

MASTER OF SCIENCES

Author-Dr. Harsh Verdhan Harsh

SURESH GYAN VIHAR UNIVERSITY

Centre for Distance and Online Education,

Mahal Road, Jagatpura, Jaipur-302017

(M.Sc.)

MMT-105

PROGRAMMING
 IN C++

Semester-I

Published by:

S. B. Prakashan Pvt. Ltd.

WZ-6, Lajwanti Garden, New Delhi: 110046

Tel.: (011) 28520627 | Ph.: 9205476295

Email: info@sbprakashan.com | Web.: www.sbprakashan.com

© SGVU

All rights reserved.

No part of this book may be reproduced or copied in any form or by any means (graph-
ic, electronic or mechanical, including photocopying, recording, taping, or information
retrieval system) or reproduced on any disc, tape, perforated media or other information
storage device, etc., without the written permission of the publishers.

Every effort has been made to avoid errors or omissions in the publication. In spite of this,
some errors might have crept in. Any mistake, error or discrepancy noted may be brought
to our notice and it shall be taken care of in the next edition. It is notified that neither the
publishers nor the author or seller will be responsible for any damage or loss of any kind,
in any manner, therefrom.

For binding mistakes, misprints or for missing pages, etc., the publishers’ liability is lim-
ited to replacement within one month of purchase by similar edition. All expenses in this
connection are to be borne by the purchaser.

Designed & Graphic by : S. B. Prakashan Pvt. Ltd.

Printed at :

Dr (Prof.) T.K. Jain
Director, CDOE, SGVU

Dr. Dev Brat Gupta
Associate Professor (SILS) & Academic
Head, CDOE, SGVU

Ms. Hemlalata Dharendra
Assistant Professor, CDOE, SGVU

Ms. Kapila Bishnoi
Assistant Professor, CDOE, SGVU

Dr. Manish Dwivedi
Associate Professor & Dy, Director,
CDOE, SGVU

Mr. Manvendra Narayan Mishra
Assistant Professor (Deptt. of Mathematics)
SGVU

Mr. Ashphaq Ahmad

EDITORIAL BOARD (CDOE, SGVU)

Assistant Professor, CDOE, SGVU

M.Sc., Mathematics - Syllabus – I year – I Semester (Distance Mode)

COURSE TITLE : PROGRAMMING IN C++

COURSE OBJECTIVES

While studying the PROGRAMMING IN C++, the Learner shall be able to:

CO 1: Develop programming skills in C++ and its object oriented concepts

CO 2: Review about the inline functions

CO 3: Represent arrays in C++

CO 4: Predict the uses of constructors and destructors.

CO 5: Describe the existing classes.

COURSE LEARNING OUTCOMES

After completion of the PROGRAMMING IN C++, the Learner will be able to:

CLO 1: Interpret the concept of control structures and able to write simple programs using class

concepts.

CLO 2: Describe the uses of function overloading.

CLO 3: Enable to write moderate level programs using Object concept.

CLO 4:Demonstrate and understanding to apply operator overloading concept.

CLO 5:Enable to efficiently use the techniques, skills, and computational skills to solve real time

numerical problems

BLOCK I: INTRODUCTION

Beginning with C++ & Tokens, Expressions and Control Structures, Applications of C++– A simple

C++ Program–– An Example with Class– Structure of C++ Program–Creating the Source File–

Compiling and Linking–Introduction– Token and Keyword.

BLOCK II: Functions in C++ and classes

Introduction– the Main Function– Function Prototyping– Call by Reference–Return by Reference–

Inline Function– Defaults Arguments– const Arguments– Function Overloading– Friend and Virtual

Functions– C Structures Revisited– Specifying a Class– Defining Membership Functions– A C++

Program with Class– Making an Outside Function Inline– Nesting of Member Functions– Private

Member Functions– Arrays with an Class

BLOCK III: Objects & Constructors

Suresh Gyanvihar University
Department of Mathematics

School of Science

COURSE CODE : MMT-105

COURSE CREDIT : 4

Introduction– – Memory Allocation for Objects– Static Data Member– Static Member Functions–

Arrays of Objects– Objects as Function Arguments– Friendly Functions– Returning Objects– const

Member Functions– Pointers of Members– Local Classes– Constructors–Parameterized

Constructors– Multiple constructors in a class– Constructors with Default Arguments.

BLOCK IV: Destructors & Operator Overloading and Types Conversions

Introduction –– Dynamic Initialization of Objects– Copy Constructor– Dynamic Constructors–

Constructing Two–Dimensional Arrays– const Objects –Destructors– Introduction– Defining

Operator Overloading– Overloading Unary Operators– Overloading Binary Operators– Overloading

Binary Operators Using Friends– Manipulation of Strings Using Operators– Rules For Overloading

Operators– Type Conversions.

BLOCK V: Inheritance: Extending Classes and Pointers, Virtual Functions and

Polymorphism

Introduction–Defining Derived Classes– Single Inheritance–Making a Private Member Inheritance–

Making a Private Member Inheritable– Multilevel Inheritance–Multiple Inheritance–Hierarchical

Inheritance–Hybrid Inheritance–Virtual Base Classes–Abstract Classes– Constructors in Derived

Classes– Member Classes: Nesting of Classes–Introduction– Pointers to Objects–this Pointer–

Pointers to Derived Classes–Virtual Functions– Pure Virtual Functions.

REFERENCE BOOKS:

1. E.Balagurusamy, Object Oriented Programming with C++, 4th Edition, The McGraw–Hill

CompanyLtd, New Delhi, 2008.

2. V. Ravichandran, Programming with C++, Second Edition Tata McGraw – Hill, New Delhi,

2006.

3. H.Schildt,The complete Reference of C++, Tata–McGraw–Hill publishing Company Ltd. New

Delhi, 2003.

4. S.B. Lipman and J.Lafer, C++ Primer, Addition Wesley, Mass., 1998.

5. Ashok N.Kamthane, Object Oriented Programming with ANSI and TURBO C++, Pearson

Education(P) Ltd, 2003.

6. BjarmeStroustrup, The C++ Programming Language, AT & T Labs, Murray Hills,

NewJersey, 1998.

https://www.youtube.com/watch?v=PBgn_OVQeEI
https://www.youtube.com/watch?v=LksXocN_lXw
https://www.youtube.com/watch?v=GyCqdwIQtg8
https://www.youtube.com/watch?v=oZw3iUtQPCA
https://www.youtube.com/watch?v=5FnbFINW1j4
https://www.youtube.com/watch?v=EA57vk31qMk

Block-I

Unit – I: Introduction

Unit – II: Tokens, Expressions and Control Structures

Block- II

Unit – III: Functions in C++

Unit – IV: Classes and Objects - I

Block - III

Unit – V: Classes and Objects - II

Unit – VI: Constructors and Destructors

Block - IV

Unit – VII: Constructors and Destructors

Unit – VIII: Operator Overloading and Type Conversions

Block - V

Unit – IX: Inheritance: Extending Classes

Unit – X : Pointers, Virtual Functions and Polymorphism

CONTENTS

Page

1 Beginning with C++ 2

1.1. Introduction 2

1.2. Applications of C++ 3

1.3. A simple C++ program 3

1.4. An Example with Class 10

1.5. Structure of C++ program 12

1.6. Creating the Source File 13

1.7. Compiling and Linking 13

Example Programs 16

Summary 19

Review Questions 19

Programming Exercise 20

2 Tokens, Expressions and Control Structures

2.1 Introduction 21

2.2 Tokens 21

2.3 Keywords 21

2.4 Identifiers and Constants 22

2.5 Basic Data Types 23

2.6 User-defined Data Type 26

2.7 Derived Data Types 29

2.8 Symbolic Constants 30

2.9 Type Compatibility 31

2.10 Declaration of Variable 32

2.11 Dynamic Inititialization of Variables 33

2.12 Reference Variables 34

2.13 Operators in C++ 36

2.14 Scope Resolution Operator 37

2.15 Member Dereferencing Operator 40

2.16 Memory Management Operator 41

2.17 Manipulators 44

2.18 Type Cast Operator 46

2.19 Expressions and Their Types 47

2.20 Special Assignment Expressions 50

2.21 Implicity Conversions 51

2.22 Operator Overloading 51

2.23 Operator Precedence 52

2.24 Control Structures 53

Summary 57

Review Questions 59

Programming Exercises 60

3 Functions in C++

3.1 Introduction 62

3.2 The main Function 62

3.3 Function Prototype 63

3.4 Call by Reference 66

3.5 Return by Reference 67

3.6 Inline Functions 68

3.7 Default Arguments 70

3.8 const Arguments 73

3.9 Function Overloading 74

3.10 Friend and Virtual Functions 77

3.11 Math Library Functions 77

Summary 78

Review Questions 79

Programming Exercises 80

4 Classes and Objects - I

4.1 Introduction 81

4.2 C structures Revisited 81

4.3 Specifying a Class 84

4.4 Defining Member Functions 89

4.5 A C++ Program with Class 92

4.6 Making an Outside Function Inline 94

4.7 Nesting of Member Functions 95

4.8 Private Member Functions 96

4.9 Arrays within a Class 97

Summary 98

Review Questions 99

Programming Exercises 99

5. Classes and Objects – II

5.1 Memory Allocation for Objects 102

5.2 Static Data Members 102

5.3 Static Member Functions 105

5.4 Array of Objects 108

5.5 Objects as Function Arguments 112

5.6 Friendly Functions 114

5.7 Returning Objects 122

5.8 const Member Functions 123

5.9 Pointer to Members 123

5.10 Local Classes 127

Summary 130

Review Questions 131

Programming Exercises 132

6. Constructors and Destructors

6.1 Introduction 133

6.2 Constructors 134

6.3 Parametrized Constructors 136

6.4 Multiple Constructors in a Class 139

6.5 Constructors with Default Arguments 143

Summary 144

Review Questions 144

Programming Exercises 145

7 Constructors and Destructors

7.1 Dynamic Initialization of Objects 148

7.2 Copy Constructor 151

7.3 Dynamic Constructors 154

7.4 Constructing Two-Dimensional Arrays 157

7.5 const Objects 159

7.6 Destructors 159

Summary 165

Review Questions 165

8 Operator Overloading and Type Conversions

8.1 Introduction 166

8.2 Defining Operator Overloading 167

8.3 Overloaded Unary Operators 169

8.4 Overloaded Binary Operators 171

8.5 Overloading Binary Operators Using Friends 176

8.6 Manipulation of Strings Using Operators 181

8.7 Rules for Overloading Operators 186

8.8 Type Conversions 187

Summary 194

Review Questions 195

Programming Exercises 196

9 Inheritance: Extending Classes

9.1 Introduction 198

9.2 Defining Derived Classes 199

9.3 Single Inheritance 201

9.4 Making a Private Member Inheritable 208

9.5 Multilevel Inheritance 211

9.6 Multiple Inheritance 216

9.7 Hierarchical Inheritance 220

9.8 Hybrid inheritance 221

9.9 Virtual Base Classes 226

9.10 Abstract Classes 232

9.11 Constructors in Derived Classes 233

9.12 Member Classes, Nesting of Classes 236

Summary 238

Review Questions 239

Programming Exercises 240

10 Pointers, Virtual Functions and Polymorphism

10.1 Introduction 241

10.2 Pointers 242

10.3 Pointers to Objects 256

10.4 this Pointer 262

10.5 Pointers to Derived Classes 266

10.6 Virtual Functions 269

10.7 Pure Virtual Functions 273

Summary 273

Review Questions 275

Programming Exercises 275

1

BLOCK – I

Objectives:

After Completion of this block, students will be able to

1. Understand basic data types and its limits

2. Familiarize control structures

3. Write simple programs using Class concept and execute them.

2

UNIT – I Beginning with C++

1.1. Introduction

C++ is an object-oriented programming language. It was developed

by Bjarne Stroustrup at AT & T Bell Laboratories in Murray Hill, New Jersey,

USA in the early 1980's. It was developed by combining the best of Simula67

and C, and support object-oriented programming features. Thus, C++ is an

extension of C with a major addition of the class construct feature of

Simula67. Since the class was a major addition to the original C language,

Stroustrup initially called the new language "C with classes". Later, in 1983,

the name was changed to C++. The idea of C++ comes from the C increment

operator ++, suggesting that C++ is an incremented version of C.

During the early 1990's the language underwent a number of

improvements and changes. In November 1997, the ANSI/ISO standards

committee standardised these changes and added several new features to

the language specifications.

C++ is a superset of C. Almost all C programs are also C++ programs.

However, there are a few minor differences that will prevent a C program to

run under C++ compiler.

The most important facilities that C++ adds on to C are classes,

inheritance, function overloading, and operator overloading. These features

enables creation of abstract data types, inherit properties from existing data

types and support polymorphism, there by making C++ a truly object-oriented

language.

The object-oriented features in C++ allow programmers to build large

programs with clarity, extensibility and ease of maintenance, incorporating

the spirit and efficiency of C. The addition of new features has transformed

C from a language that currently facilitates top-down, structured design, to

one that provides bottom-up, object-oriented design.

3

1.2 Applications of C++

C++ is a versatile language for handling very large programs. It is

suitable for virtually any programming task including development of editors,

compilers, databases, communication systems and any complex real-life

application systems.

 Since C++ allows us to create hierarchy-related objects, we can build

special object-oriented libraries which can be used later by many

programmers.

 While C++ is able to map the real-world problem properly, the C part

of C++ gives the language the ability to get close to the machine-level

details.

 C++ programs are easily maintainable and expandable. When a new

feature needs to be implemented, it is very easy to add to the existing

structure of an object.

1.3 A Simple C++ program

The following program prints a string on the screen.

#include <iostream>

using namespace std;

int main()

{

cout<<"Welcome to C++ Language\n";

return 0;

}

4

Program Features

Like C, the C++ program is a collection of functions. The above

example contains only one function, main(). The execution begins at main().

Every C++ program must have a main(). C++ is a free-form language. With

a few exceptions, the compiler ignores carriage returns and white spaces.

Like C, the C++ statements terminate with semicolons.

Comments

C++ has a new comment statement // (double slash). Comments

start with a double slash symbol and terminate at the end of the line. A

comment may start anywhere in the line, and whatever follows till the end of

the line is ignored. Note that there is no closing symbol.

A double slash comment is basically a single line comment. Multiline

comment can be written as follows:

//This is an example for

//multiline comment statement in C++

The C comment symbols /*...... */ are valid and are more suitable for

multiline comments.

The above multiline comment can be written as follows:

/*This is a an example for

multiline comment statement in C++ */

We can use either or both styles. However, we cannot insert a //style

comment within the text of a program line. For example, the double slash

comment cannot be used in the manner as shown below:

for (j=0; j < n; /*loops n times */ j++)

Output Operator

The statement

cout<< "Welcome to C++ Language";

5

causes the string in quotation marks to be displayed on the screen. This

statement introduces two new C++ features, cout and <<. The identifier cout

(pronounced 'C out') is a predefined object that represent the standard output

stream in C++. Here, the standard output stream represents the screen. It

is also possible to redirect the output to other output devices.

The operator << is called the insertion or put to operator. It inserts

(or sends) the contents of the variable on its right to the object on its left.

The following statement will display the content of string

cout<<string;

Note that << is a bit-wise left-shift operator, and it can still be used for this

purpose. Depending on the context, the operator can be used for different

purposes. This concept is known as operator overloading, an important

aspect of polymorphism.

The iostream file

A C++ program typically contains pre-processor directive statements

at the beginning. Such statements are preceded with a # symbol to indicate

the presence of a pre-processor directive to the compiler, which in turn lets

the pre-processor handle the # directive statement. All C++ programs begin

with a #include directive that include the specified header file contents into

the main program.

The following directive

#include<iostream>

causes the preprocessor to add the contents of the iostream file to the

program. It contains declarations for the identifier cout and the operator <<.

Old version of C++ uses a header file called iostream.h. This is one of the

6

changes introduced by ANSI C++. We should use iostream.h if the compiler

does not support ANSI C++ features.

The header file iostream should be included at the beginning of all

programs that use input/output statements.

Header file Contents and purpose New version

<ctype.h> Contains function prototypes for functions

that test characters for certain properties,

and function prototypes for functions that

can be used to convert lowercase letter to

uppercase letters and vice versa

<cctype>

<math.h> Contains function prototypes for math

library functions

<cmath>

<stdio.h> Contains function prototypes for the

standard input/output library functions and

information used by them

<cstdio>

<stdlib.h> Contains function prototypes for

conversion of numbers to text, text to

numbers, memory allocation, random

numbers and various other utility functions

<cstdlib>

<string.h> Contains function prototypes for C-style

string processing functions

<cstring>

<iostream.h> contains function prototypes for the

standard input and standard output

functions

<iostream>

7

<iomanip.h> Contains function prototypes for the

stream manipulators that enable

formatting of steams of data

<iomanip>

<fstream.h> Contains function prototypes for functions

that perform input from files on disk and

output to files on disk.

<fstream>

Namespace

Namespace is a new concept introduced by the ANSI C++ standards

committee. This defines a scope for the identifiers that are used in a program.

For using the identifiers defined in the namespace scope we must include the

using directive, like

using namespace std;

Here, std is the namespace where ANSI C++ standard class libraries

are defined. All ANSI C++ programs must include this directive. This will

bring all the identifiers defined in std to the current global scope. using and

namespace are the new keywords of C++.

Return type of main()

In C++, main() returns an integer type value to the operating system.

Therefore, every main() in C++ should end with a return() statement;

otherwise a warning or an error might occur. Since main() returns an integer

type value, return type for main() is explicitly specified as int. Note that the

default return type for all functions in C++ is int.

8

More C++ Statements

The following program read two numbers from the keyboard and

display their average on the screen.

//Average of two numbers

#include<iostream>

using namespace std;

int main()

{

float n1, n2, sum, avg;

cout<<”Enter two numbers “;

cin>>n1;

cin>>n2;

sum = n1 + n2;

avg = sum/2;

cout<<”The sum of two numbers is “<<sum<<”\n”;

cout<<”Average = “<<avg<<”\n”;

return 0;

}

The output of the program is

Enter two numbers 9 5

The sum of two numbers is 14

Average = 7

9

Variables

The program uses four variables n1, n2, sum and avg. They are declared as

type float by the statement.

float n1, n2, sum, avg;

All variables must be declared before they are used in the program.

Input operator

The statement

cin>>n1;

is an input statement and causes the program to wait for the user to

type in a number. The number keyed in is placed in the variable n1. The

identifier cin (pronounced ‘C in’) is a predefined object in C++ that

corresponds to the standard input stream. Here, this stream represents the

keyboard.

The operator >> is known as extraction or get from operator. It

extracts (or takes) the value from the keyboard and assigns it to the variable

on its right. This corresponds to the familiar scanf() operation. Like <<, the

operator >> can also be overloaded.

Cascading of I/O Operators

We have used the insertion operator << repeatedly in the last two statements

for printing results.

The statement

cout<<” The sum of two numbers is “<<sum<<”\n”;

first sends the string “The sum of two numbers is “ to cout and then sends the

value of sum. Finally, it sends the new line character so that the next output

10

will be in the new line. The multiple use of << in one statement is called

cascading. When cascading an output operator, we should ensure necessary

blank spaces between different items. Using the cascading technique, the

last two statements can be combined as follows:

cout<<” The sum of two numbers is “<<sum<<”\n”

<<”Average = “<< avg <<”\n”;

This is one statement by provides two lines of output. If we want only

one line of output, the statement would be:

cout<<” The sum of two numbers is “<<sum<<”,”

<<”Average = “<< avg <<”\n”;

The output will be:

The sum of two numbers is 14, Average = 7

We can also cascade input operator >> as shown below:

cin>>n1>>n2;

The values are assigned left to right. That is, if we key in two values, say 9

and 5, then 9 will be assigned to n1 and 5 to n2.

1.4 An example with Class

One of the major features of C++ is classes. They provide a method

of binding together data and functions which operate on them. Like structures

in C, classes are user-defined data types.

The following program uses class.

//use of class

#include<iosteam>

using namespace std;

11

class person

{

char name[30];

int age;

public:

void getdata(void);

void display(void);

};

void person :: getdata(void)

{

cout<<”Enter name: “;

cin >> name;

cout<<”\nEnter age: ”;

cin>>age;

}

void person :: display(void)

{

cout<<”\nName : “<<name;

cout<<”\nAge : “<<age;

}

int main()

{

person p;

p.getdata();

p.display();

return 0;

}

The output of the program is

Enter Name: Anandan

Enter Age: 20

12

Name: Anandan

Age: 20

The program defines person as a new data of type class. The class

person includes two basic data type items and two functions to operate on

that data. These functions are called member functions. The main program

uses person to declare variables of its type. Class variables are known as

objects. Here, p is an object of type person. Class objects are used to invoke

the functions defined in that class.

Note: cin can read only one word and therefore we cannot use names with

blank spaces.

1.5 Structure of C++ program

A typical C++ program would contain four sections as shown below.

These sections may be placed in separate code files and then compiled

independently or jointly.

Include files

Class declaration

Member functions definitions

Main function program

It is a common practice to organize a program into three separate

files. The class declarations are placed in a header file and the definitions of

member functions go into another file. This approach enables the

programmer to separate the abstract specification of the interface (class

13

definition) from the implementation details (member functions definition).

Finally, the main program that uses the class is placed in a third file which

“includes” the previous two files as well as any other files required.

This approach is based on the concept of client-server model. The

class definition including the member functions constitute the server that

provides services to the main program known as client. The client uses the

server through the public interface of the class.

1.6. Creating the Source file

Like C programs, C++ programs can be created using any text editor.

For example, on the UNIX, we can use vi or ed text editor for creating and

editing the source code. On the DOS system, we can use edlin or any other

editor available or a word processor system under non-document mode.

Some systems such as Turbo C++ provides an integrated

environment for developing and editing programs. Appropriate manuals

should be consulted for complete details.

The file name should have a proper file extension to indicate that it is

a C++ program file. C++ implementations use extensions such as .c, .cc,

.cpp, and .cxx. Turbo C++ and Borland C++ use .c for C programs and .cpp

(C plus plus) for C++ programs. Zortech C++ system uses .cxx while UNIX

AT & T version uses .C (capital C) and .cc. The operating system manuals

should be consulted to determine the proper file name extensions to be used.

1.7 Compiling and Linking

The process of compiling and linking again depends upon the

operating system. A few popular systems are discussed below:

14

UNIX AT & T C++

The process of implementation of a C++ program under UNIX is similar to

that of a C program. We should use the “CC” (uppercase) command to

compile the program. Note that “cc” (lowercase) is used to compile C

program. The command

CC example.c

At the UNIX prompt would compile the C++ program source code contained

in the file example.C. The compiler would produce an object file example.o

and then automatically link with the library functions to produce an executable

file. The default executable filename is a.out.

A program spread over multiple files can be compiled as follows:

CC file1.C file2.o

The statement compiles only the file file1.C and links it with the

previously compiler file2.o file. This is useful when only one of the files needs

to be modified. The files that are not modified need not be compiled again.

