1[
n=1

En and

��(A) + � �
1X
n=1

�(En)

=

1X
n=1

�(En \ E) +

1X
n=1

�(En \ Ec)

) ��(A) + � � ��(A \ E) + ��(A \ Ec) (as � is a measure)

Since � is arbitrary and hence we have

��(A) � ��(A \ E) + ��(A \ Ec)

Since the opposite inequality is quite obvious, thus we have

��(A) = ��(A \ E) + ��(A \ Ec)

Thus, E 2 S � and hence R � S �: This completes the proof. �

Example 10.6. Show that if � is a � -�nite measure on R; then the extension � of �

to S � is also � -�nite.

Solution: Let E 2 S �:

By de�nition of � there is a sequence fEng of sets of R such that

�(E) �
1X
n=1

�(En)

By hypothesis, each En is the union of sequence fEn;i i = 1; 2; : : :g of sets
of R such that �(En;i) < 1 for each n and i: So

�(E) �
1X
n=1

1X
i=1

�(En;i)

Thus, E is the union of countable collection of sets of �nite � -measure

and hence S � is � -�nite.

10.3. Measure Spaces:

De�nition 10.8. A pair [[X;S ]] where S is a � -algebra of subsets of a space X; is

called a measurable space. The sets of S are called measurable sets.

De�nition 10.9. A triple [[X;S ;m]] is called a measure space if [[X;S ]] is a

measurable space and � is a measure on S :
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Example 10.7. [[R;M ;m]] and [[R;B;m] are measurable spaces, where B denotes

the Borel sets and where in the second example m restricted to B:

Theorem 10.6. Let fEig be a sequence of measurable sets. We have

(i) If E1 � E2 � : : : then �

0BBBBB@
1[
n=1

En

1CCCCCA = lim �(En):

(ii) If E1 � E2 � : : : and �(E1)1; then �

0BBBBB@
1\
n=1

En

1CCCCCA = lim �(En):

Proof. See Theorem 8.9 �

De�nition 10.10. Let f be an extended real-valued function de�ned on X: Then f is

said to be measurable if 8�; [x : f (x) � �] 2 S :

Example 10.8. Let [[X;S ]] be a measurable space and let X =

1[
n=1

Xn where, for each

n; Xn 2 S and Xn \ Xm = ; for n 6= m: Write Sn = B \ Xn; B 2 S ]: Show that

f is measurable with respect to [[X;S ]] only if, for each n its restriction fn to Xn is

measurable with respect to [[Xn;Sn]] and conversely, if for each n the functions fn are

measurable with respect to [[Xn;Sn]] and f is de�ned by f (x) = fn(x) when x 2 Xn;

then f is measurable with respect to [[X;S ]]:

Solution: For each �; [x : fn(x) > �] = [x : f (x) > �] \ Xn: So fn

is measurable with respect to the measurable set [[Xn;Sn]]: The converse

follows from [x : f (x) > �] =

1[
n=1

[x : fn(x) > �]:

Theorem 10.7. The measurability of f is equivalent to

(i) 8�; [ f (x) � �] 2 S ;

(ii) 8�; [ f (x) < �] 2 S ;

(iii) 8�; [ f (x) � �] 2 S :

Proof. See Theorem 9.3 �

Example 10.9.

(i) if f is measurable, then [x : f (x) = �] is measurable for each extended real

number �;

(ii) the constant functions are measurable,

(iii) the characteristic function �A is measurable, if and only if A 2 S ;

(iv) a continuous function of a measurable function is measurable.

Theorem 10.8. If c is a real number and f ; g measurable functions, then f + c; c f ;

f + g; g � f and f g are also measurable.
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Proof. See Theorem 9.4 �

Theorem 10.9. If fi(i = 1; 2; : : :) is measurable, then sup
1�i�n

fi; inf
1�i�n

fi; sup fn;

inf fn; lim sup fn and lim inf fn are also measurable.

Proof. See Theorem 9.5 �

De�nition 10.11. If a property holds except on a measurable set E such that �(E) = 0;

we say that it holds almost everywhere with respect to �; written a:e:(�)

Example 10.10. The limit of a pointwise convergent sequence of measurable function is

measurable.

Example 10.11. Let f = g a:e:(�); where � is a complete measure. Show that if f is

measurable, so is g:

Solution: Write

E = [x : g(x) > �]

E1 = [x : f (x) > �]

E2 = [x : f (x) 6= g(x)]

Clearly E1 and E2 are measurable.

As � is measure, so E1 \ E2 is also measurable.

So E = (E1 � E2) [ (E \ E2) is measurable.

Hence g is measurable.

Let Us Sum Up:

In this unit, the students acquired knowledge to

� � -algebra, � -ring, measure space and its properties.

Check Your Progress:

1. Describe the ring generated by the �nite open intervals.

2. Show that if � is a non-negative set function on a ring and is

countably additive and is �nite on some set, then � is a measure.

3. Show that if � is not complete, then f measurable and f = g a:e: do

not imply g measurable.
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Choose the correct or more suitable answer:

1. if A; B 2 R and A � B; then

(a) �(A) < �(B):

(b) �(A) > �(B):

(c) �(A) � �(B):

(d) �(A) � �(B):

Answer:

(1) c

Suggested Readings:

1. G. de Barra, �Measure Theory and Integration�, New Age

International Pvt. Ltd, Second Edition, 2013.

2. Rana I. K., �An Introduction to Measure and Integration�, Narosa

Publishing House Pvt. Ltd., Second Edition, 2007.

3. Royden H. L., �Real Analysis�, Prentice Hall of India Pvt. Ltd.,

Third Edition, 1995.
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Block-IV

Unit-11: Lebesgue Integral.

Unit-12: The General Integral.

Unit-13: Riemann and Lebesgue Integrals.





Block-IV

UNIT-11

LEBESGUE INTEGRAL

Structure

Objective

Overview

11. 1 Integration of Non-negative functions

Let us Sum Up

Check Your Progress

Suggested Readings

Objectives

After completion of this unit, students will be able to

F de�ne Lebesgue integral for non-negative function.

F derive Fatou's lemma, Lebesgue's Monotone Convergence

theorem.
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152 11.1. Integration of Non-negative functions:

Overview

In analysis, it is often convenient to replace an expression of the

form
R P

fndx by
PR

fndx; or
R
lim fndx by lim

R
fndx or

Z
lim
�!�0

f�dx by

lim
�!�0

Z
f�dx: In this chapter, we de�ne a de�nition of an integral which

applies to a large Lebesgue measurable function and which allows the

interchange of integral and sum or limit in very general circumstances.

First we de�ne Lebesgue integral, so called simple function and then we

extend to non-negative measurable functions.

11.1. Integration of Non-negative functions:

We �rst de�ne integral for the class of non-negative measurable

functions and study the properties of the integral.

De�nition 11.1. A non-negative �nite-valued function '(x); taking only a �nite number

of di�erent values is called a simple function.

If a1; a2; : : : ; an are the distinct values of ' and Ai = [x : '(x) = ai] then

'(x) =

nX
i=1

ai�Ai
(x)

De�nition 11.2. Let ' be a measurable simple function. Then the integral of ' is

de�ned as Z
'dx =

nX
i=1

aim(Ai)

where a1; a2; : : : ; an are the distinct values that ' assumes and Ai = [x : '(x) = ai]:

Example 11.1. Let the sets Ai be de�ned by Ai = [x : '(x) = ai]: Then

Ai \ A j = ; if i 6= j and

n[
i=1

Ai = R:

Proof. Let if possible Ai \ A j 6= ; if i 6= j: Then there exist x such that x 2 Ai \ A j:

x 2 Ai ) '(x) = ai

x 2 A j ) '(x) = a j

) ai = a j; where i 6= j

a contradiction.

Thus, Ai \ A j = ; if i 6= j: Further

n[
i=1

Ai = R:

For any x 2 R; '(x) = ai; for some i:
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) x 2 Ai for some i

) x 2
n[
i=1

Ai

) R �
n[
i=1

Ai

Hence; R =

n[
i=1

Ai �

De�nition 11.3. Let f be a non-negative measurable function. Then integral of f

denoted by
R
f dx; is de�ned asZ

f dx = sup

Z
'(x)dx

where the supremum is taken over all measurable simple functions ' such that ' � f :

De�nition 11.4. For any measurable set E and any non-negative measurable function f ;

we de�ne the integral of f over E by

Z
E

f dx =

Z
f�Edx

Note 11.1. If the set E in de�nition (11.4) is an interval, say [a; b] then in place ofR
E
f dx we write

R b

a
f dx if a > b we use the usual convectionZ b

a

f dx = �
Z a

b

f dx

The integral de�ned in de�nition (11.4) is called the Lebesgue integral of the function

f :

Example 11.2. If ' is a measurable simple function, De�nition (11.2) and De�nition

(11.3) both give a value for its integral. Show that these values are the same.

Solution:

Let
R �

dx be the integral value of ' as given by De�nition (11.2) and letR
'dx be the integral value of ' as given by De�nition (11.3).

If a1; a2; : : : ; an are the distinct values of '; then by de�nitionZ
'dx =

1X
n=1

aim(Ai)

where Ai = [x : '(x) = ai]:

Also, by de�nition Z
'dx = sup

Z
 dx
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where  is a measurable simple function such that  � ':

So, Z �
'dx �

Z
'dx (11.1)

Since ' is a measurable simple function.

Also, if  6= ' is a measurable simple function with distinct values

b j ( j = 1; 2; : : : ;m) and  =

mX
j=1

b j�B j
; then

Z
 dx =

mX
j=1

b jm(B j)

Since Ai \ Ak = ; for i 6= k; B j \ Bk = ; for j 6= k and
n[
i=1

Ai =

m[
j=1

B j = R:

Also, we have Ai \ B j; (i = 1; 2; : : : ; n; j = 1; 2; : : :m) are disjoint sets and
n[
i=1

m[
j=1

(Ai \ B j) = R:

Hence
Z

 dx =

mX
j=1

b jm(B j) = m(B j \ Ai)

where b j < ai if m(B j \ Ai) > 0: Thus,Z
 dx �

mX
j=1

nX
i=1

aim(B j \ Ai)

=

nX
i=1

aim(Ai) =

Z
'dx

) sup
 �'

Z
 dx �

Z
'dx

i:e:;

Z �
'dx �

Z
'dx (11.2)

From (11.1) and (11.2), we getZ �
'dx =

R
'dx

Theorem 11.1. If ' is a measurable simple function, then

(i)
R
E
=

nX
i=1

aim(Ai \ E) for any measurable set E :

(ii)
R
A[B 'dx =

R
A
'dx +

R
B
'dx for any disjoint measurable sets A and B:

(iii)
R
a'dx = a

R
'dx if a > 0:
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Proof.

�E(X) =

8>><>>:
1 if x � E

0 if 0 < x � Ec

'(x) = ai and Ai = [x : '(x) = ai]

) '�E(X) =

8>><>>:
ai � 1 if x 2 Ai \ E

ai � 0 if x 2 Ai \ Ec

(i) '�E is a simple measurable function for which takes the value ai on Ai \ E and 0

on Ai \ Ec:

Z
E

'dx =

Z
'�Edx (by de�nition (11.4))

=

nX
i=1

aim(Ai \ E) (by de�nition (11.2))

(ii)
Z
A

'dx +

Z
B

'dx =

nX
i=1

aim(Ai \ A) +

nX
i=1

aim(Ai \ B) (by de�nition (11.2))

=

nX
i=1

ai [m(Ai \ A) + m(Ai \ B)]

=

nX
i=1

ai [m ((Ai \ A) [ m(Ai \ B))] (* A and B are disjoint)

=

nX
i=1

ai [m(Ai \ (A [ B))]

=

Z
A[B

'dx (by (i))

(iii) ' takes the values ai on Ai for 1 � i � n which implies a' takes the values aai

on Ai for 1 � i � n: Further, a' is a simple measurable function, if a > 0: Then by

de�nition (11.2), we have

Z
a'dx =

nX
i=1

aaim(Ai)

= a

nX
i=1

aim(Ai)

= a

Z
' (by de�nition (11.2))

Hence the proof. �

Example 11.3. Show that if f is a non-negative measurable function, then f = 0 a:e: if

and only if
R
f dx = 0:

Solution: Suppose f is a non-negative measurable function and

f = 0 a:e: Now, our wish is to prove that
R
f dx = 0:
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Since f = 0 a:e:; then m[x : f (x) 6= 0] = 0: Suppose ' is a measurable

simple function such that ' � f : Then m[x : '(x) 6= 0] = 0:

Hence,

m(Ai) = m[x : '(x) = ai] = 0 8i

Thus, for every measurable simple function ' � f ;
R
'dx = 0:

So, by de�nition (11.3), we haveZ
f dx = sup

'� f

Z
'dx = 0

Conversely, let
R
f dx = 0; we have to prove that f = 0 a:e: Let

E = [x : f (x) > 0] and En =

"
x : f (x) � 1

n

#
; n = 1; 2; 3; : : :

Then E =

1[
n=1

En; if x 2 En; f (x) �
1

n
and �En

(x) = 1:

Thus,
f (x) �

 
1

n

!
�En

(x) 8 x (11.3)

By de�nition

Z
f dx = sup

'� f

Z
'dx

)
Z

'dx �
Z

f dx

for every measurable simple function ': Since

 
1

n

!
�En

is a simple

measurable function and thus (11.3) implies that

0 =

Z
f dx �

Z  
1

n

!
�En

(x) =
1

n

Z
�En

dx =
1

n
m(En)

So m(En) = 0: But

0 � m[x : f (x) > 0] = m

0BBBBB@
1[
n=1

En

1CCCCCA �
1X
n=1

m(En) = 0

) m[x : f (x) > 0] = 0

Hence f = 0 a:e:

Theorem 11.2. Let f and g be non-negative measurable functions.

(i) If f � g; then
R
f dx �

R
gdx:

(ii) If A is measurable set and f � g; then
R
A
f dx �

R
A
gdx:

(iii) If a � 0; then
R
a f dx = a

R
f dx:

(iv) If A and B are measurable sets and A � B; then
R
A
f dx �

R
B
f dx:
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Proof. (i) Let f � g (i:e:; ) f (x) � g(x) 8x:

Let ' be a measurable simple functions such that ' � f :

Similarly,  is a measurable simple functions such that  � g:

Since, f � g; then f' : ' � f g � f :  � gg:

Hence, Z
f dx = sup

'� f

Z
'dx � sup

 �g

Z
 dx =

Z
gdx:

(ii) If f � g on A; then f�A � g�B: then by de�nition (11.3) and (i); we have

Z
A

f dx =

Z
f�Adx �

Z
g�Adx =

Z
A

gdx

(iii) If a = 0 then the result is quite obvious. So, assume that a > 0: Then ' � a f if

and only if ' = a ; where  is a simple and  � f : But if  is a measurable simple

functions, then a is also a measurable function and
R
a dx = a

R
 dx: Thus,Z

a f dx = sup
'�a f

Z
'dx = sup

a �a f

Z
a dx

= sup
 � f

a

Z
 dx = a sup

 � f

Z
 dx

= a

Z
f dx

(iv); If B � A implies �B � �A: So, f�B � f�A: Then, by (i) we haveZ
A

f dx =

Z
f�A dx �

Z
f�B dx =

Z
B

f dx

Hence the proof. �

The following result will be basic in proving convergence theorem.

Theorem 11.3 (Fatou's lemma). Let f fn; n = 1; 2; : : :g be a sequence of non-negative

measurable functions. Then

lim inf

Z
fndx �

Z
(lim inf fn) dx

Proof. Let f = lim inf fn: As each fn is non-negative then f = lim inf fn is also

non-negative.

Also, each fn is measurable, then by theorem (9.5) lim inf fn is also measurable.

Thus, lim inf fn = f is non-negative measurable function.

