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2 1.1. Introduction:

Objectives

After completion of this unit, students will be able to

F understand the concept of class m; regular function and
equivalent paths.

F de ne the concept of tangent, normal and binormal at any point
on a space curve.

F derive Serret-Frenet formulae.

F calculate the curvature and torsion of any space curve in terms
of the parameter.

Overview

In this unit, we will explain the concept of tangent, normal and
binormal. The necessary and su cient condition for the curve to be plane
is established.

1.1. Introduction:

Di erential Geometry is that part of geometry which is treated with
the help of Di erential Calculus.

In the theory of plane curves a curve is represented by means of a single
equation or by a parametric representation. For example, the circle with
centre at the origin and radius a is given by the equation x* +y* = a*
The parametric representation of the circle is given by x = acos and
y=asin ; where 0 2 : Similarly, the space curves are represented
by three dimensional Euclidean space E;: Already we are familiarize that
two straight lines intersect at a point, two planes are intersect along a
straight line and two surfaces intersect along a space curve.

M.Sc.(Mathematics)-1 Year-1 Sem Di erential Geometry



1.1.Introduction: 3

Intersection of two surfaces:

Let fo(xy;z) =0, f,(x;y;z) = 0 represent two surfaces then these two

equations together represent the curve of intersection of these surfaces.
This curve will be called a plane curve. If it lies on a plane, otherwise it is
said to be skew, twisted or tortuous.

For example, we know that if f,(x;y;z) = 0 represents a sphere and
f, (x;y; z) = 0 represent a plane then these two equations together represents

a circle which is the section of the given sphere by the given plane. In this
case, the curve is called a plane curve.

Parametric representation of a space curve:

If the coordinates of a point on a space curve be represented by the

equations of the form

x= 1(); y= 20); z= 3(1); (1.1)

where 1, ,; 3 are real valued functions of a single variable t ranging

overasetofvalues a t b:

The equations in (1.1) are called the parametric equations of the space
curve. Thus we can say that a curve in space is the locus of a point where

Cartesian coordinates are functions of a single variable t:

Transformation of one representation to another
representation:

Let the parametric equations of a space curve be

x=t y=t}; z=t 1.2)

=y, y=2° (1.3)

which is of the form
fi(xy;z) =0, f(xy;2)=0 (1.4)

Thus the space curve whose parametric equations are given can be

expressed as the intersection of two surfaces given by x* =y; y® =7*

Similarly, if the equation of the curve is given by equation (1.4) then

Di erential Geometry M.Sc.(Mathematics)-1 Year-1 Sem



4- 1.2. Definitions:

eliminating x we get y = g:(z) and on eliminating y;, we get x = g.(2):
Thus, x and y are represented as a functions of z: Now, if the coordinate
z is a function of some parameter t say iie;; z = Fs(t) then x and y will
be functions of t so that

X = Fai(t); y=Fx(t); z=Fs() (1.5)

are the parametric representations of the space curve whose equations are
given by (1.4) as the curve of intersection of two surfaces.

Vector representation of a space curve:

If r be the position vector of a point P on the space curve whose
Cartesian coordinates be (x;y;z) then we have

Fo— xi+yj+zk (1.6)
or T o= fi(0)i+ f(t)] + fa()K (1.7)
or r = f(t) or t=(f(t); f.(t); f1(t) (1.8)

where f isa vector valued function of a single variable t: Thus, we may
de ne vector representation of a space curve as follows:

A space curve is the locus of a point where position vector r with respect

to a xed origin may be expressed as a function of a single parameter.

1.2. De nitions:

De nition 1.1 (Functions of class m).

Let I be a real interval and m a positive integer. A real-valued function f
de ned on | is said to be of class m or to be a C™ - function, if f has a m"

derivative at every point of | and this derivative is continuous on I: Simply, we

can say that C™ - function has a continuous m™ derivative.

The function f is said to be of class 1 or C* function when it is

di erentiable in nite number of times.

De nition 1.2 (Analytic function).

The function f de ned over an interval | is said to be analytic, if f is single
valued and possesses continuous derivatives of all orders at every point of the

interval. This type of functions is said to be of class ! or C* function.

M.Sc.(Mathematics)-1 Year-1 Sem Di erential Geometry



1.2.Definitions: 5

Note 1.1. The extension of the concept of class of real valued functions of several
variables is quite obvious.

i:e;; We can say thata C™ - function of several variables admits all continuous

th

partial derivatives of m™ order.

De nition 1.3 (Class of a vector valued function).

A vector-valued function R — (X;Y;Z) de ned on | is said to be of class m
if it has an m™ derivative at every point and if this derivative is continuous on
I: This in turn means that each of its components X;Y; Z are of class m: Such a
function is given by the vector equation R — (X;Y; Z) or by Cartesian equations
X =XU); y=Y(u); z=2Z(u):

De nition 1.4 (Regular).

~

dR
A vector valued function is said to be regular if au Oon I ie; if x;y;z
u

never vanishes simultaneously.

De nition 1.5 (path).

A regular vector valued function of class m is called a path of class m:

De nition 1.6 (Equivalent paths).

Let Ezl and ﬁz be the two paths of same class m de ned on intervals I,
and |, respectively. These two paths are said to be equivalent if there exists a
strictly increasing function g of class m which maps 1, onto I, and is such that

R1 = Rz g i:e;; Thisis equivalent to three conditions.

X1 =Xz (9(U) ; Y1 =Yz (9()) : Z1 = Z (9(u))

Any equivalent class of path m determines a unique curve of class m: Any
path R determines a unique curve and is called a parametric representation of

the curve. x = X(u); y = Y(u); z = Z(u); here u is the parameter.

The mapping g which relates two equivalent paths is called a change of

parameter.

Examples of space curves with di erent parameters:

ir = (acosu; asinu; bu) 0 u<

2 A2 '
@) r a‘l“_"'_v_;a 12w ;2btan 'v o v<l

Di erential Geometry M.Sc.(Mathematics)-1 Year-1 Sem



1.3. Arc length: 7

1.3.

Both equations represent the same curve (circular helix) in
di erent parameters u and v: In this case, the change of parameter is

(u) - tan
v=g(u) =tan :
2

De nition 1.7 (Curve of class m).

A curve of class m in E; is a set of points in E; associated with an
equivalence class of regular parametric representation of class m involving one

parameter.

Arc length:

The distance between two points r; = (X1 y1:z1); T2 = (X; Y2, 2p) in
E; is the number

~oo _ Y % 2 2 2 2
Jr r2] = r r2 = (x1 x2) +(y1 y2) +(z1 22)

This distance in space will be used to di erent distance along a curve of
class m 1
Bookwork 1.1. To nd an expression for arc length of a curve between two

points.

B(b)
AGd)
Figure 1.1: Curve length

Let us consideracurve C ofclassm 1 andr = ﬁ(u) be the equation
of the curve C:. Now, our aim is to determine the arc length between the
two points A and B on the given curve corresponding to the values a and

b of the parameter u:

Now corresponding to any subdivision 4 of the interval [a;b] by points

a = ug<u; <u,< <u,=Db

M.Sc.(Mathematics)-1 Year-1 Sem Di erential Geometry



6 1.3. Arc length:

we have the length

n

L. =  Ru) R 1) (1.9)

i-1

of the polygon inscribed to the arc by joining the successive points on it.

Again, we know that sum of the sides of a triangle is greater than the
third side so that if we increase the number of points of the subdivision the
length of the polygon would be increased. Hence, the length of the arc is
de ned to be an upper bound of L.; taken over all possible subdivisions

of [a;b]:

Hence, from (1.9) we have

u(i) X u(i) Zb
L, = L R{u)du L R(u)du-= R(u) du (1.10)

jiog u@ 1) i1 ui D

Now (1.10) shows that the right side member of (1.10) is nite and
independent of 4 and hence upper bound of L., is always nite.

Now we shall show that the upper bound of L.. is actually equal to the
right hand side of (1.10).

Let s = s(u) denote the arc length from a to any point u; then the arc

length from u, =a to u ie; s(u) s(upy) where a=u, <u<b:

Therefore from equation (1.10), we th
s(u)  s(u) R (u) du (1.11)
0

Also, from the de nition of length we have
R(U) R(Uo) s(u)  s(uo) (1.12)

From equations (1.11) and (1.12), we have

S /

RU, R s ) glo- "R du (1.13)

0 0 0 u,

Taking limit as u ! Up, we get
Ru)

s(u)  R(u)
) s
= R(u)

Since this is true for any value of u, in the range of u; hence we have

Di erential Geometry M.Sc.(Mathematics)-1 Year-1 Sem



1.3. Arc length: 7 9
L

u

s = s(u)= R(u) du (1.14)

The formula (1.14) is used as formula to determine the arc length from a
point a to any point u on the curve.

In terms of Cartesian parametric representation, we have

u

boYe

s = x? +y? + z%du
a

Also, the equation (1.14) can be rewritten as

52 = X2+y2+Z2

In terms of di erentials, we have
ds® = dx®+dy®+dz?

where ds is called the linear element of the curve C:
Note 1.2. We shall use notation dashes to denote di erentiation with respect to
arc length s and dots to denote di erentiation with respect to any other parameter

u: Thus, we have

drR ~ d’R  ~
— = R", —% =R"
ds ds

dr ~ d’R ™
— - R; ~ =R
du du

Example 1.1. Find the equation of the circular helix
r(u) = acos ui + asin u}+ buﬁ; 1 <u< 1 from where a > 0 referred to s

as parameter, and also nd the length of one complete turn of the helix.

Solution:
Given Tr(u) = acosui+asinuj+ buk
) X=acosu; y =asinu; z=bu
X = asinu; y =acosu,; z=b

M.Sc.(Mathematics)-1 Year-1 Sem Di erential Geometry



8 q 1.3. Arc length:
Ly Rydu
0,

I

Arclength s =

a® sin“u +cos“u + b°du

o

b u
pa2 + b%du = pa2 +b?u

~ S . S bs
r = acos s rasin o .
a% +Db? Ida2 +Db? Ida2 + b?

The range of parameter u to one complete turn of the helix is
Up U Ug+2 Z

) Required length = w2 p52+—bfdu=2 pm

Uo

Example 1.2. Find the length of the curve given as the intersection of the surfaces
X2 y2 7
— = =1 x=acosh = from the point (a;0;0) to the point (x;y; z):
a2 b? a p ( ) p ( y )
. S S A

Solution: Given equation is Z

The parametric equations of this curve are given by

x =acosh ; y=bsinh

Z
Alsox = acosh Z
a
Z X
) cosh — = -
a a
Z X
) Z - cosh 2
a a
X
e z = acosh! =
&
[ ]
= acosh ! a

= acosh '(cosh )=a

Thus, parametric forms of given curve are

x=acosh ; y=bsinh ; z=a:

Di erential Geometry M.Sc.(Mathematics)-1 Year-1 Sem
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1.4. Tangent, normal and binormal:

limit z = 0toz=z
) a = 0Otoa=a
) - ol
Arc length s = X +y +z7d
0
!
= (asinh )? + (bcosh )? + a’d
0
v
= a? 1+sinh?>  +b%cosh? d
0
boP
= p a‘ + b“cosh d
= —a*+b’sinh
ie, s = zpa2+l52
b

Example 1.3. Prove that the length of the curve x = 2a gjn ‘t+t —;

y = 2at’ ; z = 4at between the points where t =t; and t=t, is 4 2a(t, t)

Solution:

Given

l
2a’/sin lt+tp1—[2 ;. y = 2at? —ﬁ —

1
2a —_P1—+t_|J—( 2)+ 1 t© =4a 1 +t°
1 2 1

t t
2at? ) y = 4at
dat ) z=4a
L t2

x% +y? + Z2dt
1
L tz

quaz 1 t? +16a%® + 16a%dt

t .

t, t
. p32a2dt _4 [Raltl,

P

4" 2a(t, t)

1.4. Tangent, normal and binormal:

De nition 1.8 (Tangent Line).

The tangent line to a curve C at a point P(t) of C is de ned as the limiting

position of a straight line L through P(t) and neighbouring point Q(t +t) on

Di erential Geometry
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1.4. Tangent, normal and binormal: ll

C as Q approaches P along the curve.

Bookwork 1.2. Find the unit tangent vector to a curve.

Let be a curve of class 1 and let P; Q be two neighbouring points
on the curve. Let  be represented by the equation r = r(u) and let P and

Q have parameters u, and u: * has class 1

Figure 1.2: Unit tangent vector

By Taylor's theorem
F o= FUu)+ (U U)r(uy)+O(U up) (1.15)

Hence

lim ru)  r(uo) _ (u)

usu, F(u) F(Uo) Nr(u X

i.e;; the unit vector along the chord PQ tends to a unit vector at P as
Q e This is called the unit tangent vector to  at P and it is denoted

by t:
From (1.13), we have

t = T(Uo) _

r(uo)

vl =2

dr
= as

It is convenient to denote di erentiation with respect to arc length s by

prime. Thus, the unit tangent vector becomes t =T °:

M.Sc.(Mathematics)-1 Year-1 Sem Di erential Geometry



12 1.4. Tangent, normal and binormal:

De nition 1.9 (Osculating plane).

Let be a curve of class 2 and let P, Q be two neighboring points on
Then the limiting position as Q ! P of that plane which contains the tangent

line at P and the point Q is called the osculating plane of at P

Bookwork 1.3. Equation of the osculating plane at a point P:

Let r = r(s) bethe given curve ofclass 2
The parameters of P and Q be 0 and s respectively.
Position vectors of P and Q are r(0) and r(s) respectively.

Let R be the position vector of the current point T on the plane which

contains the tangent line at P and the point Q:

1 1 | I

PT = OT OP=R 1(0)
. N
t = r°0);, PQ=0Q OP=r(s) r(0)

Figure 1.3: Osculating plane

The vectors PT; t; PO lying in the same plane and therefore their scalar

product must be zero, ie:; the equation of the plane is given by

IR F0):7°(0):F(s) T(O) = 0 (1.16)
Now, r(s) = T(0)+sr °(0)+;?°°(0)+O(s3)
e ¥(s) FO) - s?(o)+;? *(0) + O(s*) (1.17)
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1.4. Tangent, normal and binormal: 13

Using (1.17) in (1.16), as s ! 0; we get

~ ~ ~ ~ 2'\/ -
R T(0);r°(0);sr°(0)+ —r () = 0
1l 2 '

& | =] 1

s R F(0);r°(0):r°(0) +EhR F(O);F“(O);F‘”’(O)i =0

ite; R T(0):r°0)r>0) = 0J[*byusing(1.16)]

is the equation of osculating plane.

Note 1.3. If the curve is given in terms of an arbitrary parameter u; ie:; r = r(u);

I i

R r@u)r°u);r®u) = 0

then we get

This is the equation of osculating plane if the curve is given in any parameter

Remark 1.1.

Equation of osculating plane in Cartesian form:
Let the equation of given curve be r = x(u)| + y(u)J + Z(Lﬁ)k and

R — Xi + Y] + Zk; then the equation of osculating planeis R ¥ ¥:¥ = O:
X x Y vy Z z
e X y z =0

X y z
De nition 1.10 (Point of in exion).

t2 = 1
dr dr
ie * & 1
Di erentiate with respect to s; we get
2 ¥ = 0
e r°or® =0

If follows that the vectors r °; ¥ ® are linearly independent unless r *® = 0: At
a point P where r® = 0 is called a point of in exion and the tangent line at P

is called in exional.
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14 1.4. Tangent, normal and binormal:

Equation of the osculating plane at a point of in exion:

Now we can obtain an osculating plane at a point of in exion on P
unless the curve is a straight line. For this, we consider the relation

rere=0:
Di erentiate with respectto s; weget r° r*°+r® r® =0
At the point of in exion ¥ =0 and thus we get r° r > = 0:

Hence r ° is linearly independent to r * except when r * = O
Repetition of this process, we get r° r ® = 0 where r ® is the rst
non-zero derivative of r at P(k 2): If r® =0 forall k 2 then since
the curve is analytic and we conclude that t is constant and the curve is a
straight line. If ¥ ® 6- 0 then we have

~ N ~  s¢s
r(s) r(0) = st+ Fl’ ®@©)+0 s

as s I 0 and the equaﬁion of osculating plane is

. 1

R r(0) r°(0): r®©0 = 0

Example 1.4. Find the equation of the osculating plane at a general point on the

curve givenby r = u;u? u® :

Solution:
Given T — ui+u?j+u’k
) X=u; y=u3 z=U°
X =1; y=2u; z=3U°
X = 0; Yy =2; z=6u

Let (X;Y;Z) be any point on the osculating plane, then the equation of
osculating plane is

X uyY u zud8
1 2u 3u?
0 2 6u

On expanding the determinant, we get

6UX 6uY +2Z 2u° = 0

ier 3u®X 3uy+zZ v =0
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1.4. Tangent, normal and binormal:

Example 1.5. Find the osculating plane at the point u on the helix

X =acosu; y=asinu; z=cu

Solution:
Given x =acosu; y =asinu; z=cu
X = asinu; y =acosu ; Z=cC
X = acosu; y = asinu; z=0

Let (X;Y;Z) be any point on the osculating plane, then the equation of

osculating plane is

X acosu Y asinu Z cu
asinu acosu c =0

acosu asinu 0

On expanding the determinant, we get

acsinuX accosuY +a’Z a’cu 0

Il
o

ice;; csinuX ccosuY +aZ acu

which is the required equation of the osculating plane.
Example 1.6. For the curve x = 3t; y = 3t%; z = 2t show that any plane

meets it in three points and deduce the equation of the osculating plane at t = ta:

Solution:
Let the equation of the plane be Ax + By + Cz+ D = 0:
ABY)+B 3P +C 2t +D = 0
0

e 2ct® +3Bt2 +3At+ D

which is a cubic equation in t. So there will be three values of t. Hence

the plane meets the given curve in three points.

To nd the equation of osculating plane:

Given x =3t y = 3t%; z=2t
X = 3; y = 6t; z =6t
X = 0; y = 6; z=12t

Let (X;Y;Z) be any point on the osculating plane, then the equation of
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16 1.4. Tangent, normal and binormal:

osculating plane is

X 3t Y 3t z2t 3
3 6t 6t
0 6 12t

On expanding the determinant, we get

2Xt? 2v¥P+z 2t = 0

which is the required equation of the osculating plane.

De nition 1.11 (Normal plane).
The normal plane at a point P on the curve is that plane through P which is
orthogonal to the tangent at P

Note 1.4. Clearly the normal plane is perpendicular to the osculating plane.

De nition 1.12 (Principal normal).

The principal normal at P is the line of intersection of the normal plane and
the osculating plane at P. A unit vector along the principal normal is denoted by

~

n:

Note 1.5. The normal which lies in osculating plane at any point of a curve is

called a principal normal.

De nition 1.13 (Bi-normal).

The normal which is perpendicular to the osculating plane at a point is called

the binormal and it is denoted by b:

Note 1.6. Clearly binormal is also perpendicular to principal normal.

Fundamental Planes of a space curves:

Through any point on the curve, we have three unit vectors t n; b
forming three mutually perpendicular planes namely osculating plane,
rectifying plane and normal plane.

The plane formed by the vectors t and n is called the osculating plane
and that of the plane formed by the vectors b and h is called the normal
plane. Similarly, the plane formed by the vectors b and 1 is called the

rectifying plane.
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1.4. Tangent, normal and binormal: 17

The three unit vectors

Rectifying plane

tb;n form a right handed i N

. br
orthogonal system of axes S 7]
and satisfying the following cutve
relations: n

normal

~ ~ e e~ o~ f,
t t = n n=b b=1 tan gent
~ o~ o~ o~ s \
tn = n b = b t= O osculating plane
t h = b;n b=t; b t=n

Figure 1.4: Planes

Thus at any point on the curve, we have three mutually perpendicular
planes. They are
(i) The osculating plane containing t and n and its equation is
R T b=o
(i) The normal plane containing n and b and its equation is
R T t{-0
(iii) The rectifying plane containing b and t and its equation is

~

R F n=o

Equation of Tangent line and Normal Plane:

Tangent line: Equation of tangent line interms of parameter u is given by
R—F+ ¥ where R is the position vector of a current point on the tangent
lineand isascalar.

Ifwewrite R = Xi+Y]+2Zk: T=xi+yj+zk and ¥ = xi + yj + zk in the

above equation, we get the Cartesian form of equation of tangent line as

X X Y v Z z
x_y_z

Note 1.7. Instead of the parameter u; if we use parameter s (arc length), then we

get the equation of tangent line as

(i) R=r+ r° where isascalar. (vector form).
X

.. X y Z z .
(ii) = = = (Cartesian form)

XO yCl ZO

<
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1.4. Tangent, normal and binormal:

Normal Plane: The equation of normal plane in general parameter u is
given by

R rr =20
or R T t =0 [*r=t]

where R is the position vector of current point on the normal plane.
If we take R = XNi+Y}+Z§; r= xNi+y]+zE and r = x~i+y}+zE:
Then the equation of normal plane becomes

X xXx+(Y yy+Z 2)z = 0

Note 1.8. Instead of the parameter u; if the parameter s(arc length) is given,
then equation of normal plane is

() R T ¥°=0 (vector form)
(i) X xx°+Y yy +(@Z z)z2=0 (Cartesian form)

Example 1.7. For the curve x = 3u; y = 3u®; z = 2u®: Find

(i) Unit tangent vector
(ii) Equation of tangent line

(iii) Equation of normal plane

Solution:
Given x = 3u; y=3u?* z=2u®
Foo o xi+ y} vk
) ¥ o= 3ui+3u?j+ 20’k
t = 3i+6uj+6u’k
; < t 3i + 6uj + 6uk
() tangent vector t = ﬁ - q
t T
32 4 (6u)? + 6u?’
i+2uj+2u’k i+ 2uj+2u’k
B = 1:20
1+ 20

(i) Equation of tangent line (Cartesian form):
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1.5. Curvature and T orsion: 19

X X B Y vy _ Z 7
X B y oz
X 3u Y 3z 2w
3 6u 6u”
) X  3u Y 3 z 26
e = = >
1 2u 2u

(iil) Equation of normal plane (Cartesian form):

X xXIx+(Y yy+(Z 2z = 0

ile; (X 3u)3+Y 3uW6u+ 2z 20°6U° = O

e X +2uY +2u?Z 3u + 6u® + 4u°

(on simpli cation)

Example 1.8. Find the equation of tangent and normal plane at the point u on

the circular helix x = acosu; y=asinu; z = bu:

Solution:
Given x = acosu; y=asinu; z=bu

Equation of tangent is

X X Y v Z z
X B y B z
X acosu Y asinu Z bu
asinu - acosu b

Equation of normal plane(Cartesian form):

X X)x+(Y yy+@Z 2z =0
(X acosu)( asinu)+ (Y asinu)acosu+(Z bu)b = 0
Xasinu Yacosu = O

1.5. Curvature and Torsion:

De nition 1.14 (Curvature).

The rate of change of the direction of tangent with respect to arc lengths is

called the curvature, it is denoted by :

Note 1.9. By de nition, ] ] — t°: where is the curvature vector. In order
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20 1.5. Curvature and T orsion:

to determine the sign of ; we recall that t° =T ® lies in the osculating plane
and it is also normal to t and hence t ° is proportional to 1 ie; t° =
But we choose the direction of n such that the curvature s always positive.
ie; t°= m:

De nition 1.15 (Radius of curvature).

The reciprocal of the curvature is called the radius of curvature and it is denoted
1

by : ie; =—

De nition 1.16 (Torsion).

The rate at which the osculating plane turns about the tangent at the point P

moved, is called the torsion of the curve at P and it is denoted by :

Note 1.10. The torsion may have positive as well as negative direction.

Therefore is determined both in magnitude and direction.

De nition 1.17 (Radius of Torsion).

The reciprocal of the torsion is called the radius of torsion and is denoted by
1

e, =
De nition 1.18 (Screw curvature).
The rate of change of the direction of principal normal with respect to arc length
as the point P moves along the curve is called the screw curvature vector and its

dn
magnitude is + : Hence L a@
S

Bookwork 1.4 (Serret-Frenet Formulae:).

The following three relations are known as Serret-Frenet Formulae.

~

(i) t°= n

(i) ho= t+ b

52

(iii) b° =
Proof. (i) Weknowthat t2=1 ie;t t=1

Di erentiating both sides with respect to arc length s; we get

tt°+t°t = O
) i - o
e tt° = 0

which shows that t° is perpendicular to t
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1.5. Curvature and T orsion: 21

The equation of the osculattpg plane at a ?oint P(r) of the curve is

R rror® =0

L]

The last equation shows that t° lies in the osculating plane and hence to is

perpendicular to the binormal b:
Thus t° is parallel to E t. which implies that tis parallel to n:
Hence, t°= n:
Therefore, t°= n [Taking positive sign only]
(i) We know that b2 = 1; e b b = 1:

Di erentiating with respect to s; we get

b b+b°b = 0 )b b°=0
Therefore, B is perpendicular to E and thus B ° lies in the osculating plane.
Also, we know that b t = 0
Di erentiating with respect to arc length s; we get

b t°+b°t = 0

) b hebt = 0 (using (i)
) bhsb T = 0)b T=0

Therefore, b° is perpendicular to t and hence we get b° must be parallel to

n:
Thus, we can write b° — 1
By convention, we can take 5 = n
(ii) We knowthat i = bt
Di erentiating both sides with respect to s; we get
RS = b Tab T
— b n+ Nt (using (i) and (iii))
- b n b
e n° = t+ b
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22 1.5. Curvature and T orsion:

Note 1.11. Serret-Frenet formulae can also be written in the matrix form:

2
Y
I

o
o

o
S0 -

o ?
[=]
o
o
T

Theorem 1.1. A necessary and su cient condition that a curve be a straight line
is that = O at all points.
Proof. Necessary part: Assume that curve is a straight line.

Any straight line has equation of the form ¥ — &s + b; where a and bare

constant vectors.
Thus, F°=t—aand F®=t°=0: ie: n=0 andhence =0:
Su cientpart: If =0; then r® = 0:

Integrating twice, we get r = as + b which is the equation of a straight

line.
Theorem 1.2. A curve is a plane curve if and only if = 0 at all points.

Proof. Necessary part: Let the curve lie in a plane. Then the plane curve lie on

the osculating plane.

Therefore, the plane must be Xed and so B does not change, which means

that B is a constant vector.

b = 0 ) h=0) n=0
) ¥ - o
) B
)t
ie; =0

Su cient part: Assume that = 0:
Now, our aim is to prove that the curve is a plane curve.
b> = n
)b - 0+ -0

) b is a constant vector:
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1.5. Curvature and T orsion: 23

Now ¥ = ¥ b°+7° b

) ¥ b — constant—C (say)
) XNi + y} + ZE b;i + bz] + b3E = C
) bix +byy+bsz = C whichisaplane equation:

Thus the point (x;y; z) satis es the plane equation for all values of x;y;z and

hence the curve is a plane curve.

This completes the proof of the theorem.

Bookwork 1.5.
The necessary and su cient condition for the curve to be a plane curve is

FO;FOO;FOOO -0

Proof. We know that t° = t:

Thus,wehave T® = t°= n (i) (by Serret Frenet formulae)
Now, r° r® = t n
e T° T® = b (*t n=bh)

Di erentiating both sides with respect to s; we get

~

Fo F000+Foo roo _ b0+ ob
) r° r*4+0 = n+ b (by Serret Frenet formulae)
)F° ree = n+ b (i)

Taking scalar products of (i) and (ii); we get

(S L S T P
Lo o 00 2 - ~ o ~
) r ;rr = nn+ nb
)
i:e:; FD;F OD;F 000 _ 2 (|||)
If the left hand member of (iii) is zero, then either =0 or =0:
Now, let 0 at some point of the curve, then in this neighbourhood of this

point 6= 0: Hence = 0 in this neighbourhood and hence the curve is a straight
line and therefore = 0 on this line and this is a contradiction to our assumption.

Hence = 0 at all points and the curve is a plane curve.
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24 1.5. Curvature and T orsion:

Conversely, if the curve is a plane curve then =0

Therefore from (iii); we get

;? OO;F 000 _ 2(0) -0

Note 1.12. The above theorem can alﬁo be stated as the necessary and su cient

condition for the curve to be planeis r,r;r =0

Proof. h 1
F o;'F OO;F 000 _ FUO, Euoz + FUOO, 'Fuo 3 + ruooo + 3?UOUOO
o= uterT
- S
rrr =

oz%z ds=du _ s

Hence when T°r® r° = 0 is the necessary and su cient condition for

the curve to be a plane it follows that “F; nr Lisalso a necessary and su cient

condition for the curve to be a plane.

Example 1.9. Show that Serret-Frenet formulae can be written in the form
P_w € A —w m b —w b andalso determine w: (W is called

Darbouxe vector of the curve)

Solution: We know that from Serret-Frenet formulae

P - Ao i t+b t [*tT tT=0 b t=7]
= ;+B ?
- w t wherew= t+ b
- b f- t n+ bon
~ f+b hH-w n
b — h- f b+ b b [*b b=0:; n=t b]

I
—~+?
+
o2
o2
Il
s
=}

@ tt t = -
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25

Solution:

0) We know that

d
F o0 _ ﬁ
ds
= n+ n°
- ‘n+
too _ Fooo _ OF’]
F)oo _ F(iv) _ 00
h |
to foo ;1 _ 2
3 o o

(i)  Weknowthat b®* -
b -
bDOD -

_ 2

kL .

y Bepw gml
2

r

[

t+ b (by Serret Frenet formulae)

2t+

3

~

b
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26 1.5. Curvature and T orsion:

Example 1.11. Show that the principal normals at consecutive points do not

intersect unless = 0

Solution:

i+ dil \ o

Figure 1.5: Curve length

Let P and Q be two consecutive points with position vectors r and
r +dr on the curve C:

Let the principal normals at these points be n and n + dn:

The principal normals will intersect if the three vectors n; n+dn and dr

are coplanar.

e nmn+dndr = 0
ie ﬁﬁd?rﬁ;dﬁ dr = 0
h . dn_dr] ~ 0
e "OR, N thg_s’b ad] _ o
e B; ?,
.10
ie Nobt -0
“N ~ ,VJ.
) = 0 (*nbt=1

Hence the principal normals at consecutive points do not intersect unless
=0

Example 1.12. Prove that the position vector of current point on a curve satis es

the di erential equa;}on

d d szITT !

d N
ds ds d Tas L T9F_o

8, ~
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27

Solution:
1 1 T 2 di N
We know that = —5 = - dr:t; d;=_: n
) ds ds” s
d1d 1. d .+ _.
LHS: = / n + “t + 7 n
ds ds # ds
d 1d,. d .~ _.
= A (n) + t + n
ds = ds d#
d 1 ~ ~ d ~ ~

= 7 b + —

ot+ t + n
ds (using Serret Fréaet formulae)
db d ~ ~ d o

= — _t + n+__ _¢
ds ds ds
d ~ ~ ~
= n — -t+— —t4+ n=0
ds ds

Bookwork 1.6. Find the curvature and Torsion of any curve r = r(u)

Proof. Let the equation of a given curve be r = r(u) where u is any general

parameter.
~ dr drds .,
N= — = —__ =158
du dsdu
Y ¥ o= st

I [~_dt dtds +,

r = ts+ts=ts+1t'ss _—=——=ts]
du dsdu

= ts+ ﬁsz

T = st+ §n

Again di erentiating with respect to u; we get

N ~ ds .. N N ds
r = st—+st+ s2n+ 2ssn+ s °o—
du du

= s %% t+ ss + s2+2ssn+ s

Vector cross multiplying (1.18) and (1.19), we get

~

f r = st st+ s°n =sst

~ ~

t+s°t n=0+ s°b

~

ie: T r = s

Taking vector dot product of (1.21) and (1.20), we get

(1.18)

(1.19)

(1.20)

(1.21)
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28 1.5. Curvature and T orsion:

FhF o= s s
e rrr o= 28 (1.22)
It remains to nd the value of and
To Find
From (1.21), we have
T T = s3b= s3 (1.23)
T
) = s
T
ie = —3 (1.24)
r
To Find
From (1.22), we have
FE T
EET
= h o7
ie; - LI (using (1.23) (1.25)
ror

Note 1.13. If the equation of the curve is given in terms of arc length s:

NN ds ds o~ o~ W
ile; r=r(s);, then s = d_ and o - 1. Thenr, r r becomes r° r®; r°
u S

Thus (1.23) becomes = Tr° 1 :

Similarly from (1.25), we have = o,

t
Example 1.13. Show that the curve x = t; y = ;o Z = lies in a

plane.

Solution: We know thhat the necessary and su cient condition for a curve

1

tobe aplanecurveis ¥, r, r =0 h |

Hence, it is enough to prove that v, r; r =0:
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1.5. Curvature and T orsion: 29

oo xieyjezk
~ 1+t~ 1t~
= ti+ ]+ k
|
¥ _ —
i fhzjw %;1 K
T = 0i+_j+ _k
~ B~ B~
Po= 0 i ok l
1
rnE = 0 té 2,
0 t4 !
1
— 1 1 “+1
, , t2 t2
T g ¢ 0 1 1
0 1 1
- 0

Example 1.14. Find the curvature and torsion of the cubic curve given by

r=uud®
Solution:
r = 1 2u;3u?
- (026 ); 4 _(0:0:6)
r = u
ik
T T = 1 2u 3u
0 2 6u
_ 6u’i 6uj+ 2K
T T o= B 6u*+36u%+ 4
= 2 9U4+9L2I2+1
. 1 2u 3u
rrnr = 0 2 6u
0 O 6

= 12

M.Sc.(Mathematics)-1 Year-1 Sem Di erential Geometry



30

1.5. Curvature and T orsion:

+9u +1 2
p = 14+ 4u® + 9u’
3.