Turbo C++ and Borland C++

Turbo C++ and Borland C++ provide an integrated program

development environment under MS DOS. They provide a built-in editor and

a menu bar which includes options such as File, Edit, Compile and Run.

We can create and save the source files under the File option, and

edit them under the Edit option. We can then compile the program under the

Compile option and execute it under the Run option. The Run option can be

used without compiling the source code. In this case, the RUN command

causes the system to compile, link and run the program in one step. Turbo

15

C++ being the most popular compiler, creation and execution of programs

under Turbo C++ involves the following steps.

1. Develop the program (source code)

2. Select a suitable file name under which you would like to store the

program.

3. Create the program in the computer and save it under the filename

you have decided. This file is known as source code file.

4. Compile the source code. The file containing the translated code is

called object code file. If there are any errors, debug them and

compile the program again.

5. Link the object code with other library code that are required for

execution. The resulting code is called the executable code. If there

are errors in linking, correct them, compile the program again.

6. Run the executable code and obtain the results, if there are no errors.

7. Debug the program, if errors are found in the output.

8. Go to Step 4, and repeat the process again.

Visual C++

It is a Microsoft application development system for C++ that runs under

Windows. Visual C++ is a visual programming environment in which basic

program components can be selected through menu choices, buttons, icons,

and other predetermine methods.

The Microsoft Corporation has introduced a Windows based C++

development environment named as Microsoft Visual C++ (MSVC). This

development environment integrates a set of tools that enable a programmer

to create and run C++ programs with ease and style. Microsoft calls this

integrated development environment (IDE) as Visual Workbench. Microsoft

Visual Studio, a product sold by Microsoft Corporation, also includes, Visual

C++, in addition to other tools like Visual Basic, Visual J++, Visual Foxpro etc.

16

Example Programs

1. Write a program to display the following output using a single cout

statement.

Maths = 90, Physics = 77, Chemistry = 69.

//To display given output using single cout statement

#include<iostream>

using namespace std;

int main()

{

int M = 90, P = 77, C = 69;

cout<<”Maths = “<<M <<”Physics = “<< P <<”Chemistry = “<<C;

return 0;

}

2. Write a program to read two numbers from the keyboard and display

the larger value on the screen.

//To print larger of given two integers without using conditional

statement

#include<iostream>

#include<cmath>

using namespace std;

int main()

{

int x,y;

clrscr();

cout<<”Enter two numbers\n”;

17

cin>>x>>y;

cout<<”The larger among given numbers is”<< (x+y + abs(x-y))/2;

return 0;

}

3. Write a program to read the values of a, b and c and display the

value of x, where x = a/b - c.

#include<iostream>

using namespace std;

int main()

{

float a, b, c, x;

clrscr();

cout<<”Enter three numbers\n”;

cin>>a>>b>>c;

x = a/b – c;

cout<<”The value of the expression is “<<x;

return 0;

}

18

4. Write a C++ program that will ask for a temperature in Fahrenheit

and display it in Celsius using class called temp and member

function.

//Convert temperature from Fahrenheit to Centrigrade using Class

#include<iostream>

using namespace std;

class temp

{

float c;

public:

void Celsius (float f) {c = (f – 32) * 5./9;}

void display() { cout<< “Celsius value is “<<c; }

};

int main()

{

float ff;

temp T;

cout<<”Enter Temperature in Fahrenheit\n”;

cin>>ff;

T.Celsius(ff);

T.display();

return 0;

}

19

SUMMARY

 C++ Is a superset of C language.

 C++ adds a number of object-oriented features such as objects,

inheritance, function overloading and operator overloading to C.

These feature enable building of programs with clarity, extensibility

and case of maintenance.

 C++ can be used to build a variety of systems such as editors,

compilers, databases, communication systems, and many more

complex real-life application systems.

 C++ supports interactive input and output features and introduces a

new comment symbol // that can be used for single line comments. It

also supports C-style comments.

 Like C programs, execution of all C++ programs begins at main()

function and ends at return () statement. The header file iostream

should be included at the beginning of all programs that use

input/output operations.

 All ANSI C++ programs must include using namespace std directive.

 A typical C++ program would contain four basic sections, namely,

include files section, class declaration section, member function

section and main Function section,

 Like C programs, C++ programs can be created using any text editor,

& Most compiler systems provide an integrated environment for

developing and executing programs. Popular systems are UNIX

AT&T C++,, Turbo C++ and Microsoft Visual C++.

Review Questions:

1. Why do we need the preprocessor direction #include <iostream>?

2. How does main() function in C++ differ from main() in C?

3. What do you think is the main advantage of the comment // in C++ as

compared to the old C type comment?

20

Programming Exercises:

1. Use a class concept to find the sum of two numbers.

2. Write a C++ program that will ask for a temperature in Celsius and

display it in Fahrenheit using class called temp and member function.

21

UNIT – II

TOKENS, EXPRESSIONS AND CONTROL STRUCTURES

2.1 Introduction

C++ is a superset of C and therefore most constructs of C are legal in C++,

with their meaning unchanged. However, there are some exceptions and

additions. We shall discuss these exceptions and additions with respect to

tokens and control structures.

2.2 Tokens

The smallest individual unit in a program are known as tokens. C++ has the

following tokens:

* Keywords

* Identifiers

* Constants

* Strings

* Operators

2.3 Keywords

The keywords implement specific C++ language features. They are

explicitly reserved identifiers and cannot be used as names for the program

variables or other user-defined program elements.

Many of the keywords are common to both C and C++. Additional

keywords have been added to the ANSI C keywords in order to enhance its

features and make it an object-oriented language. The C++ keywords are

as follows:

asm Auto break case catch char class const

continue default delete do double else enum extern

float For friend goto If inline int long

new operator private protected public register return short

signed sizeof static struct switch template this throw

try typedef union unsigned virtual void volatile while

C++ keywords

22

bool

namespace

const_cast

reinterpret_cast

dynamic_cas

static_cast

t explicit

true

export false

typeid typename

mutable using wchar_t

Keywords added by ANSI C++

2.4 IDENTIFIERS AND CONSTANTS

Identifiers refer to the names of variables, functions, arrays, classes

etc., created by the programmer. They are the fundamental requirements of

any language. Each language has its own rules for naming these identifiers.

The following rules are common to both C and C++:

 Only alphabetic character, digits and underscore are permitted.

 The name cannot start with a digit.

 Uppercase and lowercase letters are distinct.

 A declared keyword cannot be used as a variable name.

A major difference between C and C++ is the limit on the length of a name.

While ANSI C recognizes only the first 32 characters in a name, ANSI C++

places no limit on its length and, therefore all the characters in a name are

significant.

Care should be exercised while naming a variable which is being

shared by more than one file containing C and C++ programs. Some

operating systems impose a restriction on the length of such a variable name.

Constants refers to fixed value that do not change during the

execution of a program.

Like C, C++ supports several kinds of literal constants. They include

integers, characters, floating point numbers and strings. Literal constants do

not have memory locations.

Examples:

123 //decimal integer

12.34 //floating point integer

O37 //octal integer

23

OX2 // hexadecimal integer

"C++" //string constant

'A' //character constant

L'ab' //wide-character constant

The wchar_t type is a wide-character literal introduced by ANSI C++ and is

intended for character sets that cannot fit a character into a single byte. Wide-

character literals begin with the letter L.

C++ also recognizes all the backlash character constants available in

C.

2.5 BASIC DATA TYPES

Both C and C++ compilers support all the built-in (also known as basic or

fundamental) data types. With the exception of void, the basic data types

may have several modifiers preceding them to serve the needs of various

situations. The modifiers signed, unsigned, long and short may be applied

to character and integer basic data types. However, the modifier long may

also be applied to double. Data type representation is machine specific in

C++. The following table lists all combinations of the basic data types and

modifiers along with their size and range for a 16-bit word machine.

Type Bytes Range

Char 1 -128 to 127

unsigned char 1 0 to 255

signed char 1 -128 to 127

Int 2 -32768 to 32767

unsigned int 2 0 to 65535

signed int 2 -32768 to 32767

short int 2 -32768 to 32767

unsigned short int 2 0 to 65535

signed short int 2 -32768 to 32767

24

long int 4 -2147483648 to -2147483647

signed long int 4 -2147483648 to -2147483647

unsigned long int 4 0 to 4294967295

Float 4 3.4e-38 to 3.4e+38

Double 8 1.7e-308 to 1.7e+308

long double 10 3.4e-4932 to 1.1e+4932

Size and range of C++ basic data types

Fig. 2.1 Hierarchy of C++ data types

The type void was introduced in ANSI C. Two normal uses of void are (1)

to specify the return type of a function when it is not returning any value, and

(2) to indicate an empty argument list to a function.

25

Example:

void funct1(void);

Another use of void is in the declaration of generic pointers.

Example:

void *gp; //gp becomes a generic pointer

A generic pointer can be assigned a pointer value of any basic data type,

but it may not be dereferenced. For example,

int *ip; //int pointer

gp = ip; //assign int pointer to void pointer

are valid statements. But, the statement,

*ip = *gp;

Is illegal. It would not make sense to dereference a pointer to a void value.

Assigning any pointer type to a void pointer without using cast is

allowed in C++. and ANSI C. In ANSI C, we can also assign a void pointer

to a non-void pointer without using a cast to non-void pointer type. This is

not allowed in C++. For example,

void *ptr1;

char *ptr2;

ptr2 = ptr1;

are all valid statements in ANSI C but not in C++. A void pointer cannot be

directly assigned to other type pointers in C++. We need to use a cast

operator as shown below:

ptr2 = (char *) ptr1;

26

2.6 User-Defined Data Types

Structures and Classes

We have used user-defined data types such as struct and union in C. While

these data types are legal in C++, some more features have been added to

make them suitable for object-oriented programming. C++ also permits us

to define another user-defined data type known as class which can be used,

just like any other basic data-type, to declare variables. The class variables

are known as objects, which are the central focus of object-oriented

programming.

Enumerated Data Type

An enumerated data type is a user-defined type which provides a way for

attaching names to numbers, thereby increasing comprehensibility of the

code. The enum keyword (from C) automatically enumerates a list of words

by assigning them values 0, 1, 2, and so. This facility provides an alternative

means for creating symbolic constants. The syntax of an enum statement is

similar to that of the struct statement. Example:

enum shape {circle, square, triangle};

enum color {red, blue, green, yellow};

The enumerated data types differ slightly in C++ when compared with

those in ANSI C. In C++, the tag names shape, and color become new type

names. By using these tag names, we can declare new variables. Examples:

shape ellipse; //ellipse is of type shape

color background; //background is of type color

ANSI C defines the types of enums to be ints. In C++, each

enumerated data type retains its own separate type. This means that C++

does not permit an int value to be automatically converted to an enum value.

27

Examples:

color background = blue; //allowed

color background = 7; //Error in C++

color background = (color) 7; //ok

However, an enumerated value can be used in place of an int value.

int c = red; //valid, color type promoted to int

By default, the enumerators are assigned integer values starting with

0 for the first enumerator, 1 for the second, and so on. We can over-ride the

default by explicitly assigning integer values to the enumerators. For

example,

enum color {red, blue = 4, green = 8};

enum color {red = 5, blue, green};

are valid definitions. In the first case, red is 0 by default. In the second case,

blue is 6 and green is 7. Note that the subsequent initialized enumerators

are larger by one than their predecessors.

C++ also permits the creating of anonymous enums (i.e. enums

without tag name). Example,

enum{off, on};

Here, off is 0 and on is 1. These constants may be referenced in the

same manner as regular constants. Examples:

int switch_1 = off;

int switch_2 = on;

In practice, enumeration is used to define symbolic constants for a switch

statement. Example:

28

enum shape {circle, rectangle, triangle};

int main()

{

cout<<”Enter shape code: “;

int code;

cin>>code;

while (code >= circle && code <= triangle)

{

switch(code)

{

case circle:

…………………

...………………

break;

case rectangle:

…………………

…………………

break;

case triangle:

……………….

………………

}

cout<<”Enter shape code:”;

cin>>code;

}

cout<<”BYE\n”;

return 0;

}

29

2.7 DERIVED DATA TYPES

Arrays

It is a group of related data items that share a common name. The application

of arrays in C++ is similar to that in C. The only exception is the way character

arrays are initialized. When initializing a character array in ANSI C, the

compiler will allow us to declare the array size as the exact length of the string

constant. For instance,

char string[3] = "xyz";

is valid in ANSI C. It assumes that the programmer intends to leave out the

null character 0 in the definition. But in C++, the size should be one larger

than the number of characters in the string. The following is valid in C++

char string[4] = "xyz";

Functions

Function have undergone major changes in C++. While some of these

changes are simple, others require a new way of thinking when organizing

our programs. Many of these modifications and improvements were driven

by the requirements of the object-oriented concepts of C++. Some of these

were introduced to make the C++ program more reliable and readable.

Pointers

Pointers are declared and initialized as in C. Examples:

int *ip; // int pointer

ip = &x; // address of x assigned to ip.

*ip = 10; // 10 assigned to x through indirection.

C++ adds the concept of constant pointer and pointer to a constant.

char* const ptr1 = "GOOD"; // constant pointer

30

We cannot modify the address that ptr1 is initialized to.

int const *ptr2 = &m; // pointer to a constant

ptr2 is declared as pointer to a constant. It can point to any variable of

correct type, but the contents of what it points to cannot be changed.

We can also declare both the pointer and the variable as constants

in the following way:

const char* const cp = "xyz";

This statement declares cp as a constant pointer to the string which

has been declared a constant. In this case, neither the address assigned to

the pointer cp nor the contents it points to can be changed.

Pointers are extensively used in C++ for memory management and

achieving polymorphism.

2.8 SYMBOLIC CONSTANTS

There are two ways of creating symbolic constants in C++

* Using the qualifier const, and

* Defining a set of integer constants using enum keyword.

In both C and C++, any value declared as const cannot be modified by the

program in any way. However, there are some differences in implementation.

In C++, we can use const in a constant expression, such as

const int size = 10;

char name[size];

This would be illegal in C. const allows us to create typed constants instead

of having to use #define to create constants that have no type information.

As with long and short, if we use the const modifier alone, it defaults

to int. For example,

const size = 10;

means const int size = 10;

31

The named constants are just like variables except that their values

cannot be changed.

C++ requires a const to be initialized. ANSI C does not require an

initializer; if none is given, it initializes the const to 0.

The scoping of const value differs. A const in C++ defaults to the

internal linkage and therefore, it is local to the file where it is declared. In

ANSI C, const values are global in nature. They are visible outside the file

in which they are declared. However, they can be make local by declaring

them as static. To give a const value an external linkage so that it can be

referenced from another file, we must explicitly defines it as an extern in C++.

Example:

extern const total = 100;

Another method of naming integer constants is by enumeration as under:

enum {x, y, z};

This defines X, Y and Z as integer constants with values 0, 1, and 2

respectively. This is equivalent to:

const x = 0;

const y = 1;

const z = 2;

We can also assign values to X, Y and Z explicitly. Example:

enum{X = 100, Y = 50, Z = 200};

such values can be any integer values.

2.9 TYPE COMPATIBILITY

C++ is very strict with regard to type compatibility as compared to C.

For instance, C++ defines int, short int and long int as three different types.

They must be cast when their values are assigned to one another. Similarly,

unsigned char, char, and signed char are considered as different types,

although each of these has a size of one byte. In C++, the types of values

32

must be the same for complete compatibility, or else a cast must be applied.

These restrictions in C++ are necessary in order to support function

overloading where two functions with same name are distinguished using the

type of function arguments.

Another notable difference is the way char constants are stored. In

C, they are stored as int, and therefore,

sizeof('x')

is equivalent to

sizeof(int)

in C. In C++, however, char is not promoted to the size of int and therefore,

sizeof('x')

equals

sizeof(char)

2.10 DECLARATION OF VARIABLES

In C, all variables must be declared before they are used in executable

statements. This is true with C++ as well. However, there is a significant

difference between C and C++ with regard to the place of their declaration in

the program. C requires all the variables to be defined at the beginning of a

scope. When we read a C program, we usually comes across a group of

variable declarations at the beginning of each scope level. Their actual use

appears elsewhere in the scope. Sometimes far away from the place of

declaration. Before using a variable, we should go back to the beginning of

the program to see whether it has been declared and, if so, of what type.

C++ allows the declarations of a variable anywhere in the scope. This

means that a variable can be declared right at the place of its first use. This

makes the program much easier to write and reduces the errors that may be

caused by having to scan back and forth. It also makes the program easier

to understand because the variables are declared in the context of their use.

The example below illustrate this point

33

int main()

{

float x;

float sum = 0;

for (int i = 1; i< 5; i++)

{

cin>>x;

sum = sum + x;

}

float average;

average = sum/(i-1);

cout<<average; return 0;

return 0;

}

The only disadvantage of this style of declaration is that we cannot see all the

variables used in a scope at a glance.

2.11 DYNAMIC INITIALIZATION OF VARIABLES

In C, a variable must be initialized using a constant expression, and the C

compiler would fix the initialization code at the time of compilation. In C++,

however, permits initialization of the variables at run time. This is referred to

the dynamic initialization. In C++, a variable can be initialized at run time

using expressions at the place of declaration. For example, the following are

valid initialization statements:

………………..

………………..

int n = strlen(string);

……………….

float area = 3.14159*rad*rad;

34

Thus, both the declaration and the initialization of a variable can be

done simultaneously at the place where the variable is used for the first time.

The following two statements float average; average = sum/i; can be

combined into a single statement

float average = sum/i; //initialize dynamically at run time

Dynamic initialization is extensively used in object-oriented

programming. We can create exactly the type of object needed, using

information that is known only at the run time.

2.12 REFERENCE VARIABLES

C++ introduces a new kind of variables known as the reference

variable. A reference variable provides an alias (alternative name) for a

previously defined variables. For example, if we make the variable sum a

reference to the variable total then sum and total can be used

interchangeably to represent that variable. A reference variable is created as

follows:

data-type & reference-name = variable-name

Example:

float total = 100;

float &sum = total;

Total is a float type variable that has already been declared; sum is the

alternative name declared to represent the variable total. Both the variable

refer to the same data object in the memory. The statements

cout<<total;

and

cout<<sum;

both print the value 100. The statement

total = total + 10;

35

will change the value of both total and sum to 110. Likewise, the assignment

sum = 0;

will change the value of both the variables to zero.

A reference variable must be initialized at the time of declaration. This

establishes the correspondence between the reference and the data object

which it names. It is important to note that the initialization of a reference

variable is completely different from assignment to it.

C++ assigns additional meaning to the symbol &. Here & is not an

address operator. The notation float & means reference to float. Other

examples are:

int n[10];

int &x = n[10]; //x is alias for n[10]

char &a = 'n'; //initialize reference to a literal

The variable x is an alternative to the array element n[10]. The

variable a is initialized to the newline constant. This creates a reference to

the otherwise unknown location where the newline constant n is stored.

The following references are also allowed:

i) int x;

int *p = &x;

int &m = *p;

ii) int &n = 50;

The first set of declarations causes m to refer to x which is pointed

to by the pointer p and the statement in (ii) creates an int object with value

50 and the name n.

36

A major application of reference variables is in passing arguments to

functions. Consider the following:

void f(int &x) //uses reference

{

x = x + 10;

}

int main()

{

int m = 10;

f(m); //function call

…………..

………….

}

When the function call f(m) is executed, the following initialization occurs:

int &x = m;

Thus, x becomes an alias of m after executing the statement

f(m);

such function calls are known as call by reference. The call by

reference mechanism is useful in object-oriented programming because it

permits the manipulation of objects by reference, and eliminates the copying

of object parameters back and forth. It is also important to note that

references can be created not only for built-in data types but also for user-

defined data types such as structures and classes.

2.13 OPERATORS IN C++

C++ has rich set of operators. All C operators are valid in C++ also. In

addition, C++ introduce some new operators. In addition to the insertion

operator << and the extraction operator >>, other new operators are:

:: scope resolution operator

::* pointer-to-member declaratory

37

->* pointer-to-member operator

.* pointer-to-member operator

delete memory release operator

endl line feed operator

new memory allocation operator

setw field width operator

In addition, C++ also allows us to provide new definition to some of the built-

in operators. That is, we can give several meanings to an operator,

depending upon the types of arguments used. This process is known as

operator overloading.

2.14 Scope Resolution Operator

Like C, C++ is also a block-structured language. Blocks and scopes can be

used in constructing programs. Note that same variable name can used to

have different meanings in different blocks. The scope of the variable

extends from the point of its declaration till the end of the block containing the

declaration. A variable declared inside a block is said to be local to that block.

Consider the following segment of a program:

…………..

………….

{

int x = 10;

………..

………..

}

……….

……….

38

Block 2

{

int x = 1;

………..

………..

}

The two declarations of x refer to two different memory locations

containing different values. Statements in the second block cannot refer to

the variable x declared in the first block, and vice versa. Blocks in C++ are

often nested.

For example, the following style is common:

………….

………….

{

int x = 10;

…………

…………

{

int x = 1;

……….. Block 1

……….

}

…………

}

39

Block 2 is contained in block 1. Note that a declaration in an inner

block hides a declaration of the same variable in an outer block and,

therefore, each declaration of x causes it to refer to a different data object.

Within the inner block, the variable x will refer to the data object declared

therein.

In C, the global version of a variable cannot be accessed from within

the inner block. In C++ resolves this problem by introducing a new operator

:: called the scope resolution operator. This can be used to uncover a hidden

variable. It takes the following form:

:: variable-name

This operator allows access to the global version of a variable. For

example, ::count means the global version of the variable count (and not the

local variable count declared in that block). The following program illustrates

this feature:

#include<iostream>

using namespace std;

int m = 10; //global m

int main()

{

int m = 20; //m redeclared, local to main

{

int k = m;

int m = 30; // m declared again local to inner block

cout<<”We are in inner block\n”;

cout<<”k = “<<k<<”\n”;

cout<<”m = “<<m<<”\n”;

cout<<”::m = “<<::m <<”\n”;

}

cout<<”\n We are in outer block\n”;

40

cout<<”m = “<< m<<”\n”;

cout<<”::m = “<< ::m << “\n”;

return 0;

}

The output of the above program would be:

We are in inner block

k = 20

m = 30

:: m = 10

We are in outer block

m = 20

::m = 10

In the above program, the variable m is declared at three places, namely,

outside the main() function, inside the main(), and inside the inner block.

Note that ::m will always refer to the global m. In the inner block, ::m refers

to the value 10 and not 20.

A major application of the scope resolution operator is in the class to

which a member function belongs.

2.15 Member Dereferencing Operators

C++ permits us to define a class containing various types of data and

functions as members. It also permits us to access the class members

through pointers. In order to achieve this, C++ provides a set of three pointer-

to-member operators.

Operator Function

::* To declare a pointer to a member of a class

* To access a member using object name and a pointer to that member

->* To access a member using a pointer to the object and a pointer to that member

41

2.16 Memory Management Operators

C uses malloc() and calloc() functions to allocate memory dynamically at

run time. Similarly, it uses the function free() to free dynamically allocated

memory. We use dynamic allocation techniques when it is not known in

advance how much of memory space is needed. Although C++ supports

these functions, it also defines two unary operators new and delete that

perform the task of allocating and freeing the memory in a better and easier

way. Since these operators manipulate memory on the free store, they are

also known as free store operators.

