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Objectives 

After completion of this unit, students will be able to 

 
F  understand   the   concept   of   class m;  regular   function   and 

equivalent paths. 

 

F de ne the concept of tangent, normal and binormal at any point 

on a space curve. 

 

F  derive Serret-Frenet formulae. 

 
F calculate the curvature and torsion of any space curve in terms 

of the parameter. 

Overview 

2 1.1. Introduction: 

 

 

 

 

In this unit, we will explain the concept of tangent, normal and 

binormal. The necessary and su cient condition for the curve to be plane 

is established. 

 
 

 

1.1. Introduction: 

 

Di erential Geometry is that part of geometry which is treated with 

the help of Di erential Calculus. 

In the theory of plane curves a curve is represented by means of a single 

equation or by a parametric representation. For example, the circle with 

centre  at  the  origin  and  radius   a   is  given  by  the  equation   x2
  +  y

2
  =   a

2: 

The parametric representation of the circle is given by   x  =   a cos    and 

y =  a sin   ; where  0            2  : Similarly, the space curves are represented 

by three dimensional Euclidean space  E3: Already we are familiarize that 

two straight lines intersect at a point, two planes are intersect along a 

straight line and two surfaces intersect along a space curve. 
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1.1. Introduction: 3 

Intersection of two surfaces: 

Let   f1 (x; y; z) =  0;  f2 (x; y; z) =  0  represent two surfaces then these two 

equations together represent the curve of intersection of these surfaces. 

This curve will be called a plane curve. If it lies on a plane, otherwise it is 

said to be skew, twisted or tortuous. 

For  example,  we  know  that  if   f1 (x; y; z)  =   0   represents  a  sphere  and 

f2 (x; y; z) =  0  represent a plane then these two equations together represents 

a circle which is the section of the given sphere by the given plane. In this 

case, the curve is called a plane curve. 

Parametric representation of a space curve: 

If the coordinates of a point on a space curve be represented by the 

equations of the form 

 
x =    1(t); y =    2(t); z =    3(t); (1.1) 

 
 

where   1;  2;  3   are  real  valued  functions  of  a  single  variable   t   ranging 

over a set of values  a   t   b: 

The equations in (1.1) are called the parametric equations of the space 

curve. Thus we can say that a curve in space is the locus of a point where 

Cartesian coordinates are functions of a single variable  t: 

Transformation of one representation to another 

representation: 

Let the parametric equations of a space curve be 
 

x = t;  y = t
2
; z = t

3
 (1.2) 

 

Eliminating the parameter t in the above three equations, we get 
 

x
2
 = y; y

3
 = z

2
 (1.3) 

 
 

which is of the form 

f1 (x; y; z) =  0; f2 (x; y; z) =  0 (1.4) 

 

 

Thus the space curve whose parametric equations are given can be 

expressed as the intersection of two surfaces given by  x
2
 =  y; y

3
 =  z

2: 

Similarly, if the equation of the curve is given by equation (1.4) then 
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4 1.2. Definitions: 

 

eliminating   x   we  get  y  =   g1(z)  and  on  eliminating  y; we  get   x  =   g2(z): 

Thus, x and y are represented as a functions of z: Now, if the coordinate 

z  is a function of some parameter  t  say  i:e:;  z =  F3(t)  then  x  and  y  will 

be functions of t so that 

x   =    F1(t) ;   y = F2(t);   z = F3(t) (1.5) 

 

 

are the parametric representations of the space curve whose equations are 

given by (1.4) as the curve of intersection of two surfaces. 

Vector representation of a space curve: 

If  ~r   be  the  position  vector  of  a  point   P   on  the  space  curve  whose 

Cartesian coordinates be  (x; y; z)  then we have 
 

~r = x~i + y~j + z~k (1.6) 

or   ~r = f1(t)~i +  f2(t)~j +  f3(t)~k (1.7) 

or   ~r = f (t)    or   ~r =  ( f1(t); f2(t); f3(t)) (1.8) 

 

where  f   is a vector valued function of a single variable  t: Thus, we may 

de ne vector representation of a space curve as follows: 

A space curve is the locus of a point where position vector  ~r  with respect 

to a xed origin may be expressed as a function of a single parameter. 

 
 

 

1.2. De nitions: 
 

De nition 1.1 (Functions of class m ). 

 
Let I be a real interval and m  a positive integer.  A real-valued function  f 

de ned on I is said to be of class m or to be a C
m
 - function, if f has a m

th
 

derivative at every point of  I  and this derivative is continuous on  I: Simply, we 

can say that C
m
 - function has a continuous m

th
 derivative. 

The  function    f    is  said  to  be  of  class   1  or   C1        function  when  it  is 

di erentiable in nite number of times. 

 
De nition 1.2 (Analytic function). 

 
The function f de ned over an interval I is said to be analytic, if f is single 

valued and possesses continuous derivatives of all orders at every point of the 

interval. This type of functions is said to be of class  ! or  C
!

  function. 
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1 + v
2
 1 + v

2
 

1.2. Definitions: 5 

 

Note 1.1. The extension of the concept of class of real valued functions of several 

variables is quite obvious. 

i:e:; We can say that a  C
m

 - function of several variables admits all continuous 

partial derivatives of m
th
 order. 

 

De nition 1.3 (Class of a vector valued function). 

A vector-valued function  R~ =  (X; Y; Z)  de ned on  I  is said to be of class  m 

if it has an m
th
 derivative at every point and if this derivative is continuous on 

I: This in turn means that each of its components  X; Y; Z  are of class  m: Such a 

function is given by the vector equation  R~ =  (X; Y; Z)  or by Cartesian equations 

x =  X(u); y =  Y(u); z =  Z(u): 
 

De nition 1.4 (Regular). 

 
A vector valued function is said to be regular if 

never vanishes simultaneously. 

 

De nition 1.5 (path). 

 

dR~ 

du 

 

 

0  on  I: i:e:; if 

 

 

x ; y ; z  

 

A regular vector valued function of class  m  is called a path of class  m: 

De nition 1.6 (Equivalent paths). 

Let R~1    and R~2    be  the  two  paths  of  same  class  m   de ned  on  intervals  I1 

and  I2 respectively.  These two paths are said to be equivalent if there exists a 

strictly increasing function  g  of class  m  which maps  I1  onto  I2  and is such that 

R~1  =  R~2    g: i:e:; This is equivalent to three conditions. 

 
X1 = X2 (g(u)) ; Y1 = Y2 (g(u)) ; Z1 = Z2 (g(u)) 

 

Any equivalent class of path  m  determines a unique curve of class  m: Any 

path  R~ determines a unique curve and is called a parametric representation of 

the curve.  x =  X(u); y =  Y(u); z =  Z(u); here  u  is the parameter. 

 

The mapping g which relates two equivalent paths is called a change of 

parameter. 

 
Examples of space curves with di erent parameters: 

 

(i) ~r =     (a cos u; a sin u; bu) 0 u <   
2 

(ii)  ~r =     

 
a 

1   v  
; a    

2v    
; 2b tan

 1 
v

! 
0   v < 1 
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1 2 1 2 1 2 1 2 1 2 

 

Both  equations  represent  the  same  curve  (circular  helix)  in 

di  erent parameters u  and v: In this case, the change of parameter is 
u 

v = g(u) = tan  : 
2 

 

De nition 1.7 (Curve of class m ). 

 
A curve of class m in E3 is a set of points in E3 associated  with  an 

equivalence class of regular parametric representation of class m involving one 

parameter. 

 

 
 

 

1.3. Arc length: 

 

The distance between two points  ~r1  =  (x1; y1; z1) ;  ~r2  =  (x2; y2; z2)  in 

E3 is the number 

j~r    ~r  j  = 

q 
~r    ~r  

 2  
=   

q
(x     x  )

2
 + (y     y  )

2
 + (z     z  )

2
 

This distance in space will be used to di erent distance along a curve of 

class  m   1: 

Bookwork 1.1. To nd an expression for arc length of a curve between two 

points. 

 

 

Figure 1.1: Curve length 

 

Let us consider a curve  C  of class  m   1  and ~r =  R~(u)  be the equation 

of the curve  C: Now, our aim is to determine the arc length between the 

two points A and B on the given curve corresponding to the values  a and 

b  of the parameter  u: 

Now corresponding to any subdivision  4 of the interval  [a; b]  by points 

 
a   =    u0 < u1 < u2 <  < un = b 
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Xh  i 

Z 
b 

          

~ 

    

        

    
~ 

 

we have the length  
 

L4 = 

 

 
n 

R~(ui)   R~(ui 1) (1.9) 

i=1 

 

of the polygon inscribed to the arc by joining the successive points on it. 
 

Again, we know that sum of the sides of a triangle is greater than the 

third side so that if we increase the number of points of the subdivision the 

length of the polygon would be increased. Hence, the length of the arc is 

de ned to be an upper bound of  L4 ; taken over all possible subdivisions 

of  [a; b] : 

Hence, from (1.9) we have 
n n 

u(i) X  
~ 

 
u(i) X  

~ 
 Z 

~ 
 

L4 = R(u)du    R(u) du = R(u) du   (1.10) 
i=1  

  u(i 1) i=1 u(i  1)

 
a 

 

Now (1.10) shows that the right side member of (1.10) is nite and 

independent of  4 and hence upper bound of  L4     is always  nite. 

Now we shall show that the upper bound of  L4      is actually equal to the 

right hand side of (1.10). 

Let  s  =  s(u)  denote the arc length from  a  to any point  u; then the arc 

length from  u0 =  a  to  u    i:e:; s(u)   s(u0)  where  a =  u0 < u < b: 

Therefore from equation (1.10), we have 
a 

s(u)     s(u )          

Z 
(u)

 
du (1.11) R 

0 

u0 

 

Also, from the de nition of length we have 

R~(u)   R~(u0)    s(u)    s(u0) (1.12) 

 

 

From equations (1.11) and (1.12), we have 

 
~ ~ 

 R(u)    R(u0) s(u)    s(u0)     1 
Z 

~  u   u u    u 
  

u   u R(u) du (1.13) 
0 0 0 u0     

  
 

Taking limit as  u ! u0; we get 
R~
 
(u)     

 
s (u)  R~

 
(u) 

 )

 

s (u)

 
 

  =    R(u) 
 

Since this is true for any value of  u0  in the range of  u; hence we have 

u 

Z 
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~ 

Z q 

s   = s(u) = 

Z
 
 
u 

   
R(u)

 
du (1.14) 

a 

 

The formula (1.14) is used as formula to determine the arc length from a 

point a to any point u on the curve. 

In terms of Cartesian parametric representation, we have 
u 

 

s   = x 
2
 + y 

2
 + z 

2
du 

a 

 

Also, the equation (1.14) can be rewritten as 

s 
2 

= x 
2 

+ y 
2 

+ z 
2

 

 
 

In terms of di erentials, we have 

 
 

ds
2
 =    dx

2
 + dy

2
 + dz

2
 

 

where  ds  is called the linear element of the curve  C: 

Note 1.2. We shall use notation dashes to denote di  erentiation with respect to 

arc length s and dots to denote di erentiation with respect to any other parameter 

u: Thus, we have 

 

dR~ 
 

 

ds 

dR~ 
 

 

=     R~ 0   

; 

 
~  

d
2
R~ 

 
 

ds
2
 

d
2
R~ 

 
 

=  R~ 00 

 
~  

=    R ; 
du 

= R 
du

2
 

 

Example 1.1.  Find the equation of the circular helix 

~r(u) =  a cos u~i + a sin u~j + bu~k;   1 < u  < 1 from where  a  > 0  referred to  s 

as parameter, and also nd the length of one complete turn of the helix. 

Solution: 

Given   ~r(u)    =     a cos u~i + a sin u~j + buk~ 

 
) x = a cos u ; y = a sin u ; z = bu 

 

x =   a sin u ; y = a cos u ; z = b 
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Z p 

p 

p p p 

p 

 
2

 
z 

z   
a a 
z 

a 

x 

a   

 
u 

Arc length  s = 

0 

u 

= 
0 

q
x 

2
 + y 

2
 + z 

2
du 

q
a

2
 
 
sin

2
 u + cos

2
 u

  
+ b

2
du 

u    
= a

2
 + b

2
du = 

0 
s 

   
a

2
 + b

2
u 

i:e:;  u    =    
a

2
 + b

2
 

 

Thus, the required equation of circular helix is 

~r =     

 
a cos 

" 
   s 

#
; a sin 

" 
   s 

#
;  

  bs 
!
 

a
2
 + b

2
 a

2
 + b

2
 a

2
 + b

2
 

 

The range of parameter u to one complete turn of the helix is 

 
u0   u    u0 + 2  

) Required length =    

Z
 
 
u0 +2     

a
2
 + b

2
du = 2  

   
a

2
 + b

2
 

u0 

 

Example 1.2. Find the length of the curve given as the intersection of the surfaces 

x2 

a2   
  y

2 

=  1;  x =  a cosh 
b a

  
from the point  (a; 0; 0)  to the point  (x; y; z): 

Solution: Given equation is 
x2 

a2   
  y

2 

=  1: 
b2 

The parametric equations of this curve are given by 
 

x = a cosh  ;   y = b sinh  : 
 

Also x   =    a cosh 
a 

) cosh 

     

= 

) =   cosh
      1

 

x 
i:e:;  z    =     a cosh

 1
 

a 

=    a cosh 1  

   

a cosh   
! 

=     a cosh
 1 

(cosh  ) = a  

 

Thus, parametric forms of given curve are 
 

x = a cosh   ; y = b sinh  ;  z = a : 

Z 
Z 

p 

p 

a 

z   
x 
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Z p 

h i
 
 

p
1 

2
t 

p
1 

2
t 

) Z 
Z 
Z p p 

t2

 

q 
q 

t1 

 

limit z   =    0 to z = z 

) a     =    0 to a = a  

   =    0; =    
  

 

Arc length s  = 

0 
 
 

= 

0 
 
 

= 

0 

q
x 

2
 + y 

2
 + z 

2
d  

q
(a sinh  )

2
 + (b cosh  )

2
 + a

2
d 

q
a

2
 
 
1 + sinh

2
  
  

+ b
2
 cosh

2
  d  

     
= a

2
 + b

2
 cosh  d  

0 

= 

p
a

2
 + b

2
 sinh   

i:e:;  s    = 
y p

a
2
 + b

2
 

b 

Example 1.3. Prove that the length of the curve x = 2a  sin
 1 

t + t 
p

1     t
2
  ; 

y = 2at
2
 ;  z = 4at  between the points where t = t1  and t = t2  is 4 

p
2a (t2    t1) 

Solution: 

Given    x    =     2a 
h
sin

 1 
t + t 

p
1   t2

i 
;   y =  2at

2
    

     
 

x =    2a 

" 1 
+ t 

  2 

1  
( 2t) +  

p
1   t2

# 
=  4a 

p
1   t2

 

  
y   =    2at

2
 ) y = 4at 

z   =    4at z = 4a 
t2 

 

s   = x 
2
 + y 

2
 + z 

2
dt 

t1 

t2 

= 16a
2
 
1   t

2
  

+ 16a
2
t
2
 + 16a

2
dt 

t2    
= 32a

2
dt = 4 

t1 

    
2a [t]t1

 

=     4 
p

2a (t2    t1) 

 

 

 

 

 

1.4. Tangent, normal and binormal: 

 
 

De nition 1.8 (Tangent Line). 

 
The tangent line to a curve C at a point P(t) of C is de ned as the limiting 

position of a straight line L through P(t) and neighbouring point Q(t + t) on 

) Z 
Z 
Z 
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0
 

 

C as Q approaches P along the curve. 

 
Bookwork 1.2.  Find the unit tangent vector to a curve. 

 
 

Let    be a curve of class    1  and let  P; Q  be two neighbouring points 

on the curve. Let    be represented by the equation  ~r = ~r(u)  and let  P  and 

Q  have parameters  u0  and  u:   
 
*    has class     1:

  
 

Figure 1.2: Unit tangent vector 

 

 

 
By Taylor's theorem 

 
 

~r =     ~r(u0) + (u   u0) ~r (u0) + O (u   u0) (1.15) 

 

 

Hence 

 

 

 
lim 

 
~r(u)  ~r(u0) 

 
 

~r (u0) 
= 

u!uo        ~r(u)  ~r(u0) ~r (u ) 

 

i:e:; the unit vector along the chord  PQ  tends to a unit vector at  P  as 

Q  ! P: This is called the unit tangent vector to    at  P  and it is denoted 

by  ~t: 
 

From (1.13), we have  

 

 
~t = 

 

 
~r (u0) 
  

 

 
~r dr 

= = 
s ds 

  
 

It is convenient to denote di erentiation with respect to arc length s by 

prime. Thus, the unit tangent vector becomes  ~t = ~r 0 : 

0 ~r(u  ) 
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h i 

 

De nition 1.9 (Osculating plane). 

Let    be a curve of class    2  and let  P; Q  be two neighboring points on   : 

Then the limiting position as Q ! P of that plane which contains the tangent 

line at  P  and the point  Q  is called the osculating plane of    at  P: 

 

Bookwork 1.3.  Equation of the osculating plane at a point  P: 
 

Let  ~r = ~r(s)  be the given curve    of class    2: 

The parameters of P and Q be 0 and s respectively. 
 

Position vectors of  P  and  Q  are  ~r(0)  and  ~r(s)  respectively. 
 

Let  R~ be the position vector of the current point T  on the plane which 

contains the tangent line at  P  and the point  Q: 

 
P
 !

T =     
 
O
 !

T     O !P =  R~  ~r(0) 

~t =     ~r 
0 

(0); 
 
P
 !
Q =  O

  !
Q   O~P = ~r(s)  ~r(0) 

 

 
 

 

Figure 1.3: Osculating plane 

 

 

The vectors  
 
P
 !

T ; ~t; 
 
P
 !
Q  lying in the same plane and therefore their scalar 

product must be zero,  i:e:; the equation of the plane is given by 

 

R~  ~r(0); ~r 
0 

(0); ~r(s)  ~r(0) =     0  (1.16) 

s2 

Now,   ~r(s)    =     ~r(0) +  s~r 
0 

(0) + 

s2 

~r 
00 

(0) + O(s
3
) 

2! 

i:e:;  ~r(s)  ~r(0)    = s~r(0) + ~r 
00 

(0) + O(s
3
) (1.17) 

2! 
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" #
s 
 

  
  

2 

  

 

Using (1.17) in (1.16), as  s ! 0; we get 

 
2 

R~  ~r(0); ~r 
0 

(0); s~r 
0 

(0) + ~r 
00 

(0) =     0 
2 

s 
h
R~  ~r(0); ~r 

0 

(0); ~r 
0 

(0)
i 

+ 

s2 h
R~  ~r(0); ~r 

0 

(0); ~r 
00 

(0)
i 

=     0 

i:e:; 
h
R~  ~r(0); ~r 

0 

(0); ~r 
00 

(0)
i 

=     0 [* by using(1.16)] 

is the equation of osculating plane. 

 
Note 1.3.  If the curve is given in terms of an arbitrary parameter u; i:e:; ~r = ~r(u); 

then we get 

 h
R~  ~r(u); ~r 

0 

(u); ~r 
00 

(u)
i 

=     0 

 

 
This is the equation of osculating plane if the curve is given in any parameter 

u: 
 

Remark 1.1. 
 

Equation of osculating plane in Cartesian form: 

Let the equation of given curve be ~r =  x(u)~i + y(u)~j + z(u)~k  and 

R~ =  X~i + Y~j + Z~k; then the equation of osculating plane is  
h
R~  ~r; ~r ; ~r 

i 
=  0: 

 

X    x    Y     y    Z     z 

i:e:; x  y  z  =  0  

x y z     
  

De nition 1.10 (Point of in ex

 
ion). 

 

 

 
 

i:e:; 

 

 

d~r 

ds 

 

~t 2 =     1 

d~r 
=    1 

ds 

 

Di erentiate with respect to  s; we get 
 

2~r 
0     ~r 

00

 = 0 

i:e:;  ~r 
0     ~r 

00

 = 0 

 
If follows that the vectors ~r 0 ; ~r 00     are linearly independent unless ~r 00    

=  0: At 

a point  P  where  ~r 00    
=  0  is called a point of in exion and the tangent line at  P 

is called in exional. 
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2 3 

    

(k) 

 

Equation of the osculating plane at a point of in exion: 

Now we can obtain an osculating plane at a point of in exion on  P 

unless the curve is a straight line. For this, we consider the relation 

~r 0     ~r 00    
=  0: 

Di erentiate with respect to  s; we get  ~r 0     ~r 000   
+ ~r 00     ~r 00    

=  0: 

At the point of in exion  ~r 00    
=  0  and thus we get  ~r 0     ~r 000    

=  0: 

Hence   ~r   0        is  linearly  independent  to   ~r   000        except  when   ~r   000        
=    0: 

Repetition  of  this  process,  we  get  ~r  0      ~r  
(k)

   =   0   where  ~r  
(k)

   is  the   rst 

non-zero derivative of  ~r  at  P (k    2): If  ~r       =  0  for all  k    2; then since 

the curve is analytic and we conclude that  ~t  is constant and the curve is a 

straight line. If  ~r 
(k)

 6=  0  then we have 

~r(s)  ~r(0)    = s~t + 
sk 

~r 
(k)

(0) + O   s
k

 

k! 

 
as s ! 0 and the equation of osculating plane is 

h
R~  ~r(0); ~r 

0 

(0); ~r 
(k)

(0)
i 

=     0 

 
Example 1.4. Find the equation of the osculating plane at a general point on the 

curve given by ~r =  

 
u; u2; u3

 
: 

 

Solution:  
Given   ~r =     u~i + u

2~j + u
3~k 

) x = u; y = u
2
; z = u

3
 

 

x = 1; 
 

y = 2u; z = 3u
2
 

 

x = 0; y = 2; z = 6u 

 
 

Let  (X; Y; Z)  be any point on the osculating plane, then the equation of 

osculating plane is  
X    u   Y    u Z u  

  
1 2u 3u

2
 

0 2 6u 

  
= 0   

  
On expanding the determinant, we get 

 
6u

2
X   6uY + 2Z   2u

3
 =     0 

i:e:;  3u
2
X   3uY + Z   u3

 =     0 



15 1.4. Tangent, normal and binormal: 

M.Sc.(Mathematics)-I Year-I Sem Di  erential Geometry 

 

 

  
  

 

Example 1.5. Find the osculating plane at the point u on the helix 

x =  a cos u;   y =  a sin u;   z =  cu: 

 
Solution: 

Given x = a cos u ; 

 

y = a sin u ; 
 

z = cu 

x =   a sin u ; y = a cos u ; z = c 

x =   a cos u ; y =   a sin u ; z = 0 

 

Let  (X; Y; Z)  be any point on the osculating plane, then the equation of 

osculating plane is 

 

X   a cos u   Y    a sin u   Z    cu 

 a sin u a cos u c = 0 

 a cos u a sin u 0   
 

On expanding the determinant, we get 

 
ac sin uX    ac cos uY + a

2
Z    a

2
cu   =    0 

i:e:;  c sin uX   c cos uY + aZ   acu    =     0 

which is the required equation of the osculating plane. 

 

Example 1.6.  For the curve  x  =  3t ; y  =  3t
2
; z  =  2t

3; show that any plane 

meets it in three points and deduce the equation of the osculating plane at t =  t3: 

 
Solution: 

 

Let the equation of the plane be  Ax +  By + Cz + D =  0: 

A(3t) + B
 
3t

2
  

+ C 
 
2t

3
  

+ D   =    0 

i:e:;  2ct
3
 + 3Bt

3
 + 3At + D    =     0 

 

which is a cubic equation in  t: So there will be three values of  t: Hence 

the plane meets the given curve in three points. 

To nd the equation of osculating plane: 

Given x = 3t; y = 3t
2
; z = 2t

3
 

 

x = 3; 
 

y = 6t; z = 6t
2
 

 

x = 0; y = 6; z = 12t 

 
 

Let  (X; Y; Z)  be any point on the osculating plane, then the equation of 
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2 3 

 

osculating plane is   
X    3t Y    3t Z  2t  

  
3 6t 6t

2
 

0 6 12t 

  
= 0   

  
 

On expanding the determinant, we get 
 

2Xt
2
    2Yt

2
 + Z    2t

3
 =     0 

 
which is the required equation of the osculating plane. 

 
De nition 1.11 (Normal plane). 

 
The normal plane at a point P on the curve is that plane through P which is 

orthogonal to the tangent at  P: 

 

Note 1.4. Clearly the normal plane is perpendicular to the osculating plane. 

 
De nition 1.12 (Principal normal). 

 
The principal normal at  P  is the line of intersection of the normal plane and 

the osculating plane at  P: A unit vector along the principal normal is denoted by 

~n: 

 
Note 1.5. The normal which lies in osculating plane at any point of a curve is 

called a principal normal. 

 

De nition 1.13 (Bi-normal). 

 
The normal which is perpendicular to the osculating plane at a point is called 

the binormal and it is denoted by  ~b: 

 

Note 1.6. Clearly binormal is also perpendicular to principal normal. 

 

Fundamental Planes of a space curves: 

Through  any  point  on  the  curve,  we  have  three  unit  vectors   ~t; ~n; ~b 

forming three mutually perpendicular planes namely osculating plane, 

rectifying plane and normal plane. 

The plane formed by the vectors  ~t  and  ~n  is called the osculating plane 

and that of the plane formed by the vectors  ~b  and  ~n  is called the normal 

plane.   Similarly,  the  plane  formed  by  the  vectors  ~b   and  ~t   is  called  the 

rectifying plane. 
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The three  unit  vectors 

~t; ~b; ~n    form   a   right   handed 

orthogonal system of axes 

and satisfying the following 

relations: 

 

~t   ~t =     ~n   ~n = ~b   ~b =  1 

~t   ~n    =     ~n   ~b = ~b   ~t =  0 

~t  ~n    =     ~b ;   ~n  ~b = ~t ; ~b  ~t = ~n  
Figure 1.4: Planes

 

 
Thus at any point on the curve, we have three mutually perpendicular 

planes. They are 

(i) The osculating plane containing  ~t  and  ~n  and its equation is  
R~  ~r

  
  ~b =  0: 

(ii) The normal plane containing  ~n  and  ~b  and its equation is  
R~  ~r

  
  ~t =  0: 

(iii) The rectifying plane containing  ~b  and  ~t  and its equation is 

 
R~  ~r

  
  ~n =  0: 

Equation of Tangent line and Normal Plane: 

Tangent line: Equation of tangent line interms of parameter u is given by 

R~ = ~r +  ~r  where  R~ is the position vector of a current point on the tangent 

line and   is a scalar. 
 

If we write R~ =  X~i + Y~j + Z~k ;   ~r =  x~i + y~j + z~k  and  ~r  =  x ~i + y ~j + z ~k  in the 

above equation, we get the Cartesian form of equation of tangent line as 

 
X   x 

= 
Y    y 

= 
Z    z 

=   
 

x y z  

 

Note 1.7.  Instead of the parameter  u; if we use parameter  s (arc length), then we 

get the equation of tangent line as 

 

(i) R~ = ~r +  r~ 0     where    is a scalar. (vector form). 

(ii) 
X    x 

=
 Y    y 

=
 Z    z 

=       (Cartesian form) 

x0 y0 z0 
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Normal Plane: The equation of normal plane in general parameter u is 

given by 

  
R~  ~r

  
  ~r  =     0 

 

 

where  R~ 

or 
 
R~  ~r

  
  ~t =     0 [* ~r  = ~t ] 

is the position vector of current point on the normal plane. 
 

If we take R~ =  X~i + Y~j + Z~k ; ~r =  x~i + y~j + z~k  and  ~r  =  x ~i + y ~j + z ~k: 
 

Then the equation of normal plane becomes 

(X     x) x + (Y     y) y + (Z     z) z =    0 

 
 

Note  1.8.  Instead  of  the  parameter  u; if  the  parameter  s (arc  length)  is  given, 

then equation of normal plane is 

 

(i) R~  ~r
  

  ~r 0    
=  0 (vector form) 

(ii) (X   x) x0   
+ (Y   y) y0   

+ (Z   z) z0    
=  0 (Cartesian form) 

Example 1.7.  For the curve  x =  3u;   y =  3u
2
;   z =  2u

3: Find 

 

(i) Unit tangent vector 

 
(ii) Equation of tangent line 

 
(iii) Equation of normal plane 

Solution: 

Given  x 

~r 

= 
 

= 

3u; y =  3u
2
;   z =  2u

3
 

x~i + y~j + z~k 

) ~r 
 

= 3u~i + 3u
2~j + 2u

3~k 

~t = 3~i + 6u~j + 6u
2~k 

(i) tangent vector  ~t = 
~t 

j~tj 
3~i + 6u~j + 6u

2~k 
=    q

3
2
 + (6u)

2
 + 

 
6u

2
 2

 

~i + 2u~j + 2u
2~k 

=    q 
1 + 2u

2
 2

 

(ii) Equation of tangent line (Cartesian form): 

~i + 2u~j + 2u
2~k 

= 
1 + 2u

2
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i:e:; 

X     x  

x  

X   3u 

3 

X    3u 

1 

= 
Y     y 

y  

Y 3u
2
 

= 
6u 

Y 3u
2
 

= 
2u 

= 
Z    z 

z  

Z 2u
3
 

= 
6u

2
 

Z 2u
3
 

= 
2u

2
 

 

(iii) Equation of normal plane (Cartesian form): 
 

(X     x) x + (Y     y) y + (Z     z) z =    0 

i:e:; (X   3u) 3 + 

 
Y   3u

2
 

6u + 

 
Z   2u

3
 

6u
2
 =     0 

i:e:;  X + 2uY + 2u
2
Z =     3u + 6u

3
 + 4u

5
 

(on simpli cation) 

 
 

Example 1.8. Find the equation of tangent and normal plane at the point u on 

the circular helix  x =  a cos u; y =  a sin u;   z =  bu: 

 

Solution: 
 

Given x   =    a cos u; y = a sin u; z = bu 

Equation of tangent is 

X     x 
= 

Y    y 
=

 Z    z 

x y z  

X    a cos u 
= 

Y   a sin u 
=

 Z    bu 

 a sin u a cos u b 

 

 

 
Equation of normal plane(Cartesian form):  

(X    x) x + (Y     y) y + (Z     z) z  = 0 

(X    a cos u) (  a sin u) + (Y     a sin u) a cos u + (Z     bu) b = 0 

Xa sin u   Ya cos u = 0 

 

 

 
 

1.5. Curvature and Torsion: 

 
 

De nition 1.14 (Curvature). 

 
The rate of change of the direction of tangent with respect to arc lengths is 

called the curvature, it is denoted by : 

Note  1.9.  By  de nition,  j j =    ~t 0     : where    is  the  curvature  vector.   In  order 
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    p  p
2 2 

 2  2 

 

to determine the sign of   ; we recall that  ~t 0     
=  ~r  00      lies in the osculating plane 

and it is also normal to  ~t  and hence  ~t  0      is proportional to  ~n     i:e:; ~t  0     
=     ~n: 

But we choose the direction of  ~n  such that the curvature    is always positive. 

i:e:; ~t 0    
=   ~n: 

 

De nition 1.15 (Radius of curvature). 

The reciprocal of the curvature is called the radius of curvature and it is denoted 
1 

by   :  i:e:;   = : 
 

De nition 1.16 (Torsion). 

The rate at which the osculating plane turns about the tangent at the point P 

moved, is called the torsion of the curve at P and it is denoted by : 

 

Note  1.10.  The  torsion       may have positive as well as negative direction. 

Therefore is determined both in magnitude and direction. 

 

De nition 1.17 (Radius of Torsion). 

The reciprocal of the torsion is called the radius of torsion and is denoted by 
1 

 :  i:e:;   = : 
 

De nition 1.18 (Screw curvature). 

The rate of change of the direction of principal normal with respect to arc length 

as the point P moves along the curve is called the screw curvature vector and its 

d~n 
magnitude is +     : Hence +        = : 

ds     
Bookwork 1.4 (Serret-Frenet Formulae:). 

The following three relations are known as Serret-Frenet Formulae. 

 

(i)   ~t 0    
=   ~n 

 

(ii)   ~n 0    
=    ~t +  ~b 

(iii)   ~b 0    
=    ~n 

Proof.   (i)   We know that   ~t 2 =  1   i:e:; ~t   ~t =  1 

Di erentiating both sides with respect to arc length  s; we get 
 

~t   ~t 0   

+ ~t 0     ~t =     0 

)  2~t   ~t 0 

=     0 

i:e:;  ~t   ~t 0 

=     0 

which shows that ~t 0     is perpendicular to ~t: 
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The equation of the osculating plane at a point  P(~r)  of the curve is h

R~  ~r; ~r 
0 ; ~r 

00 

i 
=     0 

) 
h
R~  ~r; ~t; ~r 

00 

i 
=     0 

The last equation shows that  ~t 0      lies in the osculating plane and hence  ~t 0      is 

perpendicular to the binormal ~b: 

Thus  ~t 0     is parallel to  ~b  ~t; which implies that ~t 0     is parallel to  ~n: 

Hence,   ~t 0    
=    ~n: 

Therefore,    ~t 0    
=   ~n [Taking positive sign only] 

(iii)   We know that  ~b 
2
 =  1; i:e:; ~b   ~b =  1: 

Di erentiating with respect to  s; we get 

~b   ~b0   

+ ~b0     ~b    =     0   ) ~b   ~b 
0    

=  0 

 
Therefore,  ~b0     is perpendicular to  ~b  and thus  ~b 0     lies in the osculating plane. 

Also, we know that  ~b   ~t =  0: 

Di erentiating with respect to arc length  s; we get 

 

 

 

 

 

 

 
 

 

~n: 

Therefore,  ~b0      is p 

 
 

Thus, we can write  ~b0    
=    ~n: 

By convention, we can take ~b0    
=    ~n 

(ii) We know that  ~n = ~b  ~t: 

Di erentiating both sides with respect to  s; we get 

~n 
0 

=     ~b  ~t0   

+ ~b0    ~t 
~ 

~b0      must be parallel to 

=     b    ~n + 
   ~n   ~t (using (i) and (iii)) 

=      ~b  ~n     
 
 ~b

  
i:e:;  ~n 

0 

=       ~t +  ~b   

~b   ~t 0   

+ ~b0     ~t = 0 

)  ~b    ~n + ~b0     ~t = 0 (using (i)) 

)   ~b   ~n + ~b0     ~t =     0 ) ~b0     ~t =  0 

 
erpendicular to  ~t  and hence we get 
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~0 ~  
~n0 

  
=  

 
   0   

  
~n

  

2 

 

Note 1.11. Serret-Frenet formulae can also be written in the matrix form: 

  
t   

      
0   0

 
t 
  

  
~b0 

    
0    0 

  
~b

 
 

 

Theorem 1.1. A necessary and su cient condition that a curve be a straight line 

is that = 0 at all points. 

 
Proof. Necessary part:Assume that curve is a straight line. 

Any  straight  line  has  equation  of  the  form  ~r  =  ~as + ~b; where  ~a  and  ~b are 

constant vectors. 

Thus,  ~r 0    
= ~t = ~a  and  ~r 00    

= ~t 0    
=  0:  i:e:;  ~n =  0  and hence    =  0: 

Su cient part: If    =  0; then  ~r 00    
=  0: 

Integrating  twice,  we  get  ~r   =   ~as  +  ~b   which  is  the  equation  of  a  straight 

line.   

 
Theorem 1.2. A curve is a plane curve if and only if  = 0 at all points. 

 
Proof. Necessary part: Let the curve lie in a plane. Then the plane curve lie on 

the osculating plane. 

Therefore,  the plane must be  xed and so  ~b  does not change,  which means 

that  ~b  is a constant vector. 
 

~b0 

)   ~n  
)   ~n      ~n  

 

)  1 

i:e:;    

 
 

Su cient part: Assume that    =  0: 

Now, our aim is to prove that the curve is a plane curve. 

 

~b0 

=       ~n 

) ~b0 

=     0 (*   =  0) 

)  ~b  is a constant vector: 

2 

= 0  )   ~n =  0 )  ~n =  0 

= 0 

= 0 

= 0 

= 0 
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0~ 

0 00 000 2 

 

Now   
 
~r~b

  =     ~r   ~b0   

+ ~r 
0     ~b 

=     0 + ~r 
0     ~b = ~t   ~b =  0 

)  ~r   ~b    = constant =  C (say) 

)  
 
x~i + y~j + z~k

  
  
 
b1
~i + b2

~j + b3
~k
  

=     C 

) b1 x + b2y + b3z    =     C    which is a plane equation: 

 
Thus the point  (x; y; z)  satis es the plane equation for all values of  x; y; z  and 

hence the curve is a plane curve. 

This completes the proof of the theorem.   

 
Bookwork 1.5. 

The necessary and su  cient condition for the curve to be a plane curve is  
~r 0 ; ~r 00 ; ~r 000 

  
=  0 

Proof.  We know that ~r 0    
= ~t: 

Thus, we have  ~r 
00 

=     ~t 0    

=   ~n       (i)  (by Serret Frenet formulae) 

Now,  ~r 
0    ~r 

00 

=     ~t    ~n 

i:e:; ~r 
0    ~r 

00 

=      ~b (* ~t  ~n = ~b) 

 
Di erentiating both sides with respect to  s; we get 

~r 
0    ~r 

000   

+ ~r 
00    ~r 

00 

=      ~b0   

+  0~b 

) ~r  ~r 

 

 

000 

+ 0    =       
   ~n  

+   b (by Serret Frenet formulae) 

) ~r 
0    ~r 

000 

=        ~n +  0~b       (ii) 

Taking scalar products of  (i)  and  (ii); we get 

~r 
00      ~r 

0    ~r 
000 

  
=      ~n 

 
   ~n +  0~b

  
00 0 000 2 0 ~ 

)  
~r ; ~r ; ~r 

  
=         ~n   ~n +    ~n   b 

=         
2
  +     

0 

(0) 
 

i:e:; 
 
~r   ; ~r    ; ~r 

  
=                 (iii) 

If the left hand member of  (iii)  is zero, then either    =  0  or    =  0: 
 

Now, let 0 at some point of the curve, then in this neighbourhood of this 

point    6=  0: Hence    =  0  in this neighbourhood and hence the curve is a straight 

line and therefore = 0 on this line and this is a contradiction to our assumption. 

Hence = 0 at all points and the curve is a plane curve. 

0 

0 



24 1.5. Curvature and Torsion: 

Di  erential Geometry M.Sc.(Mathematics)-I Year-I Sem 

 

 

0 00 000 2 

... 

    1  1 

    
h i 

h      i
0

 00 000 5    

ds ds=du s  

 

Conversely, if the curve is a plane curve then = 0 

Therefore from  (iii); we get 

 
~r   ; ~r    ; ~r 

  
=       (0) =  0   

Note 1.12. The above theorem can also be stated as the necessary and su  cient 
... 

condition for the curve to be plane is  
h
~r ; ~r ; ~r 

i 
=  0 

Proof. 
...  

~r 
0 ; ~r 

00 ; ~r 
000 

  
=     

h
~r u0 ; ~r u02  

+ ~r u00 ; ~r u
0   3  

+ ~r u000   

+ 3~r u0 

u
00 

i 
=     u 

0   6 
h
~r ; ~r ; ~r 

i 
... h

~r ; ~r ; ~r 
i 

= 

s 
6 
 
~r 

0 ; ~r 
00 ; ~r 

000 
  "

* u
0    

=  
du  

= = 

#
 

 

Hence when   ~r 0 ; ~r 00 ; ~r 000         
=   0  is the necessary and su cient condition for 

... 
the curve to be a plane it follows that   ~r ; ~r ; ~r is also a necessary and su cient 

condition for the curve to be a plane.   

 
Example 1.9. Show that Serret-Frenet formulae can be written in the form 

~t0     
=   w~   ~t; ~n0     

=   w~   ~n;   ~b0     
=   w~   ~b  and also determine 

Darbouxe vector of the curve) 

w~ : ( w~ is called 

 

Solution:  We know that from Serret-Frenet formulae 

 
~t0 

=      ~n =   ~t  ~t +  ~b  ~t [* ~t  ~t =  0;   ~b  ~t = ~n] 

=     

 
 ~t +  ~b

  
 ~t 

=     w~  ~t; where w =   ~t +  ~b 

~n0 

=      ~b    ~t =    
 
~t  ~n

  
+   

 
~b  ~n

  
=     

 
 ~t +  ~b

  
 ~n =  w~  ~n 

~b0 

=       ~n =    
 
~t  ~b

  
+   

 
~b  ~b

  
[* ~b  ~b =  0 ;    ~n = ~t  ~b] 

=     

 
 ~t +  ~b

  
 ~b =  w~  ~n 

 
Example 1.10. Prove that for any curve 

 

d 
(i) ~t   ; ~t    ; ~t =    

ds 

d 

(ii)   
h
~b0 ; ~b00 ; ~b000 

i 
=   3

 [ 0       0 ] =   5
 
 
  

  ds 
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2 0 

  

  

 
 3   0 00       

       

3
       

2
 2 0 

   +     
0 

  

 
2  0   

+  0     2     00   
+  3

  3  0~b
  

(i) We know that ~r 
0 

=  
d~r  

= ~t 
ds 

 

Di erentiating both sides with respect to arc length  s; we get 
 

~t 0 

=     ~r 
00    

=   
d~t

 

ds 

 

=   ~n 

 

Again di erentiating both sides with respect to arc length  s; we get 

 
~r 000 

=
 

d 

ds 

 
 ~n

  
=      0~n +  ~n 

0

 

=      0~n +   
 
  ~t +  ~b

  
(by Serret Frenet formulae) 

~t00 

=     ~r000    

=   0~n    2~t +   ~b 

~t000 

=     ~r(iv)
 =  

 
 00      3

     2
 
~n   3  0~t + 

 
2 0   +  0  

 ~b 

 

 h
~t 0      ~t 00      ~t 000 

i 
=

 
          

   
On expanding the determinant, we get 

 
  0       

        
0

 

! 
=      

5
 

 2 

d   
=      

5    

ds 

(ii) We know that  ~b0 

=       ~n 

~b00 

=       0~n    ~n0    

=    ~t    0~n    2~b 

~ 000 
 
 0 0 0 

 
 0    0 00 2~0 0~ 

b =       ~t  + 
 
   +    

 
~t     ~n ~n     b    2   b 

=     
 
2  0   

+  0  
 
~t + 

 
 2     00   

+  3
  
  3  0~b 

 

) 
h
~b 0      ~b 00      ~b 000 

i 
=

 

0    0 

  2
 0 2

 
   

On expanding the determinant, we get 

 
( 0   

                   
0 ) =      

5
 

 2 

d   
=      

5    

ds 

0   0 
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   !# 2 

ds
2
 

 

Example 1.11. Show that the principal normals at consecutive points do not 

intersect unless = 0 

 
Solution: 

 

Figure 1.5: Curve length 

 

Let   P   and   Q   be  two  consecutive  points  with  position  vectors  ~r   and 

~r + d~r  on the curve  C: 
 

Let the principal normals at these points be  ~n  and  ~n + d~n: 
 

The principal normals will intersect if the three vectors  ~n; ~n + d~n  and  d~r 

are coplanar. 
 

i:e:;  
 
~n; ~n + d~n; d~r

 
i:e:;  

 
~n; ~n; d~r

  
+ 

 
~n; d~n; d~r

  

i:e:;  

"
~n;  

d~n 
;  

d~r 
#
 

i:e:;  
h
~n; 

 
  ~t +  ~b

 
; ~t

i 
i:e:;  

h
~n;  ~b; ~t

i 
i:e:;    

h
~n; ~b; ~t

i 
)   

 
 

Hence the principal normals at consecutive points do not intersect unless 

  =  0: 

 
Example 1.12. Prove that the position vector of current point on a curve satis es 

the di erential equation 

 

d 
"
 d 

 
 

 

 

d
2~r d 

  + 
 
  d~r 

! 
+   

  d  ~r  
=  0

 
ds 

ds ds 

ds ds   ds   ds
2
 

= 0 

= 0 

 

= 0 

 

= 0 

= 0 

= 0 

 

= 0 (* 
h
~n; ~b; ~t

i 
=  1) 
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ds   ds ds 

ds   ds ds 

  

    
  

0  2 2    0     

 

 

We know that       = 
1 1 

; = ; 
    

d~r 

ds 
= ~t; 

d
2~r 

ds
2
 

d~t 
= 

ds 

 

=   ~n 

L:H:S :  = 
 d  

"
1  d  

 
1 
 ~n

!# 
+  

 d  
 
 
~t
  

+  
 
 ~n 

= 
 d  

"
1  d 

(~n)

# 
+  

 d  
 
 
~t
  

+  
 
 ~n 

= 
 d  

"
1    ~t +  ~b

 # 
+  

 d  
 
 
~t
  

+  ~n 
(using Serret Frenet formulae) 

d~b 
= 

ds 

~t   +  ~n +   
d

 
ds ds 

~t
  

d 
=  ~n 

ds 
~t   + 

ds 
~t
  

+  ~n =  0 

 

Bookwork 1.6.  Find the curvature and Torsion of any curve ~r = ~r(u) 

Proof.  Let the equation of a given curve be  ~r  =  ~r(u)  where  u  is any general 

parameter. 

 

~r  
d~r d~r ds 

0
 

= = = ~r   s  
du ds du 

) ~r = s ~t (1.18) 

 
 

Di erentiating with respect to parameter  u; we get 

~r  =     ~t s  + ~t  s  = ~ts  + ~t 0 

s s  

=     ~t s  +  ~ns 
2
 

[~t  =   
d~t

 

du 
=   

d~t  ds  
= ~t 0 

s ] 
ds du 

~r  = s t~ +  s 
2~n (1.19) 

 
 

Again di erentiating with respect to  u; we get 
... 
~r = 

ds ... ds 
s  ~t +   s ~t +    s  ~n +  2s s ~n +  s  ~n 

du du 

=     

 
s     2

 s 3
 
~t + 

 
s s   +    s 2

 + 2 s s 
 
~n +   s 

3~b (1.20) 

 
Vector cross multiplying (1.18) and (1.19), we get 

~r   ~r  = s t~   
 
s t~ +  s 

2~n
  

=  s s t~  ~t +  s 
3 ~t  ~n =  0 +  s 

3~b 

i:e:; ~r   ~r  =      s 
3~b (1.21) 

 

 
Taking vector dot product of (1.21) and (1.20), we get 

ds ds 

d 

d 
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     3~ 3 

3 2 

 2
 s 6

 

    
       

h i 

... 

...  
~r   ~r 

  
  ~r =      s 

3
     s 

3
 

i:e:;  
h
~r ; ~r ; ~r 

i 
=      2 s 

6
 (1.22) 

 

It remains to nd the value of   and  : 

To Find  : 

From (1.21), we have 

~r ~r  =     
 
  s b

 
=   s (1.23)  

~r ~r 

 
 

 )  = 

  
s 

3
 

~r ~r  
 

i:e:;     = 

  
~r 

3  

 
 (1.24) 

 

To Find  : 

From (1.22), we have 

 

 
... 

~r ; ~r ; ~r 
   = ... h

~r ; ~r ; ~r 
i 

 
  

 s
 

...
 

 

i:e:;     = 

h
~r ; ~r ; 

~r  

~r 
i 

~r 
2

 

 

(using (1.23)) (1.25) 

 

 

 
Note 1.13.  If the equation of the curve is given in terms of arc length  s: 

i:e:; ~r = ~r(s); then 
ds 

s = 
du 

and 
ds  

=  1: Then  ~r ; 
ds 

~r 

; 

... 
~r   becomes  ~r 0 ; ~r 00 ; ~r 000

 

    
~r 0 ; ~r 00 ; ~r 000 

  
Similarly from (1.25), we have   = 2 

~r 0 ~r 00
 

 

2 

Example 1.13. Show that the curve  x =  t;   y =  
1 + t 

; z =  
1  t  

 lies in a 
t t 

plane. 
 
