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1.1.

1.2.

2 1.1. INTRODUCTION:

' Overview

In this unit, we will illustrate the basic concepts of countable
sets, compact sets and connected sets. Also, we concentrate the concepts

of convergent sequence and convergent series.

Objectives

After successful completion of this lesson, students will be able to
e understand the concept of countable sets and uncountable sets.
e classify and explain the different types of functions.
o define metric spaces with an appropriate example.

e understand the concept of limit point, closed, neighborhood,

dense set.
e understand the concept of compact sets and connected sets.

e understand the concept of convergent sequence and divergent

sequence.

Introduction:

In this chapter, we shall recall some basic concepts which we were

studied in the lower classes.

Finite, Countable and Uncountable Sets:

Definition 1.1. Consider any two sets A and B, whose elements may be any different
objects. Then a rule or correspondence, which associates each element of A to a unique
element of B, is called a function from a set A to set B, which we denote by f(x). The
set A is called the domain of f (we can also f is defined on A ), and the elements of f(x)

are called the values of f. The set of all values of f is called the range of f.

Real Analysis M.Sc.(Mathematics)-1 Year-I Sem



1.2. Finite, COUNTABLE AND UNCOUNTABLE SETS: 3

Different type of functions:

)

(ii)

@)

Onto function: Let A and B be two sets and let f be a mapping of A
into B. If Ec A, then f(E) is defined to be the set of all elements of
f(x) for x € E. Simply, we call f(E) is the image of E under f. In
this way, we can say that f(A) is the range of f. Itis very clear that
fA cB. If f(A)=B (ie., range of f = B), then we say that f maps
A onto B.

If Ec B, f/U(E) denotes the set of all x € A such that f(x) e E. We

call f}(E) the inverse image of E under f.

One-One function: If y € B, f~'(y) is the set of all x € A such that
f(x)=y, then f issaidtobe 1-1 (one-t0-one) mapping of A into B.
This may also be expressed as, f isa 1—1 mapping from set A into

set B provided that f(a) # f(b) whenever a # b, a, beA.

In other words, A function f from aset A into B. ie.,f:A— B is
said to be one-to-one (0r) injective if and only if distinct elements of A

have distinct images in B.

Definition 1.2. Two sets A and B are said to be equivalent (or have the same cardinal

number), if there exists a 1 -1 mapping of A onfo B and symbolically, we write A ~ B.

Note 1.1. The relation ~ is an equivalance relation.

Notation: For any positive integer n,

let J,

J=

=1{1,2,3,...,n}, a set containing n elements.

{1,2,3,...} the set of all positive integers.

Definition 1.3. For any set A, we say

(a) A isfinite, if A ~ J, for some n (the empty set is also considered to be finite).

(b) A isinfinite, if A is not finite.

(c) A iscountable,if A ~ J.

(d) A is uncountable if A is neither countable nor finite.

(e) A is at most countable if A is finite or countable.

Countable sets are sometimes called enumerable or denumberable.

M.Sc.{Mathematics)-I Year-I Sem Real Analysis



4 1.3. METRIC SPACES:

Remark 1.1. Two finite sets A and B are said to be equivalent if and only if they have

the same number of elements.

For infinite sets, however the idea of having the same number of elements becomes

quite vague, whereas the concept of 1 — 1 correspondence retains its clarity.

Some important results related to countable or uncountable sets are

listed below:

& The set of integers Z is countable.

’¥” Any infinite subset of countable set is countable.
15" The set of all rational numbers is countable.

15" The set of all real numbers is uncountable.

iz~ Countable Union of countable sets is countable.

1.3. Metric Spaces:

Definition 1.4. A set X whose elements are called points, is said to be metric space if
with any two points p and g of X there is associated a real number d(p, q), called the

distance function from p to ¢, such that

a) dip,q)>01if p#q; dlp,p)=0;
b) d(p,q) =d(q,p)
c) d(p,q) <d(p,r)+d(r,q) forany p,q,r € X.

Note 1.2. Any function with these three properties is called a distance function

Example: Euclidean space R (especially R! -real line; R?- complex plane)
together with the distance function is defined by d(x,y) = [x -y (x,y € R

is a metric space.

Remark 1.2. It is very important to observe that every subset Y of a metric space X is

a metric spaces in its own right with the same distance function.

Thus, every subset of a euclidean space is a metric space.

Real Analysis M.Sc.(Mathematics)-1 Year-I Sem



1.3. METRIC SPACES: 5

Definition 1.5.

(i) (a,b) ={x|a < x < b} is called an segment,
(i) [a,b] = {x|a < x < b} is called the interval,
(iii) [a,b) = {x] a < x < b} is called the Half open intervals
(iv) (a,b] = {x] a < x < b} is also called the Half open intervals
Definition 1.6.

(a) k-cell:

If g;<b;, i=1,,2,...,k and a;,b; € R', then the set of points

(xeR:x=(x1,x0,....,%), a;<x;<b;, i=1,23,...,k} is called a k-cell.

Note 1.3. 1—cell is an interval in R'; 2-cellis a rectangle in R%*:; 3cellisa

cuboid in R3.

(b) Open ball:

If x € R* and r > 0, the open ball B with centre at x and radius r is defined
by {yeRk Cy—xl<rh

(¢) Closed ball:

If x € R* and r > 0, the open ball B with centre at x and radius r is defined
by {yeR"' Cly—x <rh

Definition 1.7. A subset E C R* is said to be convex if Ax + (1 — Q) y € E, whenever
x,y,€E and 0 <A< 1.
Example of convex sets:

Open balls, closed balls and & -cells are convex sets in R*.

Definition 1.8. Let X be a metric space. All points and sets mentioned below are

understood to be an elements and subsets of X.

(1) A neighborhood of p isaset N,(p) consisting of all ¢ such that d(p,q) < r, for
some 7 > (0. The number r is called the radius of N,(p).

(2) A point p is a limit point of the set E if every neighborhood of p contains a
point g # p such that g € E.

(3) If p€ E and p isnot alimit point of E, then p is called an interior point of E.
(4) E is closed if every limit point of E is a point of E.

(5) A point p is an interior point of E if there is a neighborhood N of p such that
NCE.

M.Sc.{(Mathematics)-I Year-I Sem Real Analysis



6 1.3. METRIC SPACES:

(6) E isopen if every point of E is an interior point of E.

(7) The complement of E (denoted by E¢) is the set of all points p € X such that
pé¢E.

(8) E isperfectif E is closed and if every point of E is a limit point of E.

(9) E is bounded if there is a real number M and a point ¢ € X such that
d(p,q) < M forall peE.

(10) E is dense in X if every point of X is a limit point of E or a point of E (or
both).

(11) If E’ denotes the set of all limit points of E in X, then the closure of E is the

set E=EUE'.

Some important results about open sets, closed sets and neighborhood

are given below:

1" Every neighborhood is an open set.

i If p is a limit point of a set E, then every neighborhood contains

infinitely many points of E.
1" A finite point set has not limit points.
1" A set E is open if and only if its complement E° is closed.

1¥” For any collection {G,} of open sets, U G, 1s open.

a

15" For any collection {F,} of closed sets, ﬂ F, 1s closed.

a

n
15" For any finite collection G;,G,,...,G, of open sets ﬂ G; is open.
i=1

n
1¥” For any finite collection Fy,F»,...,F, of closed sets U F; 1is closed.
i=1

1" A set E is closed if and only if E=E.

Definition 1.9. Let X be a metric space and E C Y C X is said to be open relative to
Y iftoeach p € E, there is an associated » > 0 such that ¢ € E whenever d(p,q) <r
and g€ Y ie,{geY:d(p,q) CE}.

Remark 1.3. Suppose E Cc Y € X and X be a metric space. E is open relative to Y if
E CcYNG for some open subset G of X.

Real Analysis M.Sc.(Mathematics)-1 Year-I Sem



1.4.

1.4. CompACT SETS AND CONNECTED SETS: 7

Compact sets and Connected sets:

Definition 1.10. Let X be a metric space. A collection of open sets {G,} of X is called
an open cover of E, if E C U G,.
a

Definition 1.11. A subset K of a metric space X is said to be compact, if every open
cover of K contains a finite sub cover. More explicitly, if {G,} is an open cover of K,
then there are finitely many indices a1, @, ..., @, such that

K C Gy UGy, UGy, U...UG,,

Remark 1.4. Every finite set is compact.
Some important results related to compact sets are given below:

1" Compact subsets of metric spaces are closed.
1= Closed subsets of a compact sets are compact.
" If F isclosed and K is compact, then F n K is compact.

2w If {K,} is a collection of compact subsets of a metric space X
such that the intersection of every finite sub collection of {K,} is

non-empty, then M K, is non empty.
15" Any infinite subset of a compact set K has a limit point.

1" Every k-cell in R* is compact.

Now, let us see two important theorem in compact spaces without proof.

Theorem 1.1 (Heine-Borel Theorem).

If E is a subset of R*, then the following one equivalent.

(a) E is closed and bounded.
(b) E is compact.
(c) Every infinite subset of E has a limit point in E.

Theorem 1.2 (Weierstrass Theorem).

Every bounded infinite subset of R* has a limit point in R*.

Definition 1.12. Two subsets A and B of a metric space X are said to be separated, if
both ANB=0 and ANB=0

M.Sc.{(Mathematics)-I Year-I Sem Real Analysis



8 1.5. SEQUENCES

Definition 1.13. A set E C X is said to be connected if E is not a union of two

non-empty separated sets.

Note 1.4. A subset E of the real line R' is connected if it has the following property if
xeE, yeFE and x<z<y, then z€ E.

1.5. Sequences

1.5.1. Convergent Sequences:

Definition 1.14. A sequence {p,} in a metric space X is a function of f from J into

X. If f(n) = p,, we represent this function by its image; p1, p2, p3,..., or simply {p,}.
Example:
(a) 1 L1 ! is a sequence in R!
T TERETI e q )

(b) -1, ,...1s also a sequence in R!.

11 (—1)"
e

(¢) 1,-1,1,—1,...,(=1, ... is also a sequence in R'.

Definition 1.15. A sequence {p,} in a metric space X is said to converge if there is a

point p € X with the following property:

For every € > 0 there is an integer N such that n > N implies that d(p,,p) < €

(Here d denotes the distance function).
In this case, we say that {p,} convergesto p or that p is the limit point of {p,}.
Symbolically, we can write ’}1_{1;7 pn=p (or) p,—p.
If {p,} does not converge, it is said to be diverge.

Definition 1.16. If {p,} is a sequence, then the set of points p, is called the range of

the sequence {p,}. The range may be finite or infinite.

The sequence {p,} is said to be bounded if its range is bounded.
Now, we shall list out some important results on sequence below:

15 If limit of a sequence exists, then it is unique.

1= Let {p,} be a sequence in a metric space X, then {p,} converges
to p € X if every neighborhood of p contains all but finitely many

points.

Real Analysis M.Sc.(Mathematics)-1 Year-I Sem



1.5. SEQUENCES 9

¥ If Ec X andif p is alimit point of E, then there exists a sequence

{p,} In E such that p = lim p,.
n—o00
1=~ Every convergent sequence is a bounded sequence.

& Suppose {s,} and {7,} are complex sequence, and lim s, = s,

n—oo

lim ¢, = . Then

n—oo
(@) lim (s, +1,) =s+¢
n—oo

(b) lim cs, =cs

n—oo

(c) lim s,t, = st

n—oo

(d) lim 1. % provided s, #0 and s # 0.

n—eo §,

1.5.2. Subsequences:

Definition 1.17. Given a sequence {p,}, consider a sequence {n;} of positive integers,
such that n; < ny < n3 < ... Then a sequence {p,,} is called a subsequence of {p,}. If

{pn,} converges, its limit is called a subsequential limit of {p,}.
Important Results on Subsequences:

* If {p,} is a sequence in a compact metric space X, then some

subsequence of {p,} converges to a point of X.

* Every bounded sequence in R* contains a convergent subsequence.

1.5.3. Cauchy Sequences:

Definition 1.18. A sequence {p,} in a metric space X is called a Cauchy sequence if for
every € > 0 there is an integer N such that d(p,, pm) < € if n> N and m > N.

Definition 1.19. Let E C X be a subset of a metric space X, then the diameter of a
subset E is defined by diamE = sup{d(p,q) : p,q € E}.

Remark 1.5.

(a) If {p,} isasequencein X andif Ey consists of the points Py, Py.1,.... Then

{pn} is a Cauchy sequence if and only if }%im diam Ey = 0.

M.Sc.(Mathematics)-I Year-I Sem Real Analysis



10 1.6. SERIES

(b) Every Cauchy sequence in a metric space is bounded.

Definition 1.20. A metric space in which every Cauchy sequence converges is said to be

complete.

Definition 1.21. A sequence {s,} of real numbers is said to be

(a) monotonically increasing if s, < spe1 n=1,2,3,...)
(b) monotonically decreasing if s, > s,41 (n=1,2,3,...)
Remark 1.6. Every monotonic sequence {s,} converges if and only if it is bounded.

Definition 1.22. Let {s,} be a sequence of real numbers with the property: For every real
M there is an integer N such that n > N implies s, > M. We write s, — +00.

Similarly, if for every real M there is an integer N such that n > N implies s, < M.

We write s, — —o0.

Definition 1.23. Let {s,} be a sequence in R'. Let E be the set of all subsequential

limits of {s,} plus possibly the numbers +oco, —oco.

The numbers s* = sup E and s. = inf E are called the upper limits and the lower
limits of {s,} respectively and written as

limsups, =s" and liminfs, =s.
n—oo n—oo

Remark 1.7.

% Let {s,} be a sequence of real numbers. Let E and * have the same meaning as

in the above definition. Then s* have the following two properties:

(a) s*eE
(b) If x> s%, thereis an integer N such that n > N implies s, < x.

Moreover, s* is the only number with the above two properties.

The same result is true for s. also.

* If {s,} <{t,} for n > N is fixed then

liminfs, < liminfg,
n—-oo n—-oo
limsups, < limsupt,
n—oo n—-oo

1.6. Series

Definition 1.24. Given a sequence {a,}, we associate a sequence {s,}
(o)

where s, =a; +a, +... (or) Zan.
n=1

Real Analysis M.Sc.(Mathematics)-1 Year-I Sem



1.6. SERIES 11

Remark 1.8.

[eS)

(i) The symbol Z a, is called an infinite series or just a series.

n=1

(i) The numbers s, are called the partial sums of the series.

(iii) If s, convergesto s, we say that the series Z a, converges and write

n=1

(e8]
E a, = s.

n=1

(iv) The number s is called the sum of the series.

(v) If s, diverges, then the series is said to be diverge.

Cauchy Criterion of Convergence of Series:

Z a, converges if for every e >0 there is an integer N such that,

n=1 m
24
k=n

if m>n>=N, <€

Remark 1.9.

* If Z a, converges, then lim a, =0
n=1

n—oo

0

% If lim a, # 0, then Zan diverges.

n—oo
n=1

% A series of non-negative terms converges if and only if its partial sum forms a
bounded sequence.
Definition 1.25. Given a series {c,} of complex numbers, the series Z c,d" is called

n=0
a power series, the number ¢, are called the coefficients of the series; z is a complex

number.

Let us Sum up:

In this unit, the students acquired knowledge to

¢ countable and uncountable sets.
e metric spaces, convex sets, open balls and closed balls.

e Compact sets and Connected sets with their properties.

M.Sc.{Mathematics)-I Year-I Sem Real Analysis



12 1.6. SERIES

e basic concepts of Sequences, Convergent Sequences, Cauchy

Sequences and Series.

| Choose the correct or more suitable answer:

1. Let A and B be any two sets and f(A) = B, then we say that f maps

(a) into
(b) one-one function
(c) onto

(d) many to one.
2. The set of integers is

(a) finitely countable
(b) infinitely countable
(c) infinitely uncountable

(d) none of these.
3. Eis ...... if every limit point of E is a point of E.
(a) Open
(b) Half open
(¢c) closed
(d) none of these.

4. Closed subsets of a ...... are compact.

(a) connected sets
(b) compact sets
(c) closed sets
(d) open sets.

5. A sequence of real number ({s,} is said to be monotonically

decreasing if ...... .

(a) Sn < Sn+l (b) Sp < Spsl (C) Sn > Sn+l (d) Sp > Sp+l-

Real Analysis M.Sc.(Mathematics)-1 Year-I Sem



1.6. SERIES 13

 Answer:

De @b B)c @ b (5 ¢

| Glossaries:

1. Line Segment: It is a straight line has two endpoints, one at a

beginning and other at an end.

2. Closed sets: It is a set which contains all its limit points.

Suggested Readings:

1. Rudin, W., “Principles of Mathematical Analysis”’, Mc Graw-Hill,
Third Edition, 1984.

2. Avner Friedman, “Foundations of Modern Analysis”, Hold Rinehart
Winston, 1970.
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LIMITS AND CONTINUITY-I
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Objective
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2.1 Limits and functions
2.2  Continuous functions
2.3 Continuity and Compactness
Let us Sum Up
Check Your Progress
Answers to Check Your Progress

Glossaries

Suggested Readings

| Overview

In this unit, we will explain the concepts of a limit of a function
and continuity of a function. Further, we studied more detailed about the

concepts of Continuity and Compactness.
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16 2.1. LIMITS OF FUNCTIONS:

Objectives

After completion of this unit, students will be able to

* understand the concept of limits and continuity and also identity

whether the given function is continuous or not at a point.

* understand the concept of components of continuous vector

functions are continuous.

* understand the concept of uniform continuity and also
they identify the difference between continuity and uniform

continuity.

% explain the concept of compactness and its properties.

2.1. Limits of functions:

Definition 2.1. Let X and Y be metric spaces, Suppose £ C X, f maps E into Y

and p is a limit point of E. We write f(x) — ¢ as x — p, (or) lim f(x) = g, if there
x—op

is a point g € Y with the following property:

For every € > O there exists a ¢ > 0 such that

dy(f(x).q) < € 2.1

for all points x € E for which
0<dx(x,p) <o 2.2)

Remark 2.1.
(1) The symbols dx and dy refer to the distances in metric spaces X and Y

respectively.

If X and/or Y are replaced by the real line, the complex plane, or by the euclidean
space R¥, the distances dy,dy are replaced by absolute values or by norms of

differences.

(2) In the above definition, we observed that p € X, but that p need not be a point of
E. Moreover, even if p € E, lim f(x) # f(p).
x—p

Theorem 2.1. Let X and Y be a metric spaces, Suppose E C X, Suppose f maps E

Real Analysis M.Sc.(Mathematics)-1 Year-I Sem
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into Y and p is a limit point of E. Then

lim f(x) = ¢ 2.3)
X—=p
if and only if lim f(p,) = ¢ 2.4
for every sequence {p,} in E such that pn#p, limp, = p. 2.5
n—oo
Proof. Assume that lim f(x) = ¢ holds good.
xX—p
Choose {p,} in E such that p, # p, lim p, = p.
n—oo
Let € > 0 be given.
limf(x) = ¢
xX—p
= there exists a ¢ > 0 such that dy(f(x),q) < €,ifx € E and
0<dx(x,p) <6 (2.6)

pu # p, limp,=p
= for given 6 > O there exist N such that n > N implies
0 <dx(pn.p) <0 2.7
For n>N = 0<dx(p,,p) <9 (from (2.7))
= dy(f(pn).@) <€ (from (2.6))
= lim f(p) =g 28)

Converse Part:
Given: ’}Lrg f(pn) = q for every sequence {p,} in E such that p, # p, JLIEO Pn = D-
To Prove: }12117 f(x)=q.

Assume that lxl_Ig f(x)#q

Then there exists some € > 0 such that for every 6 > 0 there exists a point
x € E (depending on ¢ ) for which dy(f(x),q) > € but 0 < dx(x, p) <.

1
Taking 6, = — (n = 1,2,3,...) there exists a sequence in {x,} in E such that
n
1
0 < dx(x,, p) < — and dy(f(x,),q) > € which is a contradiction.
n

Therefore lim f(x) =g¢q [ |
xX—p

Corollary 2.1. If f has a limit at p, then it is unique.

Proof. Suppose that lim f(x) = ¢;; lim f(x) = ¢». i.e., f has two different limits.
,\"HP X%p

lim f(x) = g1 = there exists a sequence {p,} in E such that

xX—p
pn £ p; lim f(p,) = q1 (By previous theorem).

Similarly, lim f(x) = g» = there exists a sequence {p,} in E such that

xX—p

Pn £ D; ’}LH;’ F(pn) = q2-

We know that, if the limit of a sequence exists and it is unique.
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q1 = 4q2- | |
Definition 2.2. Let X be a metric space, E be a subset of X and f, g are two complex

functions defined on E. Then f + g, f — g, fg, i are also defined on E and they are
8

defined on E as follows:

(@ (f£e@=f(x)xgx) VxeE.
b (f-9® =[x gx) VxeE.
@)(f)w)=591 i 0, Vxek
8 8(x)
(d) (cfHx) =cf(x); ¥YxeE and c is aconstant.

Definition 2.3. Suppose f and g map E into R, if x € E, then f+ g and f—g and
Af are functions defined on E and they are defined as follows:

@ f+gx) =fx)+gkx) VxekE.
(b) f—g)(x)=1f(x)—gx) YxeE.

(¢) (Af)(x) = Af(x) ¥Vx € E, where A is real.

Theorem 2.2. Suppose E C X, a metric space and p is a limit point of E, [ and g

are complex functions defined on E and lim f(x) = A, lim g(x) = B. Then
x—p X—p

(a) }_ﬂ(f+g)(X)=A+B-
(b) A}_i_I)I}J(f—g)(X)=A—B-

(c) }ljr; (f&)(x) = AB.

A

(wlm{fyn=—,# B#0

x—-p\g B

Proof. Assume that lim f(x) = A and lim g(x) = B.
x—op X—p

lim f(x) = A = there exists a sequence {p,} in E such that p, # p and

X—=p

lim £(p,) = 4.

Similarly, lxgn g(x) = B = there exists a sequence {p,} in E such that p, # p and
Jlim g(pn) = B

@ lim (f +8)(pn) = lim [f(pn) +g(pn)] = lim f(p,) + lim g(p,) = A+ B.

(b)  lim (f = &) (pa) = lim [f(pn) = g(pa)] = lim f(p,) = lim g(p,) = A= B.

(©) ,}Lrg (f9) (pn) = ,}ijg [f(Pg(pn)] = ,}Lmu f(pw) ,}L“i g(pn) = AB.

ﬂmﬂ_ﬁﬂﬂm) A

: f) : [
d) Lim (= )(p,) =1 == ==.
@ "Hg(g (Po) =102 glpw) | lim g(py) B

n—oo

Remark 2.2. If f and g maps E into R*, then (a) and (b) remains good always,

but (¢) remains true if we can write lim (f- g)(x) = A - B.
xX—=p
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Continuous functions:

The theory of continuity of a function plays a crucial role in examining
the properties of a function. In this section, we are going to discuss the

concept of continuity of a function.

Definition 2.4. Suppose X and Y are metric spaces; E C X, p € E and f maps E
into Y. Then f is said to be continuous at p if for every € > O there exists a 6 > 0
such that dy(f(x), f(p)) < € for all points x € E for which dx(x, p) <.

If f is continuous at every point of E then f is said to be continuous on E.

Theorem 2.3. If p is a limit point of E, then f is continuous at p if and only if
lim £() = f(p).
Proof.

fiscontinuous &  for every € > 0O there existsa ¢ > 0

such that dy(f(x), f(p)) < € whenever x € E, dx(x,p) <6
& lim () = f(p) .

Definition 2.5. Suppose X,Y,Z are metric space, E € X, f maps E into Y and g
maps f(E) into Z, and h isthe mapping of E into Z defined by h(x) = g(f(x)), x € E.
Then #& is called the composition of f and g.

Remark 2.3. The function % is called the composition or composite of f and g and it
is denoted by h = go f.

Theorem 2.4. Suppose X, Y,Z are metric space, E C X, f maps E into Y and g maps
f(E) into Z, and h is the mapping of E into Z defined by h(x) = g(f(x)), x € E. If
f is continuous at a point p € E and if g is continuous at f(p), then the composite

function h is continuous at g(f(p)).

Proof. Given that f is continuous at p and g is continuous at f(a).
To Prove: h is continuous at p.

Let € > 0 be given.

gis continuous at f(p) =  there exists n > 0 such that d,(g(y), g(f(p))) < €
whenever y € f(E), dy(y, f(p)) <n 2.9
fiscontinuous at p = for given 7 > 0 there exists 6 > 0 such that

dy(f(x), f(p) <n
whenever x € f(E), dx(x,p) <§ (2.10)
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20 2.2. CONTINUOUS FUNCTIONS!

From (2.9) and (2.10), we get

For x € E and dx(x,p) <8 = dy(f(x), f(p)) <n and hence
d(8(f(x)), &(f(p))) = d:(h(x), h(p)) < €

which shows that A(x) is continuous at p.

This completes the proof of the theorem. |

Remark 2.4. The above theorem can also be state as the composite of two continuous

function is also continuous.

Next, we shall discuss very useful characterization of continuity.

Theorem 2.5. A mapping f of a metric space X into a metric space Y is continuous
on X ifand only if f~Y (V) is openin X for every open set V in Y. In other words, f

is continuous if and only if inverse image of an open set is open.

Proof. Given: Assume that f is continuous on X and V isopenin Y.

To Prove: f~'(V) isopenin X, i.e., itis enough to prove that every point of f~'(V)
is an interior point of f~1(V).

For this,Let pe X = f(p) € f(V)
Since V is open, then there exists a ¢ > 0 such that y € V if dy(f(p),y) <e.

Also, given that f is continuous at p, then there exists a § > 0 such that
dy(f(x), f(p)) < € if dx(x,p) <.

If dy(x,p) <3¢ dy(f(x), f(p)) <€

=
= y €V
= f(neV
= xef iV

That is Ns(p) € f~1(V) and p is an interior point. Since p is an arbitrary point, thus
every point is an interior point. Therefore f~!(V) is open.

Converse part: Assume that f~!(V) is openin X for every open set V in Y.
Fix pe X and € >0, let V be the set of all y € Y such that dy(y, f(p)) < €.
Clearly, V is open and hence f~!(V) is open (by given condition).
Let x € f~'(V) then there exists a 6 > 0 such that dx(p,x) < 6.
Butif x € f"1(V) = f(x) € V and thus dy(y, f(p)) < €.
i.e., Given € > 0 there exists a & > 0 such that dy(y, f(p)) < € if dx(p,x) <6.

Thus f is continuous at p and hence f is continuouson X (since p is an arbitrary

point) [ ]
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Corollary 2.2. A mapping f of a metric space X into a metric space Y is continuous
if and only if f~Y(C) is closed in X for every closed set C in Y.

Proof. Assume that C is closed in Y, then C¢ is openin Y.

Thus, by previous theorem
f iscontinuous &  f}(C) isopenin X if C®isopeninY

s (f’l(C))C isopen in X if C°isopeninY
e  fYC) isclosedin X if Cisclosedin Y n

Theorem 2.6. Let f and g be complex continuous functions on a metric space X, then

f+g, fg and f/g are also continuous on X.

Proof. Assume that f and g are continuous at p, then lim f(x) = f(p); and
X—p
113117 8(x) = g(p)

(a) {l_rg f+9 ()= }13117 [f(x) + g(x)] = {1_{1117 fx)+ {1_15117 8(x) = f(p) +g(p)
Thus f + g is continuous.

() lim (fg) (1) = lim [ f(x)g(0)] = lim () lim g(x) = F(P)s(p)

Thus fg is continuous.

lim f(x)
© I (f)(x) = lim[@ N _IW® (f g(x)#0 forall x € X)
—p\g x—p| g(x) 133; gx  gp)

Thus J—C is continuous. [ |
8

Theorem 2.7 (Components of continuous vector functions are continuous).

(a) Let fi,f>,..., fr be real functions on a metric space X and let f be the mapping
of X into R* defined by
f(x) = (L), L), ..., fil@))  (x € X);

then £ is continuous if and only if each of the functions f1, f>, ..., fr is continuous.

(b) Iffand g are continuous mapping of X into R*, thenf+g and f- g are continuous
on X.

Proof. Assume that f= (fj, f2,..., fy) is continuous and let x € X and € > 0 be given.

f is continuous at x & there exists a d > 0 such that

f(x) — £3)] < € if d(x,y) <6 @2.11)

Now, if d(x,y) < ¢ then for each i, by (2.11), we have

. 1/2
i) = fOI < [Zlﬁ(x)—fi(y)lz] = If(x) )] < €
i=1
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Thus each f; (i=1,2,...,k) is continuous.

Converse part: Assume that each f; (i = 1,2,...,k) is continuous. It remains to prove

that f is continuous.

For if, let x € X and € > 0 be given.

since f; is continuous at x, then there exists a ¢; > 0 such that

() = )] < %( if d(x,y) < 6;

Choose 6 =min{6;:i=1,2,...,k}. Then,

€ .
i) - il < — ifd(x,y) <o
Vk
L 2 (ke2\'?
Thus, i) ~f0) = ) [l = fO)F| T < (7) =€ if d(x) <6
i=1
Hence f is continuous. This completes the proof of the theorem. [ ]

2.3. Continuity and Compactness:

In this section, let us discuss the properties of continuous functions
defined on compact metric space. In this regard, first we shall recall the
definition of compact set of a metric space.

Definition 2.6. If X is a metric space and E C X is a compact subset if every open cover

of E has a finite sub-cover.

Definition 2.7. A mapping f of a set E into R* is said to be bounded if there is a real
number M such that [f(x)] < M forall x € E.

Theorem 2.8. Suppose f is a continuous mapping of a compact metric space X into
a metric space Y. Then f(X) is compact. In other words, continuous image of compact

space is compact.
Proof. Given that f is a continuous mapping of a compact metric space X into Y.
Let {V, : @ € I} is an open cover of f(X).

Since f is continuous, then f~!(V,) is an open set in a compact set X.

Thus, {f~'(V,) : @ € I} is an open cover of a compact set X. Hence, there are finitely
n

many indices say «; € I (i = 1,2,3,...,n) such that X C Uf_l(Va,) and hence
i=1

fo0 U Ve,
i=1
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Since f(f’l(E)) C E forevery E C Y, So f(X) is compact.

This completes the proof of the theorem. ]

Remark 2.5. Here we used the relation f ( f’l(E)) CE,isvalidfor ECY If E C X,
then f~!(f(E)) D E; in both the case equality does not holds good.

Theorem 2.9. Iff is a continuous mapping of a compact metric space X into R*, then
Sf(X) is closed and bounded. Thus f is bounded.

Proof. This result proves directly from Heine-Borel theorem (1.1). [ ]

The following shows that a real continuous function on a compact metric

space attain the bounded.

Theorem 2.10. Suppose f is a continuous real function on a compact metric space X

and

M =sup f(p); m=inf f(p) (2.12)
pex peX

Then there exists points p,q € X such that f(p) =M and f(q) = m.

Proof. Given that f is a continuous function on a compact metric space X and thus
f(X) is compact. (since continuous image of a compact set is compact).

Thus f(X) is a compact subset of R! and hence by Heine-Borel theorem (1.1), f(X)

is closed and bounded. Hence sup and inf value of f(X) exists.

Let M =sup f(p); m=inf f(p).
pex peX

Also, we know that, if E C RF, then supE and inf E are limits points of E.
Therefore M and m are the limit points of f(X) and Moreover f(X) is closed. Hence
m e f(X) and M € f(X). Thus M = f(p); m = f(q) for some p,q € X. [ ]

Remark 2.6. The statement of the above theorem can also be stated as follows:

Suppose f is a continuous real function on a compact metric space X, then there
exists points p and ¢ in X suchthat f(g) < f(x) < f(p) forall x€ X. ie., f attains

its maximum value at p and minimum value at g.

Theorem 2.11. Suppose f is a continuous 1-1 mapping of a compact metric space X

onto a metric space Y. Then the inverse mapping f~' defined on Y by

@) = x (eX
is a continuous mapping of Y onto X.

Proof. Given f is a continuous 1-1 mapping of compact metric space X onto a metric

space Y. Now, our aim is to prove that f~! is continuous on Y.

The inverse mapping f~! is defined by f~!(f(x))=x (x € X).
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Let V be an open setin X, then V* is closed subset of a compact metric space X.

But, we know that a closed subset of a compact metric space is compact and thus V¢

is compact.

Also, we know that a continuous image of a compact metric space is compact and

hence, we get f(v“) is compact subset of Y.

But, a compact subset is closed and thus, we have f(V°) is closed subset of Y. Since
f is 1-1 and onto, f(V¢) = f(V)° and hence f(V) isopenin Y. Thus f~! is continuous
on Y. |

Definition 2.8. Let f be a mapping of a metric space X into a metric space Y, We say

that f is uniformly continuous on X if for every € > 0 there exists a § > 0 such that

dy (f(p). f(9) < € (2.13)

forall p and ¢ in X for which dx(p,q) <é.
Remark 2.7. Let us now discuss the differences between the concept of continuity and

uniform continuity.

1. Uniform continuity is a property of a function on a set, where as continuity can be

defined at a single point.

2. If f is continuous on X, then it is possible to find, for each given € > 0 and for
each point p of X, there exists a § depends on € and point p € X. But, in the
case of uniform continuity on X then it is possible for each given € > 0, to find
a 6 > 0 which depends only on € and independent of the points.

Note 2.1. It is very clear that, every uniformly continuous function is continuous. Now,

we shall see some examples uniformly continuous and not uniformly continuous.

Example 2.1. Consider f : [a,b] — R defined by f(x) = ﬁ, where a, b, c are all

positive constants with a > 1.
Now, we shall prove that f is uniformly continuous on [a, b].

For this, let € > 0 be given, then

3 c : c C(y_x)
fO=10) = =TT Goho =T

Since a>1 = a=1+n forsome > 0.

If x,y €[a,b], then [x—1|=x—12>n, similarly [y—-1|=y—-1>n.
n’e
Choose 6 < — and thus, if |x —y|<d and x,y € [a, b], then
c

cly — x| co

If() = fl = FESTEE < po

Thus, f is uniformly continuous on [a, b].
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Example 2.2. Let f:(0,1) - R be defined by f(x) = x% + x — 1. Now, we shall prove

that f is uniformly continuous.

For this, let € > 0 be given, then

fO-f0) = G-»kx+y+1)

If x,ye(0,1), then x+y+1<3
Choose 6 < g and thus, if |[x —y|< ¢ and x,y € (0, 1), then

) —fO = Ix—yllx+y+1<35<e

Thus, f is uniformly continuous on (0, 1).
Example 2.3. Let f : R — R be defined by f(x) = x>

1
Fix e =1 and 6 > 0 be given. Take x, =n and y,=n+- (n=1,2,3,...).
n

1
If n> 5 then we have

1
|-xn _Yn| = —-< (55
n

1 1
but |x’3 - yi| |(xn - yn)(xn + yn)| = ; (2” + ;) > 2.

Thus, if |x, —y.l< 6, but [f(x,) = fO)I>2>1=¢€.
Hence f is not uniformly continuous on R.
1
Example 2.4. Let f : (0,c0) — R be defined by f(x) = —. Note that the function f is
X
continuous, Now, we shall prove that the function f is not uniformly continuous.

For this, for given € > 0 and any 6 > 0.

1 1 1
Choose x, =— and y,= — (n=1,2,3,...) sothatfor n > max<{e, = .
n 2n 3

1 1 1
—_——— = =<
n 2n 2n

In—2nl=n>¢€

0

If [x, — yal
but |f(x) — fn)l

Thus, f is not uniformly continuous.
Remark 2.8. The last two example shows that the function is continuous but not

uniformly continuous.

The next theorem asserts that the continuity and uniformly continuity

are equivalent on compact sets.

Theorem 2.12. Let f be a continuous mapping of a compact metric space X into a

metric space Y. Then f is uniformly continuous on X.
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Proof. Given that f is a continuous mapping of a compact metric space X into metric

space Y.

Let € > 0 be given. Since f is continuous, to each p € X, there exists ¢(p) > 0
such that

L €
g€ X, dx(p,q) <¢(p) implies dy(f(p),f(q) < 3 (2.14)
Let J(p) denote the set of all ¢ € X such that

1
dx(p.q) < §¢(P) (2.15)

Foreach p e X, p e J(p) and hence {J(p)} is an open cover of X and X is compact,
there is a finite set of points pi, p2,..., py in X such that
X c Jp)UJp)U...UlJ(p, (2.16)

1
Choose § = 5min[¢(p1),¢(p2),...,¢(pn)] 2.17)

Clearly 6 > 0. Now, let ¢ and p be points of X such that dx(p,q) < 6. By
(2.16), there is an integer m, 1 < m < n such that p € J(p,) and hence by (2.15)

1
dX(p’pm) < §¢(pm)

Also, we have

A

dx(p,pm) < dx(q,p)+dx(p, pm)
1 1 1
0+ §¢(pm) < §¢(pm) + §¢(pm) < ¢(pm)-

IA

Thus, from (2.14), we have

AV(f(p). F(@) < dV(f(P). F(Pm) + dV(f(@). f(pm)) < 5 + 5 <& .

Example 2.5. If E is not compact, then there exists a continuous function on E which

is not uniformly continuous on E.

1

Proof. Consider the function f(x) = —, (0 < x < 1) defined on the non-compact
x

set E = (0,1) of R. Since, it is not closed and bounded. Clearly, the function f is

continuous on (0, 1). However, the function f is not uniformly continuous on (0, 1).

For this, Let e =1 > 0 and 6 > 0 be any positive real. Then there exists N such that

1 1 1
— < 6. Ch = — =—_If 1), th
N < 6. Choose x v VTN x,y €(0,1), then

1 1 1 1 .
Xyl — - —|= — <5
4N 2N

But [f(x) = fO)

NN
MN —2N|=2N > 1> €.

Thus, f is not uniformly continuous. [ ]

Example 2.6. If E is not compact, then there exists a continuous function on E which
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is not bounded.

1
Proof. Consider the real continuous function f(x) = — (0 < x < 1) defined on
x

non-compact subset of R!. Since, it is unbounded. Now, we shall prove that f is not
bounded.

1

such that f(xo) = — = N+1> N. Hence
X0

f is not bounded. This completes the proof. ]

1
For this, if N > 0 there exists xy =
N+1

Example 2.7. If E is not compact, then there exists a continuous function on E which

is bounded but it has no maximum.

Proof. Consider the real continuous function g(x) = (0 < x < 1) defined on

1+ x2
non-compact subset of R!. Since 0 < g(x) < 1, g is bounded and sup g(x) = 1.
But there is no x € (0,1) such that g(x) = 1. Hence g has no maximum on E. This

completes the proof. [ |

Example 2.8. Let X be the half-open interval [0,27) on the real line and f be the
mapping of X onto the circle Y consisting of all points whose distance from the origin
is 1, is given by

f(r) = (cost,sin?) 0 <1<2n)

We know that the trigonometric functions sin and cos are continuous function and
hence by theorem (2.7), we have f is continuous. Thus f is continuous, 1-1 mapping of X
onto Y and inverse mapping exists. But, the f~! is not continuous at the origin and also
X is not compact.