LHJ 4 3=2

+9u
v

I~

r

je

2

=?
=?

12 B 3
49u%+9u% + 1 ou* +9u? + 1

Example 1.15. Find the curvature and torsion of the curve

x=a3tt’;y=3at; z=a3t+t:
Solution:
r = a3t t®;3at%a 3t+t°
r = 3a 3at? 6at; 3a+ 3at’
F - (6at:6abat); r —( 6a 0;6a)
T i
Y ¥ = 3a 3a® 6at 3a+3at? =18a° t* 11 2tj+ 1+t k
Gat 6a Gat
T T = 18" 2 1+t
rr oo |
oy ~ N
R E . 1
= 18a2ht2 1i 2tj+ 1+t k 6ai + 0j + 6ak
- 18° 6at® 1 +6at'+1 =216a°
= 3'2a 1+t2
N
) - —F
20 2 1
- hl%?ap 2 the -3 1412
NEVIR 216a° . _ 1
_onnr “ 0= =
- ~ ~ - 1
rr 18a% 2 1+t? 3a 1+t
Thus, = -
3al+t
Example 1.16. For the curve x = 3u; y = 3u’, z= 2u® . Show that

3 2
1+2u
2

Di erential Geometry
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Solution
r = 3u3u%2u®
T = 3:6u6u’
T = (0,6;12u)
Yoo (0;0;12)
i1k
T ¥ = 3 6u 6u?
0 ?w_ 12u ~ ~
= 36u” i u)j + 18k
€l
T I
= 18 4yliqu’s1
_ g 2w n it
| = 3 1+40®+a*
= 31+20°
h 1 3 2u 6u
KLY - 0 6 12u =216
0O 0 12
NS
1 ~T ~ 3
r r
= = _ —1+20°
1 ~ ~2
= — = 1 — 1+20°
rrr o 2
3
Thus, = =51+2u2 2

P

Example 1.17. Fobthe curve x =atan ; y=acot ; z=a 2logtan : Prove

2 2a
that = = :

sin? 2

Solution:
T = atan :cot ; 2logtan

Di erentiating both sidesywith respect to arc length s; we get

~ 2
~ o 2 . 2.
> t = B ec” ; Cosec” ; ‘ &d_ (1.26)

sin  cos ds

Squaring on both sides, we get
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N 2 v d 2
t?2 = 1-a® sec*® +cosec® _
, I sin? 2 ds
e 987 4 tcos* +2sin? cos? (1.27)
d - a7 sin* cos®
2
a? sin? + cos?
- sin® cos®
a2
~ sin® cos®
3 ds a
d sidf cos P 2 ) (1.28)
5 2 —2 1CSin cos
Now, t = gc cosec N
[0 —CA
sin cos a
= sin® ; cos® : 2sin cos
Di erentiating with respect to s; we get
t° — n= 2sin cos :2c0s sin ; Zcos2
sin?> cos? ds
= sin2 ;sin2 ; 2¢os2 (1.29)
a
Squaring we get
o 1
2 _ S SOS 2 sin®2 +cos?2 (1.30)
a
2sin* cos*
= A a2
_ 25sin’ cos?
ie: = 3 p (1.31)
1 a 2" 2a
Hence - _:p_ _

2sin? cos? sin 2

Substitute(1.31) in (1.29), we get

" 2sin?

a

5S¢

Di erentiating with

52

o
—?

2 -2 2
cos sin®  cos
= sin2 ;sin2 ; 2002
) n ~ sin2 : sin2 ;cosz
n = ; ;
b,
respect to s; we get
Lo~ 1 b
t+ b= 1[ 2c0s2 ;2cos2 ; 2 2sin2
2 ds
(by using Serret Frenet formylae)
2 sin® | ~c0s® )
—p— c0s2 ;cos2 ; 2sin2
a 2

Di erential Geometry
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Squaring, we get

5 2sin* cos* ) ., 4sin* cos’
+ = ———— 2c08°2 +2s8in°2 = ——
a2 a2
s 4 4
2 __4sin” cos 5
- ——

4sin* cos®  2sin* cos?

a? a2
_ 5 2sin* cos*
ien - = =
a2
2sin’ cos? sin22
) = - D
a 2a

2
(negative sign is taken for a left handed system)

1 2 pEa

S

2 2a

sin? 2

Behaviour of a curve in the neighbourhood of one of its
points:

At a point P on the curve let axes ox; oy; oz be taken along t n and b;
and let X; Y; Z be the coordinates of a neighbouring point Q of the curve

relative to these axes.

If the curve is of class 24 and if s denotes the small arc PQ then

using Taylor's theorem, we get

N 4

~ ~ ~ Szwoo 000 S~ iv
f(s) = F(O)+st°(0)+ 57 "(0)+ P ™(0) + —oF (0) +O(s°) ass 1 0

S
3
Now by Serret-Frenet formulae

F°(0) = € r®0)=n 0= °" %+ b

() I T B
At P, r(0)=0

N U - VRPN

r(s) = S+_n+E " %+ b
“ |
— 3 Z{ 3 %44 2° 4 ° b

N 24 . _~

But r(s) = Xt+Yn+2Zb

Equating like wise coe cients, we get
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243 st >

X =s o_ *
2 o3
__6__ 8 :>>
+ 1™ 8 st 4
s s (1.32)
Y = +
_ 4 4
2 6 24
s 1 .
+ >’
Z = + 2° + °)s
6 24
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24

It follows that as a rst order approximati?)n the chord PQ is along the

9

tangent; its projection on the principal normal is a magnitude of the second
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order, and its projection on the binormal is of the third order.

From the above relations (1.32), two relations can be deducted which are
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analogous to Newton's formula for the curvature of plane curve and these

are
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2Y

aSS!

]
o ©

as s
XY
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. 1=2 s
Further, we can easily prove that X? + Y? + z? s1 — _
dfxample 1.18. Show that the projection of the curve h@&rcRuentie -escTilatiing:

1
plane is approximately the curve Z = 0; Y =l 5 X?; its projection on the
1
rectifying plane is approximately y = 0; = ' x> and its projection on the
normal plane is approximately x = 0; z° = 5y
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From above, retaining only the rst term and then we get X t s;
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I

. 2 2
plane are respectively Y =0; Z= —_X? and X =0; z°=_ _ Y%
6 9

Example 1.19. Show that the length of the common perpendicular d of thae
tangents at two near points distance s; apart is approximately given by d = ?:

Solution:

Let P,Q have parameters O and s respectively. The unit tangent
vectors at P and Q are r °(0);r °(s); so the unit vector of the common
perpendicular is along r°(s) r°(0): The projection of the vector r(s) r(0)

in this direction is equal to d; so

r(s) r(0);r °(s); T °(0)

d -
re(s) r°(0)

Let Us Sum Up:

In this unit, the students acquired knowledge to

nd the equation of osculating plane at a point.
the concept of Normal Plane and Principal Plane .

derive Serret-Frenet formulae.

Check Your Progress:

1. Find the arc length of the curve r = e'cost;e'sint;e! :

2. Find the osculating plane at the point t = 1 of a curve
r = 3at; 3bt*; ct® :

3. Find the curvature and torsion at = 4 of the curve

r=(acos ; asin ; acos2 ):

4. Find the curvature and torsion of the curve

Fz(a(u_ sinu); a(l cosu); bu):

5. Find the curvature and torsion of the curve x = acosu; y = asinu;

zZ =aucot :
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P

6. Forthecurve r = ~ 6at® a 1+3t> ;  6at |
1
show that = = —
al+3t

Self Assessment Problems:

1. De ne acurve.

2. De ne class of function m and regular function.
3. De ne arc length.

4. De ne the curvature and torsion.

5. Prove that a necessary and su cient condition for the curve to be a

straight line isthat = 0 and for a plane curve =0
6. Derive the Serret-Frenet formulae.

7. Derive the formula for curvature and torsion in terms of the

parameters s and u:

Answer:

X z
2. — X+—=1
a b ¢
5 6
2
3 = v = Ba
a 1+4a
a ] b
4. =—t’ =
b? + 4a®sin® = b? + 4a%sin® _
2
- 2 -
sin sin  cos
5. = ; =
a a

Choose the correct or more suitable answer:

1. The plane containing the vectors t and n is called the ::::::

(a) osculating plane
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(b) normal plane
(c) rectifying plane
(d) tangent plane.
2. The parametric equations for the cubic curve is given by

x=u, y =u5 z =u( 1<uc< 1),thentheequatonofthe

curve is
@ x=z2 (b) xz=y* (c) X¥*z=y d) xz =y

3. A necessary and su cient condition that a curve be a straight line is

(@) > 0 at some points
(b) > 0 at all points points
(c) =0 atsome points

(d) =0 atall points.

Answer:

Ha@d (®d

Glossaries:

Torsion: In the di erential geometry of curves in three dimensions, the

torsion of a curve measures how sharply it is twisting out of the osculating
plane.

Suggested Readings:

1. T.J. Willmore, An Introduction to Di erential Geometry , Oxford
University press, (17th Impression), New Delhi, 2002. (Indian
Print).

2. C.E.Weatherburn, Di erential Geometry of Three Dimensions |,
University Press, Cambridge, 1930.
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40 2.1. Curvature and torsion of a curve given as the intersection of two surfaces:

Objectives

After completion of this unit, students will be able to
F understand the conceptof contact between curves and surfaces.
F derive the equation of an involute and evolute.

F nd spherical indicatrix of the tangent, principal normal and

binormal.

Overview

In this unit, we will illustrate how to nd the curvature and
torsion of a given curve. Also we will explain the concept of osculating

plane and osculating sphere.

2.1. Curvature and torsion of a curve given as the intersection
of two surfaces:

Let the equation of the curve be given as the intersection of two
surfaces f(x;y;z) = 0; g(x;y;z) = 0 and if a set of parametric equations

can be found easily, we may proceed as follows:

We know that I'f and I'g are normal vectors to the surfaces f(x;y;z) = 0

and g(x;y;z) = 0 respectively.
Therefore unit tangent vector t is parallelto 't [g:
Let F'f Fg=nh: Then t is parallel to h:
Therefore h = t; for some constant
) I T
Dhivhjehk = xicyjezk

Equating likewise terms, we get

Now, by total di erentiation formula
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df @fdx @fdy @fdz
—_— = D e N —
ds @xds @yds @zds
) df ef ef _ ef
— = Xy + 2
ds @x @y 0z
df h@f  per h,ef
- 2 BT
ds @x @y @z

Multiplying both sides by ; we get

df @f @f @f
—_ = hl_+h2_+ 3—
ds @x @y @z
d h @ N @ N @
_ = — +hp— +hg— - sa
) ds 1@x 2@y 3@z (say)
d
) - (2.1)
ds N
Also, t = h (2.2)
Operating (2.1) in (2.2), we get
d N
-t = h
ds
) t°+ %t = h (2.3)
e Zh+ %t = h [by Serret-Frenet formulae] (2.9)
Taking vector product of (2.2) and (2.4), we get
t 2h+e % = h h
b+ 2°0) = h h
) Sh -  where —=h h (2.5)
) 3’ b =
ie: 3 _ 7
ie; = 3 Which gives
Now, operating (2.1) and (2.5), we get
d 3~ ~
_ b =
ds
“ e b - (2.6)

Taking scalar product of (2.4) and (2.6), we get
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42 2.1. Curvature and torsion of a curve given as the intersection of two surfaces:

IN
52
+
w
o
Il
>?

ie; = ————; which gives

Example 2.1. Find the curvature and torsion of the curve of intersection of two

quadric surfaces ax® + by” + cz> = 1 and a°x® + b°y* + ¢°z® = 1:

Solution:

Let f = ax®*+by’+cz® 1

g = axX+by +cz® 1

We know that I'f is normal to the surface f = 0 and I'g is normal to the

surface g = 0.

~a ~2 ~@
f = i@+J +k= axt+by’+cz® 1
r @x @y @z
iie; Ff = 2axi+2byj+ 2czk
Similarly, g = 2a°xi + 2b°y] + 2c°zk
y e g = i ik
2ax 2by 2cz
e It rg _ 2a°x  2b%y 2c°z
4 bc® b’c yzi+4 a’c ac’ xzj+4 ab’® a’b xyk
i:F:; I rg =
A By C~ N—= v —
4xyz i+ j+ k = 4Awi + 4Bxzjz
Cxyk
where A = bc® b’c; B=ca’ c’a; C=ab’ ab

Since the unit tangent vector t parallelto 't I'g; we can take

Av B~ C~ ~
i+ _j+_k = t 2.7)
X y z
Ay By C~ ~ v
) ir+—j+—k = r° [*t=r"] ’
X y z .
Ax B~ C~ dxv dy~ dz»
) i+—_j+_—_k = — i+ Zj+—k
X y z ds ds ds

Equating like-wise coe cients, we get

dx 1A dy 1B dz 1c
— = I == (2.8)
ds X ds vy ds z
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Now, if F is any scalar or vector function

dF @Fdx @Fdy @Fdz
- = 2,2, (2.9)
ds @xds @yds @zds
dF .

y &F _ AGF BOF COF (using (2.8)) (2.10)
ds x@x vy @y z @z

This formula converts the derivatives with respect to arc length s in to
derivatives with respect to co-ordinates.

. ~ Ay B~ C~
Equation (2.7) ) t = i+—j+—k (2.11)
X y z
Operating (2.10) on (2.11), we get l ’
Q ~ A_@ ' '
t = B@ Cc@ A By C~
ds X@x + y@y + 7@z Xi+yj+ zk
A%z, B2, C2~
) Phe ot = i —j —K (2.12)
X3 V3 z

Vector cross multiplying (2.11) and (2.12), we get |
' 2 2

~ 2 ~ o Ay By C~ A~ B~y C~
t n+ t = i+ j+ Kk 1 J k
X oy z X3 y3 73
. BC . AC
2 - 2 2
b = v BZ Cy* i+ e Cx? AZ j
AB ~
2
+W Ay>  Bx® k (2.13)
2 2 0 0 2 0 0 2
Now, Bz Cy = <ca caz ab aby
= a’ a (after simpli cation)
Similarly,Cx* Ay = b° b; AY BxX*=c" ¢
)y 3B = BG 23 a7+ GADb pjs ABC ¢k
y z Z X Xy
ABc 'y v 2 i

_ B A g, By b}+cc° c k

Taking modulus and thgn squaring on both sides, we get

2 2 2 6 6 6 ﬁ
ABC X y z
62 _ a a’+ b° b?+ ¢ c?
XGszG A2 BZ CZ
AL
A2B2C2 (|Z—_Aa2
e 2 = A g a2

X6y626 6 6 Z

This gives the value of
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Note 2.1.
Ay By C~
= I+ ]+ k
t
X y 7
B2 ¢C?
R 2 2 — —
ie = *)A(‘g y2 * 2
X,
e © - b
Next, we have to calculate
3 XSyBZSN X3 - y3 - Z3 N
— b= _3a ai+=—b" bj+r—c° ck
ABC A B X
~ x3 ~ Y .z o
= — a’ — b° j+— C°
b A a i+ B b j+ c k
3 .3,,3,3
XYyz
where = Y
ABC
Again operating (2.10) on (2.14), we get
d =~ A@ .
b = B@ CG@
ds X @x + y @y + Z @z
3 3 '
X S vz ~
, T a ai+ b® b j+—_ ¢ ck
h 1 A C
Yo e A3 . B3y C37°
) b”+b = — ai+—i be j+——c
\ X A y B z B
) F1+°Ot; = 3x & a3+3yb‘; b}+32c"0 c k
e n+ b = 3xa ai+3yb bj+3zc ck

Taking scalar product of (2.12) and (2.15), we geq

5~ e o~ o Av B~ C-
n+ t n+ b = i ] k
x3  ys_ 23
) (1)+0+0+0 3xa
, +U+0+0 = A . B
X33XA?2 y33yb
3 o0
.
AL
3 a’ a
e = 2
3
P . 2
= 3ABC A a’ a
X2
62x3y323

o

~

C

73

(2.14)

c k

(2.15)

~

3zc

aiz3yb bj+3zc ck

o

Di erential Geometry
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2.2.1.

2.2. Contact between curves and surfaces: < 45

AZ
) _ 3y 2 a a ‘
ABE——xt——
a’a
This gives the value of : A2

Contact between curves and surfaces:

Let r =r(u) be acurve and F(x;y;z) = 0 be a surface, then the point of
intersection of curve and surface is given by the parameter value u which

are the roots of the equation F (x(u); y(u);z(u)) = 0 or F(u) = O:

Note 2.2. If uy isaroot of F(u) = 0 then F(up) = O:

If F°(u =0 but F*(u j 6 0; then we can say that the curve and surface have

two point of contact at r(uo):

If F°(ug) = 0, F™(ug) = O0; but F™(ug) O then we can say that the curve
and surface have three point contact at r(u,):
In general, if FPuy=F°U )= =F"Yu)=0 but F(u )6: 0; then

we can say that the curve and surface have n-point of contact at T(u):

Osculating circle:

De nition 2.1. A curve in the osculating plane which has three point of contact

with the curve at P is called osculating circle at P;
Bookwork 2.1. Derive the equation of the osculating circle

Proof. We know that the section of the sphere by a plane is a circle. Let
Osculating circle in the osculating plane be given by as the intersection of the

plane and the sphere.
r ¢ = (2.16)
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)

(S )

Figure 2.1: Osculating circle

where T is the position vector of the generic point and ¢ is the position

vector of the centre C and a is the radius of the sphere.

Let the equation of the curve be r = r(s): The point of intersection of the curve

and sphere is given by

~ 2

F(s) = r ¢ a’=0 (2.17)

The condition for three point of contactare F = F° = F® = 0:

Di erentiate (2.17) with respect to s we get

N~ o~ 2 2
r ¢ = a
F © r° = 0 (e)7T ¢ t=0 (*r =1t (2.18)
Again di erentiating with respect to s; we get
F ST A E =0
e T ¢ n++tt = 0
e T Eﬁ=—1= (2.19)

Equation (2.18) shows that r ¢ lies in the normal plane at P. But by
de nition, it also lies in the osculating plane at P. Hence r ¢ must be along
the line of intersection of the osculating plane and the normal plane, thus it must

lie along n:

=?
(eX4

= n where isany scalar: (2.20)
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Substitute (2.20) in (2.17) and (2.19), we get

Thus, the position vector of the centre of osculating circle is given by

C = TF nN=r+n (using(2.20)) (2.21)

2.2.2. Osculating sphere:

De nition 2.2. The osculating sphere at a point P is de ned as the sphere which

has four point of contact with the curve at P

Bookwork 2.2. Derive the equation of the osculating sphere

Proof. Let ¢ be the position vector and R be the radius of the sphere. Then its

~ o~ 2 . - .
equation isgivenby r ¢ ?_ R where R is the position vector of the generic
point. The point of intersection of the curve r = r(s) with the sphere is given by

~ 2

F(s) = r ¢c° R? (2.22)

The condition for four point of contact are

F(s) = 0; F(()=0; F°(s)=0; F*(s)=0

Di erentiate (2.22) thrice with respect to s; we get

~ A2
r ¢ = R?
~ o~ o~
r ¢ r° =
~ ~ ~ 00 ~0 e
rcr+«r r =20
~ ~ ~ o0 N L0 oo
r c +F ¥®+2r ¥ =0
We know that
F =6 r°r°=Lr"=t’=n
r°r® — t n=0
00 N ~
r° = t = n’= "+ n°= °n+ t+ b
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Using the above relations, we get

Fr & = R (2.23)

F ¢t=0 (2.24)

h r ¢ n = (2.25)

F ¢ b T+ =0 (2.26)

r c b = = (2.27)

here L : !
where — - — = - (2.28)

From (2.24), we see that t ¢ is perpendicular to t:

Thus we can express r ¢ as a linear combination of n and b
¥ ¢ = h+b
& — T+ n+ b (2.29)
2 2 2 2 o2 22402

R - + = = i (2.30)

Equation (2.30) gives the radius of spherical curvature.

Again ° = 0 then is constant. So (2.30) gives R = and (2.29) gives
E = F + ﬁ:

Centre of osculating sphere coincides with the osculating circle.
Example 2.2. Show that the osculating plane at P has in general three point
contact with the curve at P.

Solution:
Let Q be a neighbouring point of P and the arc PQ = s: Then r(s) can be

expanded in a Taylor series as

NUO T oo T o000
OO, PO .

F(S) = I’(O) + 1 o1 + 31
o re(0)s r=0)s® r(0)s
ie;; r(s) r() = © + © w1 ©)s
1! 2! 3!

(neglecting higher powers of s)

From the equation of osculating plane, we have
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F) = T(s) FOT(©0)7"0)
_ TOs  TUO)s T (O)s 1
3 . & 3 F0) F(0)
LNO ~ 00 ~ 000 33
= 6r(0);r ) r (0)=6
) Foy . B0 FEOS FROs 2
1! 2! 3! 6

Equating likewise coe cients, we get
Fooo(o) 3

=— 0
6

F(s) = 0; F°(0)=0; F*0)=0 and

Thus we have F(s) = 0: F°(0) = 0; F*(0) =0 F*(0) O= 0

Hence the osculating plane has three-point contact at P

Example 2.3. If the radius of spherical curvature is constant, prove that the curve

either lies on a sphere or has constant curvature.

Solution:

The radius of spherical curvature at R is given by

R - + 2 (2.31)

Di erentiating both sides with respect to s; we get

d
0 _ 20+20 _ 0

ds
i Il
ie + 0 = 0
ds
i d
)Elther° = 0or + — ° =0
ds
Case 1: ° = O) - constant
1
) —_ = constant
e = constant
Thus, the curvature is constant.
Case 2: + d oo = 0 (2.32)
ds
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Centre of curvature C is given by

c = r+ n+ b
dC ~ 0 [ o 0 NO d 0 ~
— =7 n n — b
ds + N + N+ b +dS
~ ~ o~ . ~ d ~
= t+ t+ b + ‘n+ ° n+— ° b
] ds
(using Serret Frenet formulaeg
- _B_..d_ ° B: _+i ° B=OB=O
ds ds
dC
ie. — =0
ds

Therefore, C isaconstant vector.
i.e;; the centre of the osculating sphere is a Xxed point. Also by given

the radius is constant.

Hence the osculating sphere is a xed sphere and the given curve lies on

this sphere.

Example 2.4. Prove that the necessary and su cient condition that a curve lies

on asphereisthat — + o ( °) = 0 at every point on the curve.
s

Proof. Necessary part:If the curve lies on a sphere, then the sphere will be the
osculating sphere for every point on the curve, so that radius of osculating sphere

R is constant. We have,

R = + 2 (2.33)

Di erentiating both sides with respect to s; we get

0 0 d 0
4 # 0 = 242 g [* R is a constant]
20 L4 -0 ) - 4 Lo
ds ds
Thus, the condition is necessary.
Su cient Part: Assume that the condition —+ — ( °) = O is satis ed at every

ds
point on the curve.
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d
e 0 - 0
ds
d
1.e + — ° = 0
&
ey 2 +2  — = 0 (Multiplying both sides by 2 )
-
) d24d 7 -0
Integrating, ~ + ° = constant
) R? = constant) R = constant

~

Also, we have the centre of the osculating sphere c asC—F+ na+ (° )b

Therefore C is a constant vector i:e:; the centre of the osculating sphere is a

xed point, already we have proved that R = constant.

iie;; The given curve must lie on a sphere. Hence, the condition is

su cient.

Example 2.5. Find the equation of the osculating sphere and osculating circle at
(1;2;3) onthecurve x =2t +1; y =3t° + 2, z = 4> + 3:

Solution: Giventhat r = 2t+1; 3t° +2; 4t> + 3 :
At t=0 (1, 2; 3) is apointon the curve.
Di erentiating both sides with respect to s; we get

T 2,6t;12t° =(2,0,0) att=0

T = (0,6;24t) =(0;6;0) att=0

~

r = (0,0,24) =(0;0;24) att=0

(@

Let the equation of the osculating sphere be = R?(2.34)

Where ¢ is the position vector of the centre ; R is the radius and

C=ai+bj+ck

¢

Now for a four point contact at we have di erentiate (2.34) with

respect to t; we get

rcr =20 (2.35)
~ ~ ~ r\/2
r ¢ r+r = 0
Fr ¢ r+3rr =0
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At t = 0; the h(2.35) reduces to 1

i+2j+3k  ai+bj+ck 2i - 0

ie; (1 a2 =0 ) a=1

8
Similarly, b = g; c=23

Osculating sphere (2.34) passes through (1;2;3) is

oy~ y 8y T
i+2j+3k i+ j+3k - R?
3
4 2
iee RZE = — )JR=-—
9 ) 3
Hence the equation of the osculating sphere is
|* , 4
8_0 + (Z 3) = —
x 1P+ y 3 9
e, 3x*+3y*+3z2 6x 16y 182+50 = 0

The osculating circle is the intersection of the osculating plane and the

osculating sphere. h ~

1

R FFF = 0

At t =0; we hﬁve \

1

x i+ 2)j+ 3)k 12k = 0

ie, z 3 =0

Hence the equation of the osculating circle is
3x? +3y?+372 6x 16y 182+50=0; z 3=0

2.3. Tangent surfaces, Involutes and Evolutes:

De nition 2.3. If there is a one-one correspondence between points of two curves
C and C; such that the tangent at any point to C is a normal to the corresponding

point of C, is called an involute of C and C is called an evolute of Cy:

Bookwork 2.3. Find involute of a given curve

Let r = r(s) be the given space curve C; C, be an involute of C: The

quantities belonging to curve C, will be denoted by the su x. Then the
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position vector r, of any point P, on C, is given by

Fio= r+ t (2.36)

where is to be determined.

G

17

Involute

L
Evolute n \L L

Figure 2.2: Involute and Evolute

Di erentiate (2.36) with respect to s; we get

d?l ds; dr dt o~
— = —+ —+ t
ds; ds ds ds
. ~ ds; ~ ~ o
re; tt— = t+ n+ 't
ds
)& 1+ °t+ 1 (2.37)
1 ds = =+ —+ n .

Taking dot product on botg sides with t. we get
S

[

1+ — = 0 usingt t,=0
ds;

ie; 1+ ° =0
Integrating, we get

S + = ¢ Wwhere sis an arbitrary constant

) T o= r+(c s)t

This is the required equation of involute C, of C:

Substitute the value of  in (2.37), the unit tangent vector t; is given by

~ ds .
tt = (c s) En * =1 (2.38)
1

From above, we see that t: is parallel to n: Taking the positive direction
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2.3. Tangent surfaces, Involutes and Evolutes:

along the involute such that t, = n; we get

ds;

ds © s

Bookwork 2.4. Find the equation of an evolute of a given curve C

t
b
i 7

Evolute

Figure 2.3: Evolute

Let r = r(s) be the curve. Here, we shall use the notationsu  x to denote
the quantities belonging to the curve C,: Let r, be the position vector of
P,on C;: Let r be the position vector of P on C: Since the tangents to
curve C, are normals to the curve C; the point P, must lie in the normal

plane to the curve at P

P, o= Y+ n+ b (2.39)

Where and are to be determined.

Di erentiate with respect to s; we get

Edi - ﬂ + °n+ d_n + DB + @
ds; ds hds ds ds ' ds
i N N . 1 —
oo ). © te © N+ °+ b (2.40)
ds;

Since t, lies in the normal plane at P to the curve C; so it must be
parallel to h+ b

Comparing like-wise coe cients of equation (2.39), we get
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1
1 = 0 ) = —=
o+

Uzon integration, we'get

a+ ds = tan' _ where a is a constant
L |
= tan ds + a, |
i:e:; L ] ZJ ] (* — )
= cot ds+a or = cot ds+a
Thus, equation (2.39) becomes, Z l
f, = r+ n+ cot ds+a b

which is the required equation of evolute C, of C: Bookwork

2.5. Find the curvature ; and torsion ; of the involute.

Solution:
The equation of the involute is T, =T + (¢ s)t

Di erentiating both sides with respect to s; we get

drids;  _ §o .o s)t°
ds; ds \
™ Fl%l -t t+ 9 n f= dry _ ynit tangent of the involute at P
ds ds;
~ ds ~
Yt = (¢ s)n (2.41)
ds

This shows that the unit tangent t; of the involute is parallel to the unit

normal n of the given curve.

Taking the positive direction along the involute, we get

t, = n and (2.42)
ds;
— = (c 9 (2.43)
ds
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Now, Di erentiating equation (2.42) with respect to s; we get

dt, ds;  dn
ds; ds ds ds
e N, = t+ b~
ds;
_ . b t .
ie; iy = ——— (using(2.43)) (2.44)
(c s)

2 2
+
£ - 2&—5%
2— 2
+
S 2.45
) 1 © 9 (2.45)
From equation (2.44), we have
N bt bt (c s) b 1
1(c s) 24 2(c s) 2,2
Di erentiating both sides with respect to s; we get
~ ds ()t b v ~ > ~
n = = *pe= nand t°= n (247
ds 24 2

Squaring both sides of equation (2.47) and using equation(2.43), we get

0 02 2 2
G N S
~
_ ( ) G "5, ")
L N IS T T L S
using = t. _ *. _ —=; = —=
’ ! 2 2

De nition 2.4. A circular helix is a space curve which lies on the surface of the
circular cylinder, the axis of the helix being that of the cylinder and cutting the

generators at constant angle

Example 2.6. Prove that the involute of a circular helix are plane curves.

Solution:

For circular helix = a (constant)
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Torsion of an involute of a given curve r

0 0

F(s) is given by

1 =

(c s) 2+ 2

Put =a and °=a °inthe above equation, then the equation reduces
to ;=0

i.e;; Torsion for the involute is zero and hence the involute is a plane
curve.

Example 2.7. Find the involute of a circular helix r = (acosu; asinu; bu)

Solution:

Giventhat r = (acosu;asinu;bu)
r = ( aghuacosu;b)
= Z= 43?:12+b2
[ — I
) s = a“+b° du=u a“ +b
0 ~
r asi acosu;b
Also, . N - ( ﬁu u:b)
t = r’°=s P
The equation of involute is
o= r+( s)t s
- (adosu;asinu; bu) + U , ( asinu; acosu; b) ) ﬁ
2
(c_s) a + (c_s) b(c s
= a cosu sinu ; a sinu+ cosu ;bu+
a% + b? a® + b? a’+b?

where s=a°+b%u

Example 2.8. Find the involutes and evolutes of the circular helix

X =acCo0s ;y=asin ;z=atan:

Solution:
Giventhat r = (acos ;asin ;a tan )
T = a(sinPcos ;tan )
s = r=a 1+tan = asec
N T
0
)t =7 =_
S
L L
s = ds = asec d =a sec
0 0
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2.3. Tangent surfaces, Involutes and Evolutes:

Equation of involutes are given by r, =t + (c

F+(C S)%

a(cos ;sin ;

s)f:

tan )+ (c

a sec )( sin ;cos ;tan )cos

If r, = Xi + y} + zE; then the Cartesian equation of the involutes are

The equation of evolutes are given by

X

y

a Ccos

asin

cos sin (c a sec )

+cos cos (c a sec )

z =atan +sin (casec)

/

R = r+ n+ cot( +c)b where = ds
~ ’F -
t = —=cos ( sin ; cos ; tan )
N _ cos?
t" = n= ( cos ; sin ; 0)
, @
coS
) =
a
e = _ —asec’
n = ( cos ; sin ;0)
b = t n=cos (sin tan ;cos tan ;1)
~ _ cos
b° = n= (cos tan ; sin tan ;0)
a
l -
ie: — —SIn cos
al . &S .
= ds- 2 sin cos ds:assm cos =
Thus, the equation of evolutes are given by
. = a(cos ;sin ;tan )+asec®> ( cos ; sin

+asec’

cot( sin

b

< T

sin  [*s=a sec ]

:0)

+c)cos (sin tan ;cos tan ;1):

Let Us Sum Up:

In this unit, the students acquired knowledge to

nd the equation of osculating sphere and osculating circle.

nd the involute and evolute of a given curve .

Di erential Geometry
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Check Your Progress:

1. Find the equation of the osculating sphere and osculating circle at
(1;2:3) onthecurve r = 2u+1;3u® +2;4u®> + 3

2. Show that the involutes of a circular helix are plane curves.

3. Find the involutes and evolutes of the twisted cubic given by

r=uu’u;

Answer:

1. 9 xX*+y*+7z> 18x 48y 54z+150=0 and
9 x*+y?+z®> 18x 48y 54z+150=0; z 3=0

Glossaries:

Involute: Any curve of which a given curve is the evolute.

Suggested Readings:

1. T.J. Willmore, An Introduction to Di erential Geometry , Oxford

University press, (17th Impression), New Delhi, 2002. (Indian
Print).