 

Solution: We know that the necessary and su  cient condition for a curve 
... 

to be a plane curve is  
h
~r ; ~r ; ~r 

i 
=  0: 

 
... 

Hence, it is enough to prove that  
h
~r ; ~r ; ~r 

i 
=  0: 

Thus (1.23) becomes    =   ~r 0    ~r 00     : 

= 
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k 

  

~ ~~ 

     

t2 t2 

 
1  2u  3u  

  

t2 t2 

2 

 

~r = x~i + y~j + z~k 

=    t~i + 
1 + t ~j + 

t 

1    t
2

~  
t 

~r  

=     ~i   1 ~j   
 

1  
+ 1

!
~k 

~r  =     0~i +   
2 ~j +   

2 ~k 

... 
t3 t3 

~ 6 ~ 6 ~ 
 

  ~r =     0i   j   k 
t4 t4 

 
1 

1 

 

 

 
 

1  
+ 1

!  
 

... t2 t2 
h
~r ; ~r ; ~r 

i 
=     

 
0 

t3 t3  
0 

6 6 
t4 t4 

     
1 

1 

 
 

 
 

1  
+ 1

!  
 

2 
! 6 

!   = 
t3 t4 0 1 1  

0 1 1 

=    0 

 

 
Example 1.14.  Find  the  curvature  and  torsion  of  the  cubic  curve  given  by 

~r =  

 
u; u2; u3

 
: 

 
Solution: 

~r  =     

 
1; 2u; 3u

2
  

~  (0; 2; 6 ... ) ; (0; 0; 6) 
r = u  

i j k 

~r  = 

  
~r ~r  =    

 

1  2u  3u
2
   

0 2 6u 

 
 

=     

 
6u

2~i   6u~j +

 
2k~ 

 

~r ~r = 

p
36u

4
 + 36u

2
 + 4 

=     2 
p

9u
4
 + 9u

2
 + 1 

 ... 

  
2 

2 

~r; ~r; ~r = 
 
 

 
= 

0 2 6u 

0 0 6  
12 
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~r 

     

      
  

 
  

  

     

  

2 

r = a a 

 6at 6a 6at 

... 

       
p 

2
 

p 

 

  2 

=    1 + 4u
2
 + 9u

4
     

~r ~r  
 

~r 
3  

 
 )    = 

 
4 2    

= 
2 
p

9u 

+ 9u 
2 

+ 1 
4 3=2 

2 
= 1 + 4u

2
 + 9u

4
 

1 + 4u 
... 

~r ; ~r ; ~r 
= 

~r ~r 
2

 

+ 9u  
  

12   3  
= = 

4
 
9u + 9u

2
 + 1

  9u
4
 + 9u

2
 + 1 

 

Example 1.15. Find the curvature and torsion of the curve 

x = a
 
3t t

3
 
; y = 3at

2
; z = a

 
3t + t

3
 
: 

Solution: 
 

~r =     

 
a 
 
3t   t3

 
; 3at

2; a 
 
3t + t

3
   

~r  =     

 
3a   3at

2; 6at; 3a + 3at
2
  

~ ( 6 ; 6 ; 6 
... 

) ; (  6 ; 0; 6  ) 
 

 

~r ~r  =     
 
3a   3at

2
 6at 3a + 3at

2  
=  18a

2
 
h 

t
2
   1

 
~i   2t~j + 

 
1 + t

2
 
~k
i 

 

~r ~r  =    1

 

8a
2
 
p

2 
 
1 + t

2
  

~r; ~r; 

  
... ~r 

  =    

 

~r   ~r 
  ... 

  ~r 

=     18a
2
 
h 

t
2
   1

 
~i   2t~j + 

 
1 + t

2
 
~k
i 

  
 
 6a~i + o~j + 6a~k

  
=    18a

2
 
h 6a 

 
t
2
    1

  
+ 6a 

 
t
2
 + 1

 i 
= 216a

3
 

 

=    3   2a  1 + t 
     

~r ~r  
 

~r 
3  

 
 )    =     

2 
p 

2
 

1

 

 

18a 2 = 3 1 + t = 2  3 2 2 54a 2
 
1 + t  

  3a 
 
1 + t  

  
  

h
~r; ~r; ~r   

 

216a
3
   1  = 

 
 

 

   
~r   ~r 

   h
18a

2
 
p

2 
 
1 + t

2
 i2

 
3a 

 
1 + t  

  
1 

Thus,       =        = 
2 2 

3a
 
1 + t  

  
Example 1.16. For the curve  x  =  3u; y  =   3u

2
; z =  2u

3
  .  Show that 

  =    = 

 
1 + 2u

2
   

: 

2 2 2 

~i ~j ~k 

  
  

4 

~r 

at at ~r  = a 

h 

= = 

3 

2 



31 1.5. Curvature and Torsion: 

M.Sc.(Mathematics)-I Year-I Sem Di  erential Geometry 

 

 

2 

     p  
4 2 

 
 
  

2 

  

 
3   2u 6u  

  

2 

3 

2 

0 6 12u 

3 2 

 

Solution  
~r =     

 
3u; 3u

2; 2u
3
  

~r  

~r  
... 

=     

 
3; 6u; 6u

2
  

=     (0; 6; 12u) 

~r =     (0; 0; 12) 

~j ~j ~k 

~r ~r  
 
3   6u 6u  

  
 

=     

 
36u

2
  ~i   

 
u)~j + 18~k 

 

 
 

~r ~r    
=    18 

  
4u + 4u  + 1 

=    18
 
2u

2
 + 1

  
 

jr j  =     3 
p

1 + 4u
2
 + 4u

4
 

=    3
 
1 + 2u

2
  

 
 h

~r ; ~r ; 

... 

~r 
i 

= 

 
0 6 12u

 
= 216  

0 0 12 

 
  

1

 

   = = 

  
 

 

 
3 

~r 
~r

 

~r  

  

  
3

 

= 1 + 2u
2
  

 
 

~r ~r 
2

    = =      

     

..
 
. = 1 + 2u

2
  h

~r ; ~r ; ~r 
i 

2 

Thus,      =      = 1 + 2u
2
  
: 

Example 1.17. For the curve x = a tan ;  y = a cot  ;  z = a 
p

2 log tan  : Prove 

2 
p

2a 

that   =        = : 
sin

2
 2  

 

Solution: 

~r =     a 
 
tan  ; cot  ; 

p
2 log tan  

  
 

Di erentiating both sides with respect to arc length  s; we get 

~r 
0 

=     ~t =  a 
B0
sec

2
  ;  cosec

2 ; 

p
2

 
1C d  

 
 

(1.26) B@ 
 

Squaring on both sides, we get 

sin  cos  
CA 

ds 

1 

2 

(36 

2 

= 
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  ! !
 
 

    

1 

    

    

p
2
 

    

~n 
0 

=       ~t +  ~b =  
  1    

2 cos 2 ; 2 cos 2 ;  2 
p

2 sin 2 
  d 

 

 

2 

~t 2
 =     1 =  a

2
   sec

4
   + cosec

4  + 
2 d

 

sin
2
   cos

2
     ds 

i:e:;  

 
ds

!
 

=     a
2 

"
sin 

  + cos
4
   + 2 sin

2
   cos

2
 
  
# 

(1.27) 

d sin
4
 cos

4
   

2 

a
2
 sin

2
 + cos

2
   

= 

sin
4
  cos

4
   

a2 

= 

sin
4
  cos

4
   

ds a 
) = 

d sin
2
 cos

2
   

 

 

 

 

 

 
(1.28) p 

2 2 

Now,   ~t =     a 
B0
sec

2
  ;  cosec

2 ; 
2 C sin    cos   

 

 @B 
sin cos 

CA 
a 

=     

  

sin
2
   ; cos

2
   ; 

p
2 sin   cos  

  
Di erentiating with respect to  s; we get 

~t 0 

=      ~n =    2 sin   cos  ; 2 cos   sin  ; 
p

2 cos 2  
d 
 

ds p sin
2
  cos

2
   

 

=     

 

sin 2 ; sin 2 ; 
   

2 cos 2  
         

a
 (1.29) 

 

Squaring we get 

 
 

 2
 = 

sin
4
   cos

4
 

a2 

h
2 
 
sin

2
 2  + cos

2
 2 

 i 
(1.30) 

 

= 
 

 

i:e:;     = 

2 sin
4
   cos

4
   

 
 

a2 

p
2 sin

2
 cos

2
   

 
 

a 

 

 

 
(1.31) 

1 a 
Hence        = = p 2 

p
2a 

= 2 

2 sin
2
  cos

2
   sin  2  

 

Substitute (1.31) in (1.29), we get 

~n   
p

2 sin
2
   cos

2
   

 
 

a 

sin
2
   cos

2
   

= 
a 

 
sin 2 ; sin 2 ; 

 
 

p
2 cos 2 

  

)   ~n    = 
  1    

sin 2 ; sin 2 ; 
p

2 cos 2 
  

Di erentiating with respect to  s; we get 

 
 

p
2 ds 

(by using Serret Frenet formulae) 

i:e:;   ~b    ~t = 
2 sin

2
    cos

2
 p 

  

 
cos 2 ; cos 2 ;   

p
2 sin 2 

  
2 a 

2 4 
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2 

p 

! 

 

Squaring, we get 

 

 2
 +  

2
 = 

 
 2

 = 

 
 

2 sin
4
   cos

4
 

a2 

4 sin
4
  cos

4
   

 
 

a2 

4 sin
4
  cos

4
   

  
2 cos

2
 2  + 2 sin

2
 2 

   
= 

    
2 sin

4
  cos

4
   

 

4 sin
4
   cos

4
 

a2 

= 
 

 

i:e:;   2
 = 

 
 

a2 
  

2 sin
4
   cos

4
 

a2 p
2 sin

2
 cos

2
   

 
 

a2 

 

 
  sin 2  
 

 ) = 
a 

=     
2  2a 

(negative sign is taken for a left handed system) 

)      = 
1 

=   
  2 

p
2a 

sin
2
 2  

2 
p

2a 

   =          = 
 

 

sin
2
 2  

 

 

Behaviour of a curve in the neighbourhood of one of its 

points: 

At a point  P  on the curve let axes  ox; oy; oz  be taken along  ~t; ~n  and  ~b; 

and let X; Y; Z be the coordinates of a neighbouring point Q of the curve 

relative to these axes. 

If the curve is of class 24  and if  s  denotes the small arc  PQ  then 

using Taylor's theorem, we get 

~r(s)    =     ~r(0) +  s~r 
0 

(0) + 
s2 

~r 
00 

(0) + 
2! 

s3 

~r 
000 

(0) + 
3! 

s4 

~r   
iv

(0) + O(s
5
)  as s 0 

4! 

 

Now by Serret-Frenet formulae 

~r 
0 

(0)    =     ~t;    ~r 
00 

(0) =   ~n;    ~r 
000 

(0) =   0~n    2~t +   ~b 

~r 
iv

(0)    =     

 
 00      3

     2
 
~n   3  0~t + 

 
2 0   +  0  

 ~b 

At  P;  ~r(0) =  0 

 

~r(s)    = s~t + 

s4 

s2 

 ~n + 
2 

s3  
 0~n    2~t +   ~b

  

+ 

h 
 00      3

     2
 
~n   3  0~t + 

 
2 0   +  0  

 ~bi 
But  ~r(s)    = X~t + Y~n + Z~b 

 

Equating like wise coe  cients, we get 

2 

  

6 

24 
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0     

 1  

> 

3 

 

X = s   
 

 

 2 s3 

 
 

 
 

s4 

     + 
> 

 

    6  8 > 
 s s 

Y = + 

+ 
00      

       

3
       

  
s

4
 +      

=> 
(1.32) 

2 6 24 

  s
3
 1  

Z = + 

6 

(2 0  
    +   

0  
  ) s 

24 

+ 
>; 

0 2 

4 
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24 

9 

It follows that as a  rst order approximation the chord  PQ is along the 

tangent; its projection on the principal normal is a magnitude of the second 
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order, and its projection on the binormal is of the third order. 

From the above relations (1.32), two relations can be deducted which are 
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analogous to Newton's formula for the curvature of plane curve and these 

are 
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2Y 

X2 
as  s ! 0 

3Z 

XY 
as   s ! 0 
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2 

2 2 
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Further, we can easily prove that  
 
X

2
 + Y

2
 + Z

2
 1=2    s 

 
1     s  

!
: 

Example 1.18. Show that the projection of the curve near P on the osculating 

plane  is  approximately  the  curve  Z   =    0; Y   =    
1 
 X

2; its  projection  on  the 
2 

1 
rectifying  plane  is  approximately  y  =   0; z  =   x

3
   and  its  projection  on  the 

6 2 normal plane is approximately  x =  0; z
2
 =  

2 
 
  

!
y

3
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Solution: Consider only the smallest power of s in the relation (1.32), we 
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have 
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X = s   

  

  
s

3 

6 
 0 
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Y = s
2
 + s

3
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2 6 
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Z = s
3
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6 
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From above, retaining only the rst term and then we get  X t s; 
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 Y  t 
  

s
2
; z t 

   
s

3: 
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Eliminating  s  between  X  and  Y; we get  Y  =   
  

X
2; Z  =  0; which gives 
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2 
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the projection of the curve at P on the osculating plane and clearly it is a 



54 1.5. Curvature and Torsion: 

Di  erential Geometry M.Sc.(Mathematics)-I Year-I Sem 

 

 

parabola. 
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Similarly, the projection of the curve on the rectifying plane and normal 
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2 

t t t 

6 9 

Check Your Progress: 

 

plane are respectively  Y  =  0;  Z  =  
   

X
2
  and  X =  0;   Z

2
 =  

2 
 
  

!
Y

3: 

 

Example 1.19. Show that the length of the common perpendicular  d  of the 
  s

3
 

tangents at two near points distance  s; apart is approximately given by d = : 
12 

 

Solution: 

 

Let   P; Q   have  parameters   0   and   s   respectively.    The  unit  tangent 

vectors  at   P   and   Q   are  ~r  0 (0); ~r  0 (s); so  the  unit  vector  of  the  common 

perpendicular is along  ~r 0 (s)  ~r 0 (0): The projection of the vector  ~r(s)  ~r(0) 

in this direction is equal to  d; so 

  
~r(s)  ~r(0); ~r 0 (s); ~r 0 (0)

  
 

 
 

In this unit, the students acquired knowledge to 

 

   nd the equation of osculating plane at a point. 

  the concept of Normal Plane and Principal Plane . 

  derive Serret-Frenet formulae. 
 

 

 

1. Find the arc length of the curve  ~r =  
 
e  cos t; e  sin t; e 

 
: 

2. Find the osculating plane at the point t = 1 of a curve 

~r =  

 
3at; 3bt

2; ct
3
 

: 

  
3. Find the curvature and torsion at   = 

4 

~r =  (a cos  ; a sin  ; a cos 2 ) : 

 
of the curve 

 

4. Find the curvature and torsion of the curve 

~r =  (a (u   sin u) ; a (1   cos u) ; bu) : 

5. Find the curvature and torsion of the curve  x =  a cos u;  y =  a sin u; 

z = au cot : 

~r 0 (s)  ~r 0 (0)     
Let Us Sum Up: 

d = 
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2 2 

1 

Self Assessment Problems: 

Answer: 

6. For the curve  ~r =  

 p
6at

3; a 
 
1 + 3t

2
 

; 
p

6at
 

; 

show that   =    = : 
a
 
1 + 3t  

  
 

 

 
 

1. De ne a curve. 

 
2. De ne class of function m and regular function. 

 
3. De ne arc length. 

 
4. De ne the curvature and torsion. 

 
5. Prove that a necessary and su cient condition for the curve to be a 

straight line is that    =  0  and for a plane curve    =  0: 

6. Derive the Serret-Frenet formulae. 

 
7. Derive the formula for curvature and torsion in terms of the 

parameters  s  and  u: 

 

 

1.  s =  

p
3 (e

u
   1) 

 

x y z 
2. + = 1 

a b c 

3.   
2
 = 

5
 

2 

6 
; = 2  3 5a 

a 
 
1 + 4a  

  
 

a 
4.     = 

t
 

b
2
 + 4a

2
 sin

4
 
2 

; = 
b 

. 

b
2
 + 4a

2
 sin

4
 
t
 

2 

 
5.     = 

sin
2
 

a 

 
;     = 

sin     cos 

a 

 

 
 

1. The plane containing the vectors  ~t  and  ~n  is called the  : : : : : : 

 
(a) osculating plane 

Choose the correct or more suitable answer: 
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Answer: 

Glossaries: 

Suggested Readings: 

 

(b) normal plane 
 

(c) rectifying plane 
 

(d) tangent plane. 
 

2. The parametric  equations  for  the  cubic  curve  is  given  by 

x = u;  y  =  u
2
;  z  =  u

3
  (  1 < u  < 1) , then the equaton of the 

curve is 
 

(a) x =  z (b)   xz =  y
3
 (c)   x2

z =  y (d)   xz =  y
2: 

 
3. A necessary and su cient condition that a curve be a straight line is 

that : : : : : : 

(a) > 0 at some points 

(b) > 0 at all points points 
 

(c) = 0 at some points 
 

(d) = 0 at all points. 
 

 

 

 

(1) a  (2)  d   (3)  d 

 
 

 

Torsion: In the di erential geometry of curves in three dimensions, the 

torsion of a curve measures how sharply it is twisting out of the osculating 

plane. 

 

 

 

1. T.J. Willmore, An Introduction to Di erential Geometry , Oxford 

University press, (17th Impression), New Delhi, 2002. (Indian 

Print). 

 

2. C.E.Weatherburn, Di erential Geometry of Three Dimensions , 

University Press, Cambridge, 1930. 
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0 0 0 

0 0 

1 2 3 

Overview 

 

 
 
 

 

In this unit, we will illustrate how to nd the curvature and 

torsion of a given curve. Also we will explain the concept of osculating 

plane and osculating sphere. 

 

2.1. Curvature and torsion of a curve given as the intersection 

of two surfaces: 
 

 

Let the equation of the curve be given as the intersection of two 

surfaces   f (x; y; z)  =   0 ;  g(x; y; z)  =   0  and  if  a  set  of  parametric  equations 

can be found easily, we may proceed as follows: 

We know that  r f   and  rg  are normal vectors to the surfaces   f (x; y; z) =  0 

and  g(x; y; z) =  0  respectively. 

Therefore unit tangent vector  ~t  is parallel to  r f    rg: 

Let  r f    rg = ~h: Then  ~t  is parallel to  ~h: 

Therefore  ~h =   ~t; for some constant   : 

) ~h    =      ~r 
0 

[* ~r 
0    

= ~t] 

) h ~i + h  ~j + h  ~k =       
 
x

0~i + y
0~j + z

0~k
  

Equating likewise terms, we get 
 

h1 =       x ; h2 =   y ; h3 =    z 

i:e:;  x
0 

= 

h1 h2 h3 
; y  = ; z  = 

      
 

Now, by total di erentiation formula 

Objectives 

After completion of this unit, students will be able to 

 
F  understand the conceptof contact between curves and surfaces. 

 
F  derive the equation of an involute and evolute. 

 
F nd spherical indicatrix of the tangent, principal normal and 

binormal. 
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3  ~ 
~ 

ds 

    

     

3 

0 

 

d f @ f dx 
= 

ds @x ds 

@ f dy 
+ + 

@y ds 

@ f dz 

@z ds 
d f 

) 
ds 

0 
@ f 

= x 
@x 

0 
@ f 

+ y 
@y 

0 
@ f 

+ z 
@z 

d f h1 @ f 

) = 
h2 @ f 

+ 
h3 @ f 

+ 

 
 

Multiplying both sides by  ; we get 

d f @ f 
=    h1 

ds @x 
d @ 

@ f 
+ h2 

y 

@ 

@ f 
+ h3 

z 

@ 
) 

ds
 

d 

=    h1 
x 

+ h2 
y 

+ h3 
z 

=       (say) 

) 
ds

 = (2.1) 

Also,    ~t =     ~h (2.2) 

 

Operating (2.1) in (2.2), we get 

d 
 ~t =       ~h 

ds 

)   
 
 ~t 0   

+  0~t
  

=       ~h (2.3) 

i:e:;   2 ~n +   0~t =       ~h [by Serret-Frenet formulae] (2.4) 

 

Taking vector product of (2.2) and (2.4), we get 

 ~t   
 
 2 ~n +   0~t

  
=     ~h    ~h 

 3 ~b +  2 0 

(0)    =     ~h    ~h 

)    ~b    =     ~   where ~  = ~h    ~h (2.5) 

)  b
  =     

 
 

  
i:e:;

  
 3 

 
 =    

 

~ 
   

~ 

  

    
 i:e:;    = 

 
 3

 

; which gives    : 
 

Now, operating (2.1) and (2.5), we get 

d 
 3 ~b =       ~  

ds 

  4  ~n +   
 
 3 

  
~b    =       ~  (2.6) 

Taking scalar product of (2.4) and (2.6), we get 

  @x @y @z 

@ @ 

@ @ @ 
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0 

    

 
r
 

@z 

     
    

x y z 

x y z 

x y z ds ds ds 

~i ~j ~k 

  
 2 ~n +   0~t

  
  
 
  4  ~n +   

 
 3 

  
~b
  

=       ~h    ~  

)   6 2   =       ~h    ~  
 ~h    ~  

i:e:;     = 
 6 2 

 

 

 

 

; which gives   : 

 
 

Example 2.1. Find the curvature and torsion of the curve of intersection of two 

quadric surfaces  ax
2
 + by

2
 + cz

2
 =  1  and  a0 x

2
 + b0 y

2
 + c0 z

2
 =  1: 

Solution: 

 

 

Let  f =    ax
2
 + by

2
 + cz

2
  1 

g    =     a
0 

x
2
 + b

0 

y
2
 + c

0 

z
2
   1 

We know that rf is normal to the surface f = 0 and rg is normal to the 

surface  g =  0: 

 

f = ~i 
@ 

@x 

+ ~j 
@
 

@y 
+ ~k 

@ 
!  

ax
2
 + by

2
 + cz

2
   1

  
i:e:; r f =     2ax~i + 2by~j + 2cz~k 

Similarly,  rg    =     2a
0 

x~i + 2b
0 

y~j + 2c
0 

z~k 
 

) rf   rg   = 

 

i:e:;  r f    rg    = 

2ax 2by 2cz 

2a0 x    2b0 y    2c0 z  
4 
 
bc

0     b0 

c
 

yz~i + 

 
4 
 
a

0 

c   ac
0 
 

xz~j + 4 
 
ab

0     a0 

b
 

xy~k 

i:e:;  r f    rg    =     

4xyz 

 
A~i +  

B ~j +  
C~k

! 
=     4Ayz~i + 4Bxz~j + 

C xy~k 

where A    =     bc
0     b0 

c ;  B =  ca
0     c0 

a ;  C =  ab
0     a0 

b 

Since the unit tangent vector  ~t  parallel to  r f    rg; we can take 

A~i +  
B ~j +  

C~k =      ~t (2.7) 
x y z 

) A~i +  
B ~j +  

C~k =      ~r 
0 

[* ~t = ~r 
0 

] 

) A~i +  
B ~j +  

C~k =       

 
dx~i +  

dy ~j +  
dz~k

!
 

 
Equating like-wise coe  cients, we get 

dx 1 A 
= ; 

ds x 

dy 1 B  dz 1 c 
= ; = 

ds y   ds z 

 

(2.8) 
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x3 

 ABC    x y z   

 x   

4 

x y z 

x3y3z3 

2 2 2 
26X   

a0     a 2 

37 

y3 

   

 

Now, if F is any scalar or vector function 

dF @F dx 
= 

ds @x ds 

@F dy 
+ + 

@y ds 

@F dz 

@z ds 

 

(2.9) 

dF 
) = 

A @F 
 

 

B @F 
+ 

C @F 
+ (using (2.8)) (2.10) 

ds x @x y @y z  @z 

 

This formula converts the derivatives with respect to arc length s in to 

derivatives with respect to co-ordinates. 

 

Equation (2.7) )  ~t = 
A~i +  

B ~j +  
C~k (2.11) 

 
Operating (2.10) on (2.11), we get 

  
 d   

 ~t
  

=     

 
A  @ 

+  
B  @ 

+  
C  @ 

!  
A~i +  

B ~j +  
C~k

! 
ds x @x y @y z @z x y z 

A2 B2 C2 

)  2 ~n +   0~t =          ~i   ~j 
~k (2.12) 

z3 

 
Vector cross multiplying (2.11) and (2.12), we get 

2 2 2 

 ~t   
 
 2 ~n +   0~t

  
=     

 
A~i +  

B ~j +  
C~k

! 
  

 
 A  ~i   B   ~j   C  ~k

!
 

x y z 
BC 

x3 y3 z3 

AC 

 3 ~b    = 
 

 

y3z3 

 
Bz

2
  Cy

2
 
~i + 

 
 

x3z3 

 
Cx

2
    Az

2
 
~j 

AB 
+ 

x3y3 

 
Ay

2
   Bx

2
 
~k (2.13) 

 

2 2 0 0 2 0 0 2 

Now, Bz  Cy =     
 
ca     c a

 
z     

 
ab     a b

 
y 

=     a
0     a (after simpli cation) 

Similarly, C x
2
   Ay

z
 =     b

0     b;  Ay
2
   Bx

2
 =  c

0     c 

3 ~ BC 
0 ~ CA 

0 ~ AB 
0 ~ )   b   = 3  3  

 

a
   a 

i + 3   3  

 

b
   b 

j + 3  3  

 

c
   c  

k 

y z z x x y 
3 3 3 

= 

"  
a

0     a ~i + 
 
b

0     b ~j + 
 
c

0     c ~k
#
 

Taking modulus and then squaring on both sides, we get 
 

2    2    2 6 6 6 

 6 2
 = 

A  B  C   
"  

a
0     a 2  

+ 
 
b

0     b 2  
+ 

 
c

0     c 2

#
 

 

x6y6z6 A2 B2 C2 

6 

i:e:;  2
 = 

A  B  C A2

 

x6y6z6 6 

6 7 
 

This gives the value of   : 

x y z  

5 

A B C 
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x2 

~ ~ 

~ 

~ 

~ 

~ 

~ 

0 ~ 0 ~ 0 ~ 

X         
   

X       

      

3 A 
0 

B 
0 

C 
0 

 

Note 2.1.  

 
 

 ~t 

 
= 

A~i +  
B ~j +  

C~k     
  

A2

 

 
 

y z 

B2 C2 
 

  

i:e:;  2
 = + + 

x2 y2 z2 

2 3 

i:e:;  6
 =     

 X A   
!
 

 

Next, we have to calculate    : 

 3
 x

3
y

3
z

3
 
b  = 

ABC 

 ~b    = 

x3 

A  
a 

x3 

A 

 
a

 

  a 
i + 

  a 
i + 

y3 

B  
b 

y3 

B 

 
b

 

  b 
j + 

  b 
j + 

z3 

X  
c 

z3 

X 

 
c
 

  c  
k 

  c  
k (2.14) 

 
where  = 

 3
 x3

y
3
z

3
 

ABC 

 

Again operating (2.10) on (2.14), we get 

  
 d   

 ~b
  

=     

 
A  @ 

+  
B @ 

+ 
C  @ 

! 
ds x @x y @y z @z 

3 3 3  
x    

a
0     a ~i +  

y    
b

0     b ~j +  
z    

c
0     c ~k

!
 

)   
h
 ~b 

0   

+ ~b 0 

i 
= 

A 

A 3x
2
 

 
 

 

  

B 

  
a    a

 
i + 

 
B 3y

2
 

 
 

 

  

C 

  
b     b

  
j + 

 
C 3z

2
 

 
 

 

  

 
c     c

  
k 

)   
 
  

   ~n  +  0~b
i 

=     3x 
 
a

0     a ~i + 3y 
 
b

0     b ~j + 3z 
 
c

0     c ~k 
0~ 0 ~ 0 ~ 0 ~ 

i:e:;      ~n +    b    =     3x 
 
a    a i + 3y 

 
b    b  

j + 3z 
 
c    c k (2.15) 

 

 
Taking scalar product of (2.12) and (2.15), we get 

 
 2 ~n +   0~t

  
  
 
    0~n +   0~b

  
=     

 
  A~i    B ~j   C ~k

!
 

x3 y3 z3 

0 ~ 0 ~ 0 ~    3xa     a
 
i + 3y

 
b     b

  
j + 3z

 
c     c

 
k 

   )      (1) + 0 + 0 + 0 =       

x3 
3x

 
a 

A2 

  a    
y3 

3y
 
b 

  b    
z3 

3z
 
c 

  c  
   

 3     = 3  a
0 

a 
x2 

 A2 

3 
X  

a
0     a  

 
 :e:;    = 

 
 
 

= 

x2 

 3   
 A2 

3ABC a
0 

a 
x2 

 
 

 6 2 x3y3z3 

B z B y A x 

x 

0 

0 

0 

0 

0 

0 
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x2 

0 0 

0 0 0 

0 0 0 0 

 

 

)    = 

 
 

3x
3
y

3
z

3
 

 A2 X  
a

0     a  
 

 
ABC x6 

2 

   X 
a

2
 a

  
This gives the value of   : 

2.2. Contact between curves and surfaces: 

 

Let  ~r  = ~r(u)  be a curve and  F(x; y; z) =  0  be a surface, then the point of 

intersection of curve and surface is given by the parameter value u which 

are the roots of the equation  F (x(u); y(u); z(u)) =  0   or  F(u) =  0: 

Note 2.2.  If  u0  is a root of  F(u) =  0  then  F(u0) =  0: 

If  F0 (u  ) =  0  but  F00 (u  ) =6  0; then we can say that the curve and surface have 

two point of contact at ~r(u0): 
 

If  F0 (u  ) =  0  ,  F00 (u  ) =  0; but  F000 (u  ) 

 

 
0 then we can say that the curve 

and surface have three point contact at ~r(u0): 

In general, if  F0 (u  ) =  F00 (u  ) =        =  F
(n 1)(u  ) =  0; but  F

(n)
(u  ) 6=  0; then 

we can say that the curve and surface have  n -point of contact at ~r(u0): 

 

 
 

 

2.2.1. Osculating circle: 
 

De nition 2.1. A curve in the osculating plane which has three point of contact 

with the curve at  P  is called osculating circle at  P: 

 

Bookwork 2.1.  Derive the equation of the osculating circle 

 
Proof. We know that the section of the sphere by a plane is a circle. Let 

Osculating circle in the osculating plane be given by as the intersection of the 

plane and the sphere. 
~r ~c =       (2.16) 

     

: 

A2 
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2 2 

2 

  

     

0 0 

 

 

 

Figure 2.1: Osculating circle 

 

 

 

where  ~r  is the position vector of the generic point and  ~c  is the position 

vector of the centre C and a is the radius of the sphere. 

Let the equation of the curve be ~r = ~r(s): The point of intersection of the curve 

and sphere is given by 

F(s)    =     
 
~r  ~c

    a   =  0 (2.17) 

The condition for three point of contact are  F  =  F0    
=  F00    

=  0: 

Di erentiate (2.17) with respect to s we get 

 

2  
~r  ~c

  
=     a  

~r  ~c
    ~r 

0 

=     0   (i:e:; ) 
 
~r  ~c

    ~t =  0 (* ~r0    

= ~t) (2.18) 

Again di erentiating with respect to  s; we get 
 

 
00  

~r  ~c
    ~r + ~r      ~r =     0 

i:e:;  
 
~r  ~c

     ~n + +~t   ~t =     0 

i:e:;  
 
~r  ~c

 
~n =  

 1  
=     (2.19) 

Equation  (2.18)  shows  that  
 
~r  ~c

  
lies  in  the  normal  plane  at  P: But  by 

de nition, it also lies in the osculating plane at  P: Hence   ~r  ~c    must be along 

the line of intersection of the osculating plane and the normal plane, thus it must 

lie along  ~n: 

 
~r  ~c

  
=      ~n   where   is any scalar: (2.20) 
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2 2 

0 00 000 

00 

 

Substitute (2.20) in (2.17) and (2.19), we get 

 

 
a   =      ; =     

 
Thus, the position vector of the centre of osculating circle is given by 

 

~c    =     ~r    ~n = ~r +  ~n (using(2.20)) (2.21) 

 

 

 

 

 

 

 

2.2.2. Osculating sphere: 
 

De nition 2.2. The osculating sphere at a point P is de ned as the sphere which 

has four point of contact with the curve at  P: 

Bookwork 2.2.  Derive the equation of the osculating sphere 

 

Proof.  Let  ~c  be the position vector and  R  be the radius of the sphere.  Then its 
2 ~ 

equation is given by  
 
~r  ~c

  
=  R    where  R  is the position vector of the generic 

point. The point of intersection of the curve ~r = ~r(s)  with the sphere is given by 

F(s)    =     
 
~r  ~c

    R (2.22) 

The condition for four point of contact are 
 

F(s)   =    0; F (s) = 0; F  (s) = 0; F  (s) = 0 

 

 

Di erentiate (2.22) thrice with respect to  s; we get 
  

~r  ~c
  

 
~r  ~c

    ~r 
 

 

=    R
2
 

=    0 
 
 

00  
~r  ~c

    ~r + ~r 
 

 

  ~r =     0 
 

 

 

We know that 

 
~r  ~c

    ~r 
000 

00 

+ ~r      ~r + 2r~   ~r =     0 

 

~r =     ~t;    ~r 
0     ~r 

0    

=  1; ~r 
00    

= ~t 0    

=   ~n 

~r 
0     ~r 

00 

=     ~t    ~n =  0 
00 

~r 
000 

=     

 
~t
  

=  
 
 ~n

 
0    

=   0~n +  ~n 
0    

=   0~n +   
 
  ~t +  b

 
~ 

0 

0 0 

2 

0 

2 

0 
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1 

~ 

 

Using the above relations, we get 

 

 
~r  ~c

   =    R
2
 

 
(2.23) 

 
~r  ~c

    ~t =     0 (2.24)  
~r  ~c

    ~n    =        (2.25) 

 
~r  ~c

 h
  
 
 ~b    ~t

  
+  0~n

i 
=     0 (2.26) 

Using (2.24) and (2.25) in (2.26), we get 
 

0 ~    0
  

~r  ~c
    b    = 

0 

   
=      

 0 1 

(2.27) 

where    = ;    
  

=        
  2 

;      =
 

(2.28) 

 

From (2.24), we see that  
 
~r  ~c

  
is perpendicular to ~t: 

 

Thus we can express  
 
~r  ~c

  
as a linear combination of ~n  and  b 

~r  ~c    =      ~n +  ~b 

~c    =     ~r +  ~n +   0~b (2.29) 

 2
  

2 +  0  2 
2 2 2 2 0   2    

R   =         +   =     +   = (2.30) 
 4 2 

 
 

Equation (2.30) gives the radius of spherical curvature. 

 
Again   0    

=  0 then     is constant.  So (2.30) gives R =       and (2.29) gives 

~c = ~r +  ~n: 
 

Centre of osculating sphere coincides with the osculating circle.   

 
Example 2.2. Show that the osculating plane at P has in general three point 

contact with the curve at  P: 

Solution: 

Let  Q  be a neighbouring point of  P  and the arc  PQ =  s: Then  ~r(s)  can be 

expanded in a Taylor series as 

 

 

~r(s)    =     ~r(0) + 
~r 0 (0) 

s + 
1! 

~r 00 (0) 
 

 

2! 

 
s

2
 + 

~r 000 (0) 
 

 

3! 
s

3
 +       

i:e:;  ~r(s)  ~r(0)    = 
~r 0 (0)s 

+ 
1! 

~r 00 (0)s
2
 
+ 

2! 

~r 000 (0)s3
 

 
 

3! 

(neglecting higher powers of s) 

From the equation of osculating plane, we have 

2 
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   s 

0 

2  22
 0 

"    #
0 

 0

 

0 

0 

00 

 

F(s)    =     
 
~r(s)  ~r(0); ~r 

0 

(0); ~r 
2 

(0) 
000 3 

~r 0 (0)s 
= 

1! 

s3 

~r 00 (0)s ~r 
+ + 

2! 

(0)s 

3! 
; ~r 

0 

(0); ~r 
00 

(0)

#
 

s3        0 00 000 3 

= 
6  

 
~r   (0); ~r    (0); ~r (0)

  
=   

6 
    

 

) F(0) + 
F0 (0)s 

+ 
1! 

F00 (0)s
2
 
+ 

2! 

F000 (0)s
3
 

= 
3! 

3 
       3  
6 

 

Equating likewise coe cients, we get 

 
F(s)   =    0; F (0) = 0;  F  (0) = 0 and 

 

F000 (0)  3  
= 0 

3! 6 

 

Thus we have  F(s) =  0; F0 (0) =  0;   F00 (0) =  0  F000 (0) 6=  0: 

Hence the osculating plane has three-point contact at  P: 

 
Example 2.3. If the radius of spherical curvature is constant, prove that the curve 

either lies on a sphere or has constant curvature. 

Solution: 

The radius of spherical curvature at R is given by 

 
R =          +

 
(2.31) 

Di erentiating both sides with respect to  s; we get 

 
 

0   =    2   
 

 d  
i:e:;      +       =     0 

ds 

d 
+ 2 

0   
ds 

 
   

  

) Either    
d 

=    0  or   +   
ds 

 
   

  
= 0 

 

Case 1: 0 

=    0 ) =  constant 
1 

=    constant 
  

i:e:;     =     constant 

 
 

Thus, the curvature is constant. 

 
Case 2: d + 

0   
 

 

 
=     0 (2.32) 

ds 

 
 

" 

0 

0 

00 

) 



50 2.2. Contact between curves and surfaces: 

Di  erential Geometry M.Sc.(Mathematics)-I Year-I Sem 

 

 

d     0 ~b 

d     d  

2  22
 0 

ds 

d     d  

ds ds 

    

 

Centre of curvature  C~ is given by 
 
 

~ 0 ~ 
C =     ~r +  ~n + 

 
   

 
b 

dC~ 
 

 

 

 
0 0 0 0 ~ 0 d 

0 ~  
 =     ~r 

ds 
+  ~n +   ~n + 

 
   

 
b + b 

ds 

=     ~t +   
 
  ~t +  ~b

  
+  0~n +  0     ~n   + 

(using Serret Frenet formulae) 

ds 

 
   

  

= 
  ~b + 

 
 0  

 ~b =  

" 
+ 

 
 0  

 #~b =  0 
 
~b
  

=  0 

 
 

i:e:; 

  ds ds 

dC~ 
=    0 

ds 

 

Therefore,  C~ is a constant vector. 

i:e:; the centre of the osculating sphere is a  xed point.  Also by given 

the radius is constant. 

Hence the osculating sphere is a xed sphere and the given curve lies on 

this sphere. 

 

Example 2.4.  Prove that the necessary and su  cient condition that a curve lies 

on a sphere is that 
d 

+  ( 0
 ) = 0 at every point on the curve. 

ds 
 

Proof. Necessary part:If the curve lies on a sphere, then the sphere will be the 

osculating sphere for every point on the curve, so that radius of osculating sphere 

R is constant. We have, 

R =          +
 

(2.33) 

Di erentiating both sides with respect to  s; we get 

 
0 0 

d 
0 

0   =    2   
   

+ 2  
  

       
      

       
     

[* R is a constant] 

2 
0 

"
 + 

0 
 

# 
=   0 ) + 

0  

   

     

= 0 

 
 

Thus, the condition is necessary. 

 
Su cient Part: Assume that the condition 

point on the curve. 

 

 
d 

+  ( 0
 ) = 0 is satis ed at every 

ds 
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0 

0 

2 

  

    

 

  d 
+ 

  ds 
d 

i:e:;   +   
ds 

 
   

  
=    0 

 
   

  
=    0 

0 0 
d 

0 0 

i:e:;  2   + 2    
ds 

 
   

  
=     0 (Multiplying both sides by 2   ) 

)  d 
 
 2

  
+ d 

h 
 0  

 2
i 

=     0 
   

Integrating,    + 
 
   

  
) R 

= constant 

=   constant ) R = constant 

 

Also, we have the centre of the osculating sphere C~ 

dC~ 

as  C~ = ~r +  ~n + ( 0  ) ~b 

i:e:; =  0  ~b   =  0 
ds 

Therefore  C~ is a constant vector   i:e:; the centre of the osculating sphere is a 

 xed point, already we have proved that R = constant. 

 

i:e:;  The   given   curve   must   lie   on   a   sphere. Hence,   the   condition   is 

su    cient.    

 
Example 2.5. Find the equation of the osculating sphere and osculating circle at 

(1; 2; 3)  on the curve  x =  2t + 1; y =  3t
2
 + 2; z =  4t

3
 + 3: 

 

Solution: Given that  ~r =  

 
2t + 1; 3t

2
 + 2; 4t

3
 + 3

 
: 

At  t =  0    (1; 2; 3)  is a point on the curve. 
 

Di erentiating both sides with respect to  s; we get 

~r  

~r  
... 

=     

 
2; 6t; 12t

2
  

=  (2; 0; 0) at t =  0 

=     (0; 6; 24t) =  (0; 6; 0) at t =  0 

~r =     (0; 0; 24) =  (0; 0; 24) at t =  0 

 

Let the equation of the osculating sphere be 
 
~r   C~

  
=     R

2
  (2.34) 

Where  ~c   is  the  position  vector  of  the  centre  ;   R   is  the  radius  and 

~c =  a~i + b~j + c~k 

Now  for  a  four  point  contact  at   ~r; we  have  di erentiate  (2.34)  with 

respect to  t; we get  
~r  ~c

    ~r =     0 (2.35) 

  2  
~r  ~c

    ~r + ~r =     0 
...  

~r  ~c
    ~r  + 3~r ~r =     0 

2 0 2 

2 
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"    !#  
 
 

  

9 3 

 
At  t =  0; the (2.35) reduces to 

h 
~i + 2~j + 3~k

  
  

 
a~i + b~j + c~k

 i 
  2~i    =     0 

i:e:; (1   a) 2    =     0    ) a =  1 

 
 

Similarly, b = 

8 
; c =  3: 

3 

Osculating sphere (2.34) passes through  (1; 2; 3)  is 
 

2 

~i + 2~j + 3~k ~i +  
8 ~j + 3~k 
3 

 
=    R

2
 

i:e:;  R
2
 = 

4  ) R =  
2

 

 
 

Hence the equation of the osculating sphere is 
2 

(x  1)
2
 +

 

y  
8 
!
 

+ (z 3)
2
 = 

4
 

9 

i:e:;  3x
2
 + 3y

2
 + 3z

2
   6x   16y   18z + 50    =     0 

 
The osculating circle is the intersection of the osculating plane and the 

osculating sphere. 

h
R~  ~r; ~r ; ~r 

i 
=     0 

At  t =  0; we have 

h
(x   1)~i + (y   2) ~j + (z   3) ~k

i 
  12~k =     0 

i:e:;  z   3    =     0 

 
Hence the equation of the osculating circle is 

3x
2
 + 3y

2
 + 3z

2
   6x   16y   18z + 50 =  0; z   3 =  0: 

 

 

2.3. Tangent surfaces, Involutes and Evolutes: 

 

De nition 2.3. If there is a one-one correspondence between points of two curves 

C and C1 such that the tangent at any point to C is a normal to the corresponding 

point of  C1  is called an involute of  C  and  C  is called an evolute of  C1: 

Bookwork 2.3.  Find involute of a given curve 
 

Let  ~r  =  ~r(s)  be the given space curve  C ;  C1  be an involute of  C: The 

quantities belonging to curve C1 will be denoted by the su x. Then the 

3 
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0 

    

 

position vector  ~r1  of any point  P1  on  C1  is given by 

 

~r1 =     ~r +  ~t (2.36) 

 

where   is to be determined. 

 

 

Figure 2.2: Involute and Evolute 

 

 

 
Di erentiate (2.36) with respect to  s; we get 

d~r1 ds1 
 

 

d~r d~t 
= +   +  0~t 

ds1  ds ds ds 

i:e:; ~t1 

) ~t1 

ds1 
 

 

ds 

ds1 
 

 

ds 

=     ~t +   ~n +  0~t 
 

=     
 
1 +  0 

 
~t +   ~n (2.37) 

 

Taking dot product on both sides with  ~t; we get 
0       

ds 
   

1 +   
ds1 

=     0 using ~t   ~t1 =  0 

i:e:;  1 +    =     0 

 

 

Integrating, we get 

 

s +         =    c where s is an arbitrary constant 

) ~r1 =     ~r + (c   s) ~t 

 
This is the required equation of involute  C1  of  C: 

Substitute the value of    in (2.37), the unit tangent vector  ~t1  is given by 
 

 
~t1 

 
ds 

0
 

=     (c s)    ~n (*   =      1) (2.38) 
ds1 

 

From above, we see that  ~t; is parallel to  ~n: Taking the positive direction 



54 2.3. Tangent surfaces, Involutes and Evolutes: 

Di  erential Geometry M.Sc.(Mathematics)-I Year-I Sem 

 

 

ds1 

 

along the involute such that  ~t1 = ~n; we get 

 

ds1 

ds 
=       (c   s) 

 

Bookwork 2.4.  Find the equation of an evolute of a given curve C 

 

 

 

Figure 2.3: Evolute 

 

 

 
Let ~r = ~r(s)  be the curve. Here, we shall use the notation su x to denote 

the quantities belonging to the curve  C1: Let  ~r1  be the position vector of 

P1 on  C1: Let  ~r  be the position vector of  P  on  C: Since the tangents to 

curve  C1  are normals to the curve  C; the point  P1  must lie in the normal 

plane to the curve at  P: 

~r1 =     ~r +  ~n +  ~b (2.39) 

i:e:;  ~r1  ~r =      ~n +  ~b 

Where  and   are to be determined. 

Di erentiate with respect to  s; we get 

d~r1 ds1 
 

 

d~r 
= 

 
+  0~n +   d~n 

 
 

 

+  0~b +   d
~b 

 
 

ds1  ds ds ds ds 
ds 

~t1 

   

=     

h
(1     ) ~t + 

 
 0        ~t + 

 
 0        ~n + 

 
 0   

+   
 ~bi 

(2.40) 

 

Since  ~t1   lies in the normal plane at  P  to the curve  C; so it must be 

parallel to   ~n +  ~b: 

Comparing like-wise coe cients of equation (2.39), we get 
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= 

  

  

 

1 

1           =    0 ) =  
  

=    

 0    
= 

  
 

 

 0  
+    

 
 

  

 0   
                    

0 d 
 

 

 

 

 
 
! 

 
 

 
Upon integration, we get 

a + 

Z
 ds   =    tan

 1 

  

  

! 
where a is a constant 

 

  
=       tan 

 Z 
 ds + a

!
 

 

i:e:;    
=       cot 

 Z 
 ds + a

!
 or     =    cot 

 Z 
 ds + a

!
 

(*  =  ) 

Thus, equation (2.39) becomes, 

~r1 =     ~r +  ~n +   cot 

 Z 
 ds + a

!
~b 

which is the required equation of evolute  C1  of  C:  Bookwork 

2.5. Find the curvature 1 and torsion 1 of the involute. 

Solution: 

 
 

The equation of the involute is  ~r1 = ~r + (c   s) ~t 

 
Di erentiating both sides with respect to  s; we get 

 

d~r1 ds1 
=     ~r 

0    ~t + (c   s) ~t 0

 

ds1 

i:e:; ~t1 

ds 

ds1 

ds 
=     ~t  ~t + (c   s)  ~n 

 
~t1 

 

d~r1 
= 

ds1 

=   unit tangent of the involute at P

!
 