An object can be created by using new, and destroyed by using

delete, as and when required. A data object created inside a block with new,

will remain in existence until it is explicitly destroyed by using delete. Thus,

the lifetime of an object is directly under our control and is unrelated to the

block structure of the program.

The new operator can be used to create objects of any type. It takes

the following general form:

pointer-variable = new data-type;

Here, pointer-variable is a pointer of type data-type. The new operator

allocates sufficient memory to hold a data object of type data-type and returns

the address of the object. The data-type may be any valid data type. The

pointer-variable holds the address of the memory space allocated. Examples:

p = new int;

q = new float;

where p is a pointer of type int and q is a pointer of type float. Here, p and

q must have already been declared as pointers of appropriate types.

Alternatively, we can combine the declaration of pointers and their

assignments as follows:

int *p = new int;

float *q = new float;

42

subsequently, the statements

*p = 25;

*q = 7.5;

Assigns 25 to the newly created int object and 7.5 to the float object.

We can also initialize the memory using the new operator. This is

done as follows:

pointer-variable = new data-type(value);

Here, value specifies the initial value. Examples:

int *p = new int(25);

float *q = new float(7.5);

As mentioned earlier, new can be used to create a memory space for

any data type including user-defined types such as arrays, structures and

classes. The general form for a one-dimensional array in:

pointer-variable = new data-type(size);

Here, size specifies the number of elements in the array. For example, the

statement

int *p = new int[10];

creates a memory space for an array of 10 integers. p[0] will refer to the first

element, p[1] to the second element, and so on.

When creating multi-dimensional arrays with new, all the array sizes

must be supplied.

array_ptr = new int[3][5][4]; //legal

array_ptr = new int[m][5][4]; //legal

array_ptr = new int[3][5][]; //illegal

array_ptr = new int[][5][4]; //illegal

43

The first dimension may be a variable whose value is supplied at

runtime. All others must be constants,

When a data object is no longer needed, it is destroyed to release the

memory space for reuse. The general form of its use is:

delete pointer-variable;

The pointer-variable is the pointer that points to a data object created with

new. Examples:

delete p;

delete q;

If we want to free a dynamically allocated array, we must use the following

form of delete:

delete [size] pointer-variable;

The size specifies the number of elements in the array to be freed.

The problem with this form is that the programmer should remember the size

of the array. Recent versions of C++ do not require the size to be specified.

For example,

delete []p;

will delete the entire array pointed to by p.

If sufficient memory is not available for allocation, like malloc(), new

will returns a null pointer. Therefore, it may be a good idea to check for the

pointer produced by new before using it. It is done as follows:

……………

……………

p = new int;

if (!p)

{

cout<<”allocation failed\n”;

}

44

……………

……………

The new operator offers the following advantages over the function malloc().

1. It automatically computes the size of the data object. We need not use

the operator sizeof.

2. It automatically returns the correct pointer type, so that there is no

need to use a type cast.

3. It is possible to initialize the object while creating the memory space.

4. Like any other operator, new and delete can be overloaded.

2.17 Manipulators

Manipulators are operators that are used to format the data display. The most

commonly used manipulators are endl and setw.

The endl manipulator, when used in an output statement, causes a

linefeed to be inserted. It has the same effect as using the newline character

"\n". For example, the statement

…………..

…………..

cout<< “m = “<< m<<endl

<< “n = “<< n<<endl

<< “p = “<< p<<endl

…………..

…………..

would cause three lines of output, one for each variable. If we assume the

values of the variables as 2597,14, and 175 respectively, the output will

appear as follows:

m =

n =

2 5 9 7

1 4

45

p =

It is important to note that this form is not the ideal output. It should rather

appear as under

m = 2597

n = 14

p = 175

Here, the numbers are right justified, This form of output is possible

only if we can specify a common field width for all the numbers and force

them to be printed right-justified. The setw manipulator does this job. It is

used as follows:

cout<< setw(5) << sum << endl;

The manipulator setw(5) specifies a field width 5 for printing the value

of the variable sum. This value is right-justified within the field as shown

below:

3 4 5

The following program illustrates the use of endl and setw.

#include<iostream>

#include<iomanip> //for setw

using namespace std;

int main()

{

int Basic= 950, Allowance = 95, Total = 1045;

1 7 5

46

cout<<setw(10)<<”Basic”<<setw(10)<<Basic<<endl

<<setw(10)<<”Allowance”<<setw(10)<<Allowance<<endl

<<setw(10)<<”Total”<<setw(10)<<Total<<endl;

return 0;

}

The output of the above program is:

Basic 950

Allowance 95

Total 1045

Note that character strings are also printed right-justified.

We can also write our own manipulators as follows:

#include<iostream>

ostream & symbol (ostream & output)

{

return output <<”\t Rs.”;

}

The symbol is the new manipulator which represents Rs.. The identifier

symbol can be used whenever we need to display the string Rs.

2.18 Type Cast Operator

C++ permits explicit type conversion of variables or expressions using the

type cost operator.

Traditional C casts are augmented in C++ by a function-call notation

as a syntactic alternative. The following two versions are equivalent:

(type- name) expression // C notation

type-name (expression) // C++ notation

47

Examples:

average - sum/(float) i; // C notation

average = sum/float (i); // C++ notation

A type-name behaves as if it is a function for converting values to a

designated type. The function-call notation usually leads to simplest

expressions. However, it can be used only if the type is an identifier. For

example,

p = int * (q);

is illegal. In such cases, we must use C type notation.

p = (int *) q;

Alternatively, we can use typedef to create an identifier of the required type

and use it in the functional notation.

typedef int * int_pt;

p = int_pt (q);

ANSI C++ adds the following new cast operators:

 const_cast

 static_cast

 dynamic_cast

 reinterpret_cast

2.19 Expressions and Their Types

An expression is a combination of operators, constants and variables

arranged as per the rules of the language. It may also include function calls

which return values. An expression may consist of one or more operands,

and zero or more operators to produce a value. Expressions may be of the

following seven types:

 Constant expressions

 Integral expressions

48

 Float expressions

 Pointer expressions

 Relational expressions

 Logical expressions

 Bitwise expressions

An expression may also use combinations of the above expressions. Such

expressions are known as compound expressions.

Constant Expressions

Constant expressions consist of only constant values. Examples:

15

20 + 5/2.0

‘x’

Integral Expressions

Integral expressions are those which produce integer results after

implementing all the automatic and explicit type conversions. Examples:

m

m * n – 5

m * ‘x’

5 + int(2.0)

where m and n are integer variables.

Float Expressions

Float expressions are those which, after all conversions, produce floating-

point results. Examples:

x + y

x * y/10

5 + float (10)

10.75

Where x and y are floating point variables.

49

Pointer Expressions

Pointer expressions produce address values. Examples:

&m

ptr

ptr + 1

“xyz”

Where m is a variable and ptr is a pointer.

Relational Expressions

Relational expressions yield results of type bool which takes a value true or

false. Examples:

x <= y

a + b == c+d

m + n > 100

When arithmetic expressions are used on either side of a relational

operator, they will be evaluated first and then the results compared.

Relational expressions are also known as Boolean expressions.

Logical Expressions

Logical expressions combine two or more relation expressions and produce

bool type results. Examples:

a > b && x == 10

x == 10 || y == 5

Bitwise Expressions

Bitwise expressions are used to manipulate data at bit level. They are

basically used for testing or shifting bits. Examples:

x<< 3 //shift three bit position to left

y >>1 //shift one bit position to right

50

Shift operators are often used for multiplication and division by powers of two.

ANSI C++ has introduced what are termed as operator keywords that can be

used as alternative representation for operator symbol.

2.20 Special Assignment Expressions

Chained Assignment

x = (y = 10);

or

x = y = 10;

First 10 is assigned to y and then to x.

A chained statement cannot be used to initialize variables at the time

of declaration. For instance, the statement

float a = b = 12.34; //wrong

is illegal. This may be written as

float a = 12.34, b = 12.34; //correct

Embedded Assignment

x = (y = 50) + 10;

(y=50) is an assignment expression known as embedded assignment. Here,

the value 50 is assigned to y and then the result 50 + 10 = 60 is assigned to

x. This statement is

y = 50;

x = y + 10;

Compound Assignment

Like C, C++ supports a compound assignment operator which is a

combination of the assignment operator with a binary arithmetic operator. For

example, the simple assignment statement

x = x + 10;

51

may be written as

x += 10;

The operator += is known as compound assignment operator or short-hand

assignment operator. The general form of the compound assignment

operator is:

Variable1 op = variable2;

where op is a binary arithmetic operator. This means that

variable1 = variable1 op variable2;

2.21 Implicit Conversions

We can mix data types in expression. For example,

m = 5 + 2.75;

is a valid statement. Wherever data types are mixed in an expression, C++

performs the conversions automatically. This process is known as implicit or

automatic conversion.

When the compiler encounters an expression, it divides the

expressions into sub-expressions consisting of one operator and one or two

operands. For a binary operator, if the operands type differ, the compiler

converts one of them to match with the other, using the rule that the "smaller*

type is converted to the "wider* type. For example* if one of the operand is

an int and the other is a float, the int is converted into a float because a float

is wider than an int.

Whenever a char or short int appears in an expression, it is

converted to an int. This is called integral widening conversion. The implicit

conversion is applied only after completing all integral widening conversions.

2.22 Operator Overloading

Overloading means assigning different meanings to an operation,

depending on the context, C++ permits overloading of operators, thus

allowing us to assign multiple meanings to operators. Actually, we have used

52

the concept of overloading in C also. For example, the operator * when

applied to a pointer variable, gives the value pointed to by the pointer. But it

is also commonly used for multiplying two numbers. The number and type of

operands decide the nature of operation to follow.

The input/output operators << and >> are good examples of operator

overloading. Although the built-in definition of the << operator is for shifting

of bits, it is also used for displaying the values of various data types. This

has been made possible by the header file iostream where a number of

overloading definitions for << are included. Thus, the statement

cout<<75.86;

invokes the definition for displaying a double type value, and

cout<<"well done";

invokes the definition for displaying a char value. However, none of these

definitions in iostream affect the built-in meaning of the operator.

Similarly, we can define additional meanings to other C++ operators.

For example, we can define + operator to add two structures or objects.

Almost all C++ operators can be overloaded with a few exceptions such as

the member-access operators (. and .*), conditional operator (?:) scope

resolution operator (::) and the size operator (sizeof).

2.23 Operator Precedence

Although C++ enables us to add multiple meanings to the operators,

yet their association and precedence remain the same. For example, the

multiplication operator will continue having higher precedence than the add

operator. The table gives the precedence and associativity of all the C++

operators. The groups are listed in the order of decreasing precedence. The

labels prefix and postfix distinguish the uses of ++ and --. Also, the symbols

+, - , *, and & are used as both unary and binary operators.

53

2.24 Control Structures

In C++, a large number of functions are used that pass messages, and

process the data contained in objects. A function is set up to perform a task.

When the task is complex, many different algorithms can be designed to

achieve the same goal. Some are simple to comprehend, while others are

not. Three control structures are :

1. Sequence structure (straight line)

2. Selection structure (branching)

3. Loop structure (iteration or repetition).

Operator

::

-> . () [] postfix ++ postfix --

prefix ++ prefix -- - ! unary + unary -

-> * *

*/%

+-

<< >>

< <= > >=

== !=

&

^

|

&&

||

?:

= *= /= %= += =

<< = >> = &= ^= |=

, (comma)

Associativity

Left to right

Left to right

Right to left

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right

Right to left

Left to right

Left to right

54

The following shows how these structures are implemented using one-entry,

one-exit concept, a popular approach used in modular programming.

Fig. 2.2 Basic Control Structures

It is important to understand that all program processing can be coded

by using only these three logic structures. The approach of using one or more

of these basic control constructs in programming is known as structured

programming, an important technique in software engineering.

Using these three basic constructs, we may represent a function

structure either in detail or in summary form as shown above.

Like C, C++ also supports all the three basic control structures, and

implements them using various control statements as shown in Fig

This shows that C++ combines the power of structured programming with

the object-oriented paradigm.

The if statement

The if statement is implemented in two forms:

 Simple if statement

 if ……. else statement

55

Form 1

if (expression is true)

{

action1;

}

action2;

action3;

Form 2

if (expression is true)

{

action1;

}

else

{

action2;

}

action3;

The switch statement

This is a multiple-branching statement where, based on a condition, the

control is transferred to one of the many possible points. This is implemented

as follows:

switch (expression)

{

case1:

{

action 1;

}

case2:

{

action2;

}

56

case3:

{

action3;

}

default:

{

action4;

}

}

action5;

The do-while statement

The do-while is an exit-controlled loop. Based on a condition, the control is

transferred back to a particular point in the program. The syntax is as follows:

do

{

action1;

}while (condition is true);

action2;

The while statement

This is also a loop structure, but it is an entry-controlled one. The syntax is

as follows:

while (condition is true)

{

action1;

}

action2;

57

The for statement

The for is an entry-controlled loop and is used when an action is to be

repeated for a predetermined number of times. The syntax is as follows:

for (initial value; test; increment)

{

action1;

}

action2;

The syntax of the control statements in C++ is very much similar to that of C

and therefore they are implemented as and when they are required.

C++ statements to implement in two forms

SUMMARY

 C++ provides various types of tokens that Include keywords, identifiers,

constants, strings, and operators.

 Identifiers refer to the names of variables, functions, arrays, classes, etc.

 C++ provides an additional use of void, for declaration of generic

pointers.

 The enumerated data types differ slightly in C++. The tag names of the

enumerated data types become new type names. That is, we can declare

new variables using these tag names.

58

 In C++, the size of character array should be one larger than the number

of characters in the string.

 C++ adds the concept of constant pointer and pointer to constant. In case

of constant pointer we cannot modify the address that the pointer is

initialized to. In case of pointer to a constant, contents of what it points to

cannot be changed.

 Pointers are widely used in C++ for memory management and to achieve

polymorphism.

 C++ provides a qualifier called const to declare named constants which

are just like variables except that their values cannot be changed. A const

modifier defaults to an int.

 C++ is very strict regarding type checking of variables. It does not allow

to equate variables of two different data types. The only way to break this

rule is type casting.

 C++ allows us to declare a variable anywhere in the program, as also its

initialization at run time, using the expressions at the place of declaration.

 A reference variable provides an alternative name for a previously defined

variable. Both the variables refer to the same data object in the memory.

Hence, change in the value of one will also be reflected in the value of the

other variable.

 A reference variable must be initialized at the time of declaration, which

establishes the correspondence between the reference and the data

object that it names.

 A major application of the scope resolution (::) operator is in the classes

to identify the class which a member function belongs.

 In addition to malloc(), calloc() and free() functions, C++ also provides two

unary operator, new and delete to perform the task of allocating and

freeing the memory in a better and easier way.

 C++ also provides manipulators to format the data display. The most

commonly used manipulators are endl and setw.

59

 C++ supports seven types of expressions. When data types are mixed in

an expression, C++ performs the conversion automatically using certain

rules.

 C++ also permits explicit type conversion of variables and expressions

using the type cast operators.

 Like C, C++ also supports the three basic control structures namely,

sequence, selection, and loop, and implements them using various

control statements such as, if, if...else, switch, do..while, while and for.

Review Questions:

1. Enumerate the rules of naming variables in C++, How do they differ

from ANSI C rules?

2. An unsigned int can be twice as large as the signed int. Explain how?

3. Why does C++ have type modifiers?

4. What are the applications of void data type in C++?

5. Can we assign a void pointer to an int type painter? If not, why? How

can we achieve this?

6. Describe, with examples, the uses of enumeration data types.

7. Describe the differences in the implementation enum data type in

ANSI C and C++.

8. Why is an array called a derived data type?

9. The size of a char array that is declared to store a string should be

one larger than the number of characters in the string. Why?

10. The const was taken from C++ and incorporated in ANSI C, although

quite differently. Explain.

11. How does a constant defined by const differ from the constant

defined by the preprocessor statement #define?

12. In C++, a variable can be declared anywhere in the scope. What is

the significance of this feature?

13. What do you mean by dynamic initialization of a variable? Give an

example.

60

14. What is a reference variable? What is its major use?

15. List at least four new operators added by C++ which aid OOP.

16. What is the application of the scope resolution operator :: in C++?

17. What are the advantages of using new operator as compared to the

function malloc()?

18. Illustrate with an example, how the setw manipulator works.

19. How do the following statements differ?

(a) char * const p;

(b) char const *p;

Exercise Programs:

1. Write a function using reference variables as arguments to swap the

values of a pair of integers.

2. Write a function that creates a vector of user-given size M using new

operator.

3. Write a program to print the following output using for loops

1

22

333

4444

………

4. Write a program to evaluate the following functions to 0.0001%

accuracy.

(a) Sinx = x – x3/3! + x5/5! - …

(b) Cosx = 1 – x2/2! + x4/4! - ….

5. Write a program to calculate the variance and standard deviation of

N numbers.

61

BLOCK – II

Objectives

After Completion of this block, students will be able to

1. Create user-defined functions

2. Understand the inline functions.

3. Use function overloading.

4. Write “friend” functions to perform operations on different classes

62

UNIT – III

Functions in C++

3.1 Introduction

Functions play an important role in C program development. Dividing a

program into functions is one of the major principles of top-down, structured

programming. Another advantage of using functions is that it is possible to

reduce the size of a program by calling and using them at different places in

the program.

When a function is called, control is transferred to the first statement

in the function body. The other statements in the function body are then

executed and control returns to the main program when the closing brace is

encountered. C++ is no exception. Functions continue to be the building

blocks of C++ programs. In fact, C++ has added many new features to

functions to make them more reliable and flexible. Like C+++ operators, a

C++ function can be overloaded to make it perform different tasks depending

on the arguments passed to it. Most of these modifications are aimed at

meeting the requirements of object-oriented facilities.

In this unit, we shall briefly discuss the various new features that are

added to C++ functions and their implementation.

3.2 The Main Function

C does not specify any return type for the main() function which is the starting

point for the execution of a program. The definition of main() would look like

this:

main()

{

//main program statements

}

This is perfectly valid because the main() in C does not return any value.

63

In C++, the main() returns a value of type int to the operating system.

C++ therefore defines main() as matching one of the following prototypes:

int main();

int main(int argc, char* argv[]);

The functions that have a return value should use the return

statement for termination. The main() function in C++ is, therefore, defined

as follows:

int main()

{

…………

…………

return 0;

}

Since the return type is int by default, the keyword int in the main()

header is optional. Most C++ compilers will generate an error or warning if

there is no return statement. Turbo C++ issues the warning

Function should return a value and then proceeds to compile the

program. It is good programming practice to actually return a value from

main()

Many operating systems test the return value (called exit value) to

determine if there is any problem. The normal convention is that an exit value

of zero means the program ran successfully, while a non-zero value means

there was a problem. The explicit use of a return(0) statement will indicate

that the program was successfully executed.

3.3 Function Prototyping

Function prototyping is one of the major improvements added to C++

functions. The prototype describes the function interface to the compiler by

giving details such as the number and type of arguments and the type of

return values. With function prototyping, a template is always used when

declaring and defining a function. When a function is called, the compiler

64

uses the template to ensure that proper arguments are passed, and the return

value is treated correctly. Any violation in matching the arguments or the

return types will be caught by the compiler at the time of compilation itself.

These checks and controls did not exist in the convention C functions.

Note that C also uses prototyping. But it was introduced first in C++

by Stroustrup and the success of this feature inspired the ANSI C committee

to adopt it. However, there is a major difference in prototyping between C

and C++. While C++ makes the prototyping essential, ANSI C makes it

optional. Perhaps, to preserve the compatibility with classic C.

Function prototype is a declaration statement in the calling program

and is of the following form:

type function-name (argument-list);

The argument-list contains the types and names of arguments that

must be passed to the function.

Example:

float volume(int x, float y, float z);

Note that each argument variable must be declared independently

inside the parentheses. That is a combined declaration like

float volume (int x, float y, z);

is illegal.

In a function declaration, the names of the arguments are dummy

variables and therefore, they are optional. That is, the form

float volume(int, float, float);

is accepted at the place of declaration. At this stage, the compiler only checks

for the type of arguments when the function is called.

In general, we can either include or exclude the variable names in the

argument list of prototypes. The variable names in the prototype just act as

65

placeholders and, therefore, it names are used, they don't have to match the

names used in the function call or function definition.

In the function definition, names are required because the arguments

must be referenced inside the function. Example:

float volume(int a, float b, float c)

{

float v = a*b*c;

…………

…………

}

The function volume() can be invoked in a program as follows:

float cube1= volume(b1, w1, h1); //function call

The variable b1, w1, and h1 are known as the actual parameters

which specify the dimensions of cube1. Their types (which have been

declared earlier) should match with the types declared in the prototype. Note

that, the calling statement should not include type names in the argument list.

We can also declare a function with an empty argument list, as in

the following example:

void display();

In C++, this means that the function does not pass any parameters.

It is identical to the statement

void display(void);

However, in C, an empty parentheses implies any number of

arguments. That is, we have forgone prototyping. A C++ function can also

have an 'open' parameter list by the use of ellipses in the prototype as shown

below:

void do_something(...);

66

3.4 Call by Reference

In traditional C, a function call passes arguments by value. The called

function creates a new set of variables and copies the values of arguments

into them. The function does not have access to the actual variables in the

calling program and can only work on the copies of values. This mechanism

is fine if the function does not need to alter the values of the original variables

in the calling program. But, there may arise situations where we would like

to change the values of variables in the calling program. For example, in

bubble sort, we compare two adjacent elements in the list and interchange

their values if the first element is greater than the second. If a function is used

for bubble sort, then it should be able to alter the values of variables in the

calling function, which is not possible if the call-by-value method is used.

Provision of the reference variables in C++ permits us to pass

parameters to the functions by reference. When we pass arguments by

reference, the 'formal' arguments in the called function become aliases to the

actual arguments in the calling function. This means that when the function

is working with its own arguments, it is actually working on the original data.

Considering the following function:

void swap(int &a, int &b) // a and b are reference variables

{

int t = a;

a = b;

b = t;

}

Now, if m and n are two integer variables, then the function call

swap(m,n);

will exchange the values of m and n using their aliases (reference variables)

a and b. In traditional C, this is accomplished using pointers and indirection

as follows:

67

void swap1(int *a, int* b) /*function definition */

{

int t;

t = *a; //assign the value at address a to t

*a = *b; //put the value at b into a

*b = t; //put the value at t into b

}

This function can be called as follows:

swap1(&x, &y); /*call by passing */

/* addresses of variables */

This approach is also acceptable in C++. Note that the call-by-reference

method is neater in its approach.

3.5 Return by Reference

A function can also return a reference. Consider the following

function:

int & max(int &x, int &y)

{

if (x > y)

return x;

else

return y;

}

since the return type of max() is int&, the function returns reference to x or y

(and not the values). Then a function call such as max(a, b) will yield a

reference to either a or b depending on their values. This means that this

function call can appear on the left-hand side of an assignment statement.