Let ' be a measurable simple function such that ' � f :

Now, our aim is to prove that
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Z
lim inf fndx � lim inf

Z
fndx

i:e:;

Z
f dx � lim inf

Z
fndx

i:e:; sup
'� f

Z
'dx � lim inf

Z
fndx

0BBBB@*
Z

f dx = sup
'� f

Z
'dx

1CCCCA
i:e:;

Z
'dx � lim inf

Z
fndx (11.4)

Case (i) : Let
R
'dx = 1:

Then from the de�nition of integral of a measurable simple function, there exists a

measurable set A with m(A) and ' is a constant on A:

Choose a such that ' > a > 0 on A:

De�ne gk(x) = inff fk(x); fk+1(x); : : :g
= inf

j�k
f fk(x)g

Since each fn is a non-negative measurable function, then by theorem (9.5), each gk(x)

is a non-negative measurable function.

Let An = [x : gk(x) > a;8k � n]

=

1\
k=n

[x : gk(x) > a]

Since each gk is a measurable function, then it follows that each An is a measurable

set.

Also, An � An+1 8n = 1; 2; 3; : : :

gk(x) = inff fk(x); fk+1(x); : : :g
i:e:; g1(x) = inff f1(x); f2(x); : : :g

g2(x) = inff f2(x); f3(x); : : :g

Thus, from the de�nition of gk(x); each x; gk(x) is monotonic increasing sequence

and

lim
k!1

gk(x) = lim inf fk(x)

= f (x) � '(x) (* ' � f ) (11.5)

So, A �
1[
n=1

An:

Now, we have fAng to be a sequence of measurable sets such that A1 � A2 � A3 � : : :

lim
n!1

m(An) = m (lim An)

) lim
n!1

m(An) = m

0BBBBB@
1[
n=1

An

1CCCCCA (11.6)
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Since, if E1 � E2 � : : : ; then lim Ei =

1[
i=1

Ei:

Now,
A �

1[
n=1

An (11.7)

) m(A) � m

0BBBBB@
1[
n=1

An

1CCCCCA
) 1 � m

0BBBBB@
1[
n=1

An

1CCCCCA = 1

) lim
n!1

m(An) = 1 (11.8)

From the de�nition of gn; we have gn � fn and

)
Z

fndx �
Z

gndx > a m(An)

) lim inf

Z
fndx � lim inf a m(An)

) lim inf

Z
fndx � a lim

n!1
m(An)

) lim inf

Z
fndx � a:1 (by using (11.8))

) lim inf

Z
fndx = 1

) lim inf

Z
fndx =

Z
'dx

This proves case (i):

Case (ii) : Let
R
'dx < 1:

Write B = fx : '(x) > 0g is of �nite measure .

Let M be the largest value of the function ': i:e:; '(x) � M 8x:

Let 0 < � < 1 be arbitrary.

Put Bn = fx : gk(x) > (1 � �)'(x) 8k � ng

where gk is de�ned as in case (i):

Then Bn are all measurable sets and Bn � Bn+1 8n:

Note that from the de�nition of gk; fgk(x)g is an increasing sequence for every x and

lim
k!1

gk(x) = f (x) � '(x)

Further B �
1[
n=1

Bn
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) lim
k!1

gk(x) = f (x)

) given �'(x) > 0;9 n such that jgk(x) � f (x)j< �'(x) 8k � n

) f (x) � gk(x) < �'(x); 8k � n

) '(x) � gk(x) � f (x) � gk(x) < �'(x); 8k � n

) gk(x) > (1 � �)'(x); 8k � n

) x 2 Bn for some n

) x 2
1[
n=1

Bn

Bn � Bn+1 ) B � Bn � B � Bn+1 8n

Also B � Bn is a measurable set 8n:
B � Bn � B) m(B � Bn) � m(B) < 1:

On the other hand,

lim(B � Bn) = m

2666664
1\
n=1

(B � Bn)

3777775
= m

0BBBBB@B �
1[
n=1

Bn

1CCCCCA
= m(;) = 0

) given � > 0; 9 N such that jm(B � Bn) � 0j < �; 8n � N

) m(B � Bn) < � 8n � N

Hence n � N)
Z

gndx �
Z
Bn

gndx >

Z
Bn

(1 � �)'(x)dx

= (1 � �)
Z
Bn

'(x)dx

= (1 � �)
"Z

B

'(x)dx �
Z
B�Bn

'(x)dx

#

i:e:;

Z
gndx � (1 � �)

Z
B

'dx � (1 � �)
Z
B�Bn

'dx

� (1 � �)
Z
B

'dx � Mm(B � Bn)

= (1 � �)
"Z

B

'dx �
Z
Bc

'dx

#
� Mm(B � Bn)

> (1 � �)
Z

'dx � M�

=

Z
'dx � �

"Z
'dx + M

#

Since � > 0 is arbitrary
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n � N )
Z

gndx �
Z

'dx

) lim inf

Z
gndx �

Z
'dx (11.9)

* gn � fn; 8n )
Z

gndx �
Z

fndx

) lim inf

Z
gndx � lim inf

Z
fndx (11.10)

From (11.9) and (11.10), we have

) lim inf

Z
fndx �

Z
'dx

) sup
'

Z
'dx � lim inf

Z
fndx

)
Z

f dx � lim inf

Z
fndx

)
Z

lim fndx � lim inf

Z
fndx �

Theorem 11.4 (Lebesgue's Monotone Convergence Theorem). Let f fn; n = 1; 2; : : :g
be a sequence of non-negative measurable functions such that f fn(x)g is monotonically

increasing for each x: Let f = lim fn: Then
R
f dx = lim

R
fndx:

Proof.

lim fn = f ) lim inf fn = f (11.11)

Therefore, By Fatou's lemma

lim inf

Z
fndx �

Z
lim fndx

) lim inf

Z
fndx �

Z
f dx (using (11.11)) (11.12)

fn is increasing and convergent to f

) fn � f 8n
)

Z
fndx �

Z
f dx

) lim sup

Z
fndx �

Z
f dx (11.13)

Combining (11.12) and (11.13), we get

lim sup

Z
fndx �

Z
f dx � lim inf

Z
fndx � lim sup

Z
fndx

)
Z

f dx = lim sup

Z
fndx = lim inf

Z
fndx

)
Z

f dx = lim
n!1

Z
fndx �

Theorem 11.5. Let f be a non-negative measurable function. Then there exists a

sequence f'ng of measurable simple functions such that for each x; 'n(x) " f (x):

M.Sc.(Mathematics)-I Year-I Sem Real Analysis
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Proof. Since f is a non-negative measurable function, range of f is a subset of [0;1):

For every n; Consider the partition Pn of [0;1) given by the points

0;
1

2n
;
2

2n
; : : : ;

(2n � 1)

2n
; n;1:

For 1 � k � n2n; let

Enk =

"
x :

k � 1

2n
< f (x) � k

2n

#

and Fn = [x : f (x) > n]

Since f is measurable, thus the sets Enk; Fn are measurable for all n and

1 � k � n2n:

For every n = 1; 2; : : : ; Put

'n =

n2nX
k=1

k � 1

2n
�Enk

+ n�Fn

Then the function 'n are measurable simple functions. The partition Pn+1 giving 'n+1

is a re�nement of 'n: So, for each x; we have 'n(x) � 'n+1(x):

If f (x) = 1; then for all n; x 2 Fn and hence 'n(x) = n: Thus, We have

lim
n!1

'n(x) = f (x):

Further, if f (x) < 1; then for n = 1; 2; : : : ; x 2 Enk for some k; 1 � k �
2n; i:e:; 'n(x) =

k � 1

2n
: Since

k � 1

2n
< f (x) � k

2n
and thus we have 'n(x) � f (x)

and

j f (x) � 'n(x)j<
k

2n
� k � 1

2n
=

1

2n

Hence, lim
n!1

'n(x) = f (x): This completes the proof. �

Corollary 11.1. Suppose f'ng is a sequence of measurable simple functions such that

for each x; 'n(x) " f (x); where f is a non-negative measurable function. Then

lim
n!1

Z
'ndx =

Z
f dx

Proof. Suppose, for each x; 'n(x) " f (x); we have f'n(x)g is monotone increasing

sequence for each x:

Hence, by Lebesgue monotone convergence theorem, we haveZ
f dx = lim

n!1

Z
'ndx �

Theorem 11.6. Let f and g be non-negative measurable functions. ThenZ
f dx +

Z
gdx =

Z
( f + g)dx

Proof. Let ' and  be two measurable simple functions. Let the values of ' be

a1; a2; : : : ; an taken on the sets A1; A2; : : : ; An and let the values of  be b1; b2; : : : ; bm

on the sets B1; B2; : : : Bm: Then the simple function ' +  has the values ai + b j on the

measurable set Ai \ B j: Thus, we have
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Z
Ai\B j

(' +  )dx =

nX
i=1

mX
j=1

(ai + b j)m(Ai \ B j)

=

nX
i=1

mX
j=1

aim(Ai \ B j) +

nX
i=1

mX
j=1

b jm(Ai \ B j)

=

Z
Ai\B j

'dx +

Z
Ai\B j

 dx

But the union of nm disjoint sets Ai \ B j is R: Hence,Z
(' +  )dx =

nX
i=1

mX
j=1

Z
Ai\B j

(' +  )dx

=

nX
i=1

mX
j=1

Z
Ai\B j

'dx +

nX
i=1

mX
j=1

Z
Ai\B j

 dx

=

Z
'dx +

Z
 dx

This proves the theorem for measurable simple functions ' and  :

Let f and g be any non-negative measurable functions. Let f'ng; f ng be sequences

of measurable simple functions such that ' " f and  " g: Then,we have '+ " f + g:

But Z
('n +  n)dx =

Z
'ndx +

Z
 ndx

Hence, by applying Lebesgue monotone convergence theorem, we have

Z
( f + g)dx = lim

n!1

Z
('n +  n)dx

= lim
n!1

 Z
'ndx +

Z
 ndx

!

= lim
n!1

Z
'ndx + lim

n!1

Z
 ndx

=

Z
f dx +

Z
gdx �

Theorem 11.7. Let f fng be a sequence of non-negative measurable functions. ThenZ 1X
n=1

fndx =

1X
n=1

Z
fndx

Proof. Let us prove the theorem by the method of induction.

By theorem (11.6), we haveZ
( f + g)dx =

Z
f dx +

Z
gdx

Let S n = f1 + f2 + : : : + fn =

nX
k=1

fk denote the nth partial sum of
P

fn: Thus, we

have
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Z
S n =

Z nX
k=1

fkdx =

nX
k=1

Z
fkdx

Taking limits as n ! 1; we get

lim
n!1

Z
S ndx = lim

n!1

nX
k=1

Z
fkdx

)
Z

lim
n!1

S ndx =

1X
k=1

Z
fkdx

)
Z

lim
n!1

nX
k=1

fkdx =

1X
k=1

Z
fkdx

)
Z 1X

n=1

fndx =

1X
n=1

Z
fndx �

Example 11.4. Give an example of a sequence f fng of non-negative measurable

functions such that

lim inf

Z
fndx >

Z
(lim inf f )dx

In other words, give an example where strict inequality occurs in Fatou's lemma.

Solution:

Let f2n�1 = �[0;1] and f2n = �[1;2]; (n=1,2,. . . )

Then each fn is non-negative measurable function.

For any x; lim inf fn(x) = 0 and
R
fn(x)dx = 1 8n:

Hence,

lim inf

Z
fndx = 1 > 0 =

Z
(lim inf fn)dx

Example 11.5. Show that

Z 1

1

dx

x
= 1:

Solution: Let f (x) =
1

x
:

Clearly, f (x) is continuous for x > 0 and also it is measurable function.

Thus, f (x) is non-negative measurable function (* f (x) is non-negative

for x > 0 )

Therefore,

Z 1

1

dx

x
is well de�ned.

For any n; we have

Z 1

1

dx

dx
>

Z n

1

dx

x
:

If k � 1 � x < k; then
1

x
>

1

k
So, for n = 2; 3; : : :
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So, Z n

1

dx

x
>

nX
k=2

Z n

1

k�1�[k�1;k)dx

>

nX
k=2

k�1

As n ! 1;
nX

k=2

k�1 ! 1

)
Z 1

1

dx

x
= 1

Example 11.6. De�ne f (x) on [0; 1] by

f (x) =

8>><>>:
0 if x is rational

n if x is irrational

where n is the number of zeros immediately after the decimal point in the representation

of x on the decimal scale. Show that f is measurable and �nd

Z 1

0

f dx:

Solution:

For x 2 (0; 1]; let

g(x) =

8>>><>>>:
n 10�(n+1) � x � 10�n; n = 1; 2; : : :

n x = 1

and g(0) = 0; g(1) = 0: That is,

g(x) = 0 if 0:1 � x � 1

g(x) = 1 if 0:01 � x � 0:1

g(x) = 2 if 0:001 � x � 0:01
...

So, if 0 < x < 1; g(x) is the number of zero immediately after decimal

point in the representation of x on the decimal scale. Hence

f (x) = g(x) if x is irrational

f (x) � g(x) if x is rational

So, f = g a:e; g is measurable implies that f is measurable andZ 1

0

f dx =

Z 1

0

gdx

But, Z 1

0

gdx =

Z 0BBBBB@
1X
n=0

g�In

1CCCCCA dx

where In =

 
1

10n+1
� 1

10n

!
: So
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Z 1

0

f dx =

Z 1

0

gdx =

1X
n=0

n

 
1

10n
� 1

10n+1

!

=

1X
n=1

9n

10n+1
=

1

9
:

Let Us Sum Up:

In this unit, the students acquired knowledge to

� the concept of simple function and measurable function.

� derive Fatou's lemma and Lebesgue monotone convergence

theorem.

Check Your Progress:

1. De�ne simple function.

2. De�ne Lebesgue integral of the function f .

3. State and Prove Fatou's lemma.

4. State and Prove Lebesgue's monotone convergence theorem.

Suggested Readings:

1. G. de Barra, �Measure Theory and Integration�, New Age

International Pvt. Ltd, Second Edition, 2013.

2. Rana I. K., �An Introduction to Measure and Integration�, Narosa

Publishing House Pvt. Ltd., Second Edition, 2007.

3. Royden H. L., �Real Analysis�, Prentice Hall of India Pvt. Ltd.,

Third Edition, 1995.
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Block-IV

UNIT-12

THE GENERAL INTEGRAL

Structure

Objective

Overview

12. 1 The General Integral

Let us Sum Up

Check Your Progress

Answers to Check Your Progress

Suggested Readings

Objectives

After completion of this unit, students will be able to

F derive Lebesgue dominated convergence theorem.

F evaluate de�nite integral.

Overview

In this unit, we will illustrate the de�nition of integral to real
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168 12.1. The General Integral:

valued function and also explain in detail for proving Lebesgue dominated

convergence theorem.

12.1. The General Integral:

The de�nition of the integral will now be extended to a wide class of

real-valued functions, not necessarily non-negative.

De�nition 12.1. If f (x) is any real function,

f +(x) = max( f (x); 0)

f �(x) = max(� f (x); 0)

are said to be the positive and negative parts of f ; respectively.

Theorem 12.1.

(i) f = f + � f �; j f j= f + + f �; f +; f � � 0:

(ii) f is measurable if and only if f + and f � are both measurable.

Proof. (i) To Prove: f = f + � f �

Case (a) : Let f (x) > 0

f +(x) = max ( f (x); 0) = f (x)

f �(x) = max (� f (x); 0) = 0

) f + � f � = f

Case (b) : Let f (x) < 0

f +(x) = max ( f (x); 0) = 0

f �(x) = max (� f (x); 0) = � f (x)
) f + � f � = f

To Prove: j f j= f + + f �:

Case (a) : Let f (x) > 0

f +(x) = max ( f (x); 0) = f (x)

f �(x) = max (� f (x); 0) = 0

) f + + f � = f (12.1)

Case (b) : Let f (x) < 0
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f +(x) = max ( f (x); 0) = 0

f �(x) = max (� f (x); 0) = � f (x)
) f + + f � = f (12.2)

From (12.1) and (12.2), we get

f + + f � = � f
i:e:; f + + f � = j f j

To Prove: f + � 0; f � � 0:

Case (a) : Let f (x) > 0

f +(x) = max ( f (x); 0) = f (x) � 0

f �(x) = max (� f (x); 0) = 0

) f + � 0; f � = 0

Case (b) : Let f (x) < 0

f +(x) = max ( f (x); 0) = 0

f �(x) = max (� f (x); 0) = � f (x) � 0

) f + = 0; f � � 0

(ii) To prove f is measurable if and only if f + and f �1 is measurable.