Hence, we conclude that f is 1-1, continuous from a non-compact X into Y but its

inverse mapping f~' is not continuous.

Remark 2.9. The compactness property is essential to prove the theorems (2.10), (2.11),
(2.12)

Let us Sum Up:

In this unit, the students acquired knowledge to

e limits of functions and its properties.
 continuous functions and its properties.

e concept of continuity and compactness.
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Check Your Progress:

1. Show that the function f(x) = i is not uniformly continuous on
O, 1].

2. Prove that

is not uniformly continuous on [0, o)
3. Show that f(x) = x* is uniformly continuous in [1,2].
4. Show that f(x) = vx is uniformly continuous in [0, 2].

5. If f and g are uniformly continuous on the same interval, prove that

f+g and f-g are also uniformly continuous on the same interval.

6. A real valued function f defined in (a,b) is said to be convex if
FAx+ (1 =2y < Af(x) + (1 — D)f(y) whenever a < x < b, a <y < b.

Prove that every convex function is continuous.

7. Assume that f is continuous real function defined in (a,b) such that

for all x,y e (a,b). Prove that f is convex.

| Choose the correct or more suitable answer:

1. Let f be a continuous mapping of a compact metric space X into a
metric space Y. Then
(a) f is continuous on X.
(b) £ is continuous on Y.
(¢c) f isuniformly continuous on Y.

(d) f is uniformly continuous on X.
2. Continuous image of a compact space is ......

(a) closed.

(b) open.
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(c) connected space.

(d) compact space.
3. f is continuous if and only if inverse image of ......

(a) closed set is open.
(b) open set is closed.
(c) open set is open.

(d) open set is half open.

 Answer:

Hd 2 d @3 c

| Glossaries:

1. Continuous function: A function that is continuous at every point of

the set.

2. Compact Sets: A set E is compact if Every open cover of E admits

a finite sub cover.

Suggested Readings:

1. Rudin, W., “Principles of Mathematical Analysis”, Mc Graw-Hill,
Third Edition, 1984.

2. Avner Friedman, “Foundations of Modern Analysis”, Hold Rinehart
Winston, 1970.
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Block-I

UNIT-3

LIMITS AND CONTINUITY-II

Structure
Objective
Overview
3.1 Continuity and Connectedness
3.2 Discontinuities
3.3 Monotonic Functions
3.4 Infinite limits and limits at continuity
Let us Sum Up
Check Your Progress
Answers to Check Your Progress
Glossaries

Suggested Readings

| Overview

In this unit, we discuss about the image of a connected set under a
continuous map. Further we discuss in detail about discontinuites of a

function at a point. Also, we explained about the limit of a function at

M.Sc.(Mathematics)-| Year-l Sem 31 Real Analysis



32 3.1. ContiNnuiTY AND CONNECTEDNESS

infinity.

Objectives
After completion of this unit, students will be able to
% explain the concept of connectedness and its properties.

* understand the difference between monotonically increasing and

monotonically decreasing.

* understand the concept of infinite limits and limits at infinity.

3.1. Continuity and Connectedness:

First, we recall the definition of connectedness. In this section, we
shall prove the result that image of a connected sets is connected under a

continuous mapping.

Definition 3.1. A set E C X is said to be connected if E is not a union of two non-empty

separated sets.

Theorem 3.1. If f is a continuous mapping of a metric space X into a metric space
Y, and if E is a connected subset of X, then f(E) is connected. In other words,

“Continuous image of a connected subset is connected”.

Proof. Given that f is continuous mapping of X into Y and E is a connected subset of
X. Now, we shall prove that f(E) is connected. Let us prove this result by contradiction.

Assume that f(E) is not connected, then f(E) = A U B, where A and B are
non-empty separated subsets of ¥; ANB=0=ANB.

Put G = ENnf YA and H=En fY(B). Then
GUH (Enf'@)u(Enf)
En(ff@uf'®)=Enf'AUB) =ENE=E

and neither G nor H is non-empty.
Since AcA, G=Enf YA cfA) and f is continuous.
f1 (Z) is closed and hence G c f! (Z) Since f(H)=B and AN B =0.
Thus, we have GNH C f 1 (A)nfi(B)= f'ANB) =f10)=0

(- f(H)=B and AN B=0).
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Therefore G N H = (. Similarly, we can prove that G N H = 0.

Thus, G and H are two separated subsets of E and GNH=0, GhH=0. ie., E
is not a connected subset of X, which is a contradiction. Hence f(E) is connected. This
completes the proof of the theorem. [ |

Theorem 3.2 (Intermediate value theorem for continuous functions).

Let f be a continuous real function on the interval [a,b]. If f(a) < f(b) and if ¢
is a number such that f(a) < ¢ < f(b), then there exists a point x € (a,b) such that

f(x) =c.
Proof. Given that f is a continuous function on the interval [a, b].

We know that “A subset E of the real line R! is connected if and only if it has the
following properties: if x€ E,y€ E and x <z<Yy, then z€ E.”

Hence, by this result, [a,b] is connected subset of R

Also, we known that “Continuous image of a connected subset is connected” and thus
f(la, b)) is connected subset of R'. If ¢ is a number such that f(a) < ¢ < f(b). Then
by our first result, ¢ € f([a,b]). Thatis ¢ = f(x) for some x € [a, b]. [ ]

Remark 3.1. The above theorem holds good, if f(a) > f(b)

Discontinuities:

If x is a point in the domain of the function f at which f is not
continuous, then we say that f is discontinuous at x or that f has a

discontinuity at x.

Definition 3.2. Let f be defined on (a,b). Consider any point x such that a < x < b.
We write f(x+) = ¢, if f(t,) = g as n — oo, for all sequences {#,} in (x,b) such that

1, — X.

Definition 3.3. Let f be defined on (a, b). Consider any point x such that a < x < b.
We write f(x—) = gq, if f(t,) > q as n — oo, for all sequences {t,} in (a, x) such that

t, — X.

Remark 3.2. If x is any point of (a, b), }im_ f(®) exists if and only if
FG4) = £(x=) = lim £(0).

Definition 3.4. Let f be a function defined on (a, b).

1. A function f is said to have a discontinuity of first kind at x, if both f(x+) and
f(x—) exist.
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2. A function f is said to have a discontinuity of second kind at x, if either f(x+)

or f(x—) or both does not exist.

Example 3.1. Examine the nature of discontinuity of f(x) defined by

0 x irrational

1 x rational
Jx) = {

. . . 1 ) ) .
If x is rational, there exists € = 5 >0 such that forany 6 >0, x<7<x+0¢ and 7 is

irrational then

1
- fOl=1-0=1>5=¢

So, f(x+) does not exists.

1
If x is rational, there exists € = 5 > 0 such that forany § >0, x—J6<t<ux and ¢

is irrational then

1
- fOl=1-0=1>5=¢

So, f(x—) does not exists.

. . 1 .
If x isirrational, there exists € = 3 > 0 such that forany 6 >0, x<?<x+9 and

t is rational then

1
If(x) = f(OI= |0—1|=1>§ =€

So, f(x+) does not exists.

1
If x isirrational, there exists € = 3 >0 such thatforany 6 >0, x—-90<t<ux and

t is rational then

1
lf() = fOI= |0—1|=1>§ =€

So, f(x—) does not exists.

Thus, in all the cases both f(x+) and f(x—) does not exist and hence f has a
discontinuity of the second kind at all points.

3.3. Monotonic Functions:

Definition 3.5. Let f be a real valued function defined on (a,b). Then f is said to be

monotonic function on (a, b), if either

1. f is monotonically increasing i.e., fa<x<y<b = f(x)< f(y) (or)

2. f is monotonically decreasing i.e., ifa<x<y<b = f(x)= f()

Real Analysis M.Sc.(Mathematics)-1 Year-I Sem



3.3. Monotonic Funcrions: 35

Theorem 3.3. Let f be monotonically increasing on (a,b). Then f(x+) and f(x—)
exist at every point of x of (a,b). More precisely,

sup (1) = f(x=) < f(x) < f(r4) = inf f(0) (3.1

a<t<x

Further, if a < x <y < b, then

Sx+) < fO-) (3.2)

Proof. Given that f is monotonically increasing on (a,b). Our aims is to prove that

f(x+) and f(x—) exist at every point of x.

Let us prove,

sup (1) = f(x=) < f(x) < f(r4) = inf f(0) (3.3)

a<i<x

Consider the set E = {f(¢#) :a <t < x}.

Since f is monotonically increasing and hence the set E is bounded above by f(x).
Therefore the set E has least upper bound say A = sup f(7). Clearly, A < f(x). It

. a<it<x
remains to show that A = f(x—).

For this, let € > 0 be given, then A — € cannot be an upper bound. So, there exists
6 > 0 such that

a<x—-o0<xand A-e< f(x—-9) <A 3.4

Since f is monotonic, we have

fx=8<fH<A (x=6<t<x) (3.5)

Combining (3.4) and (3.5), we have

lf(—Al<e (x—6<t<x)

Hence f(x—)=A = sup f(2).

a<it<x

Next, we shall prove the right hand side inequality of (3.3).
For this, consider the set F = {f(¢) : x <t < b}.

Since f is monotonically increasing and hence the set F is bounded below and hence
the set F is bounded below by f(x). Therefore the set F has greatest lower bound say
B = inf f(x). Clearly B> f(x). It remains to prove that B = f(x+).

x<t<b
For this, let € > 0 be given, then B + € cannot be a lower bound, so there exists a
6 > 0 such that

x<x+d<band B< f(x+0) < B+e€ 3.6)

Since f is monotonic, we have
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B< f(t)< f(x+0)<B+e€ (x<t<x+96) 3.7

Combining (3.6) and (3.7), we have
lf()—Bl<e (x<t<x+9)

Hence f(x+)=B= ir{lfb f(.

The monotonic increasing function f has right hand limit and left hand limit and

hence f has discontinuities of first kind. ]

Remark 3.3. The above theorem remains holds good for monotonically decreasing

function. The proof is very similar.

Corollary 3.1. Monotonic functions have no discontinuities of the second kind.

Proof. Proof follows directly from the above theorem and remarks. |

Theorem 3.4. Let f be monotonic on (a,b). Then the set of points of (a,b) at which f

is discontinuous is at most countable.

Proof. Given that f is monotonic on (a, b). For the sake of convenience, assume that f

is monotonically increasing on (a,b). Then, by theorem (3.3), we have

sup (1) = f(x=) < f(x) < f(r) = inf (1) (3.8)

a<t<x

If a < x <y < b, then from (3.8), we have

fex) = inf () < inf f(1) < sup f(1) < sup f(y-) (3.9

X<I<y a<i<y

Let E be the set of points at which f is discontinuous.

With every point x of E we associate a rational number #(x) such that

fx=) <r(x) < f(x+). (3.10)

Since x; < xp implies f(x;+) < f(x,—)  (by using (3.9)).
Hence r(x1) # r(xy) if x; # x;. Certainly, we have

flxi=) <r(xp) < fOa+) £ fO-) <r(x2) < f(x+)

Thus, we have established a 1-1 correspondence between the set E and the subset of

the set of rational numbers which is countable.

Hence the set E is countable. This completes the proof of the theorem. |
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Infinite limits and limits at infinity:

In this section, we are going to investigate the extended real number

system in which we deals with infinities.

Definition 3.6. The extended real number system consists of the real field R and two
symbols +co and —co. Maintaining the original order in R and define —co < x < +oco for

every x € R.

Remark 3.4. From the above definition, we observe that +co is an upper bound of the
extended real number system and that E a non-empty subset of real number which is not
bounded above in R, then sup E = +oo0. Similarly, if E is not bounded below, then we

have inf £ = —c0.

For any real number x, we have already defined a neighborhood of x to
be any segment (x - 6, x + 0).
Definition 3.7. For any real number ¢, the set of real numbers x such that x > ¢ is

called a neighborhood of +oco and it is written as (c, +c0). Similarly the set (—co,c) is a

neighborhood of —co.

Now, we are going to define the limit of a real function in the extended

real number system.

Definition 3.8. Let f be a real function defined on E C R, we say that f(rf) — A as
t — x, where A and x are in the extended real number system, if for every neighborhood
U of A there is a neighborhood V of x such that V N E is not empty and such that
f@®eU forall te VNE, t #x.

Remark 3.5. When A and x are real, then it is quite interesting to observe that this

definition is coincides with the definition (2.1).

The analogue of theorem (2.2) is still true and the proof is also same. For
the sake of completeness, we will state the theorem for the extended real

number system.

Theorem 3.5. Let f and g be defined on E C R. Suppose f(t) — A, g(t) — B, as

t — x. Then

(a) f(t) — B implies B = A.
(b) (f+g)@® —> A+B.

(c) (f&)(n — AB.
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f A
(d) (E)([) -5

provided the right members of (b),(c), and (d) are defined.

A
Remark 3.6. Note that co —co, 0 - oo, f, 0 are not defined.
o

Let Us Sum Up:

In this unit, the students acquired knowledge to

e concept of continuity and connectedness.
o understand the different types of discontinuity.

 concept of the infinite limits and limits at infinity.

Check Your Progress:

1. A function f is defined on R by

—x2 ifx<o0
5x—4 ifo<x<1
4x3 -3x ifl<x<?2

fx) =

3x+4  ifx>2

Examine f for continuity at x = 0,1,2. Also discuss the kind of

discontinuity, if any.

2. Discuss the kind of discontinuity, if any of the function is defined as

follows:
x— x|

when x # 0
fx) =
2 when x =0
3. If [x] denotes the largest integer < x, then discuss the continuity at

x =3 for the function f(x)=x-[x], Vx>0.
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| Choose the correct or more suitable answer:

1. Let f be a function defined on (a,b). Then a function f is said to
have a discontinuity of first kind at x, if
(a) f(x+) exist.
(b) f(x-) exist.
(c) both f(x+) and f(x-) exist.

(d) f(x+) exists and f(x—) does not exist.

 Answer:

(1) e

| Glossaries:

Connected Set: A set is disconnected, if it can be split into two disjoint
non-empty subsets such that neither contains a limit point of the other. A

set is connected, if it can be split in such a way.

Suggested Readings:

1. Rudin, W., “Principles of Mathematical Analysis”, Mc Graw-Hill,
Third Edition, 1984.

2. Avner Friedman, “Foundations of Modern Analysis”, Hold Rinehart
Winston, 1970.
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Block-I

UNIT-4

THE RIEMANN-STIELTJES INTEGRAL

Structure

Objective

Overview
4.1 Definition and Existence of the Integral
4.2 Riemann-Stieltjes Integral

Let us Sum Up

Check Your Progress

Answers to Check Your Progress

Glossaries

Suggested Readings

Objectives

After completion of this unit, students will be able to
% understand the concept of partition and refinement of partition.
* explain the concept of upper sum and lower sum.

* explain the basic difference between Riemann integral and

Riemann Stieltjes integral.
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42 4.1. DEFINITION AND EXISTENCE OF THE INTEGRAL:

German mathematician Riemann was the first to introduce the process
of integration on purely arithmetical treatment which is broad based and
free from dependence on geometrical concepts. This concept is known as
Riemann integration, which was later on generalized by The Dutch astronomer

and Mathematician Stieltjes.

' Overview

In this unit, we will illustrate the condition for the existence of

Riemann integral.

Definition and Existence of the integral:

Definition 4.1. Let I = [a,b] be a closed and bounded interval. Then a finite set of
points P = {xp,X1,X2,...,%,} suchthat a = xp < x;] <x < ... < X1 <X, =D is
called a partition or division of the interval I = [a,b].

For example: Consider the interval [0,1] be a closed and bounded

. 1 3 . ..
interval. Then P = {0, 37 1} is a partition of [0, 1].
Definition 4.2. The closed sub-interval I; = [xo, x1],5 = [x1, x2], ..., L, = [x-1, Xu] .

are called the segment of the partition.

Definition 4.3. The length of the sub-interval I, is denoted by Ax, defined by

AXy = Xy — Xp_1.

Definition 4.4. The norm of the partition P is the maximum of the length of the segments
of a partition P denoted by ||P||, defined by ||P||= max{srx;:i=1,2,...,n}.

Definition 4.5. We say that the partition P* is a refinement of P if P* D P (thatis every
point of P is a point of P*). Given two partition P; and P,, we say that P* is their

common refinement if P* = Py U P;.

Definition 4.6. Let f be bounded real function defined on [a,b]. Let P be a partition
of [a,b]. We define U(P, f) called the upper sum of f corresponding to P as

UPf) = ) Misx
i=1

and the lower sum of f corresponding to P, denoted by L(P, f) is defined as
Lpf) = ZmiAxi

i=1
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Where M; and m; are defined by

M; sup{f(x):  (xi1 < x<x)}
inf{f(x): (xi1 <x<x))

Remark 4.1. From the definition, clearly we can see that U(P, f) > L(P, f).

m;

Ab
Definition 4.7. Let f bounded real function defined on [a,b]. We define f f(x)dx
a

is called the upper Riemann integral of f over [a,b] as

rb
ff(x)dx = infU(P,f)

where the inf are taken over all partitions P of [a, b]. b
Definition 4.8. Let f bounded real function defined on [a,b]. We define f f(x)dx
a

is called the lower Riemann integral of f over [a,b] as

b
ff(X)dx = supU(P,f)

where the sup are taken over all partitions P of [a, b].

Definition 4.9. Let f bounded real function defined on [a, b]. We say that f is Riemann
integrable on [a, b] and we write f € %, if

b Ab
ff(x)dx = ff(x)dx

In this case, we write Lb f(x)dx = fab f(x)dx = fab f(x)dx
Remark 4.2. If f is the Riemann integral over [a,b]. Since f is bounded, then there
exists two numbers m and M, such that
m<m <M; <M

= mAx; < miAx; < MiAx; < MAX;

Putting i = 1,2,...,n and adding all the inequalities, we get
mb-—a)<LP fY<UP f)<MDb-a)

Hence, the numbers L(P, f) and U(P, f) form a bounded set. This shows that the upper
and lower integrals are defined for every bounded function f.

Riemann-Stieltjes Integral:

Definition 4.10. Let @ be a monotonically increasing function on [a,b] and P be a
partition of [a, b]. Corresponding to each partition P of [a,b], define

Aa; = a(x) —alxi_q), i=1,2,...,n.

Since each @(a) and «a(b) are finite and « is monotonically increasing. Thus, we

have « is bounded on [a, b] and Aq; > 0.
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Definition 4.11. Let f be bounded real function defined on [a,b]. Let P be a partition
of [a,b]. We define U(P, f, @) called the upper sum of f correspondingto P as

n
U f,0) = ) Mina;
i=1

and the lower sum of f corresponding to P, denoted by L(P, f, ) is defined as

n

LP.fia) = ) mine

i=1

Where M; and m; are defined by

M; sup f(x)  (x.1 <x<x)

inf f(x) (xi-1 <x<Xx5)

ni;
~b
Definition 4.12. Let f bounded real function defined on [a, b]. We define f fda is

called the upper Riemann Stieltjes integral of f with respect to @ over [a,b] ‘ZIS

Ab
ffda/ = infU(P, f,a)

where the inf are taken over all partitions P of [a,b].

b
Definition 4.13. Let f bounded real function defined on [a, b]. We define f fda is

called the lower Riemann Stieltjes integral of f with respectto a over [a,b] as

b
ffda/ = supU(P f,@)

where the sup are taken over all partitions P of [a,b].

Definition 4.14. Let f bounded real function defined on [a,b], We say that f is

Riemann Stieltjes integrable with respect to @ on [a, b] and we write f € Z(a), if

fabfda/ = f;bfda

b ~b b
In this case, we write f fda = f fda = f fda (or some times written
a a a

b
by) f f(x)da(x)

Remark 4.3. If we take a(x) = x, then the Riemann-Stieltjes integral is reduced to
Riemann integral. Thus, Riemann integral is a special case of Riemann-Stieltjes integral.
Hence, all the theorem and properties of Riemann-Stieltjes integral are holds good for

Riemann integral.
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Example 4.1. Consider the function f : [0, 1] — [0, 1], defined by

1 x irrational

F) = { 0 x rational

Let P be a partition of [0, 1]; a set of points xp, X1, .., X, such that

O=xp<xi<x<...<x,=1.Let ax;=x;—x;.1, i=12,...,n.

Corresponding to each partition P of [0, 1],

M; = sup{f(x):xi_1 <x<x}=sup{0,1} =1
m; = inf{f(x):xi_;1 <x<x}=inf{0,1} =0,
foreach i=1,2,...,n

n n
UPrSf = ZMiAxi = Z M; (x; — xi-1)
i1 i=1

n
= Z(xi_xi—1)=xn_x0=l_0=1
=1

n n
LPf) = Z miAX; = Z m; (x; — xi-1) = 0
im1 i1

f(x)dx = inf{U(P, f): P is apartition of [0, 1]} = 1

f(x)dx = sup{L(P, f): P isapartition of [0,1]} =0

Al 1
Thus, f(x)dx # f fx)dx = f¢Z% on [0,1].
Jo

Hence f is not Riemann integrable on [0, 1].

Theorem 4.1. If P* is a refinement of P, then

L(P, f,a) < L(P',f,a) 4.1)
and UP", f,a) < UL f, @) 4.2)
Proof. Let P be the partition of [a,b], i.e., P={a=xp,X1,...,Xi—1,Xi,..., X, = b}.

Let P* be the refinement of P by just adding one more point x* in P,
ie, P"'={a=x0,X1,...,%_1,X, Xiy..., X, = b}.

Let w; and w; be respectively the supremum of the functions f(x) in [x;_1,x*] and

[x*, x;]-

Then clearly, w; < M; and w, < M; where M; is the supremum of the function in

[xi-1, %] .
Let @ be a non-increasing function on [a, b].

Clearly a(x*) > a(x;_1) and a(x;) > a(x").
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U(P, f,a)

[

M Ay
k=1
i—

1
= Z My rag + M [a(x) — a(xi-1)]
)

i-1

Z Miray +wi [a(x") — a(x;-1)]
=1

U, f.a)

+wy [a(x;) — a(x")] + Z M ray
k=i+1

Hence, U(P, f,a) - U(P", f, @) M; [a(x;) — a(xi-1)] — wr [a(x™) — a(xi1)]

—wy [a(x;) — a(xM)]
= (M; —wy) (a(x) — a(x")]
+(M; —wi] [a(x") — a(x;-1)]

> 0
[-M;—w; >0;. Mi—w, >0;
a(x) 2 a(x); a(x") > alxi1)]
= UPf.a) 2 UP. fo)
Hence U(P*, f,a) < U(P, f, ).
In a similar way, we can prove L(P, f,a) < L(P*, f, @). [ ]

Theorem 4.2.

fabfdoz < fabfda

Proof. Let P; and P, be the two partitions on [a,b] and P* be the common refinement
of P; and P».

Then by theorem (4.1), we have

L(Py,f,a) < L(P,f,a)<UPP, f,a) <UP,, f,a)
hence L(Pi,f,@) < U(Pa f,@) “4.3)

A

If P, is fixed and the sup is taken over all P; in (4.3),then we have

b
ffda < UP fia) 4.4)

Taking the inf over all P, in(4.4), then we have

b ~b
ffdoz < ffda
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This completes the proof of the theorem. |

Theorem 4.3. Let f be a bounded real function defined on [a,b]. f € #(a) if and only
if for every € > 0 there exists a partition P such that

UP f,a)-L(P, f,a) < €

Proof. Assume that f € #(a). Then,

) ~b
fda f fda 4.5)

Now, fda

a

= 3 apartition P; of [a, b] such that

b
ffda < L(Pl,f,a)+§ (4.6)
__b

sup{L(P, f,@) : P is a partition of [a, b]}

Similarly, f fda
= 1 apartition P; of [a, b] such that

inf{U(P, f,a) : P is a partition of [a, b]}

U(Pz’f’ Q’)

A

. )
fa fda+ 3 4.7

If P = P;UP,, then P is the common refinement of both P; and P,, then by
theorem (4.1), equations (4.6) and (4.7), we have

UPP. f,a) < U(Pz,f,a)<fabfda+§<L(P1,fa)+e
<LP f,a)+€
= UP f,a) < LEPf,a)+e€
= UP.f,a)-LPP,f,a) < ¢

Converse Part:
Let € >0, Japartition P such that U(P, f,a) — L(P, f,a) < € 4.8)

~
o
R
Il

inf{U(P, f,@) : P is a partition of [a, D]}

~b
= ffdcysU(P,f,a/)

~
o
R
Il

sup{L(P, f,@) : P is a partition of [a, D]}
b
= f fda > L(P, f,a)

b Ab
ie., L(P,f,a) < f fda < f fda < U, f,@) 4.9)

Using (4.8) in (4.9), we have
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Always fbfda

From(4.10) and (4.11),_awe get
f " fda

> f c R (@)

Theorem 4.4.

A

A

A

b
f fda+e
va

b

f fda (. € is arbitrary) 4.10)
Ab
fda 4.11)
4.12)
b
fda
) [

(a) If for some partition P and some € > 0, the inequality

UP f,a)—L(P, f,a) < € (4.13)

holds good then it is also holds good for partition P* (with the same € ).

(b) If (4.13) holds for P = {xy, x1, ..

then

., X, andif s;,t; are arbitrary points in [x;_1, X;]

DU = f@) ae; < €.
i=1

(c¢) f e Z(a) and the hypothesis of (b) hold, then

if(ti) - fb fda| Aa; < €.
i=1 a
Proof.
(a) If P* is arefinement of P, then we have
L(P, f,a) < LP',f ) (4.14)
and U(P',f,a) < L f,«@) (4.15)

Using (4.13), (4.14) and (4.15), we get
UP, f,a)— L(P", f,a) < U f,a)—LP f,a)<e

Real Analysis
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(b) Given that f(s;) and f(t;) liein [m;, M;], so that |f(s;) — f(t)| < M; — m;.

n

Z (M; — my) Aa;

i=1

IN

Therefore, ) 1f(s) = f(t)l ai
i=1

n

n
Z M Aa; — Z m;Aq;
i=1

i=1
= UQPf,a)-LP f,a)<e

= D Ifs)-flse < e
i=1

(c) we have
LPfie) < ) ft)sa; < U, f,a) (4.16)
i=1
b
and L(P, f,a) < f fda < U(P, f,@) “4.17)

From (4.16) and (4.17), we get

n b
Zf(t,-)Am —f fda <UP f,a) - L(P,f,a) < € (4.18)
i=1 a
b n
and f fda - Z ft)aa; U f,a)— L(P,f,a) < € (4.19)
a i=1
n b
From (4.18) and (4.19), we get, Zf(t,-) —f fda|ra; < € [ |
i=1 a

Theorem 4.5. If f is continuous and « is monotonically increasing on [a,b] then
feZ@) on la,b],

Proof. Let € > 0 be given.

Since « is monotonically increasing on [a, b] we can choose 1 > 0 such that

a(b) — ala) < 5 (4.20)

Since [a,b] is compact and f is continuous on [a,b]. Thus, f is uniformly

continuous on [a, b].

Hence, by definition of uniform continuity, there exists & > 0 such that x € [a, b],
Y € [a,b].

x—yl<dé = If(x)—fOl<n (4.21)
Let P = {xp,x1,...,X,} beapartitionon [a,b] suchthat Ax; <5 (=1,2,3,...,n).

Define M; sup{f(x) : xi-1 < x < x;}

inf{f(x): x_1 < x<x}

and m
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Then by (4.21), we have
M;—m; <n, i=1,2,...,n 4.22)

From (4.20) and (4.22), we conclude that

n

n
Z M;Aa; — Z m;Ax;
i=1

i=1

U(P’fval)_L(P’f’a,)

Z (M; —m;) Ay

i=1

> naa: = pla®) - at@) <7 g <e

i=1

= feR@) n

IA

Theorem 4.6. If f is monotonic and « is monotonically increasing and continuous on
[a, D], then f e Z(a).
Proof. Given that o is monotonically increasing and continuous on [a, b].

Let € > 0. Then for any positive integer n there exists a partition P of [a,b] such
that

A alx) —a(xi-1)) (G=12,...,n)

= a®) - afa) (4.23)
n
Assume that f is monotonically increasing on [a, b]. Then, we have
M; = [, mi=f(xo) (0=1,2,...,n) (4.24)
From (4.23) and (4.24), we conclude that
U, fa) = L(P.fa) = ) (M;=m) aa;
i=1
b) —
= 0D 1) - i)
Choose n sufficiently large, then
b) —
U f) - LP o) = SO () - f@)] < e
Thus, f € Z(a) [

Remark 4.4. The proof is similar in the case of f is monotonically decreasing.

Theorem 4.7. Suppose f is bounded on [a,bl, f has only finitely many points of
discontinuity of la,b], and « is continuous at every point at which f is discontinuous.
Then f € Z(a).

Proof. Let E = {c1,c,...,c,} be the finite set of points at which f is discontinuous.
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Since E is finite and « is continuous at each point ¢; (i =1,2,...,n). Hence E can

be covered by n disjoint intervals [u},v;] C [a, b] such that

n

Z [a/(vj) - a/(uj)] <€

i=1

We can construct these intervals in such a way that every point of E N [a,b] lies in the
interior of some [u;, v;]. "
Let K = [a,b]- U(uj, vj)

=1

Clearly, the set K is compact and also f is continuous in each sub-intervals

[a, 1], [v1,u2], [Va, u3] . . . [Vin, D], therefore f is uniformly continuous on K.

Hence, by definition of uniformly continuity, there exists a ¢ > 0 such that for
seK,teK.

ls—t<d = |f(s) = fI<e
Form a partition P = {xp, X1, X2, ..., X,} of [a,b] such that
(i) each u; occursin P.
(ii) each v; occursin P.
(iii) no points of any segment (u;,v;) occursin P.

(iv) If x;_; is not one of the u;, then Ax; <.

Define M; = sup{f(x):x€[x_,x]} G=1,2,...,n)
m; = inf{f(x):xelx_,x]} (=1,2,...,n)
M = sup{f(x):xe€lab]}
Now, M;,—-m; = |M;—my
< IMil+myl
< 2|M;)
= 2sup{f(x):xe[x_1,x]}
< 2sup{f(x): x € [a,b]}
= M,-m < 2M
and M;—m; < € unless x;_; one of the u;

Therefore, U(P, f,a) — L(P, f,@) Z (M; —m;) Aa; + Z (M; — m;) Aa;

Xi-1#Uj Xi-1=Uj

= EZ ACY,'+2MZ|:Q’(VJ‘)_Q/(M]'):|

< €lad) - ala)] +2Me
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Since € is arbitrary, thus we have U(P, f,a) — L(P, f,a) < €
= feR( [ |

Theorem 4.8. Suppose f € Z(a) on [a,b], m < f < M, ¢ is continuous on [m, M]
and h(x) = ¢(f(x)) on [a,b]. Then h € Z(a) on [a,b].

Proof. Since ¢ is continuous on a closed and bounded interval [m, M] and hence ¢ is

uniformly continuous on [m, M].

Therefore, by definition of uniformly continuous, given € > 0, there existsa ¢ > 0
such that 6 < e.
|p(s) — ()| <€ if |s—1#<d and s,t€[m, M] (4.25)

Again if f € # (@) if and only if 3 a partion P = {xgp, x1,...,x,} of [a,b] such that

UP, f,a) = L(P, f,a) < € = 6* (4.26)
Let M; = sup{f(x):xelx_1,xl: (G=1,2,...,n)
m; = inf{f(x):xe€lx-1,x]; (G=1,2,...,n)

M; = sup{p@®): f(t) € [f(xi), f(XD]Y; (E=1,2,...,n)
m; = inf{p@): f() € [f(xii), fD]; (G=1,2,...,n)
Divide the number 1,2,3,...,n into two classes A and B such that
Mi—m; < 6 =>i€A

Mi,—m; > 6 =>i€eB

Thenif i € A, then M; —m; <6

= |g(M)—p(m)l < €
= |¢(sup f(x) — S(inf(f(x))] < €
= [sup(¢(x) —inf(@(x)| < e
= |Ml* -m;| < €

=>M -m; < €

And if r € B, then

= M -m < |M; <2K  if K=sup{¢(t):m<1t<M)

+ |m;-*

From (4.26), we have
Z (M, - m,-) Aa; < 52

i€B
= Z ora; < 62 (- M;—m; 206, if reB)

Therefore,
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U(R h, a’) - L(Pa hv Q’)

Z (M} —m) ra; + Z (M; — m?) Aq

i€eA i€eB

ez Aa,-+2KZAa/,-

icA ieB

elab) — a(a)] 2K6
€lab) — a(a) + 2k] (- d<e

IN

IN

IN

Since € is arbitrary, thus we have
UPh,a)— L(P,h,a) < €
= heZ() on [a,b]

This completes the proof of the theorem. |

Let Us Sum Up:

In this unit, the students acquired knowledge to

e concept about Upper Sum and Lower Sum.

o existence of Riemann-Stieltjes integral.

Check Your Progress:

1. Define Norm of the partition.

2. Define Upper Riemann Integral.

3. Define Upper sum and Lower sum.

4. Define Upper Riemann Stieltjes integral.

5. If f is monotonic and « is monotonically increasing and continuous
on [a,b], then f e %(a).

6. Suppose f is bounded on [a,b], f has only finitely many points of
discontinuity of [a,b], and « is continuous at every point at which f

is discontinuous. Then f € Z(a).
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| Choose the correct or more suitable answer:

1. fe %) if and only if

() j:bfdas Lbfda

~b b
(b) fda<ffda

©) f;bfdaz_fabfda
d) f;bfdcxz_fabfda

| Answer:

() d

| Glossaries:

1. Partition: Partition of a set is a grouping of its elements into

non-empty subsets.

2. Supremum: Supremum of a set is its least upper bound.

Suggested Readings:

1. Rudin, W., “Principles of Mathematical Analysis”, Mc Graw-Hill,
Third Edition, 1984.

2. Avner Friedman, “Foundations of Modern Analysis”, Hold Rinehart
Winston, 1970.
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UNIT-5

PROPERTIES OF INTEGRAL

Structure
Objective
Overview
5.1 Properties of the Integral
5.2 Integration and Differentiation
Let us Sum Up
Check Your Progress
Answers to Check Your Progress

Glossaries

Suggested Readings

Objectives

After completion of this unit, students will be able to
* understand the properties of Riemann Stieljes integral.

* understand the integration and differentiation are inverse process

for real function.
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' Overview

In this unit, we will illustrate the properties of Riemann integral.

5.1. Properties of the integral:

Theorem 5.1. If fi € Z(a) and f, € X(a) then fi + fH € RH(a) and
b b b
f (fi + f) da = f fida + f fda.

Proof. Given that f; € Z(a) and f, € Z(a).

fi e Z(@) = 3 apartition P; of [a,b] such that U(Py, fi,a) — L(Py, fi,a) < € (5.1)
e Z@ = 3 apartition P, of [a,b] such that U(P,, fo,a) — L(P>, fr,a) < € (5.2)

Let P = P{ U P,, then P is the common refinement of both P; and P,. Hence (5.1)
and (5.2) can be written as

U, fi,a)— L(P fi,a) < € (5.3)
UP, fr,a)— L(P, fhr,a) < € 54

Adding (5.3) and (5.4), we get
U(P, fi,) + U(P, fr, ) = L(P, fi, @) = L(P, fo, @) < 2e¢ (5.5)

Put h(x) = fi(x) + f2(x).

Let M; = sup{h(x):x€[x_1x]y; (=1,2,...,n)
m; = inf{h(x):x€e[x_1x]}; (G=1,2,...,n)

M; = sup{fi(x):xe[x1x]}; (G=12,...,n)

m; = inf{fi(x):xelx_1x]; (=12,....n)

M = sup{fo(x):x€[xx]y @=1,2,...,n)
m;* = inf{fa(x):xe[xx]); (@(=1,2,...,n)

In the i interval, we have

A+ fr(x) < M+ M;”
= M, < M;+M" (- max(fi+ f2) < maxfi + maxfp)
Similarly, m; > m; +m;"

Therefore, we have
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n n
UPha) = > Maai< ) (M +M") e
i=1 i=1
n n
= UPha) < D Maai+ ) M ae
i=1 i=1
UP,h,0) < U fi,a)+ UL fr,) (5.6)
Similarly, L(P.h,@) > L(P, fi, @) + L(P, fo, @) (5.7)

Hence, from (5.5), we get
UP h,a)— L(P,h,a) < 2e
= heR(a) e, i+ fhreZ(a)

Now, for a partition P, we have
b
U(P,fl,(k) < f fldoz+e
b
UP.fra) < f fda + €

Adding these, we get

U(P, fr, ) + U(P, f2, @)

A

b b
fflda/+ff2d(r+2e

b
f hda < UP fi,a)+ UP,f,a)

b b
f fld(l + f fzda +2e
a a

b b b
Since € is arbitrary, f hda < f fida + f fda (5.8)
a a a

A

Replace f; by —f1 and f, by —f,, we get

b b b
f hda > f fida + f fda 5.9)
a a a
Thus, from (5.8) and (5.9), we get
b b b
f hda f fida + f fda
b ‘ ab ab
ie., f (f1 + fz) da f fld(l + f fzda |
a a a

Remark 5.1. In a similar way we can prove that, if f; € Z(a) and f, € Z(a) then

fi-fred@ and [ (i~ fyde= [ fide- [ fda.

Theorem 5.2. If f € Z(«) on [a,b] then cf € Z(a), where ¢ is any constant.

Also fahcfdaz cj:fda.

Proof. Given that f € Z(@) on [a, b].

If ¢ =0, then the theorem is quite obvious, so we may assume that ¢ # 0.
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fe€Z(a) ifand only if 3 a partition P such that

U, f,a)— L2, f, @) < % (5.10)
Put h(x) = cf(x).
Let M; = supfh(x):xelx1x];; @=1,2,...,n)
m; = inf{h(x):x€e[x1x]); (=1,2,...,n)
M; = sup{fix):xe[xoxll; @=1,2,...,n)

m; = inf{f(x):xe[x1x]}; G=1,2,...,n)

In the i interval, we have

M; sup{(c/)(x) : xi-1 < x < x;} < supflelf(x) : xi1 < x < X} = |e|M]

and m; inf{(cf)(x) : xi-1 < x < x;} < infflelf(x) @ xm1 < x < x5} = [cm]

Therefore, we have

U(P h,a) — L(P, h,«a) Z (M; — my) Aa;
i=1

IA

n
Z (IclM; — |clm}) ray;
i=1

n
= |C|Z (M} —m) re;
i=1

= |c|[U(P,f,a/)—L(P,f,a/)]

< |c|é <e (using (5.10)

ie., UPha)—LPha) €

= heZ(a) ie., cf € Z()

A

Note for any constant ¢, we have U(P,cf,a) = cU(P, f, ).

b
UP,cf,a) = cU(P,f,a)<cf fda+c-€

b b
= f (cHda < cf fda (5.11)

a a

Replace f by —f in (5.11), we get
b b
f(cf)da/ > cf fda (5.12)
a a
From (5.11) and (5.12), we conclude that
b b
(cHda = ¢ fda ]
a a

Theorem 5.3. If f € Z(a) on [a,b] and if a < ¢ < b. then f € Z(a) on [a,c] and
feZ@) on [c,b].
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b ¢ b
Also,ffda:ffda/+ffda/.