) ~t1 
ds1 

ds 
=     (c   s)  ~n (2.41) 

 

This shows that the unit tangent  ~t1  of the involute is parallel to the unit 

normal  ~n  of the given curve. 

Taking the positive direction along the involute, we get 

~t1 =     ~n    and (2.42) 
ds1 

=     (c s) (2.43) 
ds 

 2
 +   

2
 

) = 
ds 

tan
 1
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1 
2 

 

Now, Di erentiating equation (2.42) with respect to  s; we get 

d~t1 
 

 

ds1 

ds1 
 

 

ds 

d~n 
= 

ds 
ds    

i:e:;  1~n1 =  ~t +  ~b 
ds1 

 

i:e:;   1~n1 = 
 ~b    ~t 

 
 

  (c    s) 

 

(using(2.43)) (2.44) 

 

Squaring both sides of equation (2.44), we get 

 

 2
 +  

2
 

2 
=

 1
 

2
 (c    s)

2
 p

 2
 + 

2
 

) 1 = 

 
 

From equation (2.44), we have 

  (c    s) 
(2.45) 

 

 
~n1 = 

 ~b    ~t 
 
 ~b    ~t

  
    (c   s) 

 
 

  

 ~b      ~t   p 
 

(2.46) 

  1 (c   s)  2 +   2 (c   s)  2
 +   

2
 

 

Di erentiating both sides with respect to  s; we get 

 
 1~n1 

 
ds1 
 

 

(  0  0  )   ~t  ~b 

= 
3=2 

 
* ~b 

 

 

=    ~n   and  ~t 0

 =   ~n
  

(2.47) 
ds 2 +   

  
Squaring both sides of equation (2.47) and using equation(2.43), we get 

(   0      
       

0 
 )

2
 
 
 

2
 +   

2
   2

 
2 

(c   s)
2 

= 
3    

+   
  

 
(   0      

       
0  

  ) (    0       
        

0 
 ) 

)  1 = =   (c    s) 
 
   +       

        
     +     

  
(c    s) 

 

  
 

    using       = 1 ; = 
  

1 ; = 
  

  0
 

 2 

;      =   0
 

 2 

 

De nition 2.4. A circular helix is a space curve which lies on the surface of the 

circular cylinder, the axis of the helix being that of the cylinder and cutting the 

generators at constant angle 

 

Example 2.6. Prove that the involute of a circular helix are plane curves. 

 

 

Solution: 
 

 

For circular helix 

 

 

=     a (constant) 

i:e:;  0 

=     a 0

 

0 0 

2 

= p = 
2 

  

2 2 2 

0 

2 

2 
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2 

~r 
   

p   

p
a

2
 

2
+ 

b 

Z Z 

a
2
 + b

2
 a

2
 + b

2
 

0 

 

Torsion of an involute of a given curve  ~r = ~r(s)  is given by 

  0       
          

0
  1 = 

  (c    s) 
 
  +   

  
 

Put    =  a    and   0   
=  a  0    in the above equation, then the equation reduces 

to   1 =  0: 

i:e:; Torsion  for  the  involute  is  zero  and  hence  the  involute  is  a  plane 

curve. 

 

Example 2.7.  Find the involute of a circular helix ~r =  (a cos u; a sin u; bu) 

Solution: 

Given that   ~r =     (a cos u; a sin u; bu) 

~r  =     ( a sin u; a cos u; b) 
   = s  =   

p
a2  + b2

      Z u   p   p   
 

Also, 
~t =     ~r 

0    

= 

~r  
= 

s  

( a sin u; a cos u; b) 

a
2
 + b

2
 

 

The equation of involute is 

~r1 =     ~r + (c   s) ~t 

=     (a cos u; a sin u; bu) +  
  (c   s)   

( a sin u; a cos u; b) 

=     

"
a 

(
cos u     (c   s)   

sin u

)
; a 

(
sin u +  

  (c   s)   
cos u

)
; bu +  

 b (c   s) 
#
 

p
a

2
 + b

2
 

where s =   

p
a

2
 + b

2
u: 

p
a

2
 + b

2
 

p
a

2
 + b

2
 

 

Example 2.8. Find the involutes and evolutes of the circular helix 

x = a cos ; y = a sin ; z = a tan : 

Solution: 

Given that  ~r =     (a cos  ; a sin  ; a  tan  ) 

~r =    a ( sin ; cos ; tan   ) 

s     = ~r   =  a 

p
1 + tan

2
   =  a sec       

~ 0

 

~r  

)   t =     ~r    = 
s  

  

s   = ds = 

0 0 

a sec   d   = a  sec   

) s  = du = u 

2 
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B 

  

Let Us Sum Up: 

 

Equation of involutes are given by  ~r1 = ~r + (c   s) ~t: 

~r1 =     ~r + (c   s) ~t 

i:e:; ~r1 =     a (cos  ; sin  ;   tan  ) + (c   a  sec  ) ( sin  ; cos  ; tan  ) cos  : 

 
If  ~r1 =  x~i + y~j + z~k; then the Cartesian equation of the involutes are 

x    =     a cos       cos    sin   (c    a  sec   ) 

y    =    a sin   + cos   cos   (c    a  sec   ) 

z = a tan + sin (c a sec ) 

The equation of evolutes are given by 

~r1 =     ~r +  ~n +   cot (  + c) ~b where   =  

Z 
 ds 

~r  
~t = = cos    (   sin ; cos ; tan   ) 

s  
cos

2
   

~t 0 

=      ~n = 
a 

cos
2
   

(   cos ; sin ; 0) 

)    = 
a 

i:e:;     = 
1  

=  a sec
2
   

  
~n    =     ( cos  ;  sin  ; 0) 

~b    =     ~t  ~n =  cos   (sin   tan  ; cos   tan  ; 1) 

~ cos
2
   

 
 B0 

~

 ~b 
1C 

b 
0 

=       ~n = (cos   tan  ;  sin   tan  ; 0) 
a 

1 
 

 

B@ * b 
0 

= 
~s 
CA 

i:e:;     = sin   cos   
a 

   =    

Z
 ds = 

Z 
1 

sin   cos   ds =  
s 

sin   cos    =     sin      [* s = a  sec   ] 

Thus, the equation of evolutes are given by 
 

~r1 =     a (cos  ; sin  ; tan  ) + a sec
2
   ( cos  ;  sin  ; 0) 

+a sec
2
 cot (  sin   + c) cos   (sin   tan  ; cos   tan  ; 1) : 

 
 

 

In this unit, the students acquired knowledge to 

 

   nd the equation of osculating sphere and osculating circle. 

   nd the involute and evolute of a given curve . 

a a 
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Answer: 

Glossaries: 

Suggested Readings: 

 

 
 

 

1. Find the equation of the osculating sphere and osculating circle at 

(1; 2; 3)  on the curve  ~r =  

 
2u + 1; 3u

2
 + 2; 4u

3
 + 3

 
: 

2. Show that the involutes of a circular helix are plane curves. 

 
3. Find the involutes and evolutes of the twisted cubic given by 

~r =  

 
u; u2; u3

 
: 

 

 
 

 

1.  9
 

x
2
 + y

2
 + z

2
  

  18x   48y   54z + 150 = 0 and 

9
 

x
2
 + y

2
 + z

2
  

   18x   48y   54z + 150 = 0; z  3 = 0 

 

 

 

 

Involute: Any curve of which a given curve is the evolute. 

 
 

 

 

1. T.J. Willmore, An Introduction to Di erential Geometry , Oxford 

University press, (17th Impression), New Delhi, 2002. (Indian 

Print). 

 

2. C.E.Weatherburn, Di erential Geometry of Three Dimensions , 

University Press, Cambridge, 1930. 

Check Your Progress: 
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Images 

3. 1. 1 The Spherical Indicatrix (or spherical 

image) of the tangent 

3. 1. 2 The Spherical Indicatrix (or spherical 

image) of the principal normal 

3. 1. 3 The Spherical Indicatrix (or spherical 

image) of the binormal 

3. 1. 4 Bertrand Curves 

3. 2 Intrinisic equations, fundamental existence 
 

theorem for space curves 
 

3.2.1  Fundamental theorem for space curves 
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Objectives 

After completion of this unit, students will be able to 

 
F nd spherical indicatrix of the tangent, principal normal and 

binormal. 

 

F  understand the concept of Bertrand curves and its properties. 

 
F  derive the fundamental theorem for space curves. 

Overview 

 

 
 
 

 
 

 

In this unit, we will explain how to nd the curvature and torsion 

of the spherical image of the principal normal and binormal. 

 

 
 

3.1. The Spherical Indicatrices or Spherical Images: 
 

 

When we move all unit tangent vectors  ~t  of a curve  C  to a point, their 

extremities describes a curve C1 on the unit sphere, this curve  C1  is called 

the spherical image of  C  (or) Spherical indicatrix of  C: There is a one-one 

correspondence between  C  and  C1: Similarly, we can de ne the spherical 

indicatrix of the principal normal and the binormal. 

3. 3 Helices 

Let us Sum Up 
 

Check Your Progress 
 

Answers to Check Your Progress 

Glossaries 

Suggested Readings 
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1 

 

 
 

3.1.1. The Spherical Indicatrix (or spherical image) of the 

tangent: 
 

 

De nition 3.1. It is the locus of a point whose position vector is equal to the unit 

tangent  ~t  at any point of a given curve is called the spherical  indicatrix  of  the 

tangent. Since such locus lies on the surface of a unit sphere. 

 

Bookwork 3.1. Find the curvature and torsion of the spherical indicatrix of the 

tangent. 

 
Solution: 

By  de nition  of  indicatrix  of  tangent,  we  have  ~r1   =   ~t; where  ~r1   is  the 

position vector. 

~r1 =     ~t 

 

Di erentiate both sides with respect to  s; we have 

d~r1 ds1 
 

 

d~t 
= 

ds1 

~t1 

ds 

ds1 

ds 

ds 

=      ~n 

i:e:; ~t1 
ds 

=      ~n 
ds1 

 

From the above equation, we see that  ~t1  is parallel to  ~n; we may measure 

s1 such that 
 

~t1 =     ~n (3.1) 

Then        = 
ds1

 

ds 
(3.2) 

 

Di erentiate with respect to  s; we get 

d~t1  ds1 
= 

d~n  
=    ~t +  ~b 

ds1  ds ds 
 

 1~n1  =       ~t +  ~b  

i:e:;   1 ~n1 =       ~t +  ~b (using (3.2)) (3.3) 

 

Squaring on both sides, we get 

 2
 

2 
=       

2 
+  

2
 

 
i:e:;  1 = 

p
 2

 +  
2
 

 
 

  

 
(3.4) 



64 3.1. The Spherical Indicatrices or Spherical Images: 

Di  erential Geometry M.Sc.(Mathematics)-I Year-I Sem 

 

 

1 

1 

2 2 

1 1 1 
ds 

1 

 

~ 

 
  ~t +  ~b

  0 
 

 

  ~t +  ~b 
1 

 
 Now, b1 =     ~t1  ~n1 = ~n   

  1 * ~t1 = ~n    &   ~n1 = @B   1 
CA 

i:e:;    1
~b1 =      ~b +  ~t (3.5) 

 
Di erentiate equation (3.5) with respect to  s; we get 

 

 
  1 

d~b1 ds1 
 

 

 

  
+ ~b1 

 
( 1 ) 

 

=      0~t +   ~n   
 

  ~n +  0~b 

      ~n    + ~b 
d  

(   )    =      0~t +  0~b (3.6) 

 

 

Taking the dot product of (3.3) and (3.6), we get 
 

2  3 0 0 

  1     1 =        
  0      

       
0   

i:e:;  1 = 

 2
 

3
 

 

But   
2
 = 

 2
 +   

2
 

 
 

 2 

  0       
          

0
 

 
 ) 1 =  

  +   
 
  

(3.7) 

 

 
 

 

3.1.2. The Spherical Indicatrix (or spherical image) of the 

principal normal: 
 

 

De nition 3.2. The locus of a point whose position vector is equal to the unit 

principal normal  ~n  at any point of a given curve is called the spherical indicatrix 

of the principal normal. 

 

Bookwork 3.2. Find the curvature and torsion of the spherical indicatrix of the 

principal normal. 

 
Solution: By de nition of the spherical indicatrix of the principal normal, 

we have  ~r1 = ~n: 

Di erentiate both sides with respect to  s; we have 
 

d~r1 ds1 
= 

d~n  
=    ~t +  ~b 

ds1 

i:e:; ~t1 

ds 

ds1 

ds 

ds 

=       ~t +  ~b (3.8) 

 

Squaring both sides of (3.8), we get 

ds ds ds 

1 

d 
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  ! 2 

  ! 
  ! 

2 2 

 
  

 
+   

2 3 

1 

1 

20
 

0 

1 

1 

 

2 

ds1 

ds 

ds1 
i:e:; 

ds 

=     

 
  ~t +  ~b

  
=   2

 +  2
 (3.9) 

= 

p
 2

 +  
2
 

 

Di erentiate (3.8), we have 
2 2 

d~t1  
 
ds1 

! + ~t d s1 =      0~b    2~n    0~t    2~n 

ds1 ds 
2 

1
 ds

2
 

2 

  ~n 

 
ds1 

! 
 

 
+ ~t 

d s1 
=       0~t   

 
 2

 +  2
 
~n +  0~b (3.10) 

 

Taking cross product of (3.8) and (3.10), we get 
 

3 

ds1 
1 

ds 

 

~b1
 =        0~n +   

 
 2

 +  2
 
~t     

 
 2

 +  2
 
~b +   0~n 

3 

ds1 
1 

ds 
~b1

 =       
 
 2

 +  2
 
~t + 

 
  0      0~t

 
~n +   

 
 2

 +  2
 
~b (3.11) 

 

Squaring (3.12), we get 
 

 2 

  

ds1 

! 
=       

2
 
 
 

2
 +   

2
  

+ 
  

    
0      

       

0  

  

   2 
+   

2
 
 
 

2
 +   

2
  

1
 ds 

 
 2

 = 

 
 2

 +   
2
  
 
(   0       

       
0  

  )
2
 

0B
*

  
ds1 

! =   2
 +  2

1C 
1 

 

 

i:e:;   2
 

 

 
=    1 + 

2 2  3 

 

(   0       
       

0  
  )

2
 

 
 

@B 
ds 

CA 
(3.12) 

1 
+   

  
1 

Since the indicatrix lies on the surface of a unit sphere, the torsion  1 = 
 1 

1 
and curvature 1 = 

 1 
are given by the relation  

 
0   2  2 

=      
2 

+    
2

  
0   2 

=  
1

 
 

 +  
1 
0 

1     

1 
 

 

 

  
1 1  1 

 0 

2 2 2 
1 1 1 

= 
  1  (3.13) 

1    

 1 

q
 2

  1
  

 

Now, eliminating  1  between (3.12) and (3.13), we get 

2 
=      

  

  
2
 +   

2
 3 

+ 
  

    
0      

       

0  

  

   2

  

=  

 

  
2
 +   

2
 
6 

0   2
 

 

 

From (3.12), we have 
  

 1

 
2   

   1
  

  
2 

+   
2
  =

 
(3.14) 

      

ds 

6 

3 
2 

  

3 

1 1
 ds

2
 

  

  

2 

CA 
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0 0 0 0 0 00 00 

1 

  

1 1 

1 

 

Di erentiate equation (3.14), we get 
 

3 
 
 

2
    1

  
  

2
 +   

2
   

   +     
   

+     
 
 2

 +   
2
  =    

  
                

    
                  

    
(3.15) 

 

 

From (3.15), we get the required value of  0 : From (3.12) and (3.13), we 

get value of   1: 

 

 

3.1.3. The Spherical Indicatrix (or spherical image) of the 

binormal: 
 

 

De nition 3.3. The locus of a point whose position vector is equal to the unit 

binormal  ~b  at any point of a given curve is called the spherical indicatrix of the 

binormal. 

 
Bookwork 3.3. Find the curvature and torsion of the spherical indicatrix of the 

binormal. 

 
Solution: By de nition of the spherical indicatrix of the binormal, we have 

~r1 = ~b: Di erentiate both sides with respect to  s; we get 

d~r1 ds1 
 

 

d~b 
= 

ds1 

~t1 

ds 

ds1 

ds 

ds 

=       ~n 

i:e:; ~t1 
ds 

=  ~n 
ds1 

(3.16) 

We may measure s1 such that ~t1 =      ~n (3.17) 

From  (3.16); we have 
ds1 

ds 
= (3.18) 

 

Di erentiate (3.17), we get 

d~t1  ds1 
 

 

 

  

 
 

d~n 
=       

 
=   

 
  ~t +  ~b

  
i:e:;    1~n1 =     

 
 ~t    ~b

  
(3.19) 

 

 

Squaring, we get  
 2

 
2
 =      

2
 +  

2
 )   

p
 2

 

= 

 
 

+  
2
 

 

 

(3.20) 

 

i:e:;  1  is the ratio of the screw curvature and the torsion of the given curve. 

To nd the torsion of the indicatrix, take the cross of (3.17) and (3.19), 

we get 

ds ds1 

2 3 

1 

ds 

1 
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2 

 

 1 ~b1 =      ~t +  ~b (3.21) 

 

Di erentiate with respect to  s; we get 

d~b1 ds1 
 1  

 

+ ~b1 

 
( 1 ) 

 
=      0~t + 

 
  ~n +  0~b   

 
  ~n 

ds1  ds ds 

~ d 
 

 

 
0 0~ 

 1  
   1~n1

 
  + b1 ( 1 )    =       ~t +   b (3.22) 

 

 

Take the dot product of (3.19) and (3.22), we get 

 0   
                  

0
 

  
   1     1 =               )  1 =  

  
 
  2

 (3.23) 
+   

  
 

 

 
 

 

3.1.4. Bertrand Curves: 
 

De nition 3.4. A pair of curves C and C1 which have the same principal 

normals are called Bertrand curves. 

 
Properties of Bertrand Curves: 

Property 1: The distance between corresponding points of two Bertrand 

curves is constant. 

 
Proof. 

 

 

Figure 3.1: Evolute 

 
 

Consider the principal normals to the curve C and C1 in the same sense, by 

de nition 

~n1 =     ~n (3.24) 

 

 
Let ~r  be the position vector of the point  P  on  C  and ~r1  be the position vector 

of the corresponding point  Q  on  C1  with respect to the origin  O: 

0 0 2 3 

d 

ds 
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1 

0 

  

ds 

 

~r1 =     ~r +  ~n where   is a scalar function of  s (3.25) 

 

Di erentiate both sides with respect to  s; we get 

d~r1 ds1 
 

 

 

  

 

=     ~r 

 
0   

+  ~n 
0

 +  0~n = ~t     ds1 
 

 

 

 
= ~t +   

 
  ~t +  ~b

  
+  0~n 

i:e:;  ~t1 
ds1   
ds 

=     (1     ) ~t +  0~n +   ~b (3.26) 

 

Taking the dot product of (3.24) and (3.26), we get 
~n1   ~t1 

  ! 
=     ~n   

h
(1     ) ~t +   ~n +   b

i
~ 

ds1 0
 

i:e:;  0    =        )    =   constant 

 
Thus, the distance between P and Q is constant.   

 

Property 2: The tangents at the corresponding points of two curves are 

inclined at a constant angle. 

Proof. 
 

 d  
~t   ~t1

  
= 

d~t 
 

 

 

 
  ~t + ~t   d~t1  ds1 

 
 

 

  
=   ~n   ~t1 + ~t    1~n1 

ds1 
 

 

 

 

 
* ~n1 = ~n

  
=      ~n1   ~t1 +  1 

ds1 ~t   ~n =  0 
ds 

) ~t   ~t1 = constant 

i:e:; cos    =     constant,  where   is the angle between ~t and ~t1 

i:e:;     =     constant   

 
Property 3: Curvature and torsion of either curves are connected by a linear 

relation. 

 
Proof.  From property (1), we have   0    

=  0: 

Equation (3.26) in property (1), reduces to 

~t1 
ds1 

ds 
=     (1     ) ~t +   ~b (3.27) 

 

Taking dot product of both sides of (3.27) with ~b1; we have 

~b1
   ~t1 

ds1   
ds 

=     (1     ) ~t   ~b1 +   ~b   ~b1 

i:e:; 0    =     (1     ) ~t   ~b1 +   ~b   ~b1 (3.28) 

Since the principal normals ~n1  and  ~n  coincide, the four vectors ~t1; ~t; ~b1  and  ~b 

ds ds ds1 ds 

ds ds ds1 

ds 



69 3.2. Intrinisic equations, fundamental existence theorem for space curves : 

M.Sc.(Mathematics)-I Year-I Sem Di  erential Geometry 

 

 

  

    

! 

 

are coplanar when they are localized at  O: 

~t   ~b1 =     cos 
 
90

0
    

  
=  sin   

~b   ~b1 =     cos   

 
Using the above equations, the equation (3.28) reduces to 

 
0   =    (1    ) sin   +      cos   

 
The above relation shows that there exists a linear relation with constant 

coe cients between the curvature and torsion of the curve C: 

Hence, the above relation can be written as 

   =     

 
    1 

!
tan   (3.29) 

 
Again the relation between the curves C and C1 is reciprocal one, thus the 

point  P  ~r    is at a distance     along the normal at  Q(~r1)  and  ~t  is inclined at an 

angle     with  ~t1: 

Thus for the curve  C1; we have relation corresponding to (3.29) as 

 1 =         

 

  1 + 
1  

tan     

  
 

 
 

 

3.2. Intrinisic equations, fundamental existence theorem for 

space curves: 
 

 

In this section, we express any point of a space curve by the equations 

  =  (s)  and =  (s)  which are the intrinsic equations.  Fundamental 

theorem of space curves is provided in two parts namely existence theorem 

and uniqueness theorem. 

 

 

3.2.1. Fundamental theorem for space curves: 
 

Theorem 3.1 (Existence theorem for space curves).  If     =    (s) and     =    (s) 

are continuous functions of a real variable s(s 0) ; then there exists a space 

curve for which is the curvature and is the torsion, and s is the arc length 

measured from same suitable base point. 

 

Proof.  We have to show that there are four vector functions ~r = ~r(s); 
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> 

1 1 1 

  > 

 

~t  =  ~t(s); ~n  =   ~n(s)  and  ~b  =   ~b(s)  such  that  ~t; ~n; ~b  are  mutually  perpendicular 

vectors satisfying Serret-Frenet formulae. 

Then  ~r = ~r(s)  will be the required curve 

d  
   = 
ds 
d  

=          +  

>= (3.30) 

d  
=         

ds 
; 

where   ;  ;   are unknown functions of  s: 
 

From the theory of di erential equations, we have that the above system has 

unique  solution   (s);  (s);  (s)  which  takes  prescribed  values  at  s  =   0 (initial 

values). 

In particular, this is a unique solution   1(s);  1(s);  1(s)  for which 

 1(0) =  1;     1(0) =  0;  1(0) =  0: 
 

Similarly,   we  have  another  set  of  solutions    2(s);  2(s);  2(s)   for  which 

 2(0) =  0;  2(0) =  1;  2(0) =  0  and another set of solutions are   3(s);  3(s);  3(s) 

for which   3(0) =  0;  3(0) =  0;  3(0) =  1: 

Next we shall show that   2
 +  2

 +  2
 =  1: 

1 1 1 
 

 d  
 2 

+   
2 

+   
2

     

=    2 1 

d  1 
 

 

 

 

 
+ 2 1 

d 1 
 

 

 

 

 
+ 2 1 

d  1 
 

 

 

 

=    2  1 (   1) + 2  1 (      1 +      1) + 2  1 (      1) = 0 

2 2 2 

)  1 +  1 +   1 =   constant = C1 (say) 

 
Similarly, we can prove that  

2
 +   

2
 +   

2
 = 1 and   

2
 +   

2
 +   

2
 = 1 

2 2 2 3 3 3 
 

Now, we shall prove that   1 2 +  1 2 +  1 2 =  0: 
 

d 
(  1  2 +   1  2 +   1  2)   =       1 

ds 

d 2 

ds 

d  1 
+ 

ds 

 

 2 +   1 
d 2 

ds 

d  1 
+ 2 

ds 

+ 1 
d 2 
 

 

ds 

d  1 
+ 2 

ds 

=     0 (using (3.30)) 

) (  1  2 +   1 2 +   1 2)   =   constant = C2 (say) 

Using the initial values at  s =  0; we get 

ds ds ds ds 

9> 
> 

ds 
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0 1C 

    

B C B C 

B 
1   1 2    2 3    3 C

1    1 2    2 3    3 
B C 

B
 3  3  3

C B
 1  2  3 

C 

1 2 3 

1 2 

2 

3 

2 

B C B C 

T T T 1 

 

1(0) + 0(1) + 0(0) = C2   ) C2 = 0 

) 1  2 +  1  2 +  1  2 = 0 

 

Similarly, we have   2 3 +  2 3 +  2 3 =  0  and   3 1 +  3 1 +  3 1 =  0: 
  1 

Consider the matrix A = 

B
 2 

B 
 1 1 
 2 2 

C B@
 3  3  3

CA 
 1  1  1

1C 0B 
 

   

 1  2  1

1CC 
 

   AA
T
 = @ A@ A 

B 1C 
 

) AA = 1   0   0 
0   1   0 0   0   1 

) AA   = I   ) A   = A 

 ) T = 

@
 1 

=  

A 
T 

=
 

A A A   A I ) A  A I 

 
 

Thus, A is an orthogonal matrix. 

 

 1  2  1

1C 
 A

T
 A   = I 

 1  1  1

1CC 
) B 1  2  3 C B 2  2  2C  = I 

B0 2 
+  

2 
+  

2
 

  @B
 1  2  3

AC @B
 3  3  3

AC 
 1 1  +  2 2  +  3 3  1 1  +  2 2  +  3 3

C1 
0B1    0    0

1C 
    +          + 

2
 +  

2
 +  

2
     +         +     = 0   1   0 

1 2 3 B 
C B C 

B@
 1 1 +  2 2 +  3 3  1 1 +  2 2 +  3 3   +   +   

CA  B@
0    0    1

AC ) 1 +   2 +   3 =    1 
 

1 2 3 

 

1 2 3 

 

 

 

 

 

 

Let  ~t =      1
~i +  2

~j +  3
~k 

~n    =      1
~i +  2

~j +  3
~k 

~b    =      1
~i +  2

~j +  3
~k 

  2 1 2 2   

2 2 2 

2 3 

2 
 2

 +  
2
 +   

2
 = 1 

 2
 +  

2
 +   

2
 = 1 

and   1  1 +   2  2 +   3  3 = 0 

 1  1 +  2  2 +   3  3 = 0 

 1  1 +  2  2 +   3  3 = 0 
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) 

2 2 

~ ~ 

1 1 1 1 1 1 

t   t cos   +  ~n    ~n cos   +  ~b    ~b 

 
Then   ~t  =  1; =  1; b  =  1  and  ~t   ~n =  0;   ~n   ~b =  0; ~b   ~t =  0:   
Theref

 
o

 
re,   ~t; ~n  and  ~b  ar

 
e

 
mutually perpendicular unit vectors. 

s 

For each value of  s; we let  ~r = 

0 

~tds; then  
d~r  

= ~t ~r  = ~t: 
ds 

This  ~r  =  ~r(s)  is the required curve with  s  as its arc length.  Clearly for this 

~r; the unit vectors  ~t; ~n  and  ~b  satisfy Serret-Frenet formula (which are the given 

di erential equations) with given functions as curvature and torsion. 

Hence the existence of the curve is proved.   

 
Theorem 3.2 (Uniqueness theorem for space curves). If two curves have the same 

intrinsic equation then they are congruent. 

 
Proof. If possible, let there be two curves C  and  C1  having equal curvature 

  and equal  torsion    for the  same values of  s: For any  arc length  s; let the 

corresponding points be P and P1 on C and C1 respectively. Denoting the 

corresponding triads for the two curves C  and  C1  by  ~t; ~n; ~b  and  ~t1; ~n1; ~b1: 

Now, consider 
 

 d  
~t   ~t + ~n   ~n + ~n   ~b  

  
=     ~t   ~t   0   

+ ~t 0     ~t   + ~n   ~n   
0   

+ ~n 
0     ~n   + ~b 

0     ~b   + ~b 
0     ~b 

=     ~t 
 
 ~n1

  
+  ~n   ~t1 + 

 
  ~t1 +  ~b1

  
  ~n + 

 
  ~t +  ~b

  
  ~n1 

~ ~ 
 

d 
) 

ds 

+b      ~n1

  
+ 

   ~n    b1 =  0  
~t   ~t1 + ~n   ~n1 + ~n   ~b1

  
=     0 

)  ~t   ~t1 + ~n   ~n1 + ~n   ~b1 =     constant  =  c (say) 

 
If  C1  is moved in such a manner that at  s =  0  the two triads ~t; ~n; ~b  and  ~t1; ~n1; ~b1 

coincide then at that point ~t = ~t1;   ~n = ~n1;    ~b = ~b1: 
 

Thus, we have  

) ~t   ~t + ~n   ~n + ~b   ~b    =     c 

)  
 
~t
  

+ 

 
~n

  
+ 

 ~b  =    c  ) c = 3 

) ~t   ~t1 + ~n  

 
~n

 
1  + ~

 
b 

 
~b1 =

   
3 

      
1
    

  1
  

) cos   +

 

co

 

s 

 

+

 

cos     =    3 
 

) cos   = 1; cos   = 1; cos   = 1 

)  = 0;    = 0;     = 0 

Z 

2 

1 

~n ~ 

ds 
1 1 1 

) cos     =    3 
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p 

p 

~r 

  

u u 

 

i:e:; angle between  ~t  and  ~t1 ;  ~n  and  ~n1 ;   ~b  and  ~b1  are zero. 

Hence  ~t = ~t1;    ~n = ~n1;    ~b = ~b1 

Also,  ~t = ~t1 gives  
d~r1   

=  
d~r  ) d~r =  d~r: 

ds ds 

Integrating, we get ~r1 = ~r + ~a; where  ~a  is a constant vector: )  ~r1  ~r = ~a: 

At  s =  0; we have  ~r1 = ~r: ) ~a =  0: 
 

Thus, we have ~r1 = ~r  for all  s: 
 

Hence the two curves C and C1 coincides (or) the two curves are congruent. 

This proves the uniqueness.   

 

 

 

3.2.2. Intrinsic Equations: 
 

We have de ned the curve with respect to a set of three mutually 

perpendicular axes but in case the same curve be referred to a di erent set 

of Cartesian coordinate axes, then its equations are altogether di erent and 

it is not at all clear that they refer to the same curve. This can be expressed 

by the curvature and torsion at any point as functions of arc length s say 

  =   (s)  and    =   (s): These are called the intrinsic equations of the curve. 

 
Example 3.1. Show that the intrinsic equation of the curve given by 

a  2 
x = ae

u
 cos u; y = ae

u
 sin u and z = be

u
  are   = 

s 
b 

   ; 
2a

2
 + b

2
 

  =    : 
s 2a

2
 + b

2
 

Solution: 

 

 

Given that  ~r =     (ae
u
 cos u; ae

u
 sin u; be

u
) 

~r =    (ae
u
 (cos u   sin u) ; ae

u
 (cos u + sin u) ; be

u
) 

 
  s  =  e

u 
p

2a2  + b2             
s

 

=

 

Z
 1 

s du = 

Z
 1 

e
u
 
p

2a
2
 + b

2
du = e

u
 
p

2a
2
 + b

2
 = s  

~r 
0 

= ~r  
[a (cos u sin u) ; a (sin u + cos u) ; b] e

u
 = p   

s eu 
2a

2
 + b

2
 

~r 
00 

=      ~n =  
[ a (sin u + cos u) ; a (cos u   sin u   sin u) ; 0] 1 p

2a
2
 + b

2
 s  

 

Taking modulus on both sides 

1 

p 

= 
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~r 

p 

p 

  

2 3=22 

  

    

0 

 

00 

=       = 

a 
p

2 1 

p    = 

a 
p

2 1 

p    
2a

2
 + b

2
 s 2a

2
 + b

2
 s  

s~r 
00 

= 
[ a (sin u + cos u) ; a (cos u   sin u) ; 0]   1 

 

p
2a

2
 + b

2
 s  

Di erentiate both sides with respect to  s; we get 

s~r 
000   

+ ~r 
00 

= 
[ a (cos u   sin u) ;  a (sin u + cos u) ; 0]   1 

 

p
2a

2
 + b

2
 s  

i:e:;  s
2~r 

000   
+  s~r 

00 
= 

[ a (cos u   sin u) ;  a (sin u + cos u) ; 0] 

2a
2
 + b

2
 

) s
2~r 

000 
= 

[2a sin u;  2a cos u; 0] 

2a
2
 + b

2
 

 

a (cos u sin u) a (sin u + cos u)  b        
Now,   

h
~r 

0 ; s~r 
00    

s
2~r 

000 

i 
= 

1   a (sin u + cos u)  a (cos u  sin u)   0
    

  
  2a sin u 2a cos u      

2a  + b  
    i:e:;  s3

 
 
~r 

0 ; ~r 
00 ; ~r 

000 

1 
2a

2
b 

2 2 3=2  
2a + b  

  
 

i:e:;  s
3 2   =  

1
 

2 
2 3=2 2a

2
b 

   
2a + b 2 

 ) = 
    b 1 p *  

2
 = 

2a
 2 2 2 

2a
2
 + b

2
 s 

 
2a  + b 

  
  s 

 
 

 

 

3.3. Helices: 

 
 

De nition 3.5 (Cylindrical Helices). A helix is a space curve which is traced on 

the surface of a cylinder and cuts the generator at constant angle. 

 

Note 3.1.  The tangent to a helix makes a constant angle  (say) with  xed 

direction, this xed line (direction) is known as axis (or) generator of the cylinder. 

 

De nition 3.6 (Circular helix). A helix which lies on the surface of a circular 

cylinder is called a circular helix (or) right circular helix. 

 

Theorem 3.3 (Theorem of Lancret (Characteristic property of helices)). A 

necessary and su cient condition for a curve to be helix is that at all points 

curvature bears a constant ratio with Torsion. 

 

Proof.  Necessary part:    Let  ~a  be a constant vector and  ~t  be the unit tangent 

vector to the helix. 

  

  
=

 

  
! 
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    +   a sin     =    0 

           

) ~t   ~a    = ~t   ~a  cos   
 

) ~t   ~a    = 

 
a

 

c

 

os

  
  

 
Di erentiate with respect to  s; we get 

 
~t   (0) + ~t 0     ~a = 0 

i:e:;  ~n   ~a = 0 

) ~n   ~a = 0   ) ~n is perpendicular to ~a 

 
i:e:; the principal normal is everywhere perpendicular to generators. 

 

But the principal normal is everywhere perpendicular to the rectifying plane, 

hence the generators must be parallel to the rectifying plane ( containing ~t  and 

~b): 

Since  ~a  makes constant angles with ~t; it follows that it makes constant angle 

with  ~b  also. i:e:; 90    : 

we have  ~n   ~a    =     0 

 
Di erentiate both sides with respect to  s; we get 

 

~n   (0) + ~n 
0     ~a    =     0 

) 
 
  ~t +  ~b

  
  ~a    =     0 

)   ~t   ~a +  ~b   ~a    =     0 

)    ~t   ~a  cos   +  ~b   ~a    =     0 

)   a cos   +   ~b   ~a  cos (90    )    =     0 

)
 

a

 

cos 

i:e:;   a cos    =       a sin   
  

) =  tan    =     constant: 
 
 

Su cient Part: 

 

 

 
Assume that 

 

 
 

= constant: 
 

Let 
   

=   C ) = C  

We know that ~t 0 

=      ~n =  C ~n 

and ~b 
0 

=       ~n )  ~n =   ~b 
0

 

) ~t0 

=      C~b 
0 

(using (3.31)) 

Integrating; ~t + C~b    =     ~a (a constant vector) 
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h     i
00

 000 (iv) 5    

2 0 

0 
  ! 

 
 
 

) 1    = ~t   ~a  cos   

 
 3   0 00       

           

2
     

3
 2 0 

   +     
0 

  

  

 

Taking dot product with ~t 

) ~t   
 
~t + C~b

  
=     ~t   ~a 

) 1 + 0    =     ~t   ~a 

 

 
i:e:; a cos    = 

i:e:; cos    = 

 
1

 

1 

a 

i:e:;     =     constant 

 

 
Thus the curve is a helix.   

 
Example 3.2.  Show that a necessary and su  cient condition that a curve be an 

d 
helix is that   ~r    ; ~r ; ~r =        

ds 

  
=  0: 

 

Solution:  

~r 
0 

= 
d~r  

= ~t 
ds 

~r 
00 

=     ~t 0

 

d
2~r 

 
 

ds
2
 

=      ~n 

d 

~r 000 
=

  
 ~n

  
=   0~n +   

 
  ~t +  ~b

  
=      0~n    2~t +   ~b 

Similarly ~r 
(iv)

 =     

 
 00      3

     2
 
~n   3  0~t + 

 
2 0   +  0  

 ~b 

 

 h
~r 00 ; ~r 000 ; ~r (iv)

i 
=

 
          

   
3

 

=        

 

 
  

d 

 
       =     
  

 
  0      

       
0   

 
 

 2 

= 
5    

ds 

For an helix 

d 

= constant: 

) =   0 
ds 

) the curve is an helix: 

0   0 

0 

ds 

5 
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Check Your Progress: 

Choose the correct or more suitable answer: 

 

 
 

In this unit, the students acquired knowledge 

 

  to  nd the spherical image of the principal normal. 

  to  nd the spherical image of the principal tangent. 

  to nd the spherical image of the principal binormal. 
 

 
 

 

 

1. Show that the spherical indicatrix of a curve is a circle if and only if 

the curve is an helix. 

2. Prove that the curve given by  x =  a sin
2
 u; y =  a sin u cos u; z =  a cos u 

lies on a sphere. 

 
3. De ne Intrinsic equations of the curve. 

 
4. State and Prove fundamental theorem for space curves. 

 

 
 

 
 

1. A pair of curves C and C1 which have the same : : : : : : are called 

Bertrand Curves 

 

(a) principal tangent 
 

(b) principal normal 
 

(c) principal binormal 
 

(d) none of these. 

 
2. Curvature and torsion of either curves are connected by a   : : : : : : 

 
(a) linear relation 

 

(b) quadratic relation 
 

(c) cubic relation 
 

(d) none of these. 

Let Us Sum Up: 
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Glossaries: 

Suggested Readings: 

 

 
 

(1) b  (2)  a 

 
 

 

Bertrand Curve: One of pair of curves having the same principal 

normals. 

 

 

 

1. T.J. Willmore, An Introduction to Di erential Geometry , Oxford 

University press, (17th Impression), New Delhi, 2002. (Indian 

Print). 

 

2. C.E.Weatherburn, Di erential Geometry of Three Dimensions , 

University Press, Cambridge, 1930. 
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Overview 

 

 
 
 

 

In this unit, we will explain the concept of regular point and 

singularities on a surface and also discussed di erent types of singularities. 

 
 

 

4.1. De nition of a surface 

 

In the previous chapter, we have de ned a curve as the locus of a point 

whose Cartesian coordinates  (x; y; z)  are functions of a single parameter. 

De nition 4.1 (Surface). A surface is de ned as the locus of a point whose 

Cartesian coordinates  (x; y; z)  or whose position vector  ~r  are functions of two 

parameters  u  and  v:  i:e:; x =   f (u; v) ;    y =  g(u; v)  ; 

z =  h(u; v)   or   ~r = ~r(u; v)  are the parametric equations of surface. 

 
De nition 4.2.  The two parameters  u; v  are called the curvilinear coordinates of 

a current point on the surface. 

Any  point   (x; y; z)   on  the  surface,  the  values  of  u   and   v   are  determined 

uniquely and that point is referred as  (u; v) 

 

De nition 4.3.  If the parameters  u; v  are eliminated from the parametric equation 

of  a  surface  then  the  obtained  relations  F(x; y; z)  =   0  is  called  the  constraint 

equation of the surface. 

 

Examples of a surface: 
 

x = u; y = v; z = u
2
    v

2
 (4.1) 

Objectives 

After completion of this unit, students will be to 

 
F  understand the concept of proper transformation. 

 
F  nd the parametric curves, condition for the parametric curves 

to be orthogonal. 

 

F  nd the equation of tangent plane and normal. 
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u 

 

After eliminating the parameters u and v; we get x
2
 y

2
 = z which 

represents a hyperbolic paraboloid surface. 

 

Note 4.1. Now consider 

 
x = u + v; y = u   v; z = 4uv (4.2) 

 
On eliminating the parameters  u; v  we get  x

2
   y2

 =  z  , the same paraboloid. 

Thus, the parametric equation (4.1) and (4.2) represent the same surface 

x
2
 y

2
 = z: 

Sometimes, after eliminating the parameters and then obtained constraint 

equation represents more than the given surface, so that parametric equations and 

constraint equations are not equivalent. 

Consider the surface given by the parametric equations 
 

x = u cosh v; y = u sinh v; z = u
2
 (4.3) 

 

where the parameters u and v are takes real values. Upon eliminating the 

parameters, obtained constraint equation is  x
2
 y

2
  =  z  which represents the 

whole of the paraboloid. The parametric equations (4.3) represents only that part 

of the surface for which  z   0; since  u  takes only real values. 

Hence the parametric equation of a given surface are not unique. 

 
De nition  4.4 (Monge form  of the surface).  The equation  F (x; y; z)  =   0  will 

represent a surface.  Here  x  =   f (u; v) ;   y  =  g (u; v)  and  z  =  h (u; v)  when we 

eliminate the parameters u  and v; we get the surface. Instead of three variables 

x; y; z; it can be expressed in terms of two variables  x  and  y    i:e:; z =   f (x; y) : 

Then  F (x; y; z)  =   0  =   F (x; y; f (x; y)) : This  is  called  the  Monge's  form  of  a 

given surface. 

 

De nition 4.5 (Class of surface).  If  x  =   f (u; v); y  =  g(u; v); z  =  h(u; v)  be the 

parametric equations of a given surface, then the surface is said to be of class 

r,  if  the  functions   f ; g; h   are  single  valued  continuous  functions  and  possess 

derivatives of the r
th

 order. 

 

Note 4.2. If partial di erentiation with respect to the parameters u and v are 

denoted by the su xes are 1 and 2 respectively. 

@~r 
Thus  ~r1 = 

@u 
;    ~r2 = 

@~r 

@v 
;   ~r11 = 

@2~r 

@ 2 
;    ~r12 = 

@2~r 

@u@v 
= ~r21;    ~r22  = 

@2~r 

@v
2
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4.1.1. Regular (or Ordinary) point and Singularities on a 

surface: 
 

 

Consider a point  P  on the surface whose position vector  ~r  =  ~r(u; v); 

where  x =  x (u; v) ; 

y =  y (u; v)  and  z =  z =  (u; v) : 
 

Then  ~r 
=  

 
@x 

; 
@y 

; 
@z 

!
;   ~r

 
=  

 
@x

; 
@y

; 
@z 

! 
The point  P  is called regular point or ordinary point if  ~r1  ~r2 6=  0 

@x @y 
 

  

i:e:;  if the rank of the matrix  

 
@u @u

 
 
@x @y 

 
@v @v 

@z 
 

 

@u

 

is two. 

@z 

 
 

@v 

 
 

But,  if  ~r   ~r = 0 at a point P  is called the 

singular point or we can say that the point P is a singularity of the surface. 

Types of Singularities: 

There are two types of singularities, namely Essential singularity and 

Arti cial Singularity. 

Essential Singularity:     These are inherent singularities,  i:e:; these 

singularities are due to the nature (or geometric features) of the surface and 

these are independent of the choice of parametric representation. 

For example, the vertex of the cone is an essential singularity. 

Arti cial Singularity: 

These singularities arises from the choice of particular parametric 

representation of the surface. 

For example, the pole (or origin) in the plane, referred to polar 

coordinates is an arti cial singularity. 

Consider  ~r =  (r cos  ; r sin  ; 0) ; here  r  and    are the parameters. 

~r1 =     (cos  ; sin  ; 0) 

~r2 =     ( r sin  ; r cos  ; 0) 

~r1  ~r2 =     r~k =  0    (if r =  0  at the pole) 

 
Thus, at the pole r = 0  is an arti cial singularity as it is not due 

to inherent property of the surface, but it has arisen due to the choice of 

1 
@u @u @u 

2 
@v @v @v 

1 2 P; we say that the point 
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v0 u v 

  

 

parametric representation. 

 
De nition 4.6 (Proper Transformation:). 

Consider the surface given by the parametric equations 

x = u + v; y = u v; z = 4uv and x = u; 

y  =  v;  z  =  u
2
   v

2: These two representations represent the same surface such 

as  x
2
   y

2
  =   z  and are related by the parameter transformation of the form 

u0    
=    (u; v) ;    v0    

=    (u; v) : 

This transformation is said to be proper transformation, if     and      are single 

 
values and having non-vanishing Jacobian,   i:e:; 

@  
 

 

= 

 

@u 
 

 

@  
 

 

@u 

  
6=  0 

@ ( ; )              
 

Property of point transformation: 

@ (u; v) @   @  
@v @v 

 

A regular point is transformed to a regular point by a proper parametric 

transformation. 

Let  ~r = ~r (u; v)  be the equation of the surface. 
 

The parameters be transformed by the relations  u0    
=    (u; v)  ; 

v0     
=    (u; v) : Moreover,  this transformation is a point transformation and 

@ ( ; ) 
hence by de nition 0: ( ; ) 

u v 

~r1 = 
@~r 

 
 

@u0 

@~r 

@u0
 

 
 

@u 

@  

@~r 
+ 

@v0
 

@~r 

@v0
 

 
   

@u 

@  
i:e:;  ~r1 = 

 
Similarly ~r2 = 

 
 

@u0 

@~r 

@u0
 

 
   

@u 

@  
 

   
@v 

+ 

@v0
 

@~r 
+ 

@v0
 

 
   

@u 

@  
 

   
@v 

@~r @r~ @ ( ;  ) 
~r1  ~r2 = 

@
 
 

   
@ @ ( ; ) 

 

Now if the  given parametric representation  of the surface  is 
@ ( ; ) @~r @~r 

proper   i:e:; @ ( ; 
) 

; then if ~r1 ~r2 0 (for an ordinary point) then @ @ 
u v 

is also not zero. 
u0 v0 

 

Hence a proper parametric transformation transfers regular (ordinary 

point) into a regular (ordinary) point. 

 

De nition 4.7. A representation R of a surface S of class  r  in  E3  is a set of 

points in E3 covered by a system of overlapping point V j each part V j being 

given by parametric equations of class  r: Each point lying in the overlap of two 

        

u0 
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parts ViVj  is such that the change of parameters from those of one part to those 

of the other part is proper and class  r: 

De nition  4.8.  Two  representations  R; R0       are  said  to  be  r -equivalent  if  the 

composite family of parts  ViVj   satis es the condition that at each point P lying 

in the overlap of any two parts, the change of parameters from those of one part 

to those of another is proper and class  r: 

 

De nition 4.9. A surface S of class r in E3 is an r -equivalence class of 

representations. 

 

 

4.2. Curves on a surface: 

 

We know that a curve is the locus of a point whose position vector  ~r 

can be expressed as a single parameter. 