Necessary part: Suppose f is measurable. Now, our aim is to prove that f + and

f � are measurable. By de�nition,

f + = max ( f (x); 0) which is measurable

f � = max (� f (x); 0) which is measurable

Thus, f + and f � are measurable.

Su�cient part: Suppose f + and f � are measurable. Now we have to prove that

f is measurable.

By case (i); f = f + � f � which is the di�erence of two measurable functions and

hence f is measurable. This completes the proof. �

De�nition 12.2. If f is a measurable function and
R
f +dx < 1;

R
f �dx < 1; we say

that f is integrable, and its integral is given byZ
f dx =

Z
f +dx �

Z
f �dx

Note 12.1. If measurable function f is integrable then f + and f � are measurable

non-negative functions and
R
f +dx < 1;

R
f �dx < 1: So,Z

f +dx +

Z
f �dx =

Z
( f + + f �)dx =

Z
j f jdx exists
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Hence, j f j is integrable and
R
j f jdx =

R
f +dx +

R
f �dx:

De�nition 12.3. If E is a measurable set, f is a measurable function, and �E f is

integrable, we say that f is integrable over E, and its integral is given byZ
E

f dx =

Z
f�Edx

Notation: L(E) denotes the class of integrable functions over the

measurable set E:

De�nition 12.4. If f is a measurable function such that at least one of
R
f +dx;

R
f �dx

is �nite, then Z
f dx =

Z
f +dx �

Z
f �dx

Note 12.2. Integrals of real-valued functions are allowed to take in�nite values by

De�nition (12.4). So De�nition (12.4) is an extension of De�nition (11.3). But, it is said

to be integrable only if
R
f +dx and

R
f �1dx are �nite. In other words, f is integrable

only if j f j has a �nite integral.

Theorem 12.2. Let f and g be integrable functions and let a be a real number. Then

(i) a f is integrable and
R
a f dx = a

R
f dx:

(ii) f + g is integrable and
R
( f + g)dx =

R
f dx +

R
gdx:

(iii) If f = 0 a:e:; then
R
f dx = 0:

(iv) If f � g a:e:; then
R
f dx �

R
gdx:

(v) If A and B are disjoint measurable sets, thenZ
A

f dx +

Z
B

f dx =

Z
A[B

f dx

Proof. Given that f and g are integrable functions, which implies that
R
f +dx < 1;R

f �dx < 1;
R
g+dx < 1;

R
g�dx < 1:

Also, Z
f dx =

Z
f +dx �

Z
f �dx

Z
gdx =

Z
g+dx �

Z
g�dx

(i) To Prove: a f is integrable. It is enough to prove that
R
(a f )+ < 1 and

R
(a f )� < 1:

Case (a) : a > 0:

Given that f is measurable

) a f is measurable

Now, (a f )+ = maxf(a f ) ; 0g
= maxfa f (x); 0g
= amaxf f (x); 0g = a f +
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In a similar way, we can prove that (a f )� = a f �; (ag)+ = ag+; (ag)� = ag�:

Now, considerZ
(a f +)dx =

Z
a f +dx

= a

Z
f +dx < 1 (* f + is measurable)

Similarly, we can prove that
R
(a f �)dx < 1:Z

a f dx =

Z
(a f )+dx �

Z
(a f )�dx

=

Z
a f +dx �

Z
a f �dx

= a

"Z
f +dx �

Z
f �dx

#

= a

Z
f dx

Case (b) : If a = �1; then a f = � f :
(a f )+ = (� f )+ = max(� f ; 0) = f �

(a f )� = (� f )� = max(�(� f ); 0) = max( f ; 0) = f +

) (� f )+ = f �

(� f )� = f +

Thus,

Z
(� f )+dx =

Z
f �dx < 1

i:e:;

Z
(� f )+dx < 1

i:e:; (� f )+ is integrable

Similarly,we can prove that (� f )� is integrable.

Hence, when a = �1; a f is integrable. Further,Z
(� f )dx =

Z
(� f )+dx �

Z
(� f )�dx

=

Z
f �dx �

Z
f +dx

= �
"Z

f +dx �
Z

f �dx
#
= �

Z
f dx

)

Z
a f dx = a

Z
f dx when a = �1:

Case (c) : If a < 0; then a = �jaj:

Since f is measurable, which implies that �jaj f is measurable and hence a f is

measurable ( a < 0 ).

Also. a f is integrable and hence
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Z
a f dx =

Z
�jaj f dx

= �jaj
Z

f dx = a

Z
f dx

This proves (i):

(ii) Suppose f and g are integrable. Then

R
f +dx < 1;

R
f �dx < 1;

R
g+dx < 1;

R
g�dx < 1: Also f +g is measurable.

Our claim is to prove that
R
( f + g)+ < 1 and

R
( f + g)� < 1: For this, consider

( f + g)+(x) = maxf( f + g)(x); 0g
= maxf f (x) + g(x); 0g
= maxf f (x); 0g +maxfg(x); 0g
= f + + g+

i:e:; ( f + g)+(x) = f + + g+

Also,

Z
( f + g)+(x) =

Z
( f + + g+)dx

=

Z
f +dx +

Z
g+dx < 1

In a similar way, we can prove that
R
( f + g)�dx < 1:

Hence f + g is integrable.Z
( f + g)dx =

Z �
( f + g)+ � ( f + g)�

�
dx

=

Z �
f + + g+ � f � � g�

�
dx

=

Z
( f + � f �)dx +

Z
(g+ � g�)dx

=

Z
f dx +

Z
gdx

This proves (ii):

(iii) Suppose f = 0 a:e:; then
f + = maxf f (x); 0g = 0 (* f = 0 a:e)

f � = maxf� f (x); 0g = 0

So, f = 0 a:e: implies f + = 0 a:e and f � = 0 a:e:

Since, f + is a non-negative measurable function such that f + = 0 a:e: and hence we

have
R
f +dx = 0:

Similarly we can prove that
R
f �dx = 0:

Hence
R
f dx =

R
f +dx �

R
f �dx = 0: This proves (iii):

(iv) Suppose f � g a:e::

By (i) and (ii); we have g � f is measurable.
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Since f � g a:e: which implies that g � f � 0 a:e:

Now, (g � f )� = maxf�(g � f )(x); 0g = 0: So,Z
gdx =

Z
( f + g � f )dx

=

Z
f dx +

Z
(g � f )dx

=

Z
f dx +

Z
(g � f )+dx �

Z
(g � f )�dx

=

Z
f dx +

Z
(g � f )+dx

�
Z

f dx

(v) Since A and B are disjoint, we have
�A[B = �A + �B

Hence Z
A[B

f dx =

Z
f�A[Bdx

=

Z
f
�
�A + �B

�
dx

=

Z
f�Adx +

Z
f�Bdx

=

Z
A

f dx +

Z
fB f dx �

Example 12.1. Show that if f is an integrable function, then j f j� jgj a:e: and g is

measurable, then f is integrable.

Solution: Since g is integrable, jgj is integrable and henceZ
jgjdx =

Z
g+dx +

Z
g�dx < 1

Now, j f j � jgj a:e:

) f + + f � � jgj a:e:

) f + � jgj and f � � jgj a:e:

Since f + and f � are non-negative functions. So by theorem (12.2), we

have Z
f +dx �

Z
jgjdx < 1 and

Z
f �dx �

Z
jgjdx < 1

)
Z

f dx =

Z
f +dx +

Z
f �dx < 1

Thus, f is integrable.

Example 12.2. Show that if f is an integrable function, then

�����
Z

f dx

����� �
Z

j f j dx: When
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does equality occur?

Solution: Suppose f is an integrable function.

j f j� f = f + + f � � �
f + � f �

�
= f + + f � � f + + f � = 2 f � � 0

)
Z
j f jdx �

Z
f dx (12.3)

Also, j f j+ f = f + + f � +
�
f + � f �

�
= 2 f + > 0

) � f < j f j

) f � �j f j

)
Z

f dx � �
Z
j f jdx (12.4)

Thus, from (12.3) and (12.4), we have

�
Z
j f jdx �

Z
f dx �

Z
j f jdx

)
�����
Z

f dx

����� �
Z
j f jdx

Now, we shall prove the necessary condition for equality.

Case (i) : If
R
f dx � 0; then

�����
Z

f dx

����� =

Z
j f jdx

,
Z

f dx =

Z
j f jdx

,
Z

( f � j f j)dx = 0

, f � j f j = 0 a:e:

, f = j f j a:e:

, f � 0 a:e:
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Case (ii) : If
R
f dx � 0; then

�����
Z

f dx

����� =

Z
j f jdx

, �
Z

f dx =

Z
j f jdx

,
Z

( f + j f j)dx = 0

, f + j f j = 0 a:e:

, f = �j f j a:e:

, f � 0 a:e:

Thus, f � 0 a:e: (or) f � 0 a:e: is a necessary condition for�����
Z

f dx

����� =
Z
j f jdx: This is also a su�cient condition.

Example 12.3. If f is measurable and g is measurable and �; � are real numbers such

that � � f � � a:e:; then there exists 
; � � 
 � � such that
R
f jgjdx = 


R
jgjdx:

Solution:Given
� � f � � a:e:

) f � j�j and � f � j�j a:e:

) j f j � j�j+j�j a:e:

So,
j f gj = j f jjgj� (j�j+j�j) jgj a:e:

Then, by example (12.1), we have f g is integrable.

Also, �jgj� f jgj� �jgj a:e: So,
�

Z
jgjdx �

Z
f jgjdx � �

Z
jgjdx (12.5)

If
R
jgjdx = 0; then g = 0 a:e: and henceZ

f jgjdx = 0 = 


Z
jgjdx for every � � 
 � �:

If
R
jgjdx 6= 0; take 
 =

R
f jgjdxR
jgjdx

: Then by equation (12.5), � � 
 � � andZ
f jgjdx = 


Z
jgjdx

Thus, there exists a 
; � � 
 � � such that
R
f jgjdx = 


R
jgjdx:

Example 12.4. Show that if f is integrable, then f is �nite valued a:e:

Solution:
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Assume that f is not-�nite valued a:e: Then there exists a set E with

m(E) > 0 so that j f j= 1 on E: So j f j> n for all n on the set E: This givesZ
j f jdx >

Z
E

ndx = n m(E) 8n

This contradicts our hypothesis that f is integrable.

Thus, f is integrable, then f is �nite-valued a:e:

Example 12.5. If f is measurable, m(E) < 1 and A � f � B on E; then

A m(E) �
R
E
f dx � B m(E):

Solution: Suppose f is measurable and m(E) < 1:
m(E) < 1 ) E is measurable:

) �E is measurable:

) A�E and B�E are measurable:

Given A � f � g

) A�E � f�E � B�E (12.6)

Now, we shall prove that �E is integrable.

�+E = max (�E ; 0) = �E

)
Z

�+Edx =

Z
�Edx = m(E) < 1

Similarly, we can prove that
R
��
E
dx < 1:

Thus,
R
�Edx =

R
�+
E
dx + ��

E
dx < 1 and hence �E is integrable.

Also, A�E and B�E are integrable.

Thus, from equation (12.6), we have

A�E � f�E � B�E

)
Z

A�Edx �
Z

f�Edx �
Z

B�Edx

) A

Z
�Edx �

Z
f�Edx � B

Z
�Edx

) A m(E) �
Z
E

f dx � B m(E)

Theorem 12.3 (Lebesgue's Dominated Convergence Theorem).

Let f fng be a sequence of measurable functions such that j fnj� g; where g is

integrable and let lim fn = f a:e: Then f is integrable and

lim

Z
fndx =

Z
f dx

Real Analysis M.Sc.(Mathematics)-I Year-I Sem



12.1. The General Integral: 177

Proof. Suppose f fng be a sequence of measurable functions such that j fnj� g and g is

integrable.

Since, j fnj� g; fn is integrable for all n:

Also, ����� limn!1
fn(x)

����� � g(x)

) j f (x)j � g(x)

i:e:; j f j � jgj
)

Z
j f jdx �

Z
jgjdx < 1 (* g is integrable)

)
Z
j f jdx < 1

Thus, j f j is integrable and hence f is integrable.

Also, fn � g which implies that fn + g � 2g:

Hence, f fn + gg is a sequence of non-negative measurable functions.

By Fatou's lemma, we have

lim inf

Z
( fn + g)dx �

Z
lim inf( fn + g)dx

) lim inf

"Z
fndx +

Z
gdx

#
�

Z
(lim inf fn + lim inf gdx

) lim inf

Z
fndx �

Z
lim inf fn

) lim inf

Z
fndx �

Z
f dx (12.7)

Since, each f 0n s are non-negative measurable functions and fn � g; g � fn are

non-negative measurable functions.

i:e:; fg � gng is a sequence of non-negative measurable functions.

Hence, by Fatou's lemma, we have

lim inf

Z
(g � fn)dx �

Z
lim inf(g � fn)dx

) lim inf

"Z
gdx +

Z
(� fn)dx

#
�

Z
(lim inf g + lim inf(� fn)dx

)
Z

gdx + lim inf

Z
(� fn)dx �

Z
gdx +

Z
lim inf(� fn)dx

) � lim sup

Z
fndx �

Z
� lim sup fndx

) � lim sup

Z
fndx �

Z
lim sup fndx

) lim sup

Z
fndx �

Z
f dx (12.8)
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From equation (12.7) and (12.8), we get

lim inf

Z
fndx �

Z
f dx � lim sup

Z
fndx

) lim

Z Z
fndx � lim sup

Z
fndx (12.9)

But always lim sup

Z
fndx � lim inf

Z
fndx (12.10)

From (12.9) and (12.10), we have

lim inf

Z
fndx = lim sup

Z
fndx = lim

Z
fndx

) lim

Z
fndx =

Z
f dx �

Example 12.6. Let f fng be a sequence of measurable functions such that j fnj� g; where

g is integrable and let lim fn = f a:e: Then f is integrable and

lim

Z
j fn � f j dx = 0

Solution:

j fn � f j � j fnj+j f j

� g + g

� 2g

)
Z
j fn � f jdx �

Z
2gdx < 1 (* g is measurable) ) j fn � f j is measurable

Also, lim fn = f a:e:

) j fn � f j = 0 a:e:

lim
n! 1

Z
j fn � f jdx = 0

Theorem 12.4. Let f fng be a sequence of integrable functions such that
1X
n=1

Z
j fnjdx < 1 then the series

1X
n=1

fn(x) converges a:e:; its sum f (x) is integrable

and

Z
f dx =

1X
n=1

Z
fndx
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Proof.

Let '(x) =

1X
n=1

j fnj:

Then

Z
'(x)dx =

Z 1X
n=1

j fnjdx

=

1X
n=1

j fnjdx < 1

)
Z

'(x)dx < 1
) ' is �nite value a:e:

)
1X
n=1

j fnj converges a:e:

)
1X
n=1

fn converges absolutely a:e:

Let f =

1X
n=1

fn

j f j =

�������
1X
n=1

fn

�������
�

1X
n=1

j fnj= '(x)

i:e:; j f j � '(x)

)
Z
j f jdx �

Z
'(x)dx

)
Z
j f jdx < 1

) j f j is integrable ) f is integrable:

Let gn =

nX
i=1

fi

) jgnj=
�������
nX
i=1

fi

������� �
nX
i=1

j fij � '(x)

By Lebesgue's Dominated Convergence Theorem, we have

lim
n!1

Z
gndx =

Z
lim
n!1

gndx =

Z
f dx

) lim
n!1

Z nX
i=1

fidx =

Z
lim
n!1

0BBBBB@
nX
i=1

fi

1CCCCCA dx

) lim
n!1

nX
i=1

Z
fidx =

Z 1X
i=1

fidx

)
1X
i=1

Z
fidx =

Z 1X
i=1

fidx =

Z
f dx �

Example 12.7. Lebesgue Dominated Convergence Theorem deals with a sequence of

functions f fng: State and prove a continuous parameter version of the theorem.