Proof. Given that f € Z(@) on [a, b].

f € Z() if and only if 3 a partition P on [a,b] such that
UP f,a)—L(P, f,a) <e. (5.13)

Let P = P, U P, where P; is a partition of [a,c] and P, is a partition of [c, b].
Then

UP f,a@)
and L(P, f,@)

UPy, f,a)+ U(Py, f,@) (5.14)
L(Py, f,a) + L(Pa, f, @) (5.15)

So by (5.13), we have
[U(Pl’f’a') _L(Plvf’a)]

+

[UP, f,@) - L(P2, f, @)]
= [UP1, f,a) + UPy, f,@)]
—[L(P1, f, @) + L(P2, f, )]
= UP f,a)—L(P f,a)<e
= UP,f,a)—LP,f,a)<e and U(Py f,a)—L(Py f,a)<e€
= feZ(a) on [a,c] and fe€ %) on [c,Db].

b ¢ b
It remains to prove that f fda = f fda + f fda.
a a C

By (5.15), we have

b
L(Py, f,a) + L(Py, f,a) = L(P f,a)< f fda (5.16)

Keeping P, fixed and taking the supremum over all the partitions of P;, we have

c b
f fda + L(Po fo) < f fda

Now taking the supremum over all the partitions of P, then we have

C b b
ffda+ffda < ffdaf (5.17)

Similarly, from (5.15), we have

b
UPy, f,a)+U(Py, f,a) = U(P,f,a')szdcy

Keeping P, fixed and taking the infimum over all the partitions of P;, we have

¢ b
ffda+L(P2,f,a) > ffda
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Now taking the infimum over all the partitions of P, then we have

c b b
ffda+ffda > ffda (5.18)

From (5.17) and (5.18), we conclude that

chda+£bfda = j:]fda/ [ |

b b
Theorem 5.4. If fi(x) < fo(x) on [a,b], then f fida Sf fda.

Proof. Given that fi(x) < fo(x) on [a,b] which implies that f>(x) — fi(x) > 0 on
[a,b].

Since @ is monotonically increasing on [a, b] so that a(b) — a(a) > 0, then we have

b
f(fz(x)—fl(x))da > 0
b
= [ (r-fode > 0
b b
fdea'_fflda > 0

[\
=
QU
R

b b
= f fzda’

a a

b b
ie., f fida

This completes the proof of the theorem. [ ]

IA

ey
Q
S

Theorem 5.5. If f € # on [a,b] and if |f(x)I< M on [a,b] then
b
f fda

Proof. Giventhat f € % on [a,b] and |f(x)[< M on [a,b].

< M[a(b) — a(a)].

Let P = {a = xp, x1, X2,..., X, = b} be a partition of [a, b]; and
M; =sup{f(x): xio; <x<x;} (i=12,...,n).

n
Z M a;
i=1

\UP, f, @)l

< Z|Mi|AC¥i
i1
< Z MAq;
i1
n
< M Z A = M [a(b) — a(a)]
i1

Taking infimum over all partitions P, then we have

fabfda

< Mla) - a(a)] [ |
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Theorem 5.6. If f € #(ay) on [a,b] and f € #(az) on [a,b], then f € Z(a, + ay)
on la,b].

Also, [ fd(a1+a) = [ fdar + [ fda.

Proof. Given that f € Z(a;) and f € Z(a3).
f € Z(ay) if and only if 3 a partition P; on [a, b] such that U(Py, f,a1) < g (5.19)

f € Z(ay) if and only if 3 a partition P; on [a, b] such that U(P, f, a,) < g (5.20)

Let P be the common refinement of P; and P,, then (5.19) and (5.20) also holds
good.

UP, f,a))-L(P f,a1) < (5.21)

UPP, f,a2) — L(P, f,an) < (5.22)

NI MmNl m

Since @; and @, is a monotonic increasing function and hence a; + a; is also a

monotonic increasing function. Take @ = a; + @».

Now, consider

D Mila(x) —at )] = Y Mil(@r+a) (x) — (@1 + @) (xi1)]
i=1 i=1

Z M; [(a1(x) — a1(xi21) + (@2(x;) — @2(xi-1)]
i=1

Z M; (a1(x;) — a1(x-1)) + Z M; (aa(x;) — a2(xi-1))
i=1 i=1

UP, f,a)
Similarly, L(P, f, @)

U(P, f,a1) + U(P, f,az) (5.23)
L(P, f,a1) + L(P, f, ) (5.24)

From (5.21) , (5.22), (5.23) and (5.24) we get

U(}),f,(l)—L(P,f,a') = [U(P’fiall)_L(P’f’a,l)]+[U(P’f’a,2)_L(P’f’a,2)]
- £, £
2 2
= U®Pf,e)-LP f,a) < €
= feZ(a ie, feZ(a +a)

Now, from (5.23), we have
lnfU(P,f,Q') lnf[U(P’faal)_" U(P,f,a'z)]
infUP, f,a) > infU(P,f,a1)+infU(P, f,a3)

b b b
ie., ffda/ ffda1+ffda/2

Similarly from (5.24), we can easily find that

\%

[\
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b b b
f fda f fday + f fda,
a ab ab

b
Thus, we have f fd(ar + as) f fday +f fda, [ |

Theorem 5.7. If f € Z(a) and g € #(a) on [a,b] then fg e X#(a) on [a,b].

IA

Proof. If f € #(a) on |a,b], then by theorem (4.8), we have ¢(f(x)) € Z(a) on
[a,b].

Let ¢(1) =7 ie., ¢(f(x) = [fX)]
Then f € Z(@) on [a,b] = [f(X)]* € Z(a) on [a,b].

Also, we know thatif f € Z(«) on [a,b] and g € Z(a) on [a,b] then f+g € Z(a)
on [a,b] and f— g€ #(a) on [a,b].

Thus, we have (f + g)2 € #(a) on [a,b] and (f — g)2 € #(a) on [a,b].

From the identity

fg = 09t -G -gr]

We can easily see that fg € Z(@) on [a,b]. ]

Theorem 5.8. If f € Z(«) on [a,b] then |fle Z(a) on [a,b] and
|7 fdo| < [ 1f1da.

Proof. If f € Z(@) on [a,b], then by theorem (4.8), we have ¢(f(x)) € Z(a@) on
[a,b].

Let ¢(r) = 11| ie., ¢(f(x)=I[f(x)l.

Then f € #Z(a) on [a,b] = |f(x)| € Z(a) on |a,b].

Choose ¢ = £1, so that cfab fda > 0. Then

fab Jao = Cfab fde= fab(cf o= fab'f da (2 ef <1fD

This completes the proof. [ ]

Remark 5.2. Converse of the above theorem is not true. i.e., |fle Z(«) does not imply

feR).

—1 x irrational

For example: Let f(x) = .
1  x rational

b b
Here, we can easily see that f |fldx exists, but f f(x)dx does not exist.
a a

0 x<0

Definition 5.1. The unit step function [/ is defined by I(x) = { | 0
x>
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Theorem 5.9. If a < s < b, f is bounded on [a,b], f is continuous at s and

b
a(x) =I(x—ys), then f fda = f(s).

Proof. Let a < s <b and f is bounded on [a, b]. Given that f is continuous at s.
Consider the partition P = {x, x1, X2, x3} of [a, D]

where a = xg < x; =5 < X < x3 = b.

M, = sup{f(x):x1<x<x}; i=12,3
m; = inf{f(x):x-1 <x<x}; i=1,2,3
Then U(P, f,a) = M [a(x1)— a(xo)] + Mz [a(x2) — a(x))] + M3 [a(x3) — a(x2)]

= Mi(0—-0)+M(1-0)+M(1-1)=M,
and L(P, f,a) = myla(x1) = a(xo)] +ma [a(x2) — a(x1)] + m3 [a(x3) — a(x2)]

= mO-0)+m(l-0)+m3(1=1)=my

Since f is continuous at s, lim M, = f(s) = lim my.
Xy X8

Thus sup L(P, f,@) = lim m, = f(s) and iI}f UP, f,a@) = lim M, = f(s).
P Xo—8§ X2—8§

ie., f;bfdazf(s)zj:]fda

b
Henceffdcx:f(s). [ |

Theorem 5.10. Suppose c, >0 for n=1,2,3,..., > ¢, converges, {s,} is a sequence

of distinct points in (a,b) and

0

a(x) = Z cl(x — sy) (5.25)

n=1

o)

b
Let f be continuous on [a,b]. Then f fda = Z cnf(sn).

n=1

Proof. Suppose ¢, >0 for n=1,2,3,..., > ¢, converges. Let {s,} be a sequence of
distinct points in (a,b) so that a(x) = Z cpl(x — sy) and f is continuous on [a, b].
n=1
Since ¢, I(x—s,) <c, n=1,2,... and hence by comparison test,
a(x) = Z cnl(x — s,) converges for every x.
n=1

Moreover, a(x) is monotonic and @(a) =0 and a(b) = ). c,.
Since I(a—s,) =0 and I(b-s,)=1 for n=1,2,3,....

Since })c, converges. Let € > O be given. Then there exists N such that

[eS)

S <

n=N+1
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Now a(x) = a1(x) + a2(x). By theorem (5.6) and (5.9), we have

b
f fda'l = Z Cnf(sn),

n=N+1
- -
and a(b) — a(a) = Z cn—0= Z Cy < E.
n=N+1 n=N+1

Hence by theorem (5.5), we have

Lbfdaz

Since a1 + a; = a, then

< M[ax(b) — az(a)] < Me  where M = sup{f(x) : x € [a, b]}

b N b b b
f fda—chf(s,,) = f fda—f fda| = f fdas| < Me
a n=1 a a a
b o0
When N — oo, f fda = anf(sn)- u
a n=1

Theorem 5.11. Assume « increases monotonically and o' € # on [a,b]. Let f be a
bounded real function on [a,b]. Then f € Z(a) if and only if fa' € Z. In that case

b b
ffda = ff(x)a'(x)dx (5.26)

Proof. Let « increases monotonically and o’ € # on [a,b]. Let f be a bounded real

function on [a, b].

Let € > 0 be given and by theorem (4.1), there exists a partition P = {xg, x1,X2,..., X,
of [a, b] such that
U(P,f,a/’)—L(P,f,a') <€ (527)

n
If s;,¢; are arbitrary points in [x;_1, x;] then Z
i=1

a'(s) - a’(t,-)| A; < €

By the mean value theorem, there are points #; € [x;_1x;] such that

Aa; = o' (t)Ax;.

Put M = sup|f(x)|. Then we have

D flsnai= Y s (sax; D fsiaaxi = ) Flsa(s)ax;
i=1 i=1 i=1 i=1

IA

n
MY o/ (s) = @ ()] aa
i=1

< Me

n
In particular, Z fGspaa; < U(P, f,a') + Me for all choices of s; € [x;_1, x;].
i=1

So that, U(P, f,a) < U(P, f,a’) + Me.
On the other hand, we have U(P, f,a") < U(P, f, @) + Me.

Thus, |U(P, f,a) — U(P, fa')|< Me and for any partition P and so its refinement.
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b ~b
ffda/—ff(x)a’(x)dx

Since € is arbitrary, it follows that

~b ~b
ffdoz: f f(x)a' (x)dx.

. . b b
Similarly, we get f fda = f f(x)a' (x)dx.
va va

Hence < Me

Thus,

b b b ~b ~b
ff(x)a'(x)dx:ffda:ffdoz:ffda:ff(x)a/(x)dx

Hence f € Z(a) on |a,b] if and only if fo' € # on |a,b]. i.e., Riemann
stieltjes integral of f with respect to @ on [a, b] is equal to Riemann integral of fa’ on
la, b]. [ |

Theorem 5.12 (change of variable). Suppose ¢ is a strictly increasing continuous
function that maps an interval [A, B] onto [a,b]. Suppose « is monotonically increasing
on [a,b] and f € Z(a) on [a,b]. Define B and g on [A, B] by

BO) = ale(y), g0 = f(() (5.28)

Then g € Z(B) and
B b
f gdp =f fda (5.29)
A a

Proof. Given that f € Z(a) on [a,b].

Let € > 0 be given.

f e Z(@) onla,b] suchthat U(P, f,a) — L(P, f,a) < € (5.30)

Hence <€

b b
U(P,f,a)—f fda| < € and ‘L(P,f,a)—f fda

To each partition P = {xp, x1,...,x,} of [a,b], corresponds a partition
0 = {o,¥1,.-.,yu} of [A, B], suchthat x; = ¢(y;) for i = 1,2,...,n. All partitions of
[A, B] are obtained in this way.

For i=1,2,...,n, let

M; = sup{f(x):xi <x<x

m; = inf{f(x):x_1 <x<x)}
M; = sup{g(y) :yia1 <y <yl
m; = inf{g(y):yi-1 <y <yi}

Since M; = g(v)) = f (¢0)) = £(x}) = M; and
ABi = B — B(i-1) = A(@(y) — a(P(yi-1)) = a(x;) — a(xi-1) = Aa;.
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Then U(Q.8.8) = ) M= ) Mina; = U(P, f,a).

i=1 i=1
Similarly, we can get L(Q, g,B8) = L(P, f, @).

Hence by (5.30), we have
U(Qs gsﬁ) - L(Q’g’ﬁ) = U(P’fa) - L(P5 f’ Q’) <€

Thus, f € Z(B) and further,

B
fgdﬁ
A

B b b
ngdﬁ sgpL(Q,g,ﬁ)=sgpL(P,f,a)=ffda=ffda

B B B b
Hene, fgdﬂ fgdﬂ=fgdﬁ=ffda
A Ja A a

B b
So, g € Z(B) on [A, B] and f gdp =f fda. ]
A a

~b b
inf U(Q.4.8) = inf U(P. f,) = f fda = f fda

5.2. Integration and Differentiation:

For real functions integration and differentiation are in a certain sense,

inverse operations. In this section, let us establish this result.

Theorem 5.13. Let f € % on |a,b]. For a < x <b, put

F(x) = f ' f(r)dt (5.31)

Then F is continuous on |a,bl; furthermore, if f is continuous at a point xy of |a,b],
then F is differentiable at xy, and

F'(x0) = f(x0) (5.32)

Proof. Since f € # on [a,b] and hence it is bounded.

Therefore, I areal number M such that

lfOISM for a<t<b

If a<x<y<b, then
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f ' f(®dt — f f(t)dt‘
- f " Fodi+ f vt - f ' f(t)dt‘

_ f FCUE f folde
G-

IF(y) = F(x)l

For given € > 0, we have
€
Iy—x|<M = |[FO)-F)l<e
= F is uniformly continuous on [a, b]

= F is continuous.
Suppose, f is continuous at a point xo of [a,b]. Given € > 0, we can choose a
6 >0 suchthat a <t <b with

[t—xl<o = [f(®) - fxo)<e

Therefore, if x—d <s<xp+6 and a < s <t < b, we have

F(t)— F 1 !
M—f(xo)‘ = —ff(u)du—f(xO)
t—s =5 Js
1 !
= | [ v feola
t—sJs
1 [
< L f 1) = fxo)l du
t—sJ,
< € ! fldu=e
t—sJ,
Hence F’(xg) = f(xp). [ ]

Theorem 5.14 (The fundamental theorem of calculus). If f € % on [a,b] and if there
is a differentiable function F on [a,b] such that F’ = f then

b
f fx)dx = F(b) - F(a) (5.33)

Proof. Let f be continuous on [a,b] and F’(x) = f(x) Vx € [a,b].
Since f € % on [a,b] and hence F’ € # on [a,b].
Let € > 0 be given.

Hence, by theorem (4.4), 3 a partition P of [a,b] such that

n b
D F ) = xi1) — f F'(x)dx

i=1

<€ where t;€[xi1,x] (5.34)

By Lagrange’s mean value theorem, we can say that there exists #; € [x;_1, x;] such
that
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F(x)) — F(x;i-1) (x; = x;i-)F' (1)

n

= [(xi — xi-)F'(1:)]
=1

l

D IFG) = F(xi)] = F(b) - F(a)
i=1

Using the above equations in (5.34), then we have

A

€

b
‘F(b)—F(a)—f F'(x)dx

b
= F@b)-F(a) = fF'(x)dx

b
f J)dx (o F'(x) = f(x)

F(b) - F(a) n

b
Hence, f f(x)dx

Theorem 5.15 (integration by parts). Suppose F and G are differentiable functions on
[a,b], F' =fe€%Z and G’ =ge X. Then
b b
f F(x)g(x)ydx = F(OD)G(b) - F(a)G(a) - f F(x)G(x)dx. (5.35)
a a

Proof. Let F and G be differentiable functions on [a, b] sothat F' = f € % on [a,b]
and G’ =ge % on [a,b].

Let H(x) = Fx)G(x)
then H'(x) = Fx)G'(x)+ F'(x)G(x)
= F(x)gx) + f()DG(x)

Hence, by fundamental theorem of calculus, we have

b
f H'(x)dx

b b
ie., f F(x)g(x)dx+f F()G(x)dx

b
f [F(x)g(x) + f(x)G(x)] dx
H(b) - H(a)

F(b)G(b) - F(a)G(a)

b b
ie., f F(x)g(x)dx F(b)G(b) — F(a)G(a) — f f(x)G(x)dx [ |

Let Us Sum Up:

In this unit, the students acquired knowledge to

 properties of Riemann Stieltjes integral.
e change of variables.

e integration by parts.
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¢ fundamental theorem of calculus.

Check Your Progress:

1. Suppose « increases on [a,b], a <xy<b, « iscontinuous at xo,
f(xo) =1 and f(x) =0, if x # xo0. Prove that f e %(a) on [a,b].

b
2. Suppose f >0, f is continuous on [a,b], and f f(x)dx = 0, prove
that f(x) =0 for all x € [a, b]. ‘

3. If f(x)=0 forallirrational x, f(x)=1 for all rational x, prove that
f¢% on |a,b] forany a<b.

4. Suppose f is a bounded real function on [a,b], and f? € % on [a,b].
Does it follows that fe % ?

| Choose the correct or more suitable answer:

1
1. The value of fo 2 is
@) 1
(b) -1
(©)
(d)

2
2. The value of f [x]dx* is
0
(@) 1
(b) 2

(c) 3
(d) 4

 Answer:

hd ¢
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5.2. INTEGRATION AND DIFFERENTIATION:

| Glossaries:

Change of variables: It is a basic technique used to simplifying

problems in which original variables are replaced with functions of other

variables.

Suggested Readings:

1. Rudin, W., “Principles of Mathematical Analysis”, Mc Graw-Hill,

Third Edition, 1984,

2. Avner Friedman, “Foundations of Modern Analysis”, Hold Rinehart

Winston, 1970.

Real Analysis
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72 6.1. D1SscussioN OF MAIN PROBLEM:

Objectives

After completion of this unit, students will be able to

* classify pointwise convergent and uniform convergent sequence

of functions.

* understand the concept of term by term differentiation for

uniform convergent series.

% construct a continuous function which is nowhere differentiable

on real line.

| Overview

In this unit we focus our attention to complex-valued functions
(including the real-valued functions), although many of the theorems and
proofs which follow extend without difficulty to vector valued functions

and even to mappings into general metric spaces.

Discussion of Main problem:

Definition 6.1. Suppose {f,}, n=1,2,3,..., is asequence of functions defined on a set
E and suppose that the sequence of numbers {f,(x)} converges for every x € E, we can

then define a function f by

f = lim f,(x)  (x€E) (6.1)

We say that {f,} convergeson E and that f is the limit or the limit function, of {f,}.
We say that {f,} converges to f pointwise on E, if (6.1) holds.

Definition 6.2. Suppose that Z Jfu(x) converges for every x € E and if we define

n=1

) = YR (xeB) (6.2)
n=1
the function f is called the sum of the series ) f,

Remark 6.1. If the point-wise limit of a sequence of functions {f,} defined on [a, b],

then to each € > 0 and to each x € [a,b], there corresponds an integer N such that

[fu(x) = f(X)| <€ Yn=N
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The main problem which arises is to determine whether important
properties of functions (such as boundedness, continuity, integration,

differentiation, etc.,) are preserved under the limit operations (6.1) and (6.2).

Now, we shall discuss by means of several examples that limit process
cannot in general be interchanged without affecting the result.

Example 6.1. Consider the double sequence:

For m=1,2,3,..., n=1,2,3,.... Let

m

Smn =
m+n

Then for any fixed n, we have lim s,,, = 1.

m—oo

So that lim lim s,,, = 1.

n—00 m—e0

But, on the other hand, for every fixed m, we have

lim s,, = 0
n—-oo
so that lim lim s,, = 0

m— oo n— oo

Thus, lim lim s,, # lim lim s,,,.

n—00 Mm—00 m—00 p— 00

Hence, we conclude that limit process cannot be interchanged in general without
affecting the results in double sequence

Example 6.2. Consider the series Z Jfus Where f,(x) = x—n (x real).
g (1+ x2)
At x =0, each f,(x) =0, so that the sum of the series f(0) = 0.
1
For x # 0, it forms a geometric series with common ratio 172 so that its sum is
x
fx) =1+ x2
H £ 1+x2 x#0
ence f(x) =
0 x=0

Each term of the series is continuous but the sum f is not continuous.

Thus, we conclude that a convergent series of continuous function may have
discontinuous sum.

Example 6.3. Consider the sequence of functions {f,,(x)}. For m =1,2,3,...

1 m!x integer

fu(x) = lim (cosm!mx)*" = )
n—eo 0 otherwise

Let f(x) = lim f,,(x).

For irrational x, we have m!x is not an integer, so f,(x) = 0 Vm and hence

f(x) = 0.
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For rational x, put x = B, and m!x is an integer, when m > ¢, so f,(x) = 1 and
q

hence f(x)=1.

0 x rational

Thus, f(x) = lim | lim (cosm!ﬂx)z"] = .
m—co | n—co0 1 x irrational

which is not Riemann integrable[Refer Page No.62], but for each m, f,(x) is
Riemann integrable.

Hence, limit of a sequence of Riemann integrable function is need not be Riemann

integrable.
Thus, we conclude that limits and integration cannot be changed.

sin nx

Example 6.4. The sequence f, where f,(x) = (x real) has the limit

f = 1Lm Su(x)=0
f'(x) = 0andso f/(0)=0
But f/(x) = +Yncosnx

so that  f;(0)

\/ﬁ—>oo as n — o

Hence at x = 0, the sequence {f,(x)} diverges whereas the limit function f’(x) = 0.

Thus, we conclude that the limit of differentials is not equal the differential of the limit.

Example 6.5. Consider the sequence {f,} where
2 n
L = nx(1-27) 0<x<lin=123,... (6.3)

For 0 <x <1, lim f,(x) =0.

At x =0, each f,(0) =0, sothat lim f,(0) = 0.
n—oo
Thus, the limit function f(x) = lim f,(x) =0, for 0 <x<<1

0

g
~~
-
=
=
Il

1 1
n n

Agai L (0)d 1-x%) dx=

gain, 0f(x))c fonx( x) X i

1

2

n—oo

1
so that lim { f,,(x)dx}
0

1 1 1
]Thus, lim { f,,(x)dx} + f f(x)dx = f [lim {f}(x)dx
—00 0 0 o Ln—eo

Thus, the limit of integral is not equal to the integral of the limit.

Hence, we conclude that the sequence of integrals may not converge to the integral of

the limit of the sequence.

These examples, which show what can go wrong if limit process are interchanged

carelessly. We have to investigate under what conditions these or other properties of the
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terms f, are transferred to the limit function. A concept of great importance in this regard

is known as Uniform convergence of a sequence (series).

Uniform Convergence:

Definition 6.3. A sequence of functions {f,}, n = 1,2,3,... converges uniformly on E

to a function f if for € > O there is an integer N such that n > N implies

[fu(x) = f() <€ 6.4)
forall x € E.

From the above definition, it is very clear that every uniformly

convergent sequence is pointwise convergent.

Remark 6.2. The main difference between the pointwise convergent and uniform

convergent is as follows:

If {f.} converges pointwise on E, then there exists a function f such that, for every
€ > 0 and for every x € E, there is an integer N, depending on € and on x, such that
(6.4) holds if n > N.

If {f,} converges uniformly on E, it is possible to for each € > 0 to find one integer
N, which do for all x € E.

Definition 6.4. The series ), f,(x) converges uniformly on E if the sequence {s,} of

partial sums defined by

D) = 5w
i=1

converges uniformly on E.

Theorem 6.1 (Cauchy criterion for uniform convergence). The sequence of functions {f,}
defined on E, converges uniformly on E if and only if for every € > O there exists an

integer N such that m > N, n > N, x € E implies

1fa(®) = fn(X)] < €

Proof. Assume that {f,} converges uniformly on E and f(x) be the limit function.
Let € > 0 be given.

Then by definition, there exists an integer N such that

n>N,xeE = |fi(x)—f(x)]<e€/2 (6.5)

If n>N,m> N, x € E, then by (6.5), we have
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fa (%) = fin ()] 1fa(X) = F(X) + f(X) = fin(X)]
fu(®) = FOOI + 1f (%) = fin(X)]

< €/2+€/2=¢€

IA

Converse Part: Assume that for every € > 0, 3 aninteger N such that m > N,

n > N,x € E implies

() = fin(2)| < € (6.6)

Thus, for every x € E, {f,} is a Cauchy sequence and hence converges to a limit

function f(x). Hence the sequence of functions {f,} converges uniformly to f on E.
Certainly, let € > 0 be given and choose N such that (6.6) holds.

Fix n and letting m — oo in (6.6), as f,,(x) — f(x), it follows that
x€eE and n>N= |f,(x)—f(x) <€

This completes the proof. u

Theorem 6.2. Suppose lim f,(x) = f(x) (x € E).
n—oo

Put My, = sup |f(x) = f(X)].

x€eE

Then f, — f converges uniformly on E if and only if M,, = 0 as n — oo.

Proof. Suppose the sequence {f,,} of functions converges uniformly to f on X. Then

by definition, for a given € > 0, 3 a positive integer N such that

n>N = |fix)—fx)|<e VxeX

Also, M, = suplfu(x)— f(x)l
x€E
lfu(X)— fX) < € Yn=N, VYxeX
= M, = suplfu(x)—f(x)<e Vn>=N
x€E

= M,—-0 as n-o o

Converse Part: Suppose M, — 0 as n — oo,

Let € > 0 be given. Then there exists N such that
n>=N= M,=suplfu(x)-f(O < e
xeE

Hence n> N, x€ E = |f,(x) - f(x)] < e

Thus, f, — f uniformly on E. Hence the proof. |

Theorem 6.3 (Weierstrass M-test for uniform convergence). Suppose {f,} is a sequence
of functions defined on E and suppose

| fu(X)] < M, (xeEn=1,23,..) (6.7)
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Then Y, f,, converges uniformly on E if Y, M,, converges.

Proof. Assume that ) M, converges.

n
Let € >0 be givenand S,(x) = Zf,-(x).
i=1

Since ), M, converges, by definition there exists an integer N such that

m
m>n>N = ZM‘ < €

i=n+1
m m m
But,if m>n> N and x € E, then Zﬁ(x) < ZIf,-(x)ISZM,-<e
i=n+1 i=n+1 i=n+1
ie, m=2n>=N and x€ E = [s,(x)—s,(x)] < € (6.8)

This implies that, if x € E, {s,(x)} is a Cauchy sequence and hence converges to a

limit function say f(x).

Keeping m fixed and let n — oo in (6.6), we get

if m>N,x€E, |su(x)— f(x)|<e.

Thus, {s,(x)} converges uniformly on E and hence }; f,(x) converges uniformly on
E. [
Example 6.6. Let the function f, defined by f, : R — R such that f, = z Vx € R,

n

n=1,2,3,... . Show that the sequence {f,} converges pointwise to the zero function.

Solution: We want to show that the sequence {f,} converges pointwise
to the function
f(x)=0VxeR.

Let € >0 be given, we can find m such that

Vnem = %—o‘:m (6.9)
Let us choose m > m Then (6.9) gives
€
VYn>m f—0‘=m<e
n n

Hence, the sequence {f,} converges pointwise to the zero function.

Example 6.7. Show that the sequence {f,} = {nx(1 — x)"} does not converge uniformly
on [0,1].
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Solution:
@ = fim fi00 = lim G
= lim 7
n—eo —(1 —x)"log(l — x)
-x(1-x)"

= Mmooy T
= f(@) = 0 VYxel0,1]
Now, M, = sup{lfu(x)— f)|: x€][0,1]}

= sup{nx(1 —x)" : x€[0,1]}

Taking x = % €[0, 1], we have

1 1y
M, > n-—(l——)
n n

Q| =

Hence, Weierstrass M test, {f,} does not converge uniformly on [0, 1].

Example 6.8. Show that the sequence of functions f,(x) = Vx € R converges

) 1+ nx?
uniformly on R.

Solution:

=0 Yx€R

f(x) = Ilim

n—eo | + nx?

M, = Sulg{lfn(x)—f(x)l}

x
= < ——0}
Sllp{‘1+nx2 ‘

(o) = 3
= max{——= ——
1+ nx? 2+/n

-0 as n—o oo

x
1 + nx?

Hence, Weierstrass M test, the sequence  f,(x) = ¥x € R

converges uniformly on R.

6.3. Uniform convergence and Continuity:

Theorem 6.4. Suppose f, — f uniformly on a set E in a metric space. Let x be a limit

point of E, and suppose that
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%imf,,(z) = A, m=1,23,..) (6.10)
Then {A,} converges, and %im f(® = limA, (6.11)
—X n—oo

In other words, %im lim f,(¥) = lim lim f,(¢)

—X n—00 n—oo [—=X

Proof. Let € > 0 be given.

Since f, — f converges uniformly on E. By Cauchy’s condition for uniform

convergence, there exists N such that

n=N, m2NiteE = |fi(t) = fuldl< e (6.12)

Suppose that }im @® =4, n=1,2,3,... and x is alimit point of E.
—X
Letting t — x in (6.12), we get |A, —Aul<e n>N, m>N.

Thus, {A,} is a Cauchy sequence and therefore converges to A (say).

Next [f(1) = Al< |f(D) = fuOI+]fu(®) = Aul+|An — Al (6.13)

Since f, — f uniformly on E, then by definition 3 N; such that
n>Ny, teE = |f,(t) - f(H<€/3 (6.14)

Since A, — A, then by definition, 3 N, such that
n>N, = A, —Al<¢€/3 (6.15)

Choose Ny = max{Ny, N1}. Then (6.14) and (6.15) are holds good for Nj.

Then for this Ny, we choose a neighborhood V of x such that
[fv,(@®) —AnI<€/3 if te VUE, t#x (6.16)

Substituting (6.14), (6.15) and (6.16) in (6.13), we get
lf(H) —Al<e providedte VNE, t#x

Hence, lim f(f) = A = lim A,, = lim lim f,(?).
I—x n—oo n—0oo [—X

Thus, lim lim f,(f) = lim lim f,(¢). This completes the proof. [ ]
> X n—o0o n—oo (=X

Theorem 6.5. If {f,} is a sequence of continuous functions on E and if f, — f

uniformly on E, then f is continuous on E.

Proof. Foreach n=1,2,3,... since f, is continuous on E. Then

for each x € E, }im [u(® = fu(x)
—X

By theorem (6.4), we have
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lim () = lim lim f,(1)

—X N0
= lim lim £,(9)
n—oo [—=X

= ,}gg Ja(x) = (%)
ie., Eim_f(t) = f(x)

Thus, f is continuous at x and hence f is continuous on E. This completes the

proof. [ ]

Remark 6.3. The converse of the above theorem is not true. i.e., alimit of a continuous
function is continuous, but not uniformly convergent. This will be explained in the

following example.

Example 6.9. Consider the function f,(x) = n’x(1-x)", 0 < x < 1 for each
n = 1,2,3,.... Show that the limit function is continuous, but {f,} is not uniformly

convergent to f.

Solution: We have lim 7*x(1-x"=0 ©<x<1).

Thus, {f,} converges to 0 on [0, 1] which is also a continuous function.

Mn = sup|f(x) = f(0)l= sup n*x(1-x)"
0<x<1 0<x<1
) " n n+l
= max{n x(l—x)}zn( )
n+1
1 n+l n
and lim M, = limn(l— ) =lim - =00 #0

n—oo n—oo n+1 n—oo ¢

Therefore, by Weierstrass’s M -test, the sequence {f,} is not uniformly

convergent on [0, 1].

Hence, {f,} converges to a continuous limit function on [0,1], but {f,}

does not converges uniformly on [0, 1].

Theorem 6.6. Suppose K is compact and

(a) {fu} is a sequence of continuous function on K.
(b) {f.} converges pointwise to a continuous function f on K.

(¢) fu=fu1(x) forall xe K, n=1,2,3,....
Then f, — f uniformly on K.

Proof. Let € > 0 be given.

Put g, = f,—f. Then by the given conditions, g, is continuous and g, — 0 pointwise
on compact K.

Now, it remains to prove that g, — O uniformly on K.
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Let K, ={xe K : g,(x) > €}.

Since each g, is continuous and also K, is a closed subset of K.

Since, closed subset of a compact set is compact and hence K, is compact.
Since g, > gu+1, it follows that K, D K,,;1 (n=1,2,3,...).

Fix x € K, since g,(x) = 0, x ¢ K,,, if n is sufficiently large.

Thus x ¢ ﬁ K,.

n=1

In other words, ﬂ K, is empty.

n=1

We know that if {K,} is a sequence of non-empty compact sets such that

K, > K,;1 (n=1,2,3,...), then ﬂKn # (. Thus, it follows that Ky is empty for

n=1
some N.
ie, 0<gux) <e forall xe K and forall n > N.

This shows that g, — O uniformly. i.e., f, converges uniformly to f on K. This

completes the proof of the theorem. [ |

Remark 6.4. The following example explains how the importance of compactness is

needed in the hypothesis of the above theorem.

Example 6.10. Consider the function f,(x) = O<x<1;, n=1,2,3,...).

nx+1

Then f,(x) — 0 monotonically in (0, 1), but the convergence is not uniform.

1 1
Choose € = 5 and given n, choose x = o in (0,1). Then
n

1 2
Ifu) = fO = — =0 ==>

+ 3
2n

=€

N —

1
Thus, for given = 5 > 0 there exist n such that for every x € E, |f,(x) — f(x)[> €.
i.e., The sequence {f,} does not converge uniformly in (0, 1), which is not compact.

Definition 6.5. Let X be a metric space. Then %' (X) will denote the set of all complex

valued, continuous, bounded functions with domain X.
Definition 6.6. If X is a compact, then %’ (X) consists of all continuous functions on X.

Supremum norm on %(X) is defined by
WAl = suplf()l if fe€EX)
xeX

It is well defined, since X is a compact.

Example 6.11. If X is a compact metric space, sup norm defines a metric space on %' (X)
by d(f,g) = IIf — gll, where ||fl|= sup|f(x)|. Then prove that € (X) is a metric space.
xeX
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Proof.

(@) d(f,g)=If-gl=0, [ [f(x)]= 0 foreveryx € X.]
b dif,.9)=0e S}l}glf(x) -2g)=0 & f(x) = g(x) foreveryx € X.
(© dif,9=1IIf —¢&l= S_U)Izlf(x) -gx)= S_U)Ezlg(x) - f)I=d(g, ).

(d) d(f.g) = SU)IT(>|f () —g)I= Suglf (%) = h(x) + h(x) — g(x)l

< suplf(x) — h(x)|+ su};{)lh(x) —gI=d(f,h) + d(h, g). ]

xeX X
Theorem 6.7. A sequence {f,} convergesto f with respect to the metric of €(X) if and
only if f, — f uniformly on X.

Proof. Let {f,} be a sequence of functions in €' (X).
We know that By Weierstrass’s M test for uniform convergence of function, f, — f
uniformly on X if and only if M, — 0 as n — o.
Then {f,} converges uniformlyto fonE & M, - 0asn— oo
< suglfn(X) - f)—>0 asn— o0
xe

< |fu—fll—0as n—oo

e fi— fin €X) ]

Theorem 6.8. The metric space € (X) is a complete metric space.

Proof. We know that a metric space (X,d) is said to be complete if every Cauchy

sequence in X converges.

Let {f,} be a Cauchy sequence in %(X). Then by definition, for given € > 0, there

exists an integer N such that

n>N,m>=N = |fi-full<e

n>N,m>N = suplfy— ful<e
xeX

n>N,m>N = |f,—fu<e

Thus by Cauchy’s criteria, {f,,} converges uniformly to f (say).
It remains to prove that f € €(X).
Since {f,} is of continuous function, f is also continuous and also it is bounded.

For if, since there is an n such that |f(x)— f,(x)|< 1 forall x € X and f, is bounded.

@ = 1f(x) = fvG) + fy(l
< 1fx) = fn@I+H vl
< 1+|fvx)l
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and hence f is bounded.

Thus f € ¥ (X) and hence f, — f in ¥ (X) and hence %' (X) is complete. [ ]

6.4. Uniform convergence and Integration:

Theorem 6.9. Let a be monotonically increasing on [a,b]. Suppose f, € #(a) on
[a,b], for n =1,2,3,... and suppose f, — [ uniformly on [a,b]. Then f € %(a) on
la,b] and

b b
ff(x)dx = }Ln;f fuda (6.17)

Proof. suppose that @ is monotonically increasing on [a,b]; f, € Z(a) on [a,b] for
n=12,3,....

It suffices to prove the theorem for the case of real f,.

Put ¢ = Su.pb|fn(x) - fx)l
= Su_pb|f(x) = fu(Xl

= |f(0) = fu)l
= - < fO-fi<e

= (¥ - J) < fuld) + &

A

€n

A

Since f € Z(a) on [a,b], so that the upper and lower integral of f satisfy

b b
f(fn—en)dasff(x)da

Ab b
= Osff(x)da—ff(x)dcx

~b b b
= 0< f f(x)da - f f(x)da < 2€"f da = 2¢, [a(b) — a(a)]

IA

~b b
ff(x)dargf(f,,+en)da (6.18)

IA

b
f [fn +& — fut En] da

A

Letting €, — co, then the upper integral and lower integral are equal.

~b b
ie., f f(x)da f f(x)da

= feZ()

Hence, (6.18) can be written as
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b b b
f(ﬁ,—e,,)da < ff(x)dasf(f,,+e,,)da

b b b
- f fuda = & [a(B) - a@)] < f fda < f fuda + & [a(B) - (@]

A

b b
= —alad)-a@] < f fda - f Jada < €, [a(b) — a(a)]

b b
ff(x)da—f fuda

Letting, n — oo, we get

b b
ff(x)dx = lim fuda

n—oo

=

IA

€n [a(b) - a'(a)]

This completes the proof of the theorem. [ ]

Corollary 6.1. If f, € Z(@) on [a,b] and if

f) = D AW (@<x<bh),

n=1

the series converging uniformly on [a,b), then

j:]fda = nilj;bf”da

In other words, the series may be integrated term by term.