68

That is, the statement

max(a, b) = -1;

is illegal and assigns -1 to a if it is larger, otherwise -1 to b.

3.6 Inline Functions

One of the objectives of using functions in a program is to save some memory

space, which becomes appreciable when a function is likely to be called many

times. However, every time a function is called, it takes a lot of extra time in

executing a series of instructions for tasks such as jumping to the function,

saving registers, pushing arguments into the stack, and returning to the

calling function. When a function is small, a substantial percentage of

execution time may be spent in such overheads.

One solution to this problem is to use macro definitions, popularly

known as macros. Preprocessor macros are popular in C. The major

drawback with macros is that they are not really functions and therefore the

usual error checking does not occur during compilation.

C++ has a different solution to this problem. To eliminate the cost of

calls to small functions, C++ proposes a new feature called inline function.

An inline function is a function that is expanded in line when it is invoked.

That is, the compiler replaces the function call with the corresponding function

code (something similar to macros expansion). The inline functions are

defined as follows:

inline function-header

{

function body

}

Example:

inline double cube(double a)

{

return(a*a*a);

}

69

The above inline function can be invoked by statements like

c = cube(3.0);

d = cube(2.5 + 1.5);

On the execution of these statements, the values of c and d will be 27

and 64 respectively. If the arguments are expressions such as 2.5 + 1.5, the

function passes the value of the expression, 4 in this case. This makes the

inline feature far superior to macros.

It is easy to make a function inline. All we need to do is to prefix the

keyword inline to the function definition. All inline functions must be defined

before they are called.

We should exercise care before making a function inline. The speed

benefits of inline function diminishes as the function grows in size. At some

point the overhead of the function call becomes small compared to the

execution of the function, and the benefits of inline functions may be lost. In

such cases, the use of normal functions will be more meaningful. Usually,

the functions are made inline when they are small enough to be defined in

one or two lines. Example:

inline double cube(double a) {return(a*a*a);}

Note that the inline keyword merely sends a request, not a command,

to the compiler. The compiler may ignore this request if the function definition

is too long or too complicated and compile the function as a normal function.

Some of the situations where inline expansion may not work are:

1. For functions returning values, if a loop, a switch or a goto exists.

2. For functions not returning values, if a return statement exists.

3. If functions contain static variables.

4. If inline functions are recursive.

70

//Program to illustrate inline function

#include<iostream>

using namespace std;

inline float mul(float x, float y)

{

return(x*y);

}

inline double div(double p, double q)

{

return (p/q);

}

int main()

{

float a = 12.345;

float b = 9.82;

cout<<mul(a,b)<<"n";

cout<<div(a,b)<<"n";

return 0;

}

The output of the above program would be

121.228

1.25713

3.7 Default Arguments

C++ allows us to call a function without specifying all its arguments. In such

cases, the function assigns a default value to the parameter which does not

have a matching argument in the function call. Default values are specified

when the function is declared. The compiler looks at the prototype to see

71

how many arguments a function uses and alerts the program for possible

default values. Here is an example of a prototype (i.e. the function

declaration) with default values:

float amount(float principal, int period, float rate=0.15);

The default value is specified in a manner syntactically similar to a

variable initialization. The above prototype declares a default value of 0.15

to the argument rate. A subsequent function call like

value = amount(5000, 7); //one argument missing

passes the value of 5000 to principal and 7 to period and then lets

the function use default value of 0.15 for rate. The call

value = amount(5000, 5, 0.12); //no missing argument

passes an explicit value of 0.12 to rate.

A default argument is checked for type at the time of declaration and

evaluated at the time of call. One important point to note is that only the

trailing arguments can have default values and therefore we must add

defaults from right to left. We cannot provide a default value to a particular

argument in the middle of an argument list. Some examples of function

declaration with default values are:

int mul(int i, int j = 5, int k = 10); // legal

int mul(int i = 5, int j); //illegal

int mul (int i=0, int j, int k = 10); // illegal

int mul(int i=2, int j = 5, int k = 10); //legal

Default arguments are useful in situations where some arguments

always have the same value. For instance, bank interest may remain the

same for all customers for a particular period of deposit. It also provides a

greater flexibility to the programmers. A function can be written with more

parameters than are required for its most common application. Using default

72

arguments, a programmer use only those arguments that are meaningful to

a particular situation. Program below illustrates the use of default arguments

#include<iostream>

using namespace std;

int main()

{

float amount;

float value(float p, int n, float r = 0.15); //prototype

void printline(char ch = '*', int len = 40); // prototype

printline(); //use default values for arguments

amount = value (5000.00, 5); // default for 3rd argument

cout<<"n Final value = "<<amount<<"n";

amount = value (10000.00, 5, 0.30); // pass all arguments explicitly

cout<<"n Final value = "<<amount<<"n";

printline('='); //use default value for second argument

return 0;

}

float value (float p, int n, float r)

{

int year = 1;

float sum = p;

while (year <= n)

{

sum = sum * (1 + r);

year = year + 1;

}

return (sum);

}

73

void printline(char ch, int len)

{

for (int i=1; i<= len; i++)

cout<<ch;

cout<<"\n";

}

The output of the program would be

**

Final value = 10056.2

Final value = 17129.3

=======================================

Advantage of providing the default arguments are:

1. We can use default arguments to add new parameters to the existing

functions.

2. Default arguments can be used to combine similar functions into one.

3.8 Const Arguments

In C++, an argument to a function can be declared as const as shown below:

int strlen(const char *p);

int length(const string &s);

The qualifier const tells the compiler that the function should not modify the

argument. The compiler will generate an error when this condition is violated.

This type of declaration is significant only when we pass arguments by

reference or pointers.

74

3.9 Function Overloading

Overloading refers to the use of the same thing for different purposes. C++

also permits overloading of functions. This means that we can use the same

function name to create functions that perform a variety of different tasks.

This is known as function polymorphism in OOP.

Using the concept of function overloading, we can design a family of

functions with one function name but with different argument lists. The

function would perform different operations depending on the argument list in

the function call. The correct function to be invoked is determined by

checking the number and type of the arguments but not on the function type.

For example, an overloaded add() function handles different types of data as

shown below:

// Declarations

int add(int a. int b); //prototype 1

int add(int a, int b. int c); //prototype 2

double add (double x. double y); //prototype 3

double add (int p, double q); //prototype 4

double add(double p, Int q); //prototype 5

// Function calls

cout<<add{5, 10); //uses prototype 1

cout << add(15, 10.0); //uses prototype 4

cout<<add{12.5, 7.5); //uses prototype 3

cout<< add(5, 10, 15); //uses prototype 2

cout<< add{0.75, 5); // uses prototype 1

A function call first matches the prototype having the same number

and type of arguments and then calls the appropriate function for execution,

75

A best match must be unique. The function selection involves the following

steps:

1. The compiler first tries to find an exact match in which the types

of actual arguments are the same and use that function.

2. If an exact match is not found, the compiler uses the integral

promotions to the actual arguments, such as,

char to int

float to double

to find a match.

3. When either of them fails, the compiler tries to use the built-in

conversions (the implicit assignment conversions) to the actual

arguments and then uses the function whose match is unique, If

the conversion is possible to have multiple matches, then the

compiler will generate an error message. Suppose we use the

following two functions:

long square (long n);

double square (double x);

A function call such as

square(10);

will cause an error because int argument can be converted to

either long or double, thereby creating an ambiguous situation as

to which version of square() should be used.

4. If all of the steps fail, then the compiler will try the user-defined

conversions in combination with integral promotions and built-in

conversions to find a unique match. User-defined conversions are

often used in handling class objects.

The following program illustrates function overloading.

76

FUNCTION OVERLOADlNG

// Function volume() is overloaded three times

#Include<iostream>

using namespace std;

int volume (int); //prototype

double volumne(double, int); //prototype

long volume (long, int, int); //prototype

int main()

{

cout<<volume(10)<<”\n”;

cout<<volume(2.5,8)<<”\n”;

cout<<volume(100L,75,15)<<”\n”;

return 0;

}

//function definitions

int volume(int s)

{

return(s*s*s);

}

double volume(double r, int h)

{

return(3.1459*r*r*h);

}

long volume(long l, int b, int h)

{

return (l*b*h);

}

77

The output of program would be:

1000

157.26

112500

Overloading of the functions should be done with caution. We should

not overload unrelated functions and should reserve function overloading for

functions that perform closely related tasks. Sometimes, the default

arguments may be used instead of overloading. This may reduce the number

of functions to be defined.

Overloaded functions are extensively used for handling class objects,

3.10 Friend and Virtual Functions

C++ introduces two new type of functions, namely, friend function and

virtual function. They are basically introduced to handle some specific tasks

related to class objects.

3.11 Math Library Functions

The standard C++ supports many math functions that can be used for

performing certain commonly used calculations. Most frequently used math

library functions are summarized below:

Functions Purpose

ceil(x) Rounds x to the smallest integer not

less than x

Ceil(8.1) = 9 and ceil(-8.8) = -8.

cos(x) Trigonometric cosine of x (x in radians)

exp(x) Exponential function e
x

fabs(x) Absolute value of x

78

floor(x) Rounds x to the largest integer not

greater than x

log(x) Natural logarithm of x

log10(x) Common logarithm

sin(x) Trigonometric sine of x

sqrt(x) Square root of x

tan(x) Trigonometric tangent of x

pow(x,y) x raised to power y

Note: The argument variable x and y are of type double and all functions

return the data type double.

To use the math library functions, we must include the header file math.h in

conventional C++ and cmath in ANSI C++.

SUMMARY

 It is possible to reduce the size of program by calling and using functions

at different places in the program.

 In C++ the main() returns a value of type int to the operating system.

Since the return type of functions ls int by default, the keyword int in the

main() header is optional. Most C++ compilers issue a warning, if there

is no return statement.

 Function prototyping gives the compiler the details about the functions

such as the number and types of arguments and the type of returnvalues.

 Reference variables in C++ permit us to pass parameters to the functions

by reference. A function can also return a reference to a variable.

 When a function is declared inline the compiler replaces the function call

with the respective function code. Normally, a small size function is made

as inline

79

 The compiler may ignore the inline declaration if the function declaration

is too long or too complicated and hence compile the function as a normal

function.

 C++ allows us to assign default values to the function parameters when

the function is declared. In such a case we can call a function without

specifying all its argument. The defaults are always added from right to

left.

 In C++, an argument to a function can be declared as const, indicating

that the function should not modify the argument.

 C++ allows function overloading. That is, we can have more than one

function with the same name in our program. The compiler matches the

function call with the exact function code by checking the number and

type of the arguments.

 C++ supports two new types of functions, namely friend functions and

virtual functions.

 Many mathematical computations can be carried out using the library

functions supported by the C++ standard library.

Review Questions

1. What are the advantages of function prototypes in C++?

2. Describe the different styles of writing prototypes.

3. What is the main advantage of passing arguments by reference?

4. When will you make a function inline ? Why ?

5. How does an inline function differ from a preprocessor macro?

6. When do we need to use default arguments in a function?

7. What is the significance of an empty parenthesis in a function

declaration?

8. What do you meant by overloading of a function? When do we use

this concept?

80

Programming Exercises:

1. Write a function to read a matrix of size m n from the keyboard.

2. Write a program to read a matrix of size m n from the keyboard and

display the same on the screen using functions.

3. Rewrite the program of Exercise 2 to make the row parameter of the

matrix as a default argument.

4. The effect of a default argument can be alternatively achieved by

overloading. Discuss with an example.

5. Write a macro that obtains the largest of three numbers.

6. Redo Exercise 5 using inline function. Test the function using a main

program.

7. Write a function power() to raise a number m to a power n. The

function takes a double value for m and int value for n, and returns

the result correctly, Use a default value of 2 for n to make the function

to calculate squares when this argument is omitted. Write a main that

gets the values of m and n from the user to test the function.

8. Write a function that performs the same operation as that of Exercise

7 but takes an int value for m. Both the functions should have the

same name. Write a main that calls both the functions. Use the

concept of function overloading.

81

UNIT – IV

Classes and Objects - I

4.1 Introduction

The most important feature of C++ is the "class". Its significance is

highlighted by the fact that Stroustrup initially gave the name "C with classes"

to his new language. A class is an extension of the idea of structure used in

C. It is a new way of creating and implementing a user-defined data type. In

this unit, we review the concept of structure found in C and then the ways in

which classes can be designed, implemented and applied.

4.2 C Structures Revisited

We know that one of the unique features of the C language is

structures. They provide a method of packing together data of different types.

A structure is a convenient tool for handling a group of logically related data

items. It is a user-defined data type with a template that serves to define its

data properties. Once the structure type has been defined, we can create

variables of that type using declarations that are similar to the built-in type

declarations. For example, consider the following declaration:

struct student

{

char name[20];

int roll_number;

float total_marks;

};

The keyword struct declares student as a new data type that can hold three

fields of different data types. These fields are known as structure members

of elements. The identifier student, which is referred to as structure name or

structure tag, can be used to create variables of type student.

82

Example:

struct student A; //C declaration

A is a variable of type student and has three member variables as defined

by the template. Member variables can be accessed using the dot or period

operator as follows:

strcpy(A.name, "John");

A.roll_number = 999;

A.total_marks = 595.5;

Final_total = A.total_marks + 5;

Structures can have arrays, pointers or structures as members.

Limitations of C Structure

The standard C does not allow the struct data type to be treated like built-in

types. For example, consider the following structure:

struct complex

{

float x;

float y;

};

struct complex c1, c2, c3;

The complex numbers c1, c2, and c3 can easily be assigned values

using the dot operator, but we cannot add two complex numbers or subtract

one from the other. For example,

c3 = c1 + c2;

is illegal in C.

Another important limitation of C structures is that they do not permit

data hiding. Structure members can be directly accessed by the structure

83

variables by any function anywhere in their scope. In other words, the

structure members are public members.

Extensions to Structures

C++ supports all the features of structures as defined in C. But C++ has

expanded its capabilities further to suit its OOP philosophy. It attempts to

bring the user-defined types as close as possible to the built-in data types,

and also provides a facility to hide the data which is one of the main principles

of OOP. Inheritance, a mechanism by which one type can inherit

characteristics from other types, is also supported by C++.

In C++, a structure can have both variables and functions as

members. It can also declare some of its members as 'private' so that they

cannot be accessed directly by the external functions.

In C++, the structure names are stand-alone and can be used like any

other type names. In other words, the keyword struct can be omitted in the

declaration of structure variables. For example, we can declare the student

variable A as

student A; // C++ declaration

Note that this is an error in C.

C++ incorporates all these extensions in another user-defined type

known as class. There is very little syntactical difference between structures

and classes in C++ and, therefore, they can be used interchangeably with

minor modifications. Since class is a specially introduced data type in C++,

most of the C++ programmers tend to use the structures for holding only data,

and classes to hold both the data and functions. Therefore, we will not

discuss structures any further.

Note that the only difference between a structure and a class in C++

is that, by default, the members of the classes are private, while by default,

the members of a structure are public.

84

4.3 Specifying a Class

A class is a way to bind the data and its associated functions together. It

allows the data (and functions) to be hidden, if necessary, from external use.

When defining a class, we are creating a new abstract data type that can be

treated like any other built-in data type. Generally, a class specification has

two parts:

1. Class declaration

2. Class function definitions

The class declarations describes the type and scope of its members.

The class function definition describe how the class functions are

implemented.

The general form of a class declaration is:

class class_name

{

private:

variable declarations;

function declarations;

public:

variable declarations;

function declarations;

}

The class declaration is similar to a struct. The keyword class

specifies, that what follows is an abstract data of type class_name. The body

of a class is enclosed within braces, and terminated by a semicolon. The

class body contains the declaration of variables and functions. These

functions and variables are collectively called class members. They are

usually grouped under two sections, namely, private and public to denote

which of the members are private and which of them are public. The

keywords private and public are known as visibility labels. Note that these

keywords are followed by a colon.

85

The class members that have been declared as private can be

accessed only from within the class. On the other hand, public members can

be accessed from outside the class also. The data hiding (using private

declaration) is the key feature of object–oriented programming. The use of

the keyword private is optional. By default, the members of a class are

private. If both the labels are missing, then, by default, all the members are

private. Such a class is completely hidden from the outside world and does

not serve any purpose.

The variables declared inside the class are known as data members

and the functions are known as member functions. Only the member

functions can have access to the private data members and private functions.

However, the public members (both functions and data) can be accessed

from outside the class. The binding of data and functions together into a

single class-type variable is referred to as encapsulation.

A simple Class example

A typical class declaration would look like:

class item

{

int number; //variable declaration

float cost; // private by default

public:

void getdata(int a, float b); //functions declaration

void putdata(void); // using prototype

}; //ends with semicolon

We usually give a class some meaningful name, such as item. This

name now becomes a new type identifier that can be used to declare

instances of that class type. The class item contains two data members and

two function members. The data members are private by default while both

86

the functions are public by declaration. The function getdata() can be used

to assign values to the member variables number and cost, and putdata() for

displaying their values. These functions provide the only access to the data

members from outside the class. This means that data cannot be accessed

by any function that is not a member from outside the class. This means that

the data cannot be accessed by any function that is not a member of the class

item. Note that the functions are declared not defined. Actual function

definitions will appear later in the program. The data members are usually

declared as private and the member functions as public.

Creating Objects

Note that the declarations of item as shown above does not define any

objects of item but only specifies what they will contain. Once a class has

been declared, we can create variables of that type by using the class name

(like any other built-in type variable). For example,

Item x; //memory for x is created

Create a variable x of type item. In C++, the class variables are

known as objects. Therefore, x is called an object of type item. We may also

declare more than one object in one statement. Example:

Item x, y, z;

The declaration of an object is similar to that of a variable of any basic

type. The necessary memory space is allocated to an object at this stage.

Note that class specification, like a structure provides only a template and

does not create any memory space for the objects.

Objects can also be created when a class is defined by placing their

names immediately after the class braces, as we do in the case of structures.

87

That is to say, the definition

class item

{

……

……

}x, y, z;

would create the objects x, y and z of type item. This practice is

seldom followed because we would like to declare the objects close to the

place where they are used and not at the time of class definition.

Accessing Class Members

As pointed out earlier, the private data of a class can be accessed only

through the member functions of that class. The main() cannot contain

statements that access number and cost directly.

The following is the format for calling a member function:

Object-name.function-name(actual-arguments);

For example, the function call statement

x.getdata(100,75.5);

is valid and assigns the value 100 to number and 75.5 to cost of the

object x by implementing the getdata() function. The assignments occur in

the actual function. Similarly, the statement

x.putdata();

would display the values of data members. Remember, a member

function can be invoked only by using an object (of the same class). The

statement like

getdata(100,75.5);

has no meaning.

88

Similarly, the statement

x.number = 100;

is also illegal. Although x is an object of the type item to which number

belongs, the number (declared private) can be accessed only through a

member function and not by the object directly.

It may be recalled that objects communicate by sending and receiving

messages. This is achieved through the member functions. For example,

x.putdata();

send a message to the object x requesting it to display its contents.

A variable declared as public can be accessed by the objects directly.

Example:

class xyz

{

int x;

int y;

public:

int x;

};

…………….

……………

xyz p;

p.x = 0; //error, x is private

p.z = 10; //ok. Z is public

…………..

…………..

89

4.4 Defining Member Functions

Member functions can be defined in two places:

 outside the class definition

 inside the class definition

It is obvious that, irrespective of the place of definition, the function

should perform the same task. Therefore, the code for the function body

would be identical in both the cases. However, there is a subtle difference in

the way the function header is defined. Both these approaches are discussed

in detail in this section.

Outside the Class Definition

Member functions that are declared inside a class have to be defined

separately outside the class. Their definitions are very much like the normal

functions. They should have a function header and a function body. Since

C++ does not support the old version of function definition, the ANSI

prototype form must be used for defining the function header.

An important difference between a member function and a normal

function is that a member function incorporates a membership ‘identity label’

in the header. The ‘label’ tells the compiler that which class the function

belongs to. The general form of a member function definition is:

return-type class-name :: function-name(argument declaration)

{

Function body

}

The membership label class-name:: tells the compiler that the function

function-name belongs to the class class-name. That is, the scope of the

function is restricted to the class-name specified in the header line. The

symbol :: is called the scope resolution operator.

90

For instance, consider the member-functions getdata() and putdata()

as discussed above. This may be coded as follows:

void item :: getdata(int a, float b)

{

number = a;

cost = b;

}

void item::putdata(void)

{

cout<<”number = “<<number<<”\n”;

cout<<”cost =”<<cost<<”\n”;

}

Since these functions do not return any value, their return-type is void.

Function arguments are declared using the ANSI prototype.

The member function have some special characteristics that are often

used in the program development. These characteristics are:

 Several different classes can use the same function name. The

‘membership label’ will resolve their scope.

 Member function can access the private data of the class. A

nonmember function cannot do so. (however, an exception to this

rule is a friend function).

 A member function can call another member function directly, without

using the dot operator.

91

Inside the Class Definition

Another method of defining a member function is to replace the function

declaration by the actual function definition inside the class. For example, we

could define the item class as follows:

class item

{

int number;

float cost;

public:

void getdata(int a, float b); //declaration

//inline function

void putdata(void) //definition inside the class

{

cout<<”number = “<<number<<”\n”;

cout<<”cost =”<<cost<<”\n”;

}

};

When a function is defined inside a class, it is treated as an inline

function. Therefore, all the restrictions and limitations that apply to an inline

function are also applicable here. Normally, only small functions are defined

inside the class definition.

92

4.5 A C++ Program with Class

#include<iostream>

using namespace std;

class item

{

int number; //private by default

float cost; //private by default

public:

void getdata(int a, float b); //prototype declaration to be defined

//function defined inside class

void putdata(void)

{

cout<<”number: “<< number<<”\n”;

cout<<”cost : “<< cost<<”\n”;

}

};

// …………. Member function definition ………………

void item:: getdata(int a, float b) //use membership label

{

number = a; //private variables

cost = b; //directly used

}

93

// ………………………. Main program ………………………..

int main()

{

item x; // create object x

cout<<”\n object x “<< “\n”;

x.getdata(100, 299.95); //call member function

x.putdata(); //call member function

item y; //create another object

cout<<”\n object Y” << “\n”;

y.getdata(200, 175.50);

y.putdata();

return 0;

}

This program features the class item. This class contain two private

variables and two public functions. The member function getdata() which

has been defined outside the class supplies values to both the variables.

Note the use of statement such as

number = a;

in the function definition of getdata(). This shows that the member functions

can have direct access to private data items.

The member function putdata() has been defined inside the class and

therefore behaves like an inline function. This function displays the values of

the private variables number and cost.

94

The program creates two objects, x and y in two different statements.

This can be combined in one statement.

item x, y; //creates a list of objects

Here is the output of the program:

Object x

number: 100

cost : 299.95

object y

number: 200

cost : 175.5

For the sake of illustration only one member function is shown as

inline and the other as an ‘external’ member function. Both can be defined

as inline or external functions.

4.6 Making an Outside Function Inline

One of the objectives of OOP is to separate the details of

implementation from the class definition. It is therefore a good practice to

define the member functions outside the class.