2. C.E.Weatherburn, Di erential Geometry of Three Dimensions
University Press, Cambridge, 1930.
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Block-I

UNIT-3

SPHERICAL INDICATRIX

Structure:
Objective
Overview
3.1 The Spherical Indicatrices or Spherical
Images
3. 1. 1 The Spherical Indicatrix (or spherical
image) of the tangent
3. 1. 2 The Spherical Indicatrix (or spherical
image) of the principal normal
3. 1. 3 The Spherical Indicatrix (or spherical
image) of the binormal
3.1.4 Bertrand Curves
3.2 Intrinisic equations, fundamental existence
theorem for space curves
3.2.1 Fundamental theorem for space curves

3.2.2 Intrinsic Equations
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62 3.1. The Spherical I ndicatrices or Spherical |mages:

3.3 Helices
Let us Sum Up
Check Your Progress
Answers to Check Your Progress
Glossaries

Suggested Readings

Objectives

After completion of this unit, students will be able to

F nd spherical indicatrix of the tangent, principal normal and

binormal.
F understand the concept of Bertrand curves and its properties.

F derive the fundamental theorem for space curves.

Overview

In this unit, we will explain how to nd the curvature and torsion

of the spherical image of the principal normal and binormal.

The Spherical Indicatrices or Spherical Images:

When we move all unit tangent vectors t of a curve C to a point, their
extremities describes a curve C, on the unit sphere, this curve C, is called
the spherical image of C (or) Spherical indicatrix of C. There is a one-one
correspondence between C and C,: Similarly, we can de ne the spherical

indicatrix of the principal normal and the binormal.
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3.1.1. The Spherical Indicatrix (or spherical image) of the
tangent:

De nition 3.1. It is the locus of a point whose position vector is equal to the unit

tangent t at any point of a given curve is called the spherical indicatrix of the
tangent. Since such locus lies on the surface of a unit sphere.

Bookwork 3.1. Find the curvature and torsion of the spherical indicatrix of the

tangent.

Solution:

By de nition of indicatrix of tangent, we have r, = t. where T, is the
position vector.

dfyds,  dt
ds; ds ds
~ ds; ~
HL— = n
Yds
) ~ ~ ds
ie; , = nN—
* ds;

From the above equation, we see that t, is parallel to n; we may measure
s; such that

tt = n (3.1)
ds
Then = _* (3.2)
ds
Di erentiate with respect to s; we get
dt, ds, _ d_n= t+ b
ds; ds ds
1ﬁ1 = ?+ 6
e 1M = L+ b (using (3.2)) (3.3)
Squaring on both sides, we get
2 2 _ 2 + 2
1
p—z+—z
e, 4 = —— (3.4)
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U -
b

~ '{+b t+ C
Now, by = i Ri-n ——— i & 5o —CA

~

ie; 1E1 B+ t (3.5

Di erentiate equation (3.5) with respect to s; we get

dbyds; ~ d ~ N N ~
ld_Sld_sl-FblE(l) = t+ n n+ "
~ N d oy oN
11 +bi— (1) = t+ °b (3.6)
ds

Taking the dot product of (3.3) and (3.6), we get

2 3 0 0
1 1 =
. 0 0]
e, 1 =
- Z 3
1
2+ 2
2
But [ = >
() 0]
- — 3.7
) 1 2+ 2 ( )

3.1.2. The Spherical Indicatrix (or spherical image) of the
principal normal:

De nition 3.2. The locus of a point whose position vector is equal to the unit
principal normal n at any point of a given curve is called the spherical indicatrix

of the principal normal.

Bookwork 3.2. Find the curvature and torsion of the spherical indicatrix of the

principal normal.

Solution: By de nition of the spherical indicatrix of the principal normal,

we have r; = n:

Di erentiate both sides with respect to s; we have

d_Flﬁl = d_n = ?4_ B
ds; ds ds
. ~ dsy ~ ~
et = t+ b (3.8)
ds

Squaring both sides of (3.8), we get
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2

dsat oy htl 2,
ds
. ds; p—2—2‘
re;, — = +
ds
Di erentiate (3.8), we h?ve
2 N 2 ~ N
di, ds,  +tdst = °b At n
ds; ds] ! ds?
. 2 d2
~ ~ S ~ ~ ~
1Ny dT;ls +t1d—32l = °t 2+ 2 n+ °b
Taking cross product of (3.8) and (3.10), we get
d z
lf’ b, = n + 2+2? 2+2b+
s
ds; +
lgsl bl = 2+2f/+ ° O?F]+ 2+2
s
Squaring (3.12), we get
%®1'6= 22+22+ o 02+2 2+22
ds '
2 23, 0 \2 .2
2 _ + ( ) B$1
! 2 23 ds
J
0 0 \2
e i = 1+( )
2 28

(3.9)

(3.10)

Since the indicatrix lies on the surface of a unit sphere, the torsion ; = —

1

and curvature ; = — are given by the relation

1
0o 2
_ 2+202=l 0 f
-+
+
1 11 ? 2 ?
_ i
1_ﬁ
1 21

1

(3.13)

(3.14)
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Di erentiate equation (3.14), we get

2 3
2 2 2 2 2
3 1 + e %+ 0y + = ° ° * * (3.15)

From (3.15), we get the required value of °; From (3.12) and (3.13), we
get value of 1.

The Spherical Indicatrix (or spherical image) of the
binormal:

De nition 3.3. The locus of a point whose position vector is equal to the unit
binormal b at any point of a given curve is called the spherical indicatrix of the

binormal.

Bookwork 3.3. Find the curvature and torsion of the spherical indicatrix of the

binormal.

Solution: By de nition of the spherical indicatrix of the binormal, we have
r = b: Di erentiate both sides with respect to s; we get

dryds,  db
ds; ds ds
~ ds ~
Ve T
~ ~ ds
ie;, t = n— (3.16)
ds;
We may measure s, such that tt = n (3.17)
ds
From (3.16); we have Tl = (3.18)
S
Di erentiate (3.17), we get
dt, ds dn v~
—= - —= t+ b
ds; ds ds
e i o= t b (3.19)
Squaring, we get pﬁ
22 2 2 +
222y ) 1= ——— (3.20)

i.e;; 1 isthe ratio of the screw curvature and the torsion of the given curve.

To nd the torsion of the indicatrix, take the cross of (3.17) and (3.19),
we get
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b = T+ b (3.21)

Di erentiate with respect to s; we get

db; ds; ~ ~ ~ ~ ~
1_1_1 -+ 11( 1 ) = Ot -+ n -+ Db n
ds; ds ds
~ d DN 0
1 i+ blg( 1) = t+ (3.22)
Take the dot product of (3.19) and (3.22), we get
- ) e (3.23)

3.1.4. Bertrand Curves:

De nition 3.4. A pair of curves C and C,; which have the same principal

normals are called Bertrand curves.

Properties of Bertrand Curves:
Property 1: The distance between corresponding points of two Bertrand

curves is constant.

Proof.

(&4

Figure 3.1: Evolute

Consider the principal normals to the curve C and C; in the same sense, by

de nition

n, = n (3.24)

Let r be the position vector of the point P on C and r, be the position vector

of the corresponding point Q on C, with respect to the origin O:
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fr. = r+ n where isascalar function of s (3.25)

Di erentiate both sides with respect to s; we get

d?l dsl ~ o ~ g oy ~ dSl ~ ~ ~ o
—— =1+ n’+ ‘n=t; —=t+ t+ b + °n
ds; ds ds
R ~ %l ~ ~ ~
ie; t - o= (1 Jt+ n+ b (3.26)
ds
Taking the dot product of (3.24) gnth (3.26), we get L
n, t; ds, = n (1 )t + 0n+ b
ds
ie; 0 = ° ) = constant

Thus, the distance between P and Q is constant.

Property 2: The tangents at the corresponding points of two curves are

inclined at a constant angle.

Proof.
d o~ ~ dt ~ ~ dhyds;, o ~ ~ . ds v~
ttl = — —_—— = 1+t 1n, — *n1=n
ds ds ds; ds ds
~ o~ d51~ ~
= nl tl + 1 d t n= O

) ttg = constant
ile; cos = constant, where is the angle between t and t,

ie: = constant

Property 3: Curvature and torsion of either curves are connected by a linear

relation.

Proof. From property (1), we have ° =0:
Equation (3.26) in property (1), reduces to
L (3.27)

1

ds

Taking dot product of both sides of (3.27) with Bl; we have

~ o ds; -~ ~ o~
b]_ tl B = (1 )t b1+ b bl
ds
ie; 0 = (I )t bi+ b by (3.28)

Since the principal normals n, and n coincide, the four vectors ﬂ;?; b, and b
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are coplanar when they are localized at O:

t by cos 90° = sin

b b, = cos

Using the above equations, the equation (3.28) reduces to

0 = (1 )sin + cos

The above relation shows that there exists a linear relation with constant

coe cients between the curvature and torsion of the curve C:
Hence, the above relation can be written a}s

1
= tan (3.29)

Again the relation between the curves C and C; is reciprocal one, thus the

point P t is at a distance along the normal at Q(r,) and t isinclined at an
angle  with t;:

Thus for the curve C;; we have relation corresponding to (3.29) as

3.2. Intrinisic equations, fundamental existence theorem for
space curves:

In this section, we express any point of a space curve by the equations
= (s) and = (s) which are the intrinsic equations. Fundamental
theorem of space curves is provided in two parts namely existence theorem

and uniqueness theorem.

3.2.1. Fundamental theorem for space curves:

Theorem 3.1 (Existence theorem for space curves). If = (s)and = (s)
are continuous functions of a real variable s(s 0) ; then there exists a space
curve for which is the curvature and is the torsion, and s is the arc length

measured from same suitable base point.

Proof. We have to show that there are four vector functions r = r(s);
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t = &(s); A = n(s) and b — b(s) such that t n;b are mutually perpendicular

vectors satisfying Serret-Frenet formulae.

Then r = r(s) will be the required curve

4 {
: P
= + (3.30)
& '.
ds !
where ; ; are unknown functions of s:

From the theory of di erential equations, we have that the above system has
unique solution (s); (s); (s) which takes prescribed values at s = 0 (initial

values).

In particular, this is a unique solution 1(s); 1(s); 1(s) for which

1(0)=1; 1(0) =0; 1(0)=0:

Similarly, we have another set of solutions ,(s); 2(s); 2(s) for which
2(0) = 0; ,(0) = 1; »(0) = 0 and another set of solutions are  3(s); 3(s); 3(S)
for which 3(0) = 0; 3(0) =0; 3(0) =1

Next we shall show that 2+ 2+ 2-1.

d 5 5 > d d i d
= — +2 41— +2 1 —
s tTortot 217 TG T M gs

2 1( D+21( 1+ D+21( 1)=0

2 2 2
) L+ o1+ constant = C; (say)

Similarly, we can provethat 2+ ?+ ?2-1and %+ 2+ 2-1
2 2 2 3 3 3

Now, we shall provethat | 2+ 1 2+ 1 2 =0

d( ) d2 dj_ d2 dl
— + —+ = _+ — _ +—
dSlZ 1 2 1 2 ldS ds 2+1dS d52

d2 dl

1— *t—

ds ds

0 (using (3.30))

constant = C, (say)

) (1 2+ 12+ 12

Using the initial values at s = 0; we get
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1(0) + 0(1) +0(0) =C;, ) C, =0

) 12+ 12+ 12=0

Similarly, we have 3+B 3+ n3=0and 3 1+ 31+ 3 1=0:

1
Consider the matrix A=, 1 1
) 2 2
J
3 3

Thus, A is an orthogonal matrix.

1 2 3
11+ 22+ 33 11+ 22+ 33
- 2 2 2
11+ 2 2+ 3 3 + 4 . + - 10
h 31 2 2 3
! 1 2 3 2 2 2
U = 10 0 1
11+ 22+ 33 11+ 22+ 33 )1+1J2+243 s = 1
22 2 2 _ 1
1 Y2+t 3 =
2 2 2
ittt 3 =1
and 1 1+ 22+ 33 = 0
11+22+ 33 = 0
11+2 2+ 33 = 0

~ ~ ~

Let ? = 1+ 2]+ 3K
n = qi+ 2]+ 3k
b = 1+ 2]+ 3K
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Then t =1; =1; b-1landt n=0; n b=0;b t=0:

n

Therefore, t;n and b are mutually perpendicular unit vectors.
~ LJ S’V d? ~ ~ ~
For each value of s; we let r = tds; then __ =t )= t.
0 ds
This T = r(s) is the required curve with s as its arc length. Clearly for this
T; the unit vectors t;n and b satisfy Serret-Frenet formula (which are the given

di erential equations) with given functions as curvature and torsion.
Hence the existence of the curve is proved.

Theorem 3.2 (Uniqueness theorem for space curves). If two curves have the same

intrinsic equation then they are congruent.

Proof. If possible, let there be two curves C and C; having equal curvature
and equal torsion  for the same values of s: For any arc length s; let the
corresponding points be P and P, on C and C,; respectively. Denoting the

corresponding triads for the two curves C and C,; by t:n: b and ?1;ﬁ1; b,

Now, consider

d t1+n n1+n bl = t tlc+tc ?l-i—ﬁ ’ﬁlo_'_’ﬁc ﬁ1+bo bl+bO
S
= fﬁ1+nt1+ ?1+ b, n+ t+ b
+b Fll —+ ﬁ b1=0
d ~
)Ett1+n ny +n bl = 0
) t t,+n np+n b, = constant = c (say)

If C, is moved in such a manner that at s = O the two triads t:n:b and t;: ny; b,

coincide then at that point £ = t,; h = hy; b = by

Thus, we have

) t ticos +n ngcos +b b cos = 3
) cos +cos +cos = 3

) cos =1; cos =1; cos = 1

) -0 -0 =0
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i:e;; angle between t and t,; n and n,; b and b, are zero.

ds d
Integrating, we get r; =

=?
+

Ats=0, wehaver, =1: )a=0:

Thus, we have r, = r forall s:

=?

®°2

Hence the two curves C and C, coincides (or) the two curves are congruent.

This proves the uniqueness.

3.2.2. Intrinsic Equations:

We have de ned the curve with respect to a set of three mutually

perpendicular axes but in case the same curve be referred to a di erent set

of Cartesian coordinate axes, then its equations are altogether di erent and

it is not at all clear that they refer to the same curve. This can be expressed

by the curvature and torsion at any point as functions of arc length s say

= (s) and = (s). These are called the intrinsic equations of the curve.

Example 3.1. Show that the intrinsic equation of the curﬁzgiven by
a

X =ae’cosu; y=ae'sinu and z = be" are = P—
s 2a°+b

b
B s|2a2 +b? '
Solution:
Giventhat r = (ae"cosu;ae"sinu;be")
T = (ae (c& u sinu);ae" (cosu +sinu) ; be")

s=¢" 282 %Db*

" sdu =

Z Zu el p2a2+b2du = e! p2z;12+b2= s
s—

a- 1 1
r H H . u
S

00

[a(sinu+§ousu)n(cosu sinu__sinu):;0]1

= n=

=?

2a® +b?

Taking modulus on both sides

S
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p p
a 2 1 a 2z 1
i - -p___ _-p
2a2+b2 S 2{:12+b2 S

w [ a(sinu+cosu):a(cosu sinu):0] 1

(%]
=?
Il

2a2 + b2 S

Di erentiate both sides with respect to s; we get

Gow  Foo a(cosu sinu): af(sinu+cosu);0] 1
+ = -
2a2+b2 S
e G2y, [ a(cosu siny): a(sinu+cosu);0]
+ =
2a® +b?
y [2asinu; 2acosu;0]
2a® + b?
h : a(cosu sinu) a(sinu+cosu) b
~ o0, ~ 00 27 o000 . .
Now, r° sr®s°r = a(sinu+cosu) a(cosu sinu) O ,
2asinu 2acosu 0
e sSrorer . 2a’b 2a +b
1 ; ; =
o0 = 28 + 1§32
1 5.2
e 2?2 - 23z 2a’b
2
y - _2a+b - L2 2@
Pt T 2 +b? s
3.3. Helices:

De nition 3.5 (Cylindrical Helices). A helix is a space curve which is traced on

the surface of a cylinder and cuts the generator at constant angle.

Note 3.1. The tangent to a helix makes a constant angle (say) with xed

direction, this xed line (direction) is known as axis (or) generator of the cylinder.

De nition 3.6 (Circular helix). A helix which lies on the surface of a circular

cylinder is called a circular helix (or) right circular helix.

Theorem 3.3 (Theorem of Lancret (Characteristic property of helices)). A
necessary and su cient condition for a curve to be helix is that at all points

curvature bears a constant ratio with Torsion.

Proof. Necessary part: Let a be a constant vector and t be the unit tangent

vector to the helix.
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v/
2
@
Il
2
Q2
(2]
o
w

o/
2
@2
Il

acos

Di erentiate with respect to s; we get
t (0)+t°a = 0
ie; na = 0
)ﬁ a =0 )ﬁis perpendicular to a

i:e:; the principal normal is everywhere perpendicular to generators.

But the principal normal is everywhere perpendicular to the rectifying plane,

hence the generators must be parallel to the rectifying plane ( containing t and

B):

Since a makes constant angles with t. it follows that it makes constant angle

with E also. ie:;; 90

wehave n a = 0

Di erentiate both sides with respect to s; we get

n (0+n°a = 0
) ?+E a =0
) tarba-o
) facos + ba = 0
) acos + b acos(@ ) = O
) acos + asin = 0
ie:; acos = asin
) ~— =tan = constant:
Su cient Part:
Assumethat — = constant
Let = = C ) =C
We knowthat t° = n=Cn
and b° - ﬁ) h- b°
) © - cb° (using (3.31)
Integrating; f+cb - a (a constant vector)
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Taking dot product with t

t t+Ch =t a
)i.0 - 3
)1 - t acos
ile;; acos =1
1
ie; cos = —
a
ie:; = constant

Thus the curve is a helix.

Example 3.2. Show that a necessary and su cient condition that a curve be an

u N N d L
helixisthat r ; r ;r = °— _Q;
000 (iv) 5ds
Solution:
, ar  «
r = __ =t
ds
re o=t
d?r N
— = N
ds?
d ~ ~
rooo — - n = on+ t+ b
ds
= °n 44 b
Similarly r™m e 3 29[ 3 04, 2° 4 ° p
| 7 °

Foo; 'Fooo; F (iv)

0 o p— 5
— - 2
d
= 5 —
ds
For an helix — = constant:
d
)— - =0
ds

) the curve is an helix:
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Let Us Sum Up:

In this unit, the students acquired knowledge

to nd the spherical image of the principal normal.
to nd the spherical image of the principal tangent.

to nd the spherical image of the principal binormal.

Check Your Progress:

1. Show that the spherical indicatrix of a curve is a circle if and only if

the curve is an helix.

2. Prove that the curve given by x = asinu;y = asinucosu; z = acosu

lies on a sphere.
3. De ne Intrinsic equations of the curve.

4. State and Prove fundamental theorem for space curves.

Choose the correct or more suitable answer:

1. A pair of curves C and C; which have the same : ::::: are called
Bertrand Curves
(a) principal tangent
(b) principal normal
(c) principal binormal

(d) none of these.
2. Curvature and torsion of either curves are connected by a ::::::

(a) linear relation
(b) quadratic relation
(c) cubic relation

(d) none of these.
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Answer:

Wb (2) a

Glossaries:

Bertrand Curve: One of pair of curves having the same principal

normals.

Suggested Readings:

1. T.J. Willmore, An Introduction to Di erential Geometry , Oxford
University press, (17th Impression), New Delhi, 2002. (Indian
Print).

2. C.E.Weatherburn, Di erential Geometry of Three Dimensions |,
University Press, Cambridge, 1930.
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UNIT-4

THEORY OF SURFACES

Structure:
Objective
Overview
4.1 De nition of a surface
4.1.1 Regular (or Ordinary) point and
Singularities on a surface
4.2.1 Parametric Curves
4.2.2 Tangent Plane and Normal
4.3  Surface of Revolution
4.3.1 The Spheres
4.3.2 The general surface of revolution
4.3.3 The anchor ring
Let us Sum Up
Check Your Progress
Answers to Check Your Progress

Suggested Readings
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80 4.1. Definition of a surface

Objectives

After completion of this unit, students will be to
F understand the concept of proper transformation.

F nd the parametric curves, condition for the parametric curves
to be orthogonal.

F nd the equation of tangent plane and normal.

Overview

In this unit, we will explain the concept of regular point and

singularities on a surface and also discussed di erent types of singularities.

De nition of a surface

In the previous chapter, we have de ned a curve as the locus of a point

whose Cartesian coordinates (x; y; z) are functions of a single parameter.

De nition 4.1 (Surface). A surface is de ned as the locus of a point whose
Cartesian coordinates (x;y; z) or whose position vector r are functions of two
parameters u and v: ie;; x=f(uv); y=g(uv) ;

z =h(u;v) or T =r(u;v) are the parametric equations of surface.
De nition 4.2. The two parameters u; v are called the curvilinear coordinates of
a current point on the surface.

Any point (x;y;z) on the surface, the values of u and v are determined

uniquely and that point is referred as (u; v)

De nition 4.3. If the parameters u; v are eliminated from the parametric equation

of a surface then the obtained relations F(x;y;z) = 0 is called the constraint
equation of the surface.

Examples of a surface:

X=U, y=vVv;, z=u> V2 (4.1)
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4.1. Definition of a surface 81

After eliminating the parameters u and v; we get x* y* = z which
represents a hyperbolic paraboloid surface.

Note 4.1. Now consider

X=U+V; y=U V; z=4uv 4.2)

On eliminating the parameters u;v we get x° y* = z , the same paraboloid.

Thus, the parametric equation (4.1) and (4.2) represent the same surface

X2y =1z:

Sometimes, after eliminating the parameters and then obtained constraint
equation represents more than the given surface, so that parametric equations and

constraint equations are not equivalent.

Consider the surface given by the parametric equations

x =ucoshv; y=usinhv; z=u° (4.3)

where the parameters u and v are takes real values. Upon eliminating the
parameters, obtained constraint equation is x?> y* = z which represents the
whole of the paraboloid. The parametric equations (4.3) represents only that part

of the surface for which z 0; since u takes only real values.

Hence the parametric equation of a given surface are not unique.

De nition 4.4 (Monge form of the surface). The equation F(x;y;z) = 0 will
represent a surface. Here x = f(u;v); y =g(u;v) and z = h(u;v) when we
eliminate the parameters u and v; we get the surface. Instead of three variables
X;y; z; it can be expressed in terms of two variables x and y ie;; z= f(x/y):
Then F(x;y;z) = 0 = F(x;y; f(xy)): This is called the Monge's form of a
given surface.

De nition 4.5 (Class of surface). If x = f(u;v); y = g(u;v);z = h(u; v) be the
parametric equations of a given surface, then the surface is said to be of class

r, if the functions f;g;h are single valued continuous functions and possess

h

derivatives of the r" order.

Note 4.2. If partial di erentiation with respect to the parameters u and v are

denoted by the su xes are 1 and 2 respectively.
~ o~ @
=1r2; ro=—7

@v?

N N o ~
~ e @ . @r @’r
Thus rp = —: ¥, = —; ¥y = — Y=
@u @v @y2 @uav
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Regular (or Ordinary) point and Singularities on a
surface:

Consider a point P on the surface whose position vector r = r(u;v);
where x = x(u;v);

y=y@uv)and z=z=(uv):

| |
Then 1y %ﬁ%ﬁ%ﬁ R 0 %5

The point P is called regular point or ordinary point if r; T 6-0

@x @y @z
. @ @ @u.
i;e;; if the rank of the matrix is two.
@ @y @z
@v G@v v

But, if r; r, = 0 ata point P, we say that the point P is called the
singular point or we can say that the point P is a singularity of the surface.

Types of Singularities:

There are two types of singularities, namely Essential singularity and
Arti cial Singularity.

Essential Singularity:  These are inherent singularities, ie:; these

singularities are due to the nature (or geometric features) of the surface and
these are independent of the choice of parametric representation.

For example, the vertex of the cone is an essential singularity.
Arti cial Singularity:

These singularities arises from the choice of particular parametric
representation of the surface.

For example, the pole (or origin) in the plane, referred to polar
coordinates is an arti cial singularity.

Consider r = (rcos ;rsin ;0); here r and are the parameters.

rp = (cos ;sin ;0)
f, = ( rsin ;rcos ;0)
F. T, = rk=0 (ifr =0 atthe pole)

Thus, at the pole r = 0 is an arti cial singularity as it is not due
to inherent property of the surface, but it has arisen due to the choice of
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parametric representation.

De nition 4.6 (Proper Transformation:).
Consider the surface given by the parametric equations

X=U+V;y=UV;Z=4uv and x = u;
y =v; z=u? V% These two representations represent the same surface such
as x* y* = z and are related by the parameter transformation of the form
w= (uv); v= (uv):

This transformation is said to be proper transformation, if and are single

o ® 6.0

values and having non-vanishing Jacobian, ie:; _

e
@y Qv

Property of point transformation:

A regular point is transformed to a regular point by a proper parametric

transformation.
Let r =r(u;v) be the equation of the surface.

The parameters be transformed by the relations u° = (u;v) ;

v* = (u;v): Moreover, this transformation is a point transformation and
hence by de nition —-y~ 0
uv
N @ @ @ v
rl = +

@ur @ @~ @
@r @ @r @
irane _ -+ N
e = @ @ e au
N r @ @er @
Similarly r, = o Z . —
@pe @v_ @vr v
L @r @r @(; )

rh r, = —

G O8( u y

NOW@If the given parametric representation of the surface |s
proper ie; : ), thenif r, r, O (for an ordinary point) then @_ @_
) uv ue Ve
is also not zero.

Hence a proper parametric transformation transfers regular (ordinary

point) into a regular (ordinary) point.

De nition 4.7. A representation R of a surface S of class r in E; is a set of
points in E; covered by a system of overlapping poin]ﬂ \}ﬂ each part V; being

given by parametric equations of class r: Each point lying in the overlap of two
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parts V,V; is such that the change of parameters from those of one part to those

of the other part is proper and class r:

De nition 4.8. Two representations R; R° are said to be r-equivalent if the
composite family of parts“ViVy satis es the condition that at each point P lying
in the overlap of any two parts, the change of parameters from those of one part

to those of another is proper and class r:

De nition 4.9. A surface S of class r in E; is an r -equivalence class of

representations.

Curves on a surface:

=?

We know that a curve is the locus of a point whose position vector
can be expressed as a single parameter.

Let us consider a surface r = r (u;v) de ned on a domain D and if u
and v are functions of a single parameter t; then the position vector r
becomes a function of a single parameter t and hence its locus is a curve
lying on the surface ¥ =r(u;v): Let u = u(t);v = v(t); then ¥ =T (u(t); v(t)

is a curve lying on the surface ¥ = r (u;v) in D:

The equations u = u(t); v = v(t) are called curvilinear equations of the

curve lying on the surface r = (u;Vv):

Parametric Curves:

Let r = r(uv) be the equation of a surface. Now by keeping
u = constant or v = constant we get curves of special importance and are

called parametric curves.

If v =constant, say c¢ then u varies, the point r = r(u;c) describes a

parametric curve called the u curve or the parametric curve v = c:

Similarly, if u = constant say ¢ then v varies, the point r(c;v) traces a

parametric curve called the v curve or the parametric curve u = c:

For u-curve, u is the parameter and determines a sense along the curve.
The tangent to the curve in the sense of u-increasing is along the vector
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r,: Similarly the tangent to v -curve in the sense of v increasing is along

the vector T,:

Thus, we have two systems of parametric curves, viz., u-curve and
v -curve and since we know that v, T 6= 0; therefore the parametric aines
of di erent system can not touch each other.

If r, r, =0 atapoint P, the two parametric curves through the point
P are orthogonal. If this condition is satis ed at every point i:e:; for all

values of u and v in the domain D; the two systems of parametric curves
are orthogonal.

Tangent plane and Normal:

Let r(u;v) be the equation of the surface in terms of the parameters u

and v:
dr _ @rdu @rdv
dt @u @ Qv et
dr L du gy
_ — ra— ro—
dt Yar o dt
or dr = Tr,du+Tr.dv

The tangent to any curve drawn on a surface is called the tangent line
to the surface. Now ry;r, are non-zero and independent so that tangents
to the curve through a point P lie in the plane which contains r, and r,:
This plane is the required tangent plane at P. Since it contains r, and T,

therefore ¥, T, gives the normal to the plane. If E{ be the position vector
of a current point on the plane then its equation is
ﬁh F Fl Fz! = 0

From the above , we cansay that R T; ry; 1, are coplanar and as such
one of them can be expressed as a linear combination of the other two.

) R F = a?l -+ b?z

ien R = r+ar, +br,
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which is the equation of the tangent plane at P, where a and b are

parameters.

Normal line:

Normal to the tangent plane at P is the line passing through P r and
is parallel to the vectors r,_ r,; hence the equation of the normal line at P

~

to the surface isgivenby R=r+ r; T, :

The normal to the surface at P is the same as the normal to the tangent

plane at P and therefore the unit normal

~ ~
~

Ne b2 T2 \where ¥/ ¥, =0 or HN=TF_ ¥
1 2 1

r. r H 2

Also, Ty T N form aright handed system and this gives the direction of
the normal.

Example 4.1. Find the equation of the tangent plane and normal to the surface

z = x* +y? atthe point (1, 1;2):

Solution:

Let F(xyiz) = z x* y=0
@F
— = 2x= 2 at (1, 1,2
@x
@F
— = 2y=2 at (1, 1,2
0y
@F
— = 1 at (1, 1,2)
@z

Thus, the equation of the tangent plane at the point (1, 1;2) is

x DY+ y+D@A+z 291 = 0

ie: 2x +2+2y+2+z 2 = 0

ie;, 2x 2y z = 2
Equation of the normal is
X X Y v Z z
@ @  @F
@x @y @z
SRR S _y+l oz 2
2 2 1

Example 4.2. Find a unit normal to the surface xy + 2xz = 4 at the point

2; 2;3)
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Solution:
Let F(x;y;z) = X’y+2xz 4=0
@F
— = 2xy+2z= 2 at (2, 2,3)
s i
— = x*=4 at (2, 2,3
@y
@F
— = 2x=4 at (2, 2,3
G ( )
~ normal to th rf is given
The vector N ormal to the su acF s given by
@F @F @F
S = (p2;4;4)
v v @7
x &y N - "4.16+16-6
: 2.4 4
) Unitnormal vector = v
6 6 6

4.3. Surface of Revolution:

4.3.1. The Sphere:

When the polar angles (i:e;;) Co-latitude u and the langitude v are taken

as parameters on a sphere of centre O and radius a; the position vector is
r = (sinucosv;sinusinv;cosu)
The poles u = 0 and u are arti cial singularities and domain of u; v
is0<u<pi; 0 v<2:

The parametric curves v = constant are the meridians and u = constant
are the parallels.

a(cosucosv;cosusinv; sinu)

_§
=
Il

r, = a( sinusinv;sinucosv;0)

Now r; T, =0 atall points.

Thus, the two system of the parametric curves are orthogonal.
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88
Now r; T, = a® sinucosv;sin®usinv;sinucosv
H = r, 1, =a%sinu
~ o . . ~
N = = = (sinucosv;sinusinv;cosu) = _r

H a

which is directed outwards from the sphere.

4.3.2. The general surface of revolution:

Taking z -axis for the axis of revolution, let the generating curve in the
xz plane be given by the parametric equations

x = g() y=0 z="f(u)

Then, if v is the angle of rotation about the z axis, the position vector

of the point (u;v) is
r = g(u)cosv;g(u)sinv; f(u)
and the domain of u;v is 0 v <w together with the range of u:
As in the case of sphere v = constant are the meridians given by the
various position of the generating curve and u = constant are parallels,

circles in planes, parallel to the xy plane.

The vectors r, and r, are given by
o= QO(U) CosvV, go(u) sinv; fo(u)

r, = ( g(u)sinv;g(u)cosv;0)

Thus ¥, 1, = g(u)g°(u) sinvcosv+g(u)g°(u) cosvsinv = 0 forall u;v ie;

the parameters are orthogonal.

The unit normal vector N is given by

[ _ ( fwcosv f (u)sinvig(u)

~

NN

H fo2(u) + go(u) 2 72

using the fact that g 0 at an ordinary point.

If g(u) = u; the right circular cone of semi-vertical angle ; for example

g(u) =u; f(u)=ucot :
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) r=(ucosviusinv;ucot ):

4.3.3. The anchor ring:

The anchor ring is obtained by rotating a circle of radius a about a line

in its plane and at a distance b(> a) from its centre.
Therefore, g(u) =b +acosu; f(u) =asinu:

Thus, r = ((b + acosu)cosv; (b + acosu)sinv;asinu) and the domain of
uviso<u<2,; 0<v<2:

Let Us Sum Up:

In this unit, the students acquired knowledge to

the concept of singularities on a surface.
the concept of proper transformation.

nd the equation of tangent plane and normal.

Check Your Progress:

1. De ne Parametric curves.

2. Prove that a regular point is transformed to a regular point by a

parametric transformation.