Proof. Let f, € Z(@) on [a,b], n=1,2,3,... and

f(x) =3 fu(x), a < x<b the series converges uniformly on [a, b].

k
Let si(f) = ) fulx),
n=1

Then {sy(f)} be the sequence of partial sums converges uniformly to f on [a, b].

Hence, by above theorem f(x) € Z(a) on [a,b] and

b b
f fda = lim srda

k= J,
bk
= lim Z fuda
k—o0
a p=1

kb © b
lim Z f fuda = Z f fuda n
n=1 Y4 n=1 VY4
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6.5. Uniform convergence and Differentiation:

We have already seen in Example (6.4) that uniform convergence of {f,}
implies nothing about the sequence {f;}. Thus strong hypothesis is required
for the claim that £, — " if f, — f.

Theorem 6.10. Suppose {f,} is a sequence of functions, differentiable on [a,b] and
such that {fy(xo)} converges for some point xo on |a,b]. If {f,} converges uniformly

on la,b] then {f,} converges uniformly on [a,b], to a function f and

fl(x) = ’}Lr{)lof,:(x) (a<x<b) (6.19)

Proof. Let € > 0 be given. Since {f,(x,)} converges for some xpin [a,b] and {f,}

converges uniformly on [a, b].
Thus, both the series {f,} and {f,} satisfies Cauchy’s criteria for convergence.

Therefore, we can choose N such that n > N, m > N such that

Ifn(x0) = fm(x0)l < €/2 (6.20)
and |f1()— fo(0|] < 2(;_ 5 (as<is<h) 6.21)

By mean value theorem, we have
[/a(0) = fuD] = [ = fu®D] = (x =D [£3(&) = fu(©)] (6.22)

forany x and ¢ on [a,b] and for some ¢ € [x,7], if n > N,m > N.

Thus, the equation (6.22), can be written as

/2 (%) = fn(®) = fuD) + fu D] < |x = A[£1(6) = £,(E)]
€
< |x—l|m ( fE[a,b])
< (b- )2(17 ) (- x,t€la,bl)
< €2 (6.23)

The inequality
/() = fn@ < 1) = fin(%) = fulx0) + fin(X0)| + 1 fu(x0) = fin(x0)|  (6.24)

Using (6.20) and (6.23) in (6.24), we get
|f;1(x) - fm(x)| < €/2+€/2=¢€

Thus, {f,} converges uniformly on [a, b].
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Let f(x) = lim f(x) (a<x<b),

Fix a point x on [a, b] and define

b.(0) = M (1) = f(ti:ﬁ(x) fora<t<b t#x  (625)

Then, lim ¢,(1) = f,z(x) (n =1,2,3,...) (6.26)

Using (6.26) in (6.23), we get
(1) = dm(DI<

2(b D (n>=N, m>N) (6.27)

Therefore, {¢,} converges uniformly for ¢ # x. Since {f,} converges to f, we
conclude from (6.25) that

lim ¢,(r) = (@) (6.28)
n—oo
uniformly for a <t < b, t # x.
From (6.26) and (6.28),we get
%im o) = lim f,(x)
—X n—oo
ie, lim 0TI p
—x r—Xx n—oo
ie., f'(x) = lim f;(x) [
n—oo

Theorem 6.11. There exists a real continuous function on the real line which is nowhere
differentiable. In other words, every where continuous but nowhere differentiable function

exists on the real line.

Proof. Define a function:

ox) = |x] (-1<x<1) (6.29)

and we can extend the definition of ¢(x) to entire real axis by periodicity such that

$(x +2) = ¢(x).

Then for all s and 7, we have

lp(s) —d@DI = |s|=lt< |s — 1] (6.30)

Clearly, ¢ is continuous on R,

Define f(x) = Z(}l) P@"x) = ZF,,(x) 631)
n=0 n=0
where F,(x) = (}1) #(4"x) (6.32)
Since 0 < ¢ <1, so that
1y "
[Fu(x) = ‘(Z) ¢(4nx) <|5| =M, (say)
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since ), M, is a geometric series with common ratio less than 1 and hence } M, is

convergent.

Thus, by Weierstrass’s M test, we have ) F,(x) converges uniformly and hence F

is continuous at x.

Let m be a fixed positive integer and let x be a fixed real number. Put

1
Op = +=47" (6.33)
2
where the sign is so chosen that no integer lies between 4™x and 4" (x + 6,,).
1 1
This can be done because 4mo™ = J_rz‘ = 5
4"(x + 6,,)) — p(4"
Define y, = é 4" (x (;n)) $(4"x) (6.34)
When n > m, then 4"6,, is an even integer, so that y, = 0.
When 0 < n < m, then (6.30) gives
@M (x + 6m)) — P(4" )]
lyal = o]
m
< |4 (x + 6,,) — 4"x] _ |47 6] 4
O] [O1m]
Also |y,,|=4™.
Therefore, we conclude that
fa+0m) - f)| _ i ( 3 ) P (x +6,)) — $(&"x)
Om o 4 Om
m 3 n 0 3 n
= Z (Z) Yn t Z (Z) Yn
n=0 n=m+1
m 3 n
= Z(Z) o =0 (1> m)
n=0
3)m [ m-1 (3)n ]
= (2] 4= (2] w
(4 g 4
m—1 n
3
= |3m|_ (Z) Yn
n=0
m—-1 3 n
> 3m _ - 4}1
e
n=0
m—1 1
= 3m— 3”:—(3m+1)
2
n=0
As m — co, 6, — 0, it follows that f is not differentiable at x. [ |
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Let Us Sum Up:

In this unit, the students acquired knowledge to

e interchange of limits and differentiation.

e interchange of limits and integration.

Check Your Progress:

1. Prove that every uniformly convergent sequence of bounded

functions is uniformly bounded.

2. If {f,} and {g,} converges uniformly on a set E, prove that {f, + g,}

converges uniformly on E.

3. Show by an example that for term by term differentiation, the

condition of uniform convergence is sufficient but not necessary.

. 1
4. Show that the series Y Tl

values of x and it can be differential term by term.

is uniformly convergent for all real

| Glossaries:

Uniform convergence: It is a property involving the process of

convergence of an order of continuous function.

Suggested Readings:

1. Rudin, W., “Principles of Mathematical Analysis”, Mc Graw-Hill,
Third Edition, 1984.

2. Avner Friedman, “Foundations of Modern Analysis”, Hold Rinehart
Winston, 1970.
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UNIT-7

Equicontinuous families of functions

Structure

Objective

Overview
7.1 Equicontinuous families of functions
7.2  The Stone-Weierstrass theorem

Let us Sum Up

Check Your Progress

Answers to Check Your Progress

Glossaries

Suggested Readings

Objectives
After completion of this unit, students will be able to
% understand the concept of equicontinuous families of functions.

% distinguish between uniformly pointwise bounded sequence of

functions and pointwise bounded sequence of functions.

% derive the Stone-Welierstrass theorem.
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' Overview

In this unit, we will illustrate the ideas of equicontinuous
families of functions and explained in detail about uniformly pointwise

bounded sequence of functions.

7.1. Equicontinuous families of functions:

We have seen that every bounded sequence of complex numbers has a
convergent subsequence, and the question arises as to whether something

similar is true for the sequence of functions.

Definition 7.1. Let {f,} be a sequence of functions defined on a set E. We say that {f,}
is pointwise bounded on E if the sequence {f,(x)} is bounded for every x € E, that is if

there exists a finite-valued function ¢ defined on E such that

i< d(x) (x€E, n=1,2,3,..) (7.1)

Definition 7.2. Let {f,} be a sequence of functions defined on a set E. We say that {f;}

is uniformly bounded on E if there exists a number M such that

lfn()I<M (x€E, n=1,2,3,..) (7.2)

Remark 7.1.
BZ" If {f,} is pointwise bounded on E and E; is a countable subset of E then it is
always possible to find a subsequence {fy,} such that {f,, (x)} converges for every
X € El.

B TIf {f,} is uniformly bounded sequence of continuous function on a compact set E,
then it is not necessary that there exists a subsequence which converges pointwise

on E.

Example 7.1. Let f,(x) =sinnx (0<x <21 n=1,2,3,...). Suppose there exists
a sequence {ng} such that {sinn;x} converges, for every x € [0, 2x].

In that case lim (sinmx —sinngx) = 0, (0<x<2n) (7.3)
n—oo
and hence lim (sinngx — sin n1x)> = 0, (0<x<2m) (7.4)

By Lebesgue’s dominated convergence theorem, then (7.4) implies
2
lim (sinngx — sin nk+1x)2 dx=0 (7.5)

n—e Jo

But, a direct integration of (7.5), we have
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27
(sin mex — sin ng,1x)* dx = 21 (7.6)
0

which is a contradiction to (7.5).

Hence, uniformly bounded sequence of continuous function on a compact set E, may
not have a convergent subsequence.

52

Example 7.2. Let f,(x) = 2+ —np

O<x<l1, n=1,2,3,..)).
Then |f,(x)|< 1, so that {f,} is uniformly bounded on compact set [0, 1].

Also, lim f,(x) = 0 O0O<x<1 7.7
n—oo

but f(%) =1 @=123,.) (7.8)

so that {f,,} has no subsequence can converge uniformly on [0, 1].

Hence a convergent and uniformly bounded sequence of functions on a compact set

need not contain a uniformly convergent subsequence.

Definition 7.3. A family % of complex functions f defined on a set E in a metric
space X is said to be equicontinuous on E if for every € > 0 there existsa ¢ > 0 such
that

lf(x) = fI< € (7.9)

whenever d(x,y) <6, x€ E, ye E and f € .%#. Here d denotes the metric of X.

Remark 7.2. From the definition, it is very clear that every member of equicontinuous is
uniformly continuous. but the converse is not true. i.e., Example (7.2) shows that {f,}

is uniformly continuous but it is not equicontinuous.

Theorem 7.1. If {f,} is a pointwise bounded sequence of complex function on a
countable set E, then {f,} has a subsequence {f, } such that {f,} converges for every

xeE.

Proof. Let {f,} be a pointwise bounded sequence of complex valued function on a

countable set E.
Let {x;}, i=1,2,3... be the points of E, arranged in a sequence.

Since {f,(x1)} is bounded, there exists a subsequence {fj s} suchthat {fi s} converges

as k — oo.

Let us consider sequence S1,52,53,... which we represented by the array

St fir fiz fiz fis
Sy fa1 2 3z fa
S3: fin iz fiz fia

and which have the following properties:
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(a) S, isasubsequenceof S,_, for n=2,3,4,...

(b) {fux(xn)} converges as k — oo.

(c) When going from one row in the above array to the next below, functions may

move to the left but never to the right.

‘We now go do down the diagonal of the array.

Consider the sequence S : fi1 foo f33 faa---.

By (c¢), the sequence S (except possibly, its first n — 1 terms) is a subsequence of S,

forn=1,2,3,...

Hence (b) implies that {f,,(x;)} converges as n — co for every x; € E.

Theorem 7.2. If K is a compact metric space, if f, € €(K) for n =1,2,3,...

{fu} converges uniformly on K, then {f,} is equicontinuous on K.

Proof. Let € > 0 be given.

and if

Then by definition of uniformly convergent of {f,}, there exists a positive integer N

such that

n>N = |f,— fvl<e/3

(7.10)

We know that every continuous function is uniformly continuous on the compact set,

therefore 3 6 > 0 such that

1<i<N, dxy) <o =1fi(x)-fipl<e/3

If n> N and d(x,y) < 6, it follows that

[fu(0) = Ol = 1fu(x) = fn(x) + fn(x) = fv @) + @) = fu(0)]
[/u(x) = fn I+ fv(x) = fnOIHIv ) = D)
< €/3+€/3+€/3=¢€

IA

Thus, the {f,,} is equicontinuous on K.

Theorem 7.3. Let K be a compact metric space, if f, € €(K) for n=1,2,3,.

{f:} is pointwise bounded and equicontinuous on K, then

(a) {fu} is uniformly bounded on K.

(b) {fu} contains a uniformly convergent subsequence.

Proof.

(a) Let € >0 be given.

(7.11)

and if

Since each {f,} is equicontinuous on K, then by definition there exists a 6 > 0

such that
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dx,y) <6, xeK,ye K = |f,(x)— f,()|<e VYn (7.12)

Since K is compact, therefore there are many points pp, p2,...,p, in K such
that to every x € K, there corresponds at least one p; with d(x, p;) <.

Also, {f,} is pointwise bounded, 3 M; < co such that
l[fu(pdl< M; ¥Yn=1,2,3,... (7.13)

If M =max{M;,M,,...,M,}, then we have

f(p)l< M+e VYxeK, n=1,23,... (7.14)

Thus {f,} is uniformly bounded on K.

(b) We know that if (X, d) is a compact metric space, then there always exist a countable

dense subset.

Let E be a countable dense subset of K. Then {f,} has a subsequence {f,,} such that

{fn} converges forevery x € E.
Put f, = gi. Now, we shall prove that {g;} is converges uniformly on K.

Let € > 0 and choose ¢ > 0 asin (7.12). Let V(x,8) be the set of all y € K with
d(x,y) <9.

Since E is dense subset in K and K is compact, there exists finitely many points

X1, X2,..., %y in E such that

KcV(x,0) UV(x,0)U...UV(xp,0) (7.15)

Since {g;(x)} converges for every x € E, then there is an integer N such that

i>N, j=2N, 1<s<m = |gi(xy)—gj(xyl< €/3. (7.16)

If x € K, then (7.15) shows that x € V(x,,6) for some s, so that

lgi(x) — gi(x5)l< €/3 forevery i (7.17)

If i>N, j= N, then from (7.16), we have

lgi(x) — g; (0 = 1gi(x) — gi(xs) + gi(xy) — g(x5) + gj(xs) — g (X))
< 18i(x) = gilxp)lHgi(xs) — gi(x)I+Igj(xs) — g;(X)l
< €/3+€/3+€/3=¢€

Hence, for given € > 0, there exists a positive integer N such that

izN, j2N, xeE = |f,(0)-fu,(I<e

= {fn,} converges uniformly on K

Thus, {f,} contains a uniformly convergent subsequence. ]

M.Sc.{(Mathematics)-I Year-I Sem Real Analysis



7.2.

94 7.2. THE STONE-WEIERSTRASS THEOREM

The Stone-Weierstrass theorem:

Theorem 7.4. If f is a continuous complex function on la,b], there exists a sequence

of polynomials P, such that

lim P,(x) = f(x) (7.18)
uniformly on [a,b). If f is real, then P, may be taken real.

Proof. Without loss of generality, we may assume that [a,b] = [0, 1]. Also, we may
assume that f(0) = f(1) = 0.

Consider

fx) = f0) = x[f(1) = f(0)] O=<x=<1 (7.19)
g)=0 (7.20)

8(x)
Then, g(0)

Also, g can be obtained as the limit of a uniformly convergent sequence of

polynomials, it is clear that the same is true for f, since f — g is a polynomial.

We define f(x) to be zero for x outside [0,1]. Then f would be uniformly

continuous on the whole real line.

We put "
0 = c(1-%) (=123..) (7.21)

Where c¢,, is chosen so that

1
f Oy(dx = 1 (m=1,2,3,...) (7.22)
-1

In order to determine, the magnitude of c¢,, the following inequality is needed.

(l—xz)" > 1 —nx?

Thus, 1 = flcn(l—xz)"dx=26nf1(1—xz)ndx

1 0
1/+n
2¢, f (1= x»'dx
0
1/+n
ZCnf (1 —nxz)dx
0

) [ nx’ }UW 4c,
= Cplx— — =
3, 3vm

[\

v

C

=

vVn
= ¢ < Vn (7.23)
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Therefore, for any 6 > 0, equation (7.23) becomes

Ou(x) < Vn(1-6%)", when & <|x< 1 (7.24)

so that @, — O uniformly in ¢ < |x[< 1.

Let P,(x)

1
f fx+ D)0 (t)dt
-1

1-x

—x 1
f f(x+ 00y (0)dt + f(x+00u(ndt + f f(x +0)0n(ndt
-1 - 1-x

X

If -1 <t<—-x,then —1+x<x+1<0, sothat x + ¢ lies outside [0, 1] and hence
f(x+1=0.

Thus, the first integral on the R.H.S. becomes zero. Similarly, the third integral also

becomes zero.
1-x

J(x+ DQ0n(t)dt (7.25)

Pp(x)

1
f J(D)On(t — x)dt (7.26)
0

which is a polynomial in x.
Thus, {P,} is a sequence of polynomials, which are real if f is real.
It remains to show that {P,(x)} converges uniformly to f on [0, 1].

Since the continuous function defined on a compact set [0,1] is bounded and
uniformly continuous, therefore f is uniformly continuous on [0, 1].

= 3 Msuchthat M = sup [f(x)| (7.27)
x€[0,1]

and for any given € > 0, we can choose ¢ > 0 such that for any two points x,y € [0, 1].
|lf(x) — f(»)|< €/2 whenever |x—y|<d (7.28)

For 0 < x <1, we have

1
fl J(x+0Qu(ndr - f(x)

‘Pn(x) - f(x)|

(using (7.22))

1
‘fl [f(x+ 1) = f(0)] Qu(n)dt

IA

1
fllf(x +1) = f(0)|Qn(n)dt

-5 )
f 1+ = FNQL 0t + f 15+ = FIQ, 0

1
+f6 lf(x +1) = f(0I1Qu(n)d1
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IA

= ) 1
oM f 0, (Hdt + £ f 0,(H)dt + 2M f 0,(t)dt
-1 2 -5 5

IA

aM (1 -6%)" + g (using (7.22) and (7.24))

< € for sufficiently large n.

Therefore, for any given € >0, I N suchthat |P,(x)— f(x)l<e VYn>N.

= lim P,(x) = f(x) uniformly on [0, 1]. [ |

Corollary 7.1. for every interval [—a,a) there is a sequence of real polynomials P,

such that P,(0) =0 and such that
lim P,(x) = |x| (7.29)

n—oo

uniformly on [-a, al.

Proof. By theorem (7.4), there is a sequence of real polynomials {P;} which converges

to [x| uniformly on [—a,a].
In particular, P;(0) — 0 as n — oo.
Consider P,(x) = P;(x) — P,(0).

Clearly, P,(x) will converge uniformly to |x| such that P,(0) = 0. Hence the
proof. |

Definition 7.4. A family &/ of complex functions defined on a set E is said to be an
algebra, if

) f+ged

(i) fgeo

(iii) cf € o7 forall f,g € o/ and for all complex constants c.

Definition 7.5. If f € o/ whenever f, € & (n=1,2,3,...) and f, — f uniformly on
E, then & is said to be uniformly bounded

Definition 7.6. Let % be the set of all functions which are limits of uniformly convergent

sequences of members of o/. Then & is called the uniform closure of <.

For Example, the set of all polynomials is an algebra.

Remark 7.3. The Weierstrass theorem may be stated that the set of continuous functions

on [a,b] is the uniform closure of the set of polynomials of [a, b].

Theorem 7.5. Let % be the uniform closure of an algebra o/ of bounded functions.

Then % is a uniformly closed algebra.
Proof. Let f,g € £, then there exists uniformly convergent sequence {f,} and {g,}
such that f, — f, g, —> g and f, € &, g, € 7.

Since f,+g, — f+8& fiugn — fg cfy — cf, where c is any constant, the

convergent being uniform in each case.
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Hence f+g€ AB, fge P and cf € & and hence £ is an algebra.
Since &7 = % and thus, 4 is a uniform closed algebra. [ ]

Definition 7.7. Let ./ be a family of functions on a set E. Then &/ is said to separate

points on E if to every pair of distinct points x;,x, € E there corresponds a function

f € o/ suchthat f(x;) # f(x2).

Example 1: The algebra of all polynomials in one variable have separated

points E C R.

Consider the function P(x) = % is a polynomial in one variable.
Choose two distinct points a,b € E such that P(a) =0; Pb) =1

i.e., P(a) # P(b). Hence & 1is a separate points on E.
Example 2: Consider the algebra of even polynomials.
.. . 1 1
LetP(x) = x* + 1. Choose two distinct points x; = -3 and x, = 3 on

E=[-1,1] cR.

Clearly, P(%l) = P(%). Thus, & have no separate points on [-1,1].

Definition 7.8. If to each x € E there corresponds a function g € o/ such that g(x) # 0,

we say that &/ vanishes at no point of E.

Example: The algebra of polynomials in one variable vanishes at no point
of EcR.

Consider P(x) = x+2 is a polynomial of one variable, such that P(0) # 0.

Thus & vanishes at no points of [0, 1].

Theorem 7.6. Suppose <f is an algebra of functions on a set E, < separate points
on E, and &/ vanishes at no points of E. Suppose x1,x, are distinct points of E, and
c1,cp are constant (real if of is a real algebra). Then o/ contains a function f such
that

fx)=c1,  [f(x)=c. (7.30)

Proof. Suppose &7 separate points on E, then there exists a function g € &/ such that

g(x1) # g(x2).

Also, &/ vanishes at no points of E, then there exists a function A(x), k(x) € & such
that h(x1) #0; k(x) # 0.

Put u = gk — g(xk; v =_gh—g(x)h.

Then u € &7/,v € &/ such that
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u(xy) = glxpk(x) — g(x1k(x1) =0
u(x2) = glx)k(x2) — g(x1k(x2) = [g(x2) — g(x1)] k(x2) # 0
v(x1) = g(xh(x1) — g(x2)h(x1) # 0
v(x2) = gx)h(x2) — g(x2)h(x2) =0

Let f = iy + colt . Then,
v(x1)  u(x)
Flan) cvix) | couxi) _ o
v(x1) u(x2)
civ(x2) | cou(x)
e T
This completes the proof. [ ]

Theorem 7.7 (Stone Weierstrass theorem). Let &/ be an algebra of real continuous
functions on a compact set K. If o/ separate points on K and if </ vanishes at no
point of K, then the uniform closure % of < consists of all real continuous functions
on K.

Proof. Suppose .o/ be an algebra of real continuous function on compact set K.

Suppose that o7 separate points of K and &/ vanishes at no point of K.

Our aim is to prove that the uniform closure Z of ./ consists of all real continuous

functions on K.
Now, we shall divide the proof into four steps.
Step 1: If f € &, then |fle A.

Proof:
Let a = sup|lf(x)|, (x € K) (7.31)

and let € > 0 be given. Then by Weierstrass theorem, there exist a real numbers

¢1,¢2,...,Cy such that

n

PR

i=1

<€ (-a<y<a) (7.32)

n

Since 4 is an algebra, then the function g = Z cifi € B.
i=1

By (7.31) and(7.32), we have
lg(x) = 1f(ll <€ (x€K) (7.33)

Since & is uniformly closed and hence |fle A.
Step 2: If fe€ % and g € &4, then max(f,g) € # and min(f,g) € A.

Proof: By max(f,g) we mean the function 7 is defined by
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iy < 4 S0 2 8(0)
(x) =
g(x) if f(x) < g(x)

Similarly min(f, g) we mean the function k is defined by

) = | 89 () 2 8(x)
() = .
J) i f(x) < g(x)

Also, max(f,g) and min(f, g) are also defined by

_ fteg If-gdl
max(f.g) = -+
, _ f+g If-dl
min(f.g) = — >
Since f,ge B = % € % and by step 1, we have If;gl €A

Thus, max(f, g) € 4. Similarly, we have min(f, g) € 4.
By iteration, the result can be extended to any finite set of functions.

Step 3: Given a real function f, a continuous on K, a point x € K and € > 0, there

exists a function g, € # such that g,(x) = f(x) and

&> f()—€ (1€K) (7.34)

Proof: Since o/ ¢ # and &/ separate points on K and &/ vanishes at no point of K.
Thus, £ separate points on K and 4% vanishes at no point of K.

Hence by theorem (7.6), for every g € K there exists a function A, € % such that

hy(x) = f(x);  hy(y) = f) (7.35)

By the continuity of 4, there exists an open set J, containing y, such that

hy(t) > f() - € (tely) (7.36)
Since K is compact, then there is a finite set of points y1,ys,...,¥, such that
Kc U T, (7.37)
i=1

Put g, = max{hy,, hy,,..., hy,.

n

By step 2, we have g, € A and the relations (7.35), (7.36) and (7.37) show that
gx(x) = f(x) and g(2) > f(1) — €.

Step 4: Given a real function f, continuous on K and € > 0, there exists a function
h € # such that

Ih(x) = h()l< € (x € K) (7.38)

Proof: Let us consider the function g., for each x € K constructed in step 3. By the

continuity of g,, there exists an open sets V, containing x such that
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&M <f(H+e (teVy) (7.39)
Since K is compact, there exists a finite set of points xp, X, ..., X, such that
KcV,UV, UV, U...UV, (7.40)

put & =min{g,, 8-> 8x,)-
By step 2, we have h € & and by (7.34), it follows that

o) > f(t)—€ (teK) (7.41)

From (7.39) and (7.40), it follows that

h@®) < fH+e (Fek) (7.42)

Thus, from (7.41) and (7.42), we have
() — f(Hl<e (teK) (7.43)

Since & is uniformly closed, by step (4), Z is the set of all real continuous functions

on K. Hence the proof. u

Remark 7.4. Theorem (7.7) does not hold for complex algebra. However, the conclusion
of the theorem hold good, even for complex algebra, if an addition condition is imposed
on o/ ie., & be self-adjoint.

Definition 7.9. 7 is said to be self-adjoint, if for every f € of, its complex conjugate
f must also belong to .«7. f is defined by f(x) = f(x).

Theorem 7.8. Suppose <7 is a self-adjoint algebra of complex continuous functions on a
compact set K, o separates points on K, and &/ vanishes at no point of K. Then the
uniform closure B of &/ consists of all complex continuous functions on K. In other
words, &/ is dense in € (K) which belong to <7 .

Proof. Suppose &/ separate points on K and &/ vanishes at no points on K. Let .ok

be the set of all real functions on K.
If feo and f=u+iv, with u,v real then 2u = f + f.
Since &7 is self-adjoint, it follows that u € 7.

If x; # x, and &/ separate points on K, it follows that there exists f € &/ such that
f(x1) =1, f(x2) =0 and hence 0 = u(x,) # u(x;) = 1.

Thus @ separate points on K.

Since .o/ vanishes at no points of K, if x € K then g(x) # 0 for some g € &/ and
there is a complex number A such that Ag(x) > 0. If f = Ag, f = u + iv, it follows that
u(x) > 0 and hence o; vanishes at no points of K.

Thus, «#; satisfies the hypothesis of the theorem (7.7). It follows that every real

continuous function on K lies in the uniform closure of .@% and hence lies in 4.
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If f is a complex continuous function on K, f = u +iv, then u € A, v € A, hence
f € #. Hence the proof. [

Let Us Sum Up:

In this unit, the students acquired knowledge to

e pointwise bounded, uniform bounded, equicontinuuous and Stone

Weierstrass theorem.

Check Your Progress:

1. Define Pointwise bounded sequence.
2. Define equicontinuous.

3. If K is a compact metric space, if f, € €(K) for n=1,2,3,... and if

{f,} converges uniformly on K, then {f,} is equicontinuous on K.
4. State and Prove Stone-Weierstrass theorem.

5. Define separation points.

| Choose the correct or more suitable answer:

1. The algebra of polynomials in one variable vanishes at ...... of
EcR!
(a) no point (b) one point

(c) two points (d) three points

| Answer:

() a

| Glossaries:

Equicontinuous: Family of functions is equicontinuous if all the
functions are continuous and they have equal variations over a given

neighborhood.
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Suggested Readings:

1. Rudin, W., “Principles of Mathematical Analysis”, Mc Graw-Hill,
Third Edition, 1984.

2. Avner Friedman, “Foundations of Modern Analysis”, Hold Rinehart
Winston, 1970.
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Block-111

UNIT-8

MEASURABLE SETS

Structure

Objective

Overview
8.1 Lebesgue Outer Measure
8.2  Measurable Sets

Let us Sum Up

Check Your Progress

Answers to Check Your Progress

Glosseries

Suggested Readings

Objectives

After completion of this unit, students will be able to

* understand the concept of Lebesgue outer measure and its

properties.

% define measurable sets.
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' Overview

In this unit, we will discuss the basic concepts of measure theory.

8.1. Lebesgue Outer Measure:

All the sets consider in this chapter are subsets of the real line unless
stated otherwise.

We will be concerned partial with intervals I of the form I = [a,b),
where a and b are finite and unless specified, by an interval we shall only

mean an interval of the above type.

If a = b, then I is the empty set 0, we will denote the length of the
interval i.e.,(b—a) by ID).

Definition 8.1. Let A be a subset of R and let [,] be a finite or countable collection
of intervals such that A C |J I,. The outer measure of A, denoted by m*(A), defined as

m*(A) = inf Z I(1,)

where the infimum is taken over all [7,].

Note 8.1. In Definition (8.1),

1. A finite collection of intervals I, means I, = {[{,5,...,I,} (and)
A countable collection of intervals I, means I, = {[1,1,,...}

Where each I, is of the form I, = [a,, b,).

2. Without loss in generality, we may assume that the collection is countably infinite,
the finite case is included we may take I, = 0 except for a finite number of

integers n.

Theorem 8.1.
(i) m*(A) =0

(ii) m* (@) =0
(iii) m*(A) <m*(B) if ACB

(iv) m*([x]) =0 forany x € R.

Proof. By definition, m*(A) = inf }; [(1,;), where the infimum is taken over all countable

collection of intervals [Z,] such that A C UI,.
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@@ Since, I(I,) = 0 V I,

= Zl(l,,) > 0 forevery every countable collection [I,] of intervals
= inf ). Il) = 0

ie, m'(A) > 0

(it) Consider the collection [[,], where I, = @ for all n. From, this we can easily see
that 0 € | I,.

Since, I(I,) = 0 VY I,

= Zl(l,,) = 0 forevery every countable collection [I,] of intervals

- ianl(I,,) =0
ie, m'(A) = 0

(iii) Let [I,] be the countable collection of intervals such that B C UI,.
Since A C B, then it follows that A C | J I, and hence m*(A) < Y, I(1,).
Thus, m*(B) = inf Y I(I,) > m*(A).

(iv) Let x be any real number.

Consider the intervals, I, =

1
x,x+—), n=12,3,...
n

1

We have x € I,, foreach n and [(I,) = —.
n

By definition, m*([x]) = 0. [ ]

Example 8.1. Show that for any set A, m*(A) = m*"(A+x), where A+x={y+x:ye€ A}

is invariant. In other words, the outer measure is translation invariant.

Solution: For any set A and A+ x={y+x:y e A}. Now, we have to show
that m*(A + x) = m*(A).

By definition, m* = inf ), /(1,), where [J,] is a countable collection of

intervals such that A c | I,.

For every € > 0, there exists [/,] is a countable collection of intervals
such that

mA) +e2 > I(l) 8.1)

Since Acul, = A+xCUl,+x)

mA+x) <Y Uy +x)
= >l
< m'(A)+e (using (8.1))
So, forevery e>0,= m'A+x) < m'(A) (8.2)
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To prove the opposite inequality, Take A = (A + x) - x = B— x, where
B=A+x

Hence by (8.2), we have
m*(B — x)

IA

m*(B)

= m'A) < m'(A+x) (8.3)

Combining (8.2) and (8.3), we get

m(A+x) = m'(A)
Theorem 8.2. The outer measure of an interval equal its length.

Proof. Let I be any interval in R, now we must show that m*(I) = I(I).
‘We consider all the cases separately.

Case 1: Suppose, that [ is a closed interval i.e., [a,b], then we must show that
m*([a,b]) = b —a.

For every € > 0, we have I =[a,b] C [a,] + €).

By (8.1), we have
m' () < mla,b+e)<b-a+e

A

ie, m'(I) < b—a+e, Ve>0

= m'I) < b-a=I1) 8.4)

s0, it remains to prove that m*(I) > I(I).

For given € > 0, by definition of outer measure, there is a sequence of intervals
[a,, b,) suchthat I =[a,b] C [a,,b,) and

[eS)

m'(D) > Zl(l,,>—e=i<b"—an>—e

n=1 n=1

N
(G

€
For each n, let I = (an - i’b")’ then [

i.e., [I] is an open cover for I.
Since I is compact and hence by Heine-Borel theorem, 3 a finite sub-collection of
N
the intervals 1, say Ji,J2,...,Jnv where Ji = (ck, dy) covers I. ie., IC UJk'
k=1

Without loss of generality, we may assume that no J; is contained in any other.

Suppose that ¢; < c; <...<cy. Then
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N N-1
dy—c1 = Z(dk —c) — Z(dk = Crs1)
=1 =1
N
< Z(dk =)
=l
N
ie, dy—c; < Z(dk —c) (8.5)
=1

Hence

m*(l) > Z(b" —a,) —¢€

n=1
- Zl(an— e,b,,)—ze
2n
n=1
= Y -2e
n=1
N

\%
M
=
S

Since € is arbitrary, then we have
m"(I) > (b—a) (8.6)

From (8.4) and (8.6), we have
m" () = I 8.7)
Case 2: Suppose that I = (a, b].
If a =0b, then I =0 and hence by theorem (8.1), we have

m ) = m"0)=0=IU1)

So, we may assume that a < b. Let 0<e<b—a.

Put I’ =[a +€,b]. Then,

rci = wm{’)<m'(I) (bytheorem (8.1))
= I(I'Y < m"(I) (by using case(l))
ie, b—a-e¢ < m'()
ie, m'(I) = II)—e¢ (8.8)

Let I” =[a,b+¢€), then ICI"”.
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= m*(l)

IA

II'"Y=b+e—a
ie, m(I) < lD+e 8.9)

Since (8.8) and (8.9) are true for same €.

m*(I) = I

Similarly, the cases I = [a,b) and I = (a,b) are considered.

Case 3: Suppose that [ is an infinite interval. Four types of intervals occur, say

(—OO,(,Z], (_OO’ a)’ [av 00), (a, OO), Where a iS ﬁnite.

First, let us prove the theorem for the case I = (—oo,a], then the other cases are

considered in a similar way.
Let M > 0 be arbitrary, then we can find a k such that the finite interval

Iy = [k, k + M] is contained in 1.

ie, |kk+M] C I
= m'y) < m*d)
ie, m{I) > M for every M > 0
= m'(I) = oo=UI)
This completes the proof of the theorem. [ |

Theorem 8.3. For any sequence of sets {E;}, m" (U E,-] < Z m*(E;)
i-1 i-1

Proof. If one the sets E; has an infinite measure. i.e.,m*(E;) = co for some i, then

Z m*(E;) = co and hence
i1

m* (O E,-] =00 = im*(EI)

i=1 i=1

Suppose each m*(E;) is finite. i.e.,m"(E;) < co for each i.

Let € > 0 be given. For each i, 3 asequence of intervals {/;;,j = 1,2,...} such
that

[e%) . (o) E
E C U I, and m'(E)> Z L)~ 5
j=1

J=1

Then,

E; C UOI[J

i j=1

(o)
i=1

oo
=1

that is, the collection [/; ;] form a countable class of covering for U E;. So
i=1
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Since € is arbitrary and hence we have

m* [

Hence the proof.

IA

IN

IA

1
m*(E;) + € o

(e8]

Z m*(E;) + €
i=1

(e8]

Z m*(E;) + €

i=1

[eS)

< Z m*(E;)

L

Example 8.2. Show that, for any set A and any € > 0, there is an open set E containing

A and such that m*(E) < m*(A) + €.

Solution: Given € > 0, we can find a collection of intervals [7,] such

that

AC Oln
n=1

and 3’1, - g < m*(A)

6 [e9) ,
If 7, = [anby), let I = (a,, _ W,b,,), so that A c | 1,
n=1

Take E = UI,’,, then E

n=1

m*(E)

IN

IN

is an open set and

[eS)

) €
§ l(In) = E (bn —ap t+ 2,“_1)
n=1

Zl (bn - an) Zl +2T€+1
DU+ 5

[m*(A) + %] + g =m'(A) +e

Hence, for a given set A and € > 0, there is an open set E containing A

and m*(E) < m*(A) + €.

Example 8.3. suppose that in the definition of outer measure,
m*(E) =inf{}} I(I,) : E C I,} forsets E C R, we stipulate (i) I,, = (an, by),
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@) I, = [a,, by), (i) I, = (a,,b,] (iv) I, = [a,,b,] (or) (v) mixtures are allowed for

different values of n. Show that the same m* is obtained.

Solution: If we consider the intervals in case (i) we obtain m* of
definition (8.1). We denote the corresponding m* by m in case (i), m,
in case (iii), m: in case (iv) and m}, in case (v).

Now, we must prove that

m*(E) = m,(E) = m,,.(E) = m.(E) = m,,(E)

We establish that each equals m;,(E). For this, we consider m}, the proof

1s similar for other cases.
Note that the set {[Z,] : I, 1isany type of interval} contains the set

{[1,] : I, 1S open}.

Hence, mE) < mi(E) (8.10)

To prove the converse, let € > 0 be given and for each 7, and let I, be

an open interval containing 7, with

) = 1+l

Suppose that the collection [Z,] is such that E c (JI, and
my,(E)+e> > I1). Then

n=1
= I
I7lm* (E) € > E ( n)

But E c U I, aunion of open intervals. So

! myE) < Y II)

n=1

< (1+e)[myE)+e€]

(1 + em’(E) + (1 + e)e

Since, e is arbitrary, we get the opposite inequality

my(E) < my,(E) (8.11)

Thus, we get m;,(E) = m}(E).
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8.2. Measurable Sets

Definition 8.2. A set E is said to be Lebesgue measure or simply measurable if for each
set A we have
m(A) = m"(ANE)+m"(ANE" (8.12)

where E° is the complement of E.

Note 8.2. For any set A, we have
(ANEYU(ANE

AN (EUES)
ANR=A

Since m* is subadditive
= m'(A) m* [(ANE)U(ANE"]

m* (AN E)+m*(ANE®)

IA

Hence, to prove a set E is measurable, it is enough to show that
m*(A) = m'(ANE)+m" (AN E) forevery A (8.13)

Example 8.4. If m*(E) = 0, then show that E is measurable.

Solution: For any set A, we have ANECE.
ANE C E

= m'(ANE) < m'(E) (using theorem (8.1))

= m'ANE) = 0 (if m*(E)=0)

Also ANE® c A
= m'ANEY < m'(A)
= m'A) = mANE)+O0
= m'A) = mANE)Y+m (ANE)

Hence, E is measurable.

Definition 8.3. A collection S of subset of an arbitrary set X is said to be a o -algebra

ora o -field if S has the following properties:

(i) XeS.

(i) If A€ S, then A° € S where A° is the complement of A relative to X.

(iii) If A = UA,,, andif A, € S foreach n, then A € S.
n=1
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If (iii) is required for finite unions, then S is called an algebra of sets.

Notation: We will write M for the collection of all measurable subsets
of R.

Note 8.3.

1. Let 7 bea o -algebra on a set. The 7 is closed for countable intersection.

For if, let {A;};2; be any countable collection of sets in .