Theorem: For each � 2 [a; b]; �1 � a � b < 1; let f� be a measurable function,
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j f�(x)j� g(x); where g is an integrable function and let lim
�!�0

f�(x) = f (x) a:e:; where

�0 2 [a; b]: Then f is integrable lim
�!�0

Z
f�(x)dx =

Z
f (x)dx:

Solution: Let f�ng be any sequence in [a; b] such that lim
n!1

�n = �0:

) f f�n g satis�es the hypothesis of Lebesgue Dominated Theorem ( (12.3)).

) f = lim
n!1

f�n is integrable:

Let lim
�!�0

Z
f�dx 6=

Z
f dx

) 9 an � > 0 and a sequence f�ng 2 [an; bn]; lim �n = �0 such that for all

n
���R f�ndx �

R
f dx

��� > �: But by applying Lebesgue dominated convergence

theorem to f f�n g; we get a contradiction.
Hence our assumption is wrong.

) lim
�!�0

f�dx =

Z
f dx

Example 12.8.

(i) If f is integrable then
R
f dx = lim

a!1
lim

b!�1

Z a

b

f dx = lim
b!�1

lim
a!1

Z a

b

f dx:

(ii) If f is integrable on [a; b] and 0 < � < b � a then
R a

b
f dx = lim

�!0

Z b

a+�

f dx:

Solution:
R a

b
f dx =

R a

�1 �[b;+1) f dx:

f is an integrable function and thus by above example, we have

lim
b!�1

Z a

�1
�[b;+1) f dx =

Z a

�1
f dx

A second application of the above example gives the �rst equation and the second follows

in the same way.

Similarly, we can prove result (ii):

Theorem 12.5. If f is continuous on the �nite interval [a; b]; then f is integrable and

F(x) =
R x

a
f (t)dt (a < x < b) is a di�erentiable function such that F 0(x) = f (x):

Proof. We know that continuous functions are measurable, so f is measurable. Since

f is continuous function de�ned on the �nite interval [a; b]; we have j f j is bounded.
Hence f is integrable on [a; b]:

If a < x < b; then we have x + h 2 (a; b) for small h:

F(x + h) � F(x) =

Z x+h

a

f (t)dt �
Z x

a

f (t)dt

=

Z x+h

x

f (t)dt
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Let m = min[ f (x) : x 2 [a; b]] and M = max[ f (x) : x 2 [a; b]]: Then

m � f (x) � M 8x:

This implies

mh �
Z x+h

x

f (t)dt � Mh

Since f is continuous, then by intermediate mean value theorem we have

Z x+h

x

f (t)dt = h f (�)

where � = x + �h; 0 � � � 1:

So, supposing h 6= 0; dividing by h and letting h ! 0; we get

lim
h!0

F(x + h) � F(x)

h
= lim

h!0

1

h

Z x+h

x

f (t)dt

= lim
h!0

f (�)

= lim
h!0

f (x + �h) = f (x)

i:e:; F0(x) = f (x) �

Example 12.9. Show that if � > 1Z 1

0

x sin x

1 + (nx)�
dx = o(n�1) as n ! 1:

Solution: We write xn = o(np) if xnn
�p ! 0 as n ! 1: So, we wish to

show that

lim
n!1

Z 1

0

nx sin x

1 + (nx)�
dx = 0 (12.11)

Now, for any �xed x

nx sin x

1 + (nx)�
=

1

n��1
x sin x

1

n�
+ x�

! 0 as n ! 1 (� > 1)

Since lim
n!1

nx sin x

1 + (nx)�)
= 0: So, we get (12.11), if we are allowed

to interchange limit and integral. Hence, it is su�cient to show that

dominated convergence theorem as applicable to the sequences

fn(x) =
nx sin x

1 + (nx)�
; n = 1; 2; : : :

Consider the function h(x) = 1 + (nx)� � nx3=2: We have h(0) = 1 ,

h(1) = 1 + n� � n > 1 since � > 1: Now

h0(x) = �n�x��1 � (3=2)nx1=2
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h0(x) 6= 0 in [0; 1] for 1 < � � 3=2 and for all large n: If � > 3=2; then there

is a point in [0; 1] at which h0(x) = 0: At that point h approaches 1 for large

n: So, it follows that for large n; h(x) > 0 on [0; 1]: Hence

j fn(x)j =

����� nx sin x1 + (nx)�

�����
� nx

1 + (nx)1=2
� nx

nx3=2
=

1p
x

Since
1p
x
is integrable over (0; 1]; dominated convergence theorem is

applicable for f fng and we have

lim
n!1

Z 1

0

fn(x)dx =

Z 1

0

lim
n!1

fn(x)dx

i:e:; lim
n!1

Z 1

0

nx sin x

1 + (nx)�
dx = 0

Example 12.10. Show that lim

Z 1

0

dx

(1 + x=n)nx1=n
= 1:

Solution:We have

lim
1

(1 + x=n)n � x1=m
=

1

ex
= e�x

and

Z 1

0

e�xdx = 1: So, we wish to apply dominated convergence theorem.

For n > 1; x > 0;�
1 +

x

n

�n
= 1 + x +

n(n � 1)x2

2n2
+ : : : >

x2

4

So, for x � 1 and n > 1;

1

(1 + x=n)nx1=n
� 1

x2=4
=

4

x2
(* x1=n � 1)

If 0 < x < 1; then x1=n � x1=2 for n > 1: So
1

(1 + x=n)nx1=n
� 1

x1=2
= x�1=2

Hence, for x > 0; n > 1;

1

(1 + x=n)nx1=n
� g(x)

where

g(x) =

8>>><>>>:
4=x2 if x � 1

x�1=2 if 0 < x � 1

But g is integrable over (0;1): So, if fn(x) =
1

(1 + x=n)nx1=n
; then
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Lebesgue's dominated convergence theorem is applicable to f fng and we

have

lim

Z
1

(1 + x=n)nx1=n
dx =

Z
lim

1

(1 + x=n)nx1=n

=

Z
e�xdx = 1:

Example 12.11. Show that lim
n!1

Z 1

a

n2xe�n
2x2

1 + x2
dx = 0 for a > 0; but not for a = 0:

Solution: If a > 0; substitute u = nx to get

Z 1

a

n2xe�n
2x2

1 + x2
dx =

Z 1

na

ue�u
2

1 + u2=n2
du =

Z 1

0

�(an;1)

ue�u
2

1 + u2=n2
du

Let fn = �(na;1)

ue�u
2

1 + u2=n2
: For every u; we can �nd n large enough so that

u < na and hence �(na;1)(u) = 0: So fn(u) = 0 for large n:

Hence lim
n!0

fn = 0: So, we wish to apply Lebesgue dominated convergence

theorem for f fng: Now

j fn(x)j� ue�u (�(na;1)(u) � 1; 1 + u2=n2 � 1)

Also, ue�u is integrable over (0;1): Hence, by applying dominated

convergence theorem, we get

lim
n!0

Z 1

a

n2xe�n
2x2

1 + x2
dx = lim

n!0

Z 1

0

fndu

=

Z 1

0

�
lim
n!1

fn

�
du

= 0

If a = 0; the same substitution u = nx gives

Since
ue�u

2

1 + u2=n2
! ue�u

2

as n ! 1 and
ue�u

2

1 + u2=n2
� ue�u; an integrable

function, the Lebesgue's dominated convergence theorem is applicable and

we have

lim
n!1

Z 1

0

n2xe�n
2x2

1 + x2
dx = lim

n!1

Z 1

0

ue�u
2

1 + u2=n2
du

=

Z 1

0

lim

0BBBB@ ue�u
2

1 + u2=n2

1CCCCA du
=

Z 1

0

ue�u
2

du =
1

2
:

Example 12.12. Let f be non-negative integrable function [0; 1]: Then there exist
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measurable function '(x) such that ' f is integrable on [0; 1] and '(0+) = 1:

Solution: By continuous parameter version of Lebesgue's Dominated

Convergence Theorem, for every n there exists xn (0 < xn < 1) such thatZ xn

0

f dx <
1

n3
:

Let fxng be a decreasing sequence of numbers as n ! 1:

De�ne '(x) =

1X
k=2

(k � 1)�[xk ;xk�1]; So '(0+) = lim
x!0+

'(x) = 1:

It remains to prove that, ' f is integrable.

For if, consider

Z xk�1

xk

' f dx =

Z xk�1

xk

(k � 1) f dx

<
k � 1

(k � 1)3

<
1

(k � 1)2

<

1X
n=1

1

n2
< 1

Z
' f dx < 1 ) ' f is measurable:

Let Us Sum Up:

In this unit, the students acquired knowledge to

� the concept of simple function and measurable function.

� derive Fatou's lemma and Lebesgue monotone convergence

theorem.

Check Your Progress:

1. Let f (x) = 0 at each point x 2 P; the Cantor set in [0; 1]; f (x) = p

in each of complementary interval of length 3�p: Show that f is

measurable and that

Z 1

0

f dx = 3:
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Choose the correct or more suitable answer:

1. lim
n!1

Z 1

0

nx

1 + n2x2
dx =

(a) 0

(b)
1

3

(c)
1

2

(d)
1

4

2. lim
n!1

Z 1

0

n3=2x

1 + n2x2
=

(a) �1

(b) 0

(c)
1

2

(d)
1

3

Answer:

(1) a (2) b

Suggested Readings:

1. G. de Barra, �Measure Theory and Integration�, New Age

International Pvt. Ltd, Second Edition, 2013.

2. Rana I. K., �An Introduction to Measure and Integration�, Narosa

Publishing House Pvt. Ltd., Second Edition, 2007.

3. Royden H. L., �Real Analysis�, Prentice Hall of India Pvt. Ltd.,

Third Edition, 1995.
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Block-IV

UNIT-13

RIEMANN AND LEBESGUE INTEGRALS

Structure

Objective

Overview

13. 1 Riemann and Lebesgue Integrals

13. 2 Integration with respect to a measure

Let us Sum Up

Check Your Progress

Suggested Readings

Objectives

After completion of this unit, students will be able to

F understand the concept of Upper Riemann and Lower Riemann

sum.

F explain the di�erence between Riemann integral and Lebesgue

integral.
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Overview

In this unit, we will discuss the ideas about Upper and Lower

Sum.

13.1. Riemann and Lebesgue Integrals:

If f is Riemann integrable over the �nite interval [a; b]; then we write

its integral by R

Z b

a

f dx to distinguish from its Lebesgue integral

Z b

a

f dx:

Upper Riemann Sum and Lower Riemann Sum: Let f be a

bounded function de�ned over the �nite interval [a; b]:

Let a = �0 < �1 < : : : < �n be a partition D of [a; b]: Write

S D =

nX
i=1

Mi (�i � �i�1)

and sD =

nX
i=1

mi (�i � �i�1)

where Mi = supf f (x) : x 2 �
�i � �i�1

�g; i = 1; 2; : : : ; n

mi = inff f (x) : x 2 �
�i � �i�1

�g; i = 1; 2; : : : ; n

Here S D and sD are respectively called Upper Riemann Sum and Lower

Riemann sum.

Riemann Integrable Function: A function f (x) is said to be

Riemann integrable over [a; b]; if given � > 0 there exists a partition D such

that S D � sD < �:

Theorem 13.1. If f is Riemann integrable and bounded over the �nite interval [a; b];

then f is integrable and R

Z b

a

f dx =

Z b

a

f dx:

Proof. Let fDng be a sequence of partition of [a; b] such that

S Dn
� sDn

<
1

n
(13.1)

for every partition Dn:
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De�ne un(x) =

nX
i=1

Mi�[�i�1; �i](x)

ln(x) =

nX
i=1

mi�[�i�1; �i](x)

where Mi = supf f (x) : x 2 �
�i � �i�1

�g; i = 1; 2; : : : ; n

mi = inff f (x) : x 2 �
�i � �i�1

�g; i = 1; 2; : : : ; n

for all x 2 [a; b]: Then, for all n; un and ln are measurable simple functions andZ b

a

undx =

nX
i=1

Mi

Z �i

�i�1

dx =

nX
i=1

Mi (�i � �i�1) = S D

i:e:;

Z b

a

undx = S D

Similarly,

Z b

a

lndx = sD

Further,

mi � f (x) � Mi

) ln(x) � f (x) � un(x) (13.2)

for all x 2 [a; b]:

We de�ne U = inf un and L = sup In:

Then U and L are measurable functions satisfying

L � f � U (13.3)

Now,

fx : U(x) � L(x) 6= 0g =

1[
k=1

(
x : U(x) � L(x) >

1

k

)

But U(x) � L(x) >
1

k

) inf un(x) � sup ln(x) >
1

k

) inf un(x) + inf (�ln(x)) >
1

k

) inf (un(x) � ln(x)) >
1

k

) un(x) � ln(x) >
1

k
8n

Thus, we have

(
x : U(x) � L(x) >

1

k

)
�

(
x : un(x) � ln(x) >

1

k

)
:

Therefore m

 (
x : U(x) � L(x) >

1

k

)!
� m

 (
x : un(x) � ln(x) >

1

k

)!
:

Let a = m

 (
x : U(x) � L(x) >

1

k

)!
: Then, we have m

 (
x : un(x) � ln(x) >

1

k

)!
> a:

So,
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Z b

a

(un(x) � ln(x))dx >
a

k

)
Z b

a

un(x)dx �
Z b

a

ln(x))dx >
a

k

) S Dn
� sDn

>
a

k

) 1

n
>

a

k
8n

) a = 0

i:e:; m

 (
x : U(x) � L(x) >

1

k

)!
= 0 for each k

) m (fx : U(x) � L(x) > 0g) = 0

Since fx : U(x) � L(x) � 0g which implies U(x) = L(x) a:e:

Thus, equation (13.3) gives

U = f = L a:e:

Hence f is measurable. So the boundedness of f implies f is integrable.

Thus, equation (13.2) givesZ b

a

lndx �
Z b

a

f dx �
Z b

a

undx

i:e:; sDn
�

Z b

a

f dx � S Dn
(13.4)

Since f is Riemann integrable and hence we have

lim
n!1

sDn
= lim

n!1
S Dn

= R

Z b

a

f dx (13.5)

So, letting n ! 1 in (13.4) and using (13.5), we get

R

Z b

a

f dx =

Z b

a

f dx �

Note 13.1. The converse of the above theorem does not hold. That is, a Lebesgue

integrable function need not be a Riemann integrable.

Consider for example the function f on [0; 1] by

f (x) =

8>><>>:
0 if x is rational

1 if x is irrational

Then f = 1 a:e:; and f is measurable since for any � 2 R

[x : f (x) > �] = ;; if � � 1

= [x : x is irrational]; if 0 � � < 1

= R; if � < 0

So, f is integrable and

Z 1

0

f dx = 1: But for each partition D of [0; 1]; we have
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S D = 1 and sD = 0:

Hence f is not Riemann integrable.