3. Find a unit normal vector to the surface 2xz° 3xy 4x = 7 at the
point (1; 1,;2).

Answer:

l
7 A5 8
3. P Pz P2
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Choose the correct or more suitable answer:

1. If :::::: ataPoint P, the two parametric curves through the point
P are orthogonal.

@%h -0 ®MH L0-0(©hH -0 (@Hh 0 o
2. The pole in the plane, referred to polar coordinates is : ::: ::

(a) an essential singularity

(b) removal singularity

(c) arti cial singularity

(d) none of these.
3. vertex of coneisan::::::

(a) an essential singularity

(b) removal singularity

(c) arti cial singularity

(d) none of these.
4. The transformation is said to be point transformation, if

(@) and are multiple variables and having vanishing Jacobian.

(b) and are multiple variables and having non-vanishing
Jacobian.

(c) and are single variables and having vanishing Jacobian.

(d) and are single variables and having non-vanishing
Jacobian.

Answer:

Dc@c 3a 4d

Suggested Readings:

1. T.J. Willmore, An Introduction to Di erential Geometry , Oxford
University press, (17th Impression), New Delhi, 2002. (Indian
Print).

2. C.E.Weatherburn, Di erential Geometry of Three Dimensions |,
University Press, Cambridge, 1930.
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5.1.1.

92 5.1. Helicoids:

Objectives

After completion of this unit, students will be to
F nd the relationship between the fundamental coe cients.

F derive the equation of the metric and understanding its

geometrical interpretation.

Overview

In this unit, we will illustrate to nd the relationship between
the fundamental coe cients and geometrical interpretation of metric also
explained.

Helicoids:

A helicoid is a surface generated by the screw motion of a curve
about a xed line, the axis. The various position of the generating curve
are obtained by rst translating it through a distance parallel to the axis
and then rotating it through an angle  about the axis, where — = has a

constant value

The constant 2 is called the pitch of the helicoid.

Right helicoid:

This is the helicoid generated by a straight line which meets the axis at

right angles. Taking the axis to be the z -axis, the position vector is
r = (ucosv;usinv;av)
where u and v are respectively the distance from the axis and the

distance from the angle of rotation. The generator being the x -axis when

v = 0: Here u and v take real values.
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rp, = (cosv;sinv; 0)
r, = (usinv;ucosv; a)
Y =0

Thus, the curves v = constant are the generators and u = constant are

circular helices, r; T, = 0; the helices are orthogonal to the generators.

5.1.2. The general helicoid:

The general helicoid is given by the equation

X = g();, y=0;, z="F(u)

The position vector of a point on the surface is

r = (g(u)cosv;g(u)sinv; f(u) + av)

The curves v = constant are the generators and u = constant are circular
helices.

When parametric curves are orthogonal, we get a helicoid (or) a =0

which gives a surface of revolution.

Example 5.1. A helicoid is generated by a screw motion of a straight line skew to
the axis. Find the curve coplanar with the axis which generates the same helicoid.
Solution: If ¢ is the shortest distance and is the angle between the
axis and the given skew line, then this line can be taken as x = c;

y=usin ; z=ucos where u is the parameter. Rotating through an angle
v about the z axis and translating a distance av parallel to this axis, the
position vector of a point on the helicoid is found to be

r = (ccosv usin sinv;csinv+usin cOSV;ucos + av) (5.1)

The required plane curve is the section of this surface by the plane y = 0

and is given by usin cosv = csinv: ie:; usin = ctanv
Substituting this in equation (5.1), we get

x=ccosv, y=0; z=av ccot tanv where v is a parameter for the curve:

In the notation used above for the general helicoid, g(u) = csecu; and

f(uy=au ccot tanu:
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5.2.1.

94 5.2. Metric:

Metric:

Let ¥ = r(u;v) be the equation of the surface. Consider the curve
de ned by u = u(t); v = v(t) on the surface, then r is a function of t
along the curve and the arc length s is related to the parameter t by

ds*’ ar  Ldu L odu)
_— = B = rl— -+ r2—
dt dt dt dt
2 2
~ 2 du' 2?: F du dv ~ 5 dv'
du = dv
oge Tt 24t at dt
2
! du dv dv dv
2F——— + G——
_ e W "Farar Tt a

where E=12 F=71 I, G=r1,2

The above equation can be expressed conveniently in the following

quadratic di erential form

ds® = Edu® + 2Fdudv + Gdv® (5.2)

The right hand side of equation (5.2) does not involve the parameter t

except in so far as u and v depends on t:
De nition 5.1 (Metric).

The quadratic di erential form ds® = Edu® + 2Fdudv + Gdv® in du and dv
is called metric or rst fundamental form of the surface and the quantities E; F, G

are called the rst fundamental coe cients or fundamental magnitudes of rst
order.

Geometrical Interpretation of metric:

Let r = r(u) be a given surface. Let P and Q be two neighbouring points

on the curve with position vectors ¥ and r + Tt respectively.

N @r @r - N
dr = —rdu PRI r.du + rodv
@Qu dv
Let PQ = ds; thends= dr
ds? = drC = Fodu -+ Todv 2

= Edu® + 2Fdudv + Gdv?

Di erential Geometry M.Sc.(Mathematics)-1 Year-1 Sem
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If ds can be interpreted as the in nitesimal distance from the point P
to the point Q on the surface. Thus, the rst fundamental form is used to

calculate the arc lengths on the surface.

Relation between the fundamental coe cients:

~ ~ 2 ~ ~ ~ ~
Now, r; = r, n ry
= Fl ZFz 2 I’I Fzz

H? = EG F? whereH=r, I,

The coe cients E;G and H? satisfy E >0:G > 0;H* =EG F?>0:

Since E > 0; we may take

ds® = Iiduz + 2Fdudv + Gdv?
- quz + 2FEdudv + EGdV® !
E

- 1 (Edu+Fdv)’+ EG F? dv?
E l
- 1 (BEdu+Fdv)>+H2dv®> 0

hEdu2 + 2Fdudv+Gdv? - &
) 1 (Edu+Fdv? + H2dv? - 0
(Edu + Fdv)? + H?%dv? = 0O

) Edu+Fdv = 0; and Hédv*- 0
) Edu+Fdv = 0; and dv-0
) du = 0and dv-0

But both du and dv cannot vanish together.

Hence, the metric Edu® + 2Fdudv + Gdv® = 0 is a positive de nite

quadratic form in du and dv:

Example 5.2. Compute the rst fundamental magnitudes for the surface

F = (ucosv;usinv; f(u)):

Solution:
., = cosv;sinv; f°(u)
f, = ( usinv;ucosv;0)
E = T, ry=cos’v+sin®v+ f°2u) =1+ f°2(u)
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F — r, r,= usinvcosv+ucosvsinv =0
G = I, Iy =U? cos’v+sin’v = u?
ds® = Edu’® + 2Fdudv + Gdv? = 1+ f°?(u) du® + udv?

Example 5.3. Calculate the fundamental coe cients E;F, G and H for the

paraboloid T = u;v;u® V2 :

Solution:
Giventhat ¥ = uwwviu® v

rr = (1,0;2u)

r. = (001 2v)
E = Fl Fl = l -+ 4U2
F = 1, = 4uv

L

G = I =1+ 4F2

P

H = EG F2= 1+4u® 1+4/° 16U%°
1=2
= 1+4u®+4v

Angle between parametric curves:

Let P be the point of intersection of the parametric curves u = constant
and v =constant. Let r be the position vector of the point P; r, and r,

are the tangent vectors to the two curves at P respectively.

The angle ! (0 <! < ) between them are given by

cos ! rhr F
nrre P
. 1I: rz'“ G
sin! = _, ,= EG
axoor
tan! =
F

The parametric curves are cut orthogonal when F =0 ie; r; 1, = 0:
Element of Area:

Consider the following gures with four vertices (u;v); (u+ u;v);

(u+ u;v+ v) and (u;v+ v) joined by the parametric curves.
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Figure 5.1

If uand v are small and positive, then this gure is approximately

equal to parallelogram with adjacent sides given by r; u and r, v:

Now, if ds be the area of the parallelogram, then

Example 5.4. For the anchor ring,
r = ((b +acosu)cosv; (b +~acosu)sinv;asinu): Calculate the area

corresponding tothe domain Ou 2 ; Ov 2 :

Solution:

Given that r ((b +acosu)cosv; (b +acosu)sinv;asinu)

f, = ( asinucosv; asinusinv;acosv)
f, = ( (b+acosu)sinv; (b +acosu)cosv;0)
E = nrh n

- a? sinucos®v +sinusin®v +a%cos?u
- a’sinu+cos’u = a?

~

F = rl F2=O

H NpEZG F¥ - a?(b+acosu)’ =a(b+acosu)
r, ro=(b+acosu) sin v+cos v =(b+acosu)

G
Thus, element of area = Hdudv = a (b + acos u) dudv
L2 L2
); Thetotal area = a(b +acosu)dudv = 4 %ab
0 0

Example 5.5. Show that the metric is invariant under a parameter transformation.

Solution: Let ¥ = F(u;v) be the equation of the surface. The parameters
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u;v are transformed into the parameters u° and v° by the relations

o= (uv); vi= (uv) (5.3
. @ @ @ @r @v
rl — = — + —
@u  @u@w @veuw
~ o ~ @u . Gv
r = rL—+r 5.4
1 1 @ue + 12 @u ( )
L . ~ o ~ @  @v
In a similar way, we can write r," = n, +1, (5.5)
@ve @ve
Now E°du’? + 2F°du’dv’ + G°dv’® = T °du’ + 2r1 °r2 *du’dv® + 2 °dv’
= Fl 0du0 -+ FZ odVa
y | ﬁz
I @u - l ( @u N ,
~ +r2@ﬁ’ du®’ Nl@v" +I‘2g¥}' dv°®
1 iy @Ay + T @y @u
r _duO + _dv" +r du’® + d
@ @ve 2 @ @ye

2
= rldu —+ rzdv

r 2du® +2r r dudv +r o2
1 12 2

Edu® + 2Fdudv + Gdv?

Thus the metric is invariant under parametric transformation.

Let Us Sum Up:

In this unit, the students acquired knowledge

to know the concept of helicoid and right helicoid.

to know the relationship between the fundamental coe cients.

Check Your Progress:

1. Explain geometrical interpretation of metric.

2. Prove that the metric is invariant under a transformation of

parameters.

Choose the correct or more suitable answer:

1. For the paraboloid x =u; y=v; z=u® V?, the value of E is

(@) 1+4u (b) 1 4u (c) 1+4u? (d) 1 4u?
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2. Relation between the coe cients E;F,G and H is

(@ H*=EG+F?
(b) H=EG+F?
(c) H*=EG F?

(d H>’=EG+F

Answer:

1)c (2) c

Glossaries

Helicoid: A helicoid with generating line perpendicular to its axis.

Suggested Readings:

1. T.J. Willmore, An Introduction to Di erential Geometry , Oxford
University press, (17th Impression), New Delhi, 2002. (Indian
Print).

2. C.E.Weatherburn, Di erential Geometry of Three Dimensions |,

University Press, Cambridge, 1930.
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102 6.1. Direction coefficients:

Glossaries

Suggested Readings

Objectives

After completion of this unit, students will be to
F ndthe direction coe cients and angle between the directions.
F nd the condition for orthogonal direction.

F understand the concept of families of curves and derive the
equation for families of curves.

F de ne the isometric-correspondence between two points on two
surfaces.

Overview

In this unit, we will illustrate the relationship between direction
coe cients and direction ratios.

6.1. Direction coe cients:

At each point P of a surface r = r(u;v) there are three independent

vectors N: r; and r,: Every vector a at P can be expressed in the form

5 = anN+ F1+ Fz

where scalars a,; ; are de ned uniquely by this relation.

This gives a as the sum of two vectors a,N normal to the surface and
f, + T, is the tangent plane at P. The scalar a, is called the normal
component of a and is given by a, = a N: The vector r, + T, is called

the tangential part of a and ; are the tangential components of a:

A direction in the tangent plane at P is conveniently described by the
components of unit vector in this direction. These components are called

direction coe cients and written as (I; m): The direction coe cients satisfy
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62 Relation between direction coefficients and direction ratios: 103

the identity EI° + 2FIlm + Gm® = 1:

6.1.1. Angle between the directions:

If (lm) and (I°;m°) are coe cients of two directions at the same point,
then the corresponding unit vectors are

~

a = Iri+mry; a’=1y+m’r,

The angle between these directions, measured in the sense described

above is given by

~

cos = a a

o

o o o

)COS = Ell +FIm +Im+Gmm

0

and sin N a a )sin =HIm Im

Note 6.1. The direction coe cients opposite to (I, m) is ( I; m):

6.2. Relation between direction coe cients and direction
ratios:

Direction rations are proportional to direction coe cients, therefore

Since (I;m) are direction coe cients, so we have

EP + 2FIm+ Gm? = 1
e EK+2F(K(K+GK? = 1
KXE?+2F +G 2 - 1
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) 1=k =

Similarly, m= k =

Thus, the direction ratios, the numbers ( ; ) proportional to (I, m) have
the relations

(Lm) = A ;)

AW |

E2+2F +G 2

Note 6.2. The condition for orthogonal direction:

If = 90 ; then the directions with direction coe cients (I;m) and (I°; m°)

are orthogonal for which the condition will be

Il
o

0 (o] 0] 0]
EIl +FIm +Im +Gmm

o

orE °+F + +G ° =0

Note 6.3. The vectors r, and r, have components (1;0) and (0;1): Then the

direction coe cients are
(1,0

| 1 ,
-p: = ‘pl:; 0*and L—) 'p:'
E+0+0 E NoO+0+G _ 06
6.3. Families of Curves:
Let ¥ = 'r(uv) represent asurface (6.1)
Two parameters u; v are connected by the relation (uv) = c (6.2

where (u;v) is asingle valued function and have continuous derivatives

1 and , which do not vanish together and c is a real parameter.

The equation (6.2) shows that a family of curves lying on the surface
(6.1).The di erent curves belonging to the family (6.2) and it lying on the
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surface (6.1) for di erent values of c¢: Also (6.2) represent one member of

the family, when c is a constant.

Note 6.4. One curve of the family of curves (6.2) passing through every point

(u; v) of the surface (6.1).

Di erential Equation of family of curves:

Let (u;v) = c represents a family of curves.

Di erentiating , we get —du+ —dv = 0
@u @v
du+ odv = 0
du 1
ie;;, — = —
dv 2

Thus, (  ,; 1) are direction ratios of the tangent at the point (u;v) to
the member of family (6.2) which passes through that point.

Suppose, if 1; , both vanish together at any point, the directions are
indeterminate which means that we shall not have a de nite tangent at that
point. Thus the above restriction is necessary.

Conversely, every rst order di erential equation of the form

P(u;v)du + Q(u;v)dv = 0 (6.3)

where P and Q are class 1 functions which do not vanish together,
always de ne a family of curves. With this, the equation (6.3) is always
integrable so that every function (u;v) 0 and (u;v) such that
P= 1 Q= 2
Thus the equation (6.3) becomes

1
— du+ odv

Il I
o o

ie; 1du + »dv

The solution of the above equation is therefore (u;v) = constant.

Also the tangent at the point (u;v) for the family of curves are given by
(6.3) has direction ratios ( Q;P) since these are directly proportional to
(du; dv):
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6.3. Families of Curves:

6.3.1. Orthogonal Trajectories:

De nition 6.1. Let (u;v) = c be a given family of curves lying on a surface
r = r(u;v) then if there exists another family of curves (u;v) = k lying on the
same surface such that every point of the surface the two curves one from each
family are orthogonal, then the family of curves (u; v) = k is called orthogonal

trajectory of the family of curves (u;v) = ¢

Bookwork 6.1. Derive the di erential equation of the orthogonal trajectories.

Let ¥ = r(uv) be the equation of the surface and let (u;v) be the
equation of given family of curves on r(u; v):

Di erentiating (u;v) = c (6.4)
d =0
) @du ¢
@—u + @—VdV =0
) Pdu+ Qdv = 0 (say)
) Pdu = Qdv
du B dv (6.5)
) Q B P ’

Therefore ( Q;P) are direction ratios of tangent at any point (u;v) of
member of family (u;v) =c

Let the direction ratios of orthogonal trajectories of (6.4) be denoted by
(du; dv):

Thus, by condition of orthogonality, we have
E 1+F( 1+ 1)+G ; = 0

) E( Qdu+F( Qdv+Pdu)+GPdv = 0

) (FP EQ)du+(GP FQ)dv = O
The coe cients du and dv are continuous and do not vanish together
since EG 6: F? and P, Q do not vanish together.

This is the required di erential equation of the orthogonal trajectories
of the family of curves (u;v) = c:
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6.3.2. Double family of curves:

The quadratic di erential equation of the form

Pdu® + 2Qdudv + Rdv® = 0 (6.6)

where P, Q;R are continuous functions of u and v and do not
vanish together represent two family of curves on the surface provided
Q? PR>O:

Thus, the equation (6.6) can be written in the form

2

dU; du
p__ +20—+R =0 (6.7)
dv dv
- .. du
which is a quadratic in d—:
\%

Bookwork 6.2. Derive the condition that the quadratic di erential equation

Pdu® + 2Qdudv + Rdv® = 0 represents orthogonal families of curves.

Let the direction ratios of the curves of the two families given by (6.6)
through a point (u;v) on the surfacebe (; ) and ( °; °): Then — and —

are the roots of the quadratic equation (6.7).

Sum of theroots = —+ —=—"

R
Product of theroots = —— = S

The directions ( ; ) and (°; °) are orthogonal if

o] o] 0 o]

E +F + de " - o0
e, E_ _:+F _+_°; +G = 0
R 2
) E —QF+G -0

P P
ie;, ER 2QF+GP = 0

IfP =R =0in (6.6), then the equation reduces to dudv = 0 giving
the two families of parametric curves. Thus, the condition for parametric
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curves to be orthogonal is F = 0:

Example 6.1. On the paraboloid x? y* = z; nd the orthogonal trajectories of

sections by the planes z = constant.

Solution: Givenasurface x> 2=z Let x=u;y=v sothat z=u? v

Givencurve z =c ) u> v =c

Therefore, equation of paraboloid can be written in vector form as

~ ~ ~

F = ui+vj+ u? VvV Kk
F. o= i+0]+2uk
T, = 0i+] 2vk
Now, E = r, rp=1+47°
F = 1, b= A4duv
G = T h=1+4V
Givencurve, v* V¥ = ¢
)2udu 2vdv = O) d7u=d—l:/

Therefore, the tangents at (u;v) has direction ratios (v;u):
Let (du;dv) be direction ratios of orthogonal to the direction (u;v):
) =V, =u; 1=du; 1=dv

So, by orthogonality condition, we have

E 1+F( 1+ 1)+G 1 = O
) 1+ 4u® vdu + ( 4uv)[vdv +udu]l + 1+4v? udv = O
) vdu+udv = 0
) duv) = 0
) uv - constant
) xy - constant

These are orthogonal trajectories of given curves.

Example 6.2. Show that on a right helicoid, the family of curves orthogonal to

the curves ucosv = constant is the family u® + v sin® v = constant.

Solution:

We know that the equation of right helicoid is ¥ = (ucosv;usinv;av):
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~ ~

r = ucosvi+usinvj+avk
T, — cosvi+sinvj+ Ok
¥, = usinvi+ucosvj+ak
Now, E = 1, 1y =cos?v+sin®v=1
F = T, r,= usinvcosv+usinvcosv+0=0
G = I, p=u?+2a’

Family of given curves: ucosv = constant.

Di erentiating both sides, we get u( sinvdv) +cosvdu = O
) cosvdu = usinvdv
) du ~ dv
usinv B coSs Vv

The direction ratios of tangent at (u;v) is (usinv; cosv):

Let (du;dv) be orthogonal to the direction ratios of orthogonal to the

given curve.
)} =usinv; = COSV; 1 =du; 1 =dv;
By orthogonality condition, we have

E +F( 1+ 1)+G ;1 = 0
0

) 1(usinv)du + 0 + u®+a® cosvdv =

) usinvdu = u? + a2 cos vdv
udu cos v
= —dv
u2 + a2 siny
Integrating, we get log u”*+a®> = 2log(sinv) + logc
) u?+a? sinv = ¢

which is the required family of curves.

Example 6.3. A helicoid is generated by the screw motion of a straight line which
meets the axis at an angle : Find the orthogonal trajectories of the generators.

Find also the metric of the surface referred to the generators and their orthogonal

trajectories as parametric curves.

Solution:The equation of given helicoid is
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¥ — usin cosvi+usin sinvj+(ucos +av)k
T, — sin cosvi+sin sinvj+cos k

¥, — usin sinvi+usin cosvj+ ak

E =1, rn=1

F = 1, I, =acos

G = Fz Fz = U2 sin2 +<":l2

generators are given by v = constant.

c ) dv =0 (or) dv = 0(du)

vV =
dv du

o - 71
du 3 dv

)T ~ %

Therefore, the direction ratio of the given family of curves is (1;0): Let

(du; dv) be the direction ratios orthogonal to (1;0):
We get =1; =0; 1 = du; 1 =dv:

By orthogonality condition, we have

E 1+F( 1+ 1)+G ;, =0
1 1 du+acos (1 dv+du 0)+ u?sin® +a> 0 dv = O
) du+acos dv = 0

Integrating, we get u+avcos = constant

This is the required orthogonal trajectories of given family of curves.

To examine these trajectories note that u =0 for some value of v on

every curve, so that every trajectory meets the axis of the helicoid.

For a particular curve there is no loss of generality in taking its
intersection with the axis to be the origin.

Then u= avcos and the curve is given by

r = asin ( vcos cosv; vcos sinv; vsin )

with v as parameter. It is the intersection of the cone x* +y? = z%cot?
and t{1e cylinder whose cross section by the xy plane is the spiral

= sin2 :
r 2—a
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A transformation which takes the generators and their orthogonal
trajectories into parametric curves is

[

U = u+aveos ; v'=v
) du = du® acos dv’; dv=dv°

The metricis ds® Edu® + 2Fdudv + Gdv?

= 1:.du® +2acos dudv+ a®+u®sin  dv?

will become h 1
ds® = du’?+sin®> a’+ u av’cos 2 dv°?
and the new coe cients are h 1
E° — 1; F°=0; G°=sin® a’+ u° av’cos °2

Example 6.4. Show that the curves du? u® + a® dv® = 0 form an orthogonal

system on the right helicoid.

Solution: Given di erential form represent a double family of curves
which form an orthogonal system if ER 2PQ + GP = 0:

We have Pdu® + 2Qdudv + Rdv? = 0
Comparing with du® u®+a® dv® =0 we get

2

P = 1;Q0=0, R= u’+a

The equation to the right helicoid is

r = (ucosv;usinv;av)
r, = (cosv;sinv;0)
r, = ( usinv;ucosv;a)
) E =1 rh=1 F=r =0 G=r rh=u®+a
ER 2FQ+GP = u’+a’+u® a?=0

Therefore, the given curves form an orthogonal net.

Example 6.5. The metric of a surface is v’du® + u®dv?: Find the equation of the

family of curves orthogonal to the curves uv = constant.
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6.3. Families of Curves:

Solution:
Given metric of the surface is ds*> = v2du® + u’dv® (6.8)

We know that ds* = Edu® + 2Fdudv + Gdv? (6.9)
Comparing (6.8) and (6.9), wegetE = V> F=0; G=u’

Equation of the given family of curve is uv = constant
Di erentiating, we get udv+vdu = O
) vdu = udv
du dv
u \"

Therefore, the direction ratios of given family is ( u;v):

Let (du;dv) be the direction ratios of required family orthogonal to the
given family.

Let = u =V 1 = du; 1 =dv.

By orthogonality condition, we have

E +F( 1+ 1)+G ;1 = 0
2 2
)v(u)+0+uvdv =0

dv du

)T TN

Integrating, we get logv = logu+logc
v
) — = constant

u

This gives the orthogonal trajectories.

Example 6.6. If is the angle at the point (u;v) between the two directions
2 1=2

given by Pdu® + 2Qdudv + Rdv® = O then prove that tan = 2H Q° PR .
ER FQ + GP

Solution: Let ( ; ) and (°; °) be ratios of two directions given by

2 du
p% +2Q0—+R = 0
dv dv

o]

Then _ and _ are the roots of the above equation.
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tan

i.e;; tan

!2

_2Q

4R
H

=2

= R
+F

_¥o
H'4o? 4pr 1

e
R

1
'
2 +

=)

ER 2FQ + GP
P
1=2

2H Q* PR

ER 2FQ+GP

G

6.4. Isometric correspondence:

We shall consider examples of classes of surfaces with the property

that surface in the same class are specially related to each other. The

fundamental ideal behind this is that of correspondence of points between

two surfaces and the two surfaces are regarded as equivalent, if this

correspondence (or) mapping preserves geometrical rules on that surfaces.

An isometric correspondence between points P on a surface S and the

points P° on S° such that as P traces out an arc on S then P° traces out

an arc of equal length on S°:
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An isometric mapping preserves both distance and angles, whereas

conformal mapping preserves angles only.

We are concerned only with local properties of a surface, and in
discussing correspondence between surfaces S and S °: Now, we shall
consider only correspondence between parts of the surfaces. If the point
(u°; v°) on S° corresponds to the point (u;v) on S; then u’ v° are single

valued functions of u and v; say

o= (wv); V= (uv) (6.10)

If surfaces S and S° are of class r and r° respectively, we may assume
that and are functions of class min (r; r°) with non-vanishing Jacobian

in the domain of u;v: Also we assume that the mapping is one to one
throughout this domain.

We have restricted the maps between the part of S and part of S° to be
di erentiable homeomorphisms of su ciently high class regular at each

point of the domain of u;v:

Consider a curve C of class 1 passing through P and lying on S;
given parametrically by equations u = u(t); v = v(t): If the surface S is
related to surface S° by the equation (6.10), then C will map into a curve
C° on S° passing through P°; with parametric equations.

u (u(t); v()
Vo= (ub); v(t)

The direction of the tangent to the curve C at P will map into de nite
direction at P° namely that of the tangent to C° given by the direction
ratios (u°;v°); where

@ @

U =—u+—vr
@u  @v -

Y e +EV>>,

u
Solving the equations (6.11) for {*: v?) ;@\‘/\/e'get

(6.11)

@ @
u° V°
@v @\_/’
u =
J '
@ @
(|
@u @u
\V4 =
J
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Since J is a non vanishing Jacobian, it follows that to a given direction
at P° will corresponds to a de nite direction at P;

Now we shall show that a proper parameter transformation in S° (or) S;
so that corresponding point P, P° carry identical parameter values.Since,
the functions ; of equation (6.10) satisfy the condition for a proper
parameter transformation and after transforming the parameters of S°in
this way the correspondence S I S° gives (u;v) I (u;v) as required.

De nition 6.2 (Isometric or Applicable surfaces). Two surfaces S; S° are said
to be isometric (or) applicable if there is a correspondence between the points
of S and S °such that corresponding arcs of curves have the same length. The

correspondence is called an isometry.

For example, consider a region S (not too big) of a plane and a region S°
of a cylinder. The plane can be considered as being tted onto the cylinder
so that S coincides with S °; and since no part of S is cut or stretched in

this process the length of an arc in S remains unaltered.

Geometrically, S is continuously deformed in space until it coincides
with S ° so that continuity and arc length is preserved in S preserved.
Points of S and S °which ultimately coincide are corresponding points of
the isometry. This gives a clear idea of the relation between two isometric
surfaces and explain the fact that S and S ° need not be congruent in order
to be isometric.

Locally Isometric:

The application of a plane to a circular cylinder gives the idea of
local isometry. If the whole plane S is wrapped round the cylinder S°;
in nitely many points of S corresponds to the same point of S °so that
the correspondence S l S °is not one-one but many one. The plane and
cylinder are not isometric in the large, they are however locally isometric
because every point of the plane has a neighbourhood which is isometric

with a region of the cylinder.

Note 6.5. For an isometry, the length of any arc in S must be equal to the length
of corresponding arc in S° This means that ds = ds° where ds and ds° are

corresponding linear elements of arc and this must be true for all u;v;du;dv
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and the corresponding u’ v°; du’ dv°: The metric S therefore transforms into

the metric of S°under the transformation (6.10).

If surfaces S and S °are isometric, there exists correspondence (6.10)

between their parameters where and are single valued and non-vanishing

Jacobians such that the metric of S transforms into the metric of S°:

Example 6.7. Find a surface of revolution which is isometric with a region of

right helicoid.

Solution: We know that the surface of revolution is given by

r = (g(u)cosv;g(u)sinv; f(u))
;= (gi(u)cosv;gi(u)siny; f;(u))
r, = ( g(u)sinv;g(u)cosv;0)
Now E = 1, I =gi(u)+f3u); F=r =0, G=r, r,=0°()

For some functions f(u) and g(u) and its metric is given by

ds® = Edu®+ 2Fdudv + Gdv® = gzgu) + le(u) du® + 0 + g®(u)dv®

ie; ds® = g2(u) + f2(u) du® + g®(u)dv?

The right helicoid of pitch 2 a is given by

0 0 o] o] 0

F = UuCOSV +u sinv;av

~ o] R 0

rpb = cosv +sinv;0 (6.12)
~ o - 0 o 0

r, = usinv  ucosv;a

Fl F2=O; G=uw?+a

2

~ 2 . 0
E°=r1 =1 F

Therefore, its metric is given by ds°? = du’?+ u?+a? dv°? (6.13)

We have to nd a transformation (u;v) = (u° v°) so that ds = ds”

Taking v = v; u’= (u); we have
dvV = dv; dud = 1(u)du
) ds'? = Zdu?+ Z+a? dv°?

So the metrices ds and ds° are identical if

g+ ) - ° (6.14)

g°(u) = *+a (6.15)
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These are two equations in three functions namely f; g and

If we eliminate ; there remains a di erential equation for f as a

function of g:

By putting g(u) = acoshu; (u) = asinhu to satisfy equation (6.15), we
have from equation (6.14)

£2u) = (u) diu)

2 2 2 2 2 2
) f,(uy = acosh u asinu=a
) fi(u) = a
Integrating, weget f(u) = au

Hence the right helicoid is isometric with the surface obtained by
revolving the curve x = g(u);

y=0;z=f(u) iie; x=acoshu; y=0; z=au about z-axis.

Note 6.6. The generating curve is the catenary x = acosh 2 with parameter a
a

and the directrix the z -axis and the surface of revolution is a catenoid.

The correspondence u® = asinhu; v° = v shows that the generators
v° = constant on the helicoid correspond to the meridians v = constant on the

catenoid, and the helices u® = constant correspond to the parallels u = constant.

On the helicoid u° and v° can take all values but on the catenoid 0 v <2 :
The correspondence is therefore an isometry only for the region of the helicoid
0 v° < 2 : Hence, one period of a right helicoid of pitch 2 corresponds

isometrically to the whole catenoid of parameter a:

Example 6.8.

A surface of revolution dened by the Lf:qua'[ions

X = COSUuCOSV; y = cosusinv; z = sinu + logtan Y where
0<u< —; 0<v<2 : Show that the metric is tan?udu® + cos? udv? and prove
2

that the region 0 < u < E; 0 < v < is mapped isometrically on the region

Cosu
1

—<uw<< =
3

o DV =2V

0 <v°* <2 by the correspondence u° = cos 5

M.Sc.(Mathematics)-1 Year-1 Sem Di erential Geometry



118 6.4. lsometric correspondence:

Solution:
u
we have r = cosucosv;sinvcosu; sinu + logtan R
r, = ( sinucosv; sinusinv; cosu + secu)
r, = ( cosusinv; cosucosv; 0) (6.16)
E - n?=tan’u
F = 1, r,=cos?u
ds® = Edu®+ 2Fdudv + Gdv? = tan® udu® + cos? udv? (6.17)
putv = — cosu = 2cosu’ in (6.17); we obtain
dv = Edvo; sinudu = 2sinu d(l),l 0
) ds*? = tan®u’du’ ? + cos® u® 2dv° 2 (6.18)

From (6.17) and (6.18), we nd that the two metrics are identical and

hence the transformed surface are given by

0 . 0
X = ZCosu"cos\’E;y=Zcosu°smVE

. 1
z = sincos ! 2cosu® +logtan Z+ Ecos b 2cosu’
is isometric to the given surface.

Also (u;v) I (u°; v°) with v = VEO; Ccosu = 2 Ccosu’;

The given region is 0 < u < 5; 0<v<

1
u = 0)Zcosu =1)cosu =5 ) U=§
_ = ‘~0 ) u' = —
u = 2)cosu >
0< u <= corresponds to — <uw < —
) 2 P 3 2

Similarly for 0 <v < correspondsto 0 <v <2 :

De nition 6.3 (Isometric lines, Isometric system). The parametric curves
u =constant, v =constant on the surface S given by r = r(u;v) are called
isometric lines if the metric on S can be put in the form ds? = “Udu? + vdv? *:
where is a function of u and v; U is a function of u alone and V is a function

of v alone. The parameters u and v are called isometric parameters.

Example 6.9. Show that the meridians and parallels on a sphere form an

isometric system and also determine the isometric parameters.
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Solution: The position vector of any point on a sphere is

r =a(sinucosv;sinusinv; cosu):

Here the parametric curves

v = constant are the meridian and
u = constant are the parallels
Now, r; = a(cosucosv; cosusinv; sinu)
r, = a( sinusinv;sinucosv; 0)
E = F12=3.2; F=F1 F2=O; G=?22=azsin2u
ds® - Edu®+ zﬂqudv + GdV? = efduz + 0+ a’sin udv?
) ds®> = a?sinu cosec’udu? + dv?
This is of the form ds? = “Udu?+vdv?'; where - a?sinu:

U = cosec’u; V =1

Thus, the system is an isometric system.