Let us consider a surface  ~r  =  ~r (u; v)  de ned on a domain  D  and if  u 

and  v   are  functions  of  a  single  parameter   t; then  the  position  vector  ~r 

becomes a function of a single parameter t and hence its locus is a curve 

lying on the surface  ~r  = ~r (u; v) : Let  u =  u(t); v =  v(t); then  ~r  = ~r (u(t); v(t)) 

is a curve lying on the surface  ~r = ~r (u; v)  in  D: 

The equations  u  =  u(t); v  =  v(t)  are called curvilinear equations of the 

curve lying on the surface  ~r = ~r (u; v) : 

 

 

 
 

4.2.1. Parametric Curves: 
 

Let   ~r    =    ~r (u; v)   be  the  equation  of  a  surface.     Now  by  keeping 

u = constant or v = constant we get curves of special importance and are 

called parametric curves. 

If  v  = constant,  say  c  then  u  varies,  the point  ~r  =  ~r (u; c)  describes a 

parametric curve called the  u  curve or the parametric curve  v =  c: 

Similarly, if  u  = constant say c  then  v  varies, the point  ~r (c; v)  traces a 

parametric curve called the  v  curve or the parametric curve  u =  c: 

For u -curve, u is the parameter and determines a sense along the curve. 

The tangent to the curve in the sense of u -increasing is along the vector 
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~r1: Similarly the tangent to  v -curve in the sense of  v  increasing is along 

the vector  ~r2: 

Thus,  we  have  two  systems  of  parametric  curves,  viz.,  u -curve  and 

v -curve and since we know that  ~r1  ~r2 6=  0; therefore the parametric curves 

of di erent system can not touch each other. 
 

If  ~r1   ~r2  =  0  at a point  P; the two parametric curves through the point 

P  are orthogonal.  If this condition is satis ed at every point   i:e:; for all 

values of  u  and  v  in the domain  D; the two systems of parametric curves 

are orthogonal. 

 

 
 

4.2.2. Tangent plane and Normal: 
 

Let  ~r (u; v)  be the equation of the surface in terms of the parameters   u 

and v: 

d~r 
 

 

dt 

d~r 

@~r du 
= + 

@u @t 
du 

@~r dv 
 

 

@v @t 

dv 
=     ~r1 

dt dt 
+ ~r2 

dt 

or d~r =     ~r1du + ~r2dv 

 
 

The tangent to any curve drawn on a surface is called the tangent line 

to the surface.  Now  ~r1; ~r2   are non-zero and independent so that tangents 

to the curve through a point  P  lie in the plane which contains  ~r1   and  ~r2: 

This plane is the required tangent plane at  P: Since it contains  ~r1   and  ~r2 

therefore  ~r1  ~r2  gives the normal to the plane. If  R~ 

of a current point on the plane then its equation is  
R~  ~r

  
   ~r1  ~r2

  
=     0 

or 
h
R~  ~r; ~r1; ~r2

i 
=     0 

be the position vector 

 

 

From the above , we can say that R~  ~r; ~r1; ~r2  are coplanar and as such 

one of them can be expressed as a linear combination of the other two. 
 

) R~  ~r =     a~r1 + b~r2 

i:e:; R~  =     ~r + a~r1 + b~r2 
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  1 2 1 2 

x 

y 

z 

 

which is the equation of the tangent plane at   P; where  a  and  b  are 

parameters. 

 

Normal line: 

 
Normal to the tangent plane at  P  is the line passing through  P 

 
~r
  

and 

is parallel to the vectors  ~r1  ~r2; hence the equation of the normal line at  P 
~ 

to the surface is given by  R = ~r +   
 
r1~  ~r2

 
: 

 

The normal to the surface at P is the same as the normal to the tangent 

plane at P and therefore the unit normal 

N~ =   
~r1  ~r2   

=  
~r1  ~r2 where ~r    ~r =  0   or   HN~ = ~r  ~r 

~r1  ~r2       
H   

Also,  ~r1; ~r2; N~ 

the normal. 

form a right handed system and this gives the direction of 

 

Example 4.1. Find the equation of the tangent plane and normal to the surface 

z =  x
2
 + y

2
  at the point  (1;  1; 2): 

Solution: 

Let  F (x; y; z)    =     z   x2
   y2

 =  0 
@F 

@ 
=      2x =   2    at   (1;  1; 2) 

@F 

@ 
=      2y =  2    at   (1;  1; 2) 

@F 

@ 
=     1    at   (1;  1; 2) 

 

Thus, the equation of the tangent plane at the point  (1;  1; 2)  is 

 
(x   1) (  2) + (y + 1) (2) + (z    2) (1) = 0 

i:e:;   2x + 2 + 2y + 2 + z   2 = 0 

i:e:;  2x   2y   z 

 
Equation of the normal is 

= 2 

X     x 
= 

Y    y 
=

 Z    z 

@F @F @F 

@x @y @z 

i:e:; 
x   1

 = 
y + 1 

= 
z   2 

2 2 1 

 

Example 4.2. Find a unit normal to the surface x
2
y + 2xz = 4 at the point 

(2;  2; 3): 
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x 

  

z 

 

Solution: 
 
 

Let  F (x; y; z)    = x
2
y + 2xz   4 =  0 

@F 

@ 
=     2xy + 2z =   2    at   (2;  2; 3) 

@F 
= x

2
 =  4    at   (2;  2; 3) 

@y 

@F 

@ 
=     2x =  4    at   (2;  2; 3) 

 

The vector  N~ 
normal to the surface is given by  

@F 
; 
@F 

; 
@F 

! 
=     ( 2; 4; 4) 

@x  @y @z 
N~ = 

p
4 + 16 + 16 =  6 

    
) Unit normal vect

 

or

 
 = 

2 
; 

4 
; 

4 

6 6  6 
 

 

 
 

 

 

4.3. Surface of Revolution: 

 
 

 

4.3.1. The Sphere: 
 

When the polar angles  (i:e:; )  Co-latitude  u  and the langitude  v  are taken 

as parameters on a sphere of centre  O  and radius  a; the position vector is 

~r =     (sin u cos v; sin u sin v; cos u) 

 
 

The poles  u  =  0  and  u  are arti cial singularities and domain of  u; v 

is  0 < u < pi; 0   v < 2 : 

The parametric curves v = constant are the meridians and u = constant 

are the parallels. 

~r1 =     a (cos u cos v; cos u sin v;  sin u) 

~r2 =     a ( sin u sin v; sin u cos v; 0) 

 
Now  ~r1   ~r2 =  0  at all points. 

Thus, the two system of the parametric curves are orthogonal. 

! 
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Now   ~r1  ~r2 =     a
2
 
 
sin

2
 u cos v; sin

2
 u sin v; sin u cos v

  
H = ~r1  ~r2   =  a

2
 sin u 

N~  =     

 
=  
~r1   ~

 
r2   

=  (sin u cos v; sin u sin v; cos u) =  
1
~r 

H a 

 

which is directed outwards from the sphere. 
 
 

 

4.3.2. The general surface of revolution: 
 

Taking z -axis for the axis of revolution, let the generating curve in the 

xz plane be given by the parametric equations 

x    =     g(u); y =  0; z =   f (u) 

 

 

Then, if v is the angle of rotation about the z axis, the position vector 

of the point  (u; v)  is 

~r =     
 
g(u) cos v; g(u) sin v; f (u)

  

and the domain of  u; v  is  0   v < w  together with the range of  u: 

As in the case of sphere v = constant are the meridians given by the 

various position of the generating curve and u = constant are parallels, 

circles in planes, parallel to the xy plane. 

The vectors  ~r1  and  ~r2  are given by 
 

 0 0 0 

 

 

 

 
Thus ~r1 

 

 

 ~r2 

~r1 =     
 
g (u) cos v; g (u) sin v; f  (u)

  
~r2 =     ( g(u) sin v; g(u) cos v; 0) 

 
=   g(u)g0 (u) sin v cos v+ g(u)g0 (u) cos v sin v =  0  for all  u; v  i:e:; 

the parameters are orthogonal. 
 

The unit normal vector  N~ is given by 

 

N~  = 
~r1 
 ~r2  

=  
( f  (u) cos v;  f  (u) sin v; g (u)) 

0 0 0 

  
f 0

 
2(u) + g0 (u) 2  1=2 

 

using the fact that g 0 at an ordinary point. 
 

If  g(u) =  u; the right circular cone of semi-vertical angle   ; for example 

g(u) =  u;  f (u) =  u cot  : 

H 
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Let Us Sum Up: 

Check Your Progress: 

Answer: 

 

)   ~r =  (u cos v; u sin v; u cot  ) : 

 
 

4.3.3. The anchor ring: 
 

The anchor ring is obtained by rotating a circle of radius a about a line 

in its plane and at a distance b(> a) from its centre. 

Therefore,   g(u) =  b + a cos u;  f (u) =  a sin u: 
 

Thus,  ~r  =  ((b + a cos u) cos v; (b + a cos u) sin v; a sin u)  and the domain of 

u; v  is  0 < u < 2 ; 0 < v < 2 : 

 
 

 

In this unit, the students acquired knowledge to 

 

  the concept of singularities on a surface. 

  the concept of proper transformation. 

   nd the equation of tangent plane and normal. 
 

 
 

 

 

1. De ne Parametric curves. 

 
2. Prove that a regular point is transformed to a regular point by a 

parametric transformation. 

 

3. Find a unit normal vector to the surface 2xz
2
  3xy  4x  =  7  at the 

point  (1;  1; 2) . 

 
 

 

3.   

   

p7 
; p5 

; p8 
!
 122 122 122 
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Answer: 

Suggested Readings: 

 

 
 

1. If : : : : : : at a Point P , the two parametric curves through the point 

P are orthogonal. 

(a) ~r1  ~r2 =  0 (b)  ~r1  ~r2 6=  0 (c) ~r1   ~r2 =  0 (d)  ~r1   ~r2 =6  0 

2. The pole in the plane, referred to polar coordinates is : : : : : : 

(a) an essential singularity 

(b) removal singularity 

(c) arti cial singularity 

(d) none of these. 

 

3. vertex of cone is an : : : : : : 

(a) an essential singularity 

(b) removal singularity 

(c) arti cial singularity 

(d) none of these. 

 
4. The transformation is said to be point transformation, if 

(a) and are multiple variables and having vanishing Jacobian. 

(b) and        are multiple variables and having non-vanishing 

Jacobian. 

(c) and   are single variables and having vanishing Jacobian. 

(d) and        are single variables and having non-vanishing 

Jacobian. 

 

 

(1) c  (2)  c   (3)  a   (4)  d 

 

1. T.J. Willmore, An Introduction to Di erential Geometry , Oxford 

University press, (17th Impression), New Delhi, 2002. (Indian 

Print). 

2. C.E.Weatherburn, Di erential Geometry of Three Dimensions , 

University Press, Cambridge, 1930. 

Choose the correct or more suitable answer: 
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Overview 

 

 
 
 

 

In this unit, we will illustrate to   nd the relationship between 

the fundamental coe cients and geometrical interpretation of metric also 

explained. 

 

 

5.1. Helicoids: 

 

A helicoid is a surface generated by the screw motion of a curve 

about a xed line, the axis. The various position of the generating curve 

are obtained by rst translating it through a distance parallel to the axis 
  

and then rotating it through an angle     about the axis, where 

constant value    : 
 

The constant 2    is called the pitch of the helicoid. 

=  has a 

 

 
 

 

5.1.1. Right helicoid: 
 

This is the helicoid generated by a straight line which meets the axis at 

right angles. Taking the axis to be the z -axis, the position vector is 

~r =     (u cos v; u sin v; av) 

 

 

where u and v are respectively the distance from the axis and the 

distance from the angle of rotation. The generator being the x -axis when 

v =  0: Here  u  and  v  take real values. 

Objectives 

After completion of this unit, students will be to 

 
F  nd the relationship between the fundamental coe  cients. 

 
F derive the equation of the metric and understanding its 

geometrical interpretation. 
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~r1 

 
 

= 

 

(cos v; sin v; 0) 

~r2 = ( u sin v; u cos v; a) 

)   ~r1   ~r2 = 0 

 

Thus, the curves v = constant are the generators and u = constant are 

circular helices,  ~r1   ~r2 =  0; the helices are orthogonal to the generators. 

 
 

5.1.2. The general helicoid: 
 

The general helicoid is given by the equation 

x    =     g(u); y =  0;  z =   f (u) 

 

 

The position vector of a point on the surface is 

~r =     (g(u) cos v; g(u) sin v; f (u) + av) 

 

 

The curves v = constant are the generators and u = constant are circular 

helices. 

When parametric curves are orthogonal, we get a helicoid (or) a = 0 

which gives a surface of revolution. 
 

Example 5.1. A helicoid is generated by a screw motion of a straight line skew to 

the axis. Find the curve coplanar with the axis which generates the same helicoid. 

Solution: If c  is the shortest distance and      is the angle between the 

axis and the given skew line, then this line can be taken as  x =  c; 

y = u sin  ; z = u cos    where u is the parameter. Rotating through an angle 

v about the z axis and translating a distance av parallel to this axis, the 

position vector of a point on the helicoid is found to be 

~r =     (c cos v   u sin   sin v; c sin v + u sin   cos v; u cos   + av) (5.1) 

 
The required plane curve is the section of this surface by the plane y = 0 

and is given by  u sin   cos v =   c sin v:  i:e:; u sin   =   c tan v: 

Substituting this in equation (5.1), we get 

x =  c cos v; y =  0; z =  av   c cot   tan v   where v is a parameter for the curve: 

 
In the notation used above for the general helicoid,  g(u) =  c sec u; and 

f (u) =  au   c cot   tan u: 
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  !   !
~
 

  !   ! 

dt dt 

d~r 

~r  dv  
2
 :ds

2
 =     

 
d~r

 
2  

=  
 
~r  du + 

 
 

= Edu
2
 + 2Fdudv + Gdv

2
 

 

 
 

 

5.2. Metric: 

 

Let  ~r  =  ~r (u; v)  be  the  equation  of  the  surface.   Consider  the  curve 

de ned  by  u  =   u(t);      v  =   v(t)  on  the  surface,  then  ~r   is  a  function  of  t 

along the curve and the arc length s is related to the parameter t by 

 

2 2 

ds 
= 

dr 

dt dt 
=  

 
~r1 

2 

2 
du du 

+ ~r2 
dt dt 

2 

=     ~r1 
2    du 

 

dt 
2 

+ 2~r1   ~r2 
du dv 

+ ~r2 
dt dt 

2    dv 
 

dt 

= E 

 
du

! 
 

 

 

 

du dv dv dv 
+ 2F + G 

where  E = ~r1 
2
;   F  = ~r1   ~r2;   G = ~r2 

2
 

 
The above equation can be expressed conveniently in the following 

quadratic di erential form 

ds
2
 = Edu

2
 + 2Fdudv + Gdv

2
 (5.2) 

 

The right hand side of equation (5.2) does not involve the parameter t 

except in so far as  u  and  v  depends on  t: 
 

De nition 5.1 (Metric). 

 
The quadratic di  erential form ds

2
 =  Edu

2
 + 2Fdudv + Gdv

2
  in  du  and  dv 

is called metric or  rst fundamental form of the surface and the quantities E; F; G 

are called the rst fundamental coe cients or fundamental magnitudes of rst 

order. 

 
 

5.2.1. Geometrical Interpretation of metric: 
 

Let  ~r = ~r(u)  be a given surface.  Let  P  and  Q  be two neighbouring points 

on the curve with position vectors  ~r  and  ~r +  ~r  respectively. 

d~r = 

_ 

@~r 
 

 

@u 
du + 

@~r 
 

 

dv 
= ~r1du + ~r2dv 

  
 

1 2 
 

PQ    =     ds; then ds = Let 

dt 

! 

dt dt 
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2 

0 

E 

1 

E 

1 

E 

1 

E 

2 2 

 

If ds  can be interpreted as the in nitesimal distance from the point  P 

to the point Q on the surface. Thus, the rst fundamental form is used to 

calculate the arc lengths on the surface. 

 

Relation between the fundamental coe  cients: 
 

Now,   
 
~r1  ~r2

  
=     

 
r1~  ~r2

     r1~  ~r2

  
 

=     ~r1  
2~r2    r1~   ~r2

  
 

H
2
 = EG   F2

 where H = ~r1  ~r2 

 
The coe cients  E; G  and  H2

  satisfy  E > 0; G > 0; H2
 =  EG   F2

 > 0: 

Since  E > 0; we may take 

ds
2
 = Edu

2
 + 2Fdudv + Gdv

2
 

1 
= E

2
du

2
 + 2FEdudv + EGdv

2
  

= 

h
(Edu + Fdv)

2
 + 

 
EG   F2

 
dv

2
i 

= 

h
(Edu + Fdv)

2
 + H

2
dv

2
i 
  0 

Edu
2
 + 2Fdudv + Gdv

2
 =    0 

) 
h
(Edu + Fdv)

2
 + H

2
dv

2
i 

=     0 

) (Edu + Fdv)
2
 + H

2
dv

2
 =    0 

0 

 

 

 

 

 

But both du and dv cannot vanish together. 
 

Hence, the metric Edu
2
 + 2Fdudv + Gdv

2
 = 0 is a positive de nite 

quadratic form in  du  and  dv: 

Example 5.2. Compute the rst fundamental magnitudes for the surface 

~r =  (u cos v; u sin v; f (u)) : 

Solution: 

 

~r1 =     
 
cos v; sin v; f  (u)

  
~r2 =     ( u sin v; u cos v; 0) 

E =     ~r1   ~r1 =  cos
2
 v + sin

2
 v +  f 

0   2
(u) =  1 +  f 

0   2
(u) 

) Edu + Fdv = 0; and H
2
dv

2
 = 

) Edu + Fdv = 0; and  dv = 0 

) du = 0 and  dv = 0 
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1 2 ~r ~r 

sin ! = 
1     r2   

=  
   H 

 

 

F =     ~r1   ~r2 =   u sin v cos v + u cos v sin v =  0 

G =     ~r2   ~r2 =  u
2
 
 
cos

2
 v + sin

2
 v
  

=  u
2
 

ds
2
 = Edu

2
 + 2Fdudv + Gdv

2
 = 

 

1 +  f 
0   2

(u)
  

du
2
 + u

2
dv

2
 

Example  5.3.  Calculate  the  fundamental  coe cients   E; F; G   and   H   for  the 

paraboloid ~r =  

 
u; v; u2

   v2
 

: 

Solution: 

Given that  ~r =     

 
u; v; u2

   v2
  

~r1 =     (1; 0; 2u) 

~r2 =     (0; 1;  2v) 

E  =     ~r1   ~r1 =  1 + 4u
2
 

F =     ~r1   ~r2 =   4uv  

G  =     ~r2    ~r2 =  1 + 4v
2
 

H = 

p
EG   F2

 =  

h 
1 + 4u

2
  

1 + 4v
2
  
  16u

2
v

2
i1=2

 

=     

 

1 + 4u
2 

+ 4v
2
  

 

 
Angle between parametric curves: 

 

Let P be the point of intersection of the parametric curves u = constant 

and  v  = constant.  Let  ~r  be the position vector of the point  P ;   ~r1  and  ~r2 

are the tangent vectors to the two curves at P respectively. 

The angle ! (0 < ! < ) between them are given by 

 

cos !  = 
~r1    ~r2    

= 
F

 

          
 

  

p
EG 

   1 2        
p

EG 
 

 
tan ! = 

~r ~r 

H 

F 

 

The parametric curves are cut orthogonal when  F  =  0 i:e:; ~r1  ~r2 =  0: 

 
Element of Area: 

 
Consider the following  gures with four vertices  (u; v); (u +  u; v); 

(u +  u; v +  v)  and  (u; v +  v)  joined by the parametric curves. 

~ ~r 

1=2 
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1         r2
  1 2 

~r   u ~ v ~r ~ 

2   
      

2 2
 

2 

 

 
 

Figure 5.1 

If u and v are small and positive, then this gure is approximately 

equal to parallelogram with adjacent sides given by  ~r1 u  and  ~r2 v: 

Now, if ds be the area of the parallelogram, then 
 

     = r    u v = H u v 

 
 

Example 5.4. For the anchor ring, 

~r = ((b + a cos u) cos v; (b + a cos u) sin v; a sin u) :  Calculate the area 

corresponding to the domain 0 u 2 ; 0 v 2 : 

Solution: 

 

Given that  ~r =     ((b + a cos u) cos v; (b + a cos u) sin v; a sin u) 

~r1 =     ( a sin u cos v;  a sin u sin v; a cos v) 

~r2 =     ( (b + a cos u) sin v; (b + a cos u) cos v; 0) 

E =     ~r1   ~r1 

=     a
2
 
 
sin

2
 u cos

2
 v + sin

2
 u sin

2
 v

  
+ a

2
 cos

2
 u 

=    a
2
 
sin

2
 u + cos

2
 u

  
= a

2
 

F =     ~r1   ~r2 =  0 

H  = 

p
EG   F2

 =   

q
a

2
 (b + a cos u)

2
 =  a (b + a cos u)    

G =     ~r2   ~r2 =  (b + a cos u) sin  v + cos  v   =  (b + a cos u) 

Thus, element of area = Hdudv = a (b + a cos u) dudv 

2  

); The total area = 

0 

2  

a (b + a cos u) dudv = 4  
2
ab 

0 

 

Example 5.5. Show that the metric is invariant under a parameter transformation. 

 

Solution: Let  ~r  = ~r(u; v)  be the equation of the surface.  The parameters 

Z 

ds   = 

Z 
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0 0 

1 1 2 2 

20 

2
 @v0

 

0 

0   

Let Us Sum Up: 

Check Your Progress: 

Choose the correct or more suitable answer: 

 

u; v  are transformed into the parameters  u0     and  v0     by the relations 

u =       (u; v) ; v   =    (u; v) (5.3) 

~r1 = 
@~r 

@u0
 

@~r  @u 
= 

@u @u0
 

@~r  @v 
+ 

@v @u0
 

~r1 

 

In a similar way, we can write   ~r2 

=     ~r1 

 

=     ~r1 

@u 
 

 

@u0 

@u 
 

 

@v0
 

+ ~r2 

 

+ ~r2 

@v 
 

 

@u0 

@v 
 

 

@v0
 

(5.4) 

 
(5.5) 

Now  E0 

du
0   2  

+ 2F
0 

du
0 

dv
0   

+ G
0 

dv
0   2 

=     ~r   
0 

du
0   

+ 2~r   
0~r   

0 

du
0 

dv
0   

+ ~r   
0 

dv
0

 

=     
 
~r1   du + ~r2 

 

dv 
2 

=     

" 
~r 

@u 
+ ~r @v 

!
du

0   

+ 

 
~r 

@u 
+ ~r @v 

!
dv

0 

# 
 

 

=     

"
~r 

  
@u 

du
0   

+   
@u 

dv
0 

! 
+ ~r 

  

  
@u 

du
0   

+   
@u 

dv
0 

!#
 

  

1
   @u0

 @v0
 

2 

2
   @u0

 @v0
 

=     
 
~r1du + ~r2dv

  
=     r   

2
du

2
 + 2~r ~r  dudv + ~r 0 dv2 

1 1  2 2 

= Edu
2
 + 2Fdudv + Gdv

2
 

 

Thus the metric is invariant under parametric transformation. 
 
 

 

In this unit, the students acquired knowledge 

 

  to know the concept of helicoid and right helicoid. 

  to know the relationship between the fundamental coe  cients. 
 

 

 

1. Explain geometrical interpretation of metric. 

 
2. Prove that the metric is invariant under a transformation of 

parameters. 

 

 

 

1. For the paraboloid  x =  u; y =  v; z =  u
2
   v2

 , the value of  E  is 

(a) 1 + 4u (b) 1   4u (c) 1 + 4u
2
 (d) 1  4u

2
 

0 

1
 @u0

 

1
 @v0

 

2
 @v0

 

0 

0 

0 
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Answer: 

Glossaries 

Suggested Readings: 

 

2. Relation between the coe cients  E; F; G  and  H  is 

 
(a) H

2
 = EG + F

2
 

 

(b) H = EG + F
2
 

 

(c) H
2
 = EG  F

2
 

(d) H
2
 = EG + F 

 
 

 

(1) c  (2) c 

 
 

 

Helicoid: A helicoid with generating line perpendicular to its axis. 

 
 

 

 

1. T.J. Willmore, An Introduction to Di erential Geometry , Oxford 

University press, (17th Impression), New Delhi, 2002. (Indian 

Print). 

 

2. C.E.Weatherburn, Di erential Geometry of Three Dimensions , 

University Press, Cambridge, 1930. 
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Glossaries 
 

Suggested Readings 

Objectives 

After completion of this unit, students will be to 

 
F  nd the direction coe  cients and angle between the directions. 

 
F  nd the condition for orthogonal direction. 

 
F understand the concept of families of curves and derive the 

equation for families of curves. 

 

F de ne the isometric-correspondence between two points on two 

surfaces. 

Overview 

102 6.1. Direction coefficients: 

 

 
 

 
 

 

In this unit, we will illustrate the relationship between direction 

coe cients and direction ratios. 

 
 

 

6.1. Direction coe  cients: 

 

At each point  P  of a surface  ~r  =  ~r (u; v)  there are three independent 

vectors N~ ; ~r1  and  ~r2: Every vector  ~a  at  P  can be expressed in the form 

~a    =     anN~ +  ~r1 +  ~r2 

 
 

where scalars  an;  ;   are de ned uniquely by this relation. 
 

This gives  ~a  as the sum of two vectors  anN~ normal to the surface and 

 ~r1  +   ~r2   is  the  tangent  plane  at   P: The  scalar   an   is  called  the  normal 

component of   ~a  and is given by  an  =  ~a   N~ : The vector   ~r1 +  ~r2  is called 

the tangential part of  ~a  and   ;   are the tangential components of  ~a: 

A direction in the tangent plane at P is conveniently described by the 

components of unit vector in this direction. These components are called 

direction coe cients and written as  (l; m) : The direction coe cients satisfy 
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6.2. Relation between direction coefficients and direction ratios : 103 

the identity  El
2
 + 2Flm + Gm

2
 =  1: 

6.1.1. Angle between the directions: 

If  (l:m)  and  (l0 ; m0 )  are coe cients of two directions at the same point, 

then the corresponding unit vectors are 

~a    =     l~r   + m~r  ; ~a 
0    

=  l
0~r   + m

0~r 

The angle between these directions, measured in the sense described 

above is given by 

cos    =     ~a   ~a 
0

 

0 0 0 0 

) cos     = Ell + F lm + l m + Gmm 

~ 0 0 0 

and   sin  N =     ~a  ~a    ) sin   =  H 
 
lm    l m  

Note 6.1.  The direction coe cients opposite to  (l; m)  is  ( l;  m): 
 

 

 
 

6.2. Relation between direction coe  cients and direction 

ratios: 
 

 

Direction rations are proportional to direction coe  cients, therefore 

 

l m 
= = k 

    

) l   =      k; m = k 

 

 
Since  (l; m)  are direction coe cients, so we have  

 
El

2
 + 2Flm + Gm

2
 

 
 

= 

 
1 

i:e:;  E 2
k

2
 + 2F ( k) ( k) + Gk

2 2
 

 

= 1 

k
2
 
 
E 

2
 + 2F   + G 

2
   = 1 
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q      

! 
p
 p

G
 p 

0 0 0 

 

1 
k =    q 

E  
2
 + 2F     + G  

2  
) l =   k =    

E 
2
 + 2F   + G  

2
 

  
Similarly,  m =   k =    q 

E  
2
 + 2F  + G  

2  

Thus, the direction ratios, the numbers  ( ;  )  proportional to  (l; m)  have 

the relations 

( ; ) 
(l; m)    =    q 

E  
2
 + 2F  + G  

2  
Note 6.2. The condition for orthogonal direction: 

If    =  90  ; then the directions with direction coe cients  (l; m)  and  (l0 ; m0 ) 

are orthogonal for which the condition will be 

 
 0 0 0 0 

Ell + F
 
lm + l m

 
+ Gmm =    0 

 

or E     + F 
 
    +      

    
+ G        =    0 

 

 

Note 6.3.  The vectors  ~r1  and  ~r2  have components  (1; 0)  and  (0; 1): Then the 

direction coe cients are 

(1; 0) 
p

E + 0 + 0 

1   
; 0    and 

(0; 1) 

E 0 + 0 + G =  

 
0;  

1   
!
 

 

 
 

 

6.3. Families of Curves: 

 
 

Let  ~r =     ~r(u; v)  represent a surface (6.1) 

 
Two parameters u; v are connected by the relation  (u; v)    =     c   (6.2) 

 

where   (u; v)  is a single valued function and have continuous derivatives 

 1 and  2 which do not vanish together and c is a real parameter. 

 

The equation (6.2) shows that a family of curves lying on the surface 

(6.1).The di  erent curves belonging to the family (6.2) and it lying on the 

 
=
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surface (6.1) for di erent values of  c: Also (6.2) represent one member of 

the family, when c is a constant. 

 

Note 6.4. One curve of the family of curves (6.2) passing through every point 

(u; v)  of the surface (6.1). 

 

 
Di erential Equation of family of curves: 

 

Let   (u; v) =  c  represents a family of curves. 

@ @  
Di  erentiating , we get du + 

@u 
dv   =    0 

@v 

)  1du +  2dv   =   0 
du 1 

i:e:; = 

dv 2 

 

Thus,  (  2;  1)  are direction ratios of the tangent at the point  (u; v)  to 

the member of family (6.2) which passes through that point. 

Suppose, if   1;  2  both vanish together at any point, the directions are 

indeterminate which means that we shall not have a de nite tangent at that 

point. Thus the above restriction is necessary. 

Conversely, every rst order di  erential equation of the form 
 

P(u; v)du + Q(u; v)dv    =     0 (6.3) 

 

 

where P and Q are class 1 functions which do not vanish together, 

always de ne a family of curves.  With this, the equation (6.3) is always 

integrable   so   that   every   function     (u; v) 

 P =   1;  Q =   2: 

0   and    (u; v)   such   that 

 

Thus the equation (6.3) becomes 

1 

  
 1du +   2dv =    0 

i:e:;   1du +  2dv    =     0 

 

The solution of the above equation is therefore   (u; v) =   constant. 
 

Also the tangent at the point  (u; v)  for the family of curves are given by 

(6.3)  has  direction  ratios  ( Q; P)  since  these  are  directly  proportional  to 

(du; dv): 



106 6.3. Families of Curves: 

Di  erential Geometry M.Sc.(Mathematics)-I Year-I Sem 

 

 

 

 
 

 

6.3.1. Orthogonal Trajectories: 
 

De nition  6.1.  Let   (u; v)  =   c  be a given family of curves lying on a surface 

~r  =  ~r(u; v)  then if there exists another family of curves   (u; v) =  k  lying on the 

same surface such that every point of the surface the two curves one from each 

family are orthogonal, then the family of curves   (u; v) =  k  is called orthogonal 

trajectory of the family of curves   (u; v) =  c: 

 

Bookwork 6.1. Derive the di  erential equation of the orthogonal trajectories. 
 

Let  ~r   =   ~r(u; v)   be  the  equation  of  the  surface  and  let    (u; v)   be  the 

equation of given family of curves on  ~r(u; v): 

 

Di erentiating   (u; v)    =     c (6.4) 

d     =    0 
@  

) 
@u 

@  
du + 

@v 

 

dv   =    0 

) Pdu + Qdv   =    0 (say) 

) Pdu   =       Qdv 

du dv 
= 

 Q P 
(6.5) 

 

Therefore  ( Q; P)  are direction ratios of tangent at any point  (u; v)  of 

member of family   (u; v) =  c: 

Let the direction ratios of orthogonal trajectories of (6.4) be denoted by 

(du; dv): 
 

Thus, by condition of orthogonality, we have 
 
 

E   1 + F (   1 +   1 ) + G    1 = 0 

) E(  Q)du + F (  Qdv + Pdu) + GPdv = 0 

) (FP   EQ) du + (GP    FQ) dv = 0 

 
The coe cients du and dv are continuous and do not vanish together 

since  EG 6=  F
2
  and  P; Q  do not vanish together. 

This is the required di erential equation of the orthogonal trajectories 

of the family of curves   (u; v) =  c: 

) 
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  ! 

  

 

 
 

 

6.3.2. Double family of curves: 
 

The quadratic di erential equation of the form 

 
 

Pdu
2
 + 2Qdudv + Rdv

2
 =    0 (6.6) 

 

where   P; Q; R   are  continuous  functions  of   u   and   v   and  do  not 

vanish together represent two family of curves on the surface provided 

Q
2
   PR > 0: 

Thus, the equation (6.6) can be written in the form 

 
2 

P  
du 

dv 

du 
+ 2Q + R   =    0 (6.7) 

dv 

 

du 
which is a quadratic in : 

dv 
 

Bookwork 6.2. Derive the condition that the quadratic di erential equation 

Pdu
2
 + 2Qdudv + Rdv

2
 = 0 represents orthogonal families of curves. 

 
Let the direction ratios of the curves of the two families given by (6.6) 

through a point  (u; v)  on the surface be  ( ;  )  and  ( 0 ;  0 ) : Then 

are the roots of the quadratic equation (6.7). 

 0 

and 
 0 

 

 

Sum of the roots = 
 0 2Q 

+ = 
 0 P 

Product of the roots = 
   0 R 

= 
   0 P 

 

The directions ( ; ) and ( 0 ; 0 ) are orthogonal if 

 
 

 
 0 0 0 0 

E      + F 
 
     +      

    
+ G        =    0 

 0 0 
! 

i:e:;  E 
  

  
 0

 + F + 
   0

 

R 2Q 

+ G =    0 

) E 
P

 F + G =    0 
P 

i:e:;  ER   2QF + GP    =     0 

 
If P = R = 0 in (6.6), then the equation reduces to dudv =  0  giving 

the two families of parametric curves. Thus, the condition for parametric 
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curves to be orthogonal is  F  =  0: 
 

Example 6.1. On the paraboloid x
2
 y

2
 = z; nd the orthogonal trajectories of 

sections by the planes z = constant. 

 

Solution:  Given a surface  x2 2  
=  z: Let  x =  u; y =  v  so that  z =  u

2
   v2: 

Given curve  z =  c ) u
2
   v2

 =  c: 

Therefore, equation of paraboloid can be written in vector form as 

~r =     u~i + v~j + 

 
u

2
   v2

 
~k 

~r1 =     ~i + 0~j + 2u~k 

~r2 =     0~i + ~j   2v~k 

Now,    E  =     ~r1   ~r1 =  1 + 4u
2
 

F =     ~r1   ~r2 =   4uv  

G  =     ~r2   ~r2 =  1 + 4v
2
 

Given curve, u
2
   v

2
 =     c 

) 2udu   2vdv  =   0  ) du dv 
= 

v u 

 

Therefore, the tangents at  (u; v)  has direction ratios  (v; u): 
 

Let  (du; dv)  be direction ratios of orthogonal to the direction  (u; v): 
 

)    = v;     = u;   1 = du; 1 = dv 

 

So, by orthogonality condition, we have 
 

E   1 + F (   1 +   1 ) + G    1 = 0 

) 
 

1 + 4u
2
  

vdu + (  4uv) [vdv + udu] + 

 

1 + 4v
2
  

udv 
 

= 0 

) vdu + udv = 0 

) d (uv) = 0 

) uv = constant 

) xy = constant 

 
These are orthogonal trajectories of given curves. 

 
Example 6.2. Show that on a right helicoid, the family of curves orthogonal to 

the curves u cos v = constant is the family
 
u

2
 + v

2
 
sin

2
 v = constant. 

Solution: 

 

We know that the equation of right helicoid is  ~r =  (u cos v; u sin v; av) : 
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u v 

 

~r =     u cos v~i + u sin v~j + av~k 

~r1 =     cos v~i + sin v~j + 0~k 

~r2 =      u sin v~i + u cos v~j + a~k 

Now,  E =     ~r1   ~r1 =  cos
2
 v + sin

2
 v =  1 

F =     ~r1   ~r2 =   u sin v cos v + u sin v cos v + 0 =  0 

G =     ~r2   ~r2 =  u
2
 + a

2
 

Family of given curves:  u cos v =  constant. 

 

Di  erentiating both sides, we get u (   sin vdv) + cos vdu    =    0 

) cos vdu   =   u sin vdv 
du 

) 
u sin v 

dv 
= 

cos v 

 

The direction ratios of tangent at  (u; v)  is  (u sin v; cos v): 
 

Let  (du; dv)  be  orthogonal  to  the  direction  ratios  of  orthogonal  to  the 

given curve. 

)     =  u sin v;   =  cos v;  1 =  du;  1 =  dv: 
 

By orthogonality condition, we have 

 

E   1 + F (   1 +   1 ) + G   1 =    0 

) 1(u sin v)du + 0 + 

 

u
2
 + a

2
  
cos vdv   =    0 

) u sin vdu   =      

  

u
2
 + a

2
 
cos vdv 

udu 

) 
2

 

cos v 

2 
=        

sin  
dv 

Integrating, we get  log
 
u

2
 + a

2
    

=       2 log (sin v) + log c 

)
 

u
2
 + a

2
 
sin

2
 v   =    c 

which is the required family of curves. 

 
Example 6.3. A helicoid is generated by the screw motion of a straight line which 

meets the axis at an angle : Find the orthogonal trajectories of the generators. 

Find also the metric of the surface referred to the generators and their orthogonal 

trajectories as parametric curves. 

 

Solution:The equation of given helicoid is 

+ a 
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~r =     u sin   cos v~i + u sin   sin v~j + (u cos   + av) ~k 

~r1 =     sin   cos v~i + sin   sin v~j + cos  ~k 

~r2 =      u sin   sin v~i + u sin   cos v~j + a~k 

E =     ~r1   ~r1 =  1 

F =     ~r1   ~r2 =  a cos   

G =     ~r2    ~r2  =  u
2 

sin
2   + a

2
 

 
generators are given by v = constant. 

v   =    c ) dv = 0  (or)  dv = 0(du) 

dv du 
= 

0 1 
du dv 

= 
1 0 

 

Therefore, the direction ratio of the given family of curves is  (1; 0): Let 

(du; dv)  be the direction ratios orthogonal to  (1; 0): 
 

We get    =  1;     =  0;  1 =  du;  1 =  dv: 
 

By orthogonality condition, we have 

 
E   1 + F (   1 +   1 ) + G    1 = 0 

1  1  du + a cos   (1  dv + du  0) + 

  

u
2
 sin

2
   + a

2
  

  0  dv 
 

= 0 

) du + a cos dv = 0 

Integrating, we get  u + av cos   = constant 

 
 

This is the required orthogonal trajectories of given family of curves. 

 

To examine these trajectories note that u = 0 for some value of v  on 

every curve, so that every trajectory meets the axis of the helicoid. 

For a particular curve there is no loss of generality in taking its 

intersection with the axis to be the origin. 

Then u =    av cos     and the curve is given by 

~r =     a sin   ( v cos   cos v;  v cos   sin v; v sin  ) 

 
with v as parameter.  It is the intersection of the cone  x2

 + y
2
 =  z

2
 cot

2
   

and  the  cylinder  whose  cross  section  by  the  xy  plane  is  the  spiral 
1 

r =    
2 

a  sin 2 : 

) 

) 
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0 0 

     

 

A transformation which takes the generators and their orthogonal 

trajectories into parametric curves is 

u =    u + av cos ; v  = v 

)   du    =     du
0     a cos  dv

0 

; dv =  dv
0

 

The metric is ds
2
 = Edu

2
 + 2Fdudv + Gdv

2
 

=     1:du
2
 + 2a cos  dudv + 

 
a

2
 + u

2
 sin  

 
dv

2
 

 

 

will become 

ds
2
 =     du

0   2  
+ sin

2
   

h
a

2
 + 

 
u

0     av
0  

cos  
 2

i
dv

0   2
 

 
 

and the new coe  cients are 

E
0 

=     1;   F
0    

=  0; G
0    

=  sin
2
   

h
a

2
 + 

 
u

0     av
0  

cos  
 2

i 

Example 6.4. Show that the curves du
2
 u

2
 + a

2
 dv

2
 = 0 form an orthogonal 

system on the right helicoid. 

Solution: Given di erential form represent a double family of curves 

which form an orthogonal system if  ER   2PQ + GP =  0: 

We have Pdu
2
 + 2Qdudv + Rdv

2
 = 0 

 

Comparing with du
2
   

 
u

2
 + a

2
 
dv

2
 = 0 we get 

P   =    1; Q = 0; R =    

  

u
2
 + a

2
  

 
The equation to the right helicoid is 

~r =     (u cos v; u sin v; av) 

~r1 =     (cos v; sin v; 0) 

~r2 =     ( u sin v; u cos v; a) 

)   E =     ~r1   ~r1 =  1; F  = ~r1   ~r2 =  0;   G = ~r2   ~r2 =  u
2
 + a

2
 

ER    2FQ + GP   =       u
2
 + a

2
 + u

2
 a

2
 = 0 

Therefore, the given curves form an orthogonal net. 

 
Example 6.5.  The metric of a surface is  v

2
du

2
 + u

2
dv

2: Find the equation of the 

family of curves orthogonal to the curves uv = constant. 
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  ! 

 

Solution: 

Given metric of the surface is  ds
2
 =     v

2
du

2
 + u

2
dv

2
 (6.8) 

We know that  ds
2
 = Edu

2
 + 2Fdudv + Gdv

2
  (6.9) 

Comparing (6.8) and (6.9), we get E =     v
2
; F = 0; G = u

2
 

 
Equation of the given family of curve is  uv   =    constant 

Di  erentiating, we get  udv + vdu   =    0 

) vdu   =       udv 

du dv 
= 

 u v 

 

Therefore, the direction ratios of given family is  ( u; v): 

Let  (du; dv)  be the direction ratios of required family orthogonal to the 

given family. 

Let    =   u;   =  v;  1 =  du;  1 =  dv: 

By orthogonality condition, we have 

 
E   1 + F (   1 +   1 ) + G   1 =    0 

 
2 2 

) v (  u) + 0 + u vdv   =    0 
dv du 

= 
v u 

Integrating, we get   log v    =    log u + log c 

v 
=    constant 

u 

 

This gives the orthogonal trajectories. 

 
Example  6.6.  If    is  the  angle  at  the  point  (u; v)  between  the  two  directions 

1=2 

2H  Q
2
   PR given by Pdu

2
 + 2Qdudv + Rdv

2
 = 0 then prove that tan   = : 

ER    2FQ + GP 

 

Solution: Let ( ; ) and ( 0 ; 0 ) be ratios of two directions given by 

 
2 

P  
du 

dv 

du 
+ 2Q + R   =    0 

dv 

 
 

Then 
 0 

and 
 0 

 

are the roots of the above equation. 

) 

) 

) 
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3 

0 

3 

h i 

    

+ 
   0

 

H 6 + 
   0

 
  4 

   
  

  0 
7 

  
+  
  

+

! 
+ G 

  

 

 0 2Q 
+ = 

   0 R 

 0 R 
 

  

  
  
 0

 

= 
P 

sin   
Now,  tan    = 

 
= 

 
 

cos   
H (   0       

        
0 

  ) 
 

 

E    0  + F (   0  +   0  
  ) + G    0

 

 0 
! 

H 
= 

 0 
! 

 
 

  
  
 0

 

 
 
 

 
 

 0 
! 
  

2 
 
 

 
 

 0 
! 

 
 

1=2 

 0 

 

= 

4
 0 
! 

 
   0 

5
 

 

 

 

H 

26  2Q
! 

1=2 

  4R 7 
) tan   = 

64
R

 

E 

 

P

  P 
75 

  2Q
! 

+ G
 

 

tan   = 

1=2 
H  4Q

2
   4PR 

 
 

   P  

ER 2FQ + GP 

P 

 
i:e:;  tan    = 

1=2 

2H  Q
2
   PR 

 
 

ER    2FQ + GP 

 

 

 
 

 

6.4. Isometric correspondence: 

 

We shall consider examples of classes of surfaces with the property 

that surface in the same class are specially related to each other. The 

fundamental ideal behind this is that of correspondence of points between 

two surfaces and the two surfaces are regarded as equivalent, if this 

correspondence (or) mapping preserves geometrical rules on that surfaces. 

An isometric correspondence between points P on a surface S and the 

points  P0      on  S 0      such that as  P  traces out an arc on  S   then  P0      traces out 

an arc of equal length on S 0 : 

+ G 
  

  
 0

 

E 

2 

2 

P 

+ F 

E 

  
  
 0

 

+ F 

P 

+ F 
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0 0 

0 

0 

> 

 

An isometric mapping preserves both distance and angles, whereas 

conformal mapping preserves angles only. 

We are concerned only with local properties of a surface, and in 

discussing correspondence between surfaces S and S 0 : Now, we shall 

consider only correspondence between parts of the surfaces. If the point 

(u0 ; v0 )  on  S 0      corresponds to the point  (u; v)  on  S ; then  u0 ; v0      are single 

valued functions of u and v; say 

u      =      (u; v);      v   =   (u; v) (6.10) 

 

 

If surfaces  S   and  S 0     are of class  r  and  r0     respectively, we may assume 

that    and    are functions of class min (r; r0 )  with non-vanishing Jacobian 

in  the  domain  of   u; v: Also  we  assume  that  the  mapping  is  one  to  one 

throughout this domain. 

We have restricted the maps between the part of  S  and part of  S 0     to be 

di erentiable homeomorphisms of su ciently high class regular at each 

point of the domain of  u; v: 

Consider a curve C of class 1  passing through  P  and lying on  S; 

given parametrically by equations  u  =  u(t);    v  =  v(t): If the surface  S   is 

related to surface  S 0      by the equation (6.10), then  C  will map into a curve 

C0     on  S 0     passing through  P0 ; with parametric equations. 

u =       (u(t); v(t)) 

v =       (u(t); v(t)) 

 

The direction of the tangent to the curve C at P will map into de nite 

direction  at   P0       namely  that  of  the  tangent  to  C0 ; given  by  the  direction 

ratios  (u 0 ; v 0 ) ; where 
@  @ 

u 0 
= u +  v  
@u @v = 

 

  

 
(6.11) 

v 0 
= 

@ @  u + 
@u @v 

>>; 
Solving the equations (6.11) for  (u 0 ; v 0 ) ; we get 

 
u 0 
@
 v 0 

@ 
!
 

u = 
@v @v 

 
 

J  
v 0 
@
 u 0 

@ 
!
 

v = 
@u @u 

 
 

J 

v  

9 
> 
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Since J is a non vanishing Jacobian, it follows that to a given direction 

at  P0     will corresponds to a de nite direction at  P: 

Now we shall show that a proper parameter transformation in   S 0      (or)   S; 

so  that  corresponding  point   P; P0       carry  identical  parameter  values.Since, 

the functions ; of equation (6.10)  satisfy  the  condition  for  a  proper 

parameter  transformation  and  after  transforming  the  parameters  of  S 0 in 

this way the correspondence  S  ! S 0     gives  (u; v) ! (u; v)  as required. 

De nition 6.2 (Isometric or Applicable surfaces).  Two surfaces  S; S 0    are said 

to be isometric (or) applicable if there is a correspondence between the points 

of S and S 0 such that corresponding arcs of curves have the same length. The 

correspondence is called an isometry. 

 
For example, consider a region S (not too big) of a plane and a region S 0 

of a cylinder. The plane can be considered as being tted onto the cylinder 

so that S coincides with  S 0 ; and since no part of  S  is cut or stretched in 

this process the length of an arc in S remains unaltered. 

Geometrically, S is continuously deformed in space until it coincides 

with  S 0   so that continuity and arc length is preserved in  S   preserved. 