Theorem 13.2. Let f be bounded function de�ned on the �nite interval [a; b]; then f

is Riemann integrable over [a; b] if, and only if, it is continuous a:e:

Proof. Let fDng be a sequence of partition of [a; b] such that

S Dn
� sDn

<
1

n
(13.6)

for every partition Dn:

De�ne

un(x) =

nX
i=1

Mi�[�i�1�i](x)

ln(x) =

nX
i=1

mi�[�i�1�i](x)

where Mi = supf f (x) : x 2 �
�i � �i�1

�g; i = 1; 2; : : : ; n

mi = inff f (x) : x 2 �
�i � �i�1

�g; i = 1; 2; : : : ; n

for all x 2 [a; b]: Then, for all n; un and ln are measurable simple functions and

Z b

a

undx =

nX
i=1

Mi

Z �i

�i�1

dx =

nX
i=1

Mi (�i � �i�1) = S D

i:e:;

Z b

a

undx = S D

Similarly,

Z b

a

lndx = sD

Further,

mi � f (x) � Mi

) ln(x) � f (x) � un(x) (13.7)

for all x 2 [a; b]:

We de�ne U = inf un and L = sup In:

Then U and L are measurable functions satisfying

L � f � U (13.8)

Now,
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fx : U(x) � L(x) 6= 0g =

1[
k=1

(
x : U(x) � L(x) >

1

k

)

But U(x) � L(x) >
1

k

) inf un(x) � sup ln(x) >
1

k

) inf un(x) + inf (�ln(x)) >
1

k

) inf (un(x) � ln(x)) >
1

k

) un(x) � ln(x) >
1

k
8n

Thus, we have fx : U(x) � L(x) >
1

k
g � fx : un(x) � ln(x) >

1

k
g:

Therefore m

 (
x : U(x) � L(x) >

1

k

)!
� m

 (
x : un(x) � ln(x) >

1

k

)!
:

Let a = m

 (
x : U(x) � L(x) >

1

k

)!
: Then, we have m

 (
x : un(x) � ln(x) >

1

k

)!
> a:

So, Z b

a

(un(x) � ln(x))dx >
a

k

)
Z b

a

un(x)dx �
Z b

a

ln(x))dx >
a

k

) S Dn
� sDn

>
a

k

) 1

n
>

a

k
8n

) a = 0

i:e:; m

 (
x : U(x) � L(x) >

1

k

)!
= 0 for each k

) m (fx : U(x) � L(x) > 0g) = 0

Since fx : U(x) � L(x) � 0g which implies U(x) = L(x) a:e:

Thus, equation (13.8) gives

U = f = L a:e:

Suppose that f is Riemann integrable over [a; b]: Let x 2 [a; b] be such that

x 6= xi 2 Dn for every n:

If U(x) = f (x) = L(x); we claim that f is continuous at x: Assume the contrary.

f is continuous at x if and only if

lim
n!1

xn = x ) lim
n!1

f (xn) = f (x)

So, 9 � > 0 and a sequence fxkg with lim
n!1

xn = x such that
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j f (xk) � f (x)j � � 8k
i:e:; f (xk) � f (x) + � 8k
i:e:; U(xk) � L(x) + � 8k

Since lim
n!1

xn = x; all xn but for a �nite number of xn lie in every neighbourhood of

x: So

U(x) � L(x) + �

This contradicts that U(x) = f (x) = L(x): Hence f is continuous at x for x 6= xi 2 Dn

for any n and U(x) = f (x) = L(x) a:e: Hence f is continuous a:e:

Conversely, suppose that f is continuous a:e: Choose a sequence fDng of partitions

of [a; b] such that, for each n; Dn+1 � Dn and kDnk! 0: Suppose that un and ln are

de�ned corresponding to Dn: Then un+1 � un and ln+1 � ln for each n: Now suppose

that f is continuous at x: Thus, given � > 0 there exists a � > 0 such that

sup f (x) � inf f (x) < �

where the sup and inf are taken over (x� �; x+ �): For all n su�ciently large, an interval

of Dn containing x will lie in (x � �; x + �) and so,

un(x) � ln(x) < �

But, � is arbitrary, so U(x) = L(x): Since f is continuous a:e: and thus we have

U = L a:e:

By Lebesgue Dominated Convergence theorem, we have

lim

Z
undx =

Z
Udx =

Z
Ldx = lim

Z
Indx

so lim

Z
undx =

Z
Ldx = lim

Z
Indx

and hence

lim S Dn
= lim sDn

Thus, f is Riemann integrable and hence the theorem. �

De�nition 13.1. If, for each a and b; f is bounded and Riemann integrable on [a; b]

and lim
a!�1
b!1

Z b

a

f dx (13.9)

exists, then f is said to be Riemann integrable on (�1;1); and and the integral written

as R

Z 1

�1
f dx:

Theorem 13.3. Let f be bounded and let f and j f j be Riemann integrable on (�1;1):

Then f is integrable and Z 1

�1
f dx = R

Z 1

�1
f dx
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Proof. Suppose j f j is Riemann integrable on (�1;1): Thus, j f j is Riemann integrable

on (�a; b) for every a; b: So Z b

a

j f jdx is �nite

) j f j is integrable

) f is integrable

Also, f is is Riemann integrable on (�1;1): Thus, j f j is Riemann integrable on

(�a; b) for every a; b: So Z b

a

f dx = R

Z b

a

f dx

Letting a ! �1 and b ! 1; we haveZ 1

�1
f dx = R

Z 1

�1
f dx �

Theorem 13.4. Let f be bounded and measurable on a �nite interval [a; b] and let

� > 0: Then there exist

(i) a step function h such that

Z b

a

j f � hjdx < �:

(ii) a continuous function g such that g vanishes outside a �nite interval andZ b

a

j f � gjdx < �:

Proof. (i) We have f = f + � f � andZ b

a

f dx =

Z b

a

f +dx +

Z b

a

f �dx

Since f + and f � are non-negative, so we can assume that f (x) � 0 for all x 2 [a; b]:

Now, Z b

a

f dx = sup

Z b

a

'dx

where ' � f ; ' is simple and measurable. So, we may assume that f is a simple

measurable function with f = 0 outside [a; b]: Hence,

f =

nX
i=1

ai�Ei

where Ei = [x : f (x) = ai] and

n[
i=1

Ei = [a; b]:

Let M = sup[ f (x) : x 2 [a; b]]: We may assume that M > 0:

Suppose that �0 =
�

nM
: For each of the measurable sets Ei there exists open intervals

I1; I2; : : : ; Ik such that, if G =

k[
r=1

Ir; then m(Ei4G) < �0: But �G is a step function such

that Z ����Ei
� �G

��� dx = m(Ei4G) < �0
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Construct such step function hi; say, for each Ei: ThenZ b

a

������� f �
nX
i=1

aihi

������� dx <

nX
i=1

ai�
0

� nM�0 = �:

Let h =

nX
i=1

aihi; then

h =

nX
i=1

aihi

=

nX
i=1

ai�G

)
Z b

a

j f � hjdx < �:

where h is a step function.

(ii) From (i) there exists a step function h vanishing outside a �nite interval such thatZ b

a

j f � hjdx <
�

2

So to prove (ii); we construct a continuous function g such thatZ b

a

jh � gjdx <
�

2
(13.10)

and such that g(x) = 0 whenever h(x) = 0:

Let

h(x) =

nX
i=1

ai�Ei
(x)

where Ei is the �nite interval (ci; di); i = 1; 2; : : : ; n: As in (i); it is su�cient to show

that (13.10) holds for each �Ei
:

Suppose that � < 2(di � ci) and de�ne g by

g(x) =

8>>><>>>:
1 if x 2

�
ci +

�

4
:di �

�

4

�
0 if x 2 (ci; di)

c

Extend g by linearity to

�
ci; ci +

�

4

�
and

�
di �

�

4
; di

�
as shown in the following �gure

13.1, so that g is continuous.
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Figure 13.1

Then,

Z ����Ei
� g

��� dx < 1

�
ci; ci +

�

4

�
+ 1

�
di �

�

4
; di

�

=
�

4
+
�

4
=
�

2

Let h = �Ei
;

R
jh � gjdx < �

2
:

Also, g vanishes outside (ci; di):

Now,

Z b

a

j f � gjdx =

Z b

a

j f � h + h � gjdx

�
Z b

a

(j f � hj+jh � gj)dx

�
Z b

a

j f � hjdx +
Z b

a

jh � gjdx

<
�

2
+
�

2
= �

i:e:;

Z b

a

j f � gjdx < �

Hence the proof. �

Example 13.1. Let f be a bounded measurable function de�ned on the �nite interval

(a; b): Show that

lim
�!1

Z b

a

f (x) sin �xdx = 0

Solution: Let � > 0 be given. We show that there is �0 such that for � > �0:������
Z b

a

f (x) sin �xdx

������ < �

By theorem (13.4), there exists a step function
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h =

nX
i=1

ai�Ii

where Ii; i = 1; 2; : : : ; n denote disjoint intervals such that [a; b] =
S

Ii with

Z b

a

j f � hjdx <
�

2

Then ������
Z b

a

f (x) sin �xdx

������ =

������
Z b

a

( f (x) � h(x)) sin �xdx +

Z b

a

h(x) sin �xdx

������
�

Z b

a

j f � hjjsin �xdxj+
������
Z b

a

h(x) sin �xdx

������
�

Z b

a

j f � hjdx +
������
Z b

a

h(x) sin �xdx

������
<

�

2
+

������
Z b

a

h(x) sin �xdx

������
Now, if ci; di (ci < di) are end points of the interval Ii; then������

Z b

a

�Ii sin �xdx

������ =

������
Z di

ci

�Ii sin �xdx

������
=

������
1

�

Z �di

�ci

sin ydy

������
=

jcos �ci � cos �dij
�

� 2

�

Let M = max[ai;= 1; 2; : : : ; n]: For the given � > 0; choose �0 so that

2

�
<

�

2nM
for � > �0

Then, given � > 0 there exists �0 such that � > �0 implies������
Z b

a

f (x) sin �xdx

������ <
�

2
+

������
Z b

a

h(x) sin �xdx

������
=

�

2
+

�������
Z b

a

nX
i=1

ai�Ii sin �xdx

�������
� �

2
+

nX
i=1

������ai
Z b

a

�Ii sin �xdx

������
� �

2
+

nX
i=1

M
2

�

=
�

2
+
2

�
nM

<
�

2
+
�

2
= �
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198 13.2. Integration with respect to a measure:

i:e:;

������
Z b

a

f (x) sin �xdx

������ < �

) lim
�!1

Z b

a

f (x) sin �xdx = 0

Example 13.2. Show that if f 2 L (a + h; b + h) and fh(x) � f (x+ h); then fh 2 L(a; b)

and

Z b+h

a+h

f dx =

Z b

a

fhdx:

Solution:Since f 2 L (a + h; b + h) and f is integrable and hence

f = f + � f �:

Consider fh(x) = f (x + h)

) f +
h
= f +(x + h); f �

h
= f �(x + h)

Hence, it is su�cient to prove that result for f � 0:

We know that if f is a non-negative measurable function, then there

exists a f'ng of measurable simple functions such that for each x; 'n(x) "
f (x): But ('n)h " fh: So by applying Lebesgue convergence theorem with

function f = lim 'n; we haveZ b+h

a+h

f dx =

Z b+h

a+h

lim 'ndx

= lim

Z b+h

a+h

'ndx

= lim

Z b

a

('n)hdx

=

Z b

a

lim('n)hdx

=

Z b

a

fhdx

13.2. Integration with respect to a measure:

We now consider the generalization of the de�nition and results of

Units 11, 12 and 13. Much of the works of Units 11 and 12 holds for a

general measure space. Where proofs need only a variation of the notion

we refer to the version given for the real line.

De�nition 13.2. A measurable simple function � is one taking a �nite number of

non-negative values, each on a measurable set; if a1; a2; : : : ; an are the distinct values

of �; we have � =

nX
i=1

ai�Ai
where Ai = [x : �(x) = ai]: Then the integral of � with

respect to � is given by
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13.2. Integration with respect to a measure: 199

Z
�d� =

nX
i=1

ai�(Ai)

De�nition 13.3. Let f be measurable, f : X ! [0;1]: Then the integral of f isZ
f d� = sup

"Z
�d� : � � f ; � is a measurable function

#

De�nition 13.4. Let E 2 S; and let f be a measurable function f : E ! [0;1] ; then

the integral of f over E is Z
E

f d� =

Z
f�Ed�

Theorem 13.5 (Fatou's lemma). Let f fng be a sequence of measurable functions,

fn : X ! [0;1]: Then

lim inf

Z
d� �

Z
lim inf fnd�

Proof. See Theorem 11.3 �

Theorem 13.6 (Lebesgue's Monotone Convergence Theorem). Let f fng be a sequence of
measurable functions, fn : X ! [0;1]; such that fn(x) " for each x; and let f = lim fn:

Then Z
f dx = lim

Z
fnd�

Proof. See Theorem 11.4 �

Theorem 13.7. Let f be a measurable function, f : X ! [0;1]: Then there exists a

sequence f�n of measurable simple functions such that , for each x; �n(x) " f (x):

Proof. See Theorem 11.5 �

Theorem 13.8. Let f fng be a sequence of measurable functions, fn : X ! [0;1] ; thenZ 1X
n=1

fnd� =

1X
n=1

Z
fnd�

Proof. See Theorem 11.7 �

Theorem 13.9. Let [[X;S; �]] be a measure space and f a non-negative measurable

function. Then �(E) =
R
E
f d� < 1 then 8� > 0;9 � > 0 such that, if A 2 S and

�(A) < �; then �(A) < �:

Proof. Suppose f is a non-negative measurable function and [[X;S; �]] be a measure

space.

The function � is countably additive, if fEng is a sequence of disjoint sets inS :

Put E =

1[
n=1

En; then
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200 13.2. Integration with respect to a measure:

�(E) = �

0BBBBB@
1[
n=1

En

1CCCCCA
=

Z
�S1

n=1 En
f d�

=

1X
n=1

Z
�S1

n=1 En
f d� (by using (13.8))

=

Z 1X
n=1

�S1
n=1 En

f d�

=

Z
�E f d� =

Z
E

f d�

i:e:; �(E) =

Z
E

f d�

� is a measure on [[X;S ]]: Write fn = max( f ; n): Then for each n; fn is measurable,

fn " f ; and then by applying Lebesgue's Monotone Convergence theorem, we have

lim

Z
fndx =

Z
f d�

Since
R
f d� < 1; then given � > 0; there exists N such that

R
f d� <

R
fNd� +

�

2
:

If A 2 S and �(A) <
�

2N
; then we have

R
A
fNd� <

�

2
: Take � =

�

2N
; so thatZ

A

f d� =

Z
A

( f � fN + fN) d�

�
Z
A

( f � fN) d� +

Z
A

fNd�

� �

2
+
�

2
< �

i:e:; �(A) < � �

De�nition 13.5. If f is measurable and both
R
f +d� and

R
f �d� are �nite , then f is

said to be integrable, and the integral of f is
R
f d� =

R
f +d� �

R
f �d�:

So, f is integrable, if and only if j f j is integrable.

Notation: The notation f 2 L(X; �) used to indicate that f belongs to the

class of functions integrable with respect to �: The notation
R
E
f d� meansR

f�Ed�; where f 2 L(X; �) and E 2 S:

If f�E is integrable, we write f 2 L(E < �) or simply f 2 L(E):

De�nition 13.6. If f is a measurable function such that atleast one of
R
f +dx;

R
f �dx

is �nite, then
R
f dx =

R
f +dx �

R
f �dx:

Theorem 13.10. Let f and g be integrable functions and let a and b are constants.

Then a f + bg is integrable andZ
(a f + bg)d� = a

Z
f d� + b

Z
gd�
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If f = g a:e: then
R
f d� =

R
gd�:

Proof. See Theorem 12.2 �

Theorem 13.11. Let f be integrable, then
���R f d�

��� � R
j f jd� with equality, if and only if

f � 0 a:e: or f � 0 a:e:

Proof. See Example 12.2 �

Theorem 13.12 (Lebesgue's Dominated Convergence Theorem). Let f fng be a sequence
of measurable functions such that j fnj� g where g is an integrable function, and

lim fn = f a:e: Then f is integrable, lim
R
fnd� =

R
f d�; and lim

R
j fn � f jd� = 0:

Proof. See Theorem 12.3 and Example 12.6 �

Theorem 13.13. Let f fng be a sequence of integrable functions such that
1X
n=1

Z
j fnjd� < 1

Then

1X
n=1

fn converges a:e:; its sum f ; is integrable and

Z
f d� =

1X
n=1

Z
fnd�

Proof. See Theorem 12.4 �

Let Us Sum Up:

In this unit, the students acquired knowledge to

� �nd the di�erence between Riemann and Lebesgue integral.