To nd the paﬁametric curves, ﬁe use the transformation (u;v) g (u’v°)
given by du’° = " tdu and dv° =y Vdv
) du® = Zcoseczudu

)

and dv° = dv) V=V

u
cosecudu = logtan _
2

Therefore, the parametric curves are

u
u* =constant ) log tan - =constant and v° - constant ) v = constant.

Intrinsic properties:

Let E;F, G be any real single valued continuous functions of u and
v satisfying E > 0 and EG  F? > 0 in some domain D of u;v: Then
it will be seen that every point of D has a neighbourhood D° (in D)
in which Edu® + 2Fdudv + Gdv® is the metric of the surface referred to
u and v as parameters. This is the rst fundamental existence theorem
and shows that there is no hidden identity relating E;F and G: It asserts
to existence of a vector function r(u;v) satisfying the partial di erential

equations r; 2 =E; r, I, =F; G =T, r, insome domain D°:

The surface having a given metric is certainly not unique, however, even
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apart from rigid displacements in any space. Any two isometric surfaces,
for example, have the same metric when the corresponding points are
assigned the same parameters, although they are not congruent. The class
of surfaces having a given metric is the class of isometric with any one

member.

It follows that any formula (or) property of a surface which is deducible
from the metric alone, without recourse to the vector function r(u;v);

automatically applies to the whole class of isometric surface. Properties
of this kind will be described as intrinsic other wise is non-intrinsic.

If a formula equation (or) theorem is intrinsic, it should be possible to
derive it by an intrinsic arguments without introducing normal properties.
It paves the way for Riemannian geometry which is mainly intrinsic. The
quadratic di erential form of metric is itself deducted from r(u;v): The
square root of a quadratic di erential form (or) any other homogeneous
form of degree 2.

A vector in the tangent plane may be de ned by its components ( ; )
and is intrinsic, all such vectors at a point form a vector space with a
norm (magnitude) de ned so that norm of (du;dv) is the linear elements
ds given by the metric. The vector ( ; )= ( ; ) where is very small
can be regarded as the small displacement from the point (u;v) to the point

U+ ;v+):

The angle between two vectors (; ) and ( ° °) atapoint (u;v) can be
de ned by the Euclidean cosine formula applied to the small triangle with
vertices (u;v);(u+ ;v+ )and (u+ °°%v+ °°; where and ° are

small. It can be veri ed that this de nition of angle is consistent.

Now we can study the intrinsic property of a surface at any point namely
linear and area elements, vector components, vector magnitudes, direction

coe cients and angle formulas.

Let Us Sum Up:

In this unit, the students acquired knowledge

to know the relation between direction coe cients and direction

ratios.

to know the concept of orthogonal trajectories.
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to know the concept of isometric correspondence.

Check Your Progress:

1. Show that parametric curves are orthogonal on the surface

: 2 2172
X =Ucosv; y=usinv;z=alog u+ u° a :

2. Show that the parametric curves on the sphere

r = a(sinucosv;sinusinv;cosu) 0 < u < 5 0 <v <2 form an
orthogonal set.

Choose the correct or more suitable answer:

1. The direction coe cients satisfy the identity

1

(@) EIP + 2FIm + Gm?

(b) EPF 2FIm+Gm? =1

(c) EPF+2FIm Gm?=1
(d EPF 2FIm Gm?’-=1
2. Anisometric mapping preserves
(a) distance only.
(b) angles only.
(c) both distance and angles only.

(d) neither distance nor angles.

Answer:

a2 c

Glossaries:

Orthogonal Trajectory: The locus of a point whose path cuts each

curve of a family of curves at right angles.
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6.5. Intrinsic properties:

Suggested Readings:

1. T.J. Willmore, An Introduction to Di erential Geometry , Oxford

University press, (17th Impression), New Delhi, 2002. (Indian
Print).

2. C.E.Weatherburn, Di erential Geometry of Three Dimensions
University Press, Cambridge, 1930.
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124 7.1. Geodesics:

Objectives

After completion of this unit, students will be able to
F understand the concept of Geodesics.
F derive the equations of the Geodesics.

F normal properties of Geodesics.

Overview

In this unit, we illustrated the properties of special intrinsic
curves, called geodesics which is related to straight lines in Euclidean space
because they are curves of shortest distance.

Geodesics:

The problem is given any two points A and B on the surface, we
can nd the least arc length by joining all the possible arcs between A
and B: As we already familiar that the equation of the curve is given by
u = u(t); v=v(t): Every curve given by these equations is called geodesic,
whether the curve is of shortest distance (or) not, and geodesic may be
regarded as curves of stationary, rather than strictly shortest distance on
the surface.

De nition 7.1 (Geodesics). If two points A and B on a surface S be joined by
curves lying on S; then the curve which possesses a stationary length for small

variations is called geodesics.

Bookwork 7.1. Derive the di erential equation of geodesics.
Let A and B be two points on the surface r =r (u;v):

Consider all the possible arcs which join A and B are given by the
equations u = u(t); v = v(t) where u(t) and v(t) are functions of
class 2. Without loss of generality it can be assumed that every arc ; t=0
at A =0 ( A is called the initial point) and t = 1 at B ( B is called the end
point). we assume that for every arc  isgivenby 0 t 1
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Let be one such arc and let s() be the arc joining A and B measured

along :

We have dfz = Edu? T 2Fdudv + dezl

l2 |2 ' ] .2
) qﬁ - E W + 2F %-%r %¥+G d(;ivt-
) 52 Eu2+2Fuv+Gv2

L 1
Now arc length s( )

sdt

Zo

1
) s() . Eu? + 2Fuv + Gv“dt (7.2)

Let be slightly deformed to obtain ° keeping the end points A and
B xed.

Then ° has the equations

ui(t) = u()+ g
vi(t) = v(t)+ h()
where is small and g;h are arbitrary functions such that
g(0) = h(0) = 0 and g(1) = h(1) = 0:
) Arclengthof ° = °

S

[ q

= 0 Eu% + 2Fuyvy + Gvéd_t
(replace u;v by u’; v in (7.1)

The variation in s( ) isin s( ) s( °) and in general it is of order

If s such that this variation is atmost of order 2: for all variations in
; then s( ) is said to be stationary and the curve s geodesic.

Eu? + 2Fuv + GV?

Let T (u;v,u;v) =
then T = _¢°
1

) s() = sdt = fdt; where f = f (u;v;u;v)
0 0

)@ oy s Paroray
Lt L
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o

7 7.1. Geodesics:
| ]

Now, s( °) s() Yty ou v Y E (uviu ) dt
1 1 1 1
0
1

0
_ % f(ug;vaiugivy)  f(upviuv) dt

1

1
s(°) s() = fu+ gv+ hu+ gv+ h f(uvuv) dt
0
1/
Z ef  ef ef
+h—+ g @+ h
@v

f
f(uv,uv) + gE — —
u

o, @f @v
f(u;v;u;v) dt

+0

(expanding by Taylor's theorem Z)r several variables)

. 1 ef aef ef @fm
)S() S( ) = g@_u+h@+g@_u+h@_vdt

0]
/ Jocy 7/ (7.2)
@f _ 1 @f

Consider ! g_ dt _ gdt= ' udv
0 @u 0 @u 0
@f
whereU = —; dV =gdt
@u
@f ,
Ydu = d . V=g

Zl *91(1)30;’9(0)=0
) g%dt _ gggggdt

o Jau 0
PRI
i h@dt - Iy & a
Thus, equation (7_?,lb,pcomes [ lﬁ
s() s(°) = Zol”g L onGy gﬁ %ﬁ h e @@{_. M;#
RS 3 A i o o0
L

- gL +hM dt+0O( 3
0

In a similarly way, we can get
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l I

o of . d of’
LN G S e w

By de nition s( ) is stationaﬁ/, s( ) s( °) is almost of order

Therefore is a geodesic if gL +hM dt=0

0

2,

) L = 0 and M =0 (* g h are arbitrary functions)

!

of d ef
_ _' -0
@ dt @u
of d ef
—_ = — =0
@v dt @v

These are the di erential equations for geodesic. But, f

(7.3)

(7.4)

- pz?;

so we write the di erential equations involving T rather than f : Thus,

equation (7.3) becomes

@p)ﬂ@pz?lc

(—27

B%_C}B -
@u t @p_
" p7@@, 'pT ng%@@uTz 0
' i —r
ot Rrgom’ & o= gl
Multiplying both sides by T—we get' - -0
d aer ' aT 1 @T dT
dt @ @ 2T @u dt
Similarly from equation (7.4) \Pve get
d et ' @t 1 @TdT
dt @ @ 2T @v dt

(7.5)
(7.6)

7.7)

For convenience, we denote left hand side members of equations (7.5)

and (7.7) by U and V: '

4 aT ' aT 1 @TdT
de Qul @u 2T @y W7
d @T QT 1

V = dt @ v = 2F8vdt
Equation (7.8) ) u -= Laerdr
2T @u dt
. 1 @TdT
Equation (7.9 vV = ——
‘ ( )) 2T @v dt

- daT .
Eliminate e from equations (7.10) and (7.11), we get

(7.8)

(7.9)

(7.10)

(7.11)
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@t @t
Uu—

v— = 0 7.12
@v @u ( )

This is the necessary for a curve on a surface to be geodesic.

Note 7.1. The expressions U and V so de ned are important in relation to any

curve, whether it is geodesics or not. They satisfy the identity

dT
uv +vwWw = — (7.13)
dt

v3 .
Example 7.1. Prove that the curves of the family = constant are geodesics on

the surface with metric v’du®  2uvdudv + 2u®dv® (u > 0;v > 0):

3
Solution: Given curve V—Z = ¢ (c > 0); the parametric equation of the
u

given curve can be written as

N
3. 2 /
u =ctt v=ct (7.14)
u = 3ct? §
v = 2ct!
ds® = vAdu® 2uvdudv + 2u’dv?

o/
(%)
N
I
<
N
c
N

2uvuv + 2u?v?

1
Let T = _s
)T - 3 VAu?  2uvuv + 2u?V?
QT 1
— = E 0 2vuv+4uv® = wvuv+ 2uv?
u
4
W - ct® 3ct® (2ct) +2 ct® 4 ¢’ = 2¢°%°
u
Similarly, o 3c®
@v
@_T PR
@u
LI
@v
l d
g er' eT " 4 c3®  2¢3%° = 4aci®
we have U = ;t_@ E dt
u u
d @ * ar = 3t 3c3® = 4c®t
and vV = dt v T%v dt
@T @T
U_— v— = 4% " 4c%® &&° -0
@v @u

Hence the curve is a geodesic for all values of c:
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Example 7.2. Prove that the curves of the family u + v = constant are geodesics

on the surface with metric 1 + u® du® 2uvdudv + 1 +Vv? dv?

Solution: Given curve u +v == c; the parametric equations of the given

u = t; V=C.
%}6 (7.15)
; 7

curve can be written as

ds® = 1+0? du?® 2uvdudv+ 1+Vv? dv?
) 2 = 1+u®U? 2uvuv+ 1+vE VP
Let T = 2

1

1+u% w2 2uvuv+ 1+V2 VP

—— 0

o’

_|

Il
NN PN -

@T 2 2
@— = 2uu 2uw +0 =uu vuv
u
@T
w - t(1) (¢ @A) 1=t+c t=c
L. @T
Similarly, — = ¢
@v
@T
— = 1l+ct
@u
@_T - ¢ 1 c?
@v '
. =—(L+ct) c=0
d et ' @t (
we have U = — - a
dt @u, @ d 2
d @ ar = ct 1 c c=0
and VvV = dt @v %v dt
@T @T
—V — _ 0 0=0
@v @u

Hence the curve is a geodesic for all values of c:

Example 7.3. Prove that on a general surface, a necessary and su cient condition

for the parametric curve v = constant to the geodesic is EE, + FE, 2EF, = O:

Solution: On the curve v = ¢; we may take u as parameter. Therefore

u=t
u = t; vV==cC

) u = 1'h v=0 i

1 2 2
wehave T - EhEu + 2Fuv + Gv i
@_T - l E1u2 + 2Fuv + le2
@u 2

@E @F @G

whereE; = —; Fi1=—; = —
YT eu ' @u @u
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a_ g
@u 2
1
similarly, &* - ZE,
@v 2
@t
— = E
@u
@t
)%
@v
@T @T 1 1
Now, U = — __=E, _E,=_E,
dt @, @u 2 2
d @T @T 1
and V. - _ _ _ =F _E,
dt @v @v 2

We know that the necessary and su cient condition for a curve to be a

geodesic is
UT Ve - o
) der ili
EE, + FE; é:EFl = 0

This is the required condition.

7.2. Canonical geodesic equations:

The geodesic equations are given by

d
1 dT @T

Vzgt%v @~ 21 dt ov

where T (u;v;u;v) = Eu? + 2Fuv + GV? ;
1

(7.16)

l
erT ' @T =1 dTeT 9>
>
>

Here t is a parameter without loss of generality we can take s as

parameter, so u;v are replaced by u°;v* and

T uvusv = Eu?+2FUuV +Gv? (7.17)

Along the cijrveéTu” and v° satisfy the identity of direction coe cients.

Hence T = 2; = 0 and equations (7.16) becomes the canonical
S

equations for geodesics
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7.2. Canonical geodesic equations: \Q 131

vo & & u-1 f (7.18)
ds @ @

In these equations, the partial derivatives of T are calculated from
equation (7.16) before values of u° and v° are substituted. T is not equal
to > identically for all values of u;v;u’, v° but only along the curve. We

get the identity namely u°U +v°V = 0:

The equation (7.18) are not independent. For a curve other than a
parametric curve u° 6= 0 v 6 0 and the conditions U = O;V = O &
equivalent other being su cient for a geodesic. For a parametric curve
u =constant, w = 0;V° G- 0 and v — 0 for all s: The condition fora
geodesic is U = 0: Similarly, Vv = 0 is the su cient condition for the
curve v = constant to be geodesic.

Example 7.4. Find the geodesics on a surface of revolution.

Solution:Let the surface be given by

r = (g(u)cosv;g(u)sinv; f(u))

ro= go(u) CoSV; go(u) sinv: fo(u)

r, = ( g(u)sinv;g(u)cosv;0)

E = ri%=9"%(u)+ f°%u);

G = T Iy =g*u);

F = 1 =0

Hence ds* = Edu® + 2Fdudv + Gdv?
= hg° 2(u) + f° 2(u) du? + g®(u)dv?

2 2 02 2,02 df

T = f+g U +gV where f _ go_
1 1 1 du

eT . .
From above, we see that — = 0 then the canonical equation V = 0

@v
reduces to
d et
— = 0
ds @y
Upon integrating, we get g°v> = > 0; where is an arbitrary constant.
If = 0; then V is constant and every meridian is a geodesic. Now we

assume that is positive. Then the rst order di erential equation can be

M.Sc.(Mathematics)-1 Year-1 Sem Di erential Geometry



132 7.2. Canonical geodesic equations:

written as h '

g'dv® = Zds?= ? 2+ 9] du® +g?dv?
) rgfdu g g 2dv=0 (7.19)

dv
Even though is an arbitrary constant,  being included, because m

may change sign along the same geodesic. If g* 6= 2. then equation (7.19)

becomes q q

f"+g°du = g ¢ Zdv =0

qu

Upon mFegra ion Waer%gtrbltrary cons%ant51—du = + (u ) (say)

If g° = < then from equation (7.19), we get u = constant. For curves
u = constant, the equation v = 0 is satis ed. To check whether the curve
u = c is geodesic , it is necessary to apply the condition that U = 0. Since
u° =0 andv° = g ! from the identity for direction coe cients.
@T @T gl U - %

@ @u g g

The curve u = c is therefore a geodesic if and only if g;(c) = 0: Since
g is the radius of the parallel u = c on the surface of revolution, a parallel
is a geodesic if its radius is stationary.

Example 7.5. Discuss the nature of geodesics on the right helicoid

X =UCOSV, y=usinv, z=av:

Solution:
f(u) = (ucosv;usinv;av)
r(u) = (cosv;sinv;0)
r(u) = ( usinv;ucosv;a)
E = 1n?=1 F=0, G=u*+2a?

Now the canonical equation V = 0except these for which u = constant,
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are the geodesics on the surface. Also u = c is a geodesic if and only if
VvV =0:

The metric is
ds® - duhz L u?+a? dv? 1
1 02 0,0 o2
and T - 1 Eu°+2Fuv +Gy
2] 1
1
- §u°2+ u?+a? v?
T @T
— =0 = u+a® Vv '
@v @v° ‘ h 1
. _ 2 2 0
o e’ @ "o ut+at v 0
vV = %s h@v v
_ _ u2 2 Vc '
@s J@ah 1
V = 0 @s u+a2 Vv =0
Integrating, we get u®+a® v = k where k is an arbitrary constant

If k = 0; then we get v° = 0 (or) v =constant. Thus every meridian
v = ¢ is a geodesic on the right helicoid.

Squaring, we get

2 dv?
ut+a® - K3

ds

2
u?+a% dv? = K3ds?
WaiaZdv? = K EdU® + 2Fdudy + Gdv?

u>+a% uv*+a® kK®dv? = Kidu?
_ a K
dv = “ — — du (7.20)

Case 1: Let u”*+a® k> 0 Integrating (7.20), we get the equation of

geodesic.

k
v = k Kk du

uz+a2 u2+a?2 k2
where k; is an arbitrary constant

Case 2: Let u? +a®> k®> = 0: Then from equation (7.20), we see that du = 0
(or) u = constant, the equation v = 0 is automatically satis ed. Further,
the necessary and su cient condition for the curve u = ¢ to be geodesic
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134 7.3. Normal property of Geodesics:

is that U = 0: Since F = 0 for this surface, the curve u = ¢ will be a
geodesic if and only if G, = 0 then u = constant for all values of v:
G = u?*+a?

G, = 2u+a% u=c

Thus, G; = 0 implies that u = constant will be a geodesic if and only if
2
2c+a’=0Y) c= :
+ ) gz

. . az
The parametrlc curvelis u = is also a geodesic_
2

7.3. Normal property of Geodesics:

In this section, we are going to study the properties of Geodesics and

the application of Tensors in the study of Geodesics.

Bookwork 7.2. A characteristic property of a geodesic is that at every point its

principal normal is normal to the surface.

Proof. The geodesic equations can be expressed in terms of r(u;Vv) in terms
of the following identities which hold for any functigns u(t); v(t) of a general

parameter t: ~ o~
T .. ar="r
— =rr; — D

@u @v (7.22)

~

U@) =7 r;; V@O =T rp!

where T = Eu? + 2Fuv + GV? :

To prove these, consider the relations

1 1 )
-~ ~1 ~ ~ ru rv
T = §r12u2+2rl Puv+ 12y - —
T - ¥? (*FT=Fustv 2
E 1 2
ar @r
w7 i h
ar . %Lr]:'w e _  _d
— = r — — _ — ~
@u @u .r au r\u+ryv r r
dt
d @T @T
) Uy = _—
dt @u @u
d d d
PR =T et — T
dt R . dt
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7.3. Normal property of Geodesics: 135

d

~

Similarly, we can show that V/(t) = T ™ r .
t

If s as parameter, then the geodesic equations are U(s) = 0; V(s) = 0: These

can be written as

This shows that r ® is perpendicular to both ; and & and therefore along
the normal to the surface. Since r, and T, lie in the tangent plane to the surface.

But r © is along the principal normal to the curve. Hence we see that at every
point P of a geodesic, the principal normal is normal to the surface.

Note 7.2. Every great circle of a sphere have the normal property of geodesics,

therefore every great circle on a sphere is a geodesic.

Example 7.6. A particle is constrained to move on a smooth surface under no

force except the normal reaction. Prove that its path is a geodesic.

Solution: Let ¥ be the position vector of a moving point and the
parameter t is the time.
e T =Tr(t):

Then the velocity vector = __ =7

and acceleration vector = =T

Given that the only force acting on the particle is the normal reaction.
We know that F = mr * Force = mass acceleration

Given that the force is along the normal to the surface, so r must be
along normal to the surface.

Since T is tangential to the path of the particle, it must be along
tangential to the surface.

¥? ¥
TT =0
~ o~ d ~»
2r vt = O —r° =0
) F
)Fz - 0 )?2=constant ) r=c
) speed s = cC
N dr dr ds ~ ~ dr
Now, r = —=— —=1ts wheret=—
dt ds dt ds

is the unit tangent to the path of the particle and ¥ = ct:
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136 7.3. Normal property of Geodesics:

N dt
r = c—
dt
dt ds N ~ ~
= C——=ct°s=ct’c=c’t"
ds dt

)T’ cn

where n is the unit principal normal to the path of the particle ) vk

i.e;; Surface normal is parallel to unit principal normal.

Therefore, by the normal property path of the particle is geodesic.

Example 7.7. Show that every helix on a cylinder is a geodesic.

Solution: Let C be a helix on a cylinder whose generators are parallel

to a constant vector a:

Let P be any point on C: Let t and n be the unit tangent and unit
principal normal to C at P. Let N be the unit normal surface at P (to the
cylinder).

Since C is an helix, we have t a = constant (by de nition of helix).

~

. . . ~ dat .
Di erentiate with respectto s; t(0) + __

Q
I
o

o \/
s
@2
Il I
o o o

o/
=
@2
Il

o/
=F

D
@2

Also, n 7%

Thus 1 is perpendicular to both a and t:
) nisparallel to a t

Since a and t are tangential to the surface of the cylinderat P a t is

along the surface normal N at P.
Thus 1 and N are parallel.

Hence by the normal property, it follows that C is geodesic on the

cylinder.
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Let Us Sum Up:

In this unit, the students acquired knowledge to

derive the canonical equations for the Geodesics.

understand the normal properties of Geodesics.

Check Your Progress:

1. De ne Geodesic.

2. Derive the canonical equation for the geodesic.

3. Prove that every helix on a cylinder is a geodesic.

4. Derive the normal property of a geodesic.

Choose the correct or more suitable answer:

1. The curve u = constant is a geodesic if and only if

(d) GG, +FG, 2GF,-=0

(b) GG,

(c) GG,

FG, 2GF,=0

FG, + 2GF, = 0

(d) GG]_ + FGZ + ZGFZ = 0 .

2. A characteristic property of a geodesic is that at every point its

principal normal is : : : : : : to the surface
(a) tangent (b) binormal
(¢) normal (d) none of these.
3. Every helixona: :: ' : 1 is geodesic.
d . d
a U=— - 0; - —
@ ds 8?1-_”! + %TJ_ ' ds
b U d et @) o: d
(b) " ds @U°' @ ~ " ds
d ! d
c U=— =0; =—
© ds 8?1-_“! + %Tu_ ds
q d et @) _ d
@ YV-Faw w® Vs
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7.3. Normal property of Geodesics:

Answer:

(Wa () c 3)d

Glossaries:

Geodesics: The shortest path between two points on the surface.

Suggested Readings:

1. T.J. Willmore, An Introduction to Di erential Geometry , Oxford

University press, (17th Impression), New Delhi, 2002. (Indian
Print).

2. C.E.Weatherburn, Di erential Geometry of Three Dimensions
University Press, Cambridge, 1930.
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UNIT-8

GEODESICS-II

Structure

Objective

Overview
8.1 Existing Theorems
8.2 Geodesic Parallels
8.3 Geodesic Curvature

Let us Sum Up

Check Your Progress

Answers to Check Your Progress

Suggested Readings

Objectives

After completion of this unit, students will be able to

F understand the concept of Geodesic parallels, Geodesic

coordinates and Geodesic polars.
F derive the expression for Geodesic curvature.

F derive Liouville's formula for
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140 8.1. Existing T heorems:

Overview

In this unit, we will illustrate the basic concepts of Geodesic
parallels and Geodesic curvature.

8.1. Existing Theorems:

With s as parameter the geodesic equations can be written in the form

¢ = fuvld;v ; V =guwvd;v
where f and g are quadratic forms in u’v* with single-valued
continuous functions of u and v as coe cients. These are simultaneous
second order di erential equations for u and v as function of s; and from
the theory of such equations if f and g are of class 1 a solution exists

and is determined uniquely by arbitrary initial values of u° and v*. Hence

A geodesic can be found to pass through any given point and have any given
direction at that point. The geodesic is determined uniquely by these initial

conditions.

From the above existence theorem, it is to be expected that if a point Q
is su ciently close to any point P then it is possible to nd the direction
at P such that the geodesic through P in this direction also passes through
Q: We have the following theorem where we assume that the surface is of

class 3:

Every point P of the surface has a neighbourhood N with the property that
every point of N can be joined to P by a unique geodesic are which lies wholly
in N .

Note 8.1. The above theorem asserts that we can say at present about the
existence of geodesic joining two given points, it says that Q can be joined to
P ifitissu ciently close to P. Nothing more than that can be said as long as the
region of the surface have been considered arbitrary. However, when a complete

surface has been de ned it will appear that any two points can be joined by atleast

one geodesic.

De nition 8.1 (Convex Region). A region R is convex if any two points can be
joined by a geodesic lying wholly in R and is simple if there is not more than one

such geodesic arc.
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8.2. Geodesic Parallels: 141

Note 8.2. In the Euclidean plane a convex region is necessarily simple but this is
not so for a surface in general. The surface of a sphere for example is convex but

not simple.

An existence theorem due to J.H.C. Whitehead states that every point of P

of a surface has a neighbourhood which is convex and simple .

Geodesic Parallels:

A family of geodesics is given, and that a parameter system is chosen
so that the geodesics of the family are the curves v = constant and their
orthogonal trajectories are the curves u = constant. Then F = 0 and
condition for the v = ¢ curve be a geodesic is EE, + FE; 2EF; = 0: This
implies v = constant to be geodesic becomes E, = 0: Thus, the metric is

of the form

ds®* = E(u)du® + G(u; v)dv?

Consider the distance between any two of the orthogonal trajectories,

say u =u,; and u = u, measured along the geodesic v = c:

Along v = ¢ and dv = 0 and ds = VE(u)du: This implies
L Y
s = VE(u)du: Which is independent of c¢c: Thus the distance is same

U:
along whichever geodesic, v =constant is measured. For this reason, the

orthogonal trajectories are called geodesic parallels.

When dv = 0 and ds = du implies E(u) = 1. Thus the metric is reduced
to ds® = du® + G(u;v)dv® where u is the new parameter determines the

distance from some xed parallel the parallel, determines by u measured
along the geodesic v = constant.

Geodesic Coordinates: If the parametric curves are orthogonal and one of
the family of parametric curves are geodesics then the coordinate of any
point on the surface are called a set of geodesic coordinates.

Geodesic Polars: A particular system of geodesics and parallels is found by
taking the geodesics which pass through a given point O: By the second
existence theorem, there is a neighbourhood of O in which, when the point

O is excluded, the geodesic constitute a family. Parameters u;v can be
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142 8.3. Geodesic Curvature:

chose as above. In particular u can be taken as the distance measured
from O along the geodesics and v can be taken as the angle measured at

O between a xed geodesics v = 0 and the one determined by v:

In this way, the parameters u and v corresponds to polar coordinates r
and inthe plane.

Thus the metric is given by

ds®> = du®+Gdv?

where G is such that when u is small, the metric approximates to plane
polar form with u;v inplace of r; : ie:; to du®+u’dv®: Hence G u*

In geodesic polar parameters the parallel u = constant are geodesic
circles.

8.3. Geodesic Curvature:

For any curve on a surface, curvature vector at P is r ® = n where

is the curvature and n is the unit principal normal.

Since any vector at P is a linear combination of ry;r, and N; we can
write ¥ ® as

~

FOO = F1+ F2+ nN (81)

~

where , is the normal component of r ®; called the normal curvature

~

P. The vectors Tr, + r, with components ( ; ) is intrinsic so that

the magnitudes measures in some sense the deviation of the curve from

geodesic.
F"hH - N+ B+ R (*N F-0)
U = ¥ = ?+ fy 1,=E +F
Vo= ¥ - it T22-F 4G (%N 12-0)

Solving the above two equations, we get the values of and
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8.3. Geodesic Curvature:

GU FV EV _FU

ie:;
H2 H2
Geodesic curvature vector 1, + r, is denoted by 4 and its magnitude

by 4 The vector (; ) is called the geodesic curvature of the vector.

Bookwork 8.1. Prove that the geodesic curvature vector of any curve is

orthogonal to the curve.

Proof. Now we shall prove that the geodesic curvature vector Ng of any curve is

orthogonal to the curve. We have

00

F = F1+ F2+ nN

~
00

r* = "4+ N 8.2)

Taking scalar product of equation (8.2) with r °;

rer® = r° "+ r°N :
o 0] 1
) 0 = F° ,+0 *r°r®=0;r° N=0

This shows that 'y is orthogonal to the curve.

Bookwork 8.2. For a geodesic, the geodesic curvature is zero.

Proof. Now, r° N =0 ) re 7 N and N r° is perpendicular to both N and
re

~

Therefore, r;N 1 N forma right handed system of unit vectors.

o .

Thus, the geodesic curvature vector ~ can be expressedas 4= 4 N T

~

Equation (8.2))?“" = 4 N ¥° + N

Taking dot product with N ¥ °; we get

Fo Fou _ g o R h o I’iN Fo N
mwo ~ o0 o No2 NNL\IA'
N:r°r = N 1 + N;roN
) NEeEe - h(1)+ ﬁO)
[¢]

«
I
Z?
=?
o
=?
8

If the curvature is a geodesic, then ¥ ® = N:

M.Sc.(Mathematics)-1 Year-1 Sem Di erential Geometry



144

{ f 8.3. Geodesic Curvature:

Bookwork 8.3. Derive an expression for Geodesic Curvature.

Proof. As we already proved that the geodesic curvature vector 4 of a curve is
orthogonal to the curve. 4 lies on the tangent plane and therefore perpendicular

to the surface N: Thus, 4 is orthogonal to the unit vector N ¥ °:

Therefore, the geodesic curvature vector is 4 N r° and hence it can be

written as

00

F* = N+ gN F° (8.3)

Taking dot products with the unit vectors I:I r; we have

IF rre = N T N+ N r N r
NFor™ = h)+g 1 *N r N r=1, N ¥ N=0
e 4 = N:ToTre

N r N Sr rs N T F
) r° = - T = —; andr° ¥®- —
s h 1 s s
1%~ o
Therefore, wehave ¢ = — N/rr
s
But, N = — ¥, T,
; U S R A CR ¢
g = i1 o rm r, = 3 0 o~ o~ o~
Hs® HS  r, r o r
eT _ ¢ § - a .. ~ o ~ o
Also, we know that ~~ =T rl, _=rr; U)=rr; v=rr
@u @v
Thus, we have )
@t u(o) o —ﬁ{
3
1 1 eT aTt
_ _ V() U@
. v HS @u @v
Hs ar
@v

Replacing the parameter t by s; we get

Di erential Geometry M.Sc.(Mathematics)-1 Year-1 Sem



8.3. Geodesic Curvature: I

145

1 QT
()
H @ue

This is the expression for

u(®

@T
@ye

==

Example 8.1. Find the geodesic curvature of the parametric curves v = constant.

Solution:

Taking u as the parameter.

ie;, u =t v=c
) u = 1; v=0 ,
! !
T = E Eu? + 2Fuv + GV?
@T @T
— = E; =
@u @Y
. d
d et | et ==
U = d‘t’ ‘@‘H‘ [] ‘@'H’ dt
d @T er d
and Vv = I - (Fﬁ
dt @v @v dt
1 @T @T
y - _VO g, U
9 H_53 @U// .
1 lE
T HET EFR 5
1
= onpez [2EF EE;

FE,]

Example 8.2. Derive the formula for geodesic curvature when the arc length s

is chosen as parameter.

Solution: We know that

k
’ H @uw

I
|
<

~~

N

i@ u® ar
Hvwe) O
H w

! 1

EW ? + 2Fu°W® + Gv° 2

[Since T = E

second degree in u® and v°:
eT aT 1

Hence u’'— +° =2T =2 _=1]
@ue @ve 2

@eT
@ve

@t u(s)

@ V(S ?

+V

:

U(s)

0

aT
@ve

1. .
=5 is a homogeneous function of

M.Sc.(Mathematics)-1 Year-1 Sem

Di erential Geometry



146

8.3. Geodesic Curvature:

In a similar fashion, we can prove that 4= —

97 H

1 V(s 1 U(s)
Thus ©) - — :
ue H Vo
Example 8.3. Show that the components ;

are given by the following formula

1 U(s)

H v

of the geodesic curvature vector

_1uer  1ver
H2w @e  H2w Oy
_lver 1uar
H2 ue @Uo HZ P @uo
Where s is the parameter.
Solution: We know that
1 1
= ﬁ[GU FV]; = z [EV FUl
U V
Now, - G FY
Vv u e
If s is a parameter, then uw’U +v°V =0 ie; U v
on
Thus, - Yol
H2
U 0 0
= GV 4+ Fu
H2vo
QT
= "'|—VD'5-J @‘\‘I'g h l‘
* 1 02 0,,0 0 21
T=_ EU “+2FUuV’ + Gv
VvV GU2
Again = __ F
H2 V
V G 0y m
= e = F
V (o] (]
= Gv + Fu
uuHZ
_ vV oaeT
u°H? @ve

In a similar way, we can prove the other results.