Points of S and  S 0  which ultimately coincide are corresponding points of 

the isometry. This gives a clear idea of the relation between two isometric 

surfaces and explain the fact that  S  and S 0     need not be congruent in order 

to be isometric. 

 

 
Locally Isometric: 

 

The application of a plane to a circular cylinder gives the idea of 

local isometry. If the whole plane  S  is wrapped round the cylinder  S 0 ; 

in nitely many points of S corresponds to the same point of  S 0  so that 

the correspondence S ! S 0 is not one-one but many one. The plane and 

cylinder are not isometric in the large, they are however locally isometric 

because every point of the plane has a neighbourhood which is isometric 

with a region of the cylinder. 

 
Note  6.5.   For an isometry, the length of any arc in  S   must be equal to the length 

of corresponding arc in  S 0 : This means that  ds  =   ds0      where  ds  and  ds0      are 

corresponding  linear  elements  of  arc  and  this  must  be  true  for  all  u; v; du; dv 
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1 

1 

0 0 

1 1 

1 1 

0 0 0 0 

 

and  the  corresponding  u0 ; v0 ; du0 ; dv0 : The  metric  S   therefore  transforms  into 

the metric of S 0 under the transformation (6.10). 

If surfaces S and S 0 are isometric, there  exists  correspondence  (6.10) 

between their parameters where and are single valued and non-vanishing 

Jacobians such that the metric of S transforms into the metric of S 0 : 

Example 6.7. Find a surface of revolution which is isometric with a region of 

right helicoid. 

 

Solution: We know that the surface of revolution is given by 

~r =     (g(u) cos v; g(u) sin v; f (u)) 

~r1 =     (g1(u) cos v; g1(u) sin v; f1(u)) 

~r2 =     ( g(u) sin v; g(u) cos v; 0) 

Now  E =     ~r1   ~r1 =  g
2
(u) +  f 

2
(u); F  = ~r1   ~r2 =  0; G = ~r2   ~r2 =  g

2
(u) 

 
For some functions f (u)  and g(u)  and its metric is given by 

 
ds

2
 = Edu

2
 + 2Fdudv + Gdv

2
 = 

 

g
2
(u) +  f 

2
(u)

  
du

2
 + 0 + g

2
(u)dv

2
 

1 1 
 

i:e:; ds
2
 =     

 
g

2
(u) +  f 

2
(u)

 
du

2
 + g

2
(u)dv

2
 

The right helicoid of pitch 2 a is given by 
 

 0 0 0 0 0 

~r = u  cos v  + u  sin v ; av 
 

0 0 

~r1 =     
 
cos v  + sin v ; 0

   
(6.12) 

 

~r2 =     
  u  sin v    u  cos v ; a

  
E

0    

= ~r 
2  

=  1; F
0 

=     ~r     ~r   =  0; G
0    

=  u
0   2  

+ a
2
 

2 

Therefore, its metric is given by  ds
0   2 

=     du
0   2  

+ 

 
u

0   2  
+ a

2
 

dv
0   2    

(6.13) 

We have to  nd a transformation  (u; v) =  (u0 ; v0 )  so that  ds =  ds0 : 
 

Taking  v0 

=     v;   u
0    

=   (u); we have 

dv =     dv; du  =   1(u)du 

) ds
0   2 

=      2
du

0   2  
+ 

 
 2

 + a
2
 

dv
0   2

 

 

 

So the metrices  ds  and  ds0     are identical if 

 
g

2
(u) + f 

2
(u)   =       

2
 

 

 

 
(6.14) 

1 1 1 

g
2
(u)   =       

2
 + a

2
 (6.15) 

1 
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2 

1 1 1 

z 

 

These are two equations in three functions namely   f ; g  and    : 
 

If we eliminate ; there remains a di erential equation for f as a 

function of  g: 

By putting g(u) = a cosh u; (u) = a sinh u to satisfy equation (6.15), we 

have from equation (6.14) 

 

f 
2
(u)   =       

2
(u)   g

2
(u) 

 
2 2 2 2 2 2 

) f1 (u)   =   a cosh u  a  sin u = a 
 

) f1(u) = a 

Integrating, we get f (u) = au 

 

 

Hence the right helicoid is isometric with the surface obtained by 

revolving the curve x = g(u); 

y =  0; z =   f (u)    i:e:;  x =  a cosh u;  y =  0;   z =  au  about  z -axis. 
 

Note 6.6.  The generating curve is the catenary x = a cosh 

       

with parameter a 
a 

and the directrix the z -axis and the surface of revolution is a catenoid. 
 

The  correspondence   u0         
=     a sinh u;  v0         

=     v   shows  that  the  generators 

v0      
= constant  on  the  helicoid  correspond  to  the  meridians  v  = constant  on  the 

catenoid, and the helices  u0    
= constant correspond to the parallels  u = constant. 

On the helicoid  u0     and  v0     can take all values but on the catenoid  0   v < 2 : 

The correspondence is therefore an isometry only for the region of the helicoid 

0    v0      < 2 : Hence,  one  period  of  a  right  helicoid  of  pitch  2  corresponds 

isometrically to the whole catenoid of parameter  a: 

 

Example 6.8. 

 
A surface of revolution de ned by the equations 

u 

x  =   cos u cos v; y  =   cos u sin v; z  =      sin u +  log tan 

 

4 
+ 

2 

  

where 

0 < u < 
 
; 0 < v < 2 : Show that the metric is tan

2
udu

2
 + cos

2
 udv

2
  and prove 

2 
that the region  0 < u <  ; 0 < v <  is mapped isometrically on the region 

2 
cos u 

< u0    < 
3 

   
;  0 < v0    < 2  by the correspondence  u0    

=  cos 1 

    
; v0    

=  2v: 
2 
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0 

0 0 

h i 

 

Solution: 

u 

we have   ~r =     

 
cos u cos v; sin v cos u;  sin u + log tan 

 
4 

+  
2 

   
 

~r1 = ( sin u cos v; sin u sin v; cos u + sec u)  

~r2 

E 

= 

 
= 

( cos u sin v; cos u cos v; 0) 

~r1  
2  

=  tan
2 

u 

(6.16) 

F =     ~r1   ~r2 =  cos
2
 u 

ds
2
 = Edu

2
 + 2Fdudv + Gdv

2
 = tan

2
 udu

2
 + cos

2
 udv

2
 (6.17) 

v0 

put v  = ;   cos u =  2 cos u    in (6.17); we obtain 
2 
1 

0 0 0 

dv = 
2 

dv ; sin udu =    2 sin u du 

)   ds
0   2 

=     tan
2
 u

0 

du
0   2  

+ cos
2
 u

0   2
dv

0   2 
(6.18) 

 

From (6.17) and (6.18), we nd that the two metrics are identical and 

hence the transformed surface are given by 

x   =    2 cos u cos 
v0 v0 

;  y = 2 cos u  sin 
2 2 

z    =      sin 
 
cos

 1 
 
2 cos u

0 
   

+ log tan 

 
  

+  
1 

cos
 1 

 
2 cos u

0 
 ! 

 

is isometric to the given surface. 

Also  (u; v) ! (u0 ; v0 )  with  v = 

  

 

v0 

; cos u =  2 cos u0 : 
2 

The given region is 0 < u < ; 0 < v <   
2 

0 0 
1 

0 

u   =   0 ) 2 cos u = 1 ) cos u = ) u = 
2 3 

 0 0 

u   = 
2 
) cos u 

  

= 0 ) u = 

2 
  

0
 

) 0 < u < 
2 

corresponds to < u  < 
3 2 

 

Similarly for  0 < v <   corresponds to  0 < v0    < 2 : 

 
De nition  6.3  (Isometric  lines,  Isometric  system).  The  parametric  curves 

u  = constant,  v  = constant  on  the  surface  S   given  by  ~r  =   ~r(u; v)  are  called 

isometric lines if the metric on S can be put in the form ds
2
 =  Udu

2
 + Vdv

2
  ; 

where    is a function of u and v; U is a function of u alone and V  is a function 

of v alone. The parameters u and v are called isometric parameters. 

 

Example 6.9. Show that the meridians and parallels on a sphere form  an 

isometric system and also determine the isometric parameters. 

4 2 
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h i 

! 

2 

) 

 

Solution: The position vector of any point on a sphere is 

~r =  a (sin u cos v; sin u sin v; cos u) : 
 

Here the parametric curves 

 

 

 

 

 

 

 

 

) ds
2
 =     a

2
 sin

2
 u 

h
cosec

2
udu

2
 + dv

2
i 

This is of the form  ds
2
  =        Udu

2
 + Vdv

2
  ; where      = a

2
 sin

2
 u; 

U  =  cosec
2
u; V  =  1: 

Thus, the system is an isometric system. 
 

To  nd the parametric curves, we use the transformation  (u; v) (u0 ; v0 ) 

given by  du0    
=   

p
Udu  and  dv0    

=   

p
Vdv: 

)   du
0 

= 

p
cosec2udu 

) u0 

=     

Z 
cosecudu =  log tan 

 
u
  

and  dv
0 

=     dv ) v0    

=  v: 

 
Therefore, the parametric curves are 

u 
u0    

= constant log tan 
2 

= constant and  v0    
= constant  ) v = constant. 

 
 

 

6.5. Intrinsic properties: 

 

Let  E; F; G  be any real single valued continuous functions of  u  and 

v   satisfying  E  > 0  and  EG   F
2
  > 0  in  some  domain   D   of  u; v: Then 

it  will  be  seen  that  every  point  of   D   has  a  neighbourhood   D0       (in   D ) 

in which  Edu
2
 +  2Fdudv + Gdv

2
  is the metric of the surface referred to 

u and v as parameters. This is the rst fundamental existence theorem 

and shows that there is no hidden identity relating   E; F   and  G: It asserts 

to  existence  of  a  vector  function  ~r(u; v)  satisfying  the  partial  di erential 

equations  ~r1 
2
 =  E;   ~r1   ~r2 =  F;   G = ~r2   ~r2  in some domain  D0 : 

The surface having a given metric is certainly not unique, however, even 

v = constant are the meridian and 

u 
 

= constant are the parallels 

Now,  ~r1 
 

= a (cos u cos v; cos u sin v; sin u) 

~r2 = a ( sin u sin v; sin u cos v; 0) 

E = ~r1  
2  

=  a
2
; F  = ~r1    ~r2  =  0;   G = ~r2  

2  
=  a

2 
sin

2 
u 

ds
2
 = Edu

2
 + 2Fdudv + Gdv

2
 = a

2
du

2
 + 0 + a

2
 sin

2
 udv

2
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Let Us Sum Up: 

 

apart from rigid displacements in any space. Any two isometric surfaces, 

for example, have the same metric when the corresponding points are 

assigned the same parameters, although they are not congruent. The class 

of surfaces having a given metric is the class of isometric with any one 

member. 

It follows that any formula (or) property of a surface which is deducible 

from  the  metric  alone,   without  recourse  to  the  vector  function ~r(u; v); 

automatically applies to the whole class of isometric surface. Properties 

of this kind will be described as intrinsic other wise is non-intrinsic. 

If a formula equation (or) theorem is intrinsic, it should be possible to 

derive it by an intrinsic arguments without introducing normal properties. 

It paves the way for Riemannian geometry which is mainly intrinsic. The 

quadratic  di erential  form  of  metric  is  itself  deducted  from  ~r(u; v): The 

square root of a quadratic di erential form (or) any other homogeneous 

form of degree 2. 

A vector in the tangent plane may be de ned by its components ( ; ) 

and is intrinsic, all such  vectors  at  a  point  form  a  vector  space  with  a 

norm (magnitude) de ned so that norm of  (du; dv)  is the linear elements 

ds  given by the metric. The vector  (    ;  ) =     (  ; )  where      is very small 

can be regarded as the small displacement from the point  (u; v)  to the point 

(u + ; v + ) : 

The angle between two vectors  ( ;  )  and  ( 0 ;  0 )  at a point  (u; v)  can be 

de ned by the Euclidean cosine formula applied to the small triangle with 

vertices  (u; v); (u +   ; v +   )  and  (u +  0  0 ; v +  0  0 ) ; where    and   0      are 

small. It can be veri ed that this de nition of angle is consistent. 

Now we can study the intrinsic property of a surface at any point namely 

linear and area elements, vector components, vector magnitudes, direction 

coe cients and angle formulas. 

 

 

In this unit, the students acquired knowledge 

 

  to know the relation between direction coe cients and direction 

ratios. 

 

  to know the concept of orthogonal trajectories. 
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Check Your Progress: 

Answer: 

Glossaries: 

 

  to know the concept of isometric correspondence. 
 

 
 

 
1. Show that  parametric  curves  are  orthogonal  on  the  surface 

x = u cos v; y = u sin v; z = a log 

 

u + 

  

u
2
    a

2
 1=2

   

: 

2. Show that the parametric curves on the sphere 
  

~r  =   a (sin u cos v; sin u sin v; cos u) 0  < u  < 

orthogonal set. 

; 0 < v < 2    form an 
2 

 
 

 

 
1. The direction coe  cients satisfy the identity 

 
(a) El

2
 + 2Flm + Gm

2
 = 1 

(b) El
2
    2Flm + Gm

2
 = 1 

(c) El
2
 + 2Flm   Gm

2
 = 1 

(d) El
2
    2Flm    Gm

2
 = 1 

2. An isometric mapping preserves 

 
(a) distance only. 

 

(b) angles only. 
 

(c) both distance and angles only. 
 

(d) neither distance nor angles. 
 

 
 

 

(1) a  (2)  c 

 
 

 

Orthogonal Trajectory: The locus of a point whose path cuts each 

curve of a family of curves at right angles. 

Choose the correct or more suitable answer: 
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Overview 

 

 
 
 

 

In this unit, we illustrated the properties of special intrinsic 

curves, called geodesics which is related to straight lines in Euclidean space 

because they are curves of shortest distance. 

 
 

 

7.1. Geodesics: 

 

The problem is given any two points A  and B on the surface, we 

can   nd the least arc length by joining all the possible arcs between  A 

and  B: As we already familiar that the equation of the curve is given by 

u =  u(t);  v =  v(t): Every curve given by these equations is called  geodesic, 

whether the curve is of shortest distance (or) not, and geodesic may be 

regarded as curves of stationary, rather than strictly shortest distance on 

the surface. 

 
De nition 7.1 (Geodesics). If two points A and B on a surface S be joined by 

curves lying on S; then the curve which possesses a stationary length for small 

variations is called geodesics. 

 

Bookwork 7.1.  Derive the di  erential equation of geodesics. 
 

Let  A  and  B  be two points on the surface  ~r = ~r (u; v) : 
 

Consider all the possible arcs which join A and B are given by the 

equations   u   =    u(t);   v   =    v(t)   where   u(t)   and   v(t)   are  functions  of 

class 2. Without loss of generality it can be assumed that every arc   ; t = 0 

at A = 0 ( A is called the initial point) and t = 1 at B ( B is called the end 

point). we assume that for every arc    is given by  0   t   1: 

Objectives 

After completion of this unit, students will be able to 

F  understand the concept of Geodesics. 

F derive the equations of the Geodesics. 

F normal properties of Geodesics. 
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2 

Z 

0 

1 1 

0 

 

Let be one such arc and let s( ) be the arc joining A  and  B  measured 

along : 

 
We have ds

2
 = Edu

2
 + 2Fdudv + Gdv

2
 

) 
 
ds

! 
= E 

 
du

! 
+ 2F 

 
du

!  
dv

! 
+ G 

 
dv

! 
   

dt dt 
2 2 

dt dt dt 
2 

) s  = Eu  
1 

+ 2Fu v  + Gv  

Now arc length s( ) = 

0 

s dt 

Z 
1 p   

 

 

Let     be slightly deformed to obtain   0    keeping the end points A and 

B  xed. 
 

Then   0    has the equations 

 
 

u1(t)   =    u(t) +   g(t) 

v1(t)  =    v(t) +   h(t) 

 
 

where      is   small   and   g; h    are   arbitrary   functions   such   that 

g(0) =  h(0) =  0  and  g(1) =  h(1) =  0: 
 

 

) Arc length of    0

 

   
= s 

 
  

  
 

 

=     

Z q
Eu 

2
 + 2Fu 1v 1 + Gv 

2
dt 

(replace u; v by u0 ; v0   in (7.1) 

 

The variation in s( ) is in s( )   s( 0 ) and in general it is of order   : 

If    is such that this variation is atmost of order   2; for all variations in 

 ; then  s(  ) is said to be stationary and the curve     is geodesic. 

Eu 
2
 + 2Fu v  + Gv 

2
 

Let  T (u; v; u ; v )    = 
2 

then T = 
1 

s 
2
 

2 

s 
2
 =    2T 

1 

s =  

p
2T =  f (say) 

1 

)  s( )   = 

0 

s dt = 

0 

f dt;  where  f  =   f (u; v; u ; v ) 

1 

2 2 

) Z Z 

) s( )  = Eu  2 + 2Fu v  + Gv 
2
dt (7.1) 

0 

) 
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Z 

# 

  ! 

0 

Z 
2 

0 @u @ f @v  

@u  

@v  

1 

1 

1 

0 

 

Now, s( 
0 

)  s( )   =    

Z
 1 

f (u ; v ; u  ; v ) dt   

Z
 1 

f (u; v; u ; v ) dt 
1     1 1     1 

0 0 

1 

= 
0 

s(  
0 

)    s(  )   =    

Z
 
 
1 

 
f (u1; v1; u 1; v 1)   f (u; v; u ; v )

 
dt 

h
f 
 
u +  g; v +  h; u  +  g ; v  +  h 

  
  f (u; v; u ; v )

i
dt 

=     

Z "
f (u; v; u ; v ) +  g

@ f
 

@ f 
+  h +  g  

@ f 
@u  +  h  

@ f
 

+O 
 
 2

  
  f (u; v; u ; v )

i
dt 

(expanding by Taylor's theorem for several variables) 

) s( )   s( 
0 

)   =       

Z
 
 

g
@ f 

+ h
@ f 

@u @v 

@ f 
+ g  

@u  

 

+ h 
@ f 

dt 
@v  

+O( 
2
) (7.2) 

Consider   

Z 
g 
@ f 

dt =     

Z
 @ f 

g dt = 

Z
 1 

UdV 

0 @u  0   @u   0 

@ f 
where U = 

 
 

@u  
; dV = g dt 

) dU =   d   
@ f   

; V = g 

@u  

=    [U]
1
  

Z
 1 

VdU 

=     

"
@ f 

g

# 
0 

  
Z 

gd

 
@ f 
!
 

@u  
0  0 

1 
@u  

=    0  0   

Z
 g 

d  
 
@ f 

!
dt

 

* g(1) = 0; g(0) = 0 
1 1 

) 
Z 

g 
@ f 

dt =        

Z
 g 

d  
 
@ f 

!
dt

 

 

In a similarly way, we can get 

 Z 
h 
@ f 

dt =        

Z
 

 

 h 
d  

 
@ f 

!
dt

 

 

Thus, equation (7.2), becomes 
1 

s(  )    s(  
0 

)   =       

Z
 "

g
@ f  

+ h
@ f   g 

d  
 
@ f 

! 
  h 

d  
 
@ f 

!#
dt

 
0 @u 

1 
@v dt @u  dt    @v  

=       

Z
 "

g 

 
@ f

 

  d 
 
@ f 
!! 

+ h

 
@ f 

 
    d  
 
@ f 

!!#
dt + O( 2

) 
0 @u 

1 

dt    @u  @v dt @v  

= gL + hM
 

dt + O(   ) 

0 

0 

0 

  

1 

@v 

0 

dt @u  

0 0 

dt @u  

0 dt @v  

1 

1 

1 

1 
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1 

@u dt @u  

dt @u  @u 2T  @u  

T u 

T v 

 

@ f 
where L  =   d  

 
@ f 

!
; M =  

@ f   
d
 

@ f 
! 

 

  

 

  

 
By de nition  s( )  is stationary,  s( )   s( 0 )  is almost of order   2: 

Therefore    is a geodesic if  
R

0   

 
gL + hM

 
dt =  0 

)  L    =     0    and   M =  0    (* g; h are arbitrary functions) 

@ f  
  

d 
 
@ f 
! 

=   0 (7.3) 

@ f  
  

d 
 
@ f 
! 

=   0 (7.4) 

These are the di  erential equations for geodesic.  But,  f   =   

p
2T ; 

so we write the di erential equations involving T rather than f : Thus, 

equation (7.3) becomes 

@ 
( 
p

2T )   
  
d
 @ 

p
2T 
1C 

=   0
 

 
@u dt 

B@ @u 
CA 

   

p 
3 

=   0 p
2  
@  p

T 
  
  

p
2 

 d  
2
@  T       @u 

dt 

664 
 

 

@u    
75 

) 1   @T   
   

" 
1   d  

  
@T 
! 

+ 
@T   

  

     
1 

dT 
!# 

=   0

 
p

T @u 
p

T dt @u  @u  2T 
3=2

  dt 

Multiplying both sides by     
p

T ; we get 

d  
 
@T 
!
 @T 

 

   

 

   

 

 

1 @T dT 
= 

 
 
 

(7.5) 

Similarly  from  equation (7.4)  we get (7.6) 

d  
 
@T 
!
 @T 

 
   

 

   

1 @T dT 
= 

 
(7.7) 

 

For convenience, we denote left hand side members of equations (7.5) 

and (7.7) by U and V: 

) U = 
d  

 
@T 
!
 @T 

=   
1 

@T dT 
 

 

 

(7.8) 

V = 
d  

 
@T 
!
 @T  

=   
1 

@T dT 
 

(7.9) 

Equation (7.8) ) U = 

dt    @v  @v 

1 @T dT 
 

 

2 @   

2T  @v   dt 
 

(7.10) 

Equation (7.9) ) V = 
1 @T dT 

 

 

2 @  
(7.11) 

 

dT 
Eliminate 

dt 

 

from equations (7.10) and (7.11), we get 

dt 

@v @v  dt 

@u @u  dt 

@v  dt @u dt @u  @v 

@v dt @v  

2T  @u  dt 

2T  @v  dt 

dt 

dt 
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2 

u = ct
3
; v = ct

2
 

9> 

dt @u  @u 

dt 

 

@T 
U 
@v  

@T 
 

   V 
@u  

 

=     0 (7.12) 

 

This is the necessary for a curve on a surface to be geodesic. 

 
Note 7.1. The expressions U and V so de ned are important in relation to any 

curve, whether it is geodesics or not. They satisfy the identity 

 

dT 
u U + v V = 

dt 

 

(7.13) 

 

 
Example 7.1. Prove that the curves of the family 

v3 

= constant are geodesics on 
u2 

the surface with metric  v
2
du

2
   2uvdudv + 2u

2
dv

2
   (u > 0; v > 0): 

v3 

Solution: Given curve =   c  (c  > 0); the  parametric  equation  of  the 
u2 

given curve can be written as 

 

 
u = 3ct

2
; 

v  =  2ct

>=>>; 
(7.14) 

ds
2
 =    v

2
du

2
    2uvdudv + 2u

2
dv

2
 

)  s 
2 

=     v
2
u 

2
   2uvu v  + 2u  v  

Let T = 
1 

s 
2
 

2 
1 

) T = 

@T 
= 

@u 
@T 

 
v

2
u 

2
   2uvu v  + 2u

2
v 

2
  

 
0   2vu v  + 4uv 

2
  

=   vu v  + 2uv 
2
 

 
 

@u 

@T 
Similarly, 

@v 

@T 
 

 

@u 

@T 
 

 

@v  

=        

  

ct
2
   

3ct
2
  

(2ct) + 2 
 
ct

3
  

4 
 
c

2
t
2
  

= 2c
3
t
5
 

=    3c
3
t
6
 

 
=    c

3
t
6
 

 
=    c

3
t
7
 

we have U = 
d  

 
@T 
!
 @T

 

 d 
= c

3
t
6

   

   2c
3
t
5 

= 4c
3
t
5

 

and V = 
d  

 
@T 
!
 @T 

 d 
= c

3
t
7

   

   3c
3
t
6 

= 4c
3
t
6

 

@T @T 
dt    @v  @v dt 

U 
@v  
  V 

@u  
=     

 

4c
3
t
5

     

c
3
t
7

    

    

  

4c
3
t
6

     

c
3
t
6

   

= 0 

 

Hence the curve is a geodesic for all values of  c: 

2 

2 

1 

2 
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9>  

dt @u  @u 

dt 

 

Example 7.2. Prove that the curves of the family u + v = constant are geodesics 

on the surface with metric  
 
1 + u

2
 

du
2
   2uvdudv + 

 
1 + v

2
 

dv
2: 

Solution: Given curve  u + v ==  c; the parametric equations of the given 

curve can be written as 
u = t; v = c t 

>=> 
 

(7.15) 

u = 1; v = 1 
>; 

 

ds
2
 =     

 

1 + u
2
  

du
2
   2uvdudv + 

 

1 + v
2
  

dv
2
 

)  s 
2
 =     

 
1 + u

2
 

u 
2
   2uvu v  + 

 
1 + v

2
 

v 
2
 

Let T = 
1 

s 
2
 

2 
1 

) T = 

@T 
= 

@u 
@T 

h 
1 + u

2
 

u 
2
   2uvu v  + 

 
1 + v

2
 

v 
2
i  

2uu 
2
   2u v v + 0

  
=  uu 

2
   vu v  

 
 

Similarly, 

 
 

@u 

@T 
 

 

@v 

@T 
 

 

@u 

@T 
 

 

@v  

=       t (1)    (c    t) (1) (  1) = t + c    t = c 

=    c 

 
=    1 + ct 

 
=    ct   1   c

2
 

we have U = 
d  

 
@T 
!
 @T

 

d 
= (1 + ct)    c = 0 

and V = 
d  

 
@T 
!
 @T 

 d 
= ct   1   c

2
  

   c = 0 

@T @T 
dt    @v  @v dt 

U V 
@v  @u  

=    0   0 = 0 

 

Hence the curve is a geodesic for all values of  c: 
 

Example 7.3. Prove that on a general surface, a necessary and su cient condition 

for the parametric curve  v = constant to the geodesic is  EE2 + FE1   2EF1 =  0: 

Solution: On the curve  v  =  c; we may take  u  as parameter.  Therefore 

u =  t: 
u   =    t; v = c 

 

) u  =    1; 
1 

v = 0 

we have T = 

@T 
= 

@u 

h
Eu 

2
 + 2Fu v  + Gv 

2
i 

h
E1u 

2
 + 2F1u v  + G1v 

2
i 

@E @F @G 
where E1 = ; F1 = 

u 
; G = 

@u @u 

2 
1 

2 

2 

1 

2 

@ 
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) E F  

F 

!
 E 

 E =    0 

0       0 0  2 0    0 0 2 

= 

 

@T 
 

 

@u 

@T 
Similarly, 

@v 
@T 

1 
= E1 

2 
1 

= E2 
2 

= E 
@u  
@T 

= F 
@v  

Now,  U = 
d  

 
@T 
!
 @T 

= E      
1 

E  = 
1 

E 
1 1 1 

dt    @u  @u 2  2 

and   V = 
d  

 
@T 
!
 @T 

= F      
1 

E 
1 2 

dt    @v  @v  2 

We know that the necessary and su cient condition for a curve to be a 

geodesic is 

@T 
U 
@v  

@T   V 
@u  

1 1 
1 1 2 

2 2 

) EE2 + FE1    2EF1 =    0 

 
This is the required condition. 

 

 
 

7.2. Canonical geodesic equations: 

 

The geodesic equations are given by 

 

U = 
 d  

  
@T 
!
 @T 1 dT @T 

9> 
dt    @u  @u 2T 

dt  @u  > 
V = 

 d  
 
@T 
!
 @T 

 1  dT @T 
= (7.16) 

dt    @v  @v 2T  dt  @v  > 
where  T (u; v; u ; v ) =  Eu 

2
 + 2Fu v  + Gv 

2
 ; 

Here t  is a parameter without loss of generality we can take  s  as 

parameter, so u ; v  are replaced by  u0 ; v0     and 
 

T 
 
u; v; u ; v 

  
= Eu + 2Fu v  + Gv (7.17) 

 

 

Along the curve  u0      and  v0      satisfy the identity of direction coe cients. 
1 dT 

Hence  T   = ; 
2 ds 

=  0 and equations (7.16) becomes the canonical 

equations for geodesics 

> 

) 

=    0 
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1 

  ! 

1 1 

> 
@T 

U = 
 d  

  
@T 
!
 @T 

=  0

9> 
ds    @u0 @u 

V = 
 d  

 
@T 
! = 0 

>=>> 
(7.18) 

ds    @v0 @v 
>; 

 

In these equations, the partial derivatives of  T  are calculated from 

equation (7.16) before values of  u0      and  v0      are substituted.   T   is not equal 
1 

to identically for all values of  u; v; u0 ; v0      but only along the curve.  We 
2 

get the identity namely  u0 U + v0 V  =  0: 

The equation (7.18) are not independent. For a curve other than a 

parametric  curve   u0      6=   0; v0      
=6   0   and  the  conditions   U   =   0; V   =   0   are 

equivalent other being su  cient for a geodesic.   For a parametric curve 

u  = constant,    u0      
=   0; v0      6=   0   and  V   =   0   for  all   s: The  condition  for  a 

geodesic  is   U   =   0: Similarly,   V   =   0   is  the  su cient  condition  for  the 

curve v = constant to be geodesic. 

 
Example 7.4. Find the geodesics on a surface of revolution. 

 

Solution:Let the surface be given by 

~r =     (g(u) cos v; g(u) sin v; f (u)) 
 

 0 0 0 

~r1 =     
 
g (u) cos v; g (u) sin v; f  (u)

  
~r2  =     ( g(u) sin v; g(u) cos v; 0) 

E =     ~r   
2
 =  g

0   2
(u) +  f 

0   2
(u); 

G  =     ~r2   ~r2 =  g
2
(u); 

F =     ~r1   ~r2 =  0 

Hence ds
2
 = Edu

2
 + 2Fdudv + Gdv

2
 

=     

 
g

0   2
(u) +  f 

0   2
(u)

 
du

2
 + g

2
(u)dv

2
 

T =     

h 
f 

2
 + g

2
 

u
0   2  

+ g
2
V

0   2
i  

where f 

 

 

 

 

 

 

 

 

 

 

 

 
d f 

= f 
0 

= 

 

 
From above, we see that 

reduces to 

 

@T 
= 0 then the canonical equation V = 0 

@v 

d @T 
=    0 

ds    @v0
 

 

Upon integrating, we get  g2
v0    

=    > 0; where    is an arbitrary constant. 

If    =  0; then  V   is constant and every meridian is a geodesic.  Now we 

assume that is positive. Then the rst order di erential equation can be 

1 
du 
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1 1 

1 1 

1 1 

 

written as 

g
4
dv

2
 =      2

ds
2
 =   2

 
h 

f 
2
 + g

2
 

du
2
 + g

2
dv

2
i 

 

)    
q 

f 
2
 + g

2
 
du       g 

q
g

2
    2

dv =  0 (7.19) 
 

dv 
Even though     is an arbitrary constant,     being included, because  

du
 

may change sign along the same geodesic. If  g2
 6=   2; then equation (7.19) 

becomes 

  

q 
f 

2
 + g

2
 
du    =     g 

q
g

2
    2

dv =  0 

 

1 1 

dv 

q 
f 

2
 + g

2
  

 

1 1 ) = q 
du 

g g
2
     

2
 

  
Z q f 

2
 + g

2
  g 

q
g

2
    2

 where    and    are arbitrary constants. 
 

If  g2
  =   2; then from equation (7.19), we get  u  =   constant.  For curves 

u = constant, the equation V  =  0  is satis ed.  To check whether the curve 

u =  c  is geodesic , it is necessary to apply the condition that  U  =  0: Since 

u0    
=  0  and v0    

=  g 1   from the identity for direction coe cients. 

@T 

@u0
 

=     0; 
@T g1 

= 

@u g 

g1 
; U = 

g 

 

The curve  u =  c  is therefore a geodesic if and only if  g1(c) =  0: Since 

g is the radius of the parallel u = c on the surface of revolution, a parallel 

is a geodesic if its radius is stationary. 

 

Example  7.5.  Discuss  the  nature  of  geodesics  on  the  right  helicoid 

x =  u cos v; y =  u sin v; z =  av: 

 

Solution: 

~r(u)    =     (u cos v; u sin v; av) 

~r1(u)    =     (cos v; sin v; 0) 

~r2(u)    =     ( u sin v; u cos v; a) 

E =     ~r1 
2
 =  1;   F  =  0;   G =  u

2
 + a

2
 

 

Now the canonical equation  V = 0 except these for which  u = constant, 

Upon integration we get  v    =       +    du =    +    (u;  )  (say) 

  



133 7.2. Canonical geodesic equations: 

M.Sc.(Mathematics)-I Year-I Sem Di  erential Geometry 

 

 

    !  

        

@ 

@s 

 

are the geodesics on the surface. Also u = c  is a geodesic if and only if 

V  =  0: 
 

The metric is  
ds

2
 =    du

2
 +

 

u
2
 + a

2
 
dv

2
 

 

and T = 

 
= 

 
@T 

h
Eu

0   2  
+ 2Fu

0 

v
0   

+ Gv
0   2

i 
h
u0   2  

+ 

 
u2  

+ a2
 

v0   2
i 

@T 
=    0; 

@v 

 
 

@v0
 

=  

 
u

2
 + a

2
 

v
0

 

V = 
@
 
@T 
!
 @T 

= 

h 
u

2
 + a

2
 

v
0 

i 
  0 

@s    @v0 @v @s 
@ 

= 

h 
u

2
 + a

2
 

v
0 

i 
@ 

V =     0    ) 
h 

u
2
 + a

2
 

v
0 

i 
=  0 

Integrating, we get   
 
u

2
 + a

2
 

v
0 

=     k    where k is an arbitrary constant 

If  k  =  0; then we get  v0     
=  0  (or)  v  = constant.  Thus every meridian 

v = c is a geodesic on the right helicoid. 

 

Squaring, we get 
 

2 

u
2
 + a

2
 

2   dv
 

ds 
2 

 
=    k

2
 

 
u

2
 + a

2
   

u
2
 + a

2
  

dv
2
 =    k

2
ds

2
 

dv
2
 =    k

2
 
 
Edu

2
 + 2Fdudv + Gdv

2
   

u
2
 + a

2
   

u
2
 + a

2
    k

2
 
dv

2
 =    k

2
du

2
 

dv    =        q 
 

 

 
k 

 
2 2 2 

 

 
 

du (7.20) 
2  

u  + a  
   

u  + a     k  
  

 

Case 1:  Let u
2
 + a

2
    k

2
 

geodesic. 

0: Integrating  (7.20),  we  get  the  equation  of 

v    =    k      k 

Z 
k 

du 

1    

q 
u2 + a2     u2 + a2   

   k2
 

where k1 is an arbitrary constant 

Case 2: Let  u2
 + a

2
   k

2
 =  0: Then from equation (7.20), we see that  du =  0 

(or) u = constant, the equation  v =  0  is automatically satis ed.  Further, 

the necessary and su cient condition for the curve u = c to be geodesic 

2 

1 

2 

2 
1 

2 

@s 
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) a   

2 

>  

~  

1 1 2 2 

1 2 

= 

dt 

 

is  that  U  =   0: Since  F  =   0  for  this  surface,  the  curve   u  =   c   will  be  a 

geodesic if and only if G1 = 0 then u = constant for all values of v: 

G =    u
2
 + a

2
 

G1 =    2u + a
2
; u = c 

 

Thus, G1 = 0 implies that u = constant will be a geodesic if and only if 
2 

2c + a2 
= 0 c =  : 

2 

The parametric curve is u =  
 a  

 

2 

 

is also a geodesic. 

 

 
 

 

7.3. Normal property of Geodesics: 

 

In this section, we are going to study the properties of Geodesics and 

the application of Tensors in the study of Geodesics. 

 

Bookwork 7.2. A characteristic property of a geodesic is that at every point its 

principal normal is normal to the surface. 

Proof.  The  geodesic  equations  can  be  expressed  in  terms  of  ~r (u; v)  in  terms 

of  the  following  identities  which  hold  for  any  functions  u(t); v(t)  of  a  general 

parameter  t: 
@T 

 

 

@u  
= ~r    ~r1; 

@T 
 

 

@v  

= ~r    ~r2 

9 
>=> 
 

(7.21) 

U(t) = ~r    ~r1; V(t) = ~r    ~r2 

where  T  =  

 
Eu 

2
 + 2Fu v  + Gv 

2
 

: 

To prove these, consider the relations 

1 1 

T = 

h
~r   

2
u 

2
 + 2 ~r     ~r  u v  + ~r   

2
v  

2
i 

= 

 
~r  u  + ~r  v 

  
T = 

1
~r  2 

(* ~r  = ~r  u  + ~r  v ) 
 

2 

@T   
 

 

1 2 

 

@~r  
 

 

@u  ~r   
@u  

= ~r   ~r1 

@T @~r @ d 

@u 
~r   

@u 
= ~r   

@
 

 
~r1u  + ~r2v 

  
= ~r   

dt 

 
~r1

  
) U(t)   = 

d  
 
@T 
!
 @T

 

dt    @u  @u 
d d d 

= 

 
~r    ~r1

  
 ~r     

~r1

  
=  r   

dt 

 
~r1

  

>; 

2 

u 

2 
2 

= 

dt 
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1 2 

1 2 

~  

        

dt ds dt ds 

    

 

Similarly, we can show that V(t) = ~r    
d 

dt 

 
~r2

 
: 

If  s  as parameter, then the geodesic equations are U(s) =  0;   V(s) =  0: These 

can be written as 

~r 
00     ~r =     0; ~r 

00     ~r   =  0 

 
This shows that  ~r 00      is perpendicular to both  ~r    and  ~r    and therefore along 

the normal to the surface. Since ~r1  and  ~r2  lie in the tangent plane to the surface. 

But  ~r  00      is along the principal normal to the curve.  Hence we see that at every 

point P of a geodesic, the principal normal is normal to the surface.   

Note 7.2. Every great circle of a sphere have the normal property of geodesics, 

therefore every great circle on a sphere is a geodesic. 

Example 7.6. A particle is constrained to move on a smooth surface under no 

force except the normal reaction. Prove that its path is a geodesic. 

Solution:   Let   ~r   be  the  position  vector  of  a  moving  point  and  the 

parameter t is the time. 

i:e:; ~r = ~r(t): 

Then the velocity vector = 
d~r  

= ~r  
dt 

 

and acceleration vector = 
d~r 

dt 
= ~r  

 

Given that the only force acting on the particle is the normal reaction. 

We know that F = mr *  Force = mass      acceleration
  

 

Given that the force is along the normal to the surface, so 

along normal to the surface. 

~r  must be 

Since ~r  is tangential to the path of the particle,  it must be along 

tangential to the surface. 

~r ? 

 

~r  

~r  

) 2~r  

  ~r  

  ~r  
  

= 0 

= 0  ) 

 
 

~r 2   
= 0 

dt   

) ~r 
2
 = 0 ) ~r   

2
 =  constant )  ~r  =  c 

) speed s = c 
 

Now, ~r  = 
d~r  

=  
d~r    ds  

= ~ts 
 

where ~t =  
d~r

 

 

is the unit tangent to the path of the particle and  ~r  =  c~t : 

d 
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~r  

 

 

) ~r  

d~t 
=     c 

dt 

d~t ds 
=    c 

ds dt 

=     c
2 ~n 

 

 
 

=  c~t 0 

s  =  c~t 0 

c =  c
2~t 0

 

 

where  ~n  is the unit principal normal to the path of the particle ) ~r  k ~n: 

i:e:; Surface normal is parallel to unit principal normal. 
 

Therefore, by the normal property path of the particle is geodesic. 

 
Example 7.7. Show that every helix on a cylinder is a geodesic. 

 

Solution: Let C be a helix on a cylinder whose generators are parallel 

to a constant vector  ~a: 

Let   P   be  any  point  on  C: Let  ~t   and  ~n   be  the  unit  tangent  and  unit 

principal normal to  C  at  P: Let  N~ 

cylinder). 

be the unit normal surface at P (to the 

Since  C  is an helix, we have  ~t   ~a = constant (by de nition of helix). 

Di erentiate with respect to  s; ~t (0) +  
d~t    

~a    =     0 
ds 

)  ~t 0     ~a    =     0 

)   ~n   ~a    =     0 

) ~n   ~a    =     0    ) ~n ? ~a 

Also,   ~n ? ~t 

 
Thus  ~n  is perpendicular to both  ~a  and  ~t: 

) ~n  is parallel to  ~a  ~t: 

Since  ~a  and  ~t  are tangential to the surface of the cylinder at  P;  ~a  ~t  is 

along the surface normal  N~ at  P: 
 

Thus  ~n  and  N~ are parallel. 
 

Hence by the normal property, it follows that C is geodesic on the 

cylinder. 
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@u0
 @u @v0

 @v 

@v0
 @v 

@u0
 @u @v0

 @v 

Check Your Progress: 

Choose the correct or more suitable answer: 

 

 
 

In this unit, the students acquired knowledge to 

 
  derive the canonical equations for the Geodesics. 

  understand the normal properties of Geodesics. 
 

 
 

 

1. De ne Geodesic. 

 
2. Derive the canonical equation for the geodesic. 

 
3. Prove that every helix on a cylinder is a geodesic. 

 
4. Derive the normal property of a geodesic. 

 

 

1. The curve u = constant is a geodesic if and only if 

 
(a) GG1 + FG2    2GF2 = 0 

(b) GG1    FG2   2GF2 = 0 

(c) GG1    FG2 + 2GF2 = 0 

(d)  GG1 + FG2 + 2GF2 = 0 . 

 
2. A characteristic property of a geodesic is that at every point its 

principal normal is : : : : : : to the surface 

(a) tangent (b) binormal 

(c) normal (d) none of these. 
 

3. Every helix on a : : : : : : is geodesic. 

d 
(a) U = 

 
@T 
! 

+ 
@T 

d 
= 0; V = 

 
@T 
!
 @T 

= 0
 

d 
(b) U = 

 
@T 
!
 @T 

 

  

 

  

d 
= 0; V = 

 
@T 
! 

+ 
@T  

= 0
 

d 
(c) U = 

 
@T 
! 

+ 
@T 

d 
= 0; V = 

 
@T 
! 

+ 
@T  

= 0
 

d 
(d) U = 

 
@T 
!
 @T 

 

  

 

  

d 
= 0; V = 

 
@T 
!
 @T 

= 0
 

@u @u0
 

@u @u0
 

Let Us Sum Up: 

ds ds 

ds ds 

ds ds 

ds ds @v0
 @v 
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Glossaries: 

Suggested Readings: 

 

 
 

(1) a  (2)  c   (3)  d 

 
 

 

Geodesics: The shortest path between two points on the surface. 

 
 

 

 

1. T.J. Willmore, An Introduction to Di erential Geometry , Oxford 

University press, (17th Impression), New Delhi, 2002. (Indian 

Print). 

 

2. C.E.Weatherburn, Di erential Geometry of Three Dimensions , 

University Press, Cambridge, 1930. 

Answer: 
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8. 3 Geodesic Curvature 

Let us Sum Up 

Check Your Progress 

Answers to Check Your Progress 

Suggested Readings 

Objectives 

After completion of this unit, students will be able to 

 
F understand the concept of Geodesic parallels, Geodesic 

coordinates and Geodesic polars. 

 

F  derive the expression for Geodesic curvature. 

 
F  derive Liouville's formula for   g: 
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Overview 

140 8.1. Existing Theorems: 

 

 

In this unit, we will illustrate the basic concepts of Geodesic 

parallels and Geodesic curvature. 

 

 

8.1. Existing Theorems: 

 

With s as parameter the geodesic equations can be written in the form 

u = f 
 
u; v; u ; v 

 
;  v    =  g 

 
u; v; u ; v 

  

where   f    and   g   are  quadratic  forms  in   u0 ; v0        with  single-valued 

continuous functions of  u and  v as coe   cients.  These are simultaneous 

second order di erential equations for  u  and  v  as function of  s; and from 

the theory of such equations if  f   and  g  are of class   1  a solution exists 

and is determined uniquely by arbitrary initial values of  u0     and  v0 : Hence 

A geodesic can be found to pass through any given point and have any given 

direction at that point. The geodesic is determined uniquely by these initial 

conditions. 

From the above existence theorem, it is to be expected that if a point Q 

is su ciently close to any point P then it is possible to nd the direction 

at P such that the geodesic through P in this direction also passes through 

Q: We have the following theorem where we assume that the surface is of 

class  3: 

 Every point P of the surface has a neighbourhood N with the property that 

every point of N  can be joined to  P by a unique geodesic are which lies wholly 

in N . 

 

Note 8.1. The above theorem asserts that we can say at present about the 

existence of geodesic joining two given points, it says that Q can be joined to 

P  if it is su ciently close to  P: Nothing more than that can be said as long as the 

region of the surface have been considered arbitrary. However, when a complete 

surface has been de ned it will appear that any two points can be joined by atleast 

one geodesic. 

 

De nition 8.1 (Convex Region). A region R is convex if any two points can be 

joined by a geodesic lying wholly in R and is simple if there is not more than one 

such geodesic arc. 
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8.2. Geodesic Parallels: 141 

Note 8.2. In the Euclidean plane a convex region is necessarily simple but this is 

not so for a surface in general. The surface of a sphere for example is convex but 

not simple. 

An existence theorem due to J.H.C. Whitehead states that every point of  P 

of a surface has a neighbourhood which is convex and simple . 

8.2. Geodesic Parallels: 

A family of geodesics is given, and that a parameter system is chosen 

so that the geodesics of the family are the curves v = constant and their 

orthogonal trajectories are the curves u = constant. Then F = 0 and 

condition for the  v =  c  curve be a geodesic is  EE2 + FE1   2EF1 =  0: This 

implies  v  = constant to be geodesic becomes  E2  =  0: Thus, the metric is 

of the form 

ds
2
 = E(u)du

2
 + G(u; v)dv

2
 

 

Consider the distance between any two of the orthogonal trajectories, 

say  u =  u1  and  u =  u2  measured along the geodesic  v =  c: 

Along   v    =     c    and   dv    =     0    and   ds    = E(u)du:  This   implies 
u2    

s  = E(u)du: Which is independent of  c: Thus the distance is same 
u1 

along whichever geodesic, v = constant is measured. For this reason, the 

orthogonal trajectories are called geodesic parallels. 
 

When  dv =  0  and  ds =  du  implies  E(u) =  1: Thus the metric is reduced 

to  ds
2
  =   du

2
  +  G(u; v)dv

2
   where  u   is  the  new  parameter  determines  the 

distance from some xed parallel the parallel, determines by u measured 

along the geodesic v = constant. 

Geodesic Coordinates: If the parametric curves are orthogonal and one of 

the family of parametric curves are geodesics then the coordinate of any 

point on the surface are called a set of geodesic coordinates. 

Geodesic Polars: A particular system of geodesics and parallels is found by 

taking the geodesics which pass through a given point   O: By the second 

existence theorem, there is a neighbourhood of O  in which, when the point 

O   is  excluded,  the  geodesic  constitute  a  family.   Parameters   u; v   can  be 
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1 2 n 

n 

1 1 1 2 

2 1 2 2 2 

1 n 1 2 1 1 

 

chose as above. In particular u can be taken as the distance measured 

from O along the geodesics and v  can be taken as the angle measured at 

O between a xed geodesics v = 0 and the one determined by v: 

In this way, the parameters u and v corresponds to polar coordinates r 

and   in the plane. 