We can define a member function outside the class definition and still

make it inline by just using the qualifier inline in the header line of function

definition. Example:

class item

{

……………

…………..

public:

void getdata(int a, float b); //declaration

};

95

inline void item:: getdata(int a, float b) //definition

{

number = a;

cost = b;

}

4.7 Nesting of Member Functions

A member function of a class can be called only by an object of that

class using a dot operator. However, there is an exception to this. A member

function can be called by using its name inside another member function of

the same class. This is known as nesting of member functions. The following

program illustrates this feature.

// Nesting of member functions

#include<iostream>

using namespace std;

class set

{

int m,n;

public:

void input(void);

void display (void);

int largest (void);

};

int set largest(void)

{ (m >= n)? return (m) : return (n); }

96

void set :: input (void)

{

cout<<"Input values of m and n”<< "\n";

cin>> m>> n;

}

void set :: display(void)

{

cout<<”Largest value = “

<<largest()<<”\n”; //calling member function

}

int main()

{

set A;

A.input();

A.display();

return 0;

}

4.8 Private Member Functions

Although it is normal practice to place all the data items in a private section

and all the functions in public. Some situations may require certain functions

to be hidden (like private data) from the outside calls. Tasks such as deleting

an account in a customer file, or providing increment to an employee are

events of serious consequences and therefore the functions handling such

tasks should have restricted access. We can place these functions in the

private section.

97

A private member function can only be called by another function that

is a member of its class. Even an object cannot invoke a private function

using the dot operator. Consider a class as defined below:

class sample

{

int k;

void read(void); // private member function

public:

void update(void);

void write(void);

};

If s1 is an object of sample, then

s1.read(); //won’t work; objects cannot access private members

is illegal. However, the function read() can be called by the function update()

to update the value of m.

void sample :: update(void)

{

read(); //simple call; no object used

}

4.9. Arrays within a Class

The arrays can be used as member variables in a class. The following

class definition is valid.

98

const int size = 10; //provides value for array size

class array

{

int a[size]; // ‘a’ is int type array

public:

void setval(void);

void display(void);

};

The array variable a[] declared as a private member of the class

array can be used in the member functions, like any other array variable. We

can perform any operations on it. For instance in the above class definition,

the member function setval() sets the values of elements of the array a[],

and display() function displays the values. Similarly, we may use other

member functions to perform any other operations on the array values.

SUMMARY

 A class is an extension to the structure data type. A class can have both

variables and functions as members.

 By default, members of the class are private whereas that of structure are

public.

 Only the member functions can have access to the private data members

and private functions. However the public members can be accessed

from outside the class.

 In C++, the class variables are called objects. With objects we can access

the public members of a class using a dot operator.

 We can define the member functions inside or outside the class. The

difference between a member function and a normal function is that a

member function uses a membership 'identity' label in the header to

indicate the class to which it belongs.

99

Review Questions

1. How do structures in C and C++ differ?

2. What is a class? How does it accomplish data hiding?

3. How does a C++ structure differ from a C++ class?

4. What are objects? How are they created?

5. How is a member function of a class defined?

6. Can we use the same function name for a member function of a class

and an outside function, in the same program file? If yes, how are they

distinguished? If no, give reasons.

7. Describe the mechanism of accessing data members and member

functions in the following cases:

a) Inside the main program.

b) Inside a member function of the same class.

c) Inside a member function of another class.

Programming Exercises

1. Define a class to represent a bank account. Include the following

members:

Data members

1. Name of the depositor

2. Account number

3. Type of account

4. Balance amount in the account

Member functions

1. To assign initial values

2. To deposit an amount

3. To withdraw an amount after checking the balance

4. To display name and balance

Write a main program to test the program.

2. Modify the class and the program of Exercise 1 for handling 10

customers.

100

101

BLOCK – III

Objectives

After Completion of this block, students will be able to

1. Get clear picture of arrays

2. Understand how memory is allocated to objects

3. Write moderate level programs using Object concept

102

UNIT – V

Classes and Objects - II

5.1 Memory Allocation for Objects

Memory space for objects is allocated when they are declared and not when

the class is specified. This statement is only partly true. Actually, the member

functions are created and placed in the memory space only once when they

are defined as a part of a class specification. Since all the objects belonging

to that class use the same member functions, no separate space is allocated

for member functions when the objects are created. Only space for member

variables is allocated separately for each object. Separate memory locations

for the objects are essential, because the member variables will hold different

data values for different objects.

5.2 Static Data members

A data member of a class can be qualified as static. The properties of a static

member variable are similar to that of a C static variable. A static member

variable has certain special characteristics. These are:

 It is initialized to zero when the first object of its class is created. No

other initialization is permitted.

 Only one copy of that member is created for the entire class and is

shared by all the objects of that class, no matter how many objects

are created

 It is visible only within the class, but its lifetime is the entire program.

Static variables are normally used to maintain values common to the

entire class. For example, a static data member can be used as a counter

that records the occurrences of all the objects. The following program

illustrates the use of a static data member.

103

//Static class member

#include<iostream>

using namespace std;

class item

{

static int count;

int number;

public:

void getdata(int a)

{

number = a;

count++;

}

void getcount(void)

{

cout<<”count: “;

cout<<count<<”\n”;

}

};

int item:: count;

int main()

{

Item a, b, c; //count is initialized to zero

a.getcount(); //display count

b.getcount();

c.getcount();

104

a.getdata(100); //getting date into object a

b.getdata(200); //getting date into object b

c.getdata(300); //getting date into object c

cout<<”After reading data”<<”\n”;

a.getcount(); //display count

b.getcount();

c.getcount();

return 0;

}

The output of the program would be

count: 0

count: 0

count: 0

After reading data

count: 3

count: 3

count: 3

Notice the following statement in the program

int item:: count; //definition of static data member

105

Note that the type and scope of each static member variable must be

defined outside the class definition. This is necessary because the static data

members are stored separately rather than as a part of an object. Since they

are associated with the class itself rather than with any class object, they are

also known as class variables.

The static variable count is initialized to zero when the objects are

created. The count is incremented whenever the data is read into an object.

Since the data is read into objects three times, the variable count is

incremented three times. Because there is only one copy of count shared by

all the three objects, all the three output statements cause the value 3 to be

displayed.

Static variables are like non-inline functions as they are declared in a

class declaration and defined in the source file. While defining a static

variable, some initial value can also be assigned to the variable. For instance,

the following definition gives count the initial value 10.

int item:: count = 10;

5.3 Static Member functions

Like static member variable, we can also have static member functions.

A member function that is declared static has the following properties:

 A static function can have access to only other static members

(functions or variables) declared in the same class

 A static member function can be called using the class name (instead

of its objects) as follows:

class-name:: function-name;

The following program illustrates the implementation of these

characteristics. The static function showcount() displays the number of

objects created till that moment. A count of number of objects created is

maintained by the static variable count.

106

The function showcode() displays the code number of each object.

//Static member function

#include<iostream>

using namespace std;

class test

{

int code;

static int count; //static member variable

public:

void setcode(void)

{

code=++count;

}

void showcode(void)

{

cout<<”object number: “<<code <<”\n”;

}

static void showcount(void) //static member function

{

cout<<”count: “<<count<<”\n”;

}

};

int test:: count;

107

int main()

{

test t1, t2;

t1.setcode();

t2.setcode();

test::showcount(); //accessing static function

test t3;

t3.setcode();

test::showcount();

t1.showcode();

t2.showcode();

t3.showcode();

return 0;

}

The output of program would be:

count: 2

count: 3

object number: 1

object number: 2

object number: 3

108

Note that the statement

code=+=count;

is executed whenever setcode() function is invoked and the current value of

count is assigned to code. Since each object has its own copy of code, the

value contained in code represents a unique number of its object.

Note that the following definition will not work:

static void showcount()

{

cout<<code; //code is not static

}

5.4 Array of Objects

We know that an array can be of any data type including struct.

Similarly, we can also have arrays of variables that are of the type class.

Such variables are called arrays of objects. Consider the following class

definition:

class employee

{

char name[30];

float age;

public:

void getdata(void);

void putdata(void);

};

109

The identifier employee is a user-defined data type and can be used

to create objects that relate to different categories of the employees.

Example:

employee manager[3]; //array of manager

employee foreman[15]; //array of foreman

employee worker[75]; //array of worker

The array manager contains three objects (managers), namely,

manager[0], manager[1], and manager[2], of type employee class.

Similarly, the foreman array contains 15 objects (foreman) and the worker

array contains 75 objects(workers).

Since an array of objects behaves like any other array, we can use

the usual array-accessing method to access individual elements, and then

the dot member operator to access the member functions. For example, the

statement

manager[i].putdata();

Will display the data of the ith element of the array manager. That is, this

statement request the object manager[i] to invoke the member function

putdata().

An array of objects is stored inside the memory in the same way as a

multi-dimensional array. Note that only the space for data items of the objects

is created. Member functions are stored separately and will be used by all

the objects.

//Array of objects

#include<iostreamh>

using namespace std;

class employee

{

char name[30]; //string as class member

float age;

110

public:

void getdata(void);

void putdata(void);

};

void employee::getdata(void)

{

cout<<”Enter name: “; cin>>name;

cout<<”Enter age: “; cin>>age;

}

void employee:: putdata(void)

{

cout<<”Name: “<< name<<”\n”;

cout<<”Age :”<<age<<”\n”;

}

const int size = 3;

int main()

{

employee manager[size];

for (int i=0; i< size; i++)

{

cout<<”\n Details of manager”<< i+1<<”\n”;

manager[i].getdata();

}

cout<<”\n”;

for (i=0; i< size; i++)

{

cout<<”\n Manager”<< i+1 <<”\n”;

manager[i].putdata();

}

return 0;

}

111

This being an interactive program, the input data and the program output are

shown below:

Interactive input

Details of manager 1:

Enter name: xxx

Enter age : 45

Details of manager 2:

Enter name: yyy

Enter age : 55

Details of manager 3:

Enter name: zzz

Enter age : 65

Program output

Manager 1:

Name: xxx

Age : 45

Manager 2:

Name: yyy

Age : 55

Manager 3:

Name: zzz

Age : 65

112

5.5 Objects as Function Arguments

Like any other data type, an object may be used as function argument.

This can be done in two ways:

 A copy of the entire object is passed to the function

 Only the address of the object is transferred to the function.

The first method is called pass-by-value. Since a copy of the object is

passed to the function, any changes made to the object inside the function

do not affect the object used to call the function. The second method is called

pass-by-reference. When an address of the object is passed, the called

function works directly on the actual object used in the call. This means that

any changes made to the object inside the function will reflect in the actual

object. The pass-by-reference method is more efficient since it requires to

pass only the address of the object and not the entire object.

The following program illustrates the use of objects as function

arguments. It performs the addition of time in the hour and minute format.

//Objects as arguments

#include<iostream>

using namespace std;

class item

{

int hours;

int minutes;

public:

void gettime(int h, int m)

{

hour = h; minutes = m;

}

113

void puttime(void)

{

cout<<hours<<”hours and “;

cout<<minutes<<”minutes”<<”\n”;

}

void sum(time, time); //declaration with objects as arguments

};

void time:: sum(time t1, time t2) //t1, t2 are objects

{

minutes = t1.minutes + t2.minutes;

hours = minutes/60;

minutes = minutes % 60;

hours= hours + t1.hours + t2.hours;

}

int main()

{

time T1, T2, T3;

T1.gettime(2, 45); //get T1

T2.gettime(3, 30); //get T2

T3.sum(T1,T2); // T3 = T1 + T2

cout<< “T1 = “; T1.puttime(); //display T1

cout<<”T2 = “; T2.puttime(); //display T2

cout<<”T3 = “; T3.puttime(); //display T3

return 0;

}

114

The output of the program would be

T1 = 2 hours and 45 minutes

T2 = 3 hours and 30 minutes

T3 = 6 hours and 15 minutes

Since the member function sum() is invoked by the object T3, with the

objects T1 and T2 as arguments. It can directly access the hours and minutes

variables of T3. But, the member of T1 and T2 can be accessed only by using

the dot operator (like T1.hours and T1.minutes). Therefore, inside the

function sum(), the variables hours and minutes refer to T3, T1.hours and

T1.minutes refers to T1 and T2.hours and T2.minutes refer to T2.

An object can also be passed as an argument to a non-member

function. However, such functions can have access to the public member

functions only through the objects passed as arguments to it. These functions

cannot have access to the private data members.

5.6 Friendly Functions

We know that private members cannot be accessed from outside the

class. That is, a non-member function cannot have an access to the private

data of a class. However, there could be a situation where we would like two

classes to share a particular function. For example, consider a case where

two classes, manager and scientist, have been defined. We would like to

use a function income_tax() to operate on the objects of both these classes.

In such situations, C++ allows the common function to be made friendly with

both the classes. In such situations, C++ allows the common function to be

made friendly with both the classes, thereby allowing the function to have

access to the private data of these classes. Such a function need not be a

member of any of these classes.

115

To make an outside function “friendly” to a class, we have to simply

declare this function as a friend of the class as shown below:

class ABC

{

…………..

………….

public:

………..

……………

friend void xyz(void); //declaration

};

The function declaration should be preceded by the keyword friend.

The function is defined elsewhere in the program like a normal C++ function.

The function definition does not use either the keyword friend or the scope

resolution operator ::. The functions that are declared with the keyword

friend are known as friend functions. A function can be declared as a friend

in any number of classes. A friend function, although not a member function,

has full access rights to the private members of the class.

A friend function possesses certain special characteristics:

 It is not in the scope of the class to which it has been declared as

friend.

 Since it is not in the scope of the class, it cannot be called using the

object of that class.

 It can be invoked like a normal function without the help of any object.

 Unlike member functions, it cannot access the member names directly

and has to use an object name and dot membership operator with

each member name (e.g. A.x).

116

 It can be declared either in the public or the private part of a class

without affecting its meaning.

 Usually, it has the objects as arguments.

//Friend function

#include<iostream>

using namespace std;

class sample

{

int a;

int b;

public:

void setvalue() {a = 25; b = 40;}

friend float mean (sample s);

};

float mean (sample s)

{

return float(s.a + s.b)/2.0;

}

int main()

{

sample x; // object x

x.setvalue();

cout<<”mean value = “<<mean(x)<<”\n”;

return 0;

}

117

The output of the program would be

mean value = 32.5

The friend function access the class variables a and b by using the

dot operator and the object passed to it. The function call mean(x) passes

the object x by value to the friend function.

Member functions of one class can be friend of another class. In such

cases, they are defined using the scope resolution operator as shown below:

class x

{

……………

…………..

int fun1(); //member function of x

};

class y

{

……………..

…………….

friend int x:: fun1(); // func1() of X is a friend of Y

………..

};

The function fun1() is a member of class x and a friend of class y.

We can also declare all the member functions of one class as the

friend functions of another class. In such cases, the class is called a friend

class. This can be specified as follows:

class z

{

………………

friend class x; // all member functions of x are friends to z

};

118

//Program using friend function to add data objects of two different classes

/* use of friend function to access members of two classes*/

#include<iostream>

using namespace std;

class ABC; //forward declaration

class XYZ

{

int x;

public:

void setvalue(int i)

{ x = i; }

friend void max(XYZ, ABC);

};

class ABC

{

int a;

public:

void setvalue(int i) { a = i;}

friend void max(XYZ, ABC);

};

void max(XYZ m, ABC n)

{ (m.x >= n.a) ? cout<<m.x : cout<<n.a; }

int main()

{

ABC abc;

abc.setvalue(10);

XYZ xyz;

119

xyz.setvalue(20);

max(xyz, abc);

return 0;

}

The output of program would be:

20.

The function max() has arguments from both XYZ and ABC. When

the function max() is declared as a friend in XYZ for the first time, the compiler

will not acknowledge the presence of ABC unless its name is declared in the

beginning as class ABC; This is known as 'forward" declaration.

As pointed out earlier, a friend function can be called by reference. In

this case, local copies of the objects are not made. Instead, a pointer to the

address of the object is passed and the called function directly works on the

actual object used in the call.

This method can be used to alter the values of the private members

of a class. Note that altering the values of private members is against the

basic principles of data hiding. It should be used only when absolutely

necessary.

The following program shows how to use a common friend function to

exchange the private values of two classes. The function is called by

reference.

//Program for swapping private data of classes

#include<iostream>

using namespace std;

class class2;

120

class class1

{

int value1;

public:

void indata(int a) { value1 = a;}

void display(void) { cout<< value1 <<”\n”;}

friend void exchange (class1&, class2&);

};

class class2

{

int value2;

public:

{

void indata(int a) { value2 = a;}

void display(void) { cout<< value2 <<”\n”;}

friend void exchange (class1&, class2&);

};

void exchange(class1& x, class2& y)

{

int temp = x.value1;

x.value1 = y.value2;

y.value2 = temp;

}

int main()

{

class1 c1;

class2 c2;

c1.indata(100);

c2.indate(200);

cout<<”Values before exchange”<<”\n”;

c1.display();

c2.display();

121

exchange(c1, c2); //swapping

cout<<”values after exchange”<<”\n”;

c1.display();

c2.display();

return 0;

}

The objects x and y are aliases of c1 and c2 respectively. The statements

int temp = x.value1;

x.value1 = y.value2;

y.value2 = temp;

directly modify the values of value1 and value2 declared in class1 and

class2.

The output of program would be:

Values before exchange

100

200

Values after exchange

200

100

122

5.7 Returning objects

A function cannot only receive objects as arguments, but also can

return them. The example in the following program illustrates how an object

can be created (within a function) and returned to another function.

#include<iostream>

using namespace std;

class complex

{

float x; //real part

float y; //imaginary part

public:

void input(float real, float imag)

{x=real, y = imag;}

friend complex sum(complex, complex);

void show(complex);

};

complex sum (complex c1, complex c2)

{

complex c3;

c3.x = c1.x + c2.x;

c3.y = c1.y + c2.y;

return (c3);

}

void complex: show(complex c)

{ cout<<c.x <<” +j (”<< c.y <<”)\n”; }

int main()

{

complex A, B, C;

A.input(3.1, 5.65);

B.input(2.75, 1.2);

C = sum(A, B);

123

cout<<”A = “; A.show(A);

cout<<”B = “; B.show(B);

cout<<”C = “; C.show(C);

return 0;

}

Upon execution, the above program would generate the following output:

A = 3.1 + j (5.65)

B = 2.75 + j (1.2)

C = 5.85 + j (6.85)

The program adds two complex numbers A and B to produce a third

complex number C, and displays all the three numbers.

5.8 Const Member Function

If a member function does not alter any data in the class, then we may declare

it as a const member function as follows:

void mul(int, int) const;

double get_balance() const;

The qualifier const is appended to the function prototypes (in both

declaration and definition). The compiler will generate an error message if

such functions try to alter the data values.

5.9 Pointer to Members

It is possible to take the address of a member of a class and assign it to a

pointer. The address of a member can be obtained by applying the operator

& to a “fully qualified” class member name. A class member pointer can be

declared using the operator ::* with the class name.

124

For example, given the class:

class A

{

private:

public:

int m;

void show();

};

We can define a pointer to the member m as follows:

Int A::* ip = &A:: m;

The ip pointer created thus acts like a class member in that it must be

invoked with a class object. In the statement above, the phrase A::* means

“pointer-to-member of A class”. The phrase &A::m means the “address of

the m member of A class”.

Note that the following statement is not valid:

int *ip = &m; //won’t work

This is because m is not simply an int type data. It has meaning only

when it is associated with the class to which it belongs. The scope operator

must be applied to both the pointer and the member.

The pointer ip can now be used to access the member m inside

member functions (or friend functions). Let us assume that a is an object of

A declared in a member function. We can access m using the pointer ip as

follows:

cout<<a.*ip; //display

cout<<a.m; //same as above

125

Now, look at the following code:

ap = &a; //ap is a pointer to object a

cout<<ap -> *ip; //display m

cout<<ap -> m; //same as above

The dereferencing operator ->* is used to access a member when we

use pointers to both the object and the member. The dereferencing operator

.* is used when the object itself is used with the member pointer. Note that

*ip is used like a member name.

We can also design pointers to member functions when, then, can be

invoked using the dereferencing operators in the main as shown below:

(object-name .* pointer-to-member function) (10);

(pointer-to-object ->* pointer-to-member function) (10)

The precedence of () is higher than that of .* and ->*, so the

parentheses are necessary.

/*Program to illustrate the use of dereferencing operators to access the class

members.*/

#include<iostream>

using namespace std;

class M

{

int x;

int y;

public:

void set_xy(int a, int b)

{ x=a; y = b; }

friend int sum(M m);

};

126

int sum (M m)

{

int M ::* px = &M :: x;

int M ::* py = &M :: y;

M *pm = &m;

int S = m.*px + pm->*py;

return S;

}

int main()

{

M n;

void (M :: *pf)(int, int) = &M :: set_xy;

(n.*pf)(10, 20);

cout<<”Sum =”<< sum(n)<<”\n”;

M *op = &n;

(op -> *pf)(30, 40);

cout<< “Sum = “<< sum(n)<<”\n”;

return 0;

}

The output of the above program would be:

Sum = 30

Sum = 70

127

5.10 Local Classes

Classes can be defined and used inside a function or a block. Such

classes are called local classes.

Example:

void test (int a) //function

{

…………………

…………………

class student //local class

{

…………

………… //class definition

…………

};

……………

…………..

student s1(a); //create student object

………….. // use student object

}

Local classes can use global variables (declared above the function)

and static variables declared inside the function but cannot use automatic

local variables. The global variables should be used with the scope operator

(::).

There are some restrictions in constructing local classes. They

cannot have static data members and member functions must be defined

inside the local classes. Enclosing function cannot access the private

members of a local class. However, we can achieve this by declaring the

enclosing function as a friend.

128

//Program for function returning objects

#include<iostream>

using namespace std;

class matrix

{

int m[3][3];

public:

void read(void)

{

cout<<”Enter the elements of the 3 3 matrix:\n”;

int i,j;

for (i=0; i < 3; i++)

for (j=0; j <3; j++)

{

cout<<”m[“<<i<<”][“<<j<<”]”;

cin>>m[i][j];

}

}

void display (void)

{

int i,j;

for (i=0; i < 3; i++)

{

cout<<”\n”;

for (j=0; j <3; j++)

{

cout<<m[i][j]<<”\t”;

}

}

}

129

friend trans(matrix x1)

{

matrix m2; //creating an object

int i,j;

for (i=0; i < 3; i++)

for (j=0; j <3; j++)

m2.m[i][j] = m1.m[j][i];

return (m2); //returning an object

}

int main()

{

matrix mat1, mat2;

mat1.read();

cout<<”\n You entered the following matrix:”;

mat1.display();

mat2 = trans(mat1);

cout<<”\n Transposed matrix:”;

mat2.display();

return 0;

}

The output of the program would be as follows:

Enter the elements of the 3 3 matrix:

m[0][0] = 1

m[0][1] = 2

m[0][2] = 3

m[1][0] = 4

m[1][1] = 5

130

m[1][2] = 6

m[2][0] = 7

m[2][1] = 8

m[2][2] = 9

You entered the following matric:

1 2 3

4 5 6

7 8 9

Transposed matrix:

1 4 7

2 5 8

3 6 9

The program finds the transpose of a given 3 3 matrix and stores it in a new

matrix object. The display member function displays the matrix elements;

SUMMARY

 The memory space for the objects is allocated when they are declared,

Space for member variables is allocated separately for each object, but

no separate space is allocated for member functions.