Example 8.4. Prove that if ( ; )
H H

TFw+ Gy  Ew+ Fv

is the geodesic curvature vector, then

9
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Solution: We know that

1
U V
- —IGU FYl- 5 G FJ
= % G+Fg€' *uU+vV
U 0 0
= 2y Gv + Fu
g 0
= — Fu +Gv
3 H
9 B Fue + Gw

Similarly, we can prove the other results.

Liouville's formula for  :

Bookwork 8.4. If

is the angle which the curve under consideration makes

with parametric curves v = constant, then according to Liouville's formula ¢ is

expressed by

g = 4+ Pu + Qv
2EF FE EE
where P - + + 2
2HE
o . EGi FE
2HE

Proof. The direction coe cients

nf; 0 and the direction co

COSs = E“l +F (|m1 + |1m) + Gmml

1
1
EP=u+F '
pE FV°+O +G(0)

EWw + Fv F

—P=—

1
wehave T = = EU?+2FUV° + GV’ 2
@T % 02 0,,0 o2
D = EuUV +2F UV +G v
w2 ! ' '
@T 1 . .
and = — 2E 2F 1 v +0
@ue 2 u N
@T o o
Eu + Fv

)@u° i

Using equation (8.6) in (8.4), we get

of the parametric curve v =constant are

cients of given curve be (u°; v°): We have

(8.4)

(8.5)

(8.6)
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1T
COos = —
E @u°
1=2
) COS = E T
@ue

Di erentiate both sides with respect to s; we get

d ,d
in_ - E 1=
SINGs o 0 8T Zc =%
1o er 1 1 dE
sin = U(s Eu + Fv
p; U+ @u 933 E ds
1 @r" 1 @E du

= L)+ 4 E F
p_ ()+@#‘ID JE3=2 Y auds T

sin =
@u DE3=2

:

N

1
Pz
) o E_Elghlo 1 1

052': uv’ +G v

mim
Mg
c

+ (EE +FEPU°V°+FE v’
3=2 1 i
2B . Hv,
We know that sin = H(@m; Im)=H _p: _p_
0 0 EV O = E
P - -
ZETQL 1 2 1 ﬁz
1
1 Usr EUWZ+2FUuV+G V72
ja— 1 1 1
E E 2 '
r 1 h ﬁ I
JEE wW?+ (EE +FE )uvh FE v 2
HV ° = U+ EUW?+2F UV + G 2

2 1
EE u® + (EE_+ FE )uv° + FE v* 2
E 1 2 1 2

E FE G FE
) hve - U+ F, -2 —31 gy, 3 2 o2
2 2E |2 2E
. U 2EF, EE, FEl'uo EG, FE,
= + +
) Hye 2EH 2EH
° = 9 Q2EF, EE, FE, , EG, FE,
+ B =
g . 2EF, EE, FE, ., EG, FE,
= + JEFR w4+ 2

4+ Pu +QV

2EF EE FE EG FE
where P = + 2 l; Q=—l—Z
2EH 2EH

Eu’ + FV° E1u°+F7v°

(8.7)

@E dv'

dv ds.
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Let Us Sum Up:

In this unit, the students acquired knowledge to

the Convex region and simple.
the Geodesic polars and Geodesic parallels .

derive the expression for Geodesic curvature.

Check Your Progress:

1. Derive the Liouville's formula for 4.
2. Derive the formula for geodesic curvature for .

3. Prove that for a geodesic, the geodesic curvature is zero.

Choose the correct or more suitable answer:

1. Orthogonal trajectories are called : : : : : :

(a) geodesic polars.
(b) geodesic parallels.
(c) geodesic curvature.

(d) geodesic coordinates.

2. The geodesic curvature vector of any curve is : ::::: to the curve.
(a) tangent (b) orthogonal
(c) parallel (d) none of these.
Answer:
b (2 b
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Suggested Readings:

1. T.J. Willmore, An Introduction to Di erential Geometry , Oxford

University press, (17th Impression), New Delhi, 2002. (Indian
Print).

2. C.E.Weatherburn, Di erential Geometry of Three Dimensions
University Press, Cambridge, 1930.
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UNIT-9

GEODESICS-III

Structure
Objective
Overview
9.1 Gauss-Bonnet Theorem
9.2  Gaussian Curvature
9.3 Surfaces of constant curvature
Let us Sum Up
Check Your Progress
Answers to Check Your Progress

Suggested Readings

Objectives

After completion of this unit, students will be able to
F understand the concept of Gauss-Bonnet Theorem.
F understand the concept of Gaussian Curvature.

F derive Minding's Theorem.
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Overview

In this unit, we will illustrate the derivation of Gauss Bonnet

theorem and Minding theorem.

Gauss-Bonnet Theorem:

De nition 9.1 (Simply Connected Regions). If every curve lying in a region R
can be contracted continuously in to a point without leaving R then R is said to

be simply connected.

For Example: In a plane interior of a circle is simply connected, but

the region between two concentric circles is not simply connected.

Theorem 9.1 (Gauss-Bonnet Theorem).

For any curve C enclosing a simply connected region R; the excess of C is

equal to the total curvature of R:

Proof. Let us consider a surface r(u;v) and a simply connected region R of the

surface bounded by a closed curve C:

Figure 9.1

Let C consists of n smooth arcs AgAs; A1Az  An 2AL 1AL 1AL (AL = Ay)

where n is nite and each arc is positively described.
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9.1.Gauss—Bonnet Theorem: 153

Atthe vertex A;(i=1,2; ;n): Let ; be the angle between the tangents to
the arcs A; 1A; and A;A;.1 measured with usual convection at vertices A; so that
< K< If C is taken to be curvilinear polygon then ; are the exterior

angles at the vertices A; (i =1;2; ;n):
The geodesic curvature 4 exists at each point of C except possibly at the
n):

vertices A; (i = 1;2;

Now, we de ne the excess of the curve C as

X 7

ex(C) = 2 i1 € gds (9.1)
From Liouville's formula for ;
we have ¢ = +Pu’+ Qv
d du dv
g = —+P—+Q— (9.2)
ds ds ds

where is the angle made by the curve C with the parametric curve

v =constant and P, Q are functions of u;v:

Since the curve v = constant form a family in the region R enclosed by C; the

tangent to C turns through 2 relative to these curves, i:e:;; we have

(9.3)

Using equations (9.2) and (y) in

ex(C) = Z + i

i1 i-1

= - (Pdu + de%

(9x>, ivve et ﬁ

d
c ds +Pds + Qds ds

° e
e
R @u
= @Q_
pr R Q@

) ex(C) =

R

1 @Q

@aP
— dudv

@v,

* by Green's theorem

K(u;v)ds,

1 eQ @ep'

where K = -
H @u
) excessofC =

av
total curvature of R
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154 91. Gauss—Bonnet Theorem:

there is another function such that ex(C) =
Now, we shall sh&W that the fu lnctlon Igaé u)rg(qu)Jer'd%terr%me)d it possible

Now, . Ky K)ds = K,ds Kds =ex(C) ex(C)=0
R R R

) ki Kds = 0 (9.7)
R
If K, 6= K at some points P; let K; > K (for de niteness). Then, s
K; K > 0 is continuous there exists a region R containing P such that

g (K K)ds > 0; contradicting (9.7).  Therefore K, K: Similarly we
can prove that K; K.

Thus, K; = K at each point. ice;; K is unique.

Note 9.1. 1. _Kds is called the total curvature of R:

2. When K is uniquely determined, then K is an intrinsic geometrical

invariant. It is called the Gaussian Curvature.

3. For a geodesic triangle ABC; having arms as geodesic arcs AB; BC;CA

and bounded by a simply connected region R; we have
i-1 c gdS Z ,

= 2 sum of exterior angles * gds =0

I
N

ex(C)

- 2 ( A + B+ C)

Il
N

[3 (A+B+C)]=A+B+C

When A; B;C are the exterior angles of the 4ABC:

Thus, Total curvature = A + B+ C = ex(C):

4. For a geodesic polygon of n sides.

Total curvature = exc(C) = 2 sum of exterior angles :

5. The formula for K in terms of E;F and G is given by equation (9.7).

Hence at any point and in any parameter system,

< 1 @p @Q' '
"i @@VFE2 EG, 1@ 2EF, FE, EE .
~ HG@u 2HE M 2HE
H @v
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When the parametric curves are orthogonal, F = 0 and the formula for

K can be Writ}/an in the simpli ed form is

1
1ot g e g
2H @ H @ H where H = EG

9.2. Gaussian Curvature:

An historical de nition of Gaussian curvature follows from Gauss-
Bonnet theorem for a geodesic triangle. If P is a given point and 4 the
area of a geodesic triangle ABC which contains P; then at P,

. A+B+C
K = I|m—4

Example 9.1. Find the Gaussian curvature of the surface x =u+v; y=u v;

z=uvatu=v=1

Solution: Given surface be r (u;v):

e, r = Xi+yj+zk
F oo U+v)ie@U V)j+uvk
. o= (1+0)i+ (@ 0)j+vk=i+j+vk
Y, = i j+uk
Now, E = Fl F1=12+12+V2=V2+2
F = 1, =1 l+uv=uv
G = ,Fz ?2=u2+2
and H> = EGF =2 u"+Vv*+2
ie;, H = p2pu +Vvi 42
@E
Now E; = =0; E=— =2v
@u @v
@F @F
F, = —=V; Fa=—_u
@u @v
@G
G, = —=2u
@u
2EF, FE, EE,
P - S ont =o82
Q - @lZ-HIJ_iEZZ 2 Yo,

V +2 U +V +2
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156 9.2 Gaussian Curvature:

Thus, the Gaussian cuerture K is given by

%%EP' 9;

+2 wavis2 u+v +2

Hence, at u = 1; v = 1; the Gaussian curvature is K

Example 9.2. Find the Gaussian curvature at the point (u; v) of a sphere of radius

a

Solution: Equation of the sphere with centre at O and radius a is

r = asinucosvi+asinusinvj+ acosuk;
where0 u ; 0 v 2
r, = acosusinvi+acosusinvj asinuk
f, = asinusinvi +asinucosvj + 0k
E = 1, r, =a%cos’u+a’sinu = a?
F = r,=0; G=r, F2=azsin2u
H?> = EG F?-=a%sinu
2
) H = asinu
Q@E @E
E, - —=0; E;=—=0
@u @v
@F @G
Fi. = — =0; G;= —=2a%sinucosu
@u @u
2EF, FE EE
p _ 1 1 Z=O
2HE
EG, FE,
- ————*_cosu
2HE

Thus, we have the Gaussian curvature is

|
) 1
K = _Hl_%? %‘\7: a’sinu [smu]_;

Example 9.3. Find the Gaussian curvature of the anchor ring and show that the

total curvature of the whole surface is zero.

Solution: The equation of anchor ring is

~

r = (b+acosu)cosvi+ (b+acosu)sinvj+ asinuk
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where a;b areconstantsand 0 u 2; 0 v 2:

~

asinucosvi asinusinvj + acosuk

r, =
f, = (b+1cosu)sinvi+ (b+acosu)cosvj+ Ok
E = 1 r=a’sinPucos?v+a®sin®usin®v +acos’u = a’
F = rn, rn,=0
G =T, r,=(b+acosu)?
H? = EG F?-=a?(b+acosu)?
) H = a(b+acosu)
@E @E
Now, E;, = —=0; E,=_—-=
@u @v
@F
Fl = —=O
@u
@G
G, = — = 2a(b+acosu)sinu
@y
2EF, FE, EE,
P — === _9
2HE
EG, FE, .
Q = > 2~ sinu
2HE

Thus, the Gaussian curvature ,is given by

1 @Q op' 1 cosu
K = = [ cosu] =

H @ v H a(b+acosu)

Hence, the total curvaturt®f the WZO|€ surface is

u-2 j, v-=2

Total curvature = Kds = cosu Hdudv
s u_0 v.o a(b+acosu)
* ds = Hdudv]
u=2 L v=2
i;e; Total curvature = cosududv = 0
u-0 v=-0

Therefore, the total curvature of the whole surface is zero.

Example 9.4. If the parametriclcur\ées are at right angles, show that their geodesic

curvatures are respectively p—_ — p_ AL p_ :
EG @u G ; pEG @v E:

Solution: The geodesic curvatures of the parametric curves u = constant
and v = constant are respectively given by

2GF, GE, FG,

2HG3=2
2EF, EE, FE,

T 2HE3=2

B
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Since the parametric curves are orthogonal F = 0 and H” = EG:

Thus, the geodesic curvature of the parametric curve v =constant is

EE; 1 _E 5 1 @ p_
- P—- p— - P—— E
: 2" EGE3=2 EG 2E!=2 EG @v

parrr{gefari%'%'rl\% way, we can.prove tb‘llt th% gg)cide;sw curvature for the

Example 9.5. If r = r(u;Vv) is a set of geodesic curvature on a surface of class

3; such that the parametric curves v = constant are geodesics and u is natural
1 @
parameter then K = pé@_uz

Solution:
We know that the Gaussian curvature is given by

|

1 @Q P’ ’
“c Y a_w
Y2EF, © FE, EE, [0 #
_ Lt 2HE EG.FE, (9.8)
H @v @u 2HE

Also, for v = constant geodesics, we have

ds? = du®+ G(u;v)dv?
Weget E=1;, F=0; H-= pa
Thus, the equation (9.8) reduges to )

L &

a o P

* :p_n].@u@z_ld]g - ~ [@n @u G

Example 9.6. Find the area of geodesic triangle ABC on a sphere of radius a:

Also, nd the total curvature of the whole space.

Solution: From examfle (9.2), we see that the Gaussian curvature at any

point on the sphere is
a2
Also, we know that
ny

Kds = exc(C) from Gauss Bonnet theorem

S
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e, — ds = A+B+C

= A+B+C
where 4 is the area of the geodesic triangle

y 4 - a2pa+Bac) ]

Tfus, the total curvature on the whole surface is given by

Kds = -
S

a2 s

ds— ~4 a? -4 :
a2

9.3. Surfaces of constant curvature:

If K has the same value K, at every point of a surface, the surface is

said to have constant curvature Kq:

Theorem 9.2 (Minding's Theorem). Two surfaces of the same constant curvature

are locally isometric.

Proof. If P is any point of one of these surfaces and P is any point of the
other, then P has a neighbourhood which is isometric with a neighbourhood of
P, the points P and P being the corresponding points. We prove the theorem by

showing that S is a surface with constant curvature Kg; then

1. if Ko =0; S isisometric with a plane.

1
2. if Ky= ;; S is isometric with a sphere of radius a:

1
3. if Ky = = S is isometric with a certain surface of revolution called
a

pseudo sphere determined by the value of a:

In each case a given point of S can be mapped into a prescribed point of the

plane, sphere or pseudo sphere.

The theorems for two surfaces S and S with the same K; then follows by
mapping each surface isometrically on to the same plane, or a sphere (or) surface

of revolution, so that given points P and P corresponds to the same point.

Let P be a given point of the surface S of constant curvature Ko; and let C
be a geodesic through P. Take as parametric curves the geodesic orthogonal to

C together with the orthogonal trajectories.
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Let v = ¢ be the geodesic orthogonal to C at a point distance C from P
measured along C and let u = ¢ be the orthogonal to the curves v = ¢ and

at a distance ¢ from the parallel measured along the geodesic. Then u;v is a
parameter system in the neighbourhood of P and the metric of the surface is of

the form du® + g®dv® for some g(u; v):

Since u = 0 is the geodesic C; it follows from the relation

G, - — ¢ =0 whenu =0
@u

Also, v is the arcual distance along C: iie;; ds = dv when u = 0; so that

g =1 when u=0:
Thus, we have (@), o =1, (91)y_0 = O:

du1
K= F satis es the partial di erential equation g;; + Kog = 0 with

boundary conditions (9)y_o = 1. (91)u_o = O these are su cient to determine
the value of g when K, is given.

Case 1: Ko = 0 ,when gi; = O; clearly g, is a function of v only and

therefore g, = 0 since (g.),_o = O

Integrating g; = 0; we get g is a function of v only, since (g),_o = 1 and

hence g = 1:

Thus the metric becomes du® + dv®: when u;v are taken as Cartesian
coordinates. Hence the surface S in the neighbourhood of P is isometric with
a region in the plane. This implies that K is a satisfactory measure of curvature
for a surface since its vanishing is both necessary and su cient for the surface to

be isometric with a plane.

1
Case2: kK= __
a2

1
Thus, we have Ju+— = 0
a

solving this partial di erential equation, we get

u u

g(u;v) = A(v)sin— + B(v) cos —

a a

Using the boundary conditions, (9),.o = 1 (91)u0 = 0 we get
A=0; B=1:

R u 2.
and the metric becomes du® + cos® dv®:

Therefore g(u;v) + cos —
a
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The metric is a sphere of radius a: The surface S in a neighbourhood of P is

therefore isometric with a region of a sphere of radius a:

1
Case3: k= _:
a2
As in the case (2), we have g = cosh — and the metric becomes
u
du® + cosh? —:
a
Applying the transformation u = au and v = v; the metric becomes

a’du® + a2 cosh? udv?:
Now the metric of the surface of revolution of the curve
r= g(uycosv; g(u)sinv; f (u) is g%+ f2 du® + g*dv*:

Comparing two metchs, we have g + f> =a% g =acoshu:
1 1
Therefore f (u) = a Ou 1 sinh?udu:

Thus the metric is isometric with surface obtained by revolving the curve

x —acoshu; y=0;z=a ~ 1 sinh?udu where Ju/ <log 1+ 2 above
the z-axis.

Let Us Sum Up:

In this unit, the students acquired knowledge to

derive Gauss-Bonnet Theorem.
the concept of Gaussian curvature .

derive Minding's theorem.

Check Your Progress:

1. If two families of geodesics on a surface intersect at a constant angle,
prove that the surface has zero Gaussian curvature.

2. State and Prove Gauss-Bonnet Theorem.
3. State and Prove Minding's Theorem.

4. Show that the surface generated by the tangents to any surface curve

is a surface of constant zero curvature.
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162 9.3. Surfaces of constant curvature:

Choose the correct or more suitable answer:

1. Orthogonal trajectories are called : : : : : :

(a) geodesic polars.
(b) geodesic parallels.
(c) geodesic curvature.

(d) geodesic coordinates.

2. The geodesic curvature vector of any curve is : ::::: to the curve.
(a) tangent (b) orthogonal
(c) parallel (d) none of these
Answer:
b (2) b

Suggested Readings:

1. T.J. Willmore, An Introduction to Di erential Geometry , Oxford
University press, (17th Impression), New Delhi, 2002. (Indian
Print).

2. C.E.Weatherburn, Di erential Geometry of Three Dimensions

University Press, Cambridge, 1930.
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164 10.1. The second fundamental form:

Objectives

After completion of this unit, students will be able to

F understand the concept of geometrical interpretation of the
second fundamental form.

F explain the concept of principal curvature, principal directions
and mean curvature.

F understand the concept of Umbilic.

F derive Rodrigue's formula.

Overview

In this unit, we will illustrate the concept of geometrical
interpretation of the second fundamental form.

10.1. The second fundamental form:

In the earlier chapter, we discussed essentially with the intrinsic
properties of a surface, while this chapter deals with properties of a surface

relative to the Euclidean space in which it is embedded.
Bookwork 10.1 (The second fundamental form).

Derive the equation of second fundamental form.

Proof. The normal curvature of a curve at any point on a surface r = r (u;Vv) is

given by the equation

no= NT® (10.1)
NOW F ° = Fluo -+ szo
~ 00 ~ O ~ 0° ~ 00 ~ 00 ~ 9 o ~ Q0 o
r = riu + rp,v r\u +rnv + I, u+1r1"I; \)

= FUC T V4T 24T WOV 4T UV T v
1 2 11 12 21 22

o 2
00 00 ~ 02 2N 0,,0 ~ o2
= I’lu —+ I’2V + rllu + r12U vV + r22V

Thus the equation (10.1) becomes,
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10.1.The second fundamental form: 165

o= N TU™+ TV + N 13U ? + 2rpuu’ + 1V 2
= O+ N Fll u +2 N F N~

02 12 uv’ + N Ioo VOZ
= LU 24 2MuV° + NV° 2

Ldu? + 2Mdudv + Ndv?

= 10.2
ds? (10.2)
Ldu® + 2Mdudv + Ndv?
= . . (10.3)
Edu” + 2Fdudv + Gdv
where L; M; N are de ned by the relations
L = N Ty M=N Fo, N=N T (10.4)
Alternative expression for L; M; N will now be obtained.
By di erentiating N T, — 0. we get
N: i+N fiu = O (10.5)
N, fi+N Fi = O (10.6)
Similarly di erentiating N T» = 0; we get
l:lz 2+ N r2 = 0 (10.7)
Ni 24N Far = 0 (10.8)

Substitute the equations (10.5), (10.6), (10.7) and (10.8) in (10.4), we get

~ ~

L = N M= Ni fro= No 1 N= Nz 1y

The quadratic Ldu® + 2Mdudv + Ndv? is called the second fundamental
form and the functions of u and v denoted by L; M;N are called the second

fundamental coe cients.

From equation (10.3), it follows that all curves having the same direction at P
have the same normal curvature, hence normal curvature is a property of a surface

and a direction at a point on the surface.

Theorem 10.1 (Meusnier's theorem). If denotes the angle between the
principal normal n to a curve on the surface and the surface normal N; then

n= COS :

Proof. We know that
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166 10.1. The second fundamental form:

re° = nN + F1+ Fg
) N T = ] * N is normal to bothE andE
n = N n *N n=1 1cos
- cos

Note 10.1. Since the right hand side denominator of equation (10.3) is positive
de nite, it follows that the sign of ,, depends only upon the sign for the

numerator of equation (10.3).

Elliptic, Parabolic and Hyperbolic Points:

If a point P on the surface this form is de nite (ice;; if LN M > 0),
then , maintains the same sign for all directions at P In this case, the
point P is called an elliptic point.

When LN M? = 0; then , retains the same sign for all directions

through P except one for which the curvature is zero. Then the point P is
called a parabolic point.

When LN M?<0; , is positive for all directions lying within a certain
angle, negative for directions lying outside this angle and zero along the
directions which form the angle; then the point P is called a hyperbolic
points and the critical directions are called asymptotic directions.

Geometrical Interpretation of the second fundamental
form:

Let P(u;v) and Q (u + h; v + k) be near points on the surface and d be
the perpendicular distance from a point Q onto the tangent plane to the
surface at P,

If re and ro are the position vectors of P and Q; then

d = ro re N

~ ~ ~ 1 . ~ ~ ~
hl’l -+ krz N + E h2r11 —+ 2hkr12 -+ k2r22 N+O h3, k3

1
= 5 Lh? + 2Mhk + Nk* + O h%K®
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Figure 10.1

Thus the second fundamental form at any point P is equal to twice the
length of the perpendicular distance from the neighbouring point Q onto

the tangent plane at P

At an elliptic point d retains the same sign, and this implies that the

surface near P lies on entirely to one side of the tangent plane at P:

At a hyperbolic point the surface crosses over the tangent plane, it
follows that at any point on an ellipsoidal surface is elliptic, any point
on a circular cylinder is parabolic and any point on the hyperboloid is

hyperbolic.

Principal curvatures:

The normal curvature at P in a direction speci ed by direction
coe cients (I, m) is given by
= LP+2MIm + Nm? (10.9)

where EI” + 2FIm + Gm? = 1 (10.10)

As I; m vary subject to equation (10.10), the normal curvature will vary.

Its extreme values may be found by using Lagrange's multipliers.
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168 10.2. Principal curvatures:

= LP +2MIm + Nm? EI? + 2FIm + Gm?* 1

then when is stationary,

10
Z__ - Ll+Mm ElI Fm=0 (10.11)
2 @l

1@

Z—__ - MI+Nm Fl Gm=0 (10.12)
2 @m

Equation (10.11) 1+ (10.12) m; we get,

LI? + 2MIm + Nm? EP+2FIm+Gm? = 0
0

) -

Thus, the equations (10.11) and (10.12) will becomes

using(10.9) and (10.10)

(L E)l+ (M F)m = 0
0

M BI+(N G)m -

Eliminate 1 and m between these two equations, we get

L E M F

=0
M F
N G
On expanding the determinant, we get
2 EG F? (EN+GL 2FM)+ LN M? = O

This is a quadratic equation in  having two roots say , and : These

two roots are called the principal curvature.

Mean Curvature ( ): Mean curvature is de ned by

EN +GL 2FM
2 EG F2

_1(
_E at b

Gaussian Curvature ( K ): The Gaussian curvature K of the surface
at any point is de ned by

LN M?
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Principal Directions:

The principal directions corresponding to principal curvatures are
obtained by eliminating from equations (10.11) and (10.12), we get

(EM FL)P+(EN GL)Im+(FN GM)m? = 0 (10.13)
The discriminant of this equation is
(EN GL)> 4(EM FL)(FN GM)

which is identically equal to

2 l " B ﬁz

EGm, F |
4 —F=— (EM FL? + EN GL @:(EM FL)

We know EG F?>0 andif E;F,G and L; M;N are not proportional,
then the above discriminant is positive and hence the roots of the equation
are real and positive.

Umbilic: If E;F,G and L; M;N are proportional.
E F G
re; — = — = —
L M N
then the above discriminant has zero value and therefore the principal
directions at the point are indeterminate and the normal curvatures has the

same value in all directions. Such a point is called umbilic.

Note 10.2. If the point is not an umbilic, equation (10.13) gives two principal

directions which are orthogonal.

If two directions given by Pdu® + 2Qdudv + Rdv® = 0 are orthogonal if and

onlyif ER 2FQ+GP =0

Now applying the above conditions in (10.13), we have

(EN__GL)
E(FN GM) 2FT +G(EM FL) = 0

Hence the two directions determined by equation (10.13) are orthogonal.
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10.3. Lines of curvature:

De nition 10.1 (line of curvature). A curve on a surface r = r(u;v) whose

tangent at each point is along its principal direction is called aline of curvature.

Theorem 10.2 (Rodrigue's Formula). The necessary and su cient condition that
a curve on a surface be a line of curvature at each of its points is dr + dN = 0;

where denotes the normal curvature.

Proof. The condition is necessary: Let the curve be a line on the

surface ¥ — ¥ (u;v): Now, we shall prove that dF + dN = O:
The line of curvature are given by [(10.11), (10.12)] %

(L E)du+(M F)dv =0

(10.14)

M F)du+(N G)dv =0 /)

being one of the principal curvature.

Substituting the values of E;F, G;L; M; N by their expressions in terms of

derivatives of T and N: e

E = 1% F=r Iy G=13
L = Ny T ;M= N2 Fa= Ni B} N= N2 Ty
Thus, the equation (10.14) becomes 9
F2+N: FLdus ¥ To+Nz Ty dv=0
~ 2 >:> (10.15)
and ,F]_h ,F2+N1 Fz du+ Fz +N2 Fz dV=O
ie r,du + rdv + Nidu+ Nodv Ty = 09
and h ridu +rdv + Nydu + Npdv]
ie; v oyr2=9 &8}93
dr + dN ! ,
and df+dN T, =0

Since the vector dN + dr is tangential to the surface, therefore in order to

satisfy the equations (10.17), we must have

d|:|+ dr = 0
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The condition is su  cient: Assume that the relation dN + df = 0

holds along a curve for any function ; then equations (10.14) follows and thus

curve is a line of curvature.

Note 10.3. The necessary and su cient condition for the lines of curvature to be

parametric curvesis F = 0; M = O:

Proof. The condition is necessary: Let the equation of curve be

r =Tr(u;v) Thedi erential equation of line of curvature is

(EM FL)P+(EN GL)Im+(FN GM)m* = 0 (10.18)

I f the line of curvature be taken as parametric curves, then F = 0; since the

principal directions are orthogonal.

Again u =constant and v =constant are the equations of parametric curves

and therefore combined di erential equation must reduce to

Im = 0 ile;dudv=0 (10.19)

In order that the line of curvatures are parametric curves equation (10.18) and

(10.19) are equivalent. Hence M = 0:

Therefore, F = 0; M = 0 are necessary condition for the lines of curvature to

be parametric curves.

The condition Is su cient: Assume that F = O;M = 0 then the

equation of line of curvature (10.18) becomes

EN Ghim - 0 ) EN GI=0 orim=0

But EN Gl 6: 0

*EN 6= Gl } G condition for umbilic point
| N

) Im = 0 ie; dudv=0

which gives u = constant and v = constant.

This is the di erential equation for parametric curves.

Theorem 10.3 (Euler's Theorem). If is the normal curvature in a direction
(I, m) making an angle with the principal direction v =constant then
= acos2 + bsin2 where , and | are the principal curvatures at that

point.
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Proof. Consider the line of curvatures as the parametric curves. Then we have

F =0; M =0 and hence the normal curvature in a direction (I; m) is

= LIP+Nm?

The direction coe  cients of the parametric curves v = constant and

| |

1 1
u = constant are = 0_ a”r‘i’orlquﬁfv'ature along v = constant
F L

1 L
L_ +N@O-=_

and , = normal curvakure%long u = constant
1" N
= L0O)+N =
E G
_ L N
e = —, b= —
2 E G

Now s the angle between the direction (I; m) and the principal direction

Vv = constant.

) cos = Ep'E +0+Ggm(0)=LpE .

os = Ell + ! Im +Im + Gmm
1
and cos(90 ) = E)(0)+G(m)

p_ G

=  ,co0s® + psin?

10.3.1. Dupin indicatrix:

The section of a surface by a plane parallel to the tangent plane at any

point O on it and at a small distance from it is called Dupin indicatrix at O:

Let P be a point on the Dupin indicatrix at O and let h be the
perpendicular distance of P from the tangent plane at O: Then from the

Geometrical interpretation of the second fundamental form
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2h = Ldu?+ 2Mdudv + Ndv? (10.20)

neglecting higher order in nitesimals.

If we choose the line of curvatures as the parametric curvesthen F =0
and M = 0 so that the equation (10.20) reduces to

2h = Ldu?+ Ndv?

Also, the principal curvatures , and |, are given by

L N
a = — and = —
E G
) 2h = Edu®+ pGdv?

Also, the metric along the parametric curves are

ds? = Edu? ds; = Gdv?

Thus; 2h = .ds®+ bdsz
1

Choose O as origin, OX and OY along the principal directions at O

and Oz along the normal to the surface at O:

If the coordinates of the point P on the Dupin indicatrix be (x;y;z) then

X=ds;; y=ds,; z=h:

Hence the equation to the Dupin indicatrix are x* 5 +y* p = 2h;z = h;
X2 y? 1 1
(or) =+ =2nz=h: where Ra= —; Ry,-—:

a b a b

Thus Dupin indicatrix is a conic section.

Note 10.4. Three cases arise according to the sign of ,; p:
Case 1: If , and |, have the same sign, then Gaussian curvature is positive

(ie;;) K = 4 p; then the points on the surface are called elliptic points.

Case 2: If , and , have di erent sign, the indicatrix is one of the two
conjugate hyperbolic. The points on the surface ,; , have opposite signs

(iie;) K= 4 p <0 are called hyperbolic points.

Case 3: Ifoneof , and |, iszerothen K = 0; then the indicatrix is a point

of straight lines. The points are called parabolic points.

De nition 10.2 (Conjugate Directions). Two directions at P are said to be

conjugate if the corresponding diameters of the Dupin Indicatrix are conjugate.

De nition 10.3 (Asymptotic line). An asymptotic line is a curve whose
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direction at every point is asymptotic. The equation of such a line

dr dN _ ) 2 I
T @ 0 ie: Ldu® + 2Mdudv + Ndv- =0 from which it follows that
S S

asymptotic lines are self-conjugate.

Example 10.1. Show that Gaussian curvature of the surface given by the Monge's

2 2

form z=(xy) is rt s* 1+p®+q?

Solution: The equation of the surface is given by z = f(x;y):
@z @z @’z @’z ]

—; q=—; —5i 5= ;
ax' @y @x* @xay

¢ @’z
p - - @y2

If x;y be taken as parameters, then the position vector r of any point on
the given surface is given by

oo Xieyj+zk=xi+yj+ FOCYK
Fl = T+pE, F2=]+qi
@r  ~ @?r  ~ @?r  ~
ra, = @=rk; F12=@X@y=3k; I’22=@—y2=
E = Fl Fl=1+p2; F=F1 F2=pq, G=F2 F2=1+q2
H> = EG F’=1+p°+q°
No_ Lt irpk o jedk  pi gjek
rl r2 q q
~ pNi 1qu'nzwk+q2~ 1+rp2+q2
L = N ry;= rk =
Y 2 2 2
~ i+ + OF ~ 1+p°+q
M = N rp= pi ] sk =
N - l:l v :|_+{)2+q2 1+p2+q2
22
1+p2+q2
Thus, the Gaussian curvature is
LN M? re s®

EG F? 1+p2+q??