 

Thus the metric is given by 

 
ds

2
 =    du

2
 + Gdv

2
 

 

where G is such that when u is small, the metric approximates to plane 

polar form with  u; v  in place of  r;  :  i:e:;  to  du
2
 + u

2
dv

2: Hence  G   u2: 

p
G

 

lim =    1 
u!0      u 

 

In geodesic polar parameters the parallel u = constant are geodesic 

circles. 

 
 

 

8.3. Geodesic Curvature: 

 

For any curve on a surface, curvature vector at  P  is  ~r 00    
=   ~n  where    

is the curvature and  ~n  is the unit principal normal. 
 

Since any vector at  P  is a linear combination of  ~r1; ~r2   and 

write  ~r 00     as 

N~ ; we can 

~r 
00 

=      ~r   +  ~r   +   N~ (8.1) 

 
 

where     is the normal component of  ~r 00 ; called the normal curvature 

P:  The  vectors    ~r1  +   ~r2    with  components   ( ;  )   is  intrinsic  so  that 

the magnitudes measures in some sense the deviation of the curve from 

geodesic. 

~r 
00     ~r =     

 
  N~ +  r~ +  r~ 

  
  ~r (* N~   ~r   =  0) 

U =     ~r 
00     ~r   =   ~r   

2
 +  ~r     ~r   =  E  + F  

V =     ~r 
00     ~r   =   ~r     ~r   +  ~r   

2
 =  F  + G  (* N~   ~r   =  0) 

 
Solving the above two equations, we get the values of     and   : 
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1 2 n 

g n 

g 

g 

n 

g n 

g g g 

g 

         
~ 

 ~~   ~N   r
   N   r +   g 

g 

n 

2 

 

i:e:;   =  
GU   FV 

;   =  
EV   FU 

: 

H2 H2 

Geodesic curvature vector   ~r1 +  ~r2  is denoted by  ~ g  and its magnitude 

by   g: The vector  ( ;  )  is called the geodesic curvature of the vector. 

 

Bookwork 8.1. Prove that the geodesic curvature vector of any curve is 

orthogonal to the curve. 

 

Proof. Now we shall prove that the geodesic curvature vector ~ g of any curve is 

orthogonal to the curve. We have 

~r 
00 

=      ~r   +  ~r   +   N~ 

~r 
00 

=     ~  +   N~ (8.2) 

 
 

Taking scalar product of equation (8.2) with ~r 0 ; 
 

~r 
0     ~r 

00 

=     ~r 
0     ~  +   ~r 

0     N~ 

)  0    =     ~r 
0     ~  + 0 

h
* ~r 

0     ~r 
00    

=  0;   ~r 
0     N~ =  0

i 
) ~t   ~ g =     0 

 
This shows that ~ g is orthogonal to the curve.                                      

Bookwork 8.2. For a geodesic, the geodesic curvature is zero. 

Proof.  Now,  ~r 0     N~ =  0  ) ~r 0    ? N~ 
~r 0 : 

and  N~  ~r 0     is perpendicular to both  N~ and 

 

Therefore, ~r 0 ; N~  ~r 0 ; N~ form a right handed system of unit vectors. 
 

Thus, the geodesic curvature vector ~   can be expressed as ~  =    
 
N~  ~r 0 

 
: 

Equation (8.2) ) ~r 
00 

=       
 
N~  ~r 

0 

  
+   N~ 

Taking dot product with  N~  ~r 0 ; we get 
  

N~  ~r 
0 

  
  ~r 

00 

=       0 0 

 
N~  ~r 

0 

  
  N~ 

) 
h
N~ ; ~r 

0 ; ~r 
00 

i 
=       

 
N~  ~r 

0 

  
+   

h
N~ ; ~r 

0 ; N~ 
i 

n 

) 
h
N~ ; ~r 

0 ; ~r 
00 

i 
=       (1) +   (0) 

n 

)  g =     

h
N~ ; ~r 

0 ; ~r 
00 

i 

If the curvature is a geodesic, then ~r 00    
=   nN~ : 
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n 

g 

n g 

g 

g 

  

    
    3  

 
~r1   ~r2

     ~r1   ~r2

  
= 

g 

  

 

  =     

h
N~ ; ~r 

0 ;   N~ 
i 

=      n 
h
N~ ; ~r   ; N~ 

i 
=  0 

0 

 

) g =   0   

 
 

Bookwork 8.3.  Derive an expression for Geodesic Curvature. 

 

Proof. As we already proved that the geodesic curvature vector g of a curve is 

orthogonal to the curve.  g lies on the tangent plane and therefore perpendicular 

to the surface  N~ : Thus,     is orthogonal to the unit vector  N~  ~r 0 : 
 

Therefore, the geodesic curvature vector is   g 
 
N~  ~r 0 

  
and  hence  it  can  be 

written as  
~r 

00 

=       N~ +   
 
N~  ~r 

0 

  
(8.3) 

 

Taking dot products with the unit vectors  N~  ~r; we have 
  

N~  ~r
  

  ~r 
00 

=     

 
N~  ~r

  
    N~ + 

 
N~  ~r

  
    

 
N~  ~r

  
n g h

N~ ; ~r 
0 ; ~r 

00 

i 
=     0 +   

 
* 

 
N~  ~r

  
  
 
N~  ~r

  
=  1; 

 
N~  ~r

  
  N~ =  0

  
i:e:;   =     

h
N~ ; ~r 

0 ; ~r 
00 

i 

If we replace the parameter  s  by  t; we have 

 
) ~r 

0 

= 

r  
; ~r 

00    

= 
s  

s ~r ~r s  
; and  ~r 

s 
2
 

 ~r 
~r ~r  

= 
s 

2
 

Therefore, we have  g = 
1 

 
 

s 
3
 

h
N~ ; ~r ; ~r 

i 
 

 
 

But, N~  = 

1 

H 

 
~r1  ~r2

  
  1     1    ~r1   ~r     ~r1   ~r  

~r2   ~r    ~r2   ~r 

 
@T 

Also, we know that 
 

= ~r    ~r  ;    
@T

 
 

= ~r    ~r  ; U(t) = ~r    ~r  ; V(t) = ~r    ~r  : 
 

Thus, we have 
@u  

 @T 

1 
@v  

2 1  2 

   
 
@u  

 
 

U(t) 
   

        " # 

1    1 

= 
    

=
 

@T @T 
V(t) U(t) 

g 

H s
 

@T   
@v  

V(t)

 
   H s 

3
 @u  @v  

Replacing the parameter  t  by  s; we get 

3 

H s  
)  g = 

H s 
3
 
  

0 00 
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H @u0
 @v0

 

g 
H @u0

 @v0
 

H @u0
 

@u0
 @v0

 

1 2 1 

1 

2 

 

=      = 
1  

"
V(t) 

@T    U(t) 
@T 

#
 

 
 

This is the expression for   g:   

 
Example 8.1. Find the geodesic curvature of the parametric curves v = constant. 

 

Solution: 

Taking u as the parameter. 
 

i:e:;  u    =     t;   v =  c 

) u =   1; v = 0 
1 

T = 

 
Eu 

2
 + 2Fu v  + Gv 

2
i 

@T @T 

@u  
= E; = F 

@v  

U = 
d  

 
@T 
!
 @T 

d 1 
= (E)     E1 

1 
= E1 

dt    @u  @u dt 2  2 

and V = 
d  

 
@T 
!
 @T  

=  
d 

(F)    
1 

E  = F      
1 

E 
2 1 2 

dt    @v  @v dt 2  2 

1 
) = 

"
@T 

V(t)   @T 
U(t)

#
 

  
 

g
 H s 

3
 

1 
= 

@u  "
E 

 
F

 

@v  

  1
E  

!
 F

 
1 

E 

!#
 

H   E
3=2

 2 2 

1 
= 

2HE 3=2 
[2EF1    EE2    FE1] 

Example 8.2. Derive the formula for geodesic curvature when the arc length s 

is chosen as parameter. 

Solution: We know that 

k = 
1  

"
@T 

V(s)   @T 
U(S )

#
 

= 
1 

V(s) 

"
@T

   @T  U(S )
# 

 

 

 

 

= 
1  V(s) 

 
u

0  
@T  

+ v
0  
@T 

! 
1 V(s) 

= 
H    u0

 

 

[Since  T   = 

h
Eu0   2  

+ 2Fu0 u0   
+ Gv0   2

i 
= is a homogeneous function of 

second degree in  u0     and  v0 : 
@T @T 1 

Hence  u0     
+ v0     

=  2T  =  2   =  1: ] 

@v0   V(S ) 

g 

H u0 @u0
 @v0

 

2 

2 

1 

2 
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H 

  

2 

! 

  

H v0 

H2  u0 v0 

" 

" 

 

In a similar fashion, we can prove that  g =    1  U(s) 
: 

 
Thus  g = 

 
1 V(s) 

 
 

 

  

 
1 U(s) 

= : 

H    v0
 

Example 8.3. Show that the components ;  of the geodesic curvature vector 

are given by the following formula 

1  U @T 1 
   = = 

@ 

V @T 

@ 
1  V @T 1 

   = = 

@ 

U @T 

@ 

Where s is the parameter. 

Solution: We know that 

1 
   = 

2  
[GU     FV] ; = 

1 

H2  
[EV    FU] 

H
2
  

         

U Now,   = G   F 

V u 
 

  If  s  is a parameter, then  u0 U + v0 V  =  0  i:e:; = : 
U v0

 

 

 

Thus,       = 

 
 

U 
G + F 

u 

H2 v0 

U 
0 0 

= Gv 
H2v0 

U  @T 
= 

+ Fu 
  

H
2
v0   @v0

  
* T  =  

1 h
Eu

0   2  
+ 2Fu

0 

v
0   

+ Gv
0   2

i! 
 

V GU 

Again       = 

   

H2   

   

V    
  F

  
 

=  
V 

G 
H2 

V 

 

v0 

u0        
  F 

0 0 

= 
u0 H2 

V 
= 

u0 H2 

Gv 

@T 

@v0
 

+ Fu 
  

 

In a similar way, we can prove the other results. 

 
Example  8.4.  Prove  that  if  ( ; )   is  the  geodesic  curvature  vector,  then 

 g =    H  
 

 

Fu0   + Gv0
 

H  
= : 

Eu0   + Fv0
 

0 

u0 H 

U 

0 

# 

H2  v0 v0 

H2  u0 u0 H2  v0 u0 

  

  

V 

# 

  

  



147 8.3. Geodesic Curvature: 

M.Sc.(Mathematics)-I Year-I Sem Di  erential Geometry 

 

 

H 

U 

g 

p
E

 

V 

p
E

 

0 0 

 

Solution: We know that 

 

1 
   = 

2 
[GU   FV] = 

H2  

  

G    F 
U

 

U  
"  

u0  
# 

  = G + F 
H2 v0 

U 
0 0 

 
* u U + v V = 0

  
= 

H2v0 

 g 

Gv + Fu 

 
0 0 

= 
H 

) g =       

Fu + Gv 

H  

 
 

Similarly, we can prove the other results. 

Liouville's formula for g  : 

 
Bookwork 8.4. If  is the angle which the curve under consideration makes 

with parametric curves v = constant, then according to Liouville's formula g is 

expressed by 

  =      0   

+ Pu
0   

+ Qv
0

 

where P   = 
2EF1   FE1    EE2 

2HE 

Q   = 
EG1   FE2 

2HE 

 

Proof. The direction coe cients of the parametric curve  v  = constant are 

1   
; 0

! 
and the direction coe cients of given curve be  (u0 ; v0 ) : We have 

cos     = Ell1 + F (lm1 + l1m) + Gmm1 
1 

) cos      = E p u
0   

+ F 

  
1
 

v
0   

+ 0

! 
+ G(0) 

) cos    = 

Eu0   
+ Fv0

 

p
E

 (8.4) 

 

we have T = 

@T 

 
Eu

0   2  
+ 2Fu

0 

v
0   

+ Gv
0   

2
  

1 
) = 

 
E  u

0   2  
+ 2F  u

0 

v
0   

+ G  v
0   2

  
(8.5) 

  

@u 2 
1 1 1 

@T 1 
0 0

 

and 
@u0 

@T 

= 
2

 
2Eu 

0 

+ 2F  1  v 

0 

+ 0
  

) 
@u0

 

= Eu + Fv (8.6) 

Using equation (8.6) in (8.4), we get 

    
  

  

E 

Fu0   + Gv0
 

    

1 

2 
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" #
0  0 0 

" #    !
0

 0

 

  1 @T 1  

  

0 

g 

p
E

 @u 2 E3=2 

p
E

 @u 2E3=2 @u ds 

p
E

 @u 2E3=2 
1 2 

)  sin      0 

= 
  1   

"
1  

E  u
0   2  

+ 2F  u
0 

v
0   

+ G  v
0   2

 # 

2EH 2EH 

1 

p   p 

1 2 1 2 

 

 

cos   = 
1 @T 

p
E @u0

 

 

(8.7) 

) cos     = E 
 1=2 

@T 
 

@u0
 

 

Di erentiate both sides with respect to  s; we get 

d  
 sin   = E 1=2 

d  
@T 
! 

+ 
@T 

 
 1 

E
 3=2 dE 

! 
  1 @T 1   1 dE 

 sin = U(s) +    
Eu + Fv 

  
 

  1 @T 1 @E du @E dv 
= U(s) +    

Eu + Fv
 

+ 
 

 sin      0 

= 

"
U + 

# 
   

Eu
0   

+ Fv
0 
  

E  u
0   

+ E  v
0 
  

 

p
E  2 

1 1 1 

1 h
EE  u

0   2  
+ (EE   + FE  ) u

0 

v
0   

+ FE  v
0   2

i 
 

2E3=2 1 2 1 2   
1 

0 

! 
Hv 

0 

We know that sin      = H (lm1    l1m) = H 

v 0  =    E E Hv0  0
 ) p = 

 

 
 

 

1    
"
U + 

 

 
 

 

 

1  
E  u

0   2  
+ 2F  u

0 

v
0   

+ G  v
0   2

 # 
1 1 1 

E E 2 
1 h

EE  u
0   2  

+ (EE   + FE  ) u
0 

v
0   

+ FE  v
0   2

i 
 Hv

0  0 

=     

"
U +  

1  
E  u

0   2  
+ 2F  u

0 

v
0   

+ G  v
0   2

 # 
 1 1 1 

2 
1 h

EE  u
02  

+ (EE   + FE  ) u
0 

v
0   

+ FE  v
0   2

i 
 1 2 

2E E FE 
1 2 

 G FE 

)   Hv
0  0 

=     U + 

 
F       2       1 

 
u

0 

v
0   

+ 

 
    1       2 

 
v

0   2 

2 2E 2 2E 

  0 
= 

  U    
+ 

 
2EF1   EE2   FE1 

!
u

0   
+ 

 
EG1   FE2 

 
v

0
 

) =         g 
+ 

 
2EF1   EE2   FE1 

!
u

0   
+ 

 
EG1   FE2 

 
v

0
 

2EH 2EH 

  =      0   
+ 

 
2EF1   EE2   FE1 

!
u

0   
+ 

 
EG1   FE2 

 
v

0
 

2EH 

  =      0   

+ Pu
0   

+ Qv
0

 

2EH 

where P   = 
2EF1    EE2    FE1 

; Q =  
EG1   FE2 

2EH 2EH 

2E3=2 

p 

ds ds @u0
 @u0

 2 ds 

ds 

dv ds 

Hv0
 

g 
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Check Your Progress: 

Choose the correct or more suitable answer: 

Answer: 

 

 
 

In this unit, the students acquired knowledge to 

 

  the Convex region and simple. 

  the Geodesic polars and Geodesic parallels . 

  derive the expression for Geodesic curvature. 
 

 
 

 

 

1. Derive the Liouville's formula for  g . 

 
2. Derive the formula for geodesic curvature for  g . 

 
3. Prove that for a geodesic, the geodesic curvature is zero. 

 

 
 

 
 

1. Orthogonal trajectories are called : : : : : : 

 
(a) geodesic polars. 

 

(b) geodesic parallels. 
 

(c) geodesic curvature. 
 

(d) geodesic coordinates. 

 
2. The geodesic curvature vector of any curve is : : : : : : to the curve. 

(a) tangent (b) orthogonal 

(c) parallel (d) none of these. 
 

 

 

 

(1) b  (2) b 

Let Us Sum Up: 
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In this unit, we will illustrate the derivation of Gauss Bonnet 

theorem and Minding theorem. 

 
 

 

9.1. Gauss-Bonnet Theorem: 

 
 

De nition 9.1 (Simply Connected Regions). If every curve lying in a region  R 

can be contracted continuously in to a point without leaving R then R is said to 

be simply connected. 

 

For Example: In a plane interior of a circle is simply connected, but 

the region between two concentric circles is not simply connected. 

 

Theorem 9.1 (Gauss-Bonnet Theorem). 
 

For any curve  C  enclosing a simply connected region  R; the excess of  C  is 

equal to the total curvature of  R: 

 
Proof.  Let us consider a surface ~r(u; v)  and a simply connected region  R  of the 

surface bounded by a closed curve  C: 

 

 

Figure 9.1 

 

 

 

Let  C  consists of  n  smooth arcs  A0A1; A1A2;       An 2 An 1; An 1 An (An =  A0) 

where n is nite and each arc is positively described. 

Overview 
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0 0 0 

X 

C 

R 

@u @v 

H @u @v 

n 

9.1. Gauss-Bonnet Theorem: 153 

 

At the vertex  Ai (i =  1; 2;       ; n) : Let   i  be the angle between the tangents to 

the arcs  Ai 1 Ai  and  AiAi+1   measured with usual convection at vertices  Ai  so that 

   < i < : If C is taken to be curvilinear polygon then i are the exterior 

angles at the vertices  Ai (i =  1; 2;       ; n) : 

The geodesic curvature g exists at each point of C except possibly at the 

vertices  Ai (i =  1; 2;       ; n) : 

Now, we de ne the excess of the curve C as 
n 

ex (C)    =    2   
X i  

Z
 gds (9.1) 

 

From Liouville's formula for   g; 
 

we have  g =         + Pu + Qv 
 

 g = 
d du dv 

+ P + Q 
ds ds ds 

 

(9.2) 

 

where       is  the  angle  made  by  the  curve  C  with  the  parametric  curve 

v = constant and  P; Q  are functions of  u; v: 

Since the curve  v = constant form a family in the region R  enclosed by  C; the 

tangent to  C  turns through  2  relative to these curves,  i:e:;  we have 

n 

d   + 

C 

 i = 2 (9.3) 

i=1 

 

Using equations (9.2) and (9.3) in (9.1), we get 

ex (C)    =    

Z
 

n 

d  + 

X i   
X i  

Z
 "

d  
+ P

du  
+ Q

dv
#

ds
 

C 
i=1 i=1 C  ds ds ds 

=        

Z
 

=       

"
 

(Pdu + Qdv) 

 
@Q    @P

!
dudv 

 
*   by Green's theorem

  
 

 

=       

"
  

@Q    @P
! 

ds 
 

[* surface element ds = Hdudv] 

R  @u @v H 

=     

" 
  1  

 
@Q    @P

!
ds

 
R H @u @v 

)  ex (C)    =     

" 
K (u; v) ds (9.4) 

where  K =       1  
 
@Q    @P

! 
(9.5) 

 

) excess of C =    total curvature of R (9.6) 

R 

Z 

i=1 
C 
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R R R 

    
+

 

R 

C 

 

there is another function  K1  such that  ex(C) =  

!
R  

K1 (u; v) ds:              
Now, we shall show that the function K is uniquely determined. If possible 

Now,  

" 
(K1    K) ds   =    

" 
K1ds   

" 
Kds = ex(C)   ex(C) = 0 

) 
" 

(K1    K) ds   =   0 (9.7) 

If  K1  6=   K   at some points  P; let  K1  > K   (for de niteness).   Then,  since 

K1      K  > 0  is continuous there exists a region  R  containing  P  such that 

!
R 

(K1   K) ds  > 0; contradicting  (9.7). Therefore  K1      K: Similarly  we 

can prove that  K1   K: 

Thus,  K1 =  K  at each point. i:e:; K  is unique.  

Note 9.1. 1.   
!

s  
Kds  is called the total curvature of  R: 

2. When K is uniquely determined, then K is an intrinsic geometrical 

invariant. It is called the Gaussian Curvature. 

3. For a geodesic triangle  ABC; having arms as geodesic arcs  AB; BC; CA 

and bounded by a simply connected region  R; we have 

n 

ex(C)    =    2   
X i  

Z
 gds 

=     2     sum of exterior angles
   

* 

Z 
 gds =  0

!
 

=    2     (     A +        B +        C) 

=    2     [3     (A + B + C)] = A + B + C     
 

When  A; B; C  are the exterior angles of the  4ABC: 

Thus, Total curvature  =  A +  B + C     =  ex(C): 

4. For a geodesic polygon of n sides. 
 

Total curvature = exc(C) = 2     
  

sum of exterior angles
 
: 

5. The formula for  K   in terms of  E; F   and  G  is given by equation (9.7). 

Hence at any point and in any parameter system, 

K = 
1  

 
@P    @Q

! 
1 @ 

= 
FE2    EG1 1 @ 

 

 

 
2EF1     FE1     EE2 

! 
 

 2HE 2HE 

i=1 C 

H @V @u 

H @u 
H @v 
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G @ 

    

 

When the parametric curves are orthogonal, F = 0 and the formula for 

K can be written in the simpli ed form is 

K =      
   1  

" 
@ 

  
1 

  

+

  
E2 

 # 
where H =  

p
EG 

 

 

 
 

 

9.2. Gaussian Curvature: 

 

An historical de nition of Gaussian curvature follows from Gauss-

Bonnet theorem for a geodesic triangle. If P is a given point and 4 the 

area of a geodesic triangle  ABC  which contains  P; then at  P; 

 

K =    lim 
A + B + C     

4 

Example 9.1. Find the Gaussian curvature of the surface x = u + v; y = u   v; 

z =  uv  at  u =  v =  1: 

 

Solution: Given surface be  ~r (u; v) : 
 

i:e:;  ~r = x~i + y~j + z~k 

)  ~r 
 

= (u + v)~i + (u   v) ~j + uv~k 

~r1 = (1 + 0)~i + (1   0) ~j + v~k = ~i + ~j + v~k 

~r2 = ~i   ~j + u~k 

Now,  E =     ~r1    ~r1  =  1
2  

+ 1
2  

+ v
2  

=  v
2  

+ 2 

F =     ~r1   ~r2 =  1   1 + uv =  uv 

G =     ~r2   ~r2 =  u
2
 + 2 

and H
2
 = EG F

2
 = 2 u

2
 + v

2
 + 2 

i:e:;  H =  

p
2 
p

u
2
 + v

2
 + 2 

Now E1 = 

 
F1 = 

 
G1 = 

@E @E 
= 0; E2 = 

u @v 
@F @F 

= v; F2 = 

u @v 
@G 

= 2u 
@u 

= 2v 

 
= u 

P   = 
2EF1   FE1    EE2 

= 0
 

2HE 

Q   = 
EG1    FE2 

= 

p
2u 2HE 2 

p 
2 2  

v  + 2
   

u  + v  + 2 

2H @u H @v H 

@ 

@ 
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H @u @v 

@u @v a
2
 sin u 

2 22 

 
Thus, the Gaussian curvature K is given by 

K =       1  
 
@Q    @P

! 

=        
  1
26 @ 0B p

2u 
1C @ 

 

 

(0)

37 
=     1  

 

H  @u 
B@B 

v
2
 + 2

 p
u

2
 + v

2
 + 2 
ACC @v 

75 
u  + v  + 2

  
1 

Hence, at  u =  1;   v =  1; the Gaussian curvature is  K  =   
16 

: 

Example 9.2.  Find the Gaussian curvature at the point  (u; v)  of a sphere of radius 

a: 

 

Solution: Equation of the sphere with centre at O and radius a is 

~r =     a sin u cos v~i + a sin u sin v~j + a cos u~k; 

where 0    u      ;  0    v     2  

~r1 =     a cos u sin v~i + a cos u sin v~j   a sin u~k 

~r2 =      a sin u sin v~i + a sin u cos v~j + 0~k 

E =     ~r1   ~r1 =  a
2
 cos

2
 u + a

2
 sin

2
 u =  a

2
 

F =     ~r1   ~r2 =  0; G = ~r2   ~r2 =  a
2
 sin

2
 u 

 
 

H
2
 = EG   F

2
 = a

4
 sin

2
 u 

2 

) H =   a sin u 

E1 = 
@E @E 

= 0; E2 = = 0 
u @v 

@F 
F1 = = 0; G1 

@u 
= 
@G 

= 2a
2
 sin u cos u 

@u 

P   = 
2EF1   FE1    EE2 

= 0
 

2HE 

Q   = 
EG1 FE2 

= cos u 
2HE 

 
Thus, we have the Gaussian curvature is 

K =       1  
 
@Q    @P

! 
=    1 

 
 

1 
[  sin u] = 

 
Example 9.3. Find the Gaussian curvature of the anchor ring and show that the 

total curvature of the whole surface is zero. 

 

Solution: The equation of anchor ring is 

~r =     (b + a cos u) cos v~i + (b + a cos u) sin v~j + a sin u~k 

H a2 

@ 
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H @u @v H a (b + a cos u) 

EG @v 

u 

Z 

 

where  a; b  are constants and  0   u   2 ; 0   v   2 : 

~r1 =      a sin u cos v~i   a sin u sin v~j + a cos u~k 

~r2 =      (b + 1 cos u) sin v~i + (b + a cos u) cos v~j + 0~k 

E =     ~r1   ~r1 =  a
2
 sin

2
 u cos

2
 v + a

2
 sin

2
 u sin

2
 v + a

2
 cos

2
 u =  a

2
 

F =     ~r1   ~r2 =  0 

G =     ~r2   ~r2 =  (b + a cos u)
2
 

EG   F
2
 = a

2
 (b + a cos u)

2
 

a (b + a cos u) 

@E @E 
= 0; E2 = = 0 

u @v 
@F 

= 0 
@u 
@G 

@ 
=    2a (b + a cos u) sin u 

2EF1   FE1    EE2 
= 0

 

2HE 
EG1     FE2  

= sin u 
2HE 

 
Thus, the Gaussian curvature is given by 

K =       1  
 
@Q    @P

! 
=    1  

[ cos u] = 
cos u

 

 
 

Hence, the total curvature of the whole surface is 

Total curvature =    

"
 Kds = 

Z
 u=2  v=2  cos u 

 
Hdudv 

s u=0 v=0 a (b + a cos u) 

[* ds = Hdudv] 

i:e:;  Total curvature =     

Z
 u=2  v=2   

cos ududv = 0 
u=0 v=0 

 

Therefore, the total curvature of the whole surface is zero. 

 
Example 9.4. If the parametric curves are at right angles, show that their geodesic 

1     @ 
curvatures are respectively p  p

G
 
; p1 

@ 
 p

E
 
:
 

 

Solution: The geodesic curvatures of the parametric curves u = constant 

and v = constant are respectively given by 

  = 
2GF2      GE1       FG1 

b   
2HG3=2 

  = 
2EF1       EE2       FE1 

a   
2HE3=2 

EG @u 

@ 

Z 

H2 
= 

) 
 

H 
 
= 

Now, E1 = 

 
F1 

 

= 

 
G1 

 

= 

 
P 

 

= 

 
Q 

 
= 
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2 

 

2E1=2 

H @u @v 

2 
p

G p
G @u 

G @ 
2 

 

Since the parametric curves are orthogonal  F  =  0  and  H2
 =  EG: 

 

Thus, the geodesic curvature of the parametric curve v = constant is 

EE2 

=           p 
1        E 1     @ 

=     p =    p 
 p

E
  

 
 

In a similar way, we can prove that the geodesic curvature for the 
parmaetric curve u =  constant is      =   p 

p
G

 
: 

1     @ 
 
 

Example 9.5.  If  ~r  =  ~r (u; v)  is a set of geodesic curvature on a surface of class 

  3; such that the parametric curves  v = constant are geodesics and  u  is natural 

1 @2
   

 

Solution: 

We know that the Gaussian curvature is given by 

K =       1  
 
@Q    @P

! 

= 
1 
" 

@ 

 
2EF1     FE1     EE2 

!
 @ 

 

 
 

EG1     FE2 
 # 

(9.8)
 

 

Also, for v = constant geodesics, we have 
 

ds
2
 =     du

2
 + G(u; v)dv

2
 

We get  E =  1;   F  =  0; H =   

p
G: 

Thus, the equation (9.8) reduces to 

  1 @ 
K =       " G1  

# 
=   

   1 @ 
" 

@ p
G
 
# 

1 @2
   

 

Example 9.6.  Find the area of geodesic triangle  ABC  on a sphere of radius  a: 

Also, nd the total curvature of the whole space. 

 

Solution: From example (9.2), we see that the Gaussian curvature at any 
1 

point on the sphere is : 
a2 

Also, we know that 

"
s  

Kds    =     exc(C) 
 
from Gauss Bonnet theorem

  

2HE 

a 

2 EGE3=2 EG EG @v 

a 

EG @u 

parameter then K =     p 
@ 2 

G : 
G u 

H @v @u 2HE 

p
G @u 

@u 

=    =    p G 
u 

p 

p 
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a 

" 
  

    

 

1 
i:e:; 

a2 

 

ds   = A + B + C   
s 

) 
4

2 
= A +  B + C    ; 

where 4 is the area of the geodesic triangle 

) 4 =   a
2
 [(A + B + C)    ] 

 
Thus, the  total  curvature  on  the  whole  surface  is  given  by 

!
s  

Kds = 

1 

a2  

!
s 

ds = 4   a
2
  = 4 : 

a2 

 
 

 

9.3. Surfaces of constant curvature: 

 

If K has the same value K0 at every point of a surface, the surface is 

said to have constant curvature  K0: 

Theorem 9.2 (Minding's Theorem). Two surfaces of the same constant curvature 

are locally isometric. 

 

Proof. If  P  is any point of one of these surfaces and  P  is any point of the 

other, then P  has a neighbourhood which is isometric with a neighbourhood of 

P; the points  P  and  P  being the corresponding points. We prove the theorem by 

showing that  S   is a surface with constant curvature  K0; then 

 

1. if  K0 =  0; S   is isometric with a plane. 

1 
2. if K0 = ; S   is isometric with a sphere of radius  a: 

a2 

 

3. if K0 =     
1 
; S  is isometric with a certain surface of revolution called 

a2 

pseudo sphere determined by the value of  a: 
 

In each case a given point of S can be mapped into a prescribed point of the 

plane, sphere or pseudo sphere. 

The theorems for two surfaces S and S  with the same  K; then follows by 

mapping each surface isometrically on to the same plane, or a sphere (or) surface 

of revolution, so that given points P and P  corresponds to the same point. 
 

Let  P  be a given point of the surface  S   of constant curvature  K0; and let  C 

be a geodesic through  P: Take as parametric curves the geodesic orthogonal to 

C together with the orthogonal trajectories. 

1 
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Let v = c be the geodesic orthogonal to C at a point distance C from P 

measured along C and let u  =  c  be the orthogonal to the curves v  =  c  and 

at a distance  c  from the parallel measured along the geodesic.   Then  u; v  is a 

parameter system in the neighbourhood of P and the metric of the surface is of 

the form  du
2
 + g

2
dv

2
  for some  g(u; v): 

Since  u =  0  is the geodesic  C; it follows from the relation 

 

GG1 + FG2   2GF2 =     0; F  =  0; G =  g
2
 

@ 
G1 = g

2
  = 0 when u = 0 

@u 

 

Also,  v  is the arcual distance along  C:  i:e:; ds =  dv  when  u =  0; so that 

g =  1  when  u =  0: 

Thus, we have  (g)u=0  =  1;  (g1)u=0  =  0: 

g11 
K = 

g 
satis es the partial di  erential equation  g11 + K0g  =  0  with 

boundary conditions  (g)u=0   =  1;  (g1)u=0   =  0  these are su cient to determine 

the value of g when K0 is given. 
 

Case  1:    K0  =   0  ,when  g11  =   0; clearly  g1   is  a  function  of  v  only  and 

therefore  g1 =  0  since  (g1)u=0  =  0: 

Integrating  g1  =  0; we get  g  is a function of  v  only, since  (g)u=0   =  1  and 

hence  g =  1: 

Thus  the  metric  becomes   du
2
  +   dv

2: when   u; v   are  taken  as  Cartesian 

coordinates.  Hence the surface  S   in the neighbourhood of  P  is isometric with 

a region in the plane. This implies that K is a satisfactory measure of curvature 

for a surface since its vanishing is both necessary and su cient for the surface to 

be isometric with a plane. 

Case 2:    K =  
1 
: 

a2 

1 
Thus, we have g11 + =     0 

a2 

 
solving this partial di erential equation, we get 

u u 
g(u; v)    = A(v) sin 

a 
+ B(v) cos 

a 

 

Using  the  boundary  conditions,   (g)u=0     =    1; (g1)u=0     =    0   we  get 

A =  0; B =  1: 

Therefore   g(u; v) + cos 

  
  

and the metric becomes du
2
 + cos

2
 

  dv
2: 

a 

u 

a 

u   
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0 

0 

1 1 

u 

Let Us Sum Up: 

Check Your Progress: 

 

The metric is a sphere of radius  a: The surface  S   in a neighbourhood of  P  is 

therefore isometric with a region of a sphere of radius  a: 

Case 3: K = 
1 
: 

a2 

As  in  the  case  (2),  we  have  g   =    cosh 

u 
a

   

and  the  metric  becomes 

du
2
 + cosh

2
 

      

: 
a 

Applying  the  transformation   u   =    au 

a
2
du 

2
 + a

2
 cosh

2
 u dv 

2: 

and  v  = v ; the metric becomes 

Now the metric of the surface of revolution of the curve 

~r =  
 
g (u ) cos v ; g (u ) sin v ; f (u )

  
is   

 
g

2
 +  f 

2
 

du 
2
 + g

2
dv 

2: 
 

Comparing two metrics, we have g
2
 +  f 

2
 = a

2
; g = a cosh u : 

1 1 

Therefore    f (u ) =  a 
R u    p

1   sinh
2
 u du : 

Thus the metric is isometric with surface obtained by revolving the curve 

x =  a cosh u ; y =  0; z =  a 
R 

u    
p

1   sinh
2
 u du     where  ju j < log 

 
1 +  

p
2
  

above 
the z-axis.   

 

 

 

In this unit, the students acquired knowledge to 

 

  derive Gauss-Bonnet Theorem. 

  the concept of Gaussian curvature . 

  derive Minding's theorem. 
 

 
 

 

 

1. If two families of geodesics on a surface intersect at a constant angle, 

prove that the surface has zero Gaussian curvature. 

 

2. State and Prove Gauss-Bonnet Theorem. 

 
3. State and Prove Minding's Theorem. 

 
4. Show that the surface generated by the tangents to any surface curve 

is a surface of constant zero curvature. 
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Answer: 

Suggested Readings: 

 

 
 
 

1. Orthogonal trajectories are called : : : : : : 

 
(a) geodesic polars. 

 

(b) geodesic parallels. 
 

(c) geodesic curvature. 
 

(d) geodesic coordinates. 

 
2. The geodesic curvature vector of any curve is : : : : : : to the curve. 

(a) tangent (b) orthogonal 

(c) parallel (d) none of these 
 

 

 

 

(1) b  (2) b 

 
 

 

 

1. T.J. Willmore, An Introduction to Di erential Geometry , Oxford 

University press, (17th Impression), New Delhi, 2002. (Indian 

Print). 

 

2. C.E.Weatherburn, Di erential Geometry of Three Dimensions , 

University Press, Cambridge, 1930. 

Choose the correct or more suitable answer: 
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1 2 

1 2 11 12 22 

Overview 

 

 
 
 

 

In this unit, we will illustrate the concept of geometrical 

interpretation of the second fundamental form. 

 
 

 

10.1. The second fundamental form: 

 

In the earlier chapter, we discussed essentially with the intrinsic 

properties of a surface, while this chapter deals with properties of a surface 

relative to the Euclidean space in which it is embedded. 

 

Bookwork 10.1 (The second fundamental form). 

 
Derive the equation of second fundamental form. 

 

Proof.  The normal curvature of a curve at any point on a surface ~r  =  ~r (u; v)  is 

given by the equation 

 n = N~   ~r 
00 

(10.1) 

Now   ~r 
0 

=     ~r  u
0   

+ ~r  v
0

 

 
00 0 0  0 

 

 00 00 

 
0      0 0     0 

~r =     
 
~r1u  + ~r2v 

  
= ~r1u   + ~r2v + 

 
~r1

  
u  + 

 
r2~ 

  
v 

=     ~r  u
00   

+ ~r  v
00   

+ ~r   u
0   2  

+ ~r   u
0 

v
0   

+ ~r   u
0 

v
0   

+ ~r   v
0   2

 
1 2 11 12 21 22 

=     ~r  u
00   

+ ~r  v
00   

+ ~r   u
0   2  

+ 2~r   u
0 

v
0   

+ ~r   v
0   2

 

 

Thus the equation (10.1) becomes, 

Objectives 

After completion of this unit, students will be able to 

 
F understand the concept of geometrical interpretation of the 

second fundamental form. 

 

F explain the concept of principal curvature, principal directions 

and mean curvature. 

 

F  understand the concept of Umbilic. 

 
F derive Rodrigue's formula. 
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= N~    ~r  u
00   

+ ~r  v
00 
  

+ N~   
 
~r u

0   2  
+ 2~r   u

0 

u
0   

+ ~r v0   2
  

=     0 + 

 
N~   ~r11

 
u + 2 

 
N~   ~r 

0 2 
 

u
0 

v
0   

+ 

 
N~   ~r 

 
v0   2 

= Lu
0   2  

+ 2Mu
0 

v
0   

+ Nv
0   2

 

Ldu
2
 + 2Mdudv + Ndv

2
 

= 
ds

2
 

Ldu
2
 + 2Mdudv + Ndv

2
 

= 
Edu

2
 + 2Fdudv + Gdv

2
 

 

 

(10.2) 

 
(10.3) 

 

where  L; M; N  are de ned by the relations 

 

L    = N~   ~r11; M =  N~   ~r12;  N  =  N~   ~r22 (10.4) 

 

Alternative expression for  L; M; N  will now be obtained. 

By di erentiating  N~   ~r1 =  0; we get 

 

N~1    ~r1  + N~   ~r11 = 0 (10.5) 

N~2    ~r1  + N~   ~r12 = 0 (10.6) 

Similarly di erentiating  N~   ~r2 =  0; we get 

  

N~2    ~r2  + N~   ~r22 = 0 (10.7) 

N~1    ~r2  + N~   ~r21 = 0 (10.8) 

Substitute the equations (10.5), (10.6), (10.7) and (10.8) in (10.4), we get 
 

L    =      N~1    ~r1; M =   N~1    ~r2 =   N~2    ~r1; N~ =   N~2    ~r2 

 

 
The quadratic  Ldu

2
 + 2Mdudv +  Ndv

2
  is called the second fundamental 

form  and  the  functions  of  u  and  v  denoted  by  L; M; N   are  called  the  second 

fundamental coe cients. 

From equation (10.3), it follows that all curves having the same direction at P 

have the same normal curvature, hence normal curvature is a property of a surface 

and a direction at a point on the surface.   

 

Theorem 10.1 (Meusnier's theorem). If       denotes the angle between the 

principal  normal  ~n  to  a  curve  on  the  surface  and  the  surface  normal  N~ ; then 

 n =      cos : 

 
Proof. We know that 

12 22 

n 11 22 
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n 

n 1 2 

~ 

~ 

1 

2 

 

~r 
00 

=       N~ +  ~r   +  ~r 

) N~   ~r 
00 

=       
 
* N~ is normal to both ~r   and ~r  

  
1 2 

 n = N~    ~n 
 
* N~   ~n =  1   1 cos  

  
=       cos     

 

 
Note 10.1.  Since the right hand side denominator of equation (10.3) is positive 

de nite, it follows that the sign of n depends only upon the sign  for  the 

numerator of equation (10.3). 

 

Elliptic, Parabolic and Hyperbolic Points: 

If a point  P  on the surface this form is de nite  (i:e:; if  LN   M
2
  > 0 ), 

then   n  maintains  the  same  sign  for  all  directions  at   P: In  this  case,  the 

point P is called an elliptic point. 

When   LN    M
2
  =   0; then   n   retains  the  same  sign  for  all  directions 

through P except one for which the curvature is zero. Then the point P is 

called a parabolic point. 

When  LN M
2
 < 0;  n  is positive for all directions lying within a certain 

angle, negative for directions lying outside this angle and zero along the 

directions which form the angle;  then the point  P  is called a hyperbolic 

points and the critical directions are called asymptotic directions. 

Geometrical Interpretation of the second fundamental 

form: 

Let  P(u; v)  and  Q (u + h; v + k)  be near points on the surface and  d   be 

the perpendicular distance from a point Q onto the tangent plane to the 

surface at  P: 

If  ~rP  and  ~rQ  are the position vectors of  P  and  Q; then 
 

d =     
 
~rQ  ~rP

    N 

=     
 
h~r1 + k~r2

    N + 

 
h

2~r11 + 2hk~r12 + k
2~r22

  
  N~ + O 

 
h

3; k3
  

 

= 

 
Lh

2
 + 2Mhk + Nk

2
  

+ O 
 
h

3; k3
  

1 

2 
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Figure 10.1 

 

 

 
Thus the second fundamental form at any point P is equal to twice the 

length of the perpendicular distance from the neighbouring point Q onto 

the tangent plane at  P: 

At an elliptic point d retains the same sign, and this implies that the 

surface near  P  lies on entirely to one side of the tangent plane at  P: 

At a hyperbolic point the surface crosses over the tangent plane, it 

follows that at any point on an ellipsoidal surface is elliptic, any point 

on a circular cylinder is parabolic and any point on the hyperboloid is 

hyperbolic. 

 
 

 

10.2. Principal curvatures: 

 

The normal curvature at P in  a  direction  speci ed  by  direction 

coe cients  (l; m)  is given by 

   = Ll
2
 + 2Mlm + Nm

2
 (10.9) 

where El
2
 + 2Flm + Gm

2
 = 1 (10.10) 

 

As  l; m  vary subject to equation (10.10), the normal curvature will vary. 

Its extreme values may be found by using Lagrange's multipliers. 
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   = Ll
2
 + 2Mlm + Nm

2
      

  
El

2
 + 2Flm + Gm

2
   1

  
 

then when   is stationary, 
 

1 @  
 

 

2 @l 

1 @  
 

 

2 @m 

= Ll + Mm      El      Fm = 0 (10.11) 

= Ml + Nm      Fl      Gm = 0 (10.12) 

 

Equation   (10.11)   l + (10.12)   m;  we get, 

  
Ll

2
 + 2Mlm + Nm

2
  

      
  

El
2
 + 2Flm + Gm

2
     

=    0 

       =     0 using(10.9) and (10.10)
  

) =       

 
Thus, the equations (10.11) and (10.12) will becomes 

 
(L      E) l + (M      F) m   =    0 

(M      F) l + (N      G) m   =    0 

Eliminate l and m between these two equations, we get 

 
L     E M     F  

= 0
 

      
On expanding the determinant, we get 

 

 2
 
 
EG    F

2
  

    (EN + GL    2FM) + 

  

LN    M
2
     

=    0 

This is a quadratic equation in    having two roots say   a  and   b: These 

two roots are called the principal curvature. 

Mean Curvature (  ): Mean curvature   is de ned by 
 

1 
   = (  +    ) = 

EN + GL   2FM 

2 2 
 
EG   F  

  
 
 

Gaussian Curvature ( K ): The Gaussian curvature K of the surface 

at any point is de ned by 

 

K =      a b = 
LN M

2
 

EG F
2
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2 

E2 

 

Principal Directions: 

The principal directions corresponding to principal curvatures are 

obtained by eliminating from equations (10.11) and (10.12), we get 

 
(EM    FL) l

2
 + (EN    GL) lm + (FN    GM) m

2
 =     0 (10.13) 

 
The discriminant of this equation is 

 
 

(EN     GL)
2
 4 (EM    FL) (FN     GM) 

 
 

which is identically equal to 

2 2 

4 

 
EG   F  

!
(EM   FL)

2
 +     

"
EN   GL   2F  

(EM   FL)

#
 

 

We know  EG   F
2
 > 0  and if  E; F; G  and  L; M; N  are not proportional, 

then the above discriminant is positive and hence the roots of the equation 

are real and positive. 

Umbilic: If  E; F; G  and  L; M; N  are proportional. 

E F G 
i:e:; = = 

L M N 

 

then the above discriminant has zero value and therefore the principal 

directions at the point are indeterminate and the normal curvatures has the 

same value in all directions. Such a point is called umbilic. 

 

Note 10.2. If the point is not an umbilic, equation (10.13) gives two principal 

directions which are orthogonal. 

If two directions given by Pdu
2
 + 2Qdudv + Rdv

2
 = 0 are orthogonal if and 

only if  ER   2FQ + GP =  0: 

Now applying the above conditions in (10.13), we have 

E (FN    GM)    2F 
(EN    GL) 

+ G (EM     FL)   =    0 

 
Hence the two directions determined by equation (10.13) are orthogonal. 

E 
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2 

0 

>;     

 

 
 

 

 

10.3. Lines of curvature: 

 

De nition  10.1  (line  of  curvature).  A  curve  on  a  surface  ~r   =   ~r (u; v)   whose 

tangent at each point is along its principal direction is called a line of curvature. 

Theorem 10.2 (Rodrigue's Formula). The necessary and su  cient condition that 

a curve on a surface be a line of curvature at each of its points is   d~r + dN~ =  0; 

where denotes the normal curvature. 

 
Proof. The condition is necessary: Let the curve be a line on the 

surface  ~r = ~r (u; v) : Now, we shall prove that   d~r + dN~ =  0: 
 

The line of curvature are given by [(10.11), (10.12)] 
 

(L      E) du + (M      F) dv = 0 
9>>=
 
 

 
 

(10.14) 

(M    F) du + (N      G) dv = 0 

 

  being one of the principal curvature. 
 

Substituting  the  values  of  E; F; G; L; M; N   by  their  expressions  in  terms  of 

derivatives of ~r  and  N~ ;  i:e:; 

 
E =     ~r1 

2
;   F  = ~r1   ~r2;   G = ~r2

 

L    =      N~1    ~r1;  M =   N~2    ~r1 =   N~1    ~r2;   N  =   N~2    ~r2 

 

 
Thus, the equation (10.14) becomes 

 
 ~r1 

2
 + N~1    ~r1

 
du + 

 
 ~r1   ~r2 + N~2    ~r1

 
dv =  0 

9> 
~ 2 ~ >=> (10.15) 

and  ~r1   ~r2 + N1   ~r2   du +    ~r2 + N2   ~r2 dv = 0 
 

i:e:; 
h
  
 
~r1du + ~r2dv

  
+ 

 
N~1du + N~2dv

 i 
  ~r1 = 

 

    

0
9> 

h 
~ ~ 

i >=> (10.16) 
i:e:;    

 d~r + dN~ 
  ~r1 =     

9> >>; (10.17) 

and 
 
 d~r + dN~ 

  
  ~r2 =  0

>=> 
Since the vector   dN~ +  d~r    is tangential to the surface, therefore in order to 

satisfy the equations (10.17), we must have  
dN~ +  d~r

  
=     0 

N1du + N2dv +   ~r1du + ~r2dv and 

> 

  ~r2 =  0 

>; 

>; 
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E G 

 

The condition is su cient:  Assume that the relation   dN~ +  d~r   =  0 

holds along a curve for any function ; then equations (10.14) follows and thus 

curve is a line of curvature.   