Forevery i, A;jet = A{et (. closed with respect to complement)

= U A{ e T (' closed with respect to countable union)
i=1

2. We also note that empty set 0 belong to a o -algebra.

Theorem 8.4. The class M is a o -algebra.
Proof.
(i) First we show that R € I.

For any set A,

ANO=10
m*(@) =0 (using theorem (8.1))

ANRKR
= m"(ANKR")
Also, ANRCA = m"(ANR) <m"(A)

Hence adding, we get
m*(A) = m"(ANR)+m"(ANR) foreveryset A

= R ismeasurable i.e., ReI

(i) Let R € M. By definition E is measurable if
m*(A) = m"(ANE)+m (AN E®) forevery set A (8.14)

The symmetry in the relation (8.14) between E and E¢ implies E° is

measurable. i.e., E° €.

(e8]

(iii) Let {E;} be a countable collection of measurable sets and let E = U E;.
j=1

Now, our wish is to prove that E is measurable.

Let A be any arbitrary set.
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8.2. MEASURABLE SETS 113

Since E; is measurable, then by definition we have

m'(A) = m'(ANE)+m (ANEY)) (8.15)

Sine E, is measurable with E replaced by E; and A by AN EY in (8.15), we get

m(ANE) = mANENE)+m(ANE]NE)) (8.16)

Substitute (8.16) in (8.15), we get

m'(A) = mANE)+m" (ANE,NE))+m (AN E{NEYS) 8.17)

Similarly, we have

m'(A) = m"(ANE)+m"(ANE;NE)+m" (AN E; N E] N EY)
+m*(ANE{NE5NEY) (8.18)

Continuing the process in this way, for n > 2

n n
m4) = m'ANE)+ Z m*|ANE; N ﬂ ES|+m [A n [ﬂ E;]]
i=2 J<i J=1
n ¢
- m*(AﬂEl)+Zm* AOE[O[UE]-] J
i=2 j<i

Since E° = (U;il Ej)c c (U;Ll Ej)c for every n. Hence by theorem (8.1), we have

s

J<i

m'A) > mANEp)+ Z m [A NEN +m (AN EY)

i=2

The inequality being true for n > 2, it follows that

n
miA) > m*(AﬂE1)+Zm* [AmE,-m +m (AN E°)

i=2

s

Jj<i

Using the fact that

E

UE,:Elu(Esz;)u(Em(EluEz)")u...

E,-m[UEj C]

J<i
B,,] = U(A N B,), we get

n=1

i=1

(@

and that AN [

11
—_

n
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m* (AN E;) + Z m {A NEN [U Ej] ] +m* (AN E°)

=2 j<i
m*[U AmE,-m[UEj
i=1
= m [A N

m*(A)

[\

C

[\

] +m*(AN E°)

Jj<i

QE,-m[UE,-

j<i

] +m*(ANE°)

m*(A)

[\

m* (ANE)+m" (AN E) (8.19)

The opposite inequality always being true. we have equality in (8.19) and hence

E = UE,- is measurable.
i=1

Thus M is o -algebra. Hence the proof. [ ]

Note 8.4. If A,B € M, then A - B € M.

Proof. We know that A— B=AN B°.

Now BeM = B°eM
AB'eM = ANB'eM
ie, A—BeM [

Example 8.5. Show that if F € M and m*(FAG) = 0, then G is measurable.

Solution:Suppose F €M and let m*(FAG) = 0.

Hence, by example (8.4), we have
m*(FAG) = 0 = FaG is measurable

Since, F -G C FAG, we get m*(F = G) < m*(FAG) = 0.
Hence, m*(F - G) =0 implies F — G is measurable.
Similarly, we can prove that G — F is also measurable.

We know that FNG = F - (F-G), where both F and F - G are

measurable.
Thus, FnG is measurable.

Now,G = (FNG)U (G - F) where FNG and G - F are measurable and

hence G is measurable.
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Theorem 8.5. If {E;} is any sequence of disjoint measurable sets, then

m" mE,- = mm*(E,-) (8.20)
Ve) - 2

i=1 i-1
that is, m* is countably additive on disjoint sets of IN.

Proof. Since outer measure is subadditive

m" [U E,-] < Z m*(E;)
i=1 i=1
and hence it is enough to prove the theorem, it is sufficient to show that

m*[OE,-] > im*(Ei)

i=1 i=1

LetA=UE,<, since E;NE; =0 for i#jand ANE; =E; and ANE; = E; for
i=1
all 7.

¢ )

=UE,hLL”

i=k+1

Also, AN

k
Lz
i-1

Using the fact that each E; is measurable and thus we have

m*(A) m*(ANE)) +m"(AN EY})
= m'(E) +m'(ANESNEy) +m' (AN ES N ES)

= m"(E))+m"(Ey) + m" (AN E] N ES)

= ém*(Ei) +m' AN ﬂ E]]
i=1 i=1

= i m*(E) +m"|AN O Et]c]
i=1 i=1

> i m*(E;) +m*|AN O Et]n]
i=1 i=1

= Zn: m(E)+m* (AnA")
i=1

- iwmnﬁw

n

= D m(E)

i=1

Since this holds for all n, letting n — oo, we have

mA) = Y m(E)

i=1
(o)
i.e., m [UE,

i=1

[eS)

D, m(E)

i=1

v
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Hence the proof. |
Note 8.5. Put E,,; = E,.o = ... = 0 in (8.20), we get the same results for finite unions
as a special case. So, if Ey, E,,..., E, are disjoint measurable sets, then

m*[OE,-] = im*(Ei)

i=1

If E is a measurable set we write m(E) in place of m*(E) and m(E) is called the
Lebesgue measure of E. Thus, if E € M then m(E) = m*(E). Since the Lebesgue
measure m is defined for each E € 9, m is a set function defined on the o -algebra M.

Theorem (8.5) states that m is countably additive set function.

Theorem 8.6. Every interval is measurable.

Proof. First, let us we consider the interval of the form I = [a, o). Now, our aim is to

prove that the interval I is measurable.

Hence, we have to prove that for any set A,
m*(A) > m'(AN[a, o)) +m*(AN[a,c0))

ie., m(A) > m'(AN[a,))+m*(AN(-o,al)

Let € > 0 be given. Then there exists intervals I, such that

A C Uz,, (8:21)
n=1
and m*(A) +€e > ZI(I,Z) (8.22)
n=1
From (8.21), we have
An[a,o) ¢ [Uln]m[a,oo)
n=1
= Anlao) < | JU,nla )
n=1
Similarly, we have A N (-c0,a] C U(I,,ﬂ(—oo,a])
n=1
Let [, N(—c0,a) = I,
and I,N[a,0) = I/ sothat
AN(=c0,a) CUp T,
! (8.23)

and ANfa,00) < I

Note that I}, and I are disjoint and
LI

(Iy N (=0, a)) U (I, N [a, o))
= In N [(—00, a) U [a’ OO)]
= I,N(-c0,0)=1,

KL+ 1) = I
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0

>

n=1

Thus, from (8.23), we have m*(A O (=0, a)

IN

oS

and m*(AN[a, o)) < Zl(l,’l’)

n=1

Adding the above two inequalities, we get

(e8] [eS)

m (AN (—c0,a)) +m (AN [a,0)) < Z () + Z i1y

n=1 n=1
(e8]

Z I,

n=1

m*(A) + e (using (8.22))

A

This is true for every € > 0 and hence we have
m' (AN (=o0,a)) +m (AN [a, o) < m'(A)

This shows that the interval [a, o) is measurable.
Now theorem (8.4), gives the result for other types of intervals. [ |

Theorem 8.7. Let &7 be a class of subsets of a space X. Then there exists a smallest
o -algebra & containing <. In this case, we say that . is the o -algebra generated
by <.

Proof. Let {.#,} be any collection of o -algebras of subsets of X. Then by definition,
we get ﬂ o is a o -algebra.
a

For if,
(i) Xe &, forevery«a
= Xe ﬂ S

(ii) Al,Ag,...EHYQ
Q
= Al,Az,...eya Ya
= UAney; Va

n=1
= UA,, € ﬂ S
n=1 a
(i) A e ﬂ T
= Aae S Ya

= A€ Y, VYa
= A"eﬂya.
a

Consider the family of all o -algebras containing .2/. This family is non-empty as
the class of all subsets of X belong to this family. Let .’ be the intersection of all these
o -algebras. Then clearly .¥ is a o -algebra containing ./ and in fact it is the smallest

such o -algebra. Hence the proof. ]
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Definition 8.4. The Borel o -algebra # is defined to be the smallest o -algebra of
interval of the form [a, b). In other words, & is the o -algebra generated by the class of

intervals of the form [a, b). The elements of % are called the Borel sets.
Definition 8.5. A countable union of closed sets is called an F, set.
Definition 8.6. A countable intersection of open sets is called Gy set.

Theorem 8.8.

(i) B CIM, that is every Borel set is measurable.

(ii) B is the o -algebra generated by each of the following classes: the open

intervals, the open sets, the G -sets, the F, sets.

Proof. (i) By theorem (8.6), every interval is measurable and also by theorem (8.4),
the class of measurable sets I is a o -algebra. Hence %, the smallest o -algebra of
intervals of the form [a, b) c M. Thus, every Borel set is measurable.

(ii) Let %, be the o -algebra generated by the open intervals. Every open interval
(a,b) is a Borel set, since (a, b) is union of sequence of intervals [a + %, b) s
n=1,2,3... So % C %B. Butevery interval [a,b) is the intersection of sequence of

1
open intervals (a— pe b), n=12,.... So B C P . Thus B = %.

A set is open if and only if it is union of a sequence of open intervals. Hence the
o -algebra generated by the open sets is equal to o -algebra generated by the open

intervals and hence it is equal to Z.

By definition, a Gs set is formed from open sets using countable intersection and a
F, set is formed from complements of open sets using countable union. Hence £ is

equals to both the o -algebra generated by G sets and by F, sets. [ ]
Example 8.6. For any set A there exists a measurable set E containing A such that
m*(A) = m(E).
. . 1 .
Solution: Given a set A and every e = —,n = 1,2,... there exists open
n

) 1
sets G, such that A c G, and m*(G,) < m*(A) + —.
n

Let E = ﬂG,,. Clearly E is a Gs set and it is measurable. Hence

n=1

1
m(E) < m*(G,) <m"(A)+ - forevery n
n

Thus, m(E) < m*(A)

Since A c G, foreach n, AcNG,=E. So,
m*(A) < m(E)

Thus, m*(A) = m(E).

Real Analysis M.Sc.(Mathematics)-1 Year-I Sem



8.2. MEASURABLE SETS 119

(e8]

Definition 8.7. For any sequence of sets {E;}, we define
JE

limsupE; = ﬁ UE,- :ﬁ
n=1 \izn n=1 \i=n
O [ﬂ Ei] = O [ﬁ Ei] (8.25)

n=1 \i>n n=1 \i=n

(8.24)

lim inf E;

If limsup E; = liminf E; = E (say), then E is called the limit of E, and we write
lim E,‘ =E.

Note 8.6.
1. From the definition, we can easily see that liminf E; C lim sup E;.

Proof.
Let x € IliminfE;, then by definition

- < U

n=1 \i=n

(&9

= x € ﬂE,v for some positive integer n
i=n

= x € E, E; ...

= x € OEi,OE,-,...,OE,-,...
i=1 i=2 i=n
- xe m(UE,-]

n=1 \i=n

= x € limsupk;

Thus,we get liminf E;

N

limsup E;

2. limsup E; is the set of points belonging to infinitely many of the sets E;.

Proof.
Let x € limsupE; then by definition

[oe] (e8]
SERNE
i=n

n=1

o x € UE,- forn=1,2,3,...
i=n

© x € E; forsome i>n, n=1,2,...

& x € infinitely many of the sets E;

3. liminf E; is the set of points belonging to all but finitely many of the sets E;.

Proof.
Let x € liminfE; then by definition

- << P

n=1 \i=n

[e8)
& x € mE,- for some positive integer N
i=N
& x € Epn,Eni... forsome positive integer N

& x € belongs to all but finitely many of the sets E;
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Theorem 8.9. Let E; be a sequence of measurable sets. Then

(i) if E; CEy, C..., we have m(lim E;) = limm(E;).

(ii) if E1 2 E» 2 ... and m(E;) < oo, then we have m(lim E;) = lim m(E;).
Proof.

(i) Suppose E; CE, CE;...

Put Fi=E;, F;=E;—E; | for i=1,2,3,...

Then the sets Fi,F,,... are measurable and are disjoints and UFi is
i=1
measurable and

m(o F,-] = im(F,-)

i=1 i=1

Since E; CE>, CE;...

OFi = E1UO(E,'—E5—1)=OE1‘
-1 i=2 i=1

and limE; = U E;. Hence,
n=1
U E,‘ =m [ F,]
i=1 i=1
(e8] n
= Y, m(F) = lim Z; m(F))
=

i=1

n
= limm [U F;
n—oo
-1
= ,}HE, m(EyU(E; —E)U(E3-Ex)U...U(E, - E;_1))

m(lim E;) m

= limm(E,)
n—oo

(i) Suppose E;1 2 E» 2 E3 2 ... Then
Ei.-Ei1CE\-E,CE{—-E3C...

Hence by (i), we have
m(lmE, —E;) = limm(E,—-E)) (8.26)

Since E; C E1, E; are measurable and E; — E; = E1 N EY, we have
m(Ey) = m(EiNE)+m(E;NE))

m(E;) + m(E, — E)

Hence, m(E, — E;) m(Eq1) — m(E;)

Thus, (8.26) implies
m(im(E, — E;)) = m(Ey)—limm(E;)
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But, )
lim(E, - E) = | JEi - E)
i=1
= E-(E
i=1
= El —lim E,‘
Thus,
m(lim(E, — E;)) = m(E;—1lmE))

m(E1) — m(lim E;)

From (8.26) and (8.27) and m(E{) < oo, we have
m(limE;) = limm(E;)

(8.27)

Let Us Sum Up:

In this unit, the students acquired knowledge to

e lebesgue outer measure and o -algebra.

e measurable sets.

Check Your Progress:

1. Show that every countable set has measure zero.

2. Show that every non-empty open set has positive measure.

3. Show that there exists uncountable sets of zero measure.

| Choose the correct or more suitable answer:

1. If m*(4)=0, then ...... for any set B.

(a) m*(AnB)=m*(B)
(b) m*(AU B) = m*(B)
(c) m(B)=0

(d) none of these
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| Answer:

(1) b

| Glossaries:

Measure: A measure is a function that assigns a number to certain

subsets of a given set. Their number is said to be measuring of the set.

Suggested Readings:

1. G. de Barra, “Measure Theory and Integration”, New Age
International Pvt. Ltd, Second Edition, 2013.

2. Rana I. K., “An Introduction to Measure and Integration”, Narosa
Publishing House Pvt. Ltd., Second Edition, 2007.

3. Royden H. L., “Real Analysis”, Prentice Hall of India Pvt. Ltd.,
Third Edition, 1995.
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UNIT-9

REGULARITY

Structure
Objective
Overview
9.1 Regularity
9.2  Measurable Functions
Let us Sum Up
Check Your Progress

Answers to Check Your Progress

Suggested Readings

Objectives
After completion of this unit, students will be able to
* define measurable function.

* classify measurable sets and Borel sets.
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' Overview

In this unit, we will illustrate the classification between
measurable sets and Borel sets.

9.1. Regularity:

Theorem 9.1. The following statements regarding the set E are equivalent:

(i) E is measurable.

(ii) Ye>0,3 G, anopenset, EC G suchthat m* (G — E) <e€.
(iii) 3 a Gs-set, EC G suchthat m*(G—-E)=0
@) VY €>0,3 F, aclosed set, F C E such that m*(E — F) < €.

@@i)* 3AF, an F,-set, F C E suchthat m*(E —F) =0.

Proof.
(i) = (ii) : Let E be a Lebesgue measurable and € > O be given.

Suppose that m*(E) = m(E) < co. Then by definition, we can find intervals I, I, ...
(e8] 6 (o)
such that E C U I, and m(E) + 3 > Z m(l,).
n=1 n=1
For every n, choose open intervals J, 2 I,, such that

mdy) < 2;1 +m(Ly) ©.1)

Let G = U Ju. Then G is an open set with E C G and m(G) < co. Also,

n=1

m(G-E) = m(G-E)=m(G)— m(E)

< Z m(J,) — m(E)
n=1

< > [2n_€+1 + m(I,,)] —m(E) (using (9.1))
n=1

= :+1 + Z m(l,) —m(E)
n=1 2 n=1
€ €

< 5 + 5 =€

Hence (ii) proved in the case m(E) < oo.

Assume that m(E) = m*(E) = co. Then, by definition we can find finite intervals I,

suchthat I, NI, =0 for n #m and E = UI”' ie., lI,) < .

n=1
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If E, = EN I, then we have m(E,) < co. Hence by the previous considered for
m*(E) =m(E) < co, 3 anopenset G, suchthat E, € G, and
‘ €
m (G, —E,) < i, n=12,3,...

Put G = U G,. Clearly, G is an open set, E C G and
n=1 o

G-£ = | JG-|JE = JG.-E
n=1 n=1 n=1
= mG-E < Y mG-E)sy ~=¢
n=1 n=1 2

Thus (i7) proved for m*(E) = co.

(i) = (iii) For each n, choose an open set G,, E € G, such that m*(G, — E) < o

Take G = ﬁ G,. Clearly G isa Gs-set, EC G and m* (G- E) <m*(G, —E) < %
for every n. !

Hence m*(G — E) = 0.

(iiiy = (i) Given that 3 a Gs -set with E C G with m"(G —E) = 0.

Now, we have £E = G — (G — E) and m"(G — E) = 0. Hence, G — E is measurable

and also we know that every Gy is measurable. Thus G is measurable.
Hence E = G — (G — E) is measurable.
(i) = (ii)" Suppose E is measurable, then E¢ is measurable.

Hence, by (i), 3 anopenset G suchthat E° C G and m"(G — E°) < e.
G-E° = GNE=ENG=E-G°

Now, Gisopen = G isclosed
= Fisclosed (Take G°=F)

Thus, , X
m(E-F) = m"(E-G)=m"(G-E)<e

(if)* = (iii)" For each n, choose closed sets F, suchthat F,, C E and m*(E—F,) < —.
n

~ 1
Put F = UF,,. Then F isa F,-set, F C E and m"(E — F,) < — for every n.
n

n=1

Hence m*(E — F) = 0.

(iii)" = (i) Given there exists an F, -set, F C E such that m*(E — F) = 0.
Since m*(E — F) = 0 which implies, E — F is measurable.

Also, we know that every F -set is measurable and hence F is measurable.

Hence, E = F U (E — F), which is measurable. [ ]
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Theorem 9.2. If m*(E) < co, then E is measurable if and only if, ¥ € > 0, 3 disjoint

n

finite intervals I1,1,...,1I, such that m* [EA Uli] < €. We may stipulate that the
i=1

intervals I; be open, closed or half-open.

Proof. Assume that E is measurable, by theorem (9.1) for every € > 0 there exists an
open set G, G C E such that m(G — E) < €. Also, m*(E) = m(E) < co which implies
m(G) < oo.

Every open set is union of disjoint open intervals, so we can write open set G as
[e8)

G = U I;, where I} s are disjoint open intervals and hence we have
i=1

m(G) m (O I,-] = i m(l;) = i Ur)
i=1 i=1 i=1

0

ie., Zl(l,-) = m(G) < o

i=1
Thus, there exist an integer n such that Z I(I)) < e.
i=n+1

n
Put U = UIi. Then
i=1

EAU = (E-U)UWU-E)c(G-U)U(G-E)
Hence,
m(EaU) < m"(G-U)+m"(G-E)
= m[ U I,-] +€
i=n+1
= D l)+e
i=n+1

< €e+e=2e

If we wish the intervals to be say, half-open, we first obtain open intervals I, I, ..., I,

as above and then for each i choose a half-open interval J; C I; such that m(l; - J;) < E.
n

Then the intervals J; are disjoint and we have
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m|EA

1=

IA

Thus, the intervals I;

Converse part:
I, I,...,I, such that

€E+m (O(LAL]
i=1

€+ m(LnJ(L‘ - J,']
i=1

€+ Z m(I; = J)
i=1

n
€
e+§ -
- "

€+e=2¢€

be open, closed or half-open.

Assume that for every € > 0 there exists disjoint intervals

n
m* [EA U I,-] <e€
=1

n
Put J = Uli, then
i=1

m*(EAJ) < e.

By example (8.2), there exist an open set G, E € G such that

m(G) < m'(E)+e

9.2)

In order to prove E is measurable, it is sufficient to prove that m*(G — E) can be

arbitrarily small. Let U = G N J, we have

GAE

By subadditivity, we have

= (GaU)U(UAE)

m (GAE) < m"(GAU)+m"(UAE) 9.3)
Since, U C J, wehave U — E CJ— E and also E C G, we have
E-U=E-(GnJ)y=E—-J.
Hence,
UANE = (U-E)U(E-U)
c (J-E)UE-J)
= JAE
Given that m*(UAE) <€, But, E C U U(UAE), so m"(E) < m*(U) + €.
Hence,
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m(GAU) = m(G-U)
= m(G)-m(U)
< m"(E)+e-m(U)

< mU)y+e+e—m(U)=2¢

Thus, from (9.3), we have

m(G—-E) = m"(GAE)
< m*(GAU) + m*(UAE)
< 2e+€=3¢
Thus, E is measurable. Hence the proof. [ ]

9.2. Measurable Functions:

Definition 9.1. Let f be an extended real-valued function defined on a measurable set
E. Then f is a Lebesgue measurable function or simply, a measurable function if, for

each @ € R, the set [x: f(x) > @] is measurable.

Note 9.1. The domain of definition of f will usually be either R or R — F, where
m(F) = 0.

Note 9.2. The definition of measurable function states that f is a measurable function
if for every real number «, the inverse image (@,o0) under f i.e., f‘l(a, o0) is a

measurable set.

Theorem 9.3. The following statements are equivalent:
(i) f is a measurable function.

(ii) [x: f(x) = a] is measurable for all «.
(iii) [x: f(x) < ] is measurable for all «

(iv) [x: f(x) < a] is measurable for all a.
Proof.
(i) = (ii) : Assume that f is measurable.

1
Then for each of the sets [x; f(x)>a- ;} n=12,..).

[eS)

1
Thus, ﬂ [x tfx)>a - —} is also measurable.
n

n=1

But,
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Il
~
R
g

[x: f(x) =]

n=1

1
= ﬂ [x () > a - ;} ,  which is measurable.

n=1

Thus, [x: f(x) > @] is measurable.
(i) = (iii) Suppose [x : f(x) > a] is measurable.

We know that if E is measurable then E° is measurable and hence it follows that
[x: f(x) > a]° is measurable. i.e., [x: f(x) < «] is measurable. This proves (iii).

(iii) = (iv) : Suppose [x: f(x) < a] is measurable.

1
Then for each of the sets [x Cf)<a+ p n=12,..).

0

Thus, ﬂ[x D fx) < a/+%

n=1

is also measurable.

But,

! (—o0,a]

iy
]

= [x f(x)<a+1

[x: f(x) <a]

||:::)8

n

2

,  which is measurable.

S
1l
—_

Thus, [x: f(x) < @] is measurable.
(iv) = (i) : Suppose [x: f(x) < @] is measurable.

Then, it complement is [x: f(x) > a]. Hence, by the definition of measurable

function, f is measurable. Hence the proof. [ |
Example 9.1. Show that if f is measurable, then [x: f(x) = a] is measurable for any
extended real number «.

Solution: Assume that « is finite, then we have

[x:f)=a] = [x:fx)=a]Nn[x: f(x)<a]

By theorem (9.3), [x: f(x) > ] and [x: f(x) < @] are measurable.

We know that, intersection of two measurable is measurable and hence

it follows that [x: f(x) > a] N [x: f(x) < @] is measurable.
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Thus, [x: f(x) = «] is measurable.

If a@ = 0, then

[eS]

1
[e:f)=co] = ﬂ[x.f<x>>;

n=1

Since, a countable intersection of measurable set is measurable and
hence [x: f(x) = o] is measurable.
Similarly, we can prove for the case a = —co.
Example 9.2. The constant functions are measurable.
Solution: Given that f(x)=c for all x. Then the set
R ifa<c

[X:f(X)>a]={

0 ifaxc

Thus, the set [x: f(x) > «] is measurable for all « and hence the constant

function is measurable.

Example 9.3. The characteristic function y of the set A, is measurable if and only if

A is measurable.

Solution:The set
0 ifax>1
[x: f(x)>a]=4 A ifOo<a<l
R ifa<o0

So, [x;xa(x) > @ is measurable for all « if and only if A is measurable.
Thus y, is measurable if and only if A is measurable.

Example 9.4. Continuous functions are measurable.

Solution: Assume that f is continuous. For every o € R, the interval

(@, o) 1S an open set.

We know that an inverse image of an open set is open under a continuous
mapping. That is f~'(e, «) is open.

Further, every open set is measurable and hence f (e, ) = [x: f(x) > @]
is measurable.

Thus, f is a measurable function.

Theorem 9.4. Let ¢ be any real number and let f and g be real-valued measurable
functions defined on the same measurable set E. Then f+c, cf, f+g, f—g and fg

are also measurable.
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Proof. For any a € R. Consider the set

[x: f)+c>a] = [x:f(x)>a—c]

Since, f is the measurable function on the right hand side and thus, it follows that the

set on the left hand side is also measurable. Thus, ¢ + f is measurable.

For any « € R, then we have

x:f(x)>g] forc >0
c

[x:cf(x)>a] =

x:f(x)<g] forc <0
c

E or 0 for c=0

In any cases, the set [x : cf(x) > @] is measurable. Thus, the function c¢f is measurable.

Now, our wish is to prove that f + g is measurable. In order to prove this, we shall
apply some simple idea. i.e., Two real numbers a and b satisfy a > b if and only if
there is some rational number r with a > r > b. Suppose r1, 1, ... is a countable set of

rational numbers.

Then x € [x: f(x) + g(x) > @] only if there exists a rational number 7; such that

f > ri>a—gx

So, for every @ € R, we have

oS

[x: f+e@>al < [ Jx: f@>rlnlx:r>e-gwl)

n=1
(o]

U ([x: f)>rm]Nn[x:gx)>a—r))

n=1

Since f and g are measurable and hence the sets [x: f(x)>r,] and
[x: g(x) > @ — r,| are measurable for each n. So, [x: f(x) + g(x) > @] is measurable.

Hence f + g is a measurable function.

If g is a measurable function and if ¢ € R, then cg is also a measurable function. In
particular, taking ¢ = —1, then —g is a measurable function. So, f—g = f+(-g) is

also a measurable function.

Finally, we have to prove that the function fg is measurable. For this, first we shall

prove that f2 is measurable, if f is measurable.
If @ <0, then the set [x D) > a/] = R is measurable.

If @ >0, then
[x:fz(x)>04] = [x:f(x)> ﬁ]u[x:f(x)< \/c_x]

Since f is measurable and hence each of the sets on the right hand side is
measurable. Thus [x () > a] is measurable for every @ € R, which shows that

f? is a measurable function whenever f is a measurable function.
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If f and g are measurable functions, then f + g is a measurable function and also

(f + g)* is a measurable function. Similarly, (f — g)? is also a measurable function.

Now,

fs = lo+er--97

Hence, fg is a measurable function, since the right hand side is a difference of two

measurable functions. u

Theorem 9.5. Let {f,} be a sequence of measurable functions defined on the same

measurable set. Then
(i) sup f; is measurable for each n.
1<i<n

(ii) 1inf f; is measurable for each n.
<i<n

(iii) sup f, is measurable.
(iv) inf f,, is measurable.
(v) limsup f,, is measurable.

(vi) liminf f, is measurable.

Proof.

(@) For any n, we have

| JIx: f) > o]
n=1

a countable union of measurable sets

[x: sup f(x) > a

1<i<n

a measurable set

Hence, sup f; is measurable for each n.
1<i<n

(if) We know that
inf fi = —sup(-f)

1<i<n 1<i<n

Thus, from (i), we can easily see that 1inf fi is measurable for each n.
<i<n

(iii) For any @« € R and any x, supf,(x) > « means that f,(x) > «a for

n=1,2,3,... and hence

[x : sup fu(x) > ] U[x D fu(x) > a]
n=1

= acountable union of measurable sets

= ameasurable set

Thus, sup f, is measurable.
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(iv) We know that

inf f, = —sup(—fu)

Hence, inf f,, is measurable, by using (iif).

(v) We know that

limsup f, = inf (sup ﬁ)

i>n

Put F; = sup f; which is measurable, by using (iii).

i>n

Now, by applying (iv), we have limsup f,, = inf F,, is measurable.
(vi) Since liminf f;, = —lim sup(—f;).

Hence by applying (v), we have liminf f, is measurable. Hence the proof. [ |

Definition 9.2. Let f be an extended real valued function defined on a Borel set. We say
that f is Borel measurable or a Borel function if for each a € R the set [x: f(x) > ]
is a Borel set.

Definition 9.3. A property is said to hold almost every where (a.e) if it holds everywhere
except for a set of measure zero.

Theorem 9.6. Ler f be a measurable function and let f = g a.e. Then g is measurable.

Proof. Suppose f is measurable and f = g a.e. Now, our wish is to prove that g is

measurable.
Since f is measurable and by definition [x : f(x) > a] is measurable.
Since f = g a.e which implies m[x : f(x) # g(x)] = 0.
Now,

[x: f(x)>a]alx: g(x) > ]

([x 2 f(x) > @] =[x : g(x) > a])
U(lx:g(x) >al=[x: f(x)>al)
[x: f(x) # g(x)]

0

N

= m([x: f(x)>a]alx: g(x) > al)

By example (8.4), we have [x: f(x) > @]A[x : g(x) > @] is measurable.
Since f is measurable and by example (8.5), we have g is measurable. [ |
Example 9.5. Let {f;} be a sequence of measurable functions converging a.e. to f, then

f is measurable.

Solution: Suppose {f} be a sequence of measurable functions
converging a.e to f.

By theorem (9.5), we have limsup f; is measurable.

M.Sc.{(Mathematics)-I Year-I Sem Real Analysis



134 9.2. MEASURABLE FUNCTIONS:

Since, f = limsup f; a.e., then by theorem (9.6), f is measurable.

Example 9.6. If f is a measurable function, then so are f* = max(f,0) and

f~ = min(f, 0).

Solution:For any »,

If £, 5. 5...., f, are sequence of measurable functions, then by theorem

(9.5) both lim sup f; and lim 1i<nf f; are measurable.
<is<n

1<i<n

Put i, =f and £, =0. Then f; and f, are measurable.

Thus,

ft max(f,0) = max(fi, f») which is measurable

P

min(f,0) = min(f;, o) which is measurable

Example 9.7. The set of points on which a sequence of measurable functions {f}

converges, is measurable.

Solution: Suppose the set of points on which a sequence of measurable

functions {f,} converges.

Thus, the sequence {f,(x)} is converges for a fixed x if and only if

limsup f,(x) = liminf f,(x)

Now, our wish is to prove that [x : limsup f,(x) — liminf f,(x)] = 0 is

measurable.

Since each f, is measurable, then by theorem (9.5), both limsup f, and

liminf f, are measurable.
Thus, limsup f, —liminf f, is measurable.

‘We know that constant functions are measurable, thus the set

[x : limsup f, — liminf £, = 0] is measurable.

Definition 9.4. Let f be a measurable function; then infla : f < @ a.e] is called the

essential supremum of f, denoted by ess sup f.

Example 9.8. Show that f <esssup f, a.e.

Solution:
If esssup f = oo, then clearly f < esssupf and the result is obvious.

Suppose eessup f = —. Then by definition (9.4), f < na.e forall ne Z

Thus f = - a.e. and hence the relation f < esssup f holds.
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Suppose esssup f is finite.

Put
E n

1
x: f(x)>esssupf+ —
n

and E [x: f(x) > esssup f]

Then, E = O E,. But, by definition of esssup f, for every n=1,2,... there
n=1
exists a, such that esssup f + % >a, and f < a, a..
Hence esssup f + % > f a.e. and hence m(E,) =0 for all ».
Thus, m(E)=0. So, f <esssupf.

Example 9.9. Show that for any measurable functions f and g

esssup(f+8) < esssupf+esssupg

and give an example of strict inequality.

Solution:

From example (9.8), we have
f

and g < esssupgae

IA

esssup f a.e

= f+g < esssupf+supg ae.

Hence, by definition (9.4), we have

esssupf+g < esssupf+esssupg

Example for strict inequality: Consider f = y; 10 — xj0; and g = —f, Then
f+g=0. So, esssup(f +g)=0.

But,

esssupf =1=esssupg.

Hence,

esssup(f+g)=0<2=esssupf +esssupf

Definition 9.5. Let f be a measurable function; then supla : f(x) > @ a.e.] is called

the essential infimum of f.
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Example 9.10.

esssupf = —essinf(—f)

Solution: By definition (9.4), we have

esssupf = infla: f<a a.e]
= infla: —f>-a a.e.]
= —sup[-a:—-f>-a ae]

= —essinf(—f)

Definition 9.6. If f is a measurable function and ess sup|f|< co, then f is said to be

essentially bounded.

Example 9.11. Let f be a measurable function and B a Borel set. Then f~(B) is a

measurable set.

Solution: We have

fl[UA,-] = |Jrtap and a0 =(r'w).
i=1 i=1

So the class of sets whose inverse image under f are measurable forms
a o -algebra. Since f is measurable, the inverse image of an interval under
f 1s measurable. So this class contains intervals. Thus, it must contain all

Borel sets.

Let Us Sum Up:

In this unit, the students acquired knowledge to

e measurable functions and its properties.

e limsup and liminf, essential supremum and essential infimum.

Check Your Progress:

1. Show that for any measurable function f, esssup f <sup f.

2. Show that f <esssupf, a.e.
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| Choose the correct or more suitable answer:

1. The characteristic function y, of the set A is

(a) not measurable, if A is measurable.
(b) measurable if A is not measurable.
(c) measurable if and only if A is measurable.

(d) none of these.

| Answer:

(e

Suggested Readings:

1. G. de Barra, “Measure Theory and Integration”, New Age
International Pvt. Ltd, Second Edition, 2013.

2. Rana I. K., “An Introduction to Measure and Integration”, Narosa
Publishing House Pvt. Ltd., Second Edition, 2007.

3. Royden H. L., “Real Analysis”, Prentice Hall of India Pvt. Ltd.,
Third Edition, 1995.
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UNIT-10

ABSTRACT MEASURE SPACES

Structure

Objective

Overview
10.1  Measures and Outer Measures
10.2  Extension of a Measure
10.3 Measure Spaces

Let us Sum Up

Check Your Progress

Answers to Check Your Progress

Suggested Readings

Objectives

After completion of this unit, students will be able to
* define o -algebra and o -ring.

% understand the concept of hereditary.

* understand the concept of measure space and its properties.
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' Overview

In this unit, we will illustrate the basic concepts of o -algebra
and o -ring. Further we discuss in detail about the measure spaces and its

properties.

Measures and Outer Measures:

Definition 10.1. A class of sets % of some fixed space is called a ring if whenever
Ec% and F € # then EUF and E — F belong to Z.

Example 10.1. The class of finite union of intervals of the form [a, b) forms a ring.

Definition 10.2. A ring is called a o -ring if it is closed under the formation of countable

unions.

Example 10.2. Show that every algebra is a ring and every o -algebra is a o -ring but

that the converse is not true.

Solution: Let A be algebraon a set. Let EcA and F € A, then
= EUF € A (. finite union is closed in algebra)
Also, E€A = E° € A (- complement is closed)
= E‘UF € (- finite union is closed in algebra)

= (E°UF) €

e

ie, E-F €

Thus, A is a ring on a set.

Let A be a o-algebra on a set. Then, it is closed with respect to
countable union. Thus, A is aring and it is closed with respect to countable

union. Hence, A is a o -ring.

For proving the converse part, consider the o -ring of all subset of [0, 1]

which are at most countable.

If UA, €.#, where the A, are the sets of the o -ring ., then . may

be regarded as a o -algebra on the space | A,.

Theorem 10.1. There exists a smallest ring and a smallest o -ring contained a class of
subsets of a space; we refer to these as the generated ring and the generated o -ring

respectively.
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Proof. Let {.#,} be any collection of o -rings of subsets of X. Then by definition, we
get ﬂ Sy isa o -ring.
a

For if,
(i) Xe.7, foreverya
= Xe¢ ﬂ T
a

(11) AlaAZ’--- € mayar
= A1,A2,...€ya, Va

= UA,,EJ”,, Ya
n=1

= OA” € ﬂ%r.
n=1 a

(iii)) A €Ny S
= Ae Y, Ya
= Ae.Y, Ya
= A€y Lo

Consider the family of all o -rings containing /. This family is non-empty as the
class of all subsets of X belong to this family. Let . be the intersection of all these
o -rings. Then clearly . is a o -ring containing .« and in fact it is the smallest such

o -ring. Hence the proof. ]

Notation: We will write .#(%#) for the o -ring . generated by the ring
% ; we write (%) for the class consisting of .7 (%) together with all
subsets of the sets of .#(#). A class of sets with this property, namely
that every subsets of one of its members belongs to the class, is said to be

hereditary.

Clearly oz (#) is a o-ring and is the smallest hereditary o -ring
containing %. Indeed 4 (%) = # (S (R)) = H (K (R)).

Definition 10.3. A set function u defined on aring % is a measure if

(i) p is non-negative
(i) wp@®@ =0

(iii) for any sequence {A,} of disjoint sets of & such that U A, € #, we have

n=1

M [O An] = i H(An)
n=1

n=1

Definition 10.4. A measure u on &% is complete if whenever E € %, F C E and
U(E) =0, then F € #.
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Definition 10.5. A measure p on % is o -finite, if for every E € %, we have

E = UE,, for some sequence {E,} suchthat E, € # and u(E,) < co for each n.

n=1
Example 10.3. Show that Lebesgue measure m defined on ., the class of measurable

sets of R, is o -finite and complete.
Solution: By Theorem 5.4, we have .# is a o -algebra. But, every
o -algebra is a o -ring and hence it is ring on which m is defined.
Take E, = En(-n,n), then we have u(E,) < . Hence .# is o -finite.
Let F c E, then
u(F)

wx(F)

IA

W(E)=m(E)=0

0

Since u*(F) = 0, we have that F is a Lebesgue measurable set.
Hence every subset of Lebesgue measurable set £ with p(E) =0 is also a

Lebesgue measurable. Thus, .# is complete.

Definition 10.6. If & is aring, a set function y* defined on the class JZ (%) is an outer
measure if
(i) p* is non-negative.

(i) If A C B, then u*(A) < u*(B),
(iii) @ (@ =0
(iv) for any sequence {A,} of sets of # (%),

.U* [OAn] < i#*(An)
n=1 n=1

that is, ¢* is countably subadditive.

Example 10.4. Show thatif A,B€ % and A C B, then u(A) < u(B).

Solution: Since, B = Au (B - A), then clearly, u(B) > u(A).