� integration with respect to a measure.

Check Your Progress:

1. Derive Lebesgue Dominated Convergence theorem.

2. Show that the function x�1 sin x is Riemann integrable on (�1;1) but

its Lebesgue integral does not exist.
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Suggested Readings:

1. G. de Barra, �Measure Theory and Integration�, New Age

International Pvt. Ltd, Second Edition, 2013.

2. Rana I. K., �An Introduction to Measure and Integration�, Narosa

Publishing House Pvt. Ltd., Second Edition, 2007.

3. Royden H. L., �Real Analysis�, Prentice Hall of India Pvt. Ltd.,

Third Edition, 1995.
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UNIT-14

LEBESGUE DECOMPOSITION

Structure

Objective

Overview

14. 1 Signed Measures and the Hahn Decomposition

14. 2 The Jordan Decomposition

Let us Sum Up

Check Your Progress

Answers to Check Your Progress

Suggested Readings

Objectives

After completion of this unit, students will be able to

F de�ne signed measure, positive set and negative set.

F the concept of Hahn decomposition and Jordan decomposition.

Overview

In this unit, we will illustrate the basic concepts of signed

measures, positive set and negative set.
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204 14.1. Signed Measures and the Hahn Decomposition:

14.1. Signed Measures and the Hahn Decomposition:

De�nition 14.1. A set function � de�ned on a measurable space [[X;S ]] is said to be

signed measure if the values of � are extended real numbers and

(i) � takes at most one of the values 1; �1;

(ii) �(;) = 0;

(iii) �

0BBBBB@
1[
i=1

Ei

1CCCCCA =
1X
i=1

�(Ei) if Ei \ E j = ; for i 6= j; where if the left-hand side is

in�nite, the series on the right hand side has sum 1 or �1 as the case may be.

Note 14.1. Every measure is a signed measure.

Example 14.1. Show that �(E) =
R
E
f d� where

R
f d� is de�ned, then � is a signed

measure.

Solution:Suppose �(E) =
R
E
f d�: Suppose

R
f d� is de�ned then eitherR

f +d� < 1 or
R
f �d� < 1:

Thus, � takes at most one of the values 1; �1 and hence the condition

(i) of signed measure is veri�ed.

Clearly, �(;) = 0 and hence (ii) is satis�ed.

Let fEig be a sequence of disjoint sets of S and for E 2 S : Write

�+(E) =

Z
E

f +d�

��(E) =

Z
E

f �d�

So, by theorem (13.9), �+ and �� are measures. Then

�

0BBBBB@
1[
i=1

Ei

1CCCCCA = �+

0BBBBB@
1[
i=1

Ei

1CCCCCA � ��
0BBBBB@
1[
i=1

Ei

1CCCCCA
=

1X
i=1

�+(Ei) �
1X
i=1

��(Ei) (* �+; �� are measures)

=

1X
i=1

�(Ei)

Thus, condition (iii) is veri�ed and hence � is a signed measure.

De�nition 14.2. A is a positive set with respect to the signed measured � on [[X;S ]];

if A 2 S and �(E) � 0 for each measurable subset E of A: We will omit with respect

to �; if the signed measure is obvious from the context.
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14.1. Signed Measures and the Hahn Decomposition: 205

The next example shows an important way of constructing a new

measure from a given signed measure.

Example 14.2. If A is a positive set with respect to � and if, for E 2 S ;

�(E) = �(E \ A); then � is a measure.

De�nition 14.3. A is a negative set with respect to � if it is a positive set with respect

to ��:

De�nition 14.4. A is a null set with respect to � or a � -null set, if it is both positive

and negative set with respect to �:

Note 14.2. If A is a � -null set, if A 2 S and �(E) = 0 for all E 2 S ; E � A:

Example 14.3.

(i) If A is a positive set with respect to � then every measurable subset of A is a

positive set.

(ii) If A is a negative set with respect to � then every measurable subset of A is a

negative set.

(iii) If A is a null set with respect to � then every measurable subset of A is a null

set.

Theorem 14.1. A countable union of sets positive with respect to a signed measure � is

a positive set.

Proof. Let fAng be a sequence of positive sets. Then by theorem (10.2), there is a

sequence fBig of disjoint sets of S such that Bn � An and

1[
n=1

An =

1[
n=1

Bn:

Let E �
1[
n=1

An: Then

E �
1[
n=1

An =

1[
n=1

Bn

) E =

0BBBBB@
1[
n=1

Bn

1CCCCCA \ E

) E =

1[
n=1

(E \ Bn)

i:e:; �(E) =

1X
n=1

�(E \ Bn) � 0 (* E \ Bn is a positive set for each n)

Thus, if An 2 S then

1[
n=1

An 2 S and �(E) � 0 for each measurable subset of

1[
n=1

An:

Hence,

1[
n=1

An is a positive set. �
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206 14.1. Signed Measures and the Hahn Decomposition:

Corollary 14.1. A countable union of negative sets with respect to a signed measure �

is a negative set.

Corollary 14.2. A countable union of null sets with respect to a signed measure � is a

null set.

Theorem 14.2. Let � be a signed measure on [[X;S ]]: Let E 2 S and �(E) > 0:

Then there exists A; a set positive with respect to �; such that A � E and �(A) > 0:

Proof. Suppose � be a signed measure on [[X;S ]]: Let E 2 S and �(E) > 0:

Case (i) : If E contains no set of negative � -measure, then E is a positive set

A = E: Thus, there exists a positive set A with respect to measure � such that A � E

and �(A) = �(E) > 0:

Case (ii) : Suppose if E contains negative set with respect to � measure. i:e:; there

exists n 2 N such that there exists B 2 S ; B � E and �(B) < �1
n
:

Let n1 2 N such that there exists an E1 � E with

�(E1) < � 1

n1

Let n2 2 N such that there exists an E2 � E � E1 with

�(E2) < � 1

n2

and so on.,

Let nk 2 N such that there exists an Ek � E �
k�1[
i=1

Ei with

�(Ek) < � 1

nk

From the construction, n1 � n2 � n3 : : : and we have a corresponding sequence fEig
of disjoint subsets of E:

Now, either this process terminates or continues. If the process is stop, say at nm and

C = E �
m[
n=1

Ei (14.1)

Clearly C 2 S and �(E) > 0: Thus C is a positive set. Now, our aim is to prove that

�(C) > 0: Suppose, if �(C) = 0; then from (14.1)we have

�(E) = �(C) +

mX
n=1

�(Ei)

) �(E) =

mX
n=1

�(Ei) < 0

which is a contradiction to the fact that �(E) > 0: Thus, �(C) > 0: which gives the

required result.
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If the process is not terminate, then we are able to inductively construct a sequence

fEkg as above.

Put A = E �
1[
k=1

Ek:

Now, our aim is to prove that A is a positive set.

Since fEkg is pairwise disjoint and each Ek is disjoint from A; we have

�(E) = �(A) + �

0BBBBB@
1[
n=1

Ek

1CCCCCA (14.2)

But � cannot take both the values 1; �1:

Since �(E) is �nite and �

0BBBBB@
1[
k=1

Ek

1CCCCCA =

1X
k=1

�(Ek) < 0: Thus, the series

1X
k=1

�(Ek)

converges.

Since, the series

1X
k=1

�(Ek) converges, then the series

1X
n=1

1

nk
converges, and in

particular nk ! 1 and nk > 1 for k > k0 say. So, let B 2 B; B � A and

k > k0: Then

B � E �
k[
i=1

Ei

So,
�(B) � � 1

nk � 1
(14.3)

by the de�nition of nk: But (14.3) holds good for all k � k0; so letting k ! 1; we
have �(B) � 0 and so A is a positive set.

It remains to prove that �(A) > 0: Suppose if �(A) = 0; then we have �(E) < 0 which

is a contradiction. Thus, �(A) > 0; which gives the desired result.

Hence the proof. �

Theorem 14.3. Let � be a signed measure on [[X;S ]]: Then there exists a positive set

A and a negative set B such that A[B = A\B = ;: The pair A; B is said to be a Hahn

decomposition of X with respect to �: It is unique to be extent that if A1; B1 and A2; B2

are Hahn decompositions of X with respect to � then A14A2 is a � -null set.

Proof. Since � cannot both the values �1; 1: Without loss of generality we may

that � never takes the value 1 on S ; for otherwise we consider ��; the result of the
theorem �� implying the result for �:

Let � = sup[�(C) : C is a positive set]

Since ; is a positive set and thus, we have � � 0: So, we can �nd a sequence of

positive sets fAig such that � = lim �(Ai):

We know that countable union of positive sets is positive and hence A =

1[
n=1

An is
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positive set.

By de�nition of �; we have

� � �(A) (14.4)

But A � Ai � A and so �(A � Ai) � 0: Hence it is a positive set. So far each i

�(A) = �(Ai) + �(A � Ai) � �(Ai)

So, �(A) � lim �(Ai) = � (14.5)

From, (14.4) and (14.5), we have

�(A) = �

Let B = Ac: Then if B contains a positive set D of � measure.

So, we have 0 < �(D) < 1:

So, by theorem (14.2), D contains a positive set E such that 0 < �(E) < 1: But
�(A [ E) = �(A) + �(E) > �

which is contradicting the de�nition of �; So �(D) � 0 and hence B is negative.

Thus, A and B form a Hahn decomposition.

Further, if A1; B1 and A2; B2 are Hahn decomposition of X; then

A1 � A2 = A1 \ Ac
2

= A1 \ B2

Thus, A1 � A2 is a positive set as well as negative set and hence it is a null set.

Similarly, we can prove that A2 � A2 is a null set.

So,
A14A2 = (A1 � A2) [ (A2 � A1)

Thus, A14A2 is a union of null sets and hence A14A2 is a null set.

This completes the proof of the theorem. �

14.2. The Jordan Decomposition:

De�nition 14.5. Let �1 and �2 be measures on [[X;S ]]: Then �1 and �2 are said to

be mutually singular if, for some A 2 S ; �2(A) = �1(A
c) = 0; and we write �1?�2:

Example 14.4. Let � be a measure and let the measures �1; �2 be given by

�1(E) = �(A\ E); �2(E) = �(B\ E); where �(A\ B) = 0 and E; A; B 2 S ; show that

�1?�2:
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Solution:

�1(B) = �(A \ B) = 0

�2(B
c) = �(B \ Bc) = �(;) = 0

Thus, �1(B) = 0 and �2(B
c) = 0:

Therefore, �1?�2:

Theorem 14.4. Let � be a signed measure on [[X;S ]]: Then there exists a measures

�+ and �� on [[X;S ]] such that � = �+ � �� and �+?��: The measures �+ and ��

are uniquely de�ned by � and � = �+ � �� is said to be the Jordan decomposition of �:

Proof. Let A and B be Hahn decomposition of X with respect to �; then X = A [ B

and A \ B = ;:

De�ne �+ and �� by
�+(E) = �(E \ A)

��(E) = ��(E \ B)

9>>>=>>>; (14.6)

for E 2 S :

By example (14.2), we have v+ and v� are measures and

�+(B) = �(B \ A) = �(;) = 0

��(A) = ��(A \ B) = �(;) = 0

So, �+(B) = ��(A) = 0 and hence v+?v�:

Also, for E 2 S ;

�(E) = �(E \ A) + �(E \ Ac)

= �(E \ A) + �(E \ B)

= �+(E) � ��(E)

So, � = �+ � ��:

It remains to prove that the decomposition is unique.

Let � = �1 � �2 be any other decomposition of � into mutually singular measures.

Then X = A [ B and A \ B = ;; i:e:; B = Ac and �1(B) = �2(A) = 0:

Let D � A; then

�(D) = �1(D) � �2(D)
= �1(D) � 0 (* D � A)

So, A is positive set with respect to �:

In a similar way, we can prove that B is a positive set with respect to �:

For each E 2 S ; we have
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�1(E) = �1(E \ A) = �(E \ A)

�2(E) = ��(E \ B)

So every such decomposition of � is obtained from a Hahn decomposition of X as in

(14.6).

So, it is enough to prove that if A; B and A0; B0 are two Hahn decomposition's then

the measures obtained in (14.6) are the same. We have

�(A [ A0) = �(A \ A0) + �(A4A0)
= �(A \ A0 (* �(A4A0) = 0)

For each E 2 S ; as A [ A0 is a positive set, we have

�(E \ (A \ A0)) � �(E \ A) � �(E \ (A [ A0))

�(E \ (A \ A0)) � �(E \ A0) � �(E \ (A [ A0))

From, the above inequalities, we have �(E \ A) = �(E \ A0) and v+ de�ned in (14.6)

is unique.

Then v� = v � v+ is also unique.

Hence the proof. �

Example 14.5. Let [[X;S ; �]] be a measure space and let

Z
f d� exists. De�ne

�(E) =

Z
E

f d�; for E 2 S : Find a Hahn decomposition with respect to � and the

Jordan decomposition of �:

Solution: De�ne �(E) =

Z
E

f d�; for E 2 S :

Then, by example (14.1), we have � is a signed measure.

Let

A = [x : f (x) � 0]

B = [x : f (x) < 0]

Clearly A and B form a Hahn decomposition. While �+ and �� are

given by

�+(E) =

Z
E

f+d�

��(E) =

Z
E

f�d�

Thus, �+ and �� form the Jordan decomposition.

De�nition 14.6. The total variation of a signed measure � is j�j= �+ + ��; where

� = �+ � �� is the Jordan decomposition of �:
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Clearly, j�j is a measure on [[X;S ]] and for each E 2 S ; j�(E)j� j�j(E):

De�nition 14.7. A signed measure � on [[X;S ]] is � -�nite, if X =

1[
n=1

Xn where

Xn 2 S and for each n; j�(Xn)j< 1:

Example 14.6. Show that the signed measure � is �nite or � -�nite respectively, if and

only if j�j; or if, and only if, both �+ and �� are � -�nite.

Solution: Suppose j�(E)j< 1: Then
�(E) = �+(E) � ��(E) < 1

Thus, both �+ and �� are not in�nite. Since �+(E) < 1 and ��(E) < 1:

So,
j�j(E) = �+(E) + ��(E) < 1

Hence, � is �nite if and only if j�j is �nite.

Similarly, we can prove the result for � -�niteness.

Let Us Sum Up:

In this unit, the students acquired knowledge to

� signed measures, positive sets and negative sets.

� derive Hahn decomposition theorem.

Check Your Progress:

1. Prove that a countable union of sets positive with respect to a signed

measure � is a positive set.

2. State and Prove Jordan decomposition.

Say True/False:

1. A is a negative set with respect to � if it is a positive set with respect

to � .

2. Every measure is a signed measure.
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Answer:

(1) F (2) T

Suggested Readings:

1. G. de Barra, �Measure Theory and Integration�, New Age

International Pvt. Ltd, Second Edition, 2013.

2. Rana I. K., �An Introduction to Measure and Integration�, Narosa

Publishing House Pvt. Ltd., Second Edition, 2007.

3. Royden H. L., �Real Analysis�, Prentice Hall of India Pvt. Ltd.,

Third Edition, 1995.
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Block-V

UNIT-15

RADON-NIKODYM THEOREM AND ITS

APPLICATIONS

Structure

Objective

Overview

15. 1 The Radon-Nikodym Theorem

15. 2 Some Applications of the Radon-Nikodym

Theorem

Let us Sum Up

Check Your Progress

Suggested Readings

Objectives

After completion of this unit, students will be able to

F derive Radon-Nikodym theorem.

F understand the application of Radon-Nikodym theorem.
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214 15.1. The Radon-Nikodym Theorem:

Overview

In this unit, we will discuss in detail about the derivation of

Radon-Nikodym theorem and its applications.