 
Note 10.3. The necessary and su cient condition for the lines of curvature to be 

parametric curves is  F  =  0; M =  0: 

 

Proof. The condition is necessary: Let the equation of curve be 

~r = ~r (u; v)  The di erential equation of line of curvature is 

 
(EM    FL) l

2
 + (EN    GL) lm + (FN    GM) m

2
 =     0 (10.18) 

 
I f the line of curvature be taken as parametric curves, then  F  =  0; since the 

principal directions are orthogonal. 

Again u = constant and v = constant are the equations of parametric curves 

and therefore combined di erential equation must reduce to 

lm    =     0 i:e:; dudv =  0 (10.19) 

 

 
In order that the line of curvatures are parametric curves equation (10.18) and 

(10.19) are equivalent. Hence  M =  0: 

Therefore,  F  =  0; M  =  0  are necessary condition for the lines of curvature to 

be parametric curves. 

The  condition  is  su cient: Assume  that   F   =    0; M   =    0   then  the 

equation of line of curvature (10.18) becomes 

 

(EN    Gl) lm   =    0 ) EN    Gl = 0 or lm = 0 

But  EN   Gl    6=     0  
* EN  6=  Gl ) condition for umbilic point

  
N 

) lm    =     0   i:e:;  dudv =  0 

 

 
which gives u = constant and v = constant. 

 
This is the di erential equation for parametric curves.   

 
Theorem 10.3 (Euler's Theorem).  If   is the normal curvature in a direction 

(l; m)   making   an   angle      with   the   principal   direction   v    = constant   then 

  =    a cos
2
    +    b sin

2
     where    a  and    b  are the principal curvatures at that 

point. 

l 
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p
E

 p
G

 

p
E

 

p
G

 

p
E

 p
G

 

E E 

 

Proof. Consider the line of curvatures as the parametric curves. Then we have 

F  =  0;   M =  0  and hence the normal curvature in a direction  (l; m)  is 

   = Ll
2
 + Nm

2
 

 

The direction coe  cients of the parametric curves  v  =  constant and 

u =   constant are  

  
1   

; 0

! 
and  

 
0;  

1   
!

:  a =     normal curvature along v = constant 

= L 

  
1 
! 

+ N (0) = 
L

 

 

and  b =     normal curvature along u = constant 

= L (0) + N 

  
1 
! 

= 
N

 

 
i:e:;   a = 

E G 

L N 
; b = 

E G 

 

Now    is the angle between the direction  (l; m)  and the principal direction 

v = constant. 

) cos      = E 

    
l   
! 

+ 0 + G(m)(0) = l 
p

E 
0 0 0 0  

* cos = Ell + F 
 
lm + l m

  
+ Gmm 

  
and  cos (90      )   = E(l)(0) + G(m) 

  
1  
!
 

i:e:;  sin    =     m 
p

G 

T hus;    = Ll
2
 + Nm

2
 

2 2 

= L

  
1 

cos 

! 
+ N 

  
1  

sin 

!
 

= 
L 

cos
2
   + 

N 
sin

2
   

E G 

=      a cos
2
   +   b sin

2
     

 

 

 
 

 

10.3.1. Dupin indicatrix: 
 

The section of a surface by a plane parallel to the tangent plane at any 

point  O  on it and at a small distance from it is called Dupin indicatrix at  O: 

Let P be a point on the Dupin indicatrix at O and let h be the 

perpendicular distance of  P  from the tangent plane at  O: Then from the 

Geometrical interpretation of the second fundamental form 
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1 2 

 

2h   = Ldu
2
 + 2Mdudv + Ndv

2
 (10.20) 

 

neglecting higher order in nitesimals. 

 

If we choose the line of curvatures as the parametric curves the n F = 0 

and M = 0 so that the equation (10.20) reduces to 

 
2h   = Ldu

2
 + Ndv

2
 

 

Also, the principal curvatures  a and   b are given by 

L 
 a = 

E 

N 
and b = 

G 

) 2h  =      aEdu
2
 +  bGdv

2
 

 

Also, the metric along the parametric curves are 
 

ds
2
 = Edu

2
; ds

2
 = Gdv

2
 

Thus;  2h    =      ads
2
 +  bds

2
 

1 2 

 
 

Choose O as origin, OX and OY along the principal directions at O 

and  OZ  along the normal to the surface at  O: 
 

If the coordinates of the point  P  on the Dupin indicatrix be  (x; y; z)  then 

x =  ds1; y =  ds2; z =  h: 
 

Hence the equation to the Dupin indicatrix are   x2 a +  y
2 b  =  2h; z  =  h: 

(or) 
x2 y2 

+ 
Ra Rb 

=  2h; z =  h: where  Ra = 

1 1 
; Rb = : 

a b 

Thus Dupin indicatrix is a conic section. 

 

Note 10.4.     Three cases arise according to the sign of   a;  b : 

Case 1: If   a  and    b  have the same sign, then Gaussian curvature is positive 

(i:e:; ) K  =   a b; then the points on the surface are called elliptic points. 

Case 2:  If  a  and   b  have di  erent sign,  the indicatrix is one of the two 

conjugate  hyperbolic.    The  points  on  the  surface   a;  b   have  opposite  signs 

(i:e:; ) K  =   a    b < 0  are called hyperbolic points. 

Case 3: If one of   a  and   b  is zero then  K  =  0; then the indicatrix is a point 

of straight lines. The points are called parabolic points. 

 

De nition 10.2 (Conjugate Directions). Two directions at P are said to be 

conjugate if the corresponding diameters of the Dupin Indicatrix are conjugate. 

De nition 10.3  (Asymptotic  line).  An  asymptotic  line  is  a  curve  whose 
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 2 

  

  

x 

t 

  

 

direction  at  every  point  is  asymptotic. The equation  of  such  a  line 

d~r 

ds 

dN~ 
 

 

ds 
=   0   i:e:;  Ldu

2
 

 

+ 2Mdudv + Ndv
2
 

 

= 0 from which it follows that 

asymptotic lines are self-conjugate. 

 
Example 10.1. Show that Gaussian curvature of the surface given by the Monge's 

form  z =  (x; y)  is  
 
rt   s2

  
1 +  p

2
 + q

2
  

: 

Solution: The equation of the surface is given by  z =   f (x; y): 

@z 
p   = ; q = 

@x 

@z 
; r = 

@y 

@2
z 

@x
2
 

 
;  s = 

@2
z 

@x@y 

 
;  t = 

@2
z 

@y
2
 

 

If  x; y  be taken as parameters, then the position vector  ~r of any point on 

the given surface is given by 

~r = x~i + y~j + z~k =  x~i + y~j +  f (x; y)~k 

~r1 =     ~i +  p~k; ~r2 =  ~j + q~k 

@2~r ~  
 

@2~r ~  
 

@2~r ~  
 ~r11 = 

@ 2   
=  rk; ~r12  =  

@
 x@y 

=  sk;    ~r22 = = tk 
@y

2
 

E =     ~r1   ~r1 =  1 +  p
2
; F  = ~r1   ~r2 =  pq; G = ~r2   ~r2 =  1 + q

2
 

H
2
 = EG   F

2
 = 1 + p

2
 + q

2
 

 

N~  = 
~r1  ~r2  

 
~i +  p~k

  
~j + q~k

  
   

 p~i   q~j + ~k 
 

 ~r1  ~r2   q
1 +  p

2
 + q

2
 

q
1 +  p

2
 + q

2
 

~  ~ 
 p~i   q~j + ~k ~ r 

L   = N  r11 = 

q
1 +  p

2
 + q

2
 

  rk = 

q
1 +  p

2
 + q

2
 

~  ~ 
 p~i   q~j + ~k ~ s 

M = N  r12 = 

q
1 +  p

2
 + q

2
 

  sk = 

q
1 +  p

2
 + q

2
 

N = N~   ~r = 

22    

q
1 +  p

2
 + q

2
 

Thus, the Gaussian curvature is 

LN M
2
 

K = = 
EG   F

2
 

 

rt s
2
 

: 
1 + p

2
 + q

2
 

2
 

 

Example 10.2. Obtain the di  erential equation of the lines of curvature on the 

surface  z =   f (x; y)  and deduce that at an umbilic 
1 + p

2
 

 
 

r 

1 + q
2
 pq 

= = : 
t s 

 

Solution: From the example 10.1, we have 

= = 
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q 

Check Your Progress: 

 

E =    1 + p
2
; F = pq; G = 1 + q

2
 

r 
L  =    

1 + p
2
 + q

2
 

s 
M =    q

1 +  p
2
 + q

2
 

t 
N =    q

1 +  p
2
 + q

2
 

The di erential equation of the lines of curvatures is 

 

i:e:;  
h 

1 +  p
2
 

s   pqr
i

dx
2
 + 

h 
1 +  p

2
 

t   
 
1 + q

2
 
r
i

dxdy 
(EM     FL) du

2
 + (EN     GL) dudv + (FN     GM) dv

2
 =    0 

+ 

h
pqt   

 
1 + q

2
 

s
i

dy
2
 =     0 

 

At an umbilic, we have 
E F G 

= = 
L M N 

i:e:; 
1 + p

2
 
= 

t 

pq 1 + q
2
 

= 
s t 

 

 

 

 

 
 

In this unit, the students acquired knowledge to 

 

  derive Rodrigue's formula. 

  the concept of Umbilic . 

  the concept of Dupin indicatrix. 
 

 
 

 

 

1. Derive the second fundamental form. 

 
2. De ne elliptic points and hyperbolic points.. 

 
3. State and Prove Rodrigue's Theorem. 

 
4. Derive the equation Dupin's Indicatrix. 

 
5. De ne Mean Curvature. 

Let Us Sum Up: 
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Answer: 

Glossaries: 

Suggested Readings: 

 

 
 

 

1. The Gaussain curvaitre K  of the surface at any point is de ned by 

: : : : : : 

 
(a) K = 

 
(b) K = 

 
(c) K = 

 
(d) K = 

LN + M
2
 
. 

EG    F
2
 

LN M
2
 
. 

EG + F
2
 

LN M
2
 
. 

EG    F
2
 

LN + M
2
 
. 

EG + F
2
 

 

2. The necessary and su cient condition for the lines of curvature to 

be parametric curves is. 

(a) F  =  0; M 6=  0 (b)   F 0; M =  0 

(c)   F  6=  0; M 6=  0 (d)   F  =  0; M =  0 

 

 
 

 

(1) c  (2) d 

 
 

 

Dupin Indicatrix: In di erential geometry, the Dupin indicatrix is a 

method for characterising the local shape of a surface. 

 

 

 

1. T.J. Willmore, An Introduction to Di erential Geometry , Oxford 

University press, (17th Impression), New Delhi, 2002. (Indian 

Print). 

 

2. C.E.Weatherburn, Di erential Geometry of Three Dimensions , 

University Press, Cambridge, 1930. 

Choose the correct or more suitable answer: 



 

 

Structure 
 

Objective 

Overview 

11. 1 Developables 

Let us Sum Up 

Check Your Progress 

Suggested Readings 

Objectives 

After completion of this unit, students will be able to 

 
F  understand the concept of developable surfaces. 

 
F understand the concept of characteristic line and characteristic 

point. 

Overview 

 

 

 

 

 

 

 

Block-IV 

UNIT-11 

 

DEVELOPABLE SURFACES-I 
 

 

 

 
 

 

In this unit, we explained the concept of Edge of regression. 
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11.1. Developables: 

 
 

De nition 11.1 (Developable surface). 

 
A developable is a surface enveloped by a one parameter family of planes. 

 

~r   ~a =  p 

 
where  ~a  and  p  are functions of a real parameter  u: 

 
De nition 11.2 (Characteristic line). 

 
As we are familiarising with the concept of two planes intersect along a straight 

line. Based on this idea, now we are going to de ne the characteristic lines. 

If  f (u) = ~r  ~a(u) p(u); the equation of these lines are  f (u) =  0  and  f (v) =  0: 

From Rolle's theorem, it follows that there is a value  u1    u  < u1  < v  such that 

f (u1) =  0: 

As  v  ! u;  u1  ! u  and  the  equations  of  the  limiting  position  of  the  line 

becomes ~r   ~a =  p 

~r   ~a  =  p  

9>> 
>; 

 
(11.1) 

This line is called the characteristic line corresponding to the plane  u: 

 
De nition 11.3 (Characteristic point). 

 
The ultimate intersection of consecutive characteristic lines is called a 

characteristic point. The characteristic point is obtained from the equations. 

~r   ~a =  p  
9> 

~r   ~a  
~r   ~a  

= p  
 

= p  

>= 
>>; 

 

If  ~a; ~a ; ~a  are linearly dependent, these equations have no solution or else the 

solution is indeterminate. 
 

Note 11.1. The above de nition can be restated as the ultimate intersection of 

three consecutive planes is called the characteristic point.  The limiting position 

of this point v ! u and w ! u  independently is called the characteristic 

point  corresponding  to  u: By  Rolle's  theorem,  the  equations  which  determine 

the characteristic points are 
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~r   ~a =  p  
9> 

~r   ~a  
~r   ~a 

De nition 11.4 (Edge of Regression). 

= p  
 

= p  

>= 
>>; 

(11.2) 

The locus of ultimate intersection of consecutive characteristic lines are called 

the edge of regression which is a curve lying on the developable. 

In other words, the edge of regression is the locus of the characteristic point. It 

is given by equations (11.2) with ~r   regarded as a function of  u: 

Bookwork 11.1. Show that the tangents to the edge of regression are the 

characteristic lines. 

 
Proof. The edge of regression is given by 

 

~r   ~a    = p (11.3) 

~r   ~a  

~r   ~a  

 

= p  
 

= p  

(11.4) 
 

(11.5) 

 
 

where  ~r; ~a; p  are all functions of the parameter  u: 
 

Now, di erentiating (11.3) and (11.4) with respect to the parameter u; we get 

 

s ~t   ~a + ~r   ~a  = p  (11.6) 

s ~t   ~a  + ~r   ~a  = p  (11.7) 

Using equation (11.4) in (11.6), we get 
 

~t   ~a    = 

 

 

0 

  

 

(11.8) 

 
Similarly using equation (11.5) in (11.7), we get 

 

~t   ~a  =     0 (11.9) 

 

 
Thus, the equation (11.8) and (11.9) show that the tangent to the edge of the 

regression is perpendicular to both ~a  and  ~a  and hence it is parallel to  ~a  ~a : 
 

But the characteristic line through the point is also parallel to ~a  ~a : Thus, we 

have that the tangent to the edge of regression is the characteristic line.   

 

Bookwork 11.2. Prove that the osculating plane of the edge of regression at any 

point is the tangent plane to the developable at that point. 
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6 

 

Proof.  Di erentiating equation (11.8) with respect to the parameter u; we get 

d~t  ds 
~a + ~t   ~a  =     0 

ds du 

i:e:; s  ~n   ~a + ~t   ~a  =     0 (using Serret Frenet formule) 

) s  ~n   ~a    =     0 [using (11.9)] 

i:e:;  ~n   ~a    =     0 (11.10) 

 
From equations (11.8) and (11.10), we see that  ~a  is perpendicular to both  ~t 

and  ~n  and hence it is parallel to the binormal of the edge of regression. 

Thus, we conclude that the osculating plane of the edge of regression at any 

point is the tangent plane to the developable at that point.   

Bookwork 11.3. Prove that the two sheets of the developable are tangent to the 

edge of regression along a sharp edge. 

 

Proof.  Let  O  be the point  s =  0  on the edge of regression C  and let  Ox; Oy; Oz 

be a set of rectangular Cartesian axes chosen respectively along ~t; ~n  and  ~b  at  O: 

Then at any point on the developable has position vector given by 
 

R~  =     ~r + v~t 
 

Expanding  R~ in terms of  s; we get 

1 s
3
 

R~  =     ~r + v~t (s) =  s~t + s
2 ~n + 

2 

 
 0~n +   ~b    2~t

  
+ O 

 
s

4
  

+v 

"
~t +  s ~n +  

1 
s

2
 
 
 0~n +   ~b    2~t

  
+ O 

 
s

3
 # 

The normal plane x = 0 meets the surface where 

1 
v   =       s       s     + O 

 
s  

  
3  2 4 

 

 

 

 

Using this in the above expansion, we get 

1 

y   =       
2 
1 

z   =        
3

 

 s
2
 + O

 
s

3
  

  s
3
 + O

 
s

4
  

 

Upon eliminating  s; we get  
z

2
 =       

 

8 
2
 
y3 

9    
 

from which, we say that the developable cuts the normal plane to the edge of 

3 
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Let Us Sum Up: 

Check Your Progress: 

Suggested Readings: 

 

regression in a cusp whose tangent is along the principal normal. Thus, the two 

sheets of the developable are tangents to the edge of regression along a sharp 

edge.   

 
 

 

In this unit, the students acquired knowledge to 

 

  Characteristic lines and Characteristic points. 

  Edge of regression. 
 

 
 

 

 

1. De ne developable surface. 

 
2. De ne Edge of regression. 

 
3. De ne Characteristic line and Characteristic point. 

 
4. Show that the tangents to the edge of regression are the characteristic 

lines. 
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Overview 

Objectives 

After completion of this unit, students will be able to 

 
F  know to explain the concept of osculating developable. 

 
F  know to explain the concept of rectifying developable. 

184 12.1. Developable associated with space curves: 

 

 

In this unit, we will illustrate the concept of minimal surface and 

ruled surface. 

 

 
 

 

12.1. Developable associated with space curves: 

 

At each point of a curve we have three planes, namely osulating 

plane, normal plane and the rectifying plane. Each of these planes contains 

only one parameter  i:e:; the arc lengths.  The envelope of these planes are 

respectively called , osculating developable, polar developable and rectifying 

developable. 

 

 

 
 

12.1.1. Osculating developable: 
 

The family of osculating plane of a space curve is osculating developable. 

Its characteristic lines are the tangents to the curve and hence this 

developable is also referred to as the tangential developable. 

 

Bookwork 12.1. Prove that the edge of the regression of the osculating 

developable is the curve itself. 

 

Proof.  Consider the osculating plane at any point  P  with position vector ~r  on a 

space curve ~r = ~r (s) : 

If  R~ is the position vector of any point on the osculating plane, then R~  ~r  lies 

in the osculating plane. Hence the family of osculating plane has equation 

h
R~  ~r (s)

i 
  ~b (s)    =     0 (12.1) 
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Di erentiating both sides with respect to arc length  s; we get 

 ~r 
0     ~b + 

h
R~  ~r (s)

i 
  ~b 

0 

=     0 

i:e:;  ~t   ~b + 

h
R~  ~r (s)

i 
     ~n  

=     0 

i:e:;  
h
R~  ~r (s)

i 
  ~n    =     0 (12.2) 

 
The characteristic lines are the intersection of equations (12.1) and (12.2), 

which represent the osculating plane and rectifying plane respectively and hence 

their intersection is the tangent to the curve at  P 
 
~r
 

: 

Di erentiating both sides of (12.2) with respect to  s; we get 

 ~t   ~n + 

h
R~  ~r (s)

i 
  
 
  ~t +  ~b

  
=     0 

i:e:; 
h
R~  ~r (s)

i 
  ~t =     0 (using (12.1)) (12.3) 

 
Thus, from (12.1), (12.2) and (12.3) we have 

 

R~  ~r =     0 

)  R~ =     ~r 

 
 

Thus the characteristic point which is the intersection of  (12.1), (12.2) 

and  (12.3)  is   P  ~r    itself.    The  edge  of  regression  which  is  the  locus  of  the 

characteristic point is therefore the curve itself.   

 

 

 
 

12.1.2. Polar developable: 
 

This is the surface enveloped by the normal plane of a space curve. 

 
Bookwork 12.2. Show that the edge of regression of the polar developable is the 

locus of centres of spherical curvature of the given curve. 

 
Proof.  The equation of normal plane at ~r = ~r (s)  is 

h
R~  ~r (s)

i 
  ~t =     0 (12.4) 

Di erentiating both sides of equation (12.4) with respect to  s; we get 

 ~t   ~t + 

h
R~  ~r

i 
   ~n    =     0 

 

)  
h
R~  ~r

i 
  ~n    = 

= (12.5) 
  
1 
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1 

 

Di erentiating equation (12.5) with respect to  s; we get 

 ~t   ~n + 

h
R~  ~r

i 
  
 
  ~t +  ~b

  
=      0

 

)  0   
h
R~  ~r

i 
  ~t  + 

h
R~  ~r

i 
   ~b    =      0

 

)  
h
R~  ~r

i 
  ~b    =  0    

=    0 

(using (12.(41)2) .6) 

 

From equations (12.4), (12.5) and (12.6) we nd that the characteristic point is 

R~ = ~r +  ~n +   0~b: 

But this is the centre of osculating sphere. Thus the edge of regression of the 

polar developable is the locus of spherical curvature of the given curve.   

 

 
 

 

12.2. Rectifying developable: 

 

The rectifying developable of a space curve of the rectifying planes 

of the space curve. 

 

Bookwork 12.3. 

 
Show that the edge of regression of the rectifying developable has equation 

~  ~ 
 ~t +  ~b R = r +   :  0   

                  
0

 

 

Proof.  The position vector  R~ 

by 

of any point on the rectifying developable is given 

 

  
R~  ~r

  
  ~n    =     0 (12.7) 

 
 

Di erentiate (12.7) with respect to  s; we get 

 ~t   ~n + 

 
R~  ~r

  
  
 
  ~t +  ~b

  
=     0 

)  
 
R~  ~r

  
  
 
  ~t +  ~b

  
=     0 (12.8) 

Di erentiating (12.8) with respect to  s; we get 

 ~t   
 
  ~t +  ~b

  
+ 

 
R~  ~r

  
  
h
  2~n    0~t    2~n +  0~b

i 
=     0 

)   + 

 
R~  ~r

  
  
 
  0~t +  0~b

  
=     0 (12.9) 

The point of intersection of the planes (12.7), (12.8) and (12.9) is the 

characteristic point whose locus is the edge of regression. 
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From  (12.7)  and  (12.8)  we  see  that  R~   ~r   is  perpendicular  to  both  ~n   and 

  ~t +  ~b  and hence it is parallel to  ~n   
 
  ~t +  ~b

  
i:e:;   ~b +  ~t: 

Thus, we can write it as 

R~  ~r =       
 
 ~t +  ~b

  
(12.10) 

Now, our wish is to  nd the value of  : 
 

For this, using the equation (12.10) in (12.9), we get 
 

  +   
 
 ~t +  ~b

  
  
 
  0~t +   0 

  
=     0 

 

 0 0 

i:e:;    +   
      +    

  
=     0 )    =  

         
 
 

Hence, the equation to the edge of regression of the rectifying developable is 
~  ~ 

 ~t +  ~b given by R = r +   :    0   
                  

0
 

 

Bookwork 12.4. A necessary and su cient condition for a surface to be 

developable is that its Gaussian curvature shall be zero. 

 

Proof. If the developable is a cylinder or cone, then evidently the Gaussian  

curvature is zero. If we excluded these cases, the developable may be regarded 

as the osculating developable of its edge of regression and its equation may be 

written as  R~ = ~r(s) + v~t(s): 

Di  erentiation with respect to the parameters s and v are denoted by su  xes 

1 and 2 respectively. Then, we have 

R~1 =     ~t + v    ~n 

R~2 =      ~n 

R~11 =      ~n + v 0~n + v  
 
  ~t +  ~b

  
R~12 =     ~0 

N~  = 
 R~1    R~2   

R~ R~     
v ~b 

= 
v  

=   ~b 

L    = N

 
~   R~11  =

  
 v  =   v   

 

 
 

M = 

 

Thus, the Gaussian curvature K = 

N~   R~12  =  0; N  =  N~   R~22  =  0 

LN M
2
 
= 0 

EG   F
2
 

 

Hence K = 0 is the necessary condition for a surface to be developable. 

0 
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~r     N ~r     N   2 1

  2  2 

1 2 

~r1    N~1      ~r1    N~2 

v 

 

Now, it remains to prove the su  cient part. Let  K  =  0  for a surface 

~r = ~r (u; v) : 
 

Hence LN   M
2
 = 0 

Since  L =   ~r1   N~1; M =   ~r1   N~2;  N  =   ~r2   N~2: 

We obtain 

LN   M2
 = 

 
~r1   N~1

  
~r2   N~2

  
  

 
~r1   N~2

  
~r2   N~1

  
 

= 
~ ~ 

= 

  
 
~r1  ~r2

     N~1    N~2

  
=  HN~   

 
N~1    N~2

  
=  H 

h
N~ ; N~1; N~2

i 
K = 0 ) LN   M

2
 = 0 

) 
h
N~ ; N~1; N~2

i 
= 0 

) N~ ;  N~1 ; N~2    are coplanar: 

 

Since N~   N~  =    1: Di erentiating  with  respect  to   u   and   v; we  get 

N~   N~1  =  0; 

Thus  N~ 

N~   N~2  =  0: 

is perpendicular to both  N~1   and  N~2: 

If   N~1    and   N~2    are  non-zero  vectors  then  three  vectors  cannot  be  coplanar 

unless  N~1   and  N~2   are parallel. 

 

Thus, we have the following three possibilities: 
 

(i) N~2  =  0; (ii) N~1  =  0; N~1  =   N~2: 
 

Case  (i) :  N~2  =  0: The equation to the tangent plane at a point on the surface 

is  
 
R~  ~r

  
  N~ =  0: 

@ 

@ 

 
~ ~ ~ ~ ~ 

Now, R  ~r   N  =    R  ~r   N2  ~r2  N  =  0 * N~2  =  0  and ~r2  N~ =  0    (~r2 

being a vector in the tangent plane). 
 

Thus  
 
R~  ~r

  
  N~ is independent of  v  and therefore we  nd that the equation 

to  the  tangent  plane  contains  only  one  parameter  u: Hence  the  surface  is  the 

envelope of a one-parameter family    i:e:;  a developable. 

Case (ii) : As in the previous case, the tangent plane will contain only one 

parameter v and hence the surface will be developable. 

Case  (iii) :  N~  =     N~ : Transform  the  parameters  u; v   to   u0 ; v0       by  the 

transformation  u =  u0   
+ v0 ; v0    

=  u0      v0 ; we obtain 
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@N~ 
N~ 0 

= 
@N~ 

= 
@u @N~ @v 

+ =  N~ + N~ 
 

1
 @u0

 

 

@u  @u0
 @v  @u0 

1  2
 

@N~ 
N~ 0 

= 
@N~ 

= 
@u @N~ @v 

+ =  N~    N~  =  0 

This shows that the surface normal  N~2   is independent of  v  and hence depends 

on only one parameter. 

Thus, the surface is developable.   

 

 

 

 

12.3. Developables associated with curves on surfaces: 

 

The following theorem due to Monge characterise lines of curvature 

on a surface. 

 

Theorem 12.1 (Monge's theorem). 

 
A necessary and su cient condition that a curve on a surface be a line of 

curvature is that the surface normals along the curve form a developable. 

 

Proof.  Consider  the  surface  formed  by  the  normals  along  the  curve  ~r  =  ~r(s): 

Any point on this surface will have the position vector 

 

R~  =     ~r(s) + vN~ (s) (12.11) 

 

 
Di erentiation with respect to s and v are denoted by su x 1 and 2 

respectively. Thus, we have 

 

R~ =     ~t + vN~ 0

 

 

 
 

00 

 

 

 

0 

 

 

 

 

 

 

 R~   R~  

 
  

~t   N~ 
  

+ v 
 
N~ 0     N~ 

  
 

 

 
R~ R~ H     

1 = 

@v0
 @u  @v0

 @v  @v0
 

1 

Surface normal N~ = 
* H =  jR~   R~2j 

R~2
 = N~ 

R~11 

 

= ~t 0   

+ vN~ 

R~12 

 

= R~21  =  N~ 

R~22 

 

= 0 
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Thus,  M = N~   R~1  = 

1 

h 
~t   N~ 

  
+ v 

 
N~   N~ 0 

 i 
  N~ 0

 

= 

h
~t; N~ ; N~ 0 

i 
Also,  N = N~   R~22  =  0 

2 
LN    M Hence the Gaussian curvature K = 

EG   F
2
 

= 0 of the surface will be zero 

if and only if  LN   M2
 =  0    i:e:; M =  0; if and only if  

h
~t; N~ ; N~ 0 

i 
=  0: 

a developable if and only if  
h
~t; N~ ; N~ 0 

i 
=  0:                                        

According to the previous theorem, the surface normals along the curve form 
 

Now, our wish is to prove that this condition is satis ed if and only if the curve 

is a line of curvature. 

Since  ~t   N~ 0      is  normal  to  the  given  surface,  the  equations  
h
t~; N~ ; N~ 0 

i 
=   0 

implies that  ~t   N~ 0    
=  0: 

i:e:; 

 
N~ 0 

=      k~t    for some function k 

dN~ 

ds 
=       k 

d~r 

ds 

)  dN~ + kd~r =     0 

 
Hence, by Rodrigue's formula, the curve is a line of curvature. 

 

Conversely, if  dN~ + kd~r =     0 

 

i:e:; 
dN~ 

ds 
=       k 

d~r 

ds 

i:e:; N~ 0 

=      k~t 

)   
h
~t; N~ ; N~ 0 

i 
=     0 

 
This completes the proof of the theorem.   

 
Note 12.1. Now we obtain an alternative interpretations of the conjugate 

diameters de ned in section (10.3). 

Theorem 12.2. Let C be a curve lying on a surface and let P be any point on 

C: Then the characteristic line at  P  of the tangential developable of  C  is in the 

direction conjugate to that of the tangent to  C  at  P: 

 
Proof. The tangent planes at points on a curve C lying on a surface form a 

developable, and now we prove that the characteristic line of the developable at 

any point  P  on  C  is in a direction conjugate to that of the tangent to C  at  P: 

The equation of family of tangent planes is 

1 

H 

H 
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R~  ~r

  
  N~ =     0 (12.12) 

Di erentiating equation (12.12), we get 

 ~t   N~ + 

 
R~  ~r

  
 

i:e:;  
 
R~  ~r

  
  

dN~ 
=    0 

ds 

dN~ 
=    0 

ds 

i:e:;  
 
R~  ~r

  
  
 
N~ u

0   

+ N
0 

v
0 

  
=     0 (12.13) 

 

 
The characteristic lines is the intersection of equations (12.12) and (12.13). 

 

If  (l; m)  are  the  direction  coe cients  of  the  characteristic  line  at  a  point  P; 

then 

  
R~  ~r

  
=  l~r1 + m~r2 (12.14) 

Using equation (12.15) in equation (12.13), we get 

 
l~r1 + mr2~ 

     N~ u  + N~ 
0 

 v
0 

  
=     0 

i:e:; 
 
N~1    ~r  

 
lu  + 

 
N~   ~r  

 
lv  + 

 
N~   ~r  

 
mu  + 

 
N~   ~r  

 
mv =     0 

0 0 0 0 

       

 

i:e:; Llu  +  M 
 
lv  + mu 

  
+ Nmv =     0 

But  this  is  exactly  the  condition  that  the  direction   (l; m)   is  conjugate  to 

the  direction   (u0 ; v0 )   of  the  tangent  at   P: This  completes  the  proof  of  the 

theorem.   

 

 
 

 

12.4. Minimal surfaces: 

 
 

De nition 12.1 (Minimal surfaces). 

 
Surfaces whose mean curvature is zero at all points are called minimal surfaces. 

 
Note 12.2. The mean curvature    is given by 

 

   = 
EN + GL  2FM 

= 
EN + GL   2FM 

2 
 
EG    F  

  
The condition for minimal curvature is    =  0: 

Thus, we have  EN + GL   2FM =  0: 

2H
2
 

2 2 2 1 1 2 1 

1 2 
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Theorem 12.3. If there is a surface of minimum area passing through a closed 

space  curve,  it  is  necessarily  a  minimal  surface    i:e:; a  surface  of  zero  mean 

curvature. 

 

Proof.  Let  
P 

be a surface bounded by a closed curve C; and let  
P 

be another 

surface derived from  
P 

by a small displacement    (u; v)  in the direction of the 

 
@  normal. We assume that  1 = @u 

 1 =  O( );  2 =  O( )  as    ! 0: 

@  
and  2    

@v
 

are both small and more precisely 

The position vector of the displaced surface is noted by R~: 
 

Thus, we have  R~ =     ~r +  N~ (12.15) 

 
 

Di erentiating equation (12.15) with respect to u  and  v; we get 

 

R~1 =     ~r1 +  1N~ +  N~1 

R~2 =     ~r2 +  2N~ +  N~2 

 
 0 

Let E ; F ; G   denote the  rst fundamental coe   cients of : Then 

2 

E =     R~2  
=  

 
~r   +   N~ +  N~ 

=     ~r2
 + 2 1~r1   N~ + 2 ~r1   N~1  + +O 

 
 2

  
= E    2 L + O 

 
 

2
  

 

F =     R~1    R~2  =  

 
r1~ +  1N~ +  N~1

  
  
 
r2~ +  2N~ +  N~2 

= F    2 M + O 
 
 

2
  

 

G =     R~2  
2  

=  R~2    R~2 

=     

 
~r2 +  2N~ +  N~2

  
  
 
~r2 +  2N~ +  N~2

  
=   G  2 N + O

 
 

2
  

as  ! 0 

Now, H
 

= E
 
G

   
  F

 2
 

=     

h
E   2 L + O 

 
 2

 i h
G   2 N + O 

 
 2

 i 
  

h
F   2 M + O 

 
 2

 i 
=     

  

EG    F
2
  

  2  (EN + GL    2FM) + O 
 
 

2
  

= H
2   

    4  H
2

    +  O 
 
  

2
 

H
 

= H (1 4 )
1=2

 + O 
2
  

= H (1   2   ) + O 
 
 

2
        

(using binomial expansion) 

1 
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Z 
Z Z 
Z 

P P 

 

Let A   = Hdudv 
P 

 

A
 

= 
P 

H
 
dudv = 

P 
H (1    2   ) dudv + O 

 
 

2
  

= Hdudv     

Z 
2    Hdudv + O 

 
  

2
  

= A    

Z 
2    dudv + O 

 
  

2
  

If A is stationary, then clearly = 0 which shows that the surface is necessarily 

of zero mean curvature. 

This completes the proof of the theorem.   

 

 

 

 

12.5. Ruled surfaces: 

 

A ruled surface is generated by the motion of a straight line with one 

degree of freedom, the various positions of the line being called generators. 

The developable surfaces discussed in section (11.1) belong to the family 

of ruled surfaces, are very special and have properties not characteristic of 

ruled surfaces in general. 

An example of ruled surface which is not developable is hyperboloid of 

revolution. 

 

Let C be any curve on a ruled surface having the property that it meets 

each generator precisely once. Such a curve will be called a base curve. 

It is clear that such a curve is by no means uniquely determined. Then 

P 

0 
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the surface is determined by any base curve C and the direction of the 

generators at each point of  C: 

Theorem 12.4. Show that the Gaussian curvature K for a ruled surface is given 

 p
2~g  2

 by K = 

H4 
where g is the unit vector along the generator conclude that a 

developable surface is a ruled surface for which the parameter of distribution is  

identically zero. 

 

Proof.  Let  ~r (u)  be the position vector of a current point  P  on  C  and let  ~g (u) 

be a unit vector along the generator at  P: Then the position vector of a general 

point Q on the ruled surface is given by 

R~  =     ~r + v~g (12.16) 

 
 

where  v  is the parameter which measures directed along the generator from C: 

Di erentiating (12.16) with respect to the parameters u and v; we get 

R~1 = ~r  + v~g  (* ~r and ~g are functions of u alone) 

R~2 =     ~g 

R~11 =     ~r  + vg~  

R~12 = ~g ; R~22  =  0 

 

 
The rst fundamental coe cients are 

 

E =     R~1  
2  

= ~r  2  
+ 2v~g    ~r  + v

2~g 2 

F =     R~1    R~2  = ~g   ~r  

G =     R~2  
2  

= ~g 
2  

=  1 

 

 
The metric is given by 

 
ds

2
 = Edu

2
 + 2Fdudv + Gdv

2
 

=     

 
~r  2  

+ 2v~g    ~r  + v
2~g 2

 
du

2
 + 2~g   ~r dudv + dv

2
 (12.17) 

 

The unit normal vector  N~ 
 

is given by 
 

HN~ =     R~1    R~2  =  

 
~r  + v~g 

  
  ~g (12.18) 

 

 

unless  
h
~r ; ~g ; ~g

i 
=  0:                                                                                    Thus, 

the tangent plane to the surface varies at points on the some generator 
 

The second fundamental coe  cients of the surface are given by 
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h i 

HL =  HN~   R~11  =  

h
~r ; ~r ; ~g

i 
+ 

h
~r ; ~g ; ~g

i
v + 

h
~g ; ~r ; ~g

i
v + 

h
~g ; ~g ; g

i
v

2
9> 

  

 

 

HM =  HN~   R~12  =  

h
~r ; ~g; ~g 

i 
HN = 0 

=> 
(12.19) 

;> 
 

The asymptotic lines are given by du [Ldu + 2Mdv] = 0 from which it follows 

that the generators are asymptotic lines. The other family of asymptotic lines is 

given by an equation of the form 

 

dv 
= A + Bv + cv

2
 

du 

 

Where  A; B; C   are functions of  u  alone.  This is a Riccati type di erential 

equation, and the most general solution of the form 

cP + Q 
v  = 

cR + S 
(12.20) 

 

where  P; Q; R; S   are functions of  u  and  c  is an arbitrary constant. 

 

Let the  four  asymptotic  lines  of  this  family  be  speci ed  by  the  values 

c1; c2; c3; c4   and  let  these  lines  be  met  by  the  generator  u  =   u0   in  four  points 

where  v  parameter has values  v1; v2; v3; v4: From the equation (12.20), it follows 

that the cross-ratio (v1; v2; v3; v4)  is equal to the cross ratio  (c1; c2; c3; c4)  and is 

independent of  u0: Thus the cross-ratio of the four points in which four given 

asymptotic lines are met by any generator is the same for all generators. 

From equation (12.19), the Gaussian curvature is 

 
LN M

2
 

K = 
EG   F 

~r ; ~g; ~g     2 
 

 

H4 

 
It is convenient to de ne a function p(u)  called the parameters of the h

~r ; ~g; ~g 
i 

distribution by writing p(u) = : 

~g 2 

This is independent of the particular base curve chosen and also independent 

of the parameter  u: 

In terms of p the Gaussian curvature is given by 

p
2~g  2

 

K = 
H4 

 

 
 

(12.21) 

 

So  K  is always negative except along those generators where  p  =  0: Since 

K = 0 for a developable, it follows that developable surface is a ruled surface for 

which the parameter of distribution is identically zero.   

= 
2
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De nition 12.2 (Central Point). On each generator of the general ruled surface 

there is a special point called critical  point of the generator.  This is determined 

as follows: 

Let   P; Q   be  two  given  points  on  some  base  curve  C   and  let  the  common 

perpendicular to the generating line through P; Q  meet these generators in  P1; Q1 

respectively. 

As  Q  tends to  P; the point  P1  will tend to some point called the critical point 

of the generator. 

 

Bookwork 12.5. Derive the formula to determine the position of the central point 

on each generator. 

 

Proof.  The limiting direction of the vector P1
~Q1  must lie in the surface and 

hence be perpendicular to N~ ; also  it  must  be  perpendicular  to  the  generator 

through  P  and hence parallel to the vector  ~g   N~ : 

This direction must be perpendicular to the generators through P and Q and 

proceeding to the limit as  Q ! P  we have  ~g    
 
~g   N~ 

  
=  0   or    

 
~g    ~g

 
  N~ =  0: 

But  HN~ =  

 
~r    v~g 

  
  ~g 

) 
 
~g    ~g

  
  
  
~r  + v~g 

  
  ~g

  
=     0 (* H 6=  0) 

i:e:;  ~g    ~r  + vg~  2 
=     0 (12.22) 

 

from which  v  is uniquely determined provided ~g  2  6=  0:   

De  nition  12.3 (Line of Striction).   The central points of all the generators form 

a locus called the line of striction, which is a well determined curve naturally 

associated with the ruled surface. 

Theorem 12.5.  Show that the tangent of the angle through which the normal  N~ 

rotates as the point P moves along a generator varies directly with the distance 

moved from the central point. 

 
Proof. If we choose the line of striction as base curve, then it follows from the 

equation (12.22) that  ~g    ~r  =  0    (* v =  0): 

Also, in addition  ~g    ~g =  0; thus we have the vector ~r    ~g  must be parallel to 

~g : 
 

Thus, we can write ~r    ~g =   ~g 

Then scalar multiplication by ~g  

for some function : 

implies 
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p 

+ a 

 
p2 + a2

 1=2 

=> 
> 

2 

 h
~r ; ~g; ~g 

i 
=      ~g  2    p~g  2

 

so, we have    =  p: Thus ~r    ~g =  p~g : 

) Equation (12.18) can be rewritten as 
 

HN~ = p~g  + v~g    ~g 

 

From equation (12.17) with  ~g    ~r  =  0; we have 
 

~ 2    2 2 2 

HN =     v  ~g    + ~r       g~   ~r  
i:e:; HN~  =     v

2~g  2  
+ ~r  2~g 

2
    g~   ~r 2 

 
* ~g 

2
 =  1

  
)  H2

 =     v
2~g 2  

+ 

 
~r    ~g

  
) H

2
 =     

 
p

2
 + v

2
 
~g  2 

 
* ~r    ~g =  p~g 

  
(12.23) 

Thus, N~  = 
p 

~a + 
2 2 1=2 

v 

2 2   1=2  

 
~a   ~g   

p  + a    
          

p + a  
  

 

where  ~a  is the unit vector along  ~g : 

Let    denote the angle between the directions of  N~ 

distant v and O from the central point. 

Then if  p 6=  0; we have 

 

 

at points on a generator 

 

sin    = 1=2 

9> 
2 2 

p 

cos       = 
> 

 

(12.24) 
 

v 
tan    = 

p 
>; 

 

Thus  the  tangent  of  the  angle  through  which  the  normal  N~ rotates as the 

point P moves along a generator varies directly with the distance moved from 

the central point.   

  

Note 12.3.  As  v  increases from    1 to  1; the angle     increases from     
2  

to 

if  p > 0 and decreases from 
2 

2 to   
2  

if  p < 0: 

When the central point is reached the normal has rotated through an angle ; 
2 

and this fact justi es the word central. 
 

Thus, equation (12.21) and (12.23) provides the simple formula to determine 

Gaussian curvature at the point distant v from the central point on a generator of 

parameter p is 

v 
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+ v 

0 

0 

 

     p2
 

K = 
2 1=2 

 
 

Bookwork 12.6.  Find the necessary and su  cient condition that the surface 

z =   f (x; y)  should represent a developable. 

 

Proof.  The equation of the tangent plane at a point  (x; y; z)  is 
 

@ f 
(X x) 

@x
 

@ f 
+ (Y    y) 

@
 + (Z    z)   =    0 

i:e:;  p (X   x) + q (Y   y) + Z   z    =     0 

 
In case the surface is developable surface the equation of tangent plane should 

be in terms of single parameter and hence there a relation between p and q 

denoted by p = (q) : Thus, we have 

@p @q 
=         (q) 

@x @x 
@p @q 

=         (q) 
@y @y 

 

Eliminating   0    between the above two equations, we get 
 

 

 

 

i:e:; 

@p @q 

@x  @y 

@2
 f @2

 f 
 

@p @q 
= 

@y @x 

@2
 f 

= 

 
 

@2
 f 

@x
2
 @y

2
 @y@x @x@y 

i:e:; rt = s
2
 

 

Thus rt s
2
 = 0 is the required condition for a surface to be developable. 

Conversely, 

 

@p @q 

if rt    s
2
 =    0 

@p @q 
) 

@x @y 
=    0 

@y @x 

@p 
 

 

i:e:; 

 
@x

  
@q 

 
@x 

@p 
 

 

@y 

    

=    0 
@q 

 
 

@x 

 
 

 
i:e:; 

@ (p; q)

  
=     0

 

@ (x; y) 

 

Thus, the functions p and q must depend on the single parameter, so shall do 

the tangent plane, therefore the surface is developable.   

2 

y 

 
p
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  ! 
  !

@
 

2 

16 xy 16 xy 

x 
  

 

Example 12.1. Show that the surface xy = (z  c)
2
 is developable. 

 
Solution: 

(z    c)   = 
p

xy 

) z   =   c + 
p

xy 

@z 
= p =  

1 
r

y 
; 

@z  
=  q =  

1 
r

x 
@x 

@2
z 

r = 

@x
2
 

2 x 

@p 
= 
@ 

=    

@y 2 

1 
y1=2 x 3=2; 

4 

y 

@2
z 

@y
2
 

@q 
t == 

@y 
= 

1 
x1=2y  3=2 

4 

s   = 
@p 

=     
1 

x  1=2y  1=2 

@y 4 

rt    s
2
 = 

1  1  
  

1  1 
= 0 

 
 

Hence the given surface is developable. 

 
Example 12.2. Show that the surface e

z
 cos x = cos y  is minimal. 

 

Solution: 
e

z
 cos x   =    cos y 

z + log (cos x)   =    log cos y 

i:e:;  z    =     log cos y log (cos x) 
2 

E =    1 + p
2 

= 1 +   
@z

 

@x 
= 1 + tan

2
 x = sec

2
 x 

2 

G =    1 + q
2 

= 1 + 
z

 

@y 

F = pq =      tan x tan y 

 
= 1 + tan

2
 y = sec

2
 y 

r 
L   =  = 

H 

sec
2
 x 

H 

 

; M = 
s t 

; N = 
H H 

=   
  sec y 

H 

EN   2FM + GL   =       sec
2
 x sec

2
 y 

 
 

H 
  0 + 

sec
2
 x sec

2
 y 

= 0 
H 

 

Thus, the condition for the surface to be minimal EN  2FM + GL = 0 

is satis ed. 
 

Hence the given surface is minimal. 

 
Example 12.3. Find the equation to the developable which has the curve x = 

6t; y =  3t
2; z =  2t

3
  for its edge of regression. 

 

Solution: 

The equation to the edge of regression is  ~r =  

 
6t; 3t

2; 2t
3
 

: 
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2 

    

 

Now, the developable can be considered as the tangential developable of 

the edge of regression. 

If  R~ is the position vector of any point on the developable then 

d~r 

R~ (t; v)    =     ~r + v~r  where ~r = 

dt 
=  

 
6; 6t; 6t

2
  

Thus,   (x; y; z)    =     

 
6t; 3t

2; 2t
3
  

+ 6v 
 
1; t; t2

 
i:e:;  

 
x   6t; y   3t

2; z   2t
3
  

=     6v 
 
1; t; t2

  
) 

x  6t 

1 

y 3t
2
 

= 
t 

z 2t
3
 

= 
t2 

= 6v 

 

Consider the rst two ratios and last two ratios, we get 

 
xt    y = 3t

2
; yt    z   =    t

3
 

) t (xt    y)   =    3t
3
 = 3 (yt  z) 

) xt      4yt + 3z  =   0 

Also, 3t
2
    xt + y   =    0 

 

 

Solving the last two equations, we get 

t2 

= 
3xz   4y

2
 

 

 
 

t 
= 

9z   xy 

 

 
 

1 
 

 

12y   x
2
 

i:e:;  
 
3xz   4y

2
  

12y   x2
  

=     (9z   xy)
2
 

This is the required developable. 

 
Example 12.4. Show that the ruled surface generated by the binormals of a space 

curve has the curve itself as the line of striction. 