Extension of a Measure:

Theorem 10.2. Let {A;} be a sequence in a ring X, then there is a sequence {B;} of

N N
disjoint sets of # such that B; C A; for each i and UA,- = U B; for each N, so that

i=1 i=1
[e9) [e4)
a=Un,
i=1 i=1
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Proof. Let us prove the result by induction.

Define
By = A
n—1
A,,—UB,- forn > 1.

i=1

B,

Since B; € # and B; C A,.
n—-1

Further, {B;} is a sequence of disjoint set and thus B,, and U B; are disjoint sets.
i=1

Hence, we have B, N B,, = 0 forn > m.

k k
Finally, if we have By = A; and | ] Bi={_J4;, then

i=1 i=1
k
By U [U Bi]

i=1

|
>
x
|
=
&
N————
C
=
™

k k
= A UUBi=AA+l UUAt

i=1 i=1

k+1 k+1
ie., U B, = UA,
i=1 i=1
Thus, we have U B; = U A;. [ ]
i=1 i=1

Example 10.5. Show that % (#) = |E : E U E,E, €%
n=1

Solution: It is easily verified that the right hand side defines a class of

sets which is hereditary, contains % andisa o -ring. So, it contains ¢ (%).

But, if E, € # for each n, we have UE,, e (%) and so each subset
n=1

belong to 7 (#). So, we get equality.

Theorem 10.3. If u is a measure on a ring % and if the set y* is defined by H (%)

by
W(E) = f

then (i) for E € &, u' (E) = w(E), (ii) u* is an outer measure on K (%).

Z,u(E,,):Ene%’,nz1,2,...,EQUE,1 (10.1)

n=1 n=1

Proof. (i) If E € &, then from equation (10.1) we have u*(E) < w(E).

Suppose that £ € # and E C U E, where E, € #.

n=1

By Theorem (10.2), we may replace the sequence {E; N E} by a sequence {F;} of
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disjoint sets in &% such that F; C E; N E and U F; = E. Then by example (10.4), we
i=1
have u(F;) < u(E;) foreach i.
So,
H(E)

0]

iu(Ff)
i=1

D u(E) = ' (E)
i=1

IA

ie., uE)

IA

' (E)

Thus, u(E) = p*(E). This proves (7).

(@) Clearly, ¢* is non-negative. Also, u*(0) = (@) = 0. Next, we have to prove that

*

M* is countably subadditive.

Suppose that {E;} is a sequence of sets in £ (#). By definition of u*, for each
€ > 0 we can find for each i a sequence {E;;} of sets of % such that E; C U7 Ei;

(o8] . €
and ) u(Eij) < pE) + 3.
j=1

The sets {E;;} form a countable class covering U E;. So

i-1
u (O Ei] i,u(Ei,j)
i=1

J=1

M

1

s
—

IA

W(E)+e
i=1

Since € is arbitrary, we have

#*(OE] < i#*(Ei)
=1

i=1
Thus, ¢ is an outer measure on £ (%). Hence the proof. [ |

Definition 10.7. Let y* be an outer measure on £ (#). Then E € H#(X) is u*
measurable if for each A € (%)

WA = W(ANE) + (AN EY) (10.2)

Theorem 10.4. Let p* be an outer measure on J (#) and let " denote the class of
W measurable sets. Then /" is a o -ring and u* is restricted to " is a complete

measure.

Proof. Suppose u* be an outermeasure of (%) and .* denote the class of
(* -measurable sets. First, we shall prove that ¢* is a measure on the o -ring ..
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As in theorem (8.4), . is closed under countable union. It remains to prove that if
E Fe.” then E-F € .¥".

Let A € (%), then A can be written as union of the four disjoint sets.

ie, A = AJUAUA3UAy
Where Ay, = A—-(EUF)
Ay, = ANENF
Ay = AN(F-E)
Ay = AN(E-F)

Since F is measurable, then equation (10.2) gives

wA) = (AL UAY + ' (A2 U Az) (10.3)

E is measurable and for any set A; U Ay4, then (10.2) gives
W (ALUAY) = [ (A +p(Ay) (10.4)

F is measurable and for any set A; U A, U A3, then (10.2) gives
H(ATUAZUA3) = p'(A)+u (A2 UA3) (10.5)

Substitute equations (10.4) and (10.5) in (10.3), we have
K (A)
ie., u*(A)

M (Ag) + (A U Ay U Aj)
HWANE-F)+u (An(E-F)f

i.e., E —F is measurable.

Suppose that {E;} is a sequence of disjoint sets in %, Then exactly as in theorem
(8.5), we have

ﬂ*[OEz] = iﬂ*(Ei)
i-1

i=1

Also, for every set E € (%) such that p*(E) = 0 is pu* measurable, for if
A € K (R),

H(A)

IN

WANE)+ (AN ES)
S H(E)+uA)=p7(A)

A

So equality holds good and E is u* -measurable.

If £E€ .9 and u*(E) =0 and F C E then it follows that F € .. Thus, u* is a

complete measure on .#’*. Hence the proof. [

Theorem 10.5. Let p* be the outer measure on ¥ (#) defined by pu on %, then S~
contains . (X), the o -ring generated by X.

Proof. Since S* is a o -ring. It is enough to prove that #Z C ..
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If EeZ, Ae (%) and € > 0 then by the definition of ¢ there exists a sequence
{E,} of sets of % suchthat A C UE,, and

n=1

KA te = ) p(E)
n=1

D HEL N E)+ Y u(Ey 0 E)
n=1 n=1

= pA+e > PANE)Y+u (ANE® (asuisameasure)

Since € is arbitrary and hence we have

LA = LANE)+u"(ANE)

Since the opposite inequality is quite obvious, thus we have
w@A) = pANE)+u (ANEY)
Thus, E € %% and hence # C .¥*. This completes the proof. ]

Example 10.6. Show that if u is a o -finite measure on &%, then the extension g of u

to " is also o -finite.

Solution: Let £ € .7~
By definition of z there is a sequence {E,} of sets of % such that

HE) < ) p(Er)
n=1

By hypothesis, each E, is the union of sequence {E,; i =1,2,...} of sets
of # such that u(E,;) < « for each » and i. So

A(E) < iiuwn,i)

n=1 i=1

Thus, E is the union of countable collection of sets of finite u-measure

and hence .7* is o -finite.

10.3. Measure Spaces:

Definition 10.8. A pair [[X,.”’]] where . is a o -algebra of subsets of a space X, is

called a measurable space. The sets of . are called measurable sets.

Definition 10.9. A triple [[X,.”,m]] is called a measure space if [[X,.7]] is a

measurable space and yu is a measure on .¥.
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Example 10.7. [[R,.#,m]] and [[R, %, m] are measurable spaces, where % denotes

the Borel sets and where in the second example m restricted to .

Theorem 10.6. Let {E;} be a sequence of measurable sets. We have

[eS]

(i) If Ey CE>C ... then “(U E,,] = lim u(E,).

n=1

(ii) If E1y 2 Ey 2 ... and u(Ep)co, then ,u[ﬂ E,,] = limu(E,).

Proof. See Theorem 8.9 [ ]

Definition 10.10. Let f be an extended real-valued function defined on X. Then f is
said to be measurable if Ya, [x: f(x) > a] € 7.

Example 10.8. Let [[X,.”]] be a measurable space and let X = U X,, where, for each

n X,€.% and X,NX,, =0 for n # m. Write .%, = BﬂXZ;ﬁ? € .¥]. Show that
f is measurable with respect to [[X,.#]] only if, for each n its restriction f, to X, is
measurable with respect to [[X},, %,]] and conversely, if for each n the functions f, are
measurable with respect to [[X,,.7,]] and f is defined by f(x) = f,(x) when x € X,
then f is measurable with respect to [[X, ]].

Solution: For each o, [x @ fu®) > a] = [x : f(x) > a] N X,. SO f,

is measurable with respect to the measurable set [[X,,.%,]]. The converse

follows from [x: f(x) > a] = U[x fulx) > al.

Theorem 10.7. The measurability of f is equivalent to
(i) Ve, [f(x)>a] €.,

(ii) VYa, [f(x)<a]le.”,

(iii) Ve, [f(x) <a]le.”.

Proof. See Theorem 9.3 u

Example 10.9.

(i) if f is measurable, then [x : f(x) = ] is measurable for each extended real

number «,
(i1) the constant functions are measurable,
(iii) the characteristic function y4 is measurable, if and only if A € .7
(iv) a continuous function of a measurable function is measurable.

Theorem 10.8. If ¢ is a real number and f,g measurable functions, then f +c, cf,

f+g.g—f and fg are also measurable.
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Proof. See Theorem 9.4 ]

Theorem 10.9. If fi(i = 1,2,...) is measurable, then sup f;, 1i<n£ fi» sup fu,
1<i<n sisn
inf f,, limsup f, and liminf f, are also measurable.

Proof. See Theorem 9.5 u

Definition 10.11. If a property holds except on a measurable set E such that u(E) = 0,
we say that it holds almost everywhere with respect to p, written a.e.(u)

Example 10.10. The limit of a pointwise convergent sequence of measurable function is

measurable.

Example 10.11. Let f = g a.e.(u), where u is a complete measure. Show that if f is

measurable, so is g.

Solution: Write

E = [x:g(x)>«a]
Ey = [x:f(0)>a]
Ey = [x:f(x)#gx)]

Clearly E, and E, are measurable.
As p is measure, SO E; N E, is also measurable.
So E = (E, - E;) U(E N E,) is measurable.

Hence g is measurable.

Let Us Sum Up:

In this unit, the students acquired knowledge to
e o -algebra, o -ring, measure space and its properties.

Check Your Progress:

1. Describe the ring generated by the finite open intervals.

2. Show that if p is a non-negative set function on a ring and is

countably additive and is finite on some set, then x is a measure.

3. Show that if x is not complete, then f measurable and f = g a.e. do

not imply g measurable.
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| Choose the correct or more suitable answer:

1. if A,Be % and A C B, then

(@) wuA) <u(B).
(b) A > u(B).
(©) uA) < ().

(d) wA) > u(B).

 Answer:

()¢

Suggested Readings:

1. G. de Barra, “Measure Theory and Integration”, New Age
International Pvt. Ltd, Second Edition, 2013.

2. Rana I. K., “An Introduction to Measure and Integration”, Narosa
Publishing House Pvt. Ltd., Second Edition, 2007.

3. Royden H. L., “Real Analysis”, Prentice Hall of India Pvt. Ltd.,
Third Edition, 1995.
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Block-1V

UNIT-11

LEBESGUE INTEGRAL

Structure
Objective
Overview
11.1 Integration of Non-negative functions
Let us Sum Up
Check Your Progress
Suggested Readings

Objectives

After completion of this unit, students will be able to
* define Lebesgue integral for non-negative function.

% derive Fatou’s lemma, Lebesgue’s Monotone Convergence

theorem.
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' Overview

In analysis, it is often convenient to replace an expression of the
form [ ¥ f.dx by ¥ [ fudx, or [limf,dx by lim [ f,dx or f lim f,dx by
a—ap

Jim [ fodx. In this chapter, we define a definition of an integral which
appolies to a large Lebesgue measurable function and which allows the
interchange of integral and sum or limit in very general circumstances.
First we define Lebesgue integral, so called simple function and then we

extend to non-negative measurable functions.

11.1. Integration of Non-negative functions:

We first define integral for the class of non-negative measurable
functions and study the properties of the integral.

Definition 11.1. A non-negative finite-valued function ¢(x), taking only a finite number

of different values is called a simple function.

If a1,as,...,a, are the distinct values of ¢ and A; =[x : ¢(x) = @;] then

n

e = ) axa ()

i=1

Definition 11.2. Let ¢ be a measurable simple function. Then the integral of ¢ is
defined as

n

fgodx = Za,-m(A,-)

i=1

where ai,an,...,a, are the distinct values that ¢ assumes and A; = [x : ¢(x) = a;].

Example 11.1. Let the sets A; be defined by A; =[x : ¢(x) = a@;]. Then
AiNA;=0if i#jand | ] =R,
i=1
Proof. Letif possible A; N A; # 0 if i # j. Then there exist x such that x € A; N A;.
xX€EA = @x)=a;
XxX€A; = @x)=aj

= a;=aj, where i # j

a contradiction.

n
Thus, A;NA; =0 if i # j. Further UAi =R.
i=1

For any x € R, ¢(x) = a;, for some i.
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= xe€A; forsome i

= XEOA,'
i=1

= RC LnJA,
i=1

n
Hence, R = UA,- ]
i=1

Definition 11.3. Let f be a non-negative measurable function. Then integral of f
denoted by f fdx, is defined as

ffdx = supfga(x)dx

where the supremum is taken over all measurable simple functions ¢ such that ¢ < f.

Definition 11.4. For any measurable set £ and any non-negative measurable function f,
we define the integral of f over E by

[gar = [ preas

Note 11.1. If the set E in definition (11.4) is an interval, say [a,b] then in place of

. b . .
fF fdx we write fa fdx if a > b we use the usual convection

Lbfdx = —j:fdx

The integral defined in definition (11.4) is called the Lebesgue integral of the function

f.

Example 11.2. If ¢ is a measurable simple function, Definition (11.2) and Definition

(11.3) both give a value for its integral. Show that these values are the same.

Solution:

Let ["dx be the integral value of ¢ as given by Definition (11.2) and let
[ ¢dx be the integral value of ¢ as given by Definition (11.3).

If ai,a,...,a, are the distinct values of ¢, then by definition

0

fgodx = Za,vm(A,-)

n=1

where A; = [x: ¢(x) = a;].

Also, by definition

fgodx supflpdx
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where ¢ is a measurable simple function such that y < ¢.

f*gpdx < fgadx (11.1)

Since ¢ is a measurable simple function.

So,

Also, if y # ¢ is a measurable simple function with distinct values

bj (j=1,2,...,m) and w:ZbJXB],, then

= m
fz//dx = Z bm(B;)
j=1

Since A;nA,=0 for i#k, BjnB,=0 for j#k and UA,-:UB,:R.
j=1

i=1

Also, we have A, N B;, (i=1,2,...,n; j=1,2,...m) are disjoint sets and

O O(A,- NB))=R.

i=1 j=1

Hence S
fwdx = Z bim(Bj) = m(Bj N A))
j=1

where b; <a; if m(B;nA;) > 0. Thus,

fz//dx < Z aim(B; N A;)

j=1 i=1

am(A;) = ftpdx

i=1

= supfwdx <

U<

ie., fgodx < fgodx (11.2)

From (11.1) and (11.2), we get

f*godx =fgodx

Theorem 11.1. If ¢ is a measurable simple function, then

n

(i) fE = Z aim(A; N E) for any measurable set E.
i=1

(ii) fAUB pdx = fA wdx + fB wdx for any disjoint measurable sets A and B.

(iii) fanpdxzafgodx if a>0.
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Proof.
) = {1 ifx<E
0 if 0<x<E*
e(x) = a and A;=[x:e(x)=a]
o) = {a,--l ifxeA;NE
a;-0 ifxeA NES

(i) ¢xE is a simple measurable function for which takes the value a; on A;NE and 0
on A; N E°.

fgadx = fga)(de (by definition (11.4))
E

Z am(A; NE) (by definition (11.2))

i=1

(iiy d f dx = Y m(A; N A Y im(A; N B)  (by definition (11.2
At,a X+ Bgax ;am( )+;am( ) (by definition ( ))
Z a; [m(A; N A) + m(A; N B)]

i=1

Z ai[m({(A;NA)YUm(A; N B))] (. A and B are disjoint)
i=1

2, @ilmAin AU B))

i=1
f @dx (by (1)
AUB

(iii) ¢ takesthe values a; on A; for 1 <i<n which implies ayp takes the values aa;

on A; for 1 < i < n. Further, ag is a simple measurable function, if a > 0. Then by
definition (11.2), we have

f apdx = Zaa,-m(A,-)
i=1

= a Z aim(A;)

i=1
= a fga (by definition (11.2))
Hence the proof. ]
Example 11.3. Show that if f is a non-negative measurable function, then f = 0a.e. if

and only if ffdx =0.

Solution: Suppose f is a non-negative measurable function and

f =0 a.e. Now, our wish is to prove that ffdx =0.

M.Sc.{(Mathematics)-I Year-I Sem Real Analysis



156 11.1. INTEGRATION OF NON-NEGATIVE FUNCTIONS:

Since f =0 ae., then m[x: f(x) # 0] = 0. Suppose ¢ is a measurable

simple function such that ¢ < f. Then m[x : ¢(x) # 0] = 0.

Hence,

m(A;) = mlx:ex)=a;]=0 Vi

Thus, for every measurable simple function ¢ < f, f @wdx = 0.

So, by definition (11.3), we have
ffdx = supfgpdx=0
e<f

Conversely, let [ fdx =0, we have to prove that f =0 a.e. Let

E = [x:f(x)>0] and E, =

x:f(x)zl], n=1,2,3,...
n

Then E = UE,,, if xeE,, f(x)> % and yg,(x) = 1.

n=1

Thus,

[\

1
f(x) (;)Xgn(x) VY x (11.3)

By definition ffdx supfgadx
o<f
= f wdx f fdx

. . . 1 . .
for every measurable simple function ¢. Since |-=|yg, is a simple
n

IN

measurable function and thus (11.3) implies that
0= [rax> | (l)mxx) =+ = me)
n n n

So m(E,) =0. But
0<m[x: f(x)>0]

m (O En] < i m(E,) =0

n=1

= mlx: f(x)>0]

Il
o

Hence f=0a..
Theorem 11.2. Let f and g be non-negative measurable functions.
(i) If f<g, then [ fdx < [ gdx.
(ii) If A is measurable set and f < g, then fAfdx < ngdx.
(iii) If a > 0, then fafdx = affdx.

(iv) If A and B are measurable sets and A 2 B, then fAfdx > fodx.
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Proof. (i) Let f<g (ie.,) f(x)<g(x) Vx.
Let ¢ be a measurable simple functions such that ¢ < f.
Similarly, ¥ is a measurable simple functions such that y < g.

Since, f<g, then {p:p < fIC{y: ¥ <g}

ffdx = supfgadeSupfwdx:fgdx-
e<f YU<g

(@) If f < g on A, then fya < gyp. then by definition (11.3) and (i), we have

ffdx:ff,y,;dxﬁfg)mdx:fgdx
A A

(iii) If a = 0 then the result is quite obvious. So, assume that a > 0. Then ¢ < af if

Hence,

and only if ¢ = ay, where ¥ is a simple and ¥ < f. Butif ¢ is a measurable simple

functions, then ay is also a measurable function and f aydx = a f Ydx. Thus,
fafdx supfgodx= sup fawdx
e<af ay<af
= supadex:asupfwdx
s f vsf
= a f fdx
(iv), If BC A implies yp < xa- So, fxs < fxa. Then, by (i) we have

LfdxszXAdeffXdezﬂfdx

Hence the proof. ]

The following result will be basic in proving convergence theorem.

Theorem 11.3 (Fatou’s lemma). Let {f,,n = 1,2,...} be a sequence of non-negative

measurable functions. Then

lim inf f fodx > f (lim inf £,) dx

Proof. Let f = liminf f,. As each f, is non-negative then f = liminf f, is also

non-negative.
Also, each f, is measurable, then by theorem (9.5) liminf f, is also measurable.
Thus, liminf f, = f is non-negative measurable function.
Let ¢ be a measurable simple function such that ¢ < f.

Now, our aim is to prove that
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f liminf f,dx < liminf f fudx
ie., ffdx < liminfffndx
ie., supfwdx < liminfffndx ['.‘ffdx:supfgadx)
e<f e<f
ie., fgadx < liminfff,,dx (11.4)

Case (i): Let [gdx = .

Then from the definition of integral of a measurable simple function, there exists a
measurable set A with m(A) and ¢ is a constant on A.

Choose a such that ¢ > a >0 on A.

inf{fi(x), frr1(x), ...}
inf{ fi(x)}
Jj=k

Define gi(x)

Since each f, is a non-negative measurable function, then by theorem (9.5), each gi(x)
is a non-negative measurable function.

Let A, = [x:g(x)>a,Vk=>n]

[eS)

ﬂ[x 2 gk(x) > a]

k=n

Since each g, is a measurable function, then it follows that each A, is a measurable

set.

Also, A, CA,;1 Yn=123,...

gk(x) = inf{fi(x), frsr (2), ..}
ie, gi(x) = inf{fi(x), fr(x),...}
&) = inf{f2(x), (x),...}

Thus, from the definition of gx(x), each x, gi(x) is monotonic increasing sequence

and

I}im gr(x) = liminf fi(x)

J@ze(x) (e<f) (11.5)

So, A C OA”'

n=1

Now, we have {A,} to be a sequence of measurable sets such that A} C Ay CA3C...

lim m(A,,)

n—oo

m(limA,)

= lim m(A,)

n—oo

(11.6)

|
3
—_—
( 2
>
~———
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Since, if Ey CE2 C ..., then limE; = | ] E;

i=1

Now,
A
= m(A)
= o

lim m(A,) = o

n—oo

IA IA N
/i /i\ ~'C8
CriC: F
> >
\N_/ \L/

|
8

From the definition of g,, we have g, < f, and

= ff,,dx >
=>liminfff,,dx >
= liminfff,,dx >

>

= liminf f fudx
= liminf f fudx =
= liminf f fudx =

This proves case (7).

Case (ii) ¢ Let [gdx <.

f gndx > am(A,)

liminf a m(A,)
a lim m(A,)

n—oo

a.co (by using (11.8))

f wdx

Write B = {x: ¢(x) > 0} is of finite measure .

Let M be the largest value of the function

Let 0 < e <1 be arbitrary.

@. e, o(x) <M Vx.

Put B, = {x: g(x) > (1 — €)p(x) Yk =>n}

where g, is defined as in case (7).

Then B, are all measurable sets and B, C B,;1 VYn.

(11.7)

(11.8)

Note that from the definition of g, {gi(x)} is an increasing sequence for every x and

klim &(x) =

Further B C U B,

n=1

J) 2 ¢(x)
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Bn - Bn+1

Also B — B, is a measurable set Yn.

klim 8k(x)

=  given ep(x)
= f(0) - g
= @(x) = g(x)
= 8i(x)
= xeB,
=

(e8]
X € UB,,
n=1

= B-B,2B—-Bu

B-B,CB=

On the other hand,

Hence n > N = fg"dx

given € >0, 3 Nsuchthat |m(B—-B,) -0 < ¢,

\%

= f(®
> 0,dn suchthat [gi(x) — f(X)|< ep(x) Yk >n
< €p(x), Yk=>=n
< f(x) - gk(x) < ep(x), Yk>n
> (1-epx), VYk=n
for some n
Vn

m(B - B,) <m(B) < co.

lim(B - B,) m

M-8
n=1

= m (B - U Bn]
n=1

= m@ =0

Vn>N

= m(B-B,) < € Yn>N

fgndX>f(1—€)90(X)dx
B, B,

= (1—6)f @(x)dx
By,

= (I-¢ [fw(X)dx—f SD(X)dX}
B B-B,

\%

ie., fgndx

\%

(1—€)fgpdx—(1—e)
B

wdx
B*Bn

(1-¢ f wdx — Mm(B — B,,)
B

= (1-¢ [fgodx— f t,odx] - Mm(B - B,)
B Be

> (l—e)fgodx—Me

Since € > 0 is arbitrary

f(pdx—e[fgadx+M

Real Analysis
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n>N = fg,,dx > fgadx
liminffg,,dx > fnpdx (11.9)

e < fo, YR = fg,,dx < fﬁ,dx
= liminffg,,dx < liminfff,,dx (11.10)

From (11.9) and (11.10), we have

= liminfff,,dx

= sup f wdx
7]

[\

f(pdx
liminfffndx

lim inf f fudx

IA

U
—
\
=
A

U
.
E.
ol
QU
=
A

lim inf f fudx ]

Theorem 11.4 (Lebesgue’s Monotone Convergence Theorem). Let {f,,n = 1,2,...}
be a sequence of non-negative measurable functions such that {f,(x)} is monotonically
increasing for each x. Let f =lim f,. Then ffdx = limff,zdx.

Proof.
limf,=f = liminff,=f (11.11)

Therefore, By Fatou’s lemma

lim inf f fudx > f lim f,dx
= liminfff,,dx > ffdx (using (11.11))  (11.12)
fu is increasing and convergent to f
= fu, < f VYn

= ff,,dx

= limsupff,,dx

IA
%
[y
QU
=

(11.13)

IA
%
~
QU
=

Combining (11.12) and (11.13), we get

limsupff,,dx < ffdxsliminfffndxslimsupffndx
= ffdx = limsupff,,dleiminfffndx
= ffdx = lim | f,dx [ |
n—oo

Theorem 11.5. Let f be a non-negative measurable function. Then there exists a

sequence {¢,} of measurable simple functions such that for each x, ¢,(x) T f(x).
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Proof. Since f is a non-negative measurable function, range of f is a subset of [0, co).

For every n, Consider the partition P, of [0,00) given by the points
1 2 2"-1)

5592_"’"" 2!’!
For 1 <k <n2", let

’n’(X)

k-1 k
< —
2’2 < f(x) - 2’2

[x: f(x) > n]

E nk

X

and F,

Since f is measurable, thus the sets E,, F, are measurable for all n and
1 <k<n2".

Forevery n=1,2,..., Put
nzll

k-1
$n = Z 7/\/5,% + nxF,
k=1

Then the function ¢, are measurable simple functions. The partition P, giving ¢y+1
is a refinement of ¢,. So, for each x, we have ¢,(x) < ¢,11(x).

If f(x) = oo, then for all n, x € F, and hence ¢,(x) = n. Thus, We have
Jim ¢, (x) = f(x).

Further, if f(x) < co, then for n = 1,2,..., x € Ey for some k, 1 < k <
. - . -1
2" de.,pu(x) = T Since T < f(x) < o and thus we have ¢,(x) < f(x)
and P
-1 1
If(x) = pu(x)I< ? - o = i
Hence, lim ¢,(x) = f(x). This completes the proof. [ |
n—oo

Corollary 11.1. Suppose {¢,} is a sequence of measurable simple functions such that

foreach x, ¢,(x) T f(x), where f is a non-negative measurable function. Then

lim | ¢g,dx = f fdx
n—oo
Proof. Suppose, for each x, ¢,(x) T f(x), we have {¢,(x)} is monotone increasing
sequence for each x.

Hence, by Lebesgue monotone convergence theorem, we have

ffdx = lim | ¢,dx [ |

n—oo

Theorem 11.6. Let f and g be non-negative measurable functions. Then
ffdx+fgdx = f(f+g)dx

Proof. Let ¢ and ¥ be two measurable simple functions. Let the values of ¢ be
ai,ay,...,a, taken on the sets A1, As,...,A, and let the values of ¢ be by1,bs,...,b,
on the sets Bi, By, ... B,,. Then the simple function ¢ + ¢ has the values a; + b; on the

measurable set A; N Bj. Thus, we have
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ﬁ . (¢ +y)dx Z Z(a[ + bjym(A; N B))

J i=1 j=1

i i am(A; N Bj) + an i bjnl(A[ N BJ)

=1 j=1 =1 j=1
f gadx+f ydx
ANB; AiNB;

But the union of nm disjoint sets A; N B; is R. Hence,

f(soﬂﬂ)dx = izm:fAnBOMlﬂ)dx

i=1 j=1

i=1 j=1 YANB; i=1 j=1 YANB;

= f¢dx+fz,bdx

This proves the theorem for measurable simple functions ¢ and .

Let f and g be any non-negative measurable functions. Let {¢,}, {/,,} be sequences

of measurable simple functions such that ¢ T f and ¥ T g. Then,we have ¢ +¢ T f +g.

But
f(‘pn+¢n)dx = fﬂandx"'f‘pndx

Hence, by applying Lebesgue monotone convergence theorem, we have

f (f + 9)dx lim | (¢, + ¥,)dx

lim (fcp,,dx+fzﬁndx)

lim | ¢,dx+ lim | ¢,dx

n—oo n—oo

ffdx+fgdx [ |

Theorem 11.7. Let {f,} be a sequence of non-negative measurable functions. Then

if,,dx = i fudx
n=1

n=1

Proof. Let us prove the theorem by the method of induction.

By theorem (11.6), we have

f(f+g)dx = ffdx+fgdx

Let S, =fi+hHh+...+f, = ka denote the n” partial sum of Y f,. Thus, we
k=1
have
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fS,, = szz;fkdx=kz:fﬂdx

Taking limits as n — oo, we get

n
lim f S,dx = limz f fudx
n—00 n—oo k:1
= f lim S,dx = ; f fedx
n (o]
= flimekdx = fokdx
= P}
= fondx = fondx |
n=1 n=1

Example 11.4. Give an example of a sequence {f,} of non-negative measurable

functions such that

lim inf ff,,dx > f(lim inf f)dx
In other words, give an example where strict inequality occurs in Fatou’s lemma.

Solution:
Let for-1 =xp1 and fo, = xp2, (n=1,2,...)
Then each f, is non-negative measurable function.

For any x, liminf f,(x) =0 and f fi(x)dx =1 Vn.

Hence,
liminfff,zdx = 1>0= f(liminff,,)dx
00 dx
Example 11.5. Show that — =00,
1 X

Solution: Let f(x) = )1(

Clearly, f(x) is continuous for x>0 and also it is measurable function.

Thus, f(x) is non-negative measurable function (. f(x) is non-negative
for x>0)

dx

Therefore, f - 1s well defined.
1
“d "d
For any n, we have f & >f ay
1 dx 1 X
If k—1<x<k then
So, for n=2,3,...

= =

1
- >
X
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n dx n n ~
f — > f k 1)([k,1,k)dx
1 X 1

2

So,

=~

=

> k!
=2

bl

8

n
AS n— oo, Zk‘l -
=2

f < dx
= — = ®
1 X
Example 11.6. Define f(x) on [0, 1] by
0 if x is rational
f(x) =

n if x is irrational

where n is the number of zeros immediately after the decimal point in the representation

1
of x on the decimal scale. Show that f is measurable and find f fdx.
0

Solution:

For x € (0,1], let

n 10D <x<10™n=12,...
g(x) =

n x=1

and g(0)=0: g(1)=0. That is,
gx) = 0 if0l1<x<1

1 if 0.01<x<0.1

8(x)
2 if 0.001 <x<0.01:

8(x)

So, if 0 < x <1, g(x) is the number of zero immediately after decimal
point in the representation of x on the decimal scale. Hence
f(x) =g if xis irrational

f(x) <gx if xisrational

So, f=gae, g is measurable implies that f is measurable and

folfdx = j:gdx
o= f

1 1
Where I, = (W - W) . SO

But,
dx

i 8X1,

n=0
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1 1 o
1 1
[ ax= [Coax = Yon(i5 - o)
0 0 n=0

[eS)

9n 1
Z 10m+1 ~ 6

n=1

Let Us Sum Up:

In this unit, the students acquired knowledge to

e the concept of simple function and measurable function.

e derive Fatou’s lemma and Lebesgue monotone convergence

theorem.

Check Your Progress:

1. Define simple function.
2. Define Lebesgue integral of the function f.
3. State and Prove Fatou’s lemma.

4. State and Prove Lebesgue’s monotone convergence theorem.

Suggested Readings:

1. G. de Barra, “Measure Theory and Integration”, New Age
International Pvt. Ltd, Second Edition, 2013.

2. Rana I. K., “An Introduction to Measure and Integration”, Narosa
Publishing House Pvt. Ltd., Second Edition, 2007.

3. Royden H. L., “Real Analysis”, Prentice Hall of India Pvt. Ltd.,
Third Edition, 1995.
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UNIT-12

THE GENERAL INTEGRAL

Structure
Objective
Overview
12.1 The General Integral
Let us Sum Up
Check Your Progress

Answers to Check Your Progress

Suggested Readings

Objectives
After completion of this unit, students will be able to
% derive Lebesgue dominated convergence theorem.

* evaluate definite integral.

| Overview

In this unit, we will illustrate the definition of integral to real
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valued function and also explain in detail for proving Lebesgue dominated

convergence theorem.

The General Integral:

The definition of the integral will now be extended to a wide class of

real-valued functions, not necessarily non-negative.

Definition 12.1. If f(x) is any real function,
[ = max(f(x),0)
f () = max(-f(x),0)

are said to be the positive and negative parts of f, respectively.
Theorem 12.1.

(i) f=f"=f5 1= +f5 frLf >0

(ii) f is measurable if and only if f* and f~ are both measurable.

Proof. (i) ToProve: f = f* - f~

Case (a):Let (x>0

[ = max(f(x),0) = f(x)
() = max(=f(x),0)=0
= ff-f =Ff

Case (b):Let f(x)<0
ff® = max(f(x),0)=0
ST = max(-f(x),0) = —f(x)
= fT-f f

To Prove: |fl= f*+ f.
Case (a):Let f(x)>0

ff(» = max(f(x),0) = f(x)
ff(x) = max(-f(x),0)=0
= ff+f = f (12.1)

Case (b):Let f(x) <0

Real Analysis M.Sc.(Mathematics)-1 Year-I Sem
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[T = max(f(x),0)=0
) = max(=f(x),0) = —f(x)
o fref o= f (12.2)

From (12.1) and (12.2), we get
fr+f +f
ie., ff+f I

To Prove: f*>0; f~>0.

Case (a):Let f(0>0

A = max(f(x),0)=f(x) >0
f(x) = max(—f(x),0)=0
= ff >0 f=0

Case (b):Let f0 <0
fHx) = max(f(x),0)=0
) max (—f(x),0) = —f(x) 20
= f* 0; f~>0

(if) To prove f is measurable if and only if f* and f~! is measurable.

Necessary part: Suppose f is measurable. Now, our aim is to prove that f* and

f~ are measurable. By definition,
f+
s

max (f(x),0) which is measurable

max (—f(x),0) which is measurable

Thus, f* and f~ are measurable.

Sufficient part: Suppose f* and f~ are measurable. Now we have to prove that

f is measurable.
By case (i), f = f*—f whichis the difference of two measurable functions and

hence f is measurable. This completes the proof. [ |

Definition 12.2. If f is a measurable function and f frdx < oo, f fdx < o, we say
that f is integrable, and its integral is given by

ffdx = ff+dx—ff_dx

Note 12.1. If measurable function f is integrable then f* and f~ are measurable

non-negative functions and ff*dx < 00, ff’dx < 0. So,

ff+dx+ff_dx = f(f++f_)dx=f|f|dx exists
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Hence, |f] is integrable and flfldx: ff*dx+ff’dx.

Definition 12.3. If E is a measurable set, f is a measurable function, and ygf is

integrable, we say that f is integrable over E, and its integral is given by

fEfdx = ff)(de

Notation: LE) denotes the class of integrable functions over the
measurable set E.

Definition 12.4. If f is a measurable function such that at least one of f ftdx, f fdx

is finite, then
ffdx = ff%lx—ff‘dx

Note 12.2. Integrals of real-valued functions are allowed to take infinite values by
Definition (12.4). So Definition (12.4) is an extension of Definition (11.3). But, it is said
to be integrable only if f f*dx and f f~'dx are finite. In other words, f is integrable
only if |f| has a finite integral.

Theorem 12.2. Let f and g be integrable functions and let a be a real number. Then
(i) af isintegrable and fafdx = affdx.

(ii) f + g isintegrable and f(f + g)dx = ffdx + fgdx.
(iii) If f =0a.e., then [ fdx=0.

(iv) If f <ga.e., then ffdx < fgdx.

(v) If A and B are disjoint measurable sets, then
f fdx + f fdx = f fdx
A B AUB

Proof. Given that f and g are integrable functions, which implies that f fFdx < oo,

[frdx< oo, [gtdx <o, [gdx < 0.
ff*dx— ff’dx

f fdx
fgdx fg%’x—fg‘dx

(i) ToProve: af isintegrable. It is enough to prove that f(af)+ < oo and f(af)’ < 00,

Also,

Case (a): a>o.
Given that f  is measurable
= af  is measurable
Now, (af)* max{(af), 0}
= max{af(x),0}
= amax{f(x),0} = af”

Real Analysis M.Sc.(Mathematics)-1 Year-I Sem



12.1. THE GENERAL INTEGRAL: 171

In a similar way, we can prove that (af)” =af”, (ag)* =ag*, (ag)” =ag".

Now, consider

f (af")dx

Il
—
Q
<,

1
U
=

(. f* is measurable)

Il
Q
~

3
QL
=
A
8

Similarly, we can prove that f (af™)dx < oco.

fafdx = f(af)+dx—f(af)_dx
= faf%lx—faf‘dx

Case (b):1f a= -1, then af = —f.
(@)t = (=" =max(-£,0) = f~
(af)y” = (=f) =max(=(=f),0) = max(f,0) = f*
=N = f
=H = f

Thus, f(—f)*dx ff’dx< 0o
ie., f(—f)+dx < o

ie., (—f)" isintegrable

Similarly,we can prove that (—f)~ is integrable.

Hence, when a = —1, af is integrable. Further,

f(—f)dx f(—f)+dx— f(—f)_dx

1l 1l
| %
—
~ QL
+ =
x I
=
| %
—
~ U
i =
QU
ILJ
1l
|
%
~
QU
=

f afdx

Case (C) :If a <0, then a = —|a|.

I
Q
~
QU
=
£
=
a
=
Q
I
[

Since f is measurable, which implies that —|a|f is measurable and hence af is

measurable (a <0).

Also. af is integrable and hence
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fafdx f—lalfdx
—|a|ffdx=affdx

This proves (7).
(i) Suppose f and g are integrable. Then
ff+dx < o0 ff‘dx < o0 fg+dx < o0 fg‘dx < oo, Also f+g is measurable.
Our claim is to prove that f (f + 27" < and f (f + g)~ < oo. For this, consider
(f+8" () max{(f + g)(x), 0}
= max{f(x) + g(x), 0}
= max{f(x), 0} + max{g(x), 0}

— f++g+

1l
\
1

+

o)
"

e, (f+2)
Also, f f+9"

1
<
Y
+
oo
A
4
QU
=

I
—
~

%
QU
=
+

—
oo

"
[
=
A
8

In a similar way, we can prove that f (f +g)dx < oco.

Hence f + g is integrable.

f (f +8)dx

[lo+or-reeriax
[ eg -5 -glax

[ =rans [ -
[ [

This proves (ii).

(iii) Suppose f =0 a.e., then
Y = max{f(x),0}=0 (- f=0 ae)

fm = max{-f(x),0} =0

So, f =0a.e. implies f* =0 a.e and f~ =0 a.e.

Since, f* is a non-negative measurable function such that f* = 0 a.e. and hence we
have ff*dx =0.

Similarly we can prove that ff’dx =0.
Hence ffdx = ff+dx— ff‘dx = 0. This proves (iii).
(iv) Suppose f < ga.e..

By (i) and (i7), we have g — f is measurable.
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Since f < g a.e. which implies that g — f > 0 a.e.
Now, (g — f)~ = max{—(g — f)(x),0} = 0. So,
[ +g- s

[ rav+ (e pax

—f)+dx—f(g—f)_dx

fde+f(g—f)+dx
ffdx

(v) Since A and B are disjoint, we have
XAUB = XA tXB

Hence
f fdx f Fxaupdx
AUB

ff [xa +xp]dx

gdx

Il
%
<
Y
=
+
—~
o)

[\

I I

—
~ =
U =
= b
+ =
% +

.
S
Q
=

Example 12.1. Show that if f is an integrable function, then |f|< |g| a.e. and g is
measurable, then f is integrable.