15.1. The Radon-Nikodym Theorem:

De�nition 15.1. If �; � are measures on the measurable set [[X;S ]] and �(E) = 0

whenever �(E) = 0; then we say that � is absolutely continuous with respect to � and

we write � � �:

De�nition 15.2. If �; � are measures on the measurable set [[X;S ]] and �(E) = 0

whenever j�j(E) = 0; then we say that � is absolutely continuous with respect to � and

we write � � �:

Example 15.1. Show that the following conditions on the signed measures � and � on

[[X;S ]] are equivalent: (i)� � �; (ii) j�j� j�j (iii) �+ � � and v� � �:

Solution:From De�nition (15.2), we see that �; �; if and only if � � j�j:
So, we may assume that � � 0: As jvj= v+ + v�; we see that jvj� � implies

v+ � � and v� � �; so � � �: For the opposite implications, suppose that

v = v+ � v� with a Hahn decomposition A; B: Then if � � � and �(E) = 0 we

have �(E \ A) = 0 so �+(E) = 0 and similarly v�(E) = 0: So j�j(E) = 0:

Theorem 15.1 (Radon-Nikodym Theorem). If [[XS ; �]] is a � -�nite measure space

and � is a � -�nite measure on S such that � � �; then there exists a �nite-valued

non-negative measurable function f on X such that for each E 2 S ; �(E) =

Z
E

f d�:

Also, f is unique in the sense that if �(E) =

Z
E

gd� for each E 2 S ; then

f = g a:e:(�):

Proof. Assume that the result has been proved for �nite measures. Then in the general

case, we have

X =

1[
n=1

An; �(An) < 1

and X =

1[
m=1

Bm; �(Bm) < 1

and fAng; fBmg may be sequence of disjoint sets.

So, Put

1[
n;m=1

(An \ Bm): Then we obtain X as the union of disjoint sets on which both

� and � are �nite, say X =

1[
n=1

Xn:
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Let Sn = [E \ Xn : E 2 S ]; a � -algebra over Xn:

Now, consider � and � restricted to Sn; then we obtain a non-negative function fn

such that if E 2 Sn; �(E) =

Z
E

fnd�:

So, if A 2 S ; A =

1[
n=1

An; (say), where An 2 Sn:

De�ne f = fn on Xn:

Then by example (10.8), we have f is measurable function on X; and

�(A) =

1X
n=1

Z
An

fnd� =

Z
A

f d�

Thus, the general case follows.

So, we need to show that for �nite measures such a function f exists.

Let K be the class of non-negative measurable functions with respect to � and

satisfying Z
E

f d� � �(E) 8E 2 S

Since 0 2 K and hence K is non-empty.

Let
� = sup

"Z
f d� : f 2 K

#

and let f fng be a sequence in K such that lim

Z
fnd� = �:

If B is any �xed measurable set, n a �xed integer and

gn = maxf f1; f2; : : : ; fmg

Now, we can prove by induction that B is the union of disjoint measurable sets

Bi; i = 1; 2; : : : ; n; such that

gn = fi on Bi; i = 1; 2; : : : ; n:

For n = 2 and let

B1 = [x : x 2 B; f1(x) � f2(x)]

B2 = B � B1

Clearly, B1 and B2 are disjoint measurable sets and B = B1 [ B2:

Assume that the decomposition is possible for n; let

gn+1 = maxf f1; f2; : : : ; fn+1g
= maxfgn; f1g
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So,

B = Fn [ Bn+1;

where gn+1 = fn+1 on Bn+1

gn+1 = gn on Fn

and Fn \ Bn+1 = ;:

But, then by inductive hypothesis, we have

Fn =

1[
n=1

Bn

and gn+1(x) = f (x) for x 2 Bi; i = 1; 2; : : : ; n + 1:

Now, since each fi 2 K,Z
B

gnd� =

1X
n=1

Z
Bi

fid� �
nX
i=1

�(Bi) = �(B) (15.1)

Also, we have gn "; so write
f0 = lim gn

Then by equation (15.1) and by Lebesgue's Monotone convergence theorem, we haveZ
E

f0d� = lim

Z
E

gnd� � �(E)

so f 2 K. Hence

� �
Z

f0d� �
Z

gnd� �
Z

fnd�

So, � =

Z
f0d�:

Since

Z
f0d� � �(X) < 1: Hence there exists a �nite-valued non-negative

measurable function, such that f = f0 a:e:(�):

Next, we will show that if

�0(E) = �(E) �
Z
E

f d�

then �0(E) = 0; for each E 2 S :

By the construction of f ; �0 is non-negative.

Assume that �0 is not identically zero on S :

Let C 2 S and �0(C) > 0: Then by the suitable choice of �; 0 < � < 1;

(�0 � ��) (C) > 0:

But, by theorem (14.2), we can �nd A such that (�0 � ��) (A) > 0: where A is a

positive set with respect to �0 � ��:

Also, �(A) > 0; for otherwise, as � � � we would have �(A) = 0 and hence
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(�0 � ��)(A) = 0: So, for E 2 S
��(E \ A) � �0(E \ A) = �(E \ A) �

Z
E\A

f d�

Hence, if g = f ��A; for each E 2 S ; we haveZ
E

gd� =

Z
E

f d� + ��(E \ A) �
Z
E�A

f d� + �(E \ A) � �(E)

So, g 2 K.

But,

Z
gd� =

Z
f d� + ��(A) > �; a contradicting the maximality of �:

Hence �0 = 0 on S : i:e:;

Z
E

f d� = �(E):

Thus, f is the required function has the desired properties.

It remains to prove the uniqueness of f :

If possible, let g be another measurable function have these properties.

Then, for E 2 S ;

Z
E

( f � g)d� = 0 and taking E = [x : f (x) > g(x)]; we get

f � g a:e: and similarly f � g a:e: and hence f = g a:e: So, f is unique. �

Corollary 15.1. Theorem (15.1) can be extended to the case when � is a � -�nite signed

measure.

Proof. The Jordan decomposition gives � = �+ � �� and

�+(E) =

Z
E

f1d�;

��(E) =

Z
E

f2d�

where f1 and f2 are non-negative measurable functions of which at least one is

integrable.

So, for E 2 S ; �(E) = �+(E)� ��(E) =
Z
E

f d� where the integral of f = f1 � f2 is

well de�ned. �

Corollary 15.2. Theorem (15.1) can be further extended to allow � to be signed measure,

where by
R
E
f d� we then mean

R
E
f +d� �

Z
E

f �d� provided this di�erence is not

indeterminate. Any two such functions f and g are equal a:e:(j�j):

Proof. Let A; B be Hahn decomposition with respect to �; so that

��(E) = �(E \ A)

�(E) = ��(E \ B)

Now, � � �� and �� is � -�nite.

By applying theorem (15.1) on ��; we get

�(E \ A) =

Z
E\A

f1d�
+
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for an appropriate function f1 on A:

Similarly, we have

�(E \ B) =

Z
E\B

f2d�
�

for an appropriate function f1 on B:

De�ne

f = f1 on A

f = � f2 on B

Then f is measurable function on X and

�(E) =

Z
A\B

f1d�
+ �

Z
B\E

(� f2)d��

As � is a signed measure, this will not be of the form 1�1: So,

�(E) =

Z
E

f d�

is well de�ned.

Any two such functions, from the construction agree except on a set of zero �+ and

�� -measure, giving the result. �

15.2. Some Applications of the Radon-Nikodym Theorem:

Theorem 15.2. Let � be a signed measure on [[X;S ]] and let � be a �nite-valued

signed measure on [[X;S ]] such that � � � ; then given � > 0 there exists � > 0 such

that j�j(E) < � whenever j�j(E) < �:

Proof. Since � � � is equivalent to j�j� � and � is �nite-valued if and only if � is

�nite-valued.

Assume that � and � are measures.

Suppose, if the result is not true, then there exists a positive � and a sequence fEng of
sets of S such that �(En) <

1

2n
; but �(En) � �:

Consider

lim sup En =

1\
k=1

Fk; Fk =

1[
m=k

Em

For each k; �
�
lim sup En

�
= �(Fk) �

1X
k=m

1

2m
=

1

2k�1
:

So, �(lim sup En) = 0;
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But, for each k; �(Fk) � � and � is �nite.

Hence, by theorem (10.6), we have

�(lim sup En) = �(lim Fk) = lim �(Fk) � �

contradicting to our hypothesis that � � � and hence our assumption is wrong.

i:e:; given � > 0 there exists a � > 0 such that j�j(E) < � whenever j�j(E) < �: �

De�nition 15.3. Let � and � be � -�nite signed measure on [[X;S ]] and suppose

that � � �: Then the Radon-Nikodym derivative
d�

d�
of � with respect to �; is any

measurable function f such that �(E) =

Z
E

f d� for each E 2 S ; where if � is a

signed measure

Z
f d� =

Z
f d�+ �

Z
f d��:

Notation: In the equation below connecting Radon-Nikodym

derivatives, we will indicate the measure, say � with respect to which

the functions are equal a:e: by the notation [�]: In the case of a signed

measure, the functions are equal a:e:(j�j):

Theorem 15.3. If �1; �2 are � -�nite measures on [[X;S ]] and �1 � �; �2 � �;

then

d(�1 + �2)

d�
=

d�1

d�
+
d�2

d�
[�] (15.2)

Proof. Suppose �1 and �2 are � -�nite measures, then clearly �1 + �2 is also � -�nite

measures.

Also, �1 � � and �2 � � then �1 + �2 � �:

For E 2 S ; then

(�1 + �2)(E) = �1(E) + �2(E)

=

Z
E

d�1

d�
d� +

Z
E

d�2

d�
d�

d(�1 + �2)

d�
=

d�1

d�
+
d�2

d�

i:e:;
d(�1 + �2)

d�
=

d�1

d�
+
d�2

d�
[�]

Hence the proof. �

Theorem 15.4. If �1; �2; �1 + �2 and � are � -�nite signed measures on [[X;S ]] and

�1 � �; �2 � �; then (15.2) holds.

Proof. Since �1 + �2 is � -�nite signed measures, so �1(E) + �2(E) never takes both

values 1;�1:

Case (i) : Suppose � is a measure.

For i = 1; 2; let �i = �
+

i
� ��

i
with Hahn decompositions Ai; Bi:
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Consider the four sets A1 \ B1; A1 \ B2; A2 \ B1; A2 \ B2 separately.

Now, consider the subset A1 \ B2; so we have

�1 + �2 = �+1 � ��2

So, for F � A1 \ B2;

(�1 + �2)(F) = �+1 (F) � ��2 (F)

=

Z
F

 
d�+

1

d�
� d�+

2

d�

!
d�

=

Z
F

 
d�1

d�
+
d�2

d�

!
d�

i:e:; (�1 + �2)(F) =

Z
F

 
d�1

d�
+
d�2

d�

!
d� (15.3)

Since
d�

d�
= �d(��)

d�
[�]:

Since E 2 S can be written as the union of four such sets F:

Similarly, we can consider other three subsets, we get

(�1 + �2)(F) =

Z
F

 
d�1

d�
+
d�1

d�

!
d� (15.4)

(�1 + �2)(F) =

Z
F

 
d�2

d�
+
d�1

d�

!
d� (15.5)

(�1 + �2)(F) =

Z
F

 
d�2

d�
+
d�2

d�

!
d� (15.6)

Adding the equation (15.3), (15.4), (15.5) and (15.6) we have
d(�1 + �2)

d�
=

d�1

d�
+
d�2

d�
[�]

Case (ii) : Suppose � is a signed measure.

Let A; B be a corresponding Hahn decomposition. Write S 0 = [E \ A : E 2 S ] and

let �0; �0
1
; �0

2
be the restriction of �; �1; �2 to S 0:

Similarly, S 00; �00; �00
1
; �00

2
in the case of B:

Now applying case (i) to A and B; we have

d(�0
1
+ �0

2
)

d�0
=

d�0
1

d�0
+
d�0

2

d�0
[�]

d(�00
1
+ �00

2
)

d(��00) =
d�00

1

d(��00) +
d�00

2

d(��00) [�]

9>>>>>>=>>>>>>;
(15.7)

Write fi =
d�0

i

d�0
on A; fi = � d�00

i

d(��00) on B: Then for each E 2 S ; we have
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Z
E

fid� =

Z
E\A

fid�
0 �

Z
E\B

fid(��00)
= �i(E \ A) + �i(E \ B) = �i(E) for i = 1; 2:

Similarly for �1 + �2; since

(�1 + �2)
0 = �01 + �

0
2

and (�1 + �2)
00 = �001 + �

00
2

To get the required, we may subtract equation (15.7). �

Example 15.2. Let � be a � -�nite measure and � a � -�nite signed measure and let

� � � ;

show that
dj�j
d�

=

����� d�d�
����� :

Solution: Let � = �+��� with a corresponding Hahn decomposition A; B:

As in the theorem (15.4), we have����� d�d�
����� =

d�+

d�
[�] on A

and
����� d�d�

����� =
d��

d�
[�] on B

So, by theorem (15.3), we have����� d�d�
����� =

d�+

d�
+
d��

d�
=

dj�j
d�

[�]

Theorem 15.5. Let � be a signed measure and let �; � be measures on [[X;S ]] such

that �; �; � are � -�nite, � � � and � � � ; then

d�

d�
=

d�

d�

d�

d�
[�] (15.8)

Proof. Write � = �+ � ��:

We know that �d�
+

d�
=

d(���)
d�

[�] and similarly for
d��

d�
:

So by theorem (15.4), we need to prove for measures only.

So, suppose that � is a measure and by Radon-Nikodym theorem, take for
d�

d�
and

d�

d�
the non-negative functions f and g respectively.

Now, our aim is to prove that for

F 2 S ; �(F) =

Z
F

f gd�:

Let  be a measurable simple function,

 =

nX
i=1

ai�Ei
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then, we have Z
F

 d� =

nX
i=1

ai�(Ei \ F)

=

nX
i=1

ai

Z
Ei\F

gd�

=

Z
F

 gd�

Let f ng be a sequence of measurable functions such that  n " f : Then

�(F) =

Z
F

f d�

= lim

Z
F

 nd�

= lim

Z
F

 ngd�

=

Z
F

f gd� (*  ng " f g):

Hence,
d�

d�
=

d�

d�

d�

d�
[�]: This completes the proof. �

Theorem 15.6. Let �; �; � be � -�nite signed measures on [[X;S ]] such that � � �

and � � � ; then (15.8) holds.

Proof. Let A1; B1 and A2; B2 be the Hahn decomposition with respect to � and �

respectively.

Consider the four sets Ai \ B j; i; j = 1; 2; separately.

Now. consider the set A1 \ B2; we let

S
0 = [E \ A1 \ B2 : E 2 S ]

and also, let �0; �0 be the restriction of �; � to S 0:

So, �0 and ��0 are measures. Now, applying theorem (15.5) on A1 \ B2; we have

d�

d�0
=

d�

d(��0)
d(��0)
d�0

[�]

As in the proof of Theorem (15.4), we see that � d�

d(��0) is the restriction of
d�

d�
to

A1 \ B2 and ��d(��
0)

d�0
that of

d�

d�
to A1 \ B2: So on A1 \ B1; we get

d�

d�
=

d�

d�

d�

d�

Adding all such four equations, we get the required results. Hence the proof. �

Theorem 15.7 (Lebesgue Decomposition Theorem). Let [[X;S ; �]] be a � -�nite

measure space and � a � -�nite measure on S : Then � = �0 + �1 where �0 and �1

are measures on S such that �0?� and �1 � �: This is the Lebesgue decomposition

of the measure � with respect to � and it is unique.
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Proof. Let � = � + �; then clearly � is � -�nite and � � �:

By Radon-Nikodym Theorem, there exists a non-negative �nite-valued measurable

function f such that if ES ; then

�(E) =

Z
E

f d�

Then, clearly X = A [ B and A \ B = ; and �(B) =
R
B
f d� = 0:

For each E 2 S ; De�ne measures �0; �1 by

�0(E) = �(E \ B)

�1(E) = �(E \ A)

Clearly, nu = �0 + �1:

Since �0(A) = �(A \ B) = �(;) = 0: Thus, we have �0?�:

If �(E) = 0; then
R
E
f d� = 0: So f = 0 a:e:(�) on E:

But f is positive on E \ A; so �(E \ A) = 0:

Also, we have � � �; so �1(E) = �(E \ A) = 0: i:e:; �1 � �:

Next, we have to prove that the decomposition is unique.