 

Solution: 

Consider the given space curve C as the base curve, then the equation 

to the ruled surface can be written as 

R~ (s; v)    =     ~r (s) + v~g (s) (12.25) 

 

where  ~r(s)  is the position vector of the point  P  on  C   and  ~g(s)  is the 

unit vector along the generator at  P: 

Since  the  ruled  surface  is  generated  by  the  binormals  to   C; we  have 

~g = ~b: 

Let  v  be the distance from  P  of the central point of the generator at  P: 
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2 

2 

Let Us Sum Up: 

Check Your Progress: 

Choose the correct or more suitable answer: 

 

Then from equation  
 
~g 0     ~r 0 

  
+  vg~  =  0: where we have used notation 

primes instead of dots since the parameter of the curve is taken as the arc 

length  s: 

Thus; 
 
~b 

0     ~t
  

+ v~b 
0   2 

=     0 

  ~n   ~t + v 
   ~n  

=     0 

 2
v   =    0 (or) v = 0 

 

This shows that the central point on the generator at P is P itself. Thus 

the given curve itself is the line of striction of the ruled surface. 

 

 

In this unit, the students acquired knowledge to 
 

  Osculating developable, Polar developable and Rectifying 

developable. 

 

  the Minimal surfaces and Ruled surfaces. 

  derive Monge's theorem. 
 

 
 

 

1. De ne osculating developable, polar developable and rectifying 

developable. 

 

2. State and prove a necessary and su cient condition for a surface to 

be developable. 

 

3. Show that ex
 cos x = cos y  is minimal. 

 
4. Prove that the Gaussian curvature is the same at two points of a 

generator which are equidistant from the central point. 

 

 

 

1. : : : : : : is the surface enveloped by the normal plane of a space curve. 

 
(a) Osculating developable. 

 

(b) Polar developable. 
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Answer: 

Glossaries: 

Suggested Readings: 

 

(c) Rectifying developable. 
 

(d) none of these. 

 
2. The condition for minimal curvature is : : : : : : 

(a) EN + 2GL    FM = 0 . 

(b) EN + GL     2FM = 0 . 

(c) EN + 2GL   2FM = 0 . 

(d) EN   2GL    FM = 0 . 
 

 
 

 

(1) b  (2) b 

 
 

 

Polar Developable: The polar developable of a curve is the envelope 

of its normal planes. 

 

 

 

1. T.J. Willmore, An Introduction to Di erential Geometry , Oxford 

University press, (17th Impression), New Delhi, 2002. (Indian 
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Structure 
 

Objective 

Overview 

13. 1 Introduction 

13. 2 Compact surfaces whose points are umblices 

13. 3 Hilbert's lemma 

Check Your Progress 
 

Let us Sum Up 
 

Suggested Readings 

Objectives 

After completion of this unit, students will be able to 

 
F  know the concept of Compact surfaces. 

 
F derive Hilbert's lemma. 
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Overview 

204 13.1. Introduction: 

 

 

In this unit,  we will explained in detail about the compact 

surfaces. 
 

 
 

13.1. Introduction: 

 

In the previous unit, we were discussed the properties of a region of 

a surface de ned by suitably restricting the parameters u  and  v: These 

are essentially local properties, the word local indicating that in order to 

obtain the property at a point P it is necessary to have information about 

the surface only in the neighbourhood of  P: 

In the present unit, we shall be concerned with properties involving the 

surface as a whole. For example, whether like a spherical cap it has a 

boundary or whether it is compact like a sphere. Di erential geometry of 

surface in the large is the study of relations between the local and global 

properties of surfaces. 

 

 

13.2. Compact surfaces whose points are umblics: 

 

For proving the rst few theorems of this unit, we shall use the 

de nition of surface given in the earlier unit and assume that each point 

has a neighbourhood (homeomorphic to an open 2 -cell) which can be 

determined by parametric equations  ~r = ~r (u; v) : 

Theorem 13.1. The only compact surfaces of class     2 for which every point is 

an umbilic are spheres. 

 
Proof. By way of local geometry developed in the earlier chapters we shall prove 

that in the neighbourhood of any point the surface is either spherical or plane, then 

by use the property of compactness to reject one of alternative. Hence we show 

that the surface must be a sphere. 

Let S be a compact surface of class   2 for which every point is an umbilic. 

Let P be any point on S; and let V be a coordinate neighbourhood of S 

containing  P; in which part of  S   is represented parametrically by ~r = ~r (u; v) : 
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13.2. Compact  surfaces  whose  points  are  umblics:  205 

 

Since every point of V is an umbilic, it follows that every curve lying in V 

must be a line of curvature. Hence from Rodrigue's formula, at all points of V; 

dN~ +  d~r =     0 (13.1) 

 

where    is the normal curvature of  S   in the director  d~r: 
 

) dN~ =       d~r 

i:e:; N~1 =       ~r1 and N~2  =    ~r2 

 

Using the identity  N~12  =  N~21; in the above equations, we get   2~r1    1~r2 =  0: 

Since  ~r1; ~r2   are linearly independent we obtain   1  =   2  =  0; so that    is a 

constant. 

Integrating equation (13.1), we get 
 

~r =     ~a     1 
N~ 

 

 

(13.2) 

 

for    6=  0  showing that  V  lies on the surface of a sphere of centre ~a  and radius 

  1: 

When    =  0; equation (13.1) gives  N~ = ~b  showing that the  V  lies on a plane. 

This completes the local part of the theorem  i:e:; so far all we have proved is 

that in the neighbourhood of any point the surface is spherical or plane. 

Associate with each point P on the surface a neighbourhood V; having the 

above said property. The set of all neighbourhoods VP covers S and from the 

compactness,  we conclude that  S   is covered by a   nite sub-cover formed by 

V j( j  =   1; 2; : : : ; N): Consider  two  over  lapping  neighbourhoods  Vi; V j: From 

the previous local argument it follows that    is constant in  Vi   and also in  V j: 

By considering the values of    at the points in Vi \ V j we  nd that     has the 

same value over the whole of the surface. Moreover, this value cannot be zero. 

Otherwise the surface would contain a straight line and would not be compact. 

 

Hence the surface must be a sphere and hence the theorem is proved.   
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1 

1 

L 

E 

N 

G 
  

L N 

L N 

 

 
 

 

13.3. Hilbert's lemma: 

 
 

Lemma 13.1. In a closed region R of a surface of constant positive Gaussian 

curvature without umbilics,  the principle of curvature take their extreme values  

at the boundary. 

This lemma is purely concerned local in character and results of earlier 

chapters can be used to prove it. 

W.F. Newm suggested the above lemma can be restated in a slightly di erent 

form. 

If a point P0 of any surface, the principal curvatures a and b are such that 

either  (i)  a >  b;   a  has a maximum at  P0  or    (ii)  a <  b;   a  has minimum 

at  P0;  b  and has a maximum at  P0; then the Gaussian curvature  K  cannot be 

positive at  P0: 

 
Proof. Now, we shall prove the lemma by contradiction. 

 
Assume that the lemma is false. Then there is a point P0 at which the principal 

curvature have distinct extreme values, one maximum and the other minimum. 

Consider the lines of curvatures as parametric curves, then principal curvatures 

are 

 a = 

L 
; b = 

E 

N 
: (13.3) 

G 

 

The Codazzi equations are 
 

L2 = 
2 

E2  

     

+ 

9> 
1 N1 = G1 + 

2 E G 

>=>>;
 (13.4) 

 

 

@ a 

@v 
= 

EL2   LE2 

E2 

E 
2 

  E2  

    

+ LE2 
   

= 
  E G  

E2 

1 N 1 
2 EE2 

G  
  

2 
LE2 

 

E2 

  

= 
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G @ 

 
2

 

@v H 

Let Us Sum Up: 

13.3. Hilbert's  lemma:  207 

Similarly, 
@ b 

@u 

 

1 E2 
= 

2 E 
1 G1 

= 
2 G 

 
(  b    a) 

( a b) 

 

Since the principal curvatures have extrema, the  L:H:S : members vanishes at 

P0: It follows that at  P0: 

E2 =     G1 = 0 and hence at P0 

 

@2
 a 

 
1 E22 

= (      ) 

9> 
@v

2
 2  E 

b a
 

 
 

@2
 b 1 G11 = ( a 

   b) =>>
 (13.5) @u

2
 2  G 

>; 
Now, there are two possibilities arises: 

 

either (i) a has a maximum: 

 

In this case   a    b >  0; 

 
@2

 a 

@v2    
  0; 

 
@2

 b 

@u2      
   0 (13.6) 

 

or (ii) b has a minimum: 

 

Then   a    b <  0; 
@2

 a 

@v2    
  0; 

@2
 b 

@u2      
   0 (13.7) 

 

In either case  E22   0  and  G11   0   (Note that the signs of   a;  b  are irrelevant). 

But this contradicts the fact that the Gaussian curvature K satis es 

1 
K = 

EG 
(E22 + G1) 

K =      
   1  

" 
@ 

  
1 

  

+

  
E2

 # 
 

 

Since the R.H.S of the above expression is zero or negative, while K is 

assumed strictly positive. Thus contradiction arises. 

This completes the proof of the lemma.   

 

 

 

In this unit, the students acquired knowledge to 

 

  the compact surface. 

  derive Hilbert's lemma. 

2H @u H 

> 
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Suggested Readings: 

 

 
 

 

1. Show that the only compact surfaces of class     2 for which every 

point is an umblic are spheres. 

 

2. State and Prove Hilbert's lemma. 
 

 
 

 

 

1. T.J. Willmore, An Introduction to Di erential Geometry , Oxford 

University press, (17th Impression), New Delhi, 2002. (Indian 

Print). 

 

2. C.E.Weatherburn, Di erential Geometry of Three Dimensions , 

University Press, Cambridge, 1930. 
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210 14.1. Compact surfaces of constant Gaussian or mean curvature: 

 

 

In this unit, we will illustrate the characterization of complete 

surfaces. 
 

 

14.1. Compact surfaces of constant Gaussian or mean 

curvature: 
 

 

We note that a compact surface must possess a highest point and at 

this point the curvature is necessarily non-negative. Moreover, a compact 

surface cannot have constant zero curvature, for otherwise it would contain 

straight lines which would contradict the compactness. 

Theorem 14.1. The only compact surfaces with constant Gaussian curvature are 

spheres. 

 

Proof.  Let  S   be a compact surface with constant positive Gaussian curvature K: 

Since S  is compact, there is a point P0  at which attains the maximum value of 

the principal curvature ( i:e:;  the Gaussian curvature) is constant. 

Hence the principal curvatures have respectively a maximum and minimum 

value at P0 with the maximum value not less than the minimum. 

 
From Hilbert's lemma, it follows that the two principal curvatures must be 

equal  i:e:; at no points does either principal curvature exceeds  
p

K: Hence every 

point of S is an umbilic. 

 
Hence by theorem (13.1), only compact surfaces with constant Gaussian 

curvature are spheres.   

 
Theorem 14.2. The only compact surfaces whose Gaussian curvature is positive 

and mean curvature constant are spheres. 

 
Proof. Let S be a compact surfaces of positive Gaussian curvature and constant 

mean curvature, and it is denoted respectively by a (larger principal curvature), 

 b (smallest principal curvature). 

 

Since  a  is continuous and  S is compact there is a point  P0  at which   a 

attains its maximum value. Also the mean curvature b is constant hand hence it 

follows that   b  attains its minimum value at  P0: 

Thus,  we  have   a     b  every  where.   Suppose  if   a  >  b  at  P0; then  by 
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Hilbert's lemma, we can conclude that the Gaussian curvature  K is negative 

which contradicts our hypothesis. 

Thus, we must have   a =  b =  at the point  P0  and hence everywhere on S: 

This completes the proof of the theorem.   

14.2. Complete Surfaces: 

 

In the previous section, we restrict the surfaces to be compact. But 

this restriction may exclude for example, developable surfaces and many 

common surfaces like paraboloids. 

De nition 14.1 (Metric Spaces). 

 
A set of points S carries the structure of a metric space when there is a real 

valued function : S S ! R1 with the properties: 

(i)     (A; B) =  0 ,  A =  B 

(ii) (A; B) =    (B; A) (symmetry) 

 
(iii) (A; C)     (A; B) +   (B; C)  (triangle inequality) 

for all points  A; B;  C  of  S 

 

De nition 14.2 (Length of the segment). 

 
Let us assume that the surface S is connected so that any two points can be 

joined by arc-wise connected paths. 

If       is any path joining A  to  B  then this path can be divided into a 

 nite number of segments so that each segment lies entirely in one coordinate 

neighbourhood overlap. 

 
The length of the segment whose equation relative to a coordinate 

neighbourhood is  u =  u(t); v =  v(t)  is given by 
p

Eu 
2
 + 2Fu v  + Gv 

2
 dt taken 

between the appropriate limits. 

 
The length of    is de ned as the sum of the length of its segments. 

 
De nition 14.3 (Distance function). 

Distance function is de ned by 

  (A; B)  is the greatest lower bound  (l:u:b)  of all the lengths of all arc-wise 

connected  C
1
  paths joining  A  to  B: 
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Note 14.1. It is clear that the distance de ned as above satis ed conditions (ii) 

and (iii) of the metric space axioms while condition (i) is satis ed because the 

 rst fundamental form of the surface is positive de nite. 

De nition 14.4 (Cauchy Sequence). 

A sequence of points  fxng on the surface is said to form a Cauchy sequence 

when  given    > 0; there  exists  an  integer  n0   such  that    fxn; xmg <   when 

m; n  > n0: Clearly  if  fxng converges  to  limit   x   then  the  sequence  fxng is  a 

Cauchy sequence. 

 
Note 14.2. If the surface is such that every Cauchy sequence converges, then the 

metric space is said to be complete 

 
The following example shows that not all surfaces are complete. 

 

Consider the surface formed by the two-dimensional Cartesian plane of 

pairs of real numbers  (x; y)  when the origin is removed. 

Distance    is de ned by 

  (A; B)    = 

q
(xA    xB)

2  
+ (yA    yB)

2
 

where  (xA; yA) ; (xB; yB)  are the rectangular Cartesian coordinates of  A  and 

B: We  can  easily  seen  that  the  sequence  of  points   

( 
1 

; 0

!) 
is  a  Cauchy 

sequence which does not converge in the surface and so the surface is not 

complete. 

 
 

 

14.3. Characterization of complete surfaces: 

 

Now, we are going to discuss three important properties which will be 

used to characterize complete surface and they are: 

 
(a) Every Cauchy sequence of points of S is convergent. 

 
(b) Every geodesic can be prolonged inde nitely in either direction, or 

else it forms a closed curve. 

(c) Every bounded set of points of S is relatively compact. 

 

Now, we shall prove that the above three properties are equivalent. 



213 14.3. Characterization of complete surfaces: 

M.Sc.(Mathematics)-I Year-I Sem Di  erential Geometry 

 

 

n 

    

 

Property (c) implies property (a) is quite obvious. 
 

Now we shall prove that the property  (a)  implies property  (b): 
 

If    be a closed curve, then the condition (b) is obviously satis ed. If 

  is not a closed curve and if P(x) is some point on then there is some 

number l such that can be prolonged for distances (measured along   ) 

less than  l; but cannot be prolonged for distance greater than  l: 

Consider  the  sequence  of  points   fxng lying  on     at  distance  from   P 

lying    is given by  l 

 
1   1 

!
: 

Clearly  fxng is a Cauchy sequence and hence by condition (a) converges 

to some point  Q  on    whose distance from  P  is exactly  l: 

If  
 
x0  

  
is  another  Cauchy  sequence  such  that     

 
x  ; x0  

  ! l; then  
 
x0  

  
n 

tends to some limit  Q0
 

1 n n 

 

Now the sequence  x  ; x0  ; x  ; x0  ; : : : is also a Cauchy sequence tending to 
1 1 2 2 

both  Q  and  Q0 : Hence  Q =  Q0 ; and there exists a unique end point  Q  at 

a distance l from P along : 

Consider  a  coordinate  neighbourhood  of   S   which  contains   Q: At   Q 

there  is  uniquely  determined  a  direction  ~t   which  is  the  direction  of  the 

geodesic     which starts at  Q: 

In this coordinate neighbourhood there is a unique geoedesic at Q 

which  has  the  direction     ~t    and  this  gives  a  continuation  of     beyond 

Q; contrary to the hypothesis. 

Thus,    must satisfy condition  (b): 
 

Next, we have to prove that the condition (b) implies (c) so that all the 

three conditions are equivalent. 

Assume that the condition (b) holds good for S: 
 

Consider a point of  S ; and geodesic which start at  a: Now we de ne 

the initial vector of a geodesic are starting at a  to be the tangent to this 

arc a which has the same sense as the geodesic and whose length is equal 

to the length of the geodesic arc. Since property (b)  is holds good for 

S ; it follows that every tangent vector to  S   at  a; whatever its length,  is 

the initial vector of some geodesic arc starting at a which is uniquely 

determined. This arc may cut itself or if it forms part of a closed geodesic, 

may even cover part of itself. 
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n o 

 

Let  S r  =  fx 2 S=  (x; a)   rg and  Er  be the set of points  x  of  S r; which 

can be joined to  a  by a geodesic arc whose length is equal to    (x; a) : 
 

Now our claim is to prove that Er is compact. 
 

For this, let  fx  g1 be a sequence of points of  Er: 
 

Let T~h    be the initial vector of a geodesic arc of length    (a; xh)  joining 

a   to   xn: then  the  sequence  of  vectors T~h regarded  as  a  sequence  of 

points in two dimensional Euclidean space, admits at least one vector of 

accumulation  T~ : Moreover, this vector  T~ is the initial vector of a geodesic 

arc whose extremely belongs to  Er   and is an accumulation point of  fxng : 
This proves that Er is compact. 

 

Next, our aim is to prove that  Er  =  S r: 
 

It  is  easily  seen  that   Er   =   S r   is  true  for   r   =   0: Also  it  is  true  for 

r =  R > 0; then it is certainly true for  r < R: 
 

Now, we shall prove that conversely if Er = S r is true for r < R  then it 

is still true for  r =  R: 

Now, every point of S R is the limit point of sequence of points whose 

distance from  a  is less than  R: By hypothesis these points belong to  ER; 

and  since   ER   is  closed,  it  follows  that  their  limit  belongs  to   Er: Thus, 

Er  =  S r  is true for  r =  R: 

In order to prove Er = S r is completely, it is necessary to show that if it 

holds for  r =  R; then it still holds for  r =  R +  s; s > 0: 

This follows because it would then be possible to extend the range of 

validity of Er = S r to an arbitrary extent by an appropriate number of 

extensions of the range by an amount  s: 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 14.1 
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Next, we have to prove that to any point  y  such that    (a; y) > R  there 

is a point x such that 

 

  (a; y) =    R (14.1) 

and     (a; y) =     R +   (y; x) (14.2) 

 
 

Since    (a; y)  has been de ned as the lower bound of the lengths of arcs 

from a to y; it follows that we can join a to y by a curve     whose length 

is less than    (a; y) + h 1   for any integer  h: 

Let  fxhg be the last point of this curve belonging to  ER =  S R: 

Now we have 

 
  (a; y)      (a; xh) +   (xh; y)  

i:e:;    R +   (xh; y)  

i:e:;    (xh; y)      (a; y)   R (14.3) 

 
Since the arc length of   from a to y is the sum of the arc lengths from 

a to xh and from xh to y; we have 

 
  (xh; y)   arc (xh; y) 

  (xh; y)   
  

arc (a; y)   arc (a; xh) 

  (a; y) + h
 1    arc (a; x  ) 

h 

     (a; y) + h
 1    R 

Now, let h ! 1 will have at least one point of accumulation x with the 

property 
 

  (x; y)         (a; y)   R (14.4) 

 
Comparing  equations  (14.3)  and  (14.4),  shows  at  this  point 

  (a; y) =  R +   (y; x) : 
 

Thus we have proved that the existence of a point  x  satisfying equations 

(14.1) and (14.2). 
 

We have seen earlier that provided two points x; y are not too far apart 

then the point y is the extremity of one and only one geodesic arc of 

origin   s   and  of  length    (x; y) : More  precisely  there  exists  a  continuous 

function  s(x)  > 0  such that if    (x; y)  < s(x); the point  y  is the extremity 

of  the  unique  geodesic  arc  of  length     (x; y)  joining   x   to  y: Further  the 
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Let Us Sum Up: 

Check Your Progress: 

 

continuous function s(x) attains a positive minimum value on the compact 

set ER and we take s to be this minimum. 

if  Er  =  S r   is true for  r  =  R  and if  R  < r (a; y)    R +  s  there exists an 

x  2 Er   such that    (a; x)  =  R  and    (x; y)  =    (a; y)   R    s: Consequently 

there  exists  a  geodesic  arc   L0       of  length     (a; x)   joining   a   to   x   and  a 

geodesic  by   L0       and   L00       joins   a   to   y   and  has  its  length     (a; y) : This 

composite arc is a geodesic arc and y is thus joined to  a  by a geodesic 

arc whose length is equal to the distance of  y  from  a: 

Hence  y  2 ER; and  the  range  of  validity  of   Er  =   S r   is  thus  extended 

from  ER  to  ER+s: We have proved incidentally that hypothesis  (c)  implies 

that any two points of S can be joined by a geodesic arc whose length is 

equal to their distances. 
 

Suppose we are now given a bounded set of points of M on S: Clearly 

we can   nd some  R  such that  M   is contained in  S R   and since  S R (=  ER) 

is compact, it follows that M is relatively compact. 

Thus, we have proved that the condition (b) implies (c) and hence all 

the three conditions are equivalent. 

 

Theorem 14.3. On a complete surface any two points can be joined by a geodesic 

arc whose length is equal to their distance. 

 
 

 

In this unit, the students acquired knowledge to 

 

  the concept of complete surfaces. 

  the characterization of complete surfaces. 
 

 
 

 

 

1. De ne metric spaces. 

 
2. De ne length of the segment. 

 
3. Explain characterization of complete surfaces. 
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Answer: 

Suggested Readings: 

 

 
 

 

1. The only compact surfaces with constant Gaussian curvature are 

: : : : : : 

 
(a) straight lines. 

 

(b) circles. 
 

(c) spheres. 
 

(d) parabolas. 
 

 
 

 

(1) c 

 
 

 

 

1. T.J. Willmore, An Introduction to Di erential Geometry , Oxford 

University press, (17th Impression), New Delhi, 2002. (Indian 

Print). 

 

2. C.E.Weatherburn, Di erential Geometry of Three Dimensions , 

University Press, Cambridge, 1930. 

Choose the correct or more suitable answer: 
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After completion of this unit, students will be able to 

 
F derive Hilbert's theorem. 

 
F derive Jacobi's theorem. 
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HILBERT'S THEOREM 
 
 

 

 
 

 

In this unit, we will explain the derivation of Hilbert's theorem 

and Bonnet theorem. 
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15.1. Hilbert's theorem: 

 

The following notion of universal covering space of a given space is 

being used for proving the following theorem: 

Let P  be a point on the surface  S; and let Q  be the set of all paths of 

S   which begin at  P: Let us divide the set  Q  into classes, putting into each 

class the totality of paths that are homotopically equivalent. 

Let S 0 denote the set of these classes, so that a point of S 0 is an 

equivalence class of paths of S: 

There is a natural mapping     of the set  S 0     on the space  S :; for if  A 

is a point on S 0 ; then all the equivalent paths in  S belonging to  A  must 

end in the same point  a; and we write  a  =   (A): It is shown that the set 

of points S 0 can be considered as forming a surface called the universal 

covering space which has the following properties: 

(1) The natural mapping of S 0 on S is a continuous open mapping. 

Moreover,    is locally homeomorphic mapping,   i:e:; for every point 

A  of  S 0      there exists a neighbourhood  U   such that the mapping 

is homeomorphic on the neighbourhood U : 

(2) The universal covering of surface S 0 of a surface S is always simply 

connected. 

 
Property (1) implies that S  and S 0     are locally homeomorphic so that all 

the local properties of the space S are automatically true for S 0 : Moreover, 

the di erential geometric structure on S induces a di erential-geometric 

structure on S 0 : 

 

Theorem 15.1. A complete analytic surface free from singularities, with constant  

negative Gaussian curvature, cannot exist in three dimensional Euclidean space. 

 

Note 15.1. We have already seen that a compact surface with these properties 

cannot exist, but here the condition of compactness is relaxed to completeness 

and hence the proof is quite di cult. 

 
Proof.  Let  us  prove  the  theorem  by  contradiction.       i:e:;  Assume  that  there 

exists a surface S exists having the required property 
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Consider an arbitrary geodesic line on the surface S and taken an arbitrary 

point O on the geodesic as origin. 

If   s   denote  the  arc  length  of  this  geodesic  measured  from  O; since  S   is 

complete, the geodesic can be continued in both the direction from  +1 to   1: 

It is possible that the geodesic will ultimately cross itself so that the same point 

on S will have two di erent s -values. 

However, if we consider instead of S its universal covering surface  S 0 ; then 

di erent values of s will correspond to  di  erent  point  on  S 0 : This  follows 

because on a surface of a negative Gaussian curvature two geodesics arcs cannot 

enclose a simply connected region. 

 

At each point of parameter s on the given geodesic, consider the orthogonal 

geodesic line and let its arc length t be chosen as parameter so that the equation 

of geodesic is  t =  0: 

Now two of these geodesic arc at  s1; s2  cannot meet on the surface  S   in order 

to form with the geodesic arc  s1; s2  a simply connected region.  For if, this were 

the case, then the sum of the angles of the geodesic triangle so formed would not 

be less than 2 ; which is a contradiction. 

Let us denote a point in the covering space  S 0     by the pair of coordinates  (s; t) 

and it can be seen that di erent pairs  (s; t)  correspond to di erent point on  S 0 : 

Now, we show that every point of  S  can be represented on the covering surface 

S 0 in this manner. 

 

It follows from Minding theorem that the line element of the surface assumes 

the form  ds
2
 + G(s)dt

2: 

 

 
Figure 15.1 

Suppose now that a point P on the surface S remained uncovered by our 

construction (see Fig.(15.1)).  Joint  P  to  O  ( s  =  0; t  =  0 ) by some recti able 

curve : 
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Then there must be some point Q on with the property that all points 

between O  and Q  can be covered, while points on     arbitrarily near Q  on 

the side of Q remote from O cannot be covered. If Q1 lies on     between O 

and Q it follows from the form of the metric that the length of the curve OQ1 is 

greater than or equal to  sQ1 
; where  sQ1      

is the  s -coordinate of the corresponding 

point on S 0 : 
 

The set of values    sQ1 
is bounded,  and we de ne  sQ   to be the least upper 

bound of this set. 

Let  R  be the point on the geodesic  t =  0  distant  sQ  from  O; and consider the 

orthogonal geodesics along some interval on the geodesic t = 0  which contains 

R: 

These geodesics will cover a strip of the surface which certainly contains the 

point  Q; and the points beyond  Q  on the curve    which gives a contradiction 

and hence we conclude that every point of the surface S can be covered in this 

way. 

Thus there is a local homeomorphism between points of S and the (s-t) plane, 

but this correspondence may not be (1-1) in the large. However, the covering 

space S 0 is homeomorphic with the (s-t) plane. 

Consider the asymptotic lines on the surface S: 
 

These lines are given by the di erential equation  Lds
2
 + 2Mdsdt + Ndt

2
 =  0: 

Since  K  < 0; we conclude that  LN   M
2
  < 0  and hence that at each point 

of S; the asymptotic directions are real and di erent. Hence at each point of S 0 

these determine two distinct directions, and similarly at each point of the (s-t) 

plane. 

 

Since the (s-t)  plane is simply connected, the di  erential equation gives rise 

to two vector elds which can be continued over the whole plane. 

The Lipschitz condition for uniqueness of the solution of the di erential 

equation is satis ed for we have assumed that  S   is of class  w: 

Thus throughout the  (s-t)  plane there are two systems of asymptotic lines 

with the property that a curve from each system passes through an arbitrary point. 

Further since S  is free singularities, the di  erential equation has no singularities. 

Therefore, from the theorem of Bendixon that each asymptotic lines can be 

prolonged to an arbitrary extent in both directions and if    denotes the arc length. 
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1

 
 

lim 
 ! 1 

s
2
 + t

2
  = ; lim 

 !+1 

 
s

2
 + t

2
  

= 1 
 

Now, let us prove that each asymptotic line of one system cuts each asymptotic 

line  of  the  other  system  in  exactly  one  point.  First we prove that two such 

lines cut in at most one point.   Suppose this is not so,  then there would be 

region of the (s-t) plane bounded by two asymptotic lines of di erent systems. 

Consider the rst case when the asymptotic lines 

meet at  A  and  B  such that the continuation of 

the lines does not contain any interior point of the 

region bounded by the two lines. Let P be a point 

on one of the lines lying between  A  and  B; and 

consider the asymptotic line of the second system 

which passes through  P: Because this second line 

through P cannot intersect the line AB belonging 

to the same system, it follows that it must intersect 

the line AB of the opposite system in a further 

point  Q: Moreover, as  P  moves from  A  towards 

the end  B; so  Q  will move from  B  towards the 

end A: There must be one point where P  and 

Q coincide, at that point the asymptotic directions 

will coincide. This contradicts the fact that  K  < 0: 

 

 

 

 

Figure 15.2 

Consider now the second case, where by continuation of the asymptotic 

lines at least one line penetrates the region bounded by the two asymptotic lines 

(see Fig.((15.3)). 

 

 

Figure 15.3 

 

 
Then this asymptotic line will meet the line of the opposite system at a 

second point  C: 
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> 

a 

  > 

 

Then the continuation BC together with the asymptotic line BC form a 

system of the type discussed above and again contradiction arises. 

Thus, we have proved that each asymptotic line of one system cannot meet 

each asymptotic line of the other system is more than one point. 

In order to prove such lines must meet in atleast one point, it is convenient to 

refer to the asymptotic lines as parameter lines. 

Suppose that N is a neighbourhood of S in which the line of curvature are 

chosen as parametric lines. 

1 
If   a;  b  denote the principal curvature at a point  P  on  N  and if  K  = is 

a2 

the constant negative Gaussian curvature, we can write 

 

  =    a
 1 

cot ;    =    a
 1 

tan  ; 0 < < 
 
 

2 

 
(15.1) 

 

Using an argument similar to section (15.6). we get 

 @ a 

@v  @ 
b 

@u 

 
Using equation (15.1), we get 

E2 

1 E2 
= ( b 

2 E 
1 G1 

= ( a 
2 G 

   a) 

   b) 

9
>=
 

>>; 

 

 
(15.2) 

      =  2  2 cot 
E 
G1 

9
>=
  

(15.3) 
=    2  1 tan   

G 
; 

 

Upon integration, we get 

 
E =     U(u) sin

2
   ;   G = V(v) cos

2 (15.4) 

 

where  U(u); V(v)  are certain functions of  u  and  v  respectively. 

 

By means of a suitable reparametrization, the function may be taken as unity 

and the rst fundamental form becomes 

sin
2
 du

2
 + cos

2
  dv

2
 

 

In terms of the new parameters 

L    =      aE = a
  1 

sin  cos  ; 

N =       bG =    a
  1 

sin   cos 

M  =    0 

b 
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and the asymptotic lines are given by  du
2
   dv

2
 =  0: 

1 1 
Choose new parameters    ; where     =  

2 
(v + u) ; =  

2 
(v   u) : 

Then, the parametric curves     =  constant,     = constant are asymptotic lines. 

 
Moreover, the metric assumes the form 

 

d  
2
 + 2 cos 2  d  d  + d 

2
 (15.5) 

 

and    ; measures the arc lengths of the asymptotic lines. 

 

Through O of the (s-t) plane there pass two asymptotic lines. 

 
Through each point on these two lines we draw the asymptotic line of opposite 

system. 

Then we prove that each point of the (s-t) plane lie on one asymptotic line of 

each system. 

Suppose that there is a point P on the plane which cannot be reduced in this 

way. Join  P  to O  by a continuous curve   with the property that each pair of 

lines from di erent systems cut in a single point in this neighbourhood. Consider 

a point Q0 lying in this neighbourhood and let the asymptotic lines through Q0 

cut the coordinate curves    =  0;   =  0  in two points  Q
(1); Q(2)

 respectively. 
0 0 

 

Let  Qi  denote a typical point which lines on    becomes  Q0  and  Q: Let the 

asymptotic lines through  Q   meet the coordinate curves at  Q
(1); Q(2)

  and let these 
i i i 

lines meet the lines through Q0 in Q
(1) 

and Q
(2)

 (see Fig. (15.6)). 

 

 
 
 

Figure 15.4 
 
 

Then (1) 
 

(1) 
 

(1) (2) 
 

(2) 
 

(2) 

Q0Qi =  Q
0   

Q
i 

and  Q0Qi =  Q
0   

Q
i   

; provided Qi lies in a 
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0 

0 

 

neighbourhood of Q0 where the line element is of the form given by (15.5). 
 

Any asymptotic lines which cuts Q0Qi  lies between  Q0  and  Qi  which is 

su ciently close to Q0  will cut equal lengths from all asymptotic lines which 

meet  Q0Q
1: 

Suppose if these were not true for all the asymptotic lines meeting Q0Qi such 

that all points between Q0 and R possess this property, but there are points 

arbitrarily close to R (may be R itself) which does not hold this property. The 

asymptotic line through R  will intersect the coordinate line   =  0  in the point 

R
(1)

  such that the lengths  Q  R; Q
(1)

R
(1)

  are equal and further all the asymptotic 
0 0 

lines between Q
(l)

 and Q0 will have equal lengths intercepted by the asymptotic 

line through  R: 
 

Let us measure o from all these asymptotic lines  the  length  Q0R in  the 

direction of increasing : 

Now, we assert that the end points of these segments form an asymptotic line. 

This is clearly the case when we consider neighbourhoods of points on the line 

RR
(1)

 and make use of the net of asymptotic lines in this neighbourhood. 

It is true for all asymptotic lines which meet  Q0Q1  in a neighbourhood of  R: 

In particular it is true for the asymptotic lines through Q1 and so for those in a 

certain neighbourhood of  Q1; which contradicts to our hypothesis. 

Thus the two asymptotic lines through O will cut an arbitrary asymptote line 

in the plane, and since the point O has been chosen arbitrarily, it follows that each 

asymptotic line of one system meets every asymptotic line of the other system in 

exactly one point,. We can take (  ; ) as coordinates for points in the whole plane 

and the metric is of the form  d 2
 + 2 cos 2 d d  + d 2: 
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G @ 

p 
G 

a 

2H @u 

  

  

 

Let ! be the angle between the parametric 

curves. 

Then  cos ! = 

F 
   = cos 2 
EG 

Here  F =     cos 2 ;  E =  1; G =  1 

)  ! =   2    and hence 0 < ! <   
 

Now, using  K =   
   1  

" 
@
 
  

1 
  

+

  
E2

 # 
 

  
for the calculating Gaussian curvature and thus we 

1 
have K =  : 

a2 

@2! 
 

Figure 15.5 
Also,  = K sin !: 

@ @  

Consider now the quadrilateral formed by the asymptotic lines 
 

  =      ;   =       : (see Fig. (15.5)). 

Total curvature =    

" 
Kds = 

" 
K sin !d d  

=    !1    !2 + !3     !4 

=       1 +  2 +   3 +   4   2  

 
Thus, it follows that the absolute magnitude of the total curvature of an 

arbitrarily large region cannot exceed 2 : 

Let us now consider the  rst form of metric  ds
2
 + G(s)dt

2: 
 

Thus, we have 

K =  
     1 @ 

2   G @s 

 
Gs

 

* H = 

p
EG = 

p
G as E = 1

 
: 

and 
p

G = cosh 

 
s 

 

: 

The total curvature over a region bounded by parametric lines  x =   l; t =   l 

is " 
Kds    =     

" 
K 

p
Gdsdt =   1 

"  
@ 

  
G2   

!
dsdt 

2 @s 
p

G 
4l l 

= sinh 
a a 

 

But in magnitude this tends to 1 as l ! 1 which contradicts our earlier 

assertion that the absolute magnitude of the total curvature cannot exceed 2 : 
 

This completes the proof of the Hilbert's theorem.   

H @v 

p 

H 
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6 
Z 2 3 

 

 
 

 

15.2. Conjugate points on geodesics: 

 

In earlier chapter, we have studied that if there exists a curve of shortest 

distance between two points on a surface, then the curve is necessarily a 

geodesic. 

Now, we are going to consider the case whether a given geodesic 

joining two points is necessarily the shortest distance between them. The 

following theorem proves that this is the case when the given geodesic can 

be embedded in a eld of geodesics. 

 

De nition 15.1 (Field of Geodesics). By a eld of geodesics is meant a one-

parameter set of geodesics, de ned over a region R of a surface such that through 

each point of R passes one and only one curve of the set. 

 

Theorem 15.2. If P and  Q are two points of a geodesic which can be embedded 

in a eld of geodesics, then the arc  PQ  of the geodesic is shorter than any other  

arc which joints  P and  Q and lies entirely in that region of the surface covered 

by the eld. 

 
Proof. Let us choose parameters so that the geodesics of the family are the curves 

v = constant with v  =  v0  as the given geodesic.  Let the curves u  = constant 

be geodesics parallels orthogonal to them, then the metric reduces to the form 

ds
2
 =  du

2
 +  2

dv
2: 

If the coordinates of  P  and  Q  are  (u1; v0) ; (u2; v0)  with  u2  > u1; the length 

of the geodesic arc PQ is (u2 u1) : 

Let C be an arbitrary curve passing through P and Q given by the equation 

v =    (u)  where    (u1) =  v0;    (u2) =  v0: 

Then the arc length of C is 

 

I = 

 
 

 
u2 

1 +  
2
 

 

2 1=2 

 
d 
! 7 

du

 

u1       

64 
du 

75 
 

Clearly l exceeds u2 u1 unless d f racd du = 0 when C is the given 

geodesic.   

 

Note 15.2. However, it is most unlikely that the region R of the geodesic eld 

extends over the entire surface S: 
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1 

" # 
2 B 3 

1 

A 

B 

 

In general, the above argument cannot be applied to complete surface. 

 
For instance,  the surface of a sphere cannot be covered by a geodesic  eld 

because any two great circles intersect in two points of the sphere. Moreover, if 

A; B  are any two non-antipodal points, the geodesic arc which the longer part of 

the great circle joining A and  B  and clearly is not the shortest distance from  A 

to  B: 

Theorem 15.3. When the surface S  has negative curvature everywhere,  the 

length of a geodesic which joins any two points A; B  is always less than the 

lengths of the neighbouring curves through  A  and  B: 

 
Proof. Let us now consider two systems, one of them is system of parametric 

curves be the geodesics normal to the given geodesics AB and the other system 

be the orthogonal trajectories. Let u  denote the length of the geodesic normal 

PQ  from  P  to  AB  and  v  denote the length  AQ: 

The  lime  element  of  the  surface  becomes   ds
2
    =     du

2
  +    2

dv
2;  where 

  (0; v) =  1;  1 (0; v) =  0: 
 

In  terms   of   these   parameters   the   Gaussian   curvature   is   given   by 

K =   
   11 

  
i:e:;  11 =    K: 

The function    can be expanded as a power series in  u; we get in the form 

u2 

  = 1   K 
2

 
u3 

  K1 
6

 + O(u
4
)  where  K  and  K1  are evaluated with  u =  0: 

A neighbouring curve APB which di ers slightly from AB will have an 

equation of the form u = (v) where u will be small. 

The length of this curve will be 

A A 

 

 

 

1=2 

I =     

Z  
 0   2  

+  2
 1=2 

dv =  

Z "
1 +  0   2    K 2    1 

K   3

# 
dv 

B B 3 

where terms of the forth order are neglected. 

Let us assume that   0    never becomes in nite and is thus of the same order of 

smallness as  u: 

1=2 

Hence l     s = 
1 R A     

  
0  2   

   K 
2
    

1 
K   

3
 

dv: 

The sign of variation of the arc length will be given by the second order term, 

provided that these do not vanish identically. 

If only these terms are retained, we have 

l   s    =     

Z h
 0   2    K 2

i
dv (15.6) 
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0 0     

  

1 

 

Now, if K is always negative, the integrand is always positive and hence we 

have  l > s: 

This completes the proof of the theorem.   

 
Note 15.3. Now, we shall consider the analogous problem, when K is not always 

negative. 

 

Lemma 15.1 (Erdmann's lemma). For an extreme value, in addition to the 

equation of Euler, it is necessary that   f+y0      =   f y0 

 

Proof.  Consider the problem of  nding a curve  y =  y(x); which passes through 

two points  (x1; y1) ; (x2; y2)  has a discontinuity of slope on the line  x =  x1  and is 
x2 such that the integral  J =  

R
x 

f 
 
x; y; y 

 
dx  assumes an extreme values. 

0 
 

 0 0 

Let  y
+ 

= lim y  (x3 +  ) 
 !0 

 0 0 

y
  

= lim y  (x3  ) where    is positive: 
 !0 

 

 
 

 
Figure 15.6 

 

 
The  variation  of  the  integral  over  the  curve  y(x)  and  y +    (x); where 

 (x1) =  0;  (x2) =  0  is given by 

x3 

J ( )  = 

x1 

x2 

f   x; y +   ; y
0   

+    0      

dx + 

x3 

f 
  

x; y +      ; y +           
   

dx 

 

It is assumed that the corner still moves along the line   x =  x3: 

The necessary condition for extrema is  J0 (0) =  0: 

Thus, it reduces to 
x3 x2 

 d  
fy 

x1 
dx 

fy0  

!
 
 dx + 

x3 

fy   
 d  

fy0 

dx 
 dx +   3 f y0       f+y0             =  0 

Z Z 

Z Z ! 
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B 

A 

     Z
uu  dv 

 uu   

00 

00 

1 B 

Z 

 

d 
In addition to Euler's equation fy 

dx
 

is   f y0      =   f+y0  : 

 

fy0      =  0  , we have the necessary condition 

 

Thus the lemma is proved.   

 
Theorem 15.4 (Jacobi). In order that the geodesic distance AB should be the 

shortest distance it is necessary and su cient condition that  B  lies between  A 

and its conjugate point  A1: 

 
Proof. From equation (15.6), it follows that geodesic distance s  is a minimum 

2 

R
A   

    
provided that   2

(s) = u0   2    Ku
2
   dv  is non-negative. 

R  
u0   2    Ku

2
 

dv  a minimum. It can be easily veri ed that, except for notation, 
If    2

(s)      0   for  all   u; then  the  curve   u   =    0   must  make  the  integral 

the Euler equation corresponding to this is Jacobi's di  erential equation. 

 
Now assume that the geodesic distance AB still  gives  the  shortest  distance 

with  B  lying beyond  A1    i:e:;  2
(s)   0  and thus a contradiction arise. 

By hypothesis there is a solution of Jacobi's di erential equation ( and hence 

for Euler's equation) which vanishes at  A  and has its next zero at  A1: If  u =   (v) 

is such a solution, then of course is u = (v) for an arbitrary constant : 

De ne a new function u which coincides with u = (v) from A to A1 and is 

identically zero from  A1  to  B: 

Our aim is to prove that such a function u is a corner solution of the problem 

of giving 
2
(s) an extreme value. 

A1 

Since 
A 

 
00 

= 
0 A1 

A 

 
A1 

A1 

u
0   2

dv 
A 

=        

Z
 u

0   2
dv where  u =   (v) 

B 

It follows that 
A 

A1  
u0

2    Ku
2

 
dv    = 

 

 

 
u

0   2    Ku
2
 

dv 

A1 

=        

Z 
u

 
u  + Ku

 
dv 

=    0  
 
* u  + Ku = 0

  
 

Since u satis es the condition 
2
(s) = 0 and can be chosen as near to the 

curve u =  0  as we please since   is arbitrary it follows that u =  0  gives   
2
(s) 

is minimal value. 

Moreover, u  must be a corner solution of the problem of  nd a minimum 

 2
(s): 

A 

Z 

A Z 

A 
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+   

 
2

 

 

From Erdmann's lemma, the necessary condition is  u0      
=  u0   : 

 

But this is quite impossible because there is no non-trivial solution of the 

equation  u00   
+ Ku =  0  which vanishes simultaneously with its derivative. 

This gives the required contradiction and the theorem is completely 

proved.   

 
Now, we are going to state the Sturm's theorem without proof which 

will be use to prove the Bonnet theorem. 

Theorem 15.5 (Sturm's theorem). Consider  the  two  distinct  di  erential 

d
2
V 

equations 

d
2
V 

dx
2
 

= HV; 

dx
2
 

=  H0 V  where for all values of  x  in the range considered, H0 (x)   H(x): 

Then If  (x) is a solution of the  rst equation having two consecutive zeros 

at x0 and x1 , a solution of the second equation which has a zero at  x0  cannot 

have another zero in the closed interval  [x0; x1] : 

Corollary 15.1.  If for all values of  x  in the range considered  H0 (x)   H(x); and 

if  (s) is a solution of the  rst equation having two consecutive zeros at  x0  and 

x1; then any solution of the second equation which has a zero at  x0  must have at 

least one other zeros in the interval  [x0; x1] : 

 

Theorem 15.6 (Bonnet). If along a geodesic the Gaussian curvature exceeds a 
1 

positive constant 
a2 

then the curve cannot be the shortest distance between its 

extremities along an arc exceeding   a: 
 

 

Proof. Consider Jacobi's di erential equation 

considered by sturm. 

d
2
 p 

dv
2
 

 
+ kp = 0 which is of the type 

Let   p  be a solution of the equation and let  v0; v1   be two consecutive zeros 

corresponding to the point  A  and  A1: 

Thus, the arc AB will be the shortest distance between A and B if and only 

if B lies between A and A1 (by using Jacobi's theorem). 

Suppose the Gaussian curvature along the line  AA1  always exceeds the 
1 1 

positive constant ; so that K      
a 

: 
a2 2 

d
2
 p p 

The solution of the equation = 
dv 

which vanishes for v  =  v0  is 
a 

C sin 
v   v0 

a 
and its next zero after v0 is just v0 +  a: 

2   
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2

 

Let Us Sum Up: 

 

Thus, if the arc length  AB  exceeds  a; then  B  will not lie between  A  and  A1 

and hence the theorem is proved.   

 
Theorem 15.7. If at all points of a geodesic the Gaussian curvature is less than 
1 
; then the curve is necessarily of shorter length neighbouring curves along an 

b2 

arc length at least equal to   b: 
 

1 
Proof.  Given that K    

b2 
: 

We know  that  the  interval  between  consecutive  roots  of  the  equation 

d
2
 p 

= 
dv 

p 
is   ab: This cannot be smaller than the interval between consecutive 

a2 

roots of previous equation. 
 

Thus, if the arc length  AB  is less than   b; then  B  will certainly lie between 

A  and  A1: 

This completes the proof of the theorem.   

 
Theorem 15.8. If on a compact surface  S; the curvature everywhere exceeds 
1 

; the maximum distance between any two points cannot exceed   a: 
a2 

 

1 
Proof.  Given that the surface S  is compact and has the property that K     

a2
 

everywhere. 
 

Thus, if A and B are any two points on S there is a geodesic joining A to B 

which is of shorter length than the neighbouring curve. 

By Bonnet theorem, the maximum distance between A and B cannot exceed 

 a   

 

 

 

In this unit, the students acquired knowledge to 

 

  derive Hilbert's Theorem. 

  derive Bonnet's theorem . 

  derive Erdamann's lemma. 
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Suggested Readings: 

 

 
 

 

1. State and Prove Hilbert's theorem. 

 
2. De ne eld of Geodesics. 

 
3. State and Prove Erdamnn's lemma. 

 
4. State and Prove Jacobi's theorem. 

 
5. State Sturm's theorem. 
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Check Your Progress: 
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