 A data member of a class can be declared as a static and is normally

used to maintain values common to the entire class.

 The static member variables must be defined outside the class.

 A static member function can have access to the static members declared

in the same class and can be called using the class name.

 C++ allows us to have arrays of objects.

 We may use objects as function arguments.

131

 A function declared as a friend is not in the scope of the class to which it

has been declared as friend. It has full access to the private members of

the class.

 A function can also return an object.

 If a member function does not alter any data in the class, then we may

declare it as a const member function. The keyword const is appended

to the function prototype.

 It is also possible to define and use a class inside a function. Such a class

is called a local class.

Review Questions

1. When do we declare a member of a class static?

2. What is a friend function? What are the merits and demerits of using

friend functions?

3. State whether the following statements are TRUE or FALSE.

a) Data items in a class must always be private.

b) A function designed as private is accessible only to member

functions of that class.

c) A function designed as public can be accessed like any other

ordinary functions.

d) Member functions defined inside a class specifier become

inline functions by default.

e) Classes can bring together all aspects of an entity in one

place.

f) Class members are public by default.

g) Friend functions have access to only public members of a

class.

h) An entire class can be made a friend of another class.

i) Functions cannot return class objects.

j) Data members can be initialized inside class specifier.

132

Programming Exercises

1. Create two classes DM and DB which store the value of distances.

DM stores distances in meters and centimeters and DB in feet and

inches. Write a program that can read values for the class objects and

add one object of DM with another object of DB.

Use a friend function to carry out the addition operation. The object

that stores the results may be a DM object or DB object, depending

on the units in which the results are required.

The display should be in the format of feet and inches or meters and

centimeters depending on the object on display.

133

UNIT – VI

Constructors and Destructors

6.1 Introduction

We have seen, so far, a few examples of classes being implemented. In all

the cases, we have used member functions such as putdata() and setvalue()

to provide initial values to the private member variables. For example, the

following statement

A.input();

Invokes the member function input(), which assigns the initial values

to the data item of object A. Similarly, the statement

x.getdata(100,299.95);

passes the initial values as arguments to the function getdata(),

where these values are assigned to the private variables of object x. All these

“function call” statements are used with the appropriate objects that have

already been created. These functions cannot be used to initialize the

member variables at the time of creation of their objects.

Providing the initial values as described above does not conform with

the philosophy of C++ language. The aim of C++ is to create user-defined

data types such as class that behave very similar to the built-in types. This

means that we should be able to initialize a class type variable (object) when

it is declared, much the same way as initialization of ordinary variable. For

example,

int m = 20;

float x = 5.75;

are valid initialization statements for basic data types.

134

Similarly, when a variable of built-in type goes out of scope, the

compiler automatically destroys the variables. But, it has not happened with

the objects we have so far studied. It is therefore clear that some more

features of classes need to be explored that would enable us to initialize the

objects when they are created and destroy them when their presence is no

longer necessary.

C++ provides a special member function called the constructor which

enables an object to initialize itself when it is created. This is known as

automatic initialization of objects. It also provides another member function

called the destructor that destroys the objects when they are no longer

required.

6.2 Constructors

A constructor is a ‘special’ member function whose task is to illustrate the

objects of its class. It is special because its name is the same as the class

name. The constructor is invoked whenever an object of its associated class

is created. It is called constructor because it constructs the values of data

members of the class.

A constructor is declared and defined as follows:

//class with a constructor

class integer

{

int m,n;

public:

integer (void); //constructor declared

..............

..............

};

integer :: integer (void) //constructor defined

{ m = 0; n = 0; }

135

When a class contains a constructor like the one defined above, it is

guaranteed that an object created by the class will be initialized automatically.

For example, the declaration

integer int1; // object int1 created

not only creates the object int1 of type integer but also initializes its

data members m and n to zero. There is no need to write any statement to

invoke the constructor function (as we do with the normal member functions).

If a ‘normal’ member function is defined for zero initialization, we would need

to invoke this function for each of the objects separately. This would be very

inconvenient, if there are a large number of objects.

A constructor that accepts no parameters is called the default

constructor. The default constructor for class A is A:: A(). If no such

constructor is defined, then the compiler supplies a default constructor.

Therefore a statement such as

A a;

Invokes the default constructor of the compiler to create the object a.

The constructor functions have some special characteristics. These are:

 They should be declared in the public section.

 They are invoked automatically when the objects are created.

 They do not have return types, not even void and therefore, and they

cannot return values.

 They cannot be inherited, though a derived class can call the base

class constructor.

 Like other C++ functions, they can have default arguments.

 Constructors cannot be virtual.

 An object with a constructor (or destructor) cannot be used as a

member of a union.

136

 They make ‘implicit calls’ to the operators new and delete when

memory allocation is required.

Note that when a constructor is declared for a class, initialization of the class

objects becomes mandatory.

6.3 Parameterized Constructors

The constructor integer(), defined above, initializes the data members

of all the objects to zero. However, in practice it may be necessary to initialize

the various data elements of different objects with different values when they

are created. C++ permits us to achieve this objective by passing arguments

to the constructor function when the objects are created. The constructors

that can take arguments are called parameterized constructors.

The constructor integer() may be modified to take arguments as

shown below:

class integer

{

int m,n;

public:

integer (int x, int y); //parameterized constructor

..............

..............

};

integer :: integer (int x, int y)

{ m = x; n = y; }

When a constructor has been parameterized, the object declaration

statement such as

integer int1;

may not work. We must pass the initial values as arguments to the

constructor function when an object is declared.

137

This can be done in two ways:

 By calling the constructor explicitly.

 By calling the constructor implicitly.

The following declaration illustrates the first method:

integer int1 = integer(0, 100); //explicit call

This statement creates an integer int1 and passes the values 0 and

100 to it. The second is implemented as follows:

integer int1(0,100); //implicit call

This method, sometimes called the shorthand method, is used very

often as it is shorter, looks better and is easy to implement.

Note that when the constructor is parameterized, we must provide

appropriate arguments for the constructor. The following program

demonstrates the passing of arguments to the constructor functions.

//class with constructors

#include<iostream>

using namespace std;

class integer

{

int m,n;

public:

integer (int x, int y); //constructor declared

void display(void)

{

cout<<”m = “<<m<<”\n”;

cout<<”n = “<<n<<”\n”;

}

};

138

integer :: integer (int x, int y) //constructor defined

{ m = x; n = y; }

int main()

{

integer int1(0,100); //constructor called implicitly

integer int2 = integer(25, 75); //constructor called explicitly

cout<< “\nObject1 “<<”\n”;

int1.display();

cout<< “\nObject2 “<<”\n”;

int2.display();

return 0;

}

The output of the above program would be:

Object1

m = 0

n = 100

Object2

m = 25

n = 75

The constructor functions can also be defined as inline functions. Example:

class integer

{

int m,n;

public:

integer (int x, int y) //Inline constructor

{ m = x; n = y; }

………………….

…………………

};

139

The parameters of a constructor can be of any type except that of the class

to which it belongs. For example,

class A

{

…………..

…………..

public:

A(A);

};

Is illegal.

However, a constructor can accept a reference to its own class as a

parameter. Thus, the statement

class A

{

………………..

………………..

public:

A(A&);

};

Is valid. In such cases, the constructor is called the copy constructor.

6.4 Multiple Constructors in a Class

So far we have used two kinds of constructors. They are:

integer(); //no arguments

integer(int, int); //two arguments

In the first case, the constructor itself supplies the data values and no

values are passed by the calling program. In the second case, the function

call passes the appropriate values from main(). C++ permits us to use both

these constructors in the same class.

140

For example, we could define a class as follows:

class integer

{

int m,n;

public:

integer () (m =0; n=0;) //constructor 1

integer (int a, int b)

{m = a; n = b;} //constructor 2

Integer (integer &i)

{m=i.m; n = i.n;} //constructor 3

};

This declares three constructors for an integer object. The first

constructor receives no arguments, the second receives two integer

arguments and the third receives one integer object as an argument. For

example, the declaration

integer I1;

would automatically invoke the first constructor and set both m and

n of I1 to zero. The statement

integer I2(20, 40);

would call the second constructor which will initialize the data

members m and n of I2 to 20 and 40 respectively. Finally, the statement

integer I3(I2);

would invoke the third constructor which copies the values of I2 into

I3. In other words. It sets the value of every data element of I3 to the value

of the corresponding data element of I2. As mentioned earlier, such a

constructor is called the copy constructor. The process of sharing the same

name by two or more functions is referred to as function overloading.

Similarly, when more than one constructor function is defined in a class, we

say that the constructor is overloaded.

141

//Program for Overloaded Constructor

#include<iostream>

using namespace std;

class complex

{

float x, y;

public:

complex() { } //constructor no arg

complex(float a) {x = y = a;} //constructor-one arg

complex (float real, float imag) //constructor-two arg

{ x = real; y = imag;}

friend complex sum(complex, complex);

friend void show(complex);

};

complex sum(complex c1, complex c2) //friend

{

complex c3;

c3.x = c1.x + c2.x;

c3.y = c1.y + c2.y;

return (c3);

}

void show (complex c)

{ cout<<c.x <<" + j (" << c.y << ")\n"; }

142

int main()

{

complex A(2.7, 3.5); //define & initialize

complex B(1.6); //define & initialize

compelx C; //defined

C = sum(A, B); //sum() is a friend

cout<<"A = "; show(A); //show() is also friend

cout<<"B = "; show(B);

cout<<"C = "; show(C);

//Another way to give initial values (second method)

complex P,Q,R; //define P, Q and R

P = complex(2.5, 3.9); //initialize P

Q = complex(1.6, 2.5); //initialize Q

R = sum(P, Q);

cout<<"\n";

cout<<"P = "; show(P);

cout<<"Q = "; show(Q);

cout<<"R = "; show(R);

return 0;

}

The output of program would be:

A = 2.7 + j (3.5)

B = 1.6 + j (1.6)

C = 4.3 + j (5.1)

143

P = 2.5 + j (3.9)

Q = 1.6 + j (2.5)

R = 4.1 + j (6.4)

There are three constructors in the class complex. The first

constructor, which takes no arguments, is used to create objects which are

not initialized; the second, which takes one argument, is used to crate objects

and initialize them; and the third which takes two arguments, is also used to

create objects and initialize them to specific values. Note that the second

method of initializing values looks better.

Let us see the first constructor again.

complex() { }

It contains the empty body and does not do anything. We just stated

that this is used to create objects without any initial values. Note that C++

compiler has an implicit constructor which creates objects, even though it was

not defined in the class.

This works fine as long as we do not use any other constructors in the

class. However, once we define a constructor, we must also define the “do-

nothing” implicit constructor. This constructor will not do anything and is

defined just to satisfy the compiler.

6.5 Constructors with Default Arguments

It is possible to define constructors with default arguments. For example,

the constructor complex() can be declared as follows:

complex(float real , float imag = 0);

The default value of the argument imag is zero.

144

Then, the statement

complex C(5.0);

Assigns the value 5.0 to real variable and 0.0 to imag (by default).

However, the statement

complex C(2.0, 3.0);

assigns 2.0 to real and 3.0 to imag. The actual parameter, when specified,

overrides the default value. As pointed out earlier, the missing arguments

must be the trailing ones.

It is important to distinguish between the default constructor A::A()

and the default argument constructor A::A(int = 0). The default argument

constructor can be called with either one argument or no arguments. When

called with no arguments, it becomes a default constructor. When both these

forms are used in a class, it causes ambiguity for a statement such as

A a;

The ambiguity is whether to ‘call’ A::A() or A::A(int = 0).

SUMMARY

 C++ provides a special member function called the constructor which

enables an object to initialize itself when it is created, This is known as

automatic initialization of objects.

 A constructor has the same name as that of a class.

 Constructors are normally used to initialize variables and to allocate

memory.

 Similar to normal functions, constructors may be overloaded.

Review Questions

1. What is a constructor? Is it mandatory to use constructor in a class?

2. How do we invoke a constructor function

3. List some of the special properties of the constructor functions.

145

4. What is a parameterized constructor?

5. Can we have more than one constructors in a class? If yes, explain the

need for such a situation.

Programming Exercises:

Write a complete program to test your class to see that it does the following

tasks:

(a) Create uninitialized string objects

(b) Creates objects with string constants

(c) Concatenates two strings properly.

(d) Displays a desired string object.

146

147

BLOCK – IV

Objectives

After Completion of this block, students will be able to

1. Initialize objects dynamically.

2. Use constructors and Destructors

3. Apply operator overloading concept

148

UNIT – VII

CONSTRUCTORS AND DESTRUCTORS

7.1 Dynamic Initialization of Objects

Class objects can be initialized dynamically too. That is to say, the initial

value of an object may be provided during run time. One advantage of

dynamic initialization is that we can provide various initialization formats,

using overloaded constructors. This provides the flexibility of using different

formats of data at run time depending upon the situation.

Consider the long term deposit schemes working in the commercial

banks. The banks provide different interest rates for different schemes as well

as for different periods of investment, The following program illustrates how

to use the class variables for holding account details and how to construct

these variables at run time using dynamic initialization.

//Dynamic initialization of Constructors

//long-term fixed deposit system

#include<iostream>

using namespace std;

class fixed_deposit

{

long int P_amount; // Principal amount

int Years; //period of investment

float Rate; // Interest rate

float R_value; // Return value

public:

fixed_deposit () { }

fixed_deposit (long int p, int y, float r=0.12);

149

fixed_deposit (long int p, int y, int r);

void display(void);

};

fixed_deposit :: fixed_deposit (log int p, int y, float r)

{

P_amount = p;

Years = y;

Rate = r;

R_value = P_amount;

for (int i = 1; i <= y; i++)

R_value = R_value *(1.0 + r);

}

fixed_deposit :: fixed_deposit (long int p, int y, int r)

{

P_amount = p;

Years = y;

Rate = r;

R_value = P_amount;

for (int i = 1; i <= y; i++)

R_value = R_value *(1.0 +float (r)/100);

}

void fixed_deposit :: display()

{

cout<< “\n”<<Principal Amount =”<< P_amount<<”\n”

<<”Return Value =”<<R_value<<”\n”;

}

int main()

{

fixed_deposit FD1, FD2, FD3; //deposits created

long int p; //principal amount

int y; //investment period, years

float r; //interest rate, decimal form

int R; // interest rate, percent form

150

cout<<”Enter amount, period, interest rate (in percent)\n”;

cin>>p>>y>>R;

FD1 = fixed_deposit (p, y, R);

cout<< "Enter amount, period, interest rate(decimal form)\n";

cln>> p>> y>> r;

FD2 = fixed_deposit (p,y,r);

cout<< "Enter amount and period\n”;

cin>>p >> y:

FD3 = fixed_deposit (p.y);

cout<< "\nDeposIt 1”;

FD1.display();

cout<< "\nDeposIt 2”;

FD2.display();

cout<< "\nDeposIt 3”;

FD3.display();

return 0;

}

The output of Program would be:

Enter amount, period, interest rate (in percent)

10000 3 18

Enter amount, period, interest rate (in decimal form)

10000, 3 0.18

Enter amount and period

10000 3

151

Deposit 1

Principal Amount = 10000

Return Value = 16430.3

Deposit 2

Principal Amount = 10000

Return Value = 16430.3

Deposit 3

Principal Amount = 10000

Return Value = 14049.3

The program uses three overloaded constructors. The parameter

values to these constructors are provided at run time. The user can provide

input in one of the following form:

1. Amount, period and interest in decimal form.

2. Amount, period and interest in percent form.

3. Amount and period,

Note that the constructors are overloaded with the appropriate

parameters, the one that matches the input values is invoked. For example,

the second constructor in invoked for the forms (1) and (3}, and the third is

invoked for the form (2). Note that, for form (3), the constructor with default

argument is used. Since input to the third parameter is missing, it uses the

default value for r.

7.2 Copy Constructor

A copy constructor is used to declare and initialize an object from another

object. For example, the statement

integer I2(I1);

would define the object I2 and at the same time initialize it to the

values of I1.

152

Another form of this statement is

integer I2 = I1;

The process of initializing through a copy constructor is known as

copy initialization. Note that the statement

I2 = I1;

Will not invoke the copy constructor. However, if I1 and I2 are

objects, this statement is legal and simply assigns the values of I1 to I2,

member-by-member. This is the task of the overloaded assignment operator

(=).

A copy constructor takes a reference to an object of the same class

as itself as an argument. Consider a simple example of constructing and

using a copy constructor

//Program Copy constructor

#include<iostream>

using namespace std;

class code

{

int id;

public:

code() { } //constructor

code(int a) {id = a;} //constructor again

code(code &x)

{

id = x.id; //copy in the value

}

153

void display(void)

{ cout<<id; }

};

int main()

{

code A(100); // object A is created and initialized

code B(A); //copy constructor called

code C = A; //copy constructor called again

code D; //D is created, not initialized

D = A; //copy constructor not called

cout<< "\n id of A : "; A.display();

cout<< "\n id of B : "; B.display();

cout<< "\n id of C : "; C.display();

cout<< "\n id of D : "; D.display();

return 0;

}

The output of the program would be

id of A: 100

id of B: 100

id of C: 100

id of D: 100

154

A reference variable has been used as an argument to the copy

constructor. We cannot pass the argument by value to a copy constructor.

When no copy constructor is defined, the compiler supplies its own

copy constructor.

7.3 Dynamic Constructors

The constructors can also be used to allocate memory while creating

objects. This will enable the system to allocate the right amount of memory

for each object when the objects are not of the same size, thus resulting in

the saving of memory. Allocation of memory to objects at the time of their

construction is known as dynamic construction of objects. The memory is

allocated with the help of the new operator. The following program shows the

use of new, in constructors that are used to construct strings in objects.

//program for Constructors with a new

#include<iostream>

#include<cstring>

using namespace std;

class String

{

char *name;

int length;

public:

String() //constructor - 1

{

length = 0;

name = new char [length + 1];

}

155

String (char* s) // Constructor - 2

{

length = strlen(s);

name = new char [length + 1]; // one additional character for \0

strcpy(name, s);

}

void display (void)

{ cout<<name<<"\n"; }

void join(String &a, String &b);

};

void String :: join (String &a, String &b)

{

length = a.length + b.length;

delete name;

name = new char[length + 1]; // dynamic allocation

strcpy(name, a.name);

strcat(name, b.name);

};

int main()

{

char * first = "Joseph";

String name1(first), name2("Louis"), name3("Lagrange"), s1, s2;

156

s1.join(name1, name2);

s2.join(s1, name3);

name1.display();

name2.display();

name3.display();

s1.display();

s2.display();

return 0;

}

The output of the program would be:

Joseph

Louis

Lagrange

Joseph Louis

Joseph Louis Lagrange

Note: This program uses two constructors. The first is an empty constructor

that allows us to declare an array of strings. The second constructor initializes

the length of the string, allocates necessary space for the string to be stored

and creates the string itself. Note that one additional character space is

allocated to hold the end-of-string character ‘\0’.

The member function join() concatenates two strings. It estimates

the combined length of the strings to be joined, allocates memory for the

combined string and then creates the same using the string function strcpy()

and strcat(). Note that in the function join(), length and name are members

157

of the object that calls the function, while a.length and a.name are members

of the argument object a. The main() function program concatenates three

strings into one string. The output is as shown below:

Joseph Louis Lagrange

7.4 Constructing Two-dimensional Arrays

We can construct matrix variables using the class type objects. The

following program illustrates how to construct a matrix of size m n.

#include<iostream>

using namespace std;

class matrix

{

int **p; //pointer to matrix

int d1, d2;

public:

matrix (int x, int y);

void get_element(int i, int j, int value)

{ p[i][j] = value; }

int &put_element(int i, int j)

{ return p[i][j]; }

};

matrix :: matrix (int x, int y)

{

d1 = x;

d2 = y;

p = new int *[d1]; //creates an array pointer

for (int i=0; i < d1; i++)

p[i] = new int [d2]; // creates space for each row

}

158

int main()

{

int m,n;

cout<<"Enter size of matrix: ";

cin>> m>>n;

matrix A(m,n); //matrix object A constructed

cout<<"Enter matrix elements row by row \n";

int i,j, value;

for (i=0; i< m; i++)

for (j=0; j < n; j++)

{

cin>> value;

A.get_element(i,j,value);

}

cout<<"\n";

cout<<A.put_element(1,2);

return 0;

}

The output of the program would be:

Enter the size of matrix: 3 4

Enter the matrix elements row by row

11 12 13 14

15 16 17 18

19 20 21 22

17

17 is the value of the element (1,2).

159

The constructor first creates a vector pointer to an int of size d1.

Then, it allocates, iteratively an int type vector of size d2 pointed at by each

element p[i]. Thus, space for the element of a d1 d2 matrix is allocated

from free store as shown below:

0 1 2 3 4 5

Pointer p[0]

Pointer p[1]

Pointer p[2]

Pointer p[3]

x represents the element p[2][3].

7.5 Const Objects

We may create and use constant objects using const keyword before

object declaration. For example, we may create X as a constant object of the

class matrix as follows:

const matrix X(m,n); //object X is constant

Any attempt to modify the values of m and n will generate compile-

time error. Further, a constant object can call only const member functions.

As we know, a const member is a function prototype or function definition

where the keyword const appears after the function’s signature.

Whenever const objects try to invoke nonconst member functions,

the compiler generates errors.

7.6 Destructors

A destructor, as the name implies, is used to destroy the objects that have

been created by a constructor. Like a constructor, the destructor is a member

function whose name is the same as the class name but is preceded by a

x

160

tilde. For example, the destructor for the class integer can be defined as

shown below:

~integer() {}

A destructor never takes any argument nor does it return any value.

It will be invoked implicitly by the compiler upon exit from the program (or

block or function as the case may be) to clean up storage that is no longer

accessible. It is a good practice to declare destructors in a program since it

releases memory space for future use.

Whenever new is used to allocate memory in the constructors, we

should use delete to free that memory. For example, the destructor for the

matrix class discussed above may be defined as follows:

matrix :: ~matrix()

{

for (int i=0; i < d1; i++)

delete p[i];

delete p;

}

This is required because when the pointers to objects go out of scope, a

destructor is not called implicitly.

The example below illustrates that the destructor has been invoked

by the compiler.

Program - Implementation of Destructors

#include<iostream.h>

#include<stdio.h>

int count = 0;

class test

{

161

public:

test()

{

count++;

cout<<"\n\n Constructor msg: object number"<<count<<"created ..";

}

~test()

{

cout<<"\nDestructor msg: Object number "<<count<<"destroyed..";

count--;

}

};

int main()

{

cout<<"Inside the main block..";

cout<<"\n\n Creating first object T1..";

test T1;

{

// block 1

cout<<"\n\n Inside Block 1..";

cout<<"\n\n creating two more objects T2 and T3..";

test T2, T3;

cout<<"\n\n Leaving block 1..";

}

cout<<"\n\n back inside the main block..";

return 0;

}

162

The output of the program would be:

Inside the main block..