Example 10.2. Obtain the di erential equation of the lines of curvature on the
+p° 1+9® pg

surface z = f(x;y) and deduce that at an umbilic .
S

Solution: From the example 10.1, we have
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E = 1+p% F=pg; G=1+¢°
r
L =
q1+p2+q2
M = S
:|.+p2+q2
N - t
:|.+p2+q2

The di erential equation of the lines of curvatures is

Em "y al RN B R P dnde g B

+pgt 1+g®sdy” = 0
. F G
At an umbilic, we have — = =—
L M N
. 1+p° pg 1+¢°
e, = — =
t s t

Let Us Sum Up:

In this unit, the students acquired knowledge to

derive Rodrigue's formula.
the concept of Umbilic .

the concept of Dupin indicatrix.

Check Your Progress:

1. Derive the second fundamental form.

2. De ne elliptic points and hyperbolic points..
3. State and Prove Rodrigue's Theorem.

4. Derive the equation Dupin's Indicatrix.

5. De ne Mean Curvature.
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Choose the correct or more suitable answer:

1. The Gaussain curvaitre K of the surface at any point is de ned by

LN + M?

a) K= ——.
@ EG F?
o LN M?
K ——.
®) EG + F?
© K LN M?
C = —
EG F?

@ K LN + M?
CEG+F?

2. The necessary and su cient condition for the lines of curvature to
be parametric curves is.
@F-0Mb-0 ®F oM-0
© FB-omb-0 @ F-omM=-0

Answer:

L) c (2) d

Glossaries:

Dupin Indicatrix: In di erential geometry, the Dupin indicatrix is a

method for characterising the local shape of a surface.

Suggested Readings:

1. T.J. Willmore, An Introduction to Di erential Geometry , Oxford
University press, (17th Impression), New Delhi, 2002. (Indian
Print).

2. C.E.Weatherburn, Di erential Geometry of Three Dimensions |,
University Press, Cambridge, 1930.
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UNIT-11

DEVELOPABLE SURFACES-I

Structure
Objective
Overview
11.1 Developables
Let us Sum Up
Check Your Progress

Suggested Readings

Objectives
After completion of this unit, students will be able to
F understand the concept of developable surfaces.

F understand the concept of characteristic line and characteristic
point.

Overview

In this unit, we explained the concept of Edge of regression.
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Developables:

De nition 11.1 (Developable surface).
A developable is a surface enveloped by a one parameter family of planes.

ra=p

where a and p are functions of a real parameter u:

De nition 11.2 (Characteristic line).

As we are familiarising with the concept of two planes intersect along a straight

line. Based on this idea, now we are going to de ne the characteristic lines.

If f(u)=r a(u) p(u); the equation of these linesare f(u) =0 and f(v) =0
From Rolle's theorem, it follows that there is a value u; u < u; < v such that
fuy) =

As v ! u, up ! u and the equations gthe limiting position of the line
!

becomes
s (11.1)
ra =
This line is called the characteristic line corresponding to the plane u:

De nition 11.3 (Characteristic point).

The ultimate intersection of consecutive characteristic lines is called a

characteristic point. The characteristic point is obtained from the equations.

ra =p
ra =p
oY

If a. a; aare linearly dependent, these equations have no solution or else the

solution is indeterminate.

Note 11.1. The above de nition can be restated as the ultimate intersection of
three consecutive planes is called the characteristic point. The limiting position
of this point v ! uand w ! u independently is called the characteristic
point corresponding to u: By Rolle's theorem, the equations which determine

the characteristic points are
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!
)

ra =
ra-= (11.2)
ra =

T T O

De nition 11.4 (Edge of Regression).

The locus of ultimate intersection of consecutive characteristic lines are called

the edge of regression which is a curve lying on the developable.

In other words, the edge of regression is the locus of the characteristic point. It

is given by equations (11.2) with r regarded as a function of u:

Bookwork 11.1. Show that the tangents to the edge of regression are the

characteristic lines.

Proof. The edge of regression is given by

ra = p (11.3)
ra= p (11.4)
ra=p (11.5)

where T;a; p are all functions of the parameter u:

Now, di erentiating (11.3) and (11.4) with respect to the parameter u; we get

st a+T a = p (11.6)
st a+r a = p (11.7)

Using equation (11.4) in (11.6), we get
ta =0 (11.8)

Similarly using equation (11.5) in (11.7), we get

~

ta= 0 (11.9)

Thus, the equation (11.8) and (11.9) show that the tangent to the edge of the

regression is perpendicular to both a and a and hence it is parallel to a  a:

But the characteristic line through the point is also parallel to a a: Thus, we

have that the tangent to the edge of regression is the characteristic line.

Bookwork 11.2. Prove that the osculating plane of the edge of regression at any

point is the tangent plane to the developable at that point.
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Proof. Di erentiating equation (11.8) with respect to the parameter u; we get

~

dt ds N
e +t a = 0

dsdu

S

0 (using Serret Frenet formule)

Q¢
Il

e sn a+t

o/
w
>52
Q2
Il

0 [using (11.9)]
0 (11.10)

1)
52
@
[

From equations (11.8) and (11.10), we see that a is perpendicular to both t

and n and hence it is parallel to the binormal of the edge of regression.

Thus, we conclude that the osculating plane of the edge of regression at any

point is the tangent plane to the developable at that point.
Bookwork 11.3. Prove that the two sheets of the developable are tangent to the

edge of regression along a sharp edge.

Proof. Let O be the point s = 0 on the edge of regression C and let Ox; Oy; Oz
be a set of rectangular Cartesian axes chosen respectively along t; n and b at O:

Then at any point on the developable has position vector given by

R=F+V?

Expanding R in terms of s; we get

R = r+vi(s)=st+ S N+ M+ b t +0 s
! 2 _
6 :
~ ~ 1 ~ ~ ~
+Vt+Sn+£S2 ‘n+ b % +0 s
The normal plane x = 0 meets the surface where
vV = S 1 s, +O §
3

Using this in the above expansion, we get

1

y = 3 s?+0 s°
1

; - _ s+05¢*
3

Upon eliminating s; we get
2
22 __y3

from which, we say that the developable cuts the normal plane to the edge of
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regression in a cusp whose tangent is along the principal normal. Thus, the two
sheets of the developable are tangents to the edge of regression along a sharp

edge.

Let Us Sum Up:

In this unit, the students acquired knowledge to

Characteristic lines and Characteristic points.

Edge of regression.

Check Your Progress:

1. De ne developable surface.
2. De ne Edge of regression.
3. De ne Characteristic line and Characteristic point.

4. Show that the tangents to the edge of regression are the characteristic
lines.

Suggested Readings:

1. T.J. Willmore, An Introduction to Di erential Geometry , Oxford
University press, (17th Impression), New Delhi, 2002. (Indian
Print).

2. C.E.Weatherburn, Di erential Geometry of Three Dimensions |,
University Press, Cambridge, 1930.
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UNIT-12

DEVELOPABLE SURFACES-II

Structure
Objective
Overview
12.1 Developables associated with space curves
12.1.1 Osculating developable
12.1.2 Polar developable
12.2  Rectifying developable
12.3 Developables associated with curves on
surfaces
12. 4 Minimal surfaces
12.5 Ruled surfaces
Let us Sum Up
Check Your Progress
Answers to Check Your Progress
Glossaries

Suggested Readings
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Overview

In this unit, we will illustrate the concept of minimal surface and

ruled surface.

Objectives

After completion of this unit, students will be able to
F know to explain the concept of osculating developable.

F know to explain the concept of rectifying developable.

Developable associated with space curves:

At each point of a curve we have three planes, namely osulating
plane, normal plane and the rectifying plane. Each of these planes contains
only one parameter i:e:; the arc lengths. The envelope of these planes are
respectively called , osculating developable, polar developable and rectifying

developable.

Osculating developable:

The family of osculating plane of a space curve is osculating developable.
Its characteristic lines are the tangents to the curve and hence this

developable is also referred to as the tangential developable.

Bookwork 12.1. Prove that the edge of the regression of the osculating

developable is the curve itself.

Proof. Consider the osculating plane at any point P with position vector ¥ on a
space curve r = r(s):

If R is the position vector of any point on the osculating plane, then Rt lies
in the osculating plane. Henﬁe the family of osculating plane has equation

.ol

R F(s) b(s) = O (12.1)
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121 Developable associated with space curves:

Di erentiating both sides with respect to arc length s; we get

(12.2)

@
)
=
~
%
N—r
=)
Il
o

The characteristic lines are the intersection of equations (12.1) and (12.2),
which represent the osculating plane and rectifying plane respectively and hence
their intersection is the tangent to the curveat P r :

Di erentiating bOthl sides ofi(12.2) with respect to s; we get

t n+e R r(s) €+'E =0

1

e R T(s) t = 0 (using(12.1)) (12.3)

Thus, from (12.1), (12.2) and (12.3) we have

~

R

)

Thus the characteristic point which is the intersection of (12.1), (12.2)

0

=?
Il

r

PR
I

and (12.3) is P r itself. The edge of regression which is the locus of the

characteristic point is therefore the curve itself.

12.1.2. Polar developable:

This is the surface enveloped by the normal plane of a space curve.

Bookwork 12.2. Show that the edge of regression of the polar developable is the

locus of centres of spherical curvature of the given curve.

Proof. The equation of normal plane at ¥ =¥ (s) is

L

R T(s) t = O (12.4)

Di erentiating both sides of qnquatioln (12.4) with respect to s; we get

~

+R T n =0

h 1 1= (12.5)

) R ¥ oA o-

—+?

t

M.Sc.(Mathematics)-1 Year-1 Sem Di erential Geometry



186 12.2. Rectifying developable:

Di erentiatinﬁ equeﬁ'tion (12.5) with respect to s; we get

~

FH+RF f—g—g= °
!

-

~

)0&??+%I’

) Rib - 1o o (using (12.8)2.6)

B o

From equations (12.4), (12.5) and (12.6) we nd that the characteristic point is

~

R=r+ n+ °b:

But this is the centre of osculating sphere. Thus the edge of regression of the

polar developable is the locus of spherical curvature of the given curve.

12.2. Rectifying developable:

The rectifying developable of a space curve of the rectifying planes

of the space curve.

Bookwork 12.3.

__Show thqt th% edge of regression of the rectifying developable has equation
Rar+ + B

0

Proof. The position vector R of any point on the rectifying developable is given

by
R ¥ n = 0 (12.7)
Di erentiate (12.7) with respect to s; we get
tn+ l% r t+ B =0
) R¥ i+b -0 (12.8)
Di erentiating (12.8) with respect to s; we get
t f+b+R F ROt e b -
) +R T T+ % — 0 (12.9)

The point of intersection of the planes (12.7), (12.8) and (12.9) is the

characteristic point whose locus is the edge of regression.
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From (12.7) and (12.8) we see that R Tis perpendicular to both n and

t+ b and hence it is parallel to n t+ b Qe

Thus, we can write it as

A
=?
Il
—?
+
T?

Now, our wish is to nd the value of :
For this, using the equation (12.10) in (12.9), we get

+ t+ b t+ ° =0

o] o]
ie:; + + = 0 ) V=

(12.10)

. Hence, the equatigrlt(%thle edge of regression of the rectifying developable is

givenby R=r+

Bookwork 12.4. A necessary and su cient condition for a surface to be

developable is that its Gaussian curvature shall be zero.

Proof. If the developable is a cylinder or cone, then evidently the Gaussian

curvature is zero. If we excluded these cases, the developable may be regarded

as the osculating developable of its edge of regression and its equation may be

written as R = T(s) + vi(s):

Di erentiation with respect to the parameters s and v are denoted by su xes

1 and 2 respectively. Then, we have

~ ~

Ri = t+v ﬁ
R, = n
FNQH = N+V°A+v t+ b
Rz = 0
~ Ri R» vb ~
N = R—R = = b
N \Y;
~ ~2
L = N Ri1= VvV = Vv
M = N R =0;
. LN M?
Thus, the Gaussian curvature K = ———— = 0]
EG F

Hence K = 0 is the necessary condition for a surface to be developable.
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Now, it remains to prove the su cient part. Let K = 0 for a surface

r=r(uv):
Hence LN M?-=0
Since L= ¥, NuM= ¥ N2i N= ¥, Ny

We obtain

i N1 11 N

FONF N2 h 1
— Yo T ZNiZN, =HN Ni N, =H N:Ni; N
h K = 0) LN M?=0
N:NiNz = 0

) N; Ni ;N arecoplanar:

Since N N — 1: Di erentiating with respect to u and v, we get
N Ni=0; N N,=0:

Thus N is perpendicular to both l:ll and l:lzi

If N1 and N are non-zero vectors then three vectors cannot be coplanar

unless l:ll and l:lz are parallel.

Thus, we have the following three possibilities:

(N2 =0; (i)Ni=0; Ni= Ng
Case (1) . l:lz = 0: The equation to the tangent plane at a point on the surface
is R T N=O0

@ ~ ~

Now, go R T N=R F N, i, N=0 * No=0andr, N=0 (r;
being a vector in the tangent plane).

Thus R T N is independent of v and therefore we nd that the equation
to the tangent plane contains only one parameter u: Hence the surface is the

envelope of a one-parameter family i:e:;; adevelopable.

Case (ii) : As in the previous case, the tangent plane will contain only one

parameter v and hence the surface will be developable.

Case (iii): N, — Ny Transform the parameters u;v to u; v° by the

transformation u = u® + v°; Vv = U° v°: we obtain
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~

Ne - ON_enew eNev _§ g
! @pr  Quew @l/@u0 ! 2
~ @GN @eN@ @eN @ ~ ~
NZO = = - - Nl N2=O

@ G avov

This shows that the surface normal l:lz is independent of v and hence depends

on only one parameter.

Thus, the surface is developable.

12.3. Developables associated with curves on surfaces:

The following theorem due to Monge characterise lines of curvature
on a surface.

Theorem 12.1 (Monge's theorem).

A necessary and su cient condition that a curve on a surface be a line of

curvature is that the surface normals along the curve form a developable.

Proof. Consider the surface formed by the normals along the curve r = r(s):

Any point on this surface will have the position vector
R — ¥(s)+VN(s) (12.11)

Di erentiation with respect to s and v are denoted by su x 1 and 2

respectively. Thus, we have

R, = t+VvN°
R = N
Ry = t°+WN®
Rip = Ra=N°
I§22 = 0
N R R t N+vN° N
Surfacenormal N = ﬁﬁ—ﬁﬁz w *szﬁl ﬁz]
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I, .

{ N+vN N° N°

Thus, M

I
= Z?

Also, N

2
Hence the Gaussian curvature K = LN M™ _ 0 of the surface will be zero
=~ 2 '
EG F 1

ifandonly if LN M2 —0 ie:; M —0; ifandonlyif £ N; N° — 0

-

Ac%cS’ﬁYi%'S%‘%l?eiB?é‘\ﬂ8&‘4¥H£o?~é§lﬁ, t&é}sﬁr%ce normals along the curve form

Now, our wish is to prove that this condition is satis ed if and only if the curve

is a line of curvature. h '

1

Since t N ° is normal to the given surface, the equations ttN; N° =0

impliesthat T N ° = 0:

ie. N° — ki forsome function k
dN dr
- k=
ds ds

) dNakdF = 0

Hence, by Rodrigue's formula, the curve is a line of curvature.

Conversely, if dN + kdF = 0
I IN dr
ie. — = k—
ds ds
hi:e., Nf - Kkt
) t I:I; N° = 0

This completes the proof of the theorem.

Note 12.1. Now we obtain an alternative interpretations of the conjugate

diameters de ned in section (10.3).

Theorem 12.2. Let C be a curve lying on a surface and let P be any point on

C. Then the characteristic line at P of the tangential developable of C is in the

direction conjugate to that of the tangentto C at P

Proof. The tangent planes at points on a curve C lying on a surface form a

developable, and now we prove that the characteristic line of the developable at

any point P on C is in a direction conjugate to that of the tangent to C at P:

The equation of family of tangent planes is
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N - 0 (12.12)

PR
=?

Di erentiating equation (12.12), we get

v~ ~ _dN
t N+ R r— = 0
ds
~ _dN
ie;: R r— =0
ds
e, R T Nu’+N) = 0 (12.13)

The characteristic lines is the intersection of equations (12.12) and (12.13).
If (I, m) are the direction coe cients of the characteristic line at a point P;
then

R T = +mh (12.14)

Using equation (12.15) in equation (12.13), we get

Iry + mr,
ice.; N1 r Iu0+ N r Iv0+ N r mu -+
1 2 1 1 2 2 2

ZZHZZ
N
<
Il
o

ie: LIL+M IV +mu’ + Nmv’

Il
o

But this is exactly the condition that the direction (I; m) is conjugate to

the direction (u°;v°) of the tangent at P. This completes the proof of the
theorem.

12.4. Minimal surfaces:

De nition 12.1 (Minimal surfaces).

Surfaces whose mean curvature is zero at all points are called minimal surfaces.

Note 12.2. The mean curvature is given by

EN+GL 2FM EN+GL 2FM
2 EG F2 2H?

The condition for minimal curvatureis = O:

Thus, we have EN + GL 2FM = 0:
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192 12.4. Minimal surfaces:

Theorem 12.3. If there is a surface of minimum area passing through a closed
space curve, it is necessarily a minimal surface ie:; a surface of zero mean

curvature.

Proof. Let be a suPace bounded by a closed curve C; and let ° be another
surface derived from by a small displacement (u;v) in the direction of the
are both small and more precisely

@v

normal. We assume that ; = %a and
1=0o() 2=0()a Yo
The position vector of the displaced surface is noted by R:

Thus, we have R = T+ N (12.15)

Di erentiating equation (12.15) with respect to u and v; we get

~ ~

R1 i+ 1N+ N;

~ ~

R = I+ N+ N

Let E ; F ; G denote the rst fundamental coe cientsof 1 : Then
2

~

E = §i=F1+ 1K|+ Nl

= Fi+21?1 N+2Tr Ni++O

2

= E 2L+0O

F = Rt Ro=1, + 1N+ N1 1, + oN+ N
- F 2M+0 2

G - R:2-Rs Ry

~ ~ ~

= F2+ oN + N2 F2+ 2N + N2

G2N+0O 2 as !O

Now, H = fe F 2 1h 1 h 1
- E 2L+0 ? G 2N+0O 7 F 2M+0 °?
- EG F? 2 (EN+GL 2FM):+0O ?
= H* 4H® +0 ?
H = H@4)"?+07

= H@ 2 )+0 2 (using binomial expansion)
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L
Let A = o Hdudv

L L 2
A = HdUdVZ H(@ 2 )dudv+O
P, P
L 2
= Hdudv 2 Hdudv + O
= A 2 dudv+O

If A isstationary, then clearly = 0 which shows that the surface is necessarily

of zero mean curvature.

This completes the proof of the theorem.

12.5. Ruled surfaces:

A ruled surface is generated by the motion of a straight line with one
degree of freedom, the various positions of the line being called generators.

The developable surfaces discussed in section (11.1) belong to the family
of ruled surfaces, are very special and have properties not characteristic of

ruled surfaces in general.

An example of ruled surface which is not developable is hyperboloid of
revolution.

Let C be any curve on a ruled surface having the property that it meets
each generator precisely once. Such a curve will be called a base curve.

It is clear that such a curve is by no means uniquely determined. Then
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the surface is determined by any base curve C and the direction of the
generators at each point of C:

Theorem 12.4. Show that the Gaussian curvature K for a ruled surface is given
2% 2

by K= P9 where g is the unit vector along the generator conclude that a
THY

developable surface is a ruled surface for which the parameter of distribution is

identically zero.

Proof. Let r(u) be the position vector of a current point P on C and let g (u)
be a unit vector along the generator at P: Then the position vector of a general

point Q on the ruled surface is given by

R — F+vy (12.16)

where v is the parameter which measures directed along the generator from C:

Di erentiating (12.16) with respect to the parameters u and v; we get

~

Ri = r+VgQ (* r and g are functions of u alone)
R: = §

R = T+Vvg

Rio = g; Ras = 0

The rst fundamental coe cients are

E = R12=F2+2V§ F+V2§2
F — Ri Re—g ¥
G = R2=g?%=1

The metric is given by

ds® = Edu? + 2Fdudv + Gdv?

= r?+2vg r+V2g® du® +2g rdudv + dv? (12.17)

The unit normal vector N is given by

~ ~ ~
~

HN = Ry Ra=T+vg g (12.18)

I

the ?A‘ASS%t 5?|ghg to t?lé surface varies at points on the some generator Thus,

The second fundamental coe cients of the surface are given by
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oL | ll i | Ll I J—
HL =HN Ru=[rrg+rggv+ grgv+ §?§9V2§_> (12.19)
HM =HN Ry = g9 |
HN =0 ’>

The asymptotic lines are given by du [Ldu + 2Mdv] = 0 from which it follows
that the generators are asymptotic lines. The other family of asymptotic lines is

given by an equation of the form

dv 5
— = A+Bv+cov
du

Where A;B;C are functions of u alone. This is a Riccati type di erential
equation, and the most general solution of the form
cP+Q

vV = 12.20
cR+S ( )

where P, Q;R;S are functions of u and c is an arbitrary constant.

Let the four asymptotic lines of this family be speci ed by the values
€1, C, Ca;Cs and let these lines be met by the generator u = uy in four points
where v parameter has values v;; v,; vs; v4: From the equation (12.20), it follows
that the cross-ratio (vq; vy; v3; v,) is equal to the cross ratio (c;;c,; c3;c,) and is
independent of uy: Thus the cross-ratio of the four points in which four given

asymptotic lines are met by any generator is the same for all generators.
From equation (12.19), the Gaussian curvature is

LN M 9 gt2
EG F 2 H4

It is convenient to de nﬁ a fuTction p(u) called the parameters of the

o . ng g
distribution by writing p(u) = :
E] 2
This is independent of the particular base curve chosen and also independent
of the parameter u:
In terms of p the Gaussian curvature is given by
p°g?

K = — (12.21)

So K is always negative except along those generators where p = 0: Since

K = 0 for a developable, it follows that developable surface is a ruled surface for
which the parameter of distribution is identically zero.
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De nition 12.2 (Central Point). On each generator of the general ruled surface
there is a special point called critical point of the generator. This is determined

as follows:

Let P,Q be two given points on some base curve C and let the common

perpendicular to the generating line through P, Q meet these generators in P;; Q;

respectively.

As Q tendsto P; the point P, will tend to some point called the critical point

of the generator.

Bookwork 12.5. Derive the formula to determine the position of the central point

on each generator.

Proof. The limiting direction of the vector leQl must lie in the surface and
hence be perpendicular to l:l; also it must be perpendicular to the generator

through P and hence parallel to the vector g l:l:

This direction must be perpendicular to the generators through P and Q and

~

proceeding to the limit as Q I Pwehaveg § N —O or § g N=O

But HN = F v§ §
Yy §§ T+w § = 0 * H 6= 0)
ite; g r+vg? = 0 (12.22)

from which v is uniquely determined provided g 2 6= 0:

De nition 12.3 (Line of Striction). The central points of all the generators form
a locus called the line of striction, which is a well determined curve naturally

associated with the ruled surface.

Theorem 12.5. Show that the tangent of the angle through which the normal N

rotates as the point P moves along a generator varies directly with the distance

moved from the central point.

Proof. If we choose the line of striction as base curve, then it follows from the

equation (12.22)that g r =0 (*v = 0):

Also, in addition g g = 0; thus we have the vector ¥ g must be parallel to

«?

Thus, we canwrite r g = g for some function :

Then scalar multiplication by g implies
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~ 2 ~ 2

rngg = 9° pg

HN = pg+vg §
From equation (12.17) with g r = 0; we have
~ 2.2 2 LUz
HN = vg +r gr
e HN = V24722 g ¥’ *g2-1
~ ~ ~ 2
) H? = Vg°+ T g
) BT *F §=pg (12.23)
hus, N - Y ER
TUS, = 1_ga+ — a g
F R pea

where a is the unit vector along g:

Let denote the angle between the directions of N at points on a generator

distant v and O from the central point.

Then if p O= 0; we have 9>
\

sin = ——— =2
2 2
F
+a P 5
cos = > (12.24)
2, 42122
tan - W@ >
5 1

Thus the tangent of the angle through which the normal N rotates as the
point P moves along a generator varies directly with the distance moved from

the central point.

Note 12.3. As v increases from l to 1; the angle  increases from 2—to

> if p > 0 and decreases from 2 tg 5 if p<o:

When the central point is reached the normal has rotated through an angle E;

and this fact justi es the word central.

Thus, equation (12.21) and (12.23) provides the simple formula to determine
Gaussian curvature at the point distant v from the central point on a generator of

parameter p is
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Bookwork 12.6. Find the necessary and su cient condition that the surface

z = f (x;y) should represent a developable.

Proof. The equation of the tangent plane at a point (x;y; z) is

@f af z 2 0
R Z =
(XX)@X"'(Y y)@y+
0

ie; pX XN+qlY yY)+Z z =

In case the surface is developable surface the equation of tangent plane should

be in terms of single parameter and hence there a relation between p and g

denoted by p =(q) : Thus, we have

@p @q
— = (D)—
@x @x
@p @q
— = (D—
@y @y
Eliminating ° between the above two equations, we get
@@ _ @pCq
@x @y @y @x
e @FEF _ @f @f
W@_y2 @y@x @x@y
e, rt = s°

Thus rt s* = 0 is the required condition for a surface to be developable.

Conversely,

ifrt s? =
)@p@q @p @q

@x @y

Thus, the functions p and g must depend on the single parameter, so shall do

the tangent plane, therefore the surface is developable.
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Example 12.1. Show that the surface xy = (z c)? is developable.

Solution:

@ o- P

p ;
2

r = @_= _ ly1=2X3—z, @_22 ==%_ 1Xl=2y 30
x* @y? @y 4

s = @_p: 1—X 1=2y 1=2
@y 4

2 11 11

rt s = —— ——=0

16 xy 16xy

Hence the given surface is developable.

Example 12.2. Show that the surface e cos x = cosy is minimal.

Solution:
e’cosx = cosy
z+log(cosx) = logcosy
iie;; z = logcosy log(cosx)
2 @z.2
E = 1+p"=1+ _— _1.tan®x=sec’x
@x
72
2
G - 1+a°=1+ % _ 1, tan?y-sec’y
ey
F = pg= tanxtany
r sec’x s t sec?
L = —-= ;. M=—; N=—- 4
H H H H H
sec® xsec’y sec? x sec’ y
EN 2FM+GL = ————= oJ,T:o

Thus, the condition for the surface to be minimal EN 2FM +GL =0

is satis ed.
Hence the given surface is minimal.
Example 12.3. Find the equation to the developable which has the curve x =

6t, y=23t% z=2t forits edge of regression.

Solution:

The equation to the edge of regression is r = 6t; 3t 2t° :
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12.5. Ruled surfaces:

Now, the developable can be considered as the tangential developable of
the edge of regression.

If R is the position vector of any point on the developable then

dr
R(tv) = r+vr Wwhere l’=a= 6 6t; 6t
Thus, (x;y;z) = 6t3t%2t5 +6v 1;tt°
e, x 6ty 3tz 2t° = 6v 1;tt
X 6t y 3t° z 28
x ot _ - _6v
1 t t2

Consider the rst two ratios and last two ratios, we get
xt y=3t% yt z = ¢

) tixt y) = 3t =3(yt 2)
) xt? 4yt+3z = 0

Also, 32 xt+y = 0
Solving the last two equations, we get
t? B t 1
3xz 4y° 9z xy 12y X
e 3xz 4y* 12y X2 = (92 xy)?

This is the required developable.

Example 12.4. Show that the ruled surface generated by the binormals of a space

curve has the curve itself as the line of striction.

Solution:

Consider the given space curve C as the base curve, then the equation
to the ruled surface can be written as

~

R(s;v) = r(s)+vg(s) (12.25)
where r(s) is the position vector of the point P on C and g(s) is the
unit vector along the generator at P;

Since the ruled surface is generated by the binormals to C; we have

~

g=>hb:

Let v be the distance from P of the central point of the generator at P;
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Then from equation g° r° +vg 2 = 0. where we have used notation
primes instead of dots since the parameter of the curve is taken as the arc
length s:

Thus; b® f +vb°2 - 0
nt+v n = 0

% = 0 (or) v=0

This shows that the central point on the generator at P is P itself. Thus

the given curve itself is the line of striction of the ruled surface.

Let Us Sum Up:

In this unit, the students acquired knowledge to

Osculating developable, Polar developable and Rectifying
developable.

the Minimal surfaces and Ruled surfaces.

derive Monge's theorem.

Check Your Progress:

1. De ne osculating developable, polar developable and rectifying
developable.

2. State and prove a necessary and su cient condition for a surface to

be developable.
3. Show that e* cos x = cosy is minimal.

4. Prove that the Gaussian curvature is the same at two points of a
generator which are equidistant from the central point.

Choose the correct or more suitable answer:

1. :::::: is the surface enveloped by the normal plane of a space curve.

(a) Osculating developable.

(b) Polar developable.
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(c) Rectifying developable.
(d) none of these.
2. The condition for minimal curvature is : : : : : :
(8 EN+2GL FM =0.
(b) EN+GL 2FM =0.
(c) EN+2GL 2FM =0.

(d EN 2GL FM =0.

Answer:

(b (2) b

Glossaries:

Polar Developable: The polar developable of a curve is the envelope

of its normal planes.

Suggested Readings:

1. T.J. Willmore, An Introduction to Di erential Geometry , Oxford
University press, (17th Impression), New Delhi, 2002. (Indian
Print).

2. C.E.Weatherburn, Di erential Geometry of Three Dimensions |,
University Press, Cambridge, 1930.
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Block-V

UNIT-13

COMPACT SURFACES

Structure

Objective

Overview
13.1 Introduction
13.2 Compact surfaces whose points are umblices
13.3  Hilbert's lemma

Check Your Progress

Let us Sum Up

Suggested Readings

Objectives

After completion of this unit, students will be able to
F know the concept of Compact surfaces.

F derive Hilbert's lemma.
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204 13.1. Introduction:

Overview

In this unit, we will explained in detail about the compact
surfaces.

Introduction:

In the previous unit, we were discussed the properties of a region of
a surface de ned by suitably restricting the parameters u and v: These
are essentially local properties, the word local indicating that in order to
obtain the property at a point P it is necessary to have information about

the surface only in the neighbourhood of P:

In the present unit, we shall be concerned with properties involving the
surface as a whole. For example, whether like a spherical cap it has a
boundary or whether it is compact like a sphere. Di erential geometry of
surface in the large is the study of relations between the local and global

properties of surfaces.

Compact surfaces whose points are umblics:

For proving the rst few theorems of this unit, we shall use the
de nition of surface given in the earlier unit and assume that each point
has a neighbourhood (homeomorphic to an open 2 -cell) which can be

determined by parametric equations r = r (u; V) :

Theorem 13.1. The only compact surfaces of class 2 for which every point is

an umbilic are spheres.

Proof. By way of local geometry developed in the earlier chapters we shall prove
that in the neighbourhood of any point the surface is either spherical or plane, then
by use the property of compactness to reject one of alternative. Hence we show

that the surface must be a sphere.

Let S be a compact surface of class 2 for which every point is an umbilic.

Let P be any point on S; and let V be a coordinate neighbourhood of S

containing P; in which part of S is represented parametrically by ¥ =¥ (u;v):
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Since every point of V is an umbilic, it follows that every curve lying in V

must be a line of curvature. Hence from Rodrigue's formula, at all points of V;

dN+ df = 0 (13.1)

where is the normal curvature of S in the director dr:
) dN = dr

iie;, Np = r, and Nz2= Ty

Using the identity Ni2 = No1: in the above equations, we get of;  1r, = O

Since 1T, are linearly independent we obtain 1 = , = 0; sothat isa

constant.

Integrating equation (13.1), we get

~

Fo- a N (13.2)

for 6: 0 showing that V lies on the surface of a sphere of centre a and radius

1.
When = 0; equation (13.1) gives I:I = E showing that the V lies on a plane.

This completes the local part of the theorem i:e:; so far all we have proved is

that in the neighbourhood of any point the surface is spherical or plane.

Associate with each point P on the surface a neighbourhood V; having the
above said property. The set of all neighbourhoods V, covers S and from the

compactness, we conclude that S is covered by a nite sub-cover formed by

the previous local argument it follows that  is constant in V; and also in Vj:
By considering the values of at the points in V; \ V; we nd that has the
same value over the whole of the surface. Moreover, this value cannot be zero.

Otherwise the surface would contain a straight line and would not be compact.

Hence the surface must be a sphere and hence the theorem is proved.
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Hilbert's lemma:

Lemma 13.1. In a closed region R of a surface of constant positive Gaussian
curvature without umbilics, the principle of curvature take their extreme values

at the boundary.

This lemma is purely concerned local in character and results of earlier

chapters can be used to prove it.

W.F. Newm suggested the above lemma can be restated in a slightly di erent

form.

If a point P, of any surface, the principal curvatures ; and ,, are such that
either (i) 2> b, a hasamaximumat Py or (ii) o< p; a has minimum
at Py; p and has a maximum at Pg; then the Gaussian curvature K cannot be

positive at Py:

Proof. Now, we shall prove the lemma by contradiction.

Assume that the lemma is false. Then there is a point P, at which the principal

curvature have distinct extreme values, one maximum and the other minimum.