Solution: Since g is integrable, |g| is integrable and hence

flgldx = fg+dx+fg’dx<oo

Now, 7

< gl ae.
= ff+f < |gl ae.
= f* < gl and f <lgl ae.

Since f* and f~ are non-negative functions. So by theorem (12.2), we

ff+dx flgldx<oo and ff"dxsflgldx<oo
= ffdx ff*dx+ff*dx<oo

Thus, f is integrable.

have

IA

Example 12.2. Show thatif f is anintegrable function, then

f fdx
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does equality occur?

Solution: Suppose f is an integrable function.

fr+fr=r=1)
= ff+f-fr+f =220

R f fldx > f Fdx (12.3)

>
|

~
Il

Also, Ifl+f = ff+f+(" 1)
= 2f* >0
= -f < |fl
= [ z-fl
= [ran = - [ (12.4)

Thus, from (12.3) and (12.4), we have

- f \fldx f fdx < f fldx
N ‘ f fdx f \fldx

Now, we shall prove the necessary condition for equality.

IA

IA

Case (i): If [fdx>o0, then

3
—

~

=

1l I
—
S =
= =

& f(f—lfl)dx =0
e f-Ifl = 0 ae
e f = |fl ae

& f =2 0 ae
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Case (ii): If [fdax<o, then

3
|
%
\
=
1 1
—
S S
s ¥

g f(f+|f|)dx =0
< f+Ifl = 0 ae.
e f = -—|fl ae.

e f < 0 ae

Thus, f > 0 ae (or) f < 0 ae. 1is a necessary condition for
‘ f fdx| = f |fldx. This is also a sufficient condition.

Example 12.3. If f is measurable and g is measurable and «, are real numbers such
that @ < f < B a.e., then there exists y, @ <y < f such that fflgldx = yflgldx.

Solution:Given
a < f<pB ae.
= f < |Bl and-f<|alae.
= |fl £ |a+8 ae.
So,

Ifgl = Ifligl< (ad+BD 18l  a.e.

Then, by example (12.1), we have fg is integrable.

Also, algl< flgl< Bigl a.e. So,
« f gldx < f flgldx < B f lgldx (12.5)

If flgldx =0, then g =0a.e. and hence
fflgldx = 0= yflgldx forevery a<y<p.

_ [ fgldx
[lgldx
f flgdx = v f gldx

If [lgldx # 0, take y . Then by equation (12.5), @ <y < a and

Thus, there exists a y, a <y <pg suchthat [ flgldx =1y [|gldx.

Example 12.4. Show thatif f is integrable, then f is finite valued a.e.

Solution:
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Assume that f is not-finite valued a.e. Then there exists a set E with
m(E) >0 so that |f|= o on E. So |f|>n for all » on the set E. This gives

flfldx > fndx:nm(E) Vn
E

This contradicts our hypothesis that f is integrable.
Thus, f isintegrable, then f is finite-valued a.e.
Example 12.5. If f is measurable, m(E) < o and A < f < B on E, then

Am(E) < [, fdx < Bm(E).

Solution: Suppose f is measurable and m(E) < co.

m(E) < c0o = E 1is measurable.
= yr 1S measurable.

= Ayr and Byyp are measurable.

Given A < f<g

IA

= Axe fxe < Bye (12.6)

Now, we shall prove that yx is integrable.

X
= f/\/gdx

Similarly, we can prove that [ yzdx < co.

max (yx,0) = x&
fXde =m(E) < o0

Thus, [xrdx = [ xtdx+ xpdx < oo and hence y; is integrable.
Also, Ay; and By are integrable.

Thus, from equation (12.6), we have

Axe < fxe <Bye
= fA,\(de

ff)(gdxsz/\/de
= Af)(gdx ff)(EdXSBf/\/de

= Am(E) < ffdeBm(E)
E

IA

IN

Theorem 12.3 (Lebesgue’s Dominated Convergence Theorem).

Let {f,} be a sequence of measurable functions such that |f,|< g, where g is

integrable and let lim f,, = f a.e. Then f is integrable and

limffndx = ffdx
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Proof. Suppose {f,} be a sequence of measurable functions such that [f,|< g

integrable.

Since, |f,|< g, f, isintegrable for all n.

Also,
lim f,(x)| < g(x)
= |fl = g
ie., |fl < |gl

(]
—

=

=

IA

flgldx < oo (. g isintegrable)

= flfldx < o

Thus, |f]| is integrable and hence f is integrable.
Also, f, < g which implies that f, + g < 2g.
Hence, {f, + g} is a sequence of non-negative measurable functions.

By Fatou’s lemma, we have

liminf f(f,, +g)dx > flim inf(f, + g)dx
= liminf [ff,,dx + fgdx] > f(liminff,, + liminf gdx
= liminf f fadx > f liminf f,
>

= liminf f fudx

ffdx

Since, each f,s are non-negative measurable functions and f, < g, g

non-negative measurable functions.
i.e., {g —gn} 1s a sequence of non-negative measurable functions.

Hence, by Fatou’s lemma, we have

lim inf f(g — fodx > fliminf(g — fudx
= liminf [fgdx+ f(—f,,)dx} > f(liminfg+1iminf(—f,,)dx
= fgdx+1iminff(—ﬁ,)dx > fgdx+f1iminf(—fn)dx
= —limsupff,,dx > f—limsupf,,dx
= —limsupff,,dx < flimsupf,zdx
<

ffdx

= limsupff,,dx

and g is

(12.7)

- fu are

(12.8)

M.Sc.{(Mathematics)-I Year-I Sem

Real Analysis



178 12.1. THE GENERAL INTEGRAL:

From equation (12.7) and (12.8), we get

liminfff,,dx > ffdleimsupffndx
= limfffndx > limsupffndx (12.9)
But always limsupff,,dx > liminfffndx (12.10)
From (12.9) and (12.10), we have
liminfff,,dx = limsupff,,dx=limffndx

lim f fudx f fdx n

Example 12.6. Let {f,} be a sequence of measurable functions such that |f,|< g, where

g is integrable and let lim f,, = f a.e. Then f is integrable and

limflf,,—fldxzo

Solution:
fo=f1 < |ful+If]
< g+g8
< 2g
= f If — fldx < f 2gdx <o (v g is measurable) = |f,— f| is measurable

Also, limf, = f ae.
= |fu—fl = 0 ae.

lim f If, — fldx 0

Theorem 12.4. Let {f,} bea sequence of integrable functions such that
f |fuldx < oo then the series Z fu(x) converges a.e., its sum f(x) is integrable

n=1
and

f fdx Z f fodx

n=1
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Proof.

Let ¢(x)

Sl

n=1

| S
n=1

= Zlf,,ldx <o
n=1

= fgo(x)dx < oo

= ¢ is finite value a.e.

Then f o(x)dx

(o)
= Zlfnl converges a.e.

n=1

= Z fu converges absolutely a.e.

n=1

Let f = > f

n o= Dok
n=1
< Dlfl=ew
n=1
ie, |fl < @

U .
—
=

=

IA

f(p(x)dx
:flfldx < o

= |f| is integrable = [ isintegrable.

n
Let & = Z ﬁ
i=1

< Zlﬁl

IA

= lgl= @(x)

S
i=1

By Lebesgue’s Dominated Convergence Theorem, we have

lim | g, dx = flim g,zdxszdx

n—.oo n—oo

n n

= lim f Z fidx f lim [Z f,-]dx
i=1 i=1
= lim ; f fidx f ; fidx
fo,-dx:ffdx [ |

i=1

= Z f fidx
i=1
Example 12.7. Lebesgue Dominated Convergence Theorem deals with a sequence of

functions {f,}. State and prove a continuous parameter version of the theorem.

Theorem: For each ¢ € [a,b], —c0 < a < b < oo, let f: be a measurable function,
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|fe(x)|< g(x), where g is an integrable function and let é1im fe(x) = f(x) a.e., where
—&0

&o € [a,b]. Then f is integrable elu? f fe(x)dx = f f(x)dx.
§60

Solution: Let {¢,} be any sequence in [a,b] such that lim ¢, = &.
= {f} satisfies the hypothesis of Lebesgue Dominated Theorem ((12.3)).

= f=lim f, is integrable.

Let 511[? ffgdx#ffdx

= 1 an 6 > 0 and a sequence {B,} € [an,by], limB, = & such that for all
n |[ fBudx - [ fdx| > 5. But by applying Lebesgue dominated convergence
theorem to {f3;}, we get a contradiction.

Hence our assumption is wrong.

lim frdx = f fdx
&6
Example 12.8.

(i) If f isintegrable then f fdx = lim blim fﬂ fdx = lim lim f fdx.
a—oo ho-—co Jp b

bh——00 a—0

b
(i) If f isintegrable on [a,b] and O < e < b —a then fba fdx = lin(l)f fdx.
e~V Jare

Solution: [ fdx = [* xp.cfdx.

f is an integrable function and thus by above example, we have

a a
Jim [ xiewsai= [ gax

A second application of the above example gives the first equation and the second follows

in the same way.

Similarly, we can prove result (if).

Theorem 12.5. If f is continuous on the finite interval [a,b], then f is integrable and
F(x) = fax f()dt (a < x < b) is a differentiable function such that F’'(x) = f(x).

Proof. We know that continuous functions are measurable, so f is measurable. Since
f is continuous function defined on the finite interval [a, b], we have |f| is bounded.

Hence f is integrable on [a, b].

If a < x < b, then we have x + h € (a,b) for small h.

x+h X
F(x+h)—F(x) = f f(t)dt—f f(dt

x+h
f f(odt
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Let m = min[f(x) : x € [a,p]] and M = max[f(x) : x € [a,b]]. Then
m< f(x) <M Vx.

This implies

X+
mh Sf f(Odt < Mh

Since f is continuous, then by intermediate mean value theorem we have
xX+h
[ s = nre
X

where é§ =x+6h, 0<0<1.

So, supposing & # 0, dividing by 2 and letting 7 — 0, we get

. Fx+h-Fx) _ 1 [
e },E%zfx Jdr
= lim f(&)
= ,ljrr(l) fx+0n) = f(x)
ie, F'(x) = f(x)

Example 12.9. Show thatif a > 1

1 .
fo %dx =o(n™) as n — .

Solution: We write x, = on?) if x;n? — 0 as n — . So, we wish to

show that
U nxsinx

li JESY =0 12.11
e Jo 1T+ (e (12.11)

Now, for any fixed x
1

. ——xsinx
nxsinx narfl
1 - = —0as n—oo (@>1)
+ (nx) 1
n&‘
Since lim /1Y _ g, So, we get (12.11), if we are allowed

n—o 1+ (nx)®
to interchange limit and integral. Hence, it is sufficient to show that

dominated convergence theorem as applicable to the sequences

foo = Y 10

1+ (nx)®’

Consider the function A(x) =1 + (nx)® — nx*’2. We have h(0) =1,

hl)=1+n"—n>1 since a> 1. Now

I (x) = an®x* — (3/2)nx'/?
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(x)#0 in [0,1] for 1<a <3/2 and for all large n. If @ > 3/2, then there
isapointin [0,1] at which #’(x) = 0. At that point » approaches 1 for large

n. So, it follows that for large n, h(x) >0 on [0, 1]. Hence
nxsin x
1+ (nx)®

nx < nx__ L
1+ @m0)2 7 nd?2 Gfx

Il =

. 1 . . . .
Since — is integrable over (0, 1], dominated convergence theorem is

X
applicable for {f,} and we have

1 1
limf fuxdx = f lim f,(x)dx
n—oo 0 0 n—oo
1 .
i.e., lim Srsmy x = 0
n—e Jo o 1+ (nx)®
. ! dx
Example 12.10. Show that lim _— = 1.

o (1 +x/n)ixt/n

Solution:We have
1 1

= — =¢

—-X
m —_—
(1 + x/nyt — xt/m ¥

and f e *dx =1. So, we wish to apply dominated convergence theorem.
0

For n>1, x>0,
x\! n(n - 1)x? X2
(1+—) = l+x+—m+...> —
n 2n? 4

So, for x>1 and n > 1,

1 1 4 .oul/n
(1 + x/n)yrxt/n = /4 K2 (1)

If 0<x<1, then x'" > x'2 for n>1. So

1 1 “1/2
_— < — =
(1 + x/nyrxt/n = x1/2 o

Hence, for x>0, n> 1,

< g

(1 + x/n)yrxt/n

where

4/ ifx>1

g(x) = .
2 ifo<x<1

.. . 1
But g is integrable over (0,). So, if f,(x) = R then
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Lebesgue’s dominated convergence theorem is applicable to {f,} and we

have

1
flim—
(1 + x/n)yrxt/n

fe_xdx =1.

00 2 —nZx?
Example 12.11. Show that lim f “———dx=0 for a>0, butnot for a = 0.
n—-e ), X

1
lim [ ————d
lmf (1 + x/nyadin ™

Solution: If « > 0, substitute u = nx to get

® p2xe X J e J * ue ™" 4
—dx = — —du= Xaneoy ———du
. 1+ wa 1+ u?/n? A P

—u?

Let £, For every u, we can find » large enough so that

_ ue
~ X7y u?/n?’
u <na and hence ygq.)(u) =0. So f,(u) =0 for large n.

Hence lim £, = 0. So, we wish to apply Lebesgue dominated convergence

theorem for {f,}. Now

Lf()|< ue™ Knacoy@) < 1, 1+ u?/n* > 1)

Also, ue™ 1is integrable over (0,~). Hence, by applying dominated

convergence theorem, we get

00 2 n?x? 00
im | 2% 4y = tim | fdu
n—0 a 1+x2 n—0 0
- f (lim f,,)du
0 n—00
-0

If a =0, the same substitution u = nx gives

. ue™ ue™ .
Since ——— - ue™ as n — oo and ——-— < ue™, an integrable
1+u?/n 1+u?/n

function, the Lebesgue’s dominated convergence theorem is applicable and

we have

2.2 2
. * nlxe "N . © ue™
lim —zdx = lim ﬁdu
n—eo Jo 1+x n—oeo Jo 14+ u/n

2

. ue ™
lim| ———|d
jo‘ 1m[1+142/112] !
© 1
f ue " du = ~.
0 2

Example 12.12. Let f be non-negative integrable function [0, 1]. Then there exist
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measurable function ¢(x) such that ¢f is integrable on [0, 1] and ¢(0+) = oo.

Solution: By continuous parameter version of Lebesgue’s Dominated

Convergence Theorem, for every n there exists x, (0 < x, < 1) such that

X 1
fdx < -
0 n

Let {x,} be a decreasing sequence of numbers as n — .

Define ¢(x) = ) (k= Dy SO ¢(04) = lim ¢(x) = co.
k=2 ’

It remains to prove that, ¢f is integrable.

f " ofdx = f "= 1) fdx

k—1
(k- 1)}

For if, consider

fgofdx<oo =  ¢f 1S measurable.

Let Us Sum Up:

In this unit, the students acquired knowledge to
« the concept of simple function and measurable function.

e derive Fatou’s lemma and Lebesgue monotone convergence

theorem.

Check Your Progress:

1. Let f(x) = 0 at each point x € P, the Cantor set in [0,1], f(x) = p
in each of complementary interval of length 3-7. Show that f is

1
measurable and that f fdx = 3.
0
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| Choose the correct or more suitable answer:

. ! nx

L [ s
@
(b)

(c)
(d)

Bl= = W= O

. L 302,
2. lim — =
n—o Jo 1+ n°x

(a) -1
(b)
()

(d)

W= N = O

| Answer:

(Hha @b

Suggested Readings:

1. G. de Barra, “Measure Theory and Integration”, New Age

International Pvt. Ltd, Second Edition, 2013.

2. Rana I. K., “An Introduction to Measure and Integration”, Narosa

Publishing House Pvt. Ltd., Second Edition, 2007.

3. Royden H. L., “Real Analysis”, Prentice Hall of India Pvt. Ltd.,

Third Edition, 1995.
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UNIT-13

RIEMANN AND LEBESGUE INTEGRALS

Structure
Objective
Overview
13.1 Riemann and Lebesgue Integrals
13.2 Integration with respect to a measure
Let us Sum Up
Check Your Progress

Suggested Readings

Objectives

After completion of this unit, students will be able to

% understand the concept of Upper Riemann and Lower Riemann

suml.

* explain the difference between Riemann integral and Lebesgue

integral.
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' Overview

In this unit, we will discuss the ideas about Upper and Lower

Sum.

Riemann and Lebesgue Integrals:

If 7 is Riemann integrable over the finite interval [q, ], then we write

its integral by R f fdx to distinguish from its Lebesgue integral f fdx.

a

Upper Riemann Sum and Lower Riemann Sum: Let 7 be a

bounded function defined over the finite interval [a, b].

Let a=¢<é <... <& beapartition D of [a,b]. Write

Sp = D Mi& &)
i=1
and sp = th & —é&i-1)
i=1
where M; = sup{f(x):xe[&-&4]); i=1,2,...,n
m; = inf{f(x):xe[&-&q] i=1,2,....n

Here S, and sp are respectively called Upper Riemann Sum and Lower

Riemann sum.

Riemann Integrable Function: A function f(x) is said to be
Riemann integrable over [a,b], if given e > 0 there exists a partition D such

that SD—SD < €.
Theorem 13.1. If f is Riemann integrable and bounded over the finite interval |a,b],
b

b
then f is integrable and Rf fdx:f fdx.

Proof. Let {D,} be a sequence of partition of [a,b] such that

1
Sp,—sp, < - (13.1)
n

for every partition D,,.
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Define u,(x)

n
Z Mixig, . £2(%)
i=1

n
L =) M, s
i=1
where M; = sup{f(x):xe[&—-&4]) i=1,2,...,n

m; = inf{f(x):x€[&-&]h i=1,2,...,n

for all x € [a,b]. Then, for all n, u, and [, are measurable simple functions and

b n f n
I ZM,-f dx= MiE~£1)=5p
a i=1 Sin1 i=1
b
ie., f udx = Sp

b
Similarly, f Ldx = sp

Further,

IA

m; S < M;

= Lx) < f(x) Lux) (13.2)

for all x € [a, b].
We define U = infu, and L =supl,.

Then U and L are measurable functions satisfying

L <f<U (13.3)
Now, .
(x:UGX)—L(x) #0} = U {x L U(x) — L(x) > %}

k=1
But U(x)-Lx) > %
= infu,(x) —supl,(x) > %
= infu,(x) + inf (-,(x)) > %
= inf (u,(x) = [,(x)) > %

= u(x)—Li(x) > % Yn

Thus, we have {x :U(x) — L(x) > %} - {x D (%) = (%) > %}

Therefore m ({x :U(x) = L(x) > %}) <m ({x S up(x) = L(x) > %})

Let a = m({x s U(x) = L(x) > %}) Then, we have m ({x Dt (X) = Ip(x) > %}) > a.
So,
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b a
f (tty(x) — L,(x)dx > z
a
b b a
= f up(x)dx = f L(x)dx > Z
a _ aS ) )
Dy SDn k
1 a
- ~ v
= - > p n
= a = O
0 foreachk
0

= m{x:Ux) - L(x)> 0}

Since {x: U(x) — L(x) > 0} which implies U(x) = L(x) a.e.

Thus, equation (13.3) gives
U=f=L ae.

Hence f is measurable. So the boundedness of f implies f is integrable.

Thus, equation (13.2) gives

b b b
f Ldx < fdx < f u,dx
b
ie, sp, < fdx < Sp, (13.4)
a
Since f is Riemann integrable and hence we have
b
limsp, = limSp =R | fdx (13.5)

n—oo n—oo

So, letting n — oo in (13.4) and using (13.5), we get

Rfabfdx = fabfdx -

Note 13.1. The converse of the above theorem does not hold. That is, a Lebesgue

integrable function need not be a Riemann integrable.

Consider for example the function f on [0, 1] by

0 if x is rational
fx)= e
1 if x is irrational

Then f =1a.e., and f is measurable since for any @ € R
[x:f(x)>a] = 0,if a>1
= [x:xisirrational], if 0<a <1

= R, ifa<0

1
So, f is integrable and f fdx = 1. But for each partition D of [0, 1], we have
0
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Sp=1and sp =0.

Hence f is not Riemann integrable.

Theorem 13.2. Let f be bounded function defined on the finite interval [a,b], then f

is Riemann integrable over [a,b] if, and only if, it is continuous a.e.

Proof. Let {D,} be a sequence of partition of [a,b] such that

1
S[)ﬂ =Sp, < Z (136)

for every partition D,,.

Define
un(-x) = Z MlX[fx—lff] (x)
i=1
n
Li(x) = anlX[ff—lfi](x)

i=1
where M; = sup{f(x):xe[&=&a] i=1,2,...,n
m; = inf{f(x):xe[&—-&a]h i=1,2,...,n

for all x € [a,b]. Then, for all n, u, and [, are measurable simple functions and

b n A n
f ndx ZM,-f dx:ZMi(fi_fi—l)ZSD
a i=1 -1 i=1
b
ie., f udx = Sp
a

b
Similarly, f Lydx

= Sp
Further,
m; < f(x)<M;
= L((x) < f(x) <u,(x) (13.7)

for all x € [a, b].
We define U = infu, and L = supI,.

Then U and L are measurable functions satisfying

L <f<U (13.8)

Now,
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(¢

{x: U(x) — L(x) # 0} {x :U(x) — L(x) > %}

—

But U(x)—-L(x) >
= infu,(x) —supl,(x) >
= infu,(x) +inf (-[,(x)) >

= inf (u,(x) = L,(x)) >

= R =R = == T

<
=

= Uuy(x) —L(x) >
Thus, we have {x: U(x) — L(x) > %} C{x tup(x) = Li(x) > %}.

Therefore m ({x :U(x) — L(x) > %}) <m ({x T up(x) = L(x) > %})

Let a = m({x :U(x) - L(x) > %}) Then, we have m ({x D (X)) = [(x) > l}) > a.

k
So,
b a
f (Up(x) = Ly(x)dx > T
b ‘ b a
= f up(x)dx — f L(x)dx > Z
= SDH — 5D, > %
1 a
- -V

= n g k "

= a = 0
ie, m ({x :U(x) - L(x) > %}) = 0 foreachk

) 0

= m{x:Ux) - L(x) >0}

Since {x: U(x) — L(x) > 0} which implies U(x) = L(x) a.e.

Thus, equation (13.8) gives
U=f=L ae.

Suppose that f is Riemann integrable over [a,b]. Let x € [a,b] be such that

x # x; € D, for every n.

If U(x) = f(x) = L(x), we claim that f is continuous at x. Assume the contrary.

f is continuous at x if and only if

limx, = x = le fx) = f(x)

n—oo

So, 3 €> 0 and a sequence {x;} with lim x, = x such that
n—-oo
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If(x) — f(x)l € Vk
ie., f(x) f(x)+e€ Vk
ie, Uxx) = Lx)+e€e Vk

[\

\%

Since lim x, = x, all x, but for a finite number of x, lie in every neighbourhood of
n—oo

x. So
Ux) > Lx)+e€

This contradicts that U(x) = f(x) = L(x). Hence f is continuous at x for x # x; € D,

for any n and U(x) = f(x) = L(x) a.e. Hence f is continuous a.e.

Conversely, suppose that f is continuous a.e. Choose a sequence {D,} of partitions
of [a,b] such that, for each n, D, D D, and ||D,||— 0. Suppose that u, and [, are
defined corresponding to D,. Then u,,; < u, and [l,4; > [, for each n. Now suppose

that f is continuous at x. Thus, given € > 0 there exists a 6 > 0 such that
sup f(x) —inf f(x) < €

where the sup and inf are taken over (x — ¢, x+9). For all n sufficiently large, an interval
of D, containing x will liein (x —d, x + ¢) and so,

u,(x) —I,(x) < €

But, € is arbitrary, so U(x) = L(x). Since f is continuous a.e. and thus we have
U=L a.e.

By Lebesgue Dominated Convergence theorem, we have

limfu,,dx = fde=dex=limfI,,dx
SO limfundx deleimfIndx

and hence

limSp, = limsp,

Thus, f is Riemann integrable and hence the theorem. [ |

Definition 13.1. If, for each a and b, f is Eounded and Riemann integrable on [a, D]
and lim fdx (13.9)

exists, then f is said to be Riemann integrable on (—co, c0), and and the integral written

as R fdx.

—00

Theorem 13.3. Let f be bounded and let f and |f| be Riemann integrable on (—oo, o).
Then f is integrable and

f:fdx = Rj::fdx
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Proof. Suppose |f]| is Riemann integrable on (—co, c0). Thus, |f] is Riemann integrable
on (—a,b) forevery a,b. So b
|fldx is finite

a

= |f| isintegrable

= f isintegrable
Also, f 1is is Riemann integrable on (—oo, ). Thus, |f| is Riemann integrable on
b b
f fdx = R f fdx
a a
Letting a — —oco and b — oo, we have

f:fdx = RI:fdx n

Theorem 13.4. Let f be bounded and measurable on a finite interval [a,b] and let

(—a,b) forevery a,b. So

€ > 0. Then there exist b
(i) a step function h such that f If —hldx < e.
a

(ii) a continuous function g such that g vanishes outside a finite interval and

b
flf—gldx<e.
a

Proof. (i) Wehave f = f* — f~ and
b b b
f fdx = f f+dx+f fdx

Since f* and f~ are non-negative, so we can assume that f(x) > 0 forall x € [a, b].

b b
ffdx = supf wdx

where ¢ < f, ¢ is simple and measurable. So, we may assume that f is a simple

Now,

measurable function with f = 0 outside [a, b]. Hence,

n

f o= Z aixE

i=1

where E; =[x : f(x) = a;] and UE,- = [a, b].
i=1

Let M = sup[f(x) : x € [a, b]]. We may assume that M > 0.

€ . .
Suppose that €’ = YR For each of the measurable sets E; there exists open intervals
n

k
I, I, ..., I suchthat,if G = UI,, then m(E;AG) < €. But y is a step function such
r=1

that
fl/‘fEi —Xg| dx = m(ErG) <€
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Construct such step function #;, say, for each E;. Then

r

n

f- Zaihi

i=1

n

dx < Zaie'

i=1

< nM€ =e
n
Let h = Z a;h;, then n
i=1 h = Za,-h,-
i=1
n
= Z axc
i=1
b
= f If —hldx < €
a

where h is a step function.

(i) From (i) there exists a step function % vanishing outside a finite interval such that

b
€
— hld —
fa|f <3

So to prove (ii), we construct a continuous function g such that

b €
flh—gldx < 3 (13.10)
a

and such that g(x) = 0 whenever A(x) = 0.

Let

n

) = ) an ()

i=1
where E; is the finite interval (¢;,d;), i =1,2,...,n. Asin (i), it is sufficient to show
that (13.10) holds for each xp,.

Suppose that € < 2(d; — ¢;) and define g by

€ €
1 if G(,'+—.d,'——)
I x C 2 2

0 ifxe (Ci,di)C

g(x) =

Extend g by linearity to [ci, ¢+ Z and [d,- - 4_61’ d,-] as shown in the following figure

13.1, so that g is continuous.
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Y
y=g(x)
11
0 T j_ rE
G Ct+x d-¢ 4 &
Figure 13.1

Then,

fl)(E[—g|dx < 1(C,‘,C,‘+§)+1(di—§,d[)

+

1 m
BIm
N m

€
Let i = xg, [Ih-gldx < 5

Also, g vanishes outside (c;, d;).

Now,
b b
If —gldx = flf—h+h—g|dx
a ab
< [ s - ghax
a
b b
< |f—h|dx+f|h—g|dx
a a
€ €
< —+4+=-=¢€
2 2
b
ie., flf—gldx < €
a
Hence the proof. n

Example 13.1. Let f be a bounded measurable function defined on the finite interval
(a,b). Show that

b
lim f f(x)sinBxdx =0
=00 a

Solution: Let € >0 be given. We show that there is Sy such that for S > So.
b
f f(x)sinBxdx

<€

By theorem (13.4), there exists a step function
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h =

n
2,
i=1

where [;,i =1,2,...,n denote disjoint intervals such that [a,b] = |JI; with

b
€
_hd —
falf ldx < 3

Then

b
f f(x)sinBxdx

b b
< f |f — hllsin Bxdx|+ f h(x) sin Bxdx
a a
b b
< f |f — hldx + f h(x) sin Bxdx
a a
¢ b
< —+ f h(x) sin Bxdx
2 |Ja

b b
f (f(x) = h(x)) sin Bxdx + f h(x) sin Bxdx

Now, if ¢;,d; (c; < d;) are end points of the interval I;, then

b
f X1, sin Bxdx
a

d;
f X1, sin Bxdx
Ci

1 [P
‘B f sin ydy‘
Bei

|cos Bc; — cos Bd;|
B

IA

2
B

Let M = max[a;;=1,2,...,n]. For the given € > 0, choose Sy so that

2

B

< MLMfOI'ﬁ>ﬂ0

Then, given € > 0 there exists Sy such that 8 > By implies

b
f f(x) sin Bxdx

<

IA

IA

b
f h(x) sin Bxdx

b N
fZa,-)(li sin Bxdx
a

i=1

b
a; f X1, sin Bxdx
a

€
—+
2

€
—+
2

N2
+,-_le5

nM

NIm NI M
+

+
DM DN
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ie., < €

b
f f(x) sin Bxdx

b
= ﬂlim f f(x)sinBxdx = 0
—00 a

Example 13.2. Show thatif fe L(a+ h,b+h) and f,(x) = f(x+h), then f, € L(a,b)
b+h b
and f fdx = f fudx.
a+h a

Solution:Since feL@+hb+h) and f is integrable and hence
f=r-r.
Consider f,(x) = f(x +h)

= f,=f"(x+h), fr=f(x+h
Hence, it is sufficient to prove that result for f > 0.

We know that if f is a non-negative measurable function, then there
exists a {¢,} of measurable simple functions such that for each x, ¢,(x) 1
f(x). But (¢, T fi So by applying Lebesgue convergence theorem with

function f =limg,, we have

b+h b+h
fdx f lim ¢, dx

a+h +h

b+h
lim Ondx

I
=
—~
s
=
SN
=
Q
=

b
f lim(g,)idx

Lb Judx

Integration with respect to a measure:

We now consider the generalization of the definition and results of
Units 11, 12 and 13. Much of the works of Units 11 and 12 holds for a
general measure space. Where proofs need only a variation of the notion
we refer to the version given for the real line.

Definition 13.2. A measurable simple function ¢ is one taking a finite number of

non-negative values, each on a measurable set; if a;,a,,...,a, are the distinct values
n

of ¢, we have ¢ = Za[/mi where A; = [x : ¢(x) = a;]. Then the integral of ¢ with

i=1
respect to u is given by
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f¢dﬂ = Zn:aiﬂ(Ai)

i=1

Definition 13.3. Let f be measurable, f :X — [0, c0]. Then the integral of f is

f fdu = sup [ f ¢du : ¢ < f, ¢ is a measurable function

Definition 13.4. Let E € S, and let f be a measurable function f : E — [0, o] ; then

the integral of f over E is
fE fdu = f fxedu

Theorem 13.5 (Fatou’s lemma). Let {f,} be a sequence of measurable functions,
fu: X = [0,00]. Then

liminffd,u < fliminff,zdu

Proof. See Theorem 11.3 |

Theorem 13.6 (Lebesgue’s Monotone Convergence Theorem). Let {f,} be a sequence of
measurable functions, f, : X — [0, 0], suchthat f,(x) T foreach x, andlet f =lim f,.

Then
ffdx = limff,,d/,t

Proof. See Theorem 11.4 |

Theorem 13.7. Let f be a measurable function, f : X — [0, c0]. Then there exists a

sequence {¢, of measurable simple functions such that, for each x, ¢,(x) T f(x).

Proof. See Theorem 11.5 [ |

Theorem 13.8. Let {f,} be a sequence of measurable functions, f,:X — [0, 0], then

[ e = 2[1&@

n=1
Proof. See Theorem 11.7 |

Theorem 13.9. Ler [[X, S, u]] be a measure space and f a non-negative measurable
function. Then ¢(E) = fEfdu < co then Ye > 0,3 6 > 0 such that, if A € S and
H(A) < 6, then ¢(A) < €.

Proof. Suppose f is a non-negative measurable function and [[X, &, ¢]] be a measure
space.

The function ¢ is countably additive, if {E,} is a sequence of disjoint sets in ..

Put E = U E,, then

n=1
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04

n=1

= fXUE‘Ll £, fdu

$(E)

= Zf)(u;’;lEnfdu (by using (13.8))
n=1
= fZXU::;lEnfdu
n=1
= f X = f fdu
v

ie., ¢(E) = j;fd/,t

¢ is ameasure on [[X, .]]. Write f, = max(f,n). Then for each n, f, is measurable,

fu T f, and then by applying Lebesgue’s Monotone Convergence theorem, we have
lim ffndx = ffdu

Since ffdu < oo, then given € > 0, there exists N such that ffd,u < fdeu + g

€ € €
If Ae. and u(A) < N then we have fAdeu < 3 Take ¢ = N so that

fAfdu

fA(f—fN+fN)dH

fA (f = fi)du + fA fudy

+

IN

IA

<€

NN m
N m

ie., ®(A)

A

Definition 13.5. If f is measurable and both f f*du and f f~du are finite , then f is
said to be integrable, and the integral of f is ffd/l = ff*d,u—ff’d/,t.

So, f isintegrable, if and only if |f]| is integrable.

Notation: The notation f € L(X,u) used to indicate that s belongs to the
class of functions integrable with respect to x. The notation [, fdu means
[ fxedu, where feL(X,p) and E € €.

If fyr is integrable, we write f € L(E < u) or simply f € L(E).

Definition 13.6. If f is a measurable function such that atleast one of f ftdx, f fdx
is finite, then [ fdx = [ f*dx - [ fdx.

Theorem 13.10. Let f and g be integrable functions and let a and b are constants.

Then af + bg is integrable and

f(af+bg)d,u = affd,u+bfgd,u
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If f=ga.e. then ffd/,t = fgd,u.
Proof. See Theorem 12.2 [ |

Theorem 13.11. Let f be integrable, then |ffd,u| < flfld,u with equality, if and only if
20 ae. or f<0 ae.

Proof. See Example 12.2 u

Theorem 13.12 (Lebesgue’s Dominated Convergence Theorem). Let {f,} be a sequence
of measurable functions such that |f,|< g where g is an integrable function, and

lim f, = f a.e. Then f is integrable, lim [ f,du = [ fdu, and lim [|f, - fldu = 0.

Proof. See Theorem 12.3 and Example 12.6 ]

Theorem 13.13. Let {f,} be a sequence of integrable functions such that

>, [t < o
n=1
Then Z fu converges a.e., its sum f, is integrable and

n:l
[ rau - Z; |

Proof. See Theorem 12.4 [ |

Let Us Sum Up:

In this unit, the students acquired knowledge to

o find the difference between Riemann and Lebesgue integral.

e integration with respect to a measure.

Check Your Progress:

1. Derive Lebesgue Dominated Convergence theorem.

2. Show that the function x!sinx is Riemann integrable on (-co, o) but

its Lebesgue integral does not exist.
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Suggested Readings:

1. G. de Barra, “Measure Theory and Integration”, New Age
International Pvt. Ltd, Second Edition, 2013.

2. Rana I. K., “An Introduction to Measure and Integration”, Narosa
Publishing House Pvt. Ltd., Second Edition, 2007.

3. Royden H. L., “Real Analysis”, Prentice Hall of India Pvt. Ltd.,
Third Edition, 1995.

Real Analysis M.Sc.(Mathematics)-1 Year-I Sem



Block-V

Unit-14: Lebesgue Decomposition.

Unit-15: Radom-Nikodym Theorem and its
Applications.

Unit-16: Bounded Linear Functionals.






Block-V

UNIT-14

LEBESGUE DECOMPOSITION

Structure

Objective

Overview
14.1 Signed Measures and the Hahn Decomposition
14. 2 The Jordan Decomposition

Let us Sum Up

Check Your Progress

Answers to Check Your Progress

Suggested Readings

Objectives
After completion of this unit, students will be able to
* define signed measure, positive set and negative set.

* the concept of Hahn decomposition and Jordan decomposition.

| Overview

In this unit, we will illustrate the basic concepts of signed

measures, positive set and negative set.
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14.1. Signed Measures and the Hahn Decomposition:

Definition 14.1. A set function v defined on a measurable space [[X,.”’]] is said to be

signed measure if the values of v are extended real numbers and
(i) v takes at most one of the values oo, —oo,

(i) v =0,

(iii) v[U E,-] = ZV(E,-) if E;NE;=0 for i# j, whereif the left-hand side is
i=1 i=1
infinite, the series on the right hand side has sum oo or —co as the case may be.

Note 14.1. Every measure is a signed measure.

Example 14.1. Show that ¢(E) = fF fdu where f fdu is defined, then ¢ is a signed

measure.

Solution:Suppose ¢(E) = | fdu. Suppose [ fdu is defined then either
[frdp<eo or [ fdu< .

Thus, ¢ takes at most one of the values ~, —c and hence the condition

(i) of signed measure is verified.
Clearly, ¢(©) =0 and hence (i) is satisfied.

Let {£:} be a sequence of disjoint sets of .~ and for E € .. Write

[ #ram
fE fdu

So, by theorem (13.9), ¢* and ¢~ are measures. Then

(0 (0

i=1 i=1

¢ (E)

¢ (E)

¢

e
i=1

¢ (Ep) — Z¢‘(E,-) (- ¢*, ¢~ are measures)

i=1 i=1

Mz

NgE

d(E)

i

1
—_

Thus, condition (iii) is verified and hence ¢ is a signed measure.

Definition 14.2. A is a positive set with respect to the signed measured v on [[X, .]],
if Ae.¥ and v(E) > 0 for each measurable subset E of A. We will omit with respect

to v, if the signed measure is obvious from the context.

Real Analysis M.Sc.(Mathematics)-1 Year-I Sem



14.1. SIGNED MEASURES AND THE HAHN DECOMPOSITION: 205

The next example shows an important way of constructing a new

measure from a given signed measure.

Example 14.2. If A is a positive set with respect to v and if, for E € .,
H(E) =v(ENA), then u is a measure.

Definition 14.3. A is a negative set with respect to v if it is a positive set with respect

to —v.

Definition 14.4. A is a null set with respect to v or a v -null set, if it is both positive

and negative set with respect to v.
Note 14.2. If A isa v-null set, if A€ .¥ and v(E) =0 forall E €., E CA.
Example 14.3.

(i) If A is a positive set with respect to v then every measurable subset of A is a

positive set.

(i) If A is a negative set with respect to v then every measurable subset of A is a

negative set.

(iii) If A is a null set with respect to v then every measurable subset of A is a null

set.
Theorem 14.1. A countable union of sets positive with respect to a signed measure v is

a positive set.