Creating first object T1..

Constructor msg. object number 1 created..

Inside block 1..

creating two more objects T2 and T3..

Constructor msg: object number 2 created..

Constructor msg: object number 3 created..

Leaving block 1..

Destructor msg: object number 3 destroyed..

Destructor msg: object number 2 destroyed..

back inside the main block..

Destructor msg: object number 1 destroyed..

Note: A class constructor is called everytime an object is created. Similarly,

as the program control leaves the current block the objects in the block start

destroyed and destructors are called for each one of them. Note that the

objects are destroyed in the reverse order of their creation. Finally, when the

main block is exited, destructors are called corresponding to the remaining

objects present inside main.

Similar functionality as depicted in program 6.7 can be attained by

using static data members with constructors and destructors. We can declare

a static integer variable count inside a class to keep a tract of the number of

its objects instantiations. Being static, the variable will be initialized only

once. i.e. when the first object instance is created. During all subsequent

object creations, the constructors will increment the count variable by one.

Similarly, the destructor will decrement the count variable by one as and when

an object gets destroyed. To realize this scenario, the code in the program

will change slightly, as shown below:

163

#include<iostream>

using namespace std;

class test

{

private:

static int count = 0;

public:

………………………….

………………………….

}

test()

{

………

count++;

}

~test()

{

……

count--;

}

The primary use of destructors is in freeing up the memory reserved

by the object before it gets destroyed. The following program demonstrates

how a destructor releases the memory allocated to an object.

//Program for Memory allocation to an object using Destructor

164

#include<iostream>

using namespace std;

class test

{

int *a;

public:

test (int size)

{

a = new int(size);

cout<<"\n\n Constructor Msg: Integer array of size "<< size<<" created..";

}

~test()

{

delete a;

cout<<"\nDestructor Msg: freed up the memory allocated for integer array";

}

};

int main()

{

int s;

cout<<"Enter the size of the array...";

cin>>n;

cout<<"\n\n Creating an object of the test class...";

test T(s);

return 0;

}

165

The output of the program would be:

Enter the size of the array ... 5

creating an object of test class..

Constructor Msg: Integer array of size 5 created...

Destructor Msg: Freed up the memory allocated for integer array

SUMMARY

 When an object is created and initialized at the same time, a copy

constructor gets called.

 We may make an object const if it does not modify any of its data

values.

 C++ provides a member function called the destructor that destroys

the objects when they are no longer required.

 Destructor never takes arguments.

 When the closing brace of a scope is encountered, the destructor for

each object in the scope are called, and the objects are destroyed in

reverse order.

Review Questions

1. What do you mean by dynamic initialization of objects? Why do we

need to do this?

2. How is dynamic initialization of objects achieved?

3. Describe the importance of destructors.

166

UNIT – VIII

OPERATOR OVERLOADING AND TYPE CONVERSIONS

8.1 Introduction

Operator overloading is one of the many exciting features of C++ language.

It is an important technique that has enhanced the power of extensibility of

C++. C++ tries to make the user-defined data types behave in much the

same way as the built-in types. For instance, C++ permits us to add to

variables of user-defined types with the same syntax that is applied to the

basic types. This means that C++ has the ability to provide the operators with

a special meaning for a data type. The mechanism of giving such special

meanings to an operator is known as operator overloading.

Operator overloading provides a flexible option for the creation of new

definitions for most of the C++ operators. We can almost create a new

language of our own by the creative use of the function and operator

overloading techniques. We can overload (give additional meaning to) all the

C++ operators except the following:

 Class member access operator (., .*)

 Scope resolution operator(::)

 Size operator (sizeof)

 Conditional operator (?:)

The reason why we cannot overload these operators may be attributed to

the fact that these operators take names (example class name) as their

operand instead of values, as is the case with other normal operators. Note

that the excluded operators are very few when compared to the large number

of operators which qualify for the operator overloading definition.

Although the semantics of an operator can be extended, we cannot

change its syntax, the grammatical rules that govern its use such as the

number of operands, precedence and associativity. For example, the

167

multiplication operator will enjoy higher precedence than the addition

operator. Note that when an operator is overloaded, its original meaning is

not lost. For instance, the operator *. Which has been overloaded to add two

vectors, can still be used to add two integers.

8.2 Defining Operator Overloading

To define an additional task to an operator, we must specify what it

means to relation to the class to which the operator is applied. This is done

with the help of a special function, called operator function, which describes

the task. The general form of an operator function is:

return type class name :: operator op(arglist)

{

Function body //task defined

}

where return type is the type of value returned by the specified

operation and op is the operator being overloaded. Operator op is preceded

by the keyword operator. Operator op is the function name.

Operator function must be either member functions (non-static) or

friend functions. A basic difference between them is that a friend function will

have only one argument for unary operators and two for binary operators,

while a member function has no arguments for unary operators and only one

for binary operators. This is because the object used to invoke the member

function is passed implicitly and therefore is available for the member

function. This is not the case with friend functions. Arguments may be

passed either by value or by reference. Operator functions are declared in

the class using prototype as follows:

vector operator + (vector); //vector addition

vector operator –(); //unary minus

friend vector operator + (vector, vector); //vector addition

friend vector operator – (vector); //unary minus

168

vector operator – (vector &a); //subtraction

int operator ==(vector); //comparison

friend int operator == (vector, vector); // comparison

vector is a data type of class and may represent both magnitude and

direction (as in physics and engineering) or a series of points called elements

(as in mathematics).

The process of overloading involves the following steps:

1. Create a class that defines the data type that is to be used in the

overloading operation.

2. Declare the operator function operator op() in the public part of the

class. It may be either a member function or a friend function.

3. Define the operator function to implement the required operations.

Overloaded operator functions can be invoked by expressions such as

op x or x op

for unary operators and

x op y

for binary operators. op x (or x op) would be interpreted as

operator op (x)

for friend functions. Similarly, the expression x op y would be interpreted as

either

x.operator op (y)

In case of member functions, or

operator op (x, y)

In case of friend functions. When both the forms are declared,

standard argument matching is applied to resolve any ambiguity.

169

8.3 Overloaded Unary Operators

Let us consider the unary minus operator. A minus operator when

used as a unary, takes just one operand. We know that this operator changes

the sign of an operand when applied to a basic data item. We will see here

how to overload this operator so that it can applied to an object in much the

same way as is applied to an int or float variable. The unary minus when

applied to an object should change the sign of each of its data items.

//Program to show how the unary minus operator is overloaded.

#include<iostream>

#include<iomanip>

using namespace std;

class ABC

{

int a,b,c;

public:

void get_data()

{

cout<<"enter three integers"<<endl;

cin>>a>>b>>c;

}

void put_data()

{

cout<<"\na ="<<setw(5)<<a;

cout<<"\nb ="<<setw(5)<<b;

cout<<"\nc ="<<setw(5)<<c;

}

void operator ~();

};

void ABC :: operator ~()

{ a=-a;b=-b;c=-c; }

170

int main()

{

ABC A;

A.get_data();

cout<<"\n You have entered the following numbers";

A.put_data();

~A;

cout<<"\n The negative of the given numbers";

A.put_data();

return 0;

}

The output of the program would be:

enter three integers

10

-20

30

You have entered the following numbers

a = 10

b = -20

c = 30

The negative of the given numbers

a = -10

b = 20

c = -30

171

Note that the function operator - () takes no argument. Then, what

does this operator function do? It changes the sign of data members of the

object A. Since this function is a member function of the same class, it can

directly access the members of the object which activated it.

Note that a statement like

A2 = -A1;

Will not work because, the function operator - () does not return any

value. It can work if the function is modified to return an object.

It is possible to overload a unary minus operator using a friend

function as follows:

friend void operator – (ABC &s); //declaration

void operator – (ABC &s) //definition

{

s.x = -s.x; s.y = -s.y; s.z = -s.z; }

Note that the argument is passed by reference. It will not work if we

pass argument by value because only a copy of the object that activated the

call is passed to operator-(). Therefore, the changes made inside the

operator function will not reflect in the called object.

8.4 Overloading Binary Operators

We have just seen how to overload an unary operator. The same mechanism

can be used to overload a binary operator. We have used friend function to

add two complex numbers.

A statement like

C = sum(A, B); //functional notation

172

was used. The functional notation can be replaced by a natural looking

expression

C = A + B; //arithmetic notation

By overloading the + operator using an operator +() function. The

following program illustrates how this can be accomplished.

// Program to add two complex numbers by overloading + operator

#include<iostream>

using namespace std;

class complex

{

float re, im;

public:

complex() { } //constructor 1

complex(float rep, float imp)

{ re = rep; im = imp;} //constructor 2

void getdata()

{

cout<<"\nEnter the real part";

cin>>re;

cout<<"\nEnter the imaginary part";

cin>>im;

}

void display()

{

cout<< re<< " + (" << im <<") i";

}

complex operator + (complex);

};

173

complex complex:: operator + (complex T)

{

complex t;

t.re = re + T.re;

t.im = im + T.im;

return (t);

}

void main()

{

complex a, b, c;

a.getdata();

b = complex(5, 7);

c = a + b;

cout<< "\nThe sum of complex numbers\n";

a.display();

cout<<" and ";

b.display();

cout<<" is ";

c.display();

return 0;

}

174

The output of the program would be:

Enter the real part:

3

Enter the imaginary part

9

The sum of complex numbers

3 + (9)i

and

5 + (7)i

Is

8 + (16)i

In the above program consider the block:

complex complex :: operator + (complex T)

{

complex t;

t.x = x + T.x;

t.y = y + T.y;

return (t);

}

We should note the following features of this function:

1. It receives only one complex type argument explicitly.

2. It returns a complex type value.

3. It is a member function of complex.

175

The function is expected to add two complex values and return a complex

value as the result but receives only one value as argument. Where does the

other value come from? Now let us look at the statement that invokes this

function:

c = a + b; //invokes operator +() function

We know that a member function can be invoked only by an object of the

same class. Here, the object a takes the responsibility of invoking the function

and b plays the role of the argument that is passed to the function. The above

invocation statement is equivalent to

c = a.operator+(b); //usual function call syntax

Therefore, in the operator +() function, the data members of a are

accessed directly and the data members of b (that is passed as argument)

are accessed using the dot operator. Thus, both the objects are available for

the function. For example, in the statement

t.x = x + T.x;

T.x refers to the object b and x refers to the object a. t.x is the real part

of t that has been created specially to hold the result of addition of a and b.

The function returns the complex t to be assigned to c.

As a rule, in overloading of binary operators, the left-hand operand is used

to invoke the operator function and the right-hand operand is passed as an

argument.

We can avoid the creation of the temp object t by replacing the entire

function body by the following statement:

return complex((x + T.x), (y+T.y)); //invokes constructor 2

What does it mean when we use a class name with an argument list?

When the compiler comes across a statement like this, it invokes an

appropriate constructor, initializes an object with no name and returns the

contents for copying into an object. Such an object is called a temporary

object and goes out of space as soon as the contents are assigned to another

176

object. Using temporary objects can make the code shorter, more efficient

and better to read.

8.5 Overloading Binary Operators using Friends

Friend functions may be used in the place of member functions for

overloading a binary operator, the only difference being that a friend function

requires two arguments to be explicitly passed to it, while a member function

requires only one.

The complex number program discussed in the previous section can be

modified using a friend operator function as follows:

1. Replace the member function declaration by the friend function

declaration.

friend complex operator + (complex, complex);

2. Redefine the operator function as follows:

complex operator + (complex a, complex b)

{

return complex((a.x+b.x),(a.y+b.y));

}

In this case, the statement

c = a + b

is equivalent to

c = operator+(a, b);

In most cases, we will get the same results by the use of either a friend

function or a member function. Why then an alternative is made available?

There are certain situations where we would like to use a friend function

rather than a member function. For instance, consider a situation where we

177

need to use two different types of operands for a binary operator, say one an

object and another a built-in type data as shown below:

A = B + 2; (or A = B * 2;)

where A and B are objects of the same class, this will work for a member

function but the statement

A = 2 + B; (or A = 2 * B;)

Will not work. This is because the left-hand operand which is responsible for

invoking the member function should be an object of the same class.

However, friend function allows both approaches.

It may be recalled that an object need to be used to invoke a friend

function but can be passed as an argument. Thus, we can use a friend

function with a built-in type data as the left-hand operand and an object as

the right-hand operand. The following program illustrates this, using scalers

multiplication of a vector. It also shows how to overload the input and output

operators >> and <<.

//overloading operators using Friends

#include<iostream>

using namespace std;

const size = 3;

class vector

{

int v[size];

public:

vector(); //constructs null vector

vector(int *x); //constructs vector from array

friend vector operator *(int a, vector b); //friend 1

friend vector operator *(vector b, int a); //friend 2

friend istream & operator >> (istream&, vector &);

friend ostream & operator << (ostream&, vector &);

};

178

vector :: vector()

{

for (int i = 0; i < size; i++)

v[i] = 0;

}

vector :: vector(int *x)

{ for (int i = 0; i < size; i++) v[i] = x[i]; }

vector operator *(int a, vector b)

{

vector c;

for (int i = 0; i < size; i++)

c.v[i] = a * b.v[i];

return c;

}

vector operator * (vector b, int a)

{

vector c;

for (int i = 0; i < size; i++) c.v[i] = b.v[i]*a;

return c;

}

istream & operator >> (istream &din, vector &b)

{

for (int i = 0; i < size; i++)

din>> b.v[i];

return (din);

}

179

ostream & operator << (ostream &dout, vector &b)

{

dout<<"("<<b.v[0];

for (int i = 1; i < size; i++)

dout << ", "<< b.v[i];

dout<<")";

return (dout);

}

int x[size] = {2, 4, 6};

int main()

{

vector m;

vector n = x;

cout<< "Enter elements of vector m"<< "\n";

cin >> m; //invokes operator >>() function

cout<<"\n";

cout<<"m = " << m<< "\n"; //invokes operator <<()

vector p, q;

p = 2* m; //invokes friend 1

q = n * 2; //invokes friend 2

cout<<"\n";

cout<<"p = " << p << "\n"; //invokes operator <<()

cout<<"q = " << q << "\n";

return 0;

}

The output of the program would be:

Enter elements of vector m

5 10 15

180

m = (5, 10, 15)

p = (10, 20, 30)

q = (4, 8, 12)

The program overloads the operator * two times, thus overloading the

operator function operator*() itself. In both the cases, the functions are

explicitly passed two arguments and they are invoked like any other

overloaded function, based on the types of its arguments. This enables us to

use both the forms of scaler multiplication such as

p = 2 * m; // equivalent to p = operator * (2, m);

q = n * 2; // equivalent to q = operator * (n, 2);

The program and its output are largely self-explanatory. The first

constructor

vector();

constructs a vector whose elements are all zero. Thus,

vector m;

creates a vector m and initializes all its elements to 0. The second

constructor

vector (int &x);

creates a vector and copies the elements pointed to by the pointer

argument x into it. Therefore, the statement

int x[3] = {2, 4, 6};

vector n = x;

create n as a vector with components 2, 4 and 6.

181

8.6 Manipulation of Strings Using Operators

ANSI C implements strings using character arrays, pointers and string

functions. There are no operators for manipulating the strings. One of the

main drawbacks of string manipulations in C is that whenever a string is to be

copied, the programmer must first determine its length and allocate the

required amount of memory.

Although these limitation exist in C++ as well, it permits us to create

our own definitions of operators that can be used to manipulate the strings

very much similar to the decimal numbers. (Recently, ANSI C++ committee

has added a new class called string to the C++ class library that supports all

kinds of string manipulations. For example, we shall be able to use

statements like

string3 = string1 + string2;

if (string1 > string2) string = strtng1;

Strings can be defined as class objects which can be then

manipulated like the built-in types. Since the strings vary greatly in size, we

use new to allocate memory for each string and a pointer variable to point to

the string array. Thus, we must create string objects that can hold these two

pieces of information, namely, length and location which are necessary for

string manipulations. A typical string class will look as follows:

class string

{

char *p; // pointer to string

int len; // length of string

public:

……………. // member functions

……………. //to initialize and

……………. // manipulate strings

};

182

We shall consider an example to illustrate the application of

overloaded operators to strings. The example shown in the following program

overloads two operators, + and <= just to show how they are implemented.

This can be extended to cover other operators as well.

//Mathematical operations on Strings

#include<iostream>

#include<cstring>

using namespace std;

class string

{

char *p;

int len;

public:

string() {len = 0; p 0;} // create null string

string (const char * s); // create string from arrays

string (const string & s); // copy constructor

~ string(3 {delete p;} // destructor

// + operator

friend strlng operator + (const string &s, const string &t);

// << operator

friend int operator <= (const string &s, const string &t);

friend void show (const string s);

};

183

string ::string (const char *s)

{

len = strlen(s);

p = new char [len+1];

strcpy(p, s);

}

string:: string (const string & s)

{

len - s.len;

p = new char [len+1];

strcpy(p, s.p);

}

// overloading + operator

string operator + (const string &s, const string &t)

{

string temp;

temp.len = s.len + t.len;

temp.p = new char [temp. len+1] ;

strcpy(temp.p, s.p);

strcat(temp.p, t.p);

return (temp);

}

184

// overloading <= operator

int operator <= (const string &s, const string &t)

{

int m = strlen(s.p);

int n = strlen (t.p):

(m <= n) ? return (1) : return (0);

}

void show(const string s)

{

cout << s.p;

}

int main()

{

string s1 = “New “;

string s2 = "York”;

string s3 = "Delhi';

string t1, t2, t3;

t1 = s1;

t2 = s2;

t3 = s1 + s2;

cout << "\n t1 = "; show(t1);

cout << "\n t2 = "; show(t2);

cout << "\n t3 = "; show(t3);

185

cout<<”\n\n”;

if (t1 <= t3)

{

show(t1);

cout<< “Smaller than “;

show(t3);

cout<<”\n”;

}

else

{

show(t3);

cout<< “Smaller than “;

show(t1);

cout<<”\n”;

}

return 0;

}

The following is the output of the program:

t1 = New

t2 = York

New Smaller than New Delhi

186

8.7 Rules for overloading Operators

Although it looks simple to redefine the operators, there are certain

restrictions and limitations in overloading them. Some of them are listed

below:

1. Only existing operators can be overloaded. New operators cannot be

created.

2. The overloaded operator must have at least one operand that is of

user-defined type.

3. Overloaded operator follow the syntax rules of the original operators.

They cannot be overridden.

4. There are some operators that cannot be overloaded.

5. We cannot use friend functions to overload certain operators.

However, member functions can be used to overload them.

6. Unary operators, overloaded by means of a member function, take no

explicit arguments and return no explicit values, but those overloaded

by means of a friend function, take one reference argument (the object

of the relevant class).

7. Binary operators overloaded through a member function take one

explicit argument and those which are overloaded through a friend

function take two explicit arguments.

8. When using binary operators overloaded through a member function,

the left-hand operand must be an object of the relevant class.

9. Binary arithmetic operators such as +, -, * and / must explicitly return

a value. They must not attempt to change their own arguments.

187

Operators that cannot be overloaded

Sizeof Size of operator

. Membership operator

.* Pointer-to-member operator

:: Scope resolution operator

?: Conditional operator

Where friend cannot be used

Sizeof Size of operator

= Assignment operator

() Function call operator

[] Subscripting operator

-> Class member access operator

8.8 Type Conversions

We know that when constants and variables of different types are mixed in

an expression, C applies automatic conversion to the operands as per certain

rules. Similarly, an assignment operators also causes the automatic type

conversion. The type of data to the right of an assignment operator is

automatically converted to the type of the variable on the left. For example,

the statements

int m;

float x = 3.14159;

m = x;

188

convert x to an integer before its value is assigned to m. Thus, the

fractional part is truncated. The type conversions are automatic as long as

the data types involved are built-in types.

Consider the following statement that adds two objects and then

assigns the result to the third object.

v3 = v1 + v2; // v1 , v2 and v3 are class type objects

when the objects are of the same type, the operations of addition and

assignment are carried out smoothly and the compiler does not make any

complaints. We have seen, in the case of class objects, that the values of all

the data members of the right-hand object are simply copied into the

corresponding members of the object on the left-hand. What if one of the

operators is an object and the other is a built-in type variable? Or, what if

they belong to two different classes?

Since the user-defined data types are designed by us to suit our

requirements, the compiler does not support automatic type conversions for

such data types. We must, therefore, design the conversion routines by

ourselves. If such operations are required,

Three types of situations might arise in the data conversion between

incompatible types:

1. Conversion from basic type to class type

2. Conversion from class type to basic type

3. Conversion from one class type to another class type.

We shall discuss all the three cases in detail:

Basic to Class Type

The conversion from basic type to class type is easy to accomplish. It may

be recalled that the use of constructor was illustrated in a number of examples

to initialize objects. For example, a constructor was used to build a vector

object from an int type array. Similarly, we used another constructor to build

a string type object from a char* type variable. These are all exampleswhere

189

constructors perform a defacto type conversion from the argument’s type to

the constructor’s class type.

Consider the following constructor

string :: string (char *a)

{

length = strlen(a);

p = new char[length + 1];

strcpy(p, a);

}

This constructor builds a string type object from char* type variable

a. The variables length and p are data members of the class string. Once

this constructor has been defined in the string class, it can be used for

conversion from char* type to string type.

Example

string s1, s1;

char* name1 = “IBM PC”;

char* name2 = “APPLE COMPUTERS”;

s1 = string(name);

s2 = name2;

The statement

s1 = string(name);

first converts name1 from char* type to string type and then assigns

the string type values to the object s1. The statement

s2 = name2;

also does the same type by invoking the constructor implicitly.

190

Let us consider another example of converting an int type to a class type.

class time

{

int hrs;

int mins;

public:

time(int t)

{

hrs = t/60; // t in minutes

mins = t % 60;

}

};

The following conversion statements can be used in a function:

time T1; //object T1 created

int duration = 85;

T1 = duration; //int to class type

After this conversion, the hrs member of T1 will contain the value of 1

and minus member a value of 25, denoting 1 hours and 25 minutes.

In both the examples, the left-hand operand of = operator is always a

class object. Therefore, we can also accomplish this conversion using an

overloaded = operator.

Class to Basic Type

The constructors did a fine job in type conversion from a basic to class type.

What about the convention from a class to basic type? The constructor

functions do not support this operation. Luckily, C++ allows us to define an

overloaded casting operator that could be used to convert a class type data

191

to a basic type. The general form of an overloaded casting operator function,

usually referred to as a conversion function is:

Operator typename()

{

………

……... (function statements)

……...

}

This function converts a class type data to typename. For example,

the operator double () converts a class object to type double, the operator

int() converts a class type object to type int, and so on.