Assume that � = �0 + �1 = �0
0
+ �0

1
where �0?�; �0

0
?�; �1 � �; �0

1
� �: So,

there exists A; B; A0; B0 such that X = A [ B = A0 [ B0; A \ B = A0 \ B0 = ; and

�0(B) = �(A) = �
0
0
(B0) = �(A0) = 0:

Let E 2 S ; then

E =
�
E \ B \ B0

� [ �
E \ A0 \ B

� [ �
E \ A \ A0

� [ �
E \ A \ B0

�

Clearly � is zero on the last three sets in this union and by absolute continuity, we have

�1 and �0
1
are zero.

Since �0
1
� �1 = �0 � �00; we have�

�01 � �1
�
(E) =

�
�01 � �1

� �
E \ B \ B0

�
=

�
�0 � �00

�
(E \ B \ B0) = 0 (* �0(B) = �

0
0(B) = 0)

So, �1(E) = �
0
1
(E); which implies �0(E) = �

0
o(E) and hence the proof. �

Let Us Sum Up:

In this unit, the students acquired knowledge to

� the concept of Radon-Nikodym theorem and its applications.

� derive Lebesgue decomposition theorem.
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Check Your Progress:

1. If � is a signed measure and E1 � E2 � : : : ; then prove that

�

0BBBBB@
1[
i=1

Ei

1CCCCCA = lim �(Ei):

2. If � is a signed measure and E1 � E2 � : : : ; prove that j�(Ei)j< 1; and
�

0BBBBB@
1\
i=1

Ei

1CCCCCA = lim �(Ei):

3. Show that if �1; �2 and � are measurable and �1?�; �2?� then

�1 + �2?�:

4. Show that if � and � are � -�nite signed measures and � � �; � � �;

then
d�

d�
=

 
d�

d�

!�1
[�]:

Suggested Readings:

1. G. de Barra, �Measure Theory and Integration�, New Age

International Pvt. Ltd, Second Edition, 2013.

2. Rana I. K., �An Introduction to Measure and Integration�, Narosa

Publishing House Pvt. Ltd., Second Edition, 2007.

3. Royden H. L., �Real Analysis�, Prentice Hall of India Pvt. Ltd.,

Third Edition, 1995.
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UNIT-16

BOUNDED LINEAR FUNCTIONALS

Structure

Objective

Overview

16. 1 Bounded Linear Functionals on L
P

Let us Sum Up

Check Your Progress

Suggested Readings

Objectives

After completion of this unit, students will be able to

� under the concept of normed vector space and linear functional.

F derive Riesz representation theorem.

Overview

In this unit, we will illustrate the concepts of normed linear space

and linear functional.
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226 16.1. Bounded Linear Functionals on LP :

16.1. Bounded Linear Functionals on L
P :

De�nition 16.1. Let V be a real vector space. Then V is a normed vector space if there

is a function kxk de�ned for each x 2 V such that

(i) kxk� 0 8x;

(ii) kxk= 0 if and only if x = 0;

(iii) k�xk= j�j�kxk for any real number � and for each x 2 V:

(iv) kx + yk� kxk+kyk 8x; y 2 V:

De�nition 16.2. A function G on the normed linear space V to the real numbers is a

linear functional if 8x; y 2 V and a; b 2 R we have G(ax + by) = aG(x) + bG(y):

De�nition 16.3. A linear functional G on the normed linear space V is bounded if

9 K � 0 such that

jG(x)j � Kkxk 8x 2 V (16.1)

Then the norm of G; denoted by kGk; is the in�mum of the numbers K for which (16.1)

holds.

So, easily jG(x)j� kGk�kxk: Then dividing by kGk; we see that

kGk = sup[jG(x)j: kxk� 1]]

When dim V = 0; we have kGk= sup[jG(x)j: kxk= 1]]

De�nition 16.4. If [[X;S ; �]] is a measure space and p > 0; we de�ne Lp(X; �) or

more brie�y LP(�) to the class of measurable functions

"
f :

Z
j f jpd� < 1

#
:

De�nition 16.5. Let f 2 Lp(�); then the Lp -norm of f ; denoted by k f kp; is given by Z
j f jpd�

!1=p
:

Now, let us see the important inequality namely Holder's inequality with

out proof.

Theorem 16.1 (Holder's inequality). Let 1 < p < 1; 1 < q < 1; 1

p
+
1

q
= 1 and

let f 2 LP(�); g 2 Lq(�): Then f g 2 L1(�) and

Z
j f gjd� �

 Z
j f jpd�

!1=p
�
 Z

jgjqd�
!1=q

Theorem 16.2. If f 2 L1(�) and g 2 L1(�); then f g 2 L1(�) and k f gk1� k f k1kgk1:
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Example 16.1. The following are equivalent for a linear functional G : (i) G is

bounded, (ii) G is continuous at 0; (iii) G is continuous at each x 2 V:

Solution:

(i) ) (ii) : Suppose that G is bounded. Then there exists K � 0 such that

jG(x)j� Kkxk; 8x 2 V: Now,we shall prove that G is continuous at 0.

Let xn ! 0; then

jG(xn)j � kGk�kxnk! 0

Thus, G is continuous at 0:

(ii) ) (iii) : Assume that G is continuous at 0 and now, we have to prove

that G is continuous at each point x 2 V:

Let xn ! x; then

kG(xn �G(x)k = kG(xn � x)j

� kGk�kxn � xk! 0

Thus, G is continuous at every point x 2 V:

(iii) ) (ii) : Assume that G is continuous at every point x 2 V: Now, we

shall prove that G is continuous at 0:

Since, G is continuous at every point x 2 V; in particular G is continuous

at the origin.

(ii) ) (i) : Assume that G is continuous at 0: Our wish is to prove that

G is bounded.

Assume the contrary that G is not bounded, then there exists fxng such
that kxnk� 1; but jG(xnk� n:

If yn = n�1xn; so that kynk! 0; we have jG(yn)j� 1; thus G is not continous

at 0; which contradicts our assumption.

Hence G is bounded.

Example 16.2. De�ne G on Lp(�) by G( f ) =

Z
f gd� for a �xed g 2 Lq(�); p and

q being conjugate indices with p � 1 and with q = 1 in the case when p = 1: Then G

is bounded linear functional and kGk� kgkq:

It will from the main theorem of this section that kGk= kgkq for this kind
of functional. It is convenient to deal separately with the case 1 < p < 1
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and p = 1: The next theorem shows that Lq is in a sense, the set of bounded

linear functionals or dual space of Lp:

Theorem 16.3 (Riesz Representation Theorem for Lp; p > 1 ). Let G be a bounded

linear functional on Lp(X; �): Then there exists a unique element g of Lq(X; �) such

that

G( f ) =

Z
f gd� for each f 2 Lp (16.2)

where p; q are conjugate indices. Also

kGk = kgkq (16.3)

Proof. First, we shall prove the uniqueness. For this, we assume that g and g0 are two

functions satis�es the hypothesis of the theorem.

Let E be any set of �nite measures, so that �E 2 Lp: ThenZ
E

(g � g0)d� =

Z
�E(g � g0d�

= 0

) g = g0 a:e: (* [x : g(x) 6= g0(x)] has �-�nite measure):

Thus, the uniqueness is proved.

If kGk= 0; then G( f ) = 0 for all f ; so g � 0 satis�es (16.2) and (16.3). So, assume

that kGk> 0:

Suppose �(X) < 1: For each E 2 S ; de�ne �(E) = G(�E) ;

Claim: � is a signed measure.

Clearly �(;) = 0:

�(A [ B) = G(�A[B)

= G(�A) +G(�B)

= �(A) + �(B)

for disjoint sets A and B: Thus, � is �nitely additive.

Let E =

1[
i=1

Ei and let An =

n[
i=1

Ei: We have

kAn � Ekp = (�(E � An))
1=p ! 0 as n ! (* G is continuous by example 8.9):

Thus, we have �(An) ! �(E); so � is countably additive. Further, � takes only

�nite-value, since G takes only �nite values. Hence � is a signed measure.

Also, if �(E) = 0; then k�Ekp= 0; which implies �(E) = 0 that is � � �: So, by

Raydon Nikodym theorem, there exists g 2 L1(�) such that for each E 2 S

G(�E) =

Z
E

gd� =

Z
�Egd�
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Claim: g has the required properties.

By the linearity of integration, we have

G(�) =

Z
�gd�

for any measurable simple function �:

But each function f 2 L1(�) is the uniform limit a:e: of a sequence f ng where each
 n is the di�erence of measurable simple functions, and so k f �  ngjp! 0:

Hence, by the continuity of G; we have

G( f ) =

Z
f gd� for each f 2 L1(�) (16.4)

It remains to show that kGk= kgkg:

Let the function � on X be de�ned by

� = 1 where g > 0

� = �1 where g < 0

Clearly � is measurable and �g = �g = jgj:

Let
En = [x : jg(x)j� n]]

and put f = ��En
jgjq�1; where p; q are conjugate indices. Then j f jp= jgjq on

En; f 2 L1(�):

Hence, by equation (16.4), we haveZ
En

jgjqd� =

Z
f gd�

= G( f )

� kGk�k f kp

= kGk
 Z

En

jgjqd�
!1=p

i:e:;

Z
En

jgjqd� = kGk
 Z

En

jgjqd�
!1=p

(16.5)

If,
�R

En
jgjqd�

�1=p
= 0 then it is obvisou. So, we assume that

�R
En
jgjqd�

�1=p 6= 0:

Divide (16.5) both sides by
�R

En
jgjqd�

�1=p
, we get
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 Z
En

jgjqd�
!1� 1

p
d� � kGk

)
 Z

En

jgjqd�
!1=q

d� � kGk

i:e:;

Z
En

jgjqd� � kGkq

)
Z

�En
jgjqd� � kGkq

Since, �En
" 1 and by Lebesgue's Monotone convergence theorem, we have

kgkq � kGk (16.6)

and in particular g 2 Lq(�):

By example 8.10, we have
kGk � kgkq (16.7)

Thus, from (16.6) and (16.7), we have
kGk = kgkq

So, (16.2) holds for f 2 L1(X; �):

But the bounded functions are dense in Lp: For it is su�cient to show that every

non-negative function f 2 Lp is the limit in the mean of order p; of a sequence f fng of

bounded functions.

Put fn = min( f ; n): Then 0 � ( f � fn)
p � f p and f � fn ! 0 a:e: So by Lebesgue

Dominated convergence theorem, we have k f � fnkp! 0:

By Continuity of G; we have G( fn) ! G( f ):

Also, by holder's inequality, we have
R
fngd�!

R
f gd�:

Hence, G( f ) =
R
f gd�: Thus, the theorem is proved for �nite measure space.

Now, we extend the result to the case when X =

1[
i=1

Xi; where the Xi are disjoint

measurable set of �nite � -measure.

Any function fi on Xi; measurable with respect to the � -algebra of sets

E \ Xi; E 2 S ; can be extended to f on X by putting f = 0 on Xc
i
: Then G has the

restriction Gi on L(Xi; �); where Gi( fi) = G( f ); and we have kG1k� kGk:

By the �rst part, we have

Gi( fi) = G(�Xi
f ) =

Z
Xi

f gid�

for each f 2 Lp(X; �); for each i; and for a suitable gi 2 Lq(X; �):

Extend gi to X by putting gi = 0 on Xc
i
and write g =

P
gi:
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If Yn =

n[
i=1

Xi; then

G(�Yn
f ) =

Z
Yn

f (g1 + g2 + : : : + gn)d�; 8 f 2 Lp(X; �)

As in the �rst part, since �(Yn) < 1 and kg1 + g2 + : : : + gnk� G for each n: So

�
kgkq

�q
=

Z ����X gi

����q d�
=

Z
lim

�������
nX
i=1

gi

�������
q

d�

� lim inf

Z �������
nX
i=1

gi

������� d�
� kGkq (By Fatou's lemma)

i:e:;
�
kgkq

�q � kGkq

i:e:; kgk � kGk

Also, by example 8.10, we have kGk � kgk

Thus, we have kGk= kgkq:

Also, �Yn
f ! f in the mean of order p so G

�
�Yn

f
� ! G( f ):

But

nX
i=1

gi ! g in the mean of order q; so by Holder's inequality we have

Z
�Yn

f

nX
i=1

gid�!
Z

f gd�

Now, consider the general case where � need not be � -�nite. We show that there

exists a X0 2 S which is of � -�nite measure that is X0 is the union of a sequence of

sets of �nite measure, and such that if f = 0 on X0 then G( f ) = 0:

Let f fng be such that k fnkp= 1 and G( fn) � kGk(1� 1=n) and X0 =

1[
n=1

[x : f (x) 6= 0]

has � -�nite measure.

Let E 2 S with E � Xc
0
; then

k fn + t�Ekp = (1 + tp�(E))1=p for t � 0

Also,

G( fn) �G(�t�E) � jG( f � t�E)j� kGk(1 + tp�(E))1=p

and

kG(t�E)j� kGkj(1 + tp�(E))1=p � 1 + n�1j

for every n:
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Let n ! 1 and then divide by t(> 0) to get

kG(t�E)j� kGk (1 + tp�(E))1=p � 1

t

Since p > 1; we may apply l'Hospital rule as t ! 0 to get G(�E) = 0: So G vanishes

for simple functions and hence for measurable functions which equal zero on X0:

Hence, by the proof for the � -�nite case we can �nd g 2 Lq(X0) such that

G(�X0
f ) =

Z
X0

f gd�

De�ne g to be zero on Xc
0
; to get the required function g of the theorem.

i:e:; G( f ) =
R
f gd�: Hence the proof. �

Theorem 16.4 (Riesz Representation Theorem for L1(�) ). Let [[X;S ; �]] be a � -�nite

measure space and let G be a bounded linear functional on L1(X; �): Then there exists

a unique G 2 L1(X; �) such that

G( f ) =

Z
f gd� for each f 2 L1(�) (16.8)

Also, kGk= kgk1:

Proof. Assume that [[X;S ; �]] is a �nite measure space. As in the previous theorem,

we can construct a unique function g such that (16.8) holds for f 2 L1(X; �): Now, our

aim is to prove that g 2 L1:

We have

�����
Z
E

gd�

����� � kGkk�Ek1= kGk�(E); 8E 2 S (16.9)

Suppose that jg(x)j> kGk on a set A of positive measure and write

En = [x : jg(x)j> (1 + 1=n)kGk]

So A = [En:

Hence for some n; we have �(En) > 0 and jg(x)j> (1 + 1=n)kGk on En: Then

Z
En

gd� � kGk(1 + 1=n)�(En)

contradicting (16.9) as we may suppose kGk� 0: So kgk1� kGk and hence kgk1= kGk:

Now, we extend (16.8), as in the previous theorem to all functions f 2 L1(�): Extend

as before, to the � -�nite case; we now have kg1 + g2 + : : : + gnk� kGk for each n;

So kgk1� kGk: For the last part of the � -�nite case in the previous theorem, Holder's

inequality is replaced by theorem 8.13. �
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Let Us Sum Up:

In this unit, the students acquired knowledge to

� the concept of bounded linear functionals.

� derive Riesz representation thoerem.

Check Your Progress:

1. Derive Riesz representation theorem for Lp ( p > 1 ).

2. Derive Riesz representation theorem for L1 .

Suggested Readings:

1. G. de Barra, �Measure Theory and Integration�, New Age

International Pvt. Ltd, Second Edition, 2013.

2. Rana I. K., �An Introduction to Measure and Integration�, Narosa

Publishing House Pvt. Ltd., Second Edition, 2007.

3. Royden H. L., �Real Analysis�, Prentice Hall of India Pvt. Ltd.,

Third Edition, 1995.
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