Consider the lines of curvatures as parametric curves, then principal curvatures

are

L
a = o oem o (13.3)

The Codazzi equations are

L N
L, = 2 —t - >
N, =2G, E +G (13.4)
L N
2 E G 1
@, EL, LE,
av E?
E% E, L+ NLE
~ E G
- =
1
-EE,— -E
ZG 2 2
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13.3. Hilbert's lemma:

Il

|
~~~
Q
o
N—r

.. @y
Similarly, —
y @u

Since the principal curvatures have extrema, the L:H:S: members vanishes at

Po: It follows that at Pg:

E, = G, =0 and henceg;P0

Z
@v 2 E ;
2 L]
Gzt =ASu (a o A (13.5)

Now, there are two possibilities arises:

either (i) , has a maximum:

@2 @2 b
. a
Inthiscase 4 p > O o o 0 (13.6)
or (ii) p has a minimum:
@ . @y
Then 3 b <0 o 0 Wz 0 (13.7)

Ineithercase E,, 0 and G;; 0 (Note that the signs of ,;  are irrelevant).

But this contradicts the fact that the Gaussian curvature K satis es

1
K = ——(Ex+G
2E(y(22+ 1) #
1 E
Kk - L+ Y& & |
2H @u H

Since the R.H.S of the above expression is zero or negative, while K is

assumed strictly positive. Thus contradiction arises.

This completes the proof of the lemma.

Let Us Sum Up:

In this unit, the students acquired knowledge to

the compact surface.

derive Hilbert's lemma.
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13.3. Hilbert's lemma:

Check Your Progress:

1. Show that the only compact surfaces of class 2 for which every
point is an umblic are spheres.

2. State and Prove Hilbert's lemma.

Suggested Readings:

1. T.J. Willmore, An Introduction to Di erential Geometry , Oxford

University press, (17th Impression), New Delhi, 2002. (Indian
Print).

2. C.E.Weatherburn, Di erential Geometry of Three Dimensions
University Press, Cambridge, 1930.
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UNIT-14

COMPLETE SURFACES

Structure
Objective
Overview
14.1 Compact surfaces of constant Gaussian or
mean curvature
14.2  Complete Surfaces
14.3  Characterization of complete surfaces
Let us Sum Up
Check Your Progress
Answers to Check Your Progress

Suggested Readings

Objectives

After completion of this unit, students will be able to

F explain the concept of Complete surfaces.
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Overview

In this unit, we will illustrate the characterization of complete
surfaces.

Compact surfaces of constant Gaussian or mean
curvature:

We note that a compact surface must possess a highest point and at
this point the curvature is necessarily non-negative. Moreover, a compact
surface cannot have constant zero curvature, for otherwise it would contain

straight lines which would contradict the compactness.

Theorem 14.1. The only compact surfaces with constant Gaussian curvature are

spheres.

Proof. Let S be a compact surface with constant positive Gaussian curvature K:
Since S is compact, there is a point P, at which attains the maximum value of

the principal curvature (i:e;; the Gaussian curvature) is constant.

Hence the principal curvatures have respectively a maximum and minimum

value at P, with the maximum value not less than the minimum.

From Hilbert's lemma, it follows that the two principal curvatures must be

equal i:e:; at no points does either principal curvature exceeds = K: Hence every
point of S is an umbilic.
Hence by theorem (13.1), only compact surfaces with constant Gaussian

curvature are spheres.

Theorem 14.2. The only compact surfaces whose Gaussian curvature is positive

and mean curvature constant are spheres.

Proof. Let S be a compact surfaces of positive Gaussian curvature and constant
mean curvature, and it is denoted respectively by , (larger principal curvature),

b (smallest principal curvature).

Since , is continuous and S is compact there is a point P, at which ,
attains its maximum value. Also the mean curvature y is constant hand hence it

follows that |, attains its minimum value at Pyg;

Thus, we have , b every where. Suppose if 5 >  at Py then by
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Hilbert's lemma, we can conclude that the Gaussian curvature K is negative

which contradicts our hypothesis.
Thus, we must have , = , = at the point P, and hence everywhere on S:

This completes the proof of the theorem.

Complete Surfaces:

In the previous section, we restrict the surfaces to be compact. But
this restriction may exclude for example, developable surfaces and many

common surfaces like paraboloids.

De nition 14.1 (Metric Spaces).

A set of points S carries the structure of a metric space when there is a real

valued function : S S ! R, with the properties:

i) AB)=0, A=B
(i) (A;B)= (B;A) (symmetry)

(iii) (A;C) (A;B) + (B;C) (triangle inequality)
for all points A; B; C of S

De nition 14.2 (Length of the segment).

Let us assume that the surface S is connected so that any two points can be

joined by arc-wise connected paths.

If is any path joining A to B then this path can be divided into a
nite number of segments so that each segment lies entirely in one coordinate

neighbourhood overlap.

The length of the segment whose equation relative to a coordinate

I
neighbourhood is u = u(t); v = v(t) is given by Eu® + 2Fuv + GV? dt taken
between the appropriate limits.

The length of is de ned as the sum of the length of its segments.
De nition 14.3 (Distance function).
Distance function is de ned by

(A; B) is the greatest lower bound (l:u:b) of all the lengths of all arc-wise

connected C* paths joining A to B:
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Note 14.1. It is clear that the distance de ned as above satis ed conditions (ii)
and (iii) of the metric space axioms while condition (i) is satis ed because the

rst fundamental form of the surface is positive de nite.

De nition 14.4 (Cauchy Sequence).

A sequence of points fxng on the surface is said to form a Cauchy sequence
when given > 0; there exists an integer ny such that fxn;xmg < when

m;n > ng: Clearly if fxng converges to limit x then the sequence fxng is a

Cauchy sequence.

Note 14.2. If the surface is such that every Cauchy sequence converges, then the

metric space is said to be complete

The following example shows that not all surfaces are complete.

Consider the surface formed by the two-dimensional Cartesian plane of
pairs of real numbers (x;y) when the origin is removed.
Distance is de ned by

(A'B) = (xa  x8)*+(ya y8)?
where (xa;ya); (Xs: ys) are the rectangular Cartesian c(oordih)ates of A and

n
sequence which does not converge in the surface and so the surface is not

B: We can easily seen that the sequence of points ;0 is a Cauchy

complete.

Characterization of complete surfaces:

Now, we are going to discuss three important properties which will be

used to characterize complete surface and they are:

(a) Every Cauchy sequence of points of S is convergent.

(b) Every geodesic can be prolonged inde nitely in either direction, or

else it forms a closed curve.

(c) Every bounded set of points of S is relatively compact.

Now, we shall prove that the above three properties are equivalent.
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Property (c) implies property (a) is quite obvious.
Now we shall prove that the property (a) implies property (b):

If be aclosed curve, then the condition (b) is obviously satis ed. If
is not a closed curve and if P(x) is some point on then there is some
number | such that can be prolonged for distances (measured along )

less than I, but cannot be prolonged for distance greater than I
Consider the sequence oyf points Xng lying on  at distance from P

lying isgivenby I 1

n
Clearly fxng is a Cauchy sequence and hence by condition (a) converges
to some point Q on  whose distance from P is exactly I
If x> is another Cauchy sequence such that x ;x° ! I; then x°

n 1 n n

tends to some limit Q°

Now the sequence X X X x°;::: is also a Cauchy sequence tending to
1 2

both Q and Q° Hence Q = Q°; and there exists a unique end point Q at

adistance | from P along :

Consider a coordinate neighbourhood of S which contains Q. At Q
there is uniquely determined a direction t which is the direction of the
geodesic which starts at Q:

In this coordinate neighbourhood there is a unique geoedesic at Q
which has the direction t and this gives a continuation of  beyond

Q. contrary to the hypothesis.
Thus, must satisfy condition (b):

Next, we have to prove that the condition (b) implies (c) so that all the

three conditions are equivalent.
Assume that the condition (b) holds good for S:

Consider a point of S; and geodesic which start at a: Now we de ne
the initial vector of a geodesic are starting at a to be the tangent to this
arc a which has the same sense as the geodesic and whose length is equal
to the length of the geodesic arc. Since property (b) is holds good for
S; it follows that every tangent vector to S at a; whatever its length, is
the initial vector of some geodesic arc starting at a which is uniquely
determined. This arc may cut itself or if it forms part of a closed geodesic,
may even cover part of itself.
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Let S, = fx23: (x;a) rg and E, be the set of points x of S,; which
can be joined to a by a geodesic arc whose length is equal to  (x; a):

Now our claim is to prove that E, is compact.
For this, let thgril be a sequence of points of E,:

Let Tn be the initial vector of a geodesic arc of length  (a; x,) joining

a to x, then the sequence of vectors bV

regarded as a sequence of
points in two dimensional Euclidean space, admits at least one vector of
accumulation T: Moreover, this vector T is the initial vector of a geodesic
arc whose extremely belongs to E, and is an accumulation point of fxng:

This proves that E, is compact.
Next, our aim is to prove that E, = S,:

It is easily seen that E, = S, is true for r = 0. Also it is true for

r = R > 0; then it is certainly true for r <R:

Now, we shall prove that conversely if E, =S, is true forr < R then it

is still true for r = R:

Now, every point of S  is the limit point of sequence of points whose
distance from a is less than R: By hypothesis these points belong to Eg;
and since Eg is closed, it follows that their limit belongs to E,: Thus,

E, =S, istrue for r = R

In order to prove E, = S, is completely, it is necessary to show that if it
holds for r = R; then it still holds for r=R +s; s > O:

This follows because it would then be possible to extend the range of
validity of E, = S, to an arbitrary extent by an appropriate number of

extensions of the range by an amount s:

Figure 14.1
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Next, we have to prove that to any point y such that (a;y) > R there
is a point x such that

@y) = R (14.1)
and (ay) = R+ (y:x) (14.2)

Since (a;y) has been de ned as the lower bound of the lengths of arcs
from atoy; it follows that we can join ato y by a curve  whose length

islessthan (a;y) + h ! for any integer h:
Let thg be the last point of this curve belonging to Egr = Sk:

Now we have

(ay) (@ xn) + (Xny)
ie; R+ (Xny)
ie; (Xn:y) (ay) R (14.3)

Since the arc length of from a to y is the sum of the arc lengths from

a to x, and from x, to y; we have

(Xn:y) arc (xn; y)
(Xn: Y) arc(a;y) arc(a;xp)

(ay)+h ' arc(a X,)

(@ay)+h!* R

Now, let h ' 1 will have at least one point of accumulation x with the

property

(xy) (@y) R (14.4)

Comparing equations (14.3) and (14.4), shows at this point
@y)=R+ (yx):
Thus we have proved that the existence of a point x satisfying equations
(14.1) and (14.2).

We have seen earlier that provided two points x; y are not too far apart
then the point y is the extremity of one and only one geodesic arc of
origin s and of length (x;y): More precisely there exists a continuous
function s(x) > 0 such that if (xy) < s(x); the point y is the extremity

of the unique geodesic arc of length (x;y) joining x to y: Further the
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continuous function s(x) attains a positive minimum value on the compact
set Egx and we take s to be this minimum.

if E, =S, istrueforr=R andif R<r(ay) R + s there exists an
x 2 E, suchthat (a;x) =R and (xy)= (ay) R s Consequently
there exists a geodesic arc L° of length (a;x) joining a to x and a
geodesic by L° and L™ joins a to y and has its length (a;y): This
composite arc is a geodesic arc and vy is thus joined to a by a geodesic
arc whose length is equal to the distance of y from a:

Hence y 2 Er; and the range of validity of E, = S, is thus extended
from Er to Eg.s: We have proved incidentally that hypothesis (c) implies
that any two points of S can be joined by a geodesic arc whose length is

equal to their distances.

Suppose we are now given a bounded set of points of Mon S: Clearly
we can nd some R such that M is contained in S and since Si (= Egr)
is compact, it follows that M is relatively compact.

Thus, we have proved that the condition (b) implies (c) and hence all

the three conditions are equivalent.

Theorem 14.3. On a complete surface any two points can be joined by a geodesic

arc whose length is equal to their distance.

Let Us Sum Up:

In this unit, the students acquired knowledge to

the concept of complete surfaces.

the characterization of complete surfaces.

Check Your Progress:

1. De ne metric spaces.
2. De ne length of the segment.

3. Explain characterization of complete surfaces.
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Choose the correct or more suitable answer:

1. The only compact surfaces with constant Gaussian curvature are

(a) straight lines.
(b) circles.
(c) spheres.

(d) parabolas.

Answer:

Dc

Suggested Readings:

1. T.J. Willmore, An Introduction to Di erential Geometry , Oxford
University press, (17th Impression), New Delhi, 2002. (Indian
Print).

2. C.E.Weatherburn, Di erential Geometry of Three Dimensions |,
University Press, Cambridge, 1930.
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UNIT-15

HILBERT'S THEOREM

Structure
Objective
Overview
15.1  Hilbert's theorem
15.2 Conjugate points on geodesics
Check Your Progress
Let us Sum Up

Suggested Readings

Objectives
After completion of this unit, students will be able to
F derive Hilbert's theorem.

F derive Jacobi's theorem.

Overview

In this unit, we will explain the derivation of Hilbert's theorem
and Bonnet theorem.
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Hilbert's theorem:

The following notion of universal covering space of a given space is
being used for proving the following theorem:

Let P be a point on the surface S; and let Q be the set of all paths of
S which begin at P: Let us divide the set Q into classes, putting into each
class the totality of paths that are homotopically equivalent.

Let S ° denote the set of these classes, so that a point of S °is an

equivalence class of paths of S:

There is a natural mapping  of the set S° on the space S:; for if A
is a point on S °; then all the equivalent paths in S belonging to A must
end in the same point a; and we write a = (A): It is shown that the set
of points S °can be considered as forming a surface called the universal

covering space which has the following properties:

(1) The natural mapping of S °on S is a continuous open mapping.
Moreover, is locally homeomorphic mapping, ie:; for every point
A of S° there exists a neighbourhood U such that the mapping

is homeomorphic on the neighbourhood U :

(2) The universal covering of surface S °of a surface S is always simply
connected.

Property (1) implies that S and S ° are locally homeomorphic so that all
the local properties of the space S are automatically true for S °: Moreover,
the di erential geometric structure on S induces a di erential-geometric

structure on S°:

Theorem 15.1. A complete analytic surface free from singularities, with constant

negative Gaussian curvature, cannot exist in three dimensional Euclidean space.

Note 15.1. We have already seen that a compact surface with these properties
cannot exist, but here the condition of compactness is relaxed to completeness

and hence the proof is quite di cult.

Proof. Let us prove the theorem by contradiction.  ie;; Assume that there

exists a surface S exists having the required property
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Consider an arbitrary geodesic line on the surface S and taken an arbitrary

point O on the geodesic as origin.

If s denote the arc length of this geodesic measured from O; since S is
complete, the geodesic can be continued in both the direction from +1 to 1:
It is possible that the geodesic will ultimately cross itself so that the same point

on S will have two di erent s-values.

However, if we consider instead of S its universal covering surface S°; then
di erent values of s will correspond to di erent point on S °: This follows
because on a surface of a negative Gaussian curvature two geodesics arcs cannot

enclose a simply connected region.

At each point of parameter s on the given geodesic, consider the orthogonal

geodesic line and let its arc length t be chosen as parameter so that the equation

of geodesicis t = O:

Now two of these geodesic arc at s;; s, cannot meet on the surface S in order
to form with the geodesic arc s;; s, a simply connected region. For if, this were
the case, then the sum of the angles of the geodesic triangle so formed would not

be less than 2 ; which is a contradiction.

Let us denote a point in the covering space S° by the pair of coordinates (s; t)
and it can be seen that di erent pairs (s;t) correspond to di erent point on S°
Now, we show that every point of S can be represented on the covering surface

S°in this manner.

It follows from Minding theorem that the line element of the surface assumes

the form ds® + G(s)dt*:

Figure 15.1
Suppose now that a point P on the surface S remained uncovered by our

construction (see Fig.(15.1)). Joint P to O (s = 0;t = 0) by some recti able

curve
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Then there must be some point Q on with the property that all points
between O and Q can be covered, while points on  arbitrarily near Q on
the side of Q remote from O cannot be covered. If Q; lies on between O
and Q it follows from the form of the metric that the length of the curve OQ; is
greater than or equal to sq,; where sq, isthe s-coordinate of the corresponding
point on S°:

The set of values sqo, is bounded, and we de ne sy to be the least upper
bound of this set.

Let R be the point on the geodesic t = 0 distant sq from O; and consider the
orthogonal geodesics along some interval on the geodesic t = 0 which contains
R:

These geodesics will cover a strip of the surface which certainly contains the
point Q; and the points beyond Q on the curve  which gives a contradiction

and hence we conclude that every point of the surface S can be covered in this

way.

Thus there is a local homeomorphism between points of S and the (s-t) plane,
but this correspondence may not be (1-1) in the large. However, the covering

space S°is homeomorphic with the (s-t) plane.
Consider the asymptotic lines on the surface S:
These lines are given by the di erential equation Lds® + 2Mdsdt + Ndt* = 0:

Since K < 0; we conclude that LN M? < 0 and hence that at each point
of S; the asymptotic directions are real and di erent. Hence at each point of S °
these determine two distinct directions, and similarly at each point of the (s-t)

plane.

Since the (s-t) plane is simply connected, the di erential equation gives rise

to two vector elds which can be continued over the whole plane.

The Lipschitz condition for uniqueness of the solution of the di erential

equation is satis ed for we have assumed that S is of class w:

Thus throughout the (s-t) plane there are two systems of asymptotic lines
with the property that a curve from each system passes through an arbitrary point.

Further since S is free singularities, the di erential equation has no singularities.

Therefore, from the theorem of Bendixon that each asymptotic lines can be

prolonged to an arbitrary extent in both directions and if ~ denotes the arc length.
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lm &+ - g Nim e - 1
Now, let us prove that each asymptotic line of one system cuts each asymptotic
line of the other system in exactly one point. First we prove that two such
lines cut in at most one point. Suppose this is not so, then there would be
region of the (s-t) plane bounded by two asymptotic lines of di erent systems.
Consider the rst case when the asymptotic lines
meet at A and B such that the continuation of
the lines does not contain any interior point of the
region bounded by the two lines. Let P be a point
on one of the lines lying between A and B; and
consider the asymptotic line of the second system
which passes through P: Because this second line

through P cannot intersect the line AB belonging

to the same system, it follows that it must intersect !

the line AB of the opposite system in a further

point Q: Moreover, as P moves from A towards

the end B; so Q will move from B towards the

end A: There must be one point where P and Figure 15.2

Q coincide, at that point the asymptotic directions
will coincide. This contradicts the fact that K < O:

Consider now the second case, where by continuation of the asymptotic
lines at least one line penetrates the region bounded by the two asymptotic lines

(see Fig.((15.3)).

Figure 15.3

Then this asymptotic line will meet the line of the opposite system at a

second point C:
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Then the continuation BC together with the asymptotic line BC form a

system of the type discussed above and again contradiction arises.

Thus, we have proved that each asymptotic line of one system cannot meet

each asymptotic line of the other system is more than one point.

In order to prove such lines must meet in atleast one point, it is convenient to

refer to the asymptotic lines as parameter lines.

Suppose that N is a neighbourhood of S in which the line of curvature are

chosen as parametric lines.

1
If 5 p denote the principal curvature at a point P on N and if K = = is
a

the constant negative Gaussian curvature, we can write

. = altcot: ,= a‘tan; 0< <E (15.1)

Using an argument similar to section (15.6). we get

@ 1E,
& = ? ( b a) 9
avae 2 E

b LG;( | (15.2)
@u 26 " >>
|
Using equation (15.1), we get
E:
— =2 ,cot 9
c (15.3)
1 = 2 tan }
!
Upon integration, we get
E = U()sin® ; G =V(v)cos® (15.4)

where U (u); V(v) are certain functions of u and v respectively.

By means of a suitable reparametrization, the function may be taken as unity

and the rst fundamental form becomes

sin® du® + cos® dv?

In terms of the new parameters

L = sE=a 'sin cos ;
N = G= a 'sin cos
M = O
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and the asymptotic lines are given by du® dv* = 0O:

1 1
Choose new parameters ; where = 3 (V+u); = 2 v u):
Then, the parametric curves = constant, = constant are asymptotic lines.
Moreover, the metric assumes the form
d ?+2cos2d d +d 2 (15.5)
and ; measures the arc lengths of the asymptotic lines.

Through O of the (s-t) plane there pass two asymptotic lines.

Through each point on these two lines we draw the asymptotic line of opposite

system.

Then we prove that each point of the (s-t) plane lie on one asymptotic line of

each system.

Suppose that there is a point P on the plane which cannot be reduced in this
way. Join P to O by a continuous curve with the property that each pair of
lines from di erent systems cut in a single point in this neighbourhood. Consider

a point Qq lying in this neighbourhood and let the asymptotic lines through Q,
cut the coordinate curves =0; =0 in two points Q(:); Q(OZ) respectively.

Let Q; denote a typical point which lines on  becomes Q, and Q: Let the
asymptotic lines through Q meet the coordinate curves at Q™; Q® and let these
: A

lines meet the lines through Q, in Q%" and Q® (see Fig. (15.6)).

Figure 15.4

Then —( @ @
QQi =Qp Q

@ @

) )
and QoQ; = Q, Q; ; provided Q; liesina
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neighbourhood of Q, where the line element is of the form given by (15.5).

Any asymptotic lines which cuts Qoai lies between Q, and Tgi which is

su ciently close to Q, will cut equal lengths from all asymptotic lines which

meet Q,Qp:

Suppose if these were not true for all the asymptotic lines meeting Q:Qi such
that all points between Q, and R possess this property, but there are points
arbitrarily close to R (may be R itself) which does not hold this property. The
asymptotic line through R will intersect the coordinate line = 0 in the point

R™® such that the lengths Q R; QWR® are equal and further all the asymptotic
0 0

lines between Qg) and Q, will have equal lengths intercepted by the asymptotic

line through R:

Let us measure o from all these asymptotic lines the length QR in the

direction of increasing :

Now, we assert that the end points of these segments form an asymptotic line.
This is clearly the case when we consider neighbourhoods of points on the line

RR™ and make use of the net of asymptotic lines in this neighbourhood.

It is true for all asymptotic lines which meet QyQ, in a neighbourhood of R:
In particular it is true for the asymptotic lines through?g1 and so for those in a

certain neighbourhood of Q.; which contradicts to our hypothesis.

Thus the two asymptotic lines through O will cut an arbitrary asymptote line
in the plane, and since the point O has been chosen arbitrarily, it follows that each
asymptotic line of one system meets every asymptotic line of the other system in
exactly one point,. We can take ( ; ) as coordinates for points in the whole plane

and the metric isoftheformd ?+2cos2 d d +d %
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Let ! be the angle between the parametric

curves.
h ! -p—F 2
Then cos! = = COS
EG
Here F = cos2;, E=1 G=1
) ! = 2 Wdhence0<!<
L 3

Now, using K = — G @
2H @ H @v H
for the calculating Gaussian curvature and thus we

have K = a—zz
@?! Figure 15.5
Also, = Ksin !:
@ @
Consider now the quadrilateral formed by the asymptotic lines
= = : (seeFig. (15.9). ] ]
Total curvature = Kds = Ksin!d d

Thus, it follows that the absolute magnitude of the total curvature of an

arbitrarily large region cannot exceed 2 :
Let us now consider the rst form of metric ds? + G(s)dt*:

Thus, we have

1 @ G P_ P_
Kz—pf* *H= EG= GasE-=1
oFges G
—_ s
and = G =cosh ~ :
a
The total c'u'rvature over a'r'egion bounded by pla;ametric Iinfs x= I t= 1
is )
p 1 e G
Kds = K" Gdsdt = dsdt
2 @s G
@ - 1
= —sinh—
a a

But in magnitude this tends to l as | I 1 which contradicts our earlier

assertion that the absolute magnitude of the total curvature cannot exceed 2 :

This completes the proof of the Hilbert's theorem.
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Conjugate points on geodesics:

In earlier chapter, we have studied that if there exists a curve of shortest
distance between two points on a surface, then the curve is necessarily a

geodesic.

Now, we are going to consider the case whether a given geodesic
joining two points is necessarily the shortest distance between them. The
following theorem proves that this is the case when the given geodesic can
be embedded in a eld of geodesics.

De nition 15.1 (Field of Geodesics). By a eld of geodesics is meant a one-
parameter set of geodesics, de ned over a region R of a surface such that through

each point of R passes one and only one curve of the set.

Theorem 15.2. If P and Q are two points of a geodesic which can be embedded
in a eld of geodesics, then the arc PQ of the geodesic is shorter than any other
arc which joints P and Q and lies entirely in that region of the surface covered
by the eld.

Proof. Let us choose parameters so that the geodesics of the family are the curves
v = constant with v = v, as the given geodesic. Let the curves u = constant
be geodesics parallels orthogonal to them, then the metric reduces to the form
ds? = du? + 2dv?

If the coordinates of P and Q are (ug; Vo) ; (uUz; Vo) with u, > uy; the length

of the geodesic arc PQ is (u, uy):

Let C be an arbitrary curve passing through P and Q given by the equation

v= (u) where (u) = vp; (uy) = v

Then the arc length of C is
2 1=2

L L
| _ 41_'_ 2 i . B
u 6 au 7 du
Clearly | exceeds u, u; unless dfracd du = 0 when C is the given

geodesic.

Note 15.2. However, it is most unlikely that the region R of the geodesic eld

extends over the entire surface S:
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In general, the above argument cannot be applied to complete surface.

For instance, the surface of a sphere cannot be covered by a geodesic eld
because any two great circles intersect in two points of the sphere. Moreover, if
A; B are any two non-antipodal points, the geodesic arc which the longer part of
the great circle joining A and B and clearly is not the shortest distance from A
to B:

Theorem 15.3. When the surface S has negative curvature everywhere, the
length of a geodesic which joins any two points A; B is always less than the

lengths of the neighbouring curves through A and B:

Proof. Let us now consider two systems, one of them is system of parametric
curves be the geodesics normal to the given geodesics AB and the other system

be the orthogonal trajectories. Let u denote the length of the geodesic normal

PQ from P to AB and v denote the length AQ:

The lime element of the surface becomes ds?® = du? + 2dv®; where

O;v)=1 1(0v)=0

In terms of these parameters the Gaussian curvature is given by
11

K=" 1le; 1= K:
The function  can be expanded as a power series in u; we get in the form
u? ud
=1 K? Klg +O(u”*) where K and K; are evaluated with u = 0:

A neighbouring curve APB which di ers slightly from AB will have an

equation of the form u = (v) where u will be small.

The length %this curve will be Z ' ﬁ

A 1=2 A 1
I = 02, 2 dv = 1+ °%2 K2
B B 3

where terms of the forth order are neglected.

Let us assume that ° never becomes in nite and is thus of the same order of

smallness as u:

R 1=2
11\ 4 1 T dv:

Hence | s=" °2 K ?* Tk, °?

The sign of variation of the arc length will be given by the second order term,

provided that these do not vanish identically.
If only these terms are retained, WZ% hqﬁve '
A

I s = °2 K 2 dv (15.6)
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Now, if K is always negative, the integrand is always positive and hence we

have | > s:

This completes the proof of the theorem.

Note 15.3. Now, we shall consider the analogous problem, when K is not always

negative.

Lemma 15.1 (Erdmann's lemma). For an extreme value, in addition to the

equation of Euler, it is necessary that f.y. = f y

Proof. Consider the problem of nding a curve y = y(x); which passes through

two points (x3;y1); (Xz; yzR has a discontinuity of slope on the line x = x; and is
such that the integral J = >* f xjy;y, dx assumes an extreme values.

1

Lety. = limy (xs+ )
=0

o]

y = Iimyo(x3 ) where is positive:
=0

(x2,Y3)

Figure 15.6

The variation of the integral over the curve y(x) and y + (x); where

(x1) =0; (x2) = 0 is given by
LJ X3 LJ X2

0

J() = fxy+ Yy + ° dx + f x;y+ Y+ ° dx

X1 Xz

It is assumed that the corner still moves along the line x = X3:
The necessary condition for extrema is J°(0) = O:

Thus, it reduces to
bxaf_d lol szf_df.d fof 0
' X + o X + o Ly =
Xy ! dX fy” X3 g dX g : ’ ’
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d -
In addition to Euler's equation f, o 0 , we have the necessary condition

iS f ye = f+ya:
Thus the lemma is proved.

Theorem 15.4 (Jacobi). In order that the geodesic distance AB should be the
shortest distance it is necessary and su cient condition that B lies between A

and its conjugate point A;:

Proof. From equation (k5.6), it follows that geodesic distance s is a minimum

B 2

. 1 . .
pravided that 2(s) =5 A u° Ku? dv is non-negative.

B 02 2 i ; ; .
i 2 BVl TR GRS ey yerhad etk arP iRt o
the Euler equation corresponding to this is Jacobi's di erential equation.

Now assume that the geodesic distance AB still gives the shortest distance

with B lying beyond A, i:e;; 2(s) O and thus a contradiction arise.

By hypothesis there is a solution of Jacobi's di erential equation ( and hence
for Euler's equation) which vanishes at A and has its next zeroat A;: If u=(v)

is such a solution, then of course is u = (v) for an arbitrary constant :

De ne a new function™u which coincides with u = (v) from A to A; and is

identically zero from A; to B:

Our aim is to prove that such a functionu is a corner solution of the problem

of giving 2(s) an extreme value.

LA AL
Since 00 _lf N u° 2dv
A uu A
Uu Y Al
w2dv  where u=(v)

Le _, —2 The 02 2

It follows that ue Ku® dv = u Ku® dv
A

A
ZA1
A U u +Ku dv
0 *u +Ku=0

Since U satis es the condition 2(s) = 0 and can be chosen as near to the
curve u = 0 as we please since is arbitrary it follows that u = 0 gives 2(s)

is minimal value.

Moreover, u must be a corner solution of the problem of nd a minimum

2(s):
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232 15.2. Conjugate points on geodesics.

From Erdmann’s lemma, the necessary condition is u® = u°:

But this is quite impossible because there is no non-trivial solution of the

equation u” + Ku = 0 which vanishes simultaneously with its derivative.

This gives the required contradiction and the theorem is completely

proved.

Now, we are going to state the Sturm's theorem without proof which
will be use to prove the Bonnet theorem.

Theorem 15.5 (Sturm's theorem). Consider the two distinct di erential
d’v
equations — = HV;
) dx
dv
i H°V where for all values of x in the range considered, H°(x) H(x):

Then If (x) is a solution of the rst equation having two consecutive zeros

at X, and X, , a solution of the second equation which has a zero at X, cannot

have another zero in the closed interval [xo; Xi]:

Corollary 15.1. If for all values of x in the range considered H°(x) H(x); and
if (s) is a solution of the rst equation having two consecutive zeros at X, and
X1; then any solution of the second equation which has a zero at x, must have at

least one other zeros in the interval [Xq; X1]:

Theorem 15.6 (Bonnet). If along a geodesic the Gaussian curvature exceeds a

positive constant = then the curve cannot be the shortest distance between its

extremities along an arc exceeding a:

d2
Proof. Consider Jacobi's di erential equation d—g +kp = 0 which is of the type
\Y4

considered by sturm.

Let p be a solution of the equation and let vy;v, be two consecutive zeros

corresponding to the point A and A;:

Thus, the arc AB will be the shortest distance between A and B if and only

if B lies between A and A; (by using Jacobi's theorem).

Suppose the Gziussian curvature1 along the line AA; always exceeds the

positive constant pe so that K a—z:
. _d*p P . .
The solution of the equation vz - = which vanishes for v = vq is
B V_ Vo . ..
Csin = and its next zero after v, isjust vo + a:
a
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Thus, if the arc length AB exceeds a; then B will not lie between A and A;

and hence the theorem is proved.

Theorem 15.7. If at all points of a geodesic the Gaussian curvature is less than
1
= then the curve is necessarily of shorter length neighbouring curves along an

arc length at least equal to b:

1

Proof. Given that K bz—:

We know that the interval between consecutive roots of the equation
d? p . . . .
d_z = —is ab: This cannot be smaller than the interval between consecutive

\V a
roots of previous equation.

Thus, if the arc length AB is less than b; then B will certainly lie between

A and A;;

This completes the proof of the theorem.

Theorem 15.8. If on a compact surface S; the curvature everywhere exceeds

1 . . .
= the maximum distance between any two points cannot exceed a:
a

Proof. Given that the surface S is compact and has the property that K z

everywhere.

Thus, if A and B are any two points on S there is a geodesic joining A to B

which is of shorter length than the neighbouring curve.

By Bonnet theorem, the maximum distance between A and B cannot exceed

a

Let Us Sum Up:

In this unit, the students acquired knowledge to

derive Hilbert's Theorem.
derive Bonnet's theorem .

derive Erdamann's lemma.
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234 15.2. Conjugate points on geodesics.

Check Your Progress:

1. State and Prove Hilbert's theorem.

2. De ne eld of Geodesics.

3. State and Prove Erdamnn's lemma.

4. State and Prove Jacobi's theorem.

5. State Sturm's theorem.

Suggested Readings:

1. T.J. Willmore, An Introduction to Di erential Geometry , Oxford
University press, (17th Impression), New Delhi, 2002. (Indian
Print).

2. C.E.Weatherburn, Di erential Geometry of Three Dimensions |,
University Press, Cambridge, 1930.
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