Proof. Let {A,} be a sequence of positive sets. Then by theorem (10.2) there is a

sequence {B;} of disjoint sets of . such that B, C A, and UA UB,,
n=1

Let EC U . Then
n=1

b < ane(ln

n=1
= E = [U B,,] NE
n=1
= E = U(E N B,)
n=1
ie, V(E) = Z ENB,) >0 (. EnN B, isa positive set for each n)

n=1

(e8]

Thus, if A, € . then UA” € . and v(E) > 0 for each measurable subset of
n=1

o0
Hence, U A, is a positive set. [ |

n=1
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Corollary 14.1. A countable union of negative sets with respect to a signed measure v

is a negative set.

Corollary 14.2. A countable union of null sets with respect to a signed measure v is a

null set.

Theorem 14.2. Let v be a signed measure on [[X,.Z]]. Let E € .¥ and v(E) > O.
Then there exists A, a set positive with respect to v, such that A C E and v(A) > 0.

Proof. Suppose v be a signed measure on [[X,.]]. Let E € . and v(E) > 0.

Case (l) « If E contains no set of negative v-measure, then E is a positive set
A = E. Thus, there exists a positive set A with respect to measure v such that A C E
and v(A) = v(E) > 0.

Case (ll) + Suppose if E contains negative set with respect to v measure. i.e., there
1
exists n € N such that there exists B€ .Y, BC E and v(B) < ——.
n
Let ny € N such that there exists an E£; C E with

1
wE) < —-—
n

Let n, € N such that there exists an E, C E — E; with

1
Ey) < -—
n

and so on.,
k-1
Let ny € N such that there exists an E; C E — U E; with
i=1

1
WEy) < ——
ni

From the construction, n; < n; < n3... and we have a corresponding sequence {E;}

of disjoint subsets of E.

Now, either this process terminates or continues. If the process is stop, say at n,, and

c = E—UEi (14.1)
n=1

Clearly C € . and v(E) > 0. Thus C is a positive set. Now, our aim is to prove that
v(C) > 0. Suppose, if v(C) =0, then from (14.1)we have

V(E)

v(C)+ ) W(ED)
n=1

m

= WE) = ZV(E,-)<0

n=1

which is a contradiction to the fact that v(E) > 0. Thus, v(C) > 0. which gives the

required result.
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If the process is not terminate, then we are able to inductively construct a sequence
{E,} as above.

Put A=E— UEk.
k=1

Now, our aim is to prove that A is a positive set.

Since {Ey} is pairwise disjoint and each Ej is disjoint from A, we have

WE) = v(A)+v[U Ek] (14.2)

n=1
But v cannot take both the values oo, —co.

Since v(E) is finite and V[U Ek] = ZV(E") < 0. Thus, the series Zv(Ek)

k=1 k=1 k=1
converges.
(e8] (e8]
Since, the series Z v(Ey) converges, then the series Z — converges, and in
n
k=1 el

particular n; — oo and n; > 1 for k > ko say. So,let B € 4, B C A and
k > kg. Then

BQE—OE,-
i=1

So, 1
v(iB) > -
n

(14.3)

by the definition of 7. But (14.3) holds good for all k > ko, so letting k — oo, we

have v(B) > 0 and so A is a positive set.

It remains to prove that v(A) > 0. Suppose if v(A) = 0, then we have v(E) < 0 which
is a contradiction. Thus, v(A) > 0, which gives the desired result.

Hence the proof. u

Theorem 14.3. Let v be a signed measure on [[X,.71]. Then there exists a positive set
A and a negative set B suchthat AUB = ANB = 0. The pair A, B is said to be a Hahn
decomposition of X with respect to v. It is unique to be extent that if A1, By and A, B,

are Hahn decompositions of X with respect to v then A1AA; is a v-null set.

Proof. Since v cannot both the values —co, oco. Without loss of generality we may
that v never takes the value o~ on .¥, for otherwise we consider —v, the result of the

theorem —v implying the result for v.

Let A = sup[v(C) : C is a positive set]

Since 0 is a positive set and thus, we have A4 > 0. So, we can find a sequence of
positive sets {A;} such that A = limv(A)).
We know that countable union of positive sets is positive and hence A = U A, is

n=1
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positive set.

By definition of A, we have
A = v(A) (14.4)

But A -A; € A andso v(A —A;) > 0. Hence it is a positive set. So far each i
v(A) = v(A)+Vv(A-A)>v(A)
So, v(A) = limv(A) =21 (14.5)

From, (14.4) and (14.5), we have
v(A) = A

Let B=A°. Thenif B contains a positive set D of v measure.
So, we have 0 < v(D) < oo.

So, by theorem (14.2), D contains a positive set E such that 0 < v(E) < co. But
VAUE) = vA)+v(E)>A

which is contradicting the definition of 4, So v(D) <0 and hence B is negative.
Thus, A and B form a Hahn decomposition.

Further, if A;, B; and A, B, are Hahn decomposition of X, then
Ai—A, = AN Ag

= AlﬁBz

Thus, A; — A, is a positive set as well as negative set and hence it is a null set.
Similarly, we can prove that A, — A, is a null set.
So,
A10Ay; = (AL -A)U(A—Ay)
Thus, AjAA, is a union of null sets and hence A;AA, is a null set.

This completes the proof of the theorem. |

14.2. The Jordan Decomposition:

Definition 14.5. Let v; and v, be measures on [[X,.”]]. Then v; and v, are said to

be mutually singular if, for some A € ., v,(A) = v1(A°) = 0, and we write v{Ly;.

Example 14.4. Let u be a measure and let the measures vy, v, be given by
vi(E)=u(ANE), vy(E)=u(BNE), where y(ANB) =0 and E,A, B € .7, show that

vilvs.
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Solution:
vi(B)

u(ANB) =0

v2(BY) u(B N BY) =pud) =0

Thus, v1(B) =0 and v,(B°) = 0.
Therefore, v,Lv,.

Theorem 14.4. Let v be a signed measure on [[X,.]]. Then there exists a measures
vt and v- on [|X,.]] suchthat v = vt —v~ and v*L1v~. The measures v* and v~

are uniquely defined by v and v = v* — v~ is said to be the Jordan decomposition of v.

Proof. Let Aand B be Hahn decomposition of X with respect to v, then X = AU B
and ANB=0.
Define v* and v~ by
VHE) =WENA)
(14.6)
v (E) =-wWENB)
for Ee€ /.

By example (14.2), we have v* and v~ are measures and
vi(B) = w(BNA)=v0)=0
V(A = —vANB) =v0)=0

So, v*(B) = v (A) = 0 and hence v'1yv~.
Also, for E € .7,
v(E)

W(E N A) + v(E N A%

v(ENA)+v(EN B)

vi(E) - v (E)

So, v=vt—vy.

It remains to prove that the decomposition is unique.

Let v = v; — v, be any other decomposition of v into mutually singular measures.
Then X=AUB and AnNB=0, ie,B=A°and vi(B) =v(A)=0.

Let D C A, then

V(D) vi(D) = va(D)

vi(D)>0 (= DCA)

So, A is positive set with respect to v.
In a similar way, we can prove that B is a positive set with respect to v.

For each E € ., we have
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vi(E) = w(ENA)=wENA)

vo(E) —v(E N B)

So every such decomposition of v is obtained from a Hahn decomposition of X as in
(14.6).

So, it is enough to prove that if A,B and A’, B’ are two Hahn decomposition’s then

the measures obtained in (14.6) are the same. We have

V(AU A) V(AN A"+ v(ArA")

VANA" (. v(ArA") =0)

Foreach E € ., as AU A’ is a positive set, we have
WENANAY)) < WENA<SWENAUAY)
VEN(ANA")) < WENA)YSWENAUAY)

From, the above inequalities, we have v(E N A) = v(E N A") and v* defined in (14.6)

is unique.

Then v~ = v —v* is also unique.

Hence the proof. [ ]
Example 14.5. Let [[X,.,u]] be a measure space and let f fdu exists. Define
V(E) = f fdu, for E € .. Find a Hahn decomposition with respect to v and the
Jordan dec%mposition of v.

Solution: Define w(E) = fE fdu, for Ec.¥.
Then, by example (14.1), we have v is a signed measure.

Let

b
Il

[x: f(x) = 0]
[x: f(x) <0]

o]
Il

Clearly A and B form a Hahn decomposition. While »* and v~ are

given by
VI(E) = f+du
E
vi(E) = f=dp
E

Thus, v* and v~ form the Jordan decomposition.

Definition 14.6. The rotal variation of a signed measure v is |v|= v' + v~, where

v =v* -y~ is the Jordan decomposition of v.
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Clearly, |v| is a measure on [[X,.”’]] and for each E € ., [V(E)|< [VI(E).

Definition 14.7. A signed measure v on [[X,.”]] is o -finite, if X = UX,, where
n=1

X, € . and for each n, [v(X,)|< co.
Example 14.6. Show that the signed measure v is finite or o -finite respectively, if and

only if |v|, orif, and only if, both v* and v~ are o -finite.

Solution: Suppose [v(E)< «. Then
WE) = vH(E)-v (E)<

Thus, both v* and v~ are not infinite. Since v*(E) < 0 and v (E) < co.
So,
VI(E) = vH(E)+Vv (E)< o
Hence, v is finite if and only if |v| is finite.

Similarly, we can prove the result for o -finiteness.

Let Us Sum Up:

In this unit, the students acquired knowledge to

 signed measures, positive sets and negative sets.

e derive Hahn decomposition theorem.

Check Your Progress:

1. Prove that a countable union of sets positive with respect to a signed

measure v is a positive set.

2. State and Prove Jordan decomposition.

Say True/False:

1. A is anegative set with respect to v if it is a positive set with respect

to v.

2. Every measure is a signed measure.
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| Answer:

(VF T

Suggested Readings:

1. G. de Barra, “Measure Theory and Integration”, New Age
International Pvt. Ltd, Second Edition, 2013.

2. Rana I. K., “An Introduction to Measure and Integration”, Narosa
Publishing House Pvt. Ltd., Second Edition, 2007.

3. Royden H. L., “Real Analysis”, Prentice Hall of India Pvt. Ltd.,
Third Edition, 1995.
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UNIT-15

RADON-NIKODYM THEOREM AND ITS
APPLICATIONS

Structure
Objective
Overview
15.1 The Radon-Nikodym Theorem
15.2 Some Applications of the Radon-Nikodym
Theorem
Let us Sum Up
Check Your Progress

Suggested Readings

Objectives

After completion of this unit, students will be able to

* derive Radon-Nikodym theorem.

* understand the application of Radon-Nikodym theorem.
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' Overview

In this unit, we will discuss in detail about the derivation of

Radon-Nikodym theorem and its applications.

The Radon-Nikodym Theorem:

|
(e

Definition 15.1. If u,v are measures on the measurable set [[X,.”]] and v(E) =
whenever p(E) = 0, then we say that v is absolutely continuous with respect to ¢ and

we write v < 4.

Definition 15.2. If g, v are measures on the measurable set [[X,.#]] and v(E) = 0
whenever |u|(E) = 0, then we say that v is absolutely continuous with respect to ¢ and

we write v << .

Example 15.1. Show that the following conditions on the signed measures y and v on

[[X,.1] are equivalent: (i)v < p, (i) |v|< |u| (i) vF <p and v™ < p.

Solution:From Definition (15.2), we see that v,u, if and only if v < |u|.
So, we may assume that x> 0. As |vl=v* +v~, we see that |vj< u implies
vt < p and v < u, so v < u. For the opposite implications, suppose that
v =v*—v~ with a Hahn decomposition A, B. Thenif v < u and p(E) =0 we
have w(EnA)=0 so v*(E) =0 and similarly v~ (E)=0. So M(E) = 0.

Theorem 15.1 (Radon-Nikodym Theorem). If [[X.”7,u]] is a o -finite measure space

and v is a o -finite measure on ¥ such that v < p, then there exists a finite-valued

non-negative measurable function f on X such that for each E € ., v(E) = f fdu.
E

Also, f is unique in the sense that if v(E) = fgd/,t for each E € .¥, then
E
f =g ae(w.

Proof. Assume that the result has been proved for finite measures. Then in the general

case, we have

Jan man) <

n=1

| Bn v(Bw) <o
m=1

X

and X

and {A,}, {B,} may be sequence of disjoint sets.

So, Put U (A, N By). Then we obtain X as the union of disjoint sets on which both

n,m=1
(e8]

v and pu are finite, say X = UX,,.

n=1
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Let ¥, =[ENX,: E €], a o-algebraover X,.

Now, consider g and v restricted to .¥,, then we obtain a non-negative function f;

such that if E € ., v(E) = ff,,d/,t.
E

So,if Ae ., A= UA”’ (say), where A, € ..

n=1

Define f = f, on X,,.

Then by example (10.8), we have f is measurable function on X, and

) = Y [ = [ s
n=1 n

Thus, the general case follows.
So, we need to show that for finite measures such a function f exists.

Let K be the class of non-negative measurable functions with respect to u and

satisfying

ffd,u < wWE) VEe &
E

Since 0 € K and hence K is non-empty.

Let
) a = sup[ffd,u:feK}

and let {f,} be a sequence in K such that lim ff,,d,u =a.

If B is any fixed measurable set, n a fixed integer and

8n = max{fl’fZ’ e ’fm}

Now, we can prove by induction that B is the union of disjoint measurable sets
B, i=1,2,...,n, such that
g = fi on B;,i=1,2,...,n.

For n =2 and let
By [x:x€ B, fi(x) =2 fr(x)]

B, = B-B

Clearly, B; and B, are disjoint measurable sets and B = B; U B;.

Assume that the decomposition is possible for n, let
gnat = max{fi, fo,..., fusr1}
= max{g, fi}
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So,
B = F,UBy,
where  guy1 = fur1 on By
8n+1 = &n ON Fn

and F,N B, =0.

But, then by inductive hypothesis, we have

F, =[j&
n=1

and g,+1(x) = f(x) for xeB;, i=12,...,n+1.

Now, since each f; € K, . .
fww= foWSZwm=mn (15.1)
B B; i=1

n=1

Also, we have g, T, so write
fO = lim 8n

Then by equation (15.1) and by Lebesgue’s Monotone convergence theorem, we have

fﬁ@ =nmf&w$wm
E E

a = fﬁwzf&wzfﬁw

so f € K. Hence

So, a:ffodu.

Since f Jodu < v(X) < oo. Hence there exists a finite-valued non-negative

measurable function, such that f = fy a.e.(u).

Next, we will show that if

vo(E) = V(E)—ffdu

E

then vo(E) = 0, foreach E € .¥.
By the construction of f, vy is non-negative.
Assume that vy is not identically zero on ..

Let C € % and vo(C) > 0. Then by the suitable choice of ¢, 0 < € < 1,
(vo —ew) (C) > 0.

But, by theorem (14.2), we can find A such that (vo —eu)(A) > 0. where A is a

positive set with respect to v — eu.

Also, pu(A) > 0, for otherwise, as v < u we would have v(A) = 0 and hence
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(vo — en)(A) = 0. So, for E €.

e(ENA) < vo(ENA)y=v(ENA) - fdu
ENA

Hence, if g = fexa, foreach E € ., we have
fgdu = ffdu +eu(ENA) < f fdu+v(EnA)<v(E)
E E E-A

So, g€ K.

But, f gdu = f fdu + eu(A) > a, acontradicting the maximality of «.

Hence v =0 on §. i.e., ffdﬂ = v(E).

E
Thus, f is the required function has the desired properties.
It remains to prove the uniqueness of f.

If possible, let g be another measurable function have these properties.

Then, for E € ., f(f —g)du = 0 and taking E = [x : f(x) > g(x)], we get

E
f < ga.e. and similarly f > ga.e. and hence f = ga.e. So, f is unique. [ |

Corollary 15.1. Theorem (15.1) can be extended to the case when v is a o -finite signed

measure.

Proof. The Jordan decomposition gives v = v* —v~ and

vi(E) = fﬁdﬂ;
E

szd/l

where fi and f, are non-negative measurable functions of which at least one is

v (E)

integrable.

So,for E€ ., W(E)=v'(E)-v (E)= ffd,u where the integral of f = fi — f> is
E

well defined. [ |

Corollary 15.2. Theorem (15.1) can be further extended to allow u to be signed measure,
where by ﬁ fdu we then mean ﬁ frdu - f fdu provided this difference is not
) : E

indeterminate. Any two such functions f and g are equal a.e.(|u|).

Proof. Let A, B be Hahn decomposition with respect to y, so that
w'(E)
HE)

W(E N A)

~u(E N B)

Now, v < u* and u* is o -finite.
By applying theorem (15.1) on u*, we get
WENA) = f hdp®
EnA
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for an appropriate function f; on A.

Similarly, we have

WENB) = fE i
n

for an appropriate function f; on B.

Define

~
Il

fi onA
f = -fonB

Then f is measurable function on X and
o) = [ gt - [ cman
ANB BNE
As v is a signed measure, this will not be of the form co — co. So,

WE) = ffd/x
E

is well defined.

Any two such functions, from the construction agree except on a set of zero u* and

1~ -measure, giving the result. [ ]

15.2. Some Applications of the Radon-Nikodym Theorem:

Theorem 15.2. Let u be a signed measure on [[X,.7]] and let v be a finite-valued
signed measure on [[X, 1] suchthat v < u; then given € > 0 there exists 6 > 0 such
that |v|(E) < € whenever |u|(E) < 6.

Proof. Since v < yu is equivalent to |v|< p and v is finite-valued if and only if v is

finite-valued.
Assume that v and p are measures.

Suppose, if the result is not true, then there exists a positive € and a sequence {E,} of

1
sets of . such that u(E,) < -, but W(E,) > €.

21
Consider o .
limsupE, = ﬂFk, Fr = UE’"
k=1 m=k
. Sl 1
For each k, p(limsup E,) = u(Fy) < Z TRET=E
k=m

So, w(limsup E,) = 0,
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But, for each k, v(F}) > € and v is finite.

Hence, by theorem (10.6), we have
v(limsup E,) = v(limFy) =limv(Fy) > €

contradicting to our hypothesis that v < u and hence our assumption is wrong.

i.e., given € > 0 there existsa ¢ > 0 such that |[V|(E) < € whenever [u|(E) <d. &

Definition 15.3. Let u and v be o -finite signed measure on [[X,.”’]] and suppose
d
that v < p. Then the Radon-Nikodym derivative d_v of v with respect to u, is any

measurable function f such that v(E) = f fdu for each E € ., where if u is a
E

signed measure ffdu:ffdu+—ffdu_.

Notation: In the equation below connecting Radon-Nikodym
derivatives, we will indicate the measure, say p with respect to which
the functions are equal a.. by the notation [u]. In the case of a signed
measure, the functions are equal a.e.(jul).

Theorem 15.3. If vy, v, are o -finite measures on [[X,.Z]] and vi < u, vy < U,
then

d(V1 + V2) dVl dV2

Proof. Suppose v; and v, are o -finite measures, then clearly v; + v, is also o -finite
measures.
Also, vi < u and v, < u then vi + vy < p.

For E € .7, then
(v1 + v2)(E)

Vi(E) + v2(E)
E

£ du dp
d(Vl + V2) _ dVl + dV2
du T odv o dv
R d(V1 + V2) _ dVl de
ie., i = 5 + 7 (1]
Hence the proof. ]

Theorem 15.4. If vi,v2,v1 + v, and u are o -finite signed measures on [[X,.]] and
Vi < U, Vo KU, then (15.2) holds.

Proof. Since v; + v, is o -finite signed measures, so v{(E) + v2(E) never takes both
values oo, —co.

Case (l) + Suppose u is a measure.

For i=1,2, let v; = v;' —v; with Hahn decompositions A;, B;.
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Consider the four sets A; N By, A1 N By, Ay N By, A» N B, separately.

Now, consider the subset A; N B, so we have

vitv, = v -,

So, for F C A; N B,,
(V1 +v)(F)

Vi (F) = v,y (F)
v dvt
- f(i_ﬁ)dﬂ
r\dp  du
dV1 dVQ)
= — + Z|du
fp(d,u du
dvi d
ie, (n+w)F) = f(ﬂJrﬁ)dﬂ (15.3)
F\du  du
Since dr_ _d(—v)
du  du

Since E € .¥ can be written as the union of four such sets F.

[e].

Similarly, we can consider other three subsets, we get

Vi +)(F) = f(dﬂ + dﬂ)du (15.4)
F\du  du
d d
v +v)(F) = f(ﬁ + l)afu (15.5)
F\du  du
d d
vi +v)(F) = f(ﬁ + ﬁ)du (15.6)
F\du  du
Adding the equation (15.3), (15.4), (15.5) and (15.6) we have
d(Vl + V) _ dvq + dvy 1]
du T odu  du

Case (ll) + Suppose u is a signed measure.

Let A, B be a corresponding Hahn decomposition. Write ./ = [ENA : E € .¥] and

let ¢, v}, be the restriction of u,vi,vs to &,
Similarly, ., v", v{,vy in the case of B.

Now applying case (i) to A and B, we have

d(vi +v5) B dvi dv, Ll
du’ Cdy Ay
/! /7 ’’ /17 (15'7)
dvy + V) dvy av;
= + (1]
d(—p") d(-p”)  d(-u")
dav! "
Write fi= — on A, f;=—-—"— on B. Then foreach E € ., we have
ay’ d(—p'")
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f fidu = f fidy' — f fid(=p")
E ENA ENB

= v(ENA)+vi(ENB)=v(E) fori=1,2.

Similarly for v; + v,, since

m+w) = v+
and (vi+v)” = v +V)
To get the required, we may subtract equation (15.7). [ |

Example 15.2. Let y be a o -finite measure and v a o -finite signed measure and let

VLU

show that M =
du

dv
du

Solution: Let v = v* -y~ with a corresponding Hahn decomposition A, B.

As in the theorem (15.4), we have

dv dv*
— = — A
i i [u] on
dv dv-

and |—| = — on B
i an (1]

So, by theorem (15.3), we have

dv dvt  dv-  d|

—| = ——+——=—lul

du du du du

Theorem 15.5. Let v be a signed measure and let u,v be measures on [[X,.7]] such

that A, u,v are o -finite, v <<y and yu < A; then

dv dv du
AT qnda [] (15.8)

Proof. Write v =v* —v".

vt d(-v~ dv™
‘We know that Y =) [4] and similarly for %

da da

So by theorem (15.4), we need to prove for measures only.
d
So, suppose that v is a measure and by Radon-Nikodym theorem, take for d_v and
il

d
ﬁ the non-negative functions f and g respectively.

Now, our aim is to prove that for

Fe.”, v(F)=ffgd/1.
F

Let ¢ be a measurable simple function,
n

vo= Zai/\/Ei

i=1
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then, we have

fF wdp = ) ap(EnF)

i=1

Za,- f gda
P EnF
f Ygda
F
Let {¢,,} be a sequence of measurable functions such that ¢, T f. Then

v(F) = fdu

I
5
5
N
=

I
=

s

oo
=
o

fF fedd - ung 1 f9).

d dvd
Hence, ﬁ = id_ﬁ [4]. This completes the proof. |

Theorem 15.6. Let A,u,v be o -finite signed measures on [[X,.]] such that v < u
and p < A; then (15.8) holds.

Proof. Let A;,B; and A, B, be the Hahn decomposition with respect to A and u

respectively.
Consider the four sets A; N B, i, j = 1,2, separately.

Now. consider the set A; N By, we let

S = [ENAINB:E€.Y]

and also, let A’, " be the restriction of A, u to .&’.

So, A’ and —y’ are measures. Now, applying theorem (15.5) on A; N B,, we have

du — dv d(=y) (4]
v d(—w) dv
. dv . o dv
As in the proof of Theorem (15.4), we see that — — is the restriction of — to
e p d(—p) du
A1 N By and - (;u) that of ﬁ to A; N B,. Soon A; N By, we get
dv_ dvdp
dl  duda
Adding all such four equations, we get the required results. Hence the proof. |

Theorem 15.7 (Lebesgue Decomposition Theorem). Let [[X,.,u]] be a o -finite
measure space and v a o -finite measure on .. Then v = vy + vy where vy and vy
are measures on . such that volu and vy << u. This is the Lebesgue decomposition

of the measure v with respect to p and it is unique.
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Proof. Let A =v+ u, then clearly v is o -finite and u < A.

By Radon-Nikodym Theorem, there exists a non-negative finite-valued measurable
function f such thatif E.¥, then

WE) = f fda
E

Then, clearly X =AU B and AN B =0 and u(B) = [, fd1=0.
For each E € ., Define measures vg,v; by
vo(E)
vi(E)

v(E N B)
v(ENA)

Clearly, nu = vy + v;.

Since vy(A) = v(A N B) = v(0) = 0. Thus, we have voLu.

If u(E) =0, then [, fd1=0. So f=0a.e(d) on E.

But f is positiveon ENA, so A(ENA)=0.

Also, we have v < 4, so vi(E)=v(ENA)=0. ie,vi<U.
Next, we have to prove that the decomposition is unique.

Assume that v = vo + vi = vj +v] where volu, vilu, vi <pu, v; < u. So,
there exists A,B,A’,B’ suchthat X = AUB=A"UB; ANB=A"NB =0 and
vo(B) = p(A) = vy(B') = u(A") = 0.

Let E €., then

E = (ENBNB)U(ENA'NB)U(ENANA)U(ENANDB)

Clearly p is zero on the last three sets in this union and by absolute continuity, we have

v1 and v| are zero.
Since v] —vi = vy -V, we have

(=) (E)= (=) (ENBNB) = (vo-vp)(ENBNB)=0 (- vo(B) = vy(B) = 0)

So, vi(E) = v{(E), which implies vo(E) = v,(E) and hence the proof. [ ]

Let Us Sum Up:

In this unit, the students acquired knowledge to

e the concept of Radon-Nikodym theorem and its applications.

e derive Lebesgue decomposition theorem.
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Check Your Progress:

1. If v is a signed measure and E;, € E, < ..., then prove that

00

e

i=1

v = lim v(E;).

2. If v is a signed measure and E; 2 E, 2 ..., prove that v(E)|< o, and

v [ﬂ E,-] = im W(E)).

i=1
3. Show that if v;,»» and u are measurable and v,1u, v,1u then

V1 +valu.

4. Show thatif x and v are o -finite signed measures and p < v, v <y,

dv _ [(du -
then % = (E) [pe].

Suggested Readings:

1. G. de Barra, “Measure Theory and Integration”, New Age
International Pvt. Ltd, Second Edition, 2013.

2. Rana I. K., “An Introduction to Measure and Integration”, Narosa
Publishing House Pvt. Ltd., Second Edition, 2007.

3. Royden H. L., “Real Analysis”, Prentice Hall of India Pvt. Ltd.,
Third Edition, 1995.
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UNIT-16

BOUNDED LINEAR FUNCTIONALS

Structure
Objective
Overview
16.1 Bounded Linear Functionals on L
Let us Sum Up
Check Your Progress
Suggested Readings

Objectives
After completion of this unit, students will be able to
e under the concept of normed vector space and linear functional.

* derive Riesz representation theorem.

| Overview

In this unit, we will illustrate the concepts of normed linear space

and linear functional.

M.Sc.(Mathematics)-| Year-l Sem 225 Real Analysis



226 16.1. Bounpep LiNear FuncrioNaLs on L :

16.1. Bounded Linear Functionals on L’ :

Definition 16.1. Let V be a real vector space. Then V is a normed vector space if there
is a function ||x|| defined for each x € V such that
@) [Ix=0 Vx,

@ii) [lx||= 0 if and only if x =0,
(iii) |la@x||= |a|-||x|| for any real number @ and for each x € V.
1v) [lx + ylI< [IXl+HIYIl Yx,y € V.

Definition 16.2. A function G on the normed linear space V to the real numbers is a
linear functional if Yx,y € V and a,b € R we have G(ax + by) = aG(x) + bG(y).

Definition 16.3. A linear functional G on the normed linear space V is bounded if
3 K > 0 such that

IG(x)] < Klxl| YxeV (16.1)

Then the norm of G, denoted by ||G]|, is the infimum of the numbers K for which (16.1)
holds.

So, easily |G(x)|< ||G]|-||lx]]. Then dividing by ||G||, we see that
IGII = sup[lGX)I: lIxlI< 1]]

When dim V =0, we have ||G||= sup[|G(x)|: ||x]|= 1]]
Definition 16.4. If [[X,.”,u]] is a measure space and p > 0, we define LP(X,u) or

7o [irran < oo].

more briefly L”(u) to the class of measurable functions

Definition 16.5. Let f € L”(u), then the L? -norm of f, denoted by ||fll,, is given by

( | Ifl"du)l/p-

Now, let us see the important inequality namely Holder’s inequality with

out proof.

Theorem 16.1 (Holder’s inequality). Let 1 < p < oo, 1 < g < oo, =1 and

let felLf(u), geLi(u). Then fg e LY (u) and

[rgian < ( | Iflpdu)l/p - ( | |g|‘fdu)l/q

Theorem 16.2. If f € L'(u) and g € L™(w), then fg € L'(w) and |Ifglh< Ifllillgllo-

+

SRS
| =
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Example 16.1. The following are equivalent for a linear functional G: (i) G is

bounded, (ii) G is continuous at 0, (iii) G is continuous at each x € V.

Solution:

(i) = (ii) : Suppose that G is bounded. Then there exists K > 0 such that

IG(x)I< K|Ixll, Vx € V. Now,we shall prove that G is continuous at 0.

Let x, — 0, then

Gl < IG-Ixall— 0

Thus, G is continuous at 0.

(ii) = (iii) : Assume that G is continuous at 0 and now, we have to prove

that G is continuous at each point x € V.

Let x, — x, then

IG(x, — G(x)l]

IG(x, — x)|

IN

IGIl-llxn = xll— 0

Thus, G is continuous at every point x € V.

(@iii) = (i) : Assume that G is continuous at every point x € V. Now, we

shall prove that G is continuous at 0.

Since, G is continuous at every point x € V, in particular G is continuous

at the origin.

(i)) = (i) : Assume that G is continuous at 0. Our wish is to prove that

G is bounded.

Assume the contrary that G is not bounded, then there exists {x,} such

that [lx,ll< 1, but |G(x,||> n.

If y, =n'x,, sothat |ly,]— 0, we have |G(,)|> 1, thus G is not continous

at 0, which contradicts our assumption.
Hence G is bounded.

Example 16.2. Define G on L?(u) by G(f) = ffgdp for a fixed g € LY(u), p and
q being conjugate indices with p > 1 and with ¢ = co in the case when p = 1. Then G

is bounded linear functional and [|GII< [Igll,-

It will from the main theorem of this section that ||G||= |igll, for this kind

of functional. It is convenient to deal separately with the case 1 < p <
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and p = 1. The next theorem shows that ¢ is in a sense, the set of bounded

linear functionals or dual space of L?.

Theorem 16.3 (Riesz Representation Theorem for L?, p > 1). Let G be a bounded
linear functional on LP(X,u). Then there exists a unique element g of LI(X,u) such
that

G(f) = ffgdu foreach f e L? (16.2)

where p,q are conjugate indices. Also

NGl = 1igllq (16.3)

Proof. First, we shall prove the uniqueness. For this, we assume that g and g’ are two

functions satisfies the hypothesis of the theorem.

Let E be any set of finite measures, so that yr € L”. Then
f (g —8)du f XE(g—g'du
E

0
= g = gae (. [x:gx) #g (x)] has o-finite measure).

Thus, the uniqueness is proved.

If ||G||= 0, then G(f) =0 forall f, so g =0 satisfies (16.2) and (16.3). So, assume
that ||G||> 0.

Suppose p(X) < co. Foreach E € ., define A(E) = G(yE);
Claim: 1 isa signed measure.
Clearly A(0) = 0.
AAUB)

G(xaus)
G(xya) +G(xp)
A(A) + A(B)

for disjoint sets A and B. Thus, A is finitely additive.

(e8] n
Let E = UE,- and let A, = UE,-. We have
i=1 i=1

A, - Ell, = @WE- ANYP -0 as n— (G is continuous by example 8.9).

Thus, we have A(A,) — A(E), so A is countably additive. Further, A takes only

finite-value, since G takes only finite values. Hence 4 is a signed measure.

Also, if u(E) =0, then ||ygll,= 0, which implies A(E) = 0 thatis 1 < u. So, by
Raydon Nikodym theorem, there exists g € L!(u) such that for each E € .

Glxe) = fE gdu = f XE8du
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Claim: g has the required properties.

By the linearity of integration, we have

G = f pgdu

for any measurable simple function ¢.

But each function f € L™(u) is the uniform limit a.e. of a sequence {y,} where each

Y, is the difference of measurable simple functions, and so ||f —,}|,— 0.

Hence, by the continuity of G, we have

G(f) = ffgdy for each f € L™ (u) (16.4)

It remains to show that [|G||= l|gll,.

Let the function @ on X be defined by
a = 1 where g>0

a = -1 where g<0

Clearly « is measurable and ag = +g = |g|.

Let
E, = [x:|g0I<n]]
and put f = oz)(Enlgl‘f’l, where p,q are conjugate indices. Then |[f|’= g/ on
E,, f€L™w.

Hence, by equation (16.4), we have

fF Iglfdu = f fedu
< (GIHIf,
1/p
- ||G||( f Igl"d,u)
E,
1/p
ie. fb gld ||G||( fb |g|qdy) (16.5)

1 1
If, (an Iglqdu) v = 0 then it is obvisou. So, we assume that (an Igl"d,u) v # 0.

Divide (16.5) both sides by (fF Iglqd,u)l/p , we get
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1

17—
( f |g|"d;1) Pay < G
E,
1/q
= (f Igl"du) du < |Gl
Ey,
ie., flgl"du < |IG)®
Ey
= f X, lglldu < G

Since, yg, T 1 and by Lebesgue’s Monotone convergence theorem, we have

liglly, < G (16.6)
and in particular g € LI(u).
By example 8.10, we have
NGl < liglly (16.7)
Thus, from (16.6) and (16.7), we have
NGl = liglly

So, (16.2) holds for f € L™(X, w).

But the bounded functions are dense in L”. For it is sufficient to show that every
non-negative function f € L is the limit in the mean of order p, of a sequence {f,} of

bounded functions.

Put f, = min(f,n). Then 0 < (f = f,)? < f? and f - f, = O0a.e. So by Lebesgue

Dominated convergence theorem, we have || f — f.ll,— 0.
By Continuity of G, we have G(f,,) = G(f).
Also, by holder’s inequality, we have f fugdu — f fedu.

Hence, G(f) = f fgdu. Thus, the theorem is proved for finite measure space.

Now, we extend the result to the case when X = U X;, where the X; are disjoint
i=1
measurable set of finite y -measure.

Any function f; on X;, measurable with respect to the o -algebra of sets
ENX;, Ee€., canbeextendedto f on X by putting f =0 on X;. Then G has the
restriction G; on L(X;, u), where G;(f;) = G(f), and we have ||G1||< ||G]|.

By the first part, we have
Gi(f) = GCvxif)=ffgid/l
Xi

for each f € L?(X,u), for each i, and for a suitable g; € L1(X, u).

Extend g; to X by putting g; =0 on X{ and write g =}’ g;.
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n
If Y, = U X;, then
i=1

Ghenf) = fY F@u+ g+t gdi, VS € LP(Xop)

As in the first part, since p(Y,) < oo and ||lg; + g2 + ...+ gul|I< G for each n. So

q q
(k) = [[Ye]
n q
= flim Zg,- du
i=1
< liminffZgi du
i=1
< ||G|I¥ (By Fatou’s lemma)
. q
ie., (lgly) < lGI
ie, ligll < Gl
Also, by example 8.10, we have
Gl < llgll

Thus, we have [|Gll= [Igll,.

Also, xy,f — f in the mean of order p so G (xvy,f) — G(f).
n

But Z gi — g in the mean of order g, so by Holder’s inequality we have
i=1
n
fXYangid/J - ffgdu
i=1

Now, consider the general case where u need not be o -finite. We show that there
exists a Xp € ./ which is of o -finite measure that is X is the union of a sequence of
sets of finite measure, and such thatif f =0 on X, then G(f)=0.

Let {f,} be such that ||f,ll,= 1 and G(f,) > ||Gll(1-1/n) and X, = U[x 1 f(x) # 0]

n=1
has o -finite measure.

Let E € . with E C X, then

I +txell, = (1 +PuENYP for 120
Also,
G(f) - G(xtxp) < |G(f F typ)I< IGI(L + (Pp(E)'P
and
IG(tx I IIGIIL + Pu(ENP — 1+ 07
for every n.
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Let n — co and then divide by #(> 0) to get y
1+ Pu(E)H? -1
IGepi< 61 A (t))

Since p > 1, we may apply ’'Hospital rule as  — 0 to get G(yg) = 0. So G vanishes

for simple functions and hence for measurable functions which equal zero on Xjp.
Hence, by the proof for the o -finite case we can find g € LY(Xy) such that
Glex, /) = f fedp
0

X

Define g to be zero on X, to get the required function g of the theorem.

ie., G(f)= ffgdu. Hence the proof. |

Theorem 16.4 (Riesz Representation Theorem for L'(w)). Let [|X, ., )] bea o -finite
measure space and let G be a bounded linear functional on L' (X, ). Then there exists

a unique G € L™ (X, ) such that
G(f) = f fedu  foreach f e L'(u) (16.8)

Also, [|Gl|= [I8lle-

Proof. Assume that [[X,.”,u]] is a finite measure space. As in the previous theorem,
we can construct a unique function g such that (16.8) holds for f € L*(X, u). Now, our

aim is to prove that g € L™.

We have
‘Lgd,u‘ < |Glllxeli=IIGIE), YE € .7 (16.9)
Suppose that [g(x)|> [|G]| on aset A of positive measure and write
Ey =[x :lgx)l> (1 + 1/n)IGI]

So A =UE,.

Hence for some n, we have u(E,) >0 and |g(x)|> (1 + 1/n)||G|| on E,. Then
f gdu = IGI(1 + 1/mu(E,)

contradicting (16.9) as we may suppose ||G||> 0. So [|gll«< ||G|| and hence [|gll= ||IG]].

Now, we extend (16.8), as in the previous theorem to all functions f € L!(u). Extend
as before, to the o -finite case; we now have ||g; + g» + ... + g,lI< ||G]| for each n,
So ||glle< ||G||. For the last part of the o -finite case in the previous theorem, Holder’s

inequality is replaced by theorem 8.13. [ ]
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Let Us Sum Up:

In this unit, the students acquired knowledge to

o the concept of bounded linear functionals.

e derive Riesz representation thoerem.

Check Your Progress:

1. Derive Riesz representation theorem for L? (p>1).

2. Derive Riesz representation theorem for L!.

Suggested Readings:

1. G. de Barra, “Measure Theory and Integration”, New Age
International Pvt. Ltd, Second Edition, 2013.

2. Rana I. K., “An Introduction to Measure and Integration”, Narosa
Publishing House Pvt. Ltd., Second Edition, 2007.

3. Royden H. L., “Real Analysis”, Prentice Hall of India Pvt. Ltd.,
Third Edition, 1995.
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