Consider the following conversion function:

vector :: operator double()

{

double sum 3 0;

for (int i = 0: i < size; i++)

sum = sum + v[i] *v[i];

return sqrt(sum);

}

This function converts a vector to the corresponding scalar

magnitude. Recall that the magnitude of a vector is given by the square root

of the sum of the squares of its components. The operator double() can be

used as follows:

double length = double (V1);

or

double length = V1;

192

where V1 is an object of type vector. Both the statements have

exactly the same effect. When the compiler encounters a statement that

requires the conversion of a class type to a basic type, it quietly calls the

casting operator function to do the job.

The casting operator function should satisfy the following condition:

 It must be a class member.

 It must not specify a return type.

 It must not have any arguments.

Since it is a member function, it is invoked by the object and, therefore,

the values used for conversion inside the function belong to the object that

invoked the function. This means that the function does not need an

argument.

In the string example described in the previous section, we can do the

conversion from string to char* as follows:

string :: operator char*()

{

return (p) ;

}

One Class to Another Class Type

We have just seen data conversion techniques from a basic to class

type and a class to basic type. But there are situations where we would like

to convert one class type data to another class type. Example:

objX = objY; // objects of different types

objX is an object of class X and objY is, an object of class Y. The

class Y type data is converted to the class X type data and the converted

value is assigned to the objX. Since the conversion takes place from class

Y to class X, Y is known as the source class and X is known as the

destination class.

193

Such conversions between objects of different classes can be carried

out by either a constructor or a conversion function. The compiler treats them

the same way. Then, how do we decide which form to use? It depends upon

where we want the type-conversion function to be Located in the source cIass

or in the destination class.

We know that the casting operator function

operator typename()

converts the class object of which it is a member to typename. The

typename may be a built-in type or a user-defined one (another class type).

In the case of conversions between objects, typename refers to the

destination class, Therefore, when a class needs to be converted, a casting

operator function can be used (i.e. source class). The conversion takes place

in the source class and the result is given to the destination class object.

Now consider a single-argument constructor function which serves as

an instruction for converting the argument's type, to the class type of which it

is a member. This implies that the argument belongs to the source class and

is passed to the destination class for conversion. This makes it necessary

that the conversion constructor be placed in the destination class.

Table below provides a summary of all the three conversions, It shows

that the conversion from a class to any other type (or any other class) should

make use of a casting operator in the source class. On the other hand, to

perform the conversion from any other typo/class to a class type, a

constructor should be used in the destination class.

Table :Type conversions

Conversion required Conversion takes place in

Source Class Destination Class

Basic class Not applicable Constructor

Class basic Casting operator Not applicable

Class class Casting operator constructor

194

When a conversion using a constructor is performed in the destination

class, we must be able to access the data members of the object sent (by the

source class) as an argument. Since data members of the source class are

private, we must use special access functions in the source class to facilitate

its data flow to the destination class.

SUMMARY

 Operator overloading is one of the important features of C++

Language, It is called compile time polymorphism.

 Using overloading feature we can add two user defined data types

such as objects, with the same syntax, just as basic data types.

 We can overload almost all the C++ operators except the following:

o class member access operators(., .*)

o scope resolution operator (::)

o size operator(sizeof)

o conditional operator (?:)

 Operator overloading is done with the help of a special function, called

operator function, which describes the special task to an operator.

 There are certain restrictions and limitations in overloading operators.

Operator functions must either be member functions (non-static) or

friend functions. The overloading operator must have at least one

operand that is of user-defined type.

 The compiler does not support automatic type conversions for the

user defined data types. We can use casting operator functions to

achieve this.

 The casting operator function should satisfy the following conditions:

o It must be a class member.

o It must not specify a return type.

o It must not have any arguments

195

Review Questions

1. What is operator overloading?

2. Why is it necessary to overload an operator?

3. What is an operator function? Describe the syntax of an operator

function.

4. How many arguments are required in the definition of an

overloaded unary operator?

5. A class alpha has a constructor as follows:

alpha (int a, double b);

Can we use this constructor to convert types?

6. What is a conversion function? How is it created? Explain its

syntax.

7. A friend function cannot be used to overload the assignment

operator =. Explain why?

8. When is a friend function compulsory? Give an example.

9. We have two classes X and Y. If a is an object of X and b in an

object of Y and we want to say a = b; What type of conversion

routine should be used and where?

10. State whether the following statements are TRUE or FALSE.

a) Using the operator overloading concept, we can change

the meaning of an operator.

b) Operator overloading works when applied to class objects

only,

c) Friend functions cannot be used to overload operators.

d) When using an overloaded binary operator, the left

operand is implicitly passed to the member function,

e) The overloaded operator must have atleast one operand

that is user-defined type.

f) Operator functions never return a value.

g) Through operator overloading, a class type data can be

converted to a basic type data.

196

h) A constructor can be used to convert a basic type to a

class type data.

Programming Exercise

1. Create class MAT of size m x n. Define all possible matrix operations

for MAT type objects.

2. Define a class String. Use overloaded == operator to compare two

strings.

3. Define two classes Polar and Rectangle to represent points in the

polar and rectangle systems. Use conversion routines to convert from

one system to the other.

197

BLOCK – V

Objectives:

After Completion of this block, students will be able to

1. Extend the existingclasses

2. Apply pointer concept to utilize memory efficiently

3. Write program to solve real-life problems.

198

UNIT – IX

INHERITANCE: EXTENDING CLASSES

9.1 Introduction

Reusability is yet another important feature of OOP. It is always nice if we

could reuse something that already exists rather than trying to create the

same all over again. It would not only save time and money but also reduce

frustration and increase reliability. For, instance, the reuse of a class that has

already been tested, debugged and used many times can save us the effort

of developing and testing the same again.

Fortunately, C++ strongly supports the concept of reusability. The

C++ classes can be reused in several ways. Once a class has been written

and tested, it can be adapted by other programmers to suit their

requirements. This is basically done by creating new classes, reusing the

properties of the existing ones. The mechanism of deriving a new class from

an old one is called inheritance (or derivation). The old class is referred to as

the base class and the new one is called the derived class or subclass.

The derived class inherits some or all of the traits from the base class.

A class can also inherit properties from more than one class or from more

than one level. A derived class with only one base class, is called single

inheritance and one with several base classes is called multiple inheritance,

On the other hand, the traits of one class may be inherited by more than one

class. This process is known as hierarchical inheritance. The mechanism of

deriving a class from another “derived class” is known as multilevel

inheritance. Figure 9.1 shows various forms of inheritance that could be used

for writing extensible programs. The direction of arrow indicates the direction

of inheritance, (Some authors show the arrow in Opposite direction meaning

"inherited from”).

199

Fig. 9.1 Forms of Inheritance

9.2 Defining Derived Classes

A derived class can be defined by specifying its relationship with the base

class in addition to Its own details, The general form of defining a derived

class is:

class derived-class-name : visibility-mode base-class-name

{

………… //

………… // members of derived class

…………

};

The colon indicates that the derived-class-name is derived from the

base•class-name. The visibility-mode is optional and, if present, may be

either private or public. The default visibility-mode is private. Visibility mode

200

.specifies whether the features of the base class are privately derived or

publicly derived.

Examples:

class ABC : private XYZ // private derivation

{

Members of ABC

};

class ABC ; public XYZ //public derivation

{

Members of ABC

};

class ABC : XYZ //private derivation by default

{

Members of ABC

};

When a base class in privately inherited by a derived class, 'public

members' of the base class become ‘private members’ of the derived class

and therefore the public members of the base class can, only be accessed

by the member functions of the derived class, They are inaccessible to the

objects of the derived class. Note that a public member of a class can be

accessed by its own objects using the dot operator. The result is that no

member of the base class is accessible to the objects of the derived class.

On the other hand, when the base class is publicly inherited, 'public

members’ of the base class become 'public members’ of the derived class

and therefore they are accessible to the objects of the derived class. In both

201

the cases, the private members are not inherited and therefore, the private

members of a base class will never become the members of its derived class.

In inheritance, some of the base class data elements and member

functions are 'inherited' into the derived class. We can add our own data and

member functions and thus extend the functionality of the base class.

Inheritance, when used to modify and extend the capabilities of the existing

classes, becomes a very powerful tool for incremental program development.

9.3 Single Inheritance

Let us consider a simple example to illustrate inheritance, Program 9.1 shows

a base class B and a derived class D. The class B contains one private data

member, one public data member, and three public member functions. The

class D contains one private data member and two public member functions.

// single inheritance

#include<iostream>

using namespace std;

class B

{

int a; //private, not inheritable

public:

int b; //public, ready for inheritance

int get_a();

void set_ab();

void put_a();

};

class D:public B //public derivation

{

int c;

public:

void mul();

void display();

};

202

void B :: set_ab()

{

a=5;b=10;

}

int B :: get_a()

{

return(a);

}

void B :: put_a()

{

cout<<"\n a= "<<get_a();

}

void D :: display()

{

cout<<"\n a="<<get_a();

cout<<"\n b="<<b;

cout<<"\n c="<<c;

}

void D :: mul()

{

c=b*get_a();

}

int main()

{

D d;

d.set_ab();

d.mul();

d.display();

d.put_a();

203

cout<<"\n Enter new value for b";

cin>>d.b;

cout<<"\n After changed value for b";

d.mul();

d.display();

return 0;

}

The output of the program would be:

a = 5

b = 10

c = 50

Enter new value for b

25

After changed value for b

a = 5

b = 25

c = 125

The class D is a public derivation of the base class B. Therefore, D

inherits all the public members of B and retains their visibility. Thus, a public

member of the base class B is also a public member of the derived class D,

The private members of B cannot be inherited by D. The class D, in effect,

will have more members than what it contains at the time of declaration.

The program illustrates that the objects of class D have access to all

the public members of B.

204

Let us have a look at the functions put_a() and mul();

void put_a()

{

cout<<"\n a= "<<get_a();

}

void mul()

{

c=b*get_a(); // c = b * a

}

Although the data member a is private in B and cannot be inherited,

objects of D are able to access it through an inherited member function of B.

Let us now consider the case of private derivation.

class B

{

int a;

public:

int b; //public, ready for inheritance

void set_ab();

void get_a();

void put_a();

};

class D:private B //private derivation

{

int c;

public:

void mul();

void display();

};

205

In private derivation, the public members of the base class

become private members of the derived class. Therefore, the objects

of D can not have direct access to the public member functions of B.

The statement such as

d. set_ab(); // set_ab() is private

d.get_a(); // so also get_a()

d.put_a(); // and put_a()

will not work. However, these functions can be used inside mul() and

display() like the normal functions as shown below:

void mul()

{

set_ab();

c=b*get_a();

}

void display()

{

cout<<"\n a="<<get_a(); //output value of ‘a’

cout<<"\n b="<<b;

cout<<"\n c="<<c;

}

The following program 9.2 incorporates these modifications for private

derivation.

//Single level inheritance - privately inherited

#include <iostream>

using namespace std;

206

class B

{

int a;

public:

int b;

void get_ab();

int get_a(void);

void put_a(void);

};

class D : private B

{

int c;

public:

void mul(void);

void display(void);

};

void B:: get_ab(void)

{

cout << "Enter values for a and b: ";

cin >> a >> b;

}

int B :: get_a()

{

return (a);

}

void B :: put_a()

{

cout << "a = "<< a << "\n";

}

207

void D :: mul()

{

get_ab();

c = b * get_a();

}

void D:: display()

{

put_a();

cout << "b = " << b << "\n"

<< "c = " << c << "\n\n";

}

int main()

{

D d;

d.mul();

d.display();

return 0;

}

The output of the program would be:

Enter values of a and b

7 15

a = 7

b = 15

c = 105

Note that the d.b = 20; if inserted in main() will not work, since b has

become private.

208

Suppose a base class and a derived class define a function of the

same name. What will happen when a derived class object invokes the

function?. In such cases, the derived class function supersedes the base

class definition. The base class function, will be called only if the derived

class does not redefine the function.

9.4 Making a private Member inheritable

We have just seen how to increase the capabilities of an existing class

without modifying it. We have also seen that a private member of a base class

cannot be inherited and therefore it is not available for the derived class

directly. What do we do if the private data needs to be inherited by a derived

class? This can be accomplished by modifying the visibility limit of the private

member by making it public. This would make it accessible to all the other

functions of the program, thus taking away the advantage of data hiding.

C++ provides a third visibility modifier, protected, which serve a

limited purpose in inheritance. A member declared as protected is

accessible by the member functions within its class and any class

immediately derived from it. It cannot be accessed by the functions outside

these two classes. A class can now use all the three visibility modes as

illustrated below:

class alpha

{

private: //optional

…………. // visible to member functions

…………. //within its class

public:

……….. //visible to all functions

………. //in the program

};

209

When a protected member is inherited in public mode, it becomes

protected in the derived class too and therefore is accessible by the member

functions of the derived class. It is also ready for further inheritance. A

protected member, inherited in the private mode derivation, becomes

private in the derived class. Although it is available to the member functions

of the derived class, it is not available for further inheritance (since private

members cannot be inherited).

The keywords private, protected, anid public may appear in any

order and any number of times in the declaration of a class. For example,

class beta

{

protected;

……………

pub!ic:

………….

private:

………….

public:

………..

};

Is a valid class definition.

However, the normal practice is to use them as follows:

class beta

{

………….. //private by default

…………..

protected:

…………

public:

………

};

210

It is also possible to inherit a base class in protected mode (known

as protected derivation). In protected derivation, both the public and

protected members of the base class become protected members of the

derived class. Table 9.1 summarizes how the visibility of base class members

undergoes modifications in all the three types of derivation.

Now let us review the access control to the private and protected

members of a class. What are the various functions that can have access to

these members'? They could be:

1. A function that is a friend of the class.

2. A member function of a class that is a friend of the class.

3. A member function of a derived class.

While the friend functions and the member functions of a friend class

can have direct access to both the private and protected data, the member

functions of a derived class can directly access only the protected data.

However, they can access the private data through the member functions of

the base class. A simplified view of access control to the members of the

class is shown in 9.2.

Fig.9.2 A simple view of access control to the members of a class

211

Table 9.1 Visibility of inherited members

Base class

visibility

Derived class visibility

Public derivation Private

derivation

Protected

derivation

Private Not inherited Not inherited Not inherited

Protected Protected Private Protected

Public Public Private Protected

9.5 Multilevel Inheritance

It is not uncommon that a class is derived from another derived class as

shown in Fig. 9.3. The class A serves as a base class for the derived class

B, which in turn serves as a base class for the derived class C, The class B

is known as intermediate base class since it provides a link for the inheritance

between A and C. The chain ABC is known as inheritance path.

Fig. 9.3 Multilevel inheritance

A derived class with multilevel inheritance is declared as follows:

class A {...}; // Base class

class B: public A {….}; // B derived from A

class C: public B {..,..}; // C derived from B

This process can be extended to any number of levels, Let us

consider a simple example. Assume that the test results of a batch of students

212

are stored in three different classes. Class student stores the roll-number,

class test stores the marks obtained in two subjects and class result contains

the total marks obtained in the test. The class result can inherit the details

of the marks obtained in the test and the roll-number of students through

multilevel inheritance, Example:

/* multi level inheritance */

#include<iostreamh>

#include<iomanip>

using namespace std;

class student

{

protected:

int roll_number;

public:

void get_number();

void put_number();

};

void student :: get_number()

{

cout<<"\n Enter Roll number";

cin>>roll_number;

}

void student :: put_number()

{

cout<<"\n Roll number="<<setw(15)<<roll_number;

}

class test:public student

{

protected:

float sub1,sub2;

213

public:

void get_marks();

void put_marks();

};

void test :: get_marks()

{

cout<<"\n Enter marks in two subjects";

cin>>sub1>>sub2;

}

void test :: put_marks()

{

cout<<"\n Marks in sub1="<<setw(15)<<sub1;

cout<<"\n Marks in sub2="<<setw(15)<<sub2;

}

class result:public test

{

float total;

public:

void display();

};

void result :: display()

{

total=sub1+sub2;

put_number();

put_marks();

cout<<"\n Total="<<setw(15)<<total;

}

214

int main()

{

int i,n;

result student[10];

cout<<"\n How many students?";

cin>>n;

for(i=0;i<n;i++)

{

student[i].get_number();

student[i].get_marks();

}

cout<<"\n Result";

for (i=0;i<n;i++)

student[i].display();

return 0;

}

The class result, after inheritance from 'grandfather’ through ‘father’,

would contain the following members:

private:

float total; //own member

protected:

int roll_number; //inherited from student via test

float subl; //inherited from test

float sub2; //inherited from test

public:

void get_number(int): //from student via test

void put_number (void); //from student via test

void getmarks (float, float); //from test

215

void put_marks (void); //from test

void display(void); //own member

The inherited functions put_number() and put_marks() can be used in the

definition of display() function.

The output of the program would be:

How many students?

2

Enter roll number

111

Enter marks in two subjects

75 90

Enter roll number

222

Enter marks in two subjects

99 95

Result

Roll number = 111

Marks in sub1 = 75

Marks in sub2 = 90

Total = 165

Roll number = 222

Marks in sub1 = 99

Marks in sub2 = 95

Total = 194

216

9.6 Multiple Inheritance

A class can inherit the attributes of two or more classes as shown in

Fig. 9.4. This is known as multiple inheritance. Multiple inheritance allows us

to combine the features of several existing classes as a starting point for

defining new classes. It is like a child inheriting the physical features of one

parent and the intelligence of another.

Fig. 9.4 Multiple Inheritance

The syntax of a derived class with multiple base classes is as follows:

class D : visibility B-1, visibility B-2, ….

{

…………..

…………. (Body of D)

…………

};

where, visibility may be either public or private. The base classes are

separated by commas. Example:

class P : public M, public N

{

public:

void display(void);

};

217

Classes M and N have been specified as follows:

class M

{

protected:

int m;

public:

void get_m(int);

};

class N

{

protected:

int n;

public:

void get_n(int);

};

void N::get_n(int y)

{

n = y;

}

The derived class P, as declared above, would, in effect, contain all

the members of M and N in addition to its own members as shown below:

class P

{

protected:

int m; //from M

int n; //from N

publc:

void get_m(int); //from M

void get_n(int); //from N

void display(void); //own member

};

218

The member function display() can be defined as follows:

void P:: display(void)

{

cout<<”m = “<<m<<”\n”;

cout<<”n = “<<n<<”\n”;

cout<<”m*n = “<<m*n<<”\n”;

}

The main function which provides the user-interface may be written

as follows:

main()

{

P p;

p.get_m(10);

p.get_n(20);

p.display();

}

The following program illustrates how all three classes are implemented in

multiple inheritance.

/* multiple inheritance */

#include<iostream>

#include<iomanip>

using namespace std;

class M

{

protected:

int m;

public:

void get_m(void);

};

219

class N

{

protected:

int n;

public:

void get_n(void);

};

class D:public M, public N

{

public:

void display(void);

};

void M :: get_m()

{

cout<<"\n Enter the value of m";

cin>>m;

}

void N :: get_n()

{

cout<<"\n Enter the value of n";

cin>>n;

}

void D :: display()

{

cout<<"\n m="<<setw(5)<<m;

cout<<"\n n="<<setw(5)<<n;

cout<<"\n m * n = "<<setw(5)<<m*n;

}

int main()

{

D d;

d.get_m();

d.get_n();

220

d.display();

return 0;

}

The output of the program would be

Enter the value of m

10

Enter the value of n

20

m = 10

n = 20

m*n= 200

9.7 Hierarchical Inheritance

We have discussed so far how inheritance can be used to modify a

class when it did not satisfy the requirements of a particular problem on hand.

Additional members are added through inheritance to extend the capabilities

of a class. Another interesting application of inheritance is to use it as a

support to the hierarchical design of a program. Many programming problems

can be cast into a hierarchy where certain features of one level are shared by

many others below that level.

As an example. Fig. 9.5 shows a hierarchical classification at students

in a university. Another example could be the classification of account in a

commercial bank as shown in Fig. 9.6. All the students have certain things in

common and, similarly, all the accounts possess certain common features.

221

Fig. 9.5 Hierarchical Classification of students

Fig. 9.6 Classification of bank accounts

In C++, such problems can be easily converted into class hierarchies.

The base class will include all the features that are common to the sub

classes. A subclass can be constructed by inheriting the properties of the

base class. A subclass can serve as a base class for the lower level classes

and so on.

9.8 Hybrid Inheritance

There could be situations where we need to apply two or more types

of inheritance to design a program. For instance, consider the case of

processing the student results discussed in See. 9.5, Assume that we have

to give weightage for sports before finalizing the results. The weightage for

222

sports is stored in a separate class called sports. The new inheritance

relationship between the various classes would be as shown in Fig. 9.7.

Fig. 9.7 Multilevel, multiple inheritance

The sports class might look like:

class sports

{

protected:

float score;

public:

void get_score(float);

void put_score(void);

};

The result will have both the multilevel and multiple inheritance and its

declaration would be as follows:

class result: public test, public sports

{

………….

…………

};

where test itself is a derived class from student. That is,

223

class test : public student

{

……….

……….

};

Program 9.5 illustrates the implementation of both multilevel and multiple

inheritance.

/*Hybrid inheritance */

#include<iostream>

#include<iomanip>

using namespace std;

class student

{

protected:

int roll_number;

public:

void get_number()

{

cout<<"\n Enter roll number";

cin>>roll_number;

}

void put_number()

{

cout<<"\n Roll number="<<setw(5)<<roll_number;

}

};

class test : public student

{

protected:

float sub1,sub2;

public:

224

void get_marks()

{

cout<<"\n Enter marks in two subjects";

cin>>sub1>>sub2;

}

void put_marks()

{

cout<<"\n Mark obtained";

cout<<"\n sub1="<<setw(15)<<sub1;

cout<<"\n sub2="<<setw(15)<<sub2;

}

};

class sports

{

protected:

float score;

public:

void get_score()

{

cout<<"Enter the score in sports";

cin>>score;

}

void put_score()

{ cout<<"\n score in sports="<<setw(5)<<score;

}

};

class result : public test, public sports

{

float total;

public:

void display();

};

225

void result :: display()

{

total = sub1 + sub2 + score;

put_number();

put_marks();

put_score();

cout<<"\n Total score"<<setw(5)<<total;

}

int main()

{

int i, n;

result student[10];

cout<<"\n How many students?";

cin>>n;

for (i=0;i<n;i++)

{

student[i].get_number();

student[i].get_marks();

student[i].get_score();

}

cout<<"\n Result\n";

for(i=0;i<n;i++)

student[i].display();

return 0;

}

The output of the program would be:

How many students?

2

Enter Roll number

111

226

Enter marks in two subjects

98

100

Enter the score in sports

90

Enter Roll number

222

Enter marks in two subjects

80

90

Enter the score in sports

95

Roll number 111

Marks obtained

Sub1 = 98

Sub2 = 100

score in sports = 90

Total score = 288

Roll number 222

Marks obtained

Sub1 = 80

Sub2 = 90

score in sports = 95

Total score = 265

9.9 Virtual Base Classes

We have just discussed a situation which would require the use of both the

multiple and multilevel inheritance. Consider a situation where all the three

kinds of inheritance, namely, multilevel, multiple and hierarchical inheritance,

227

are involved. This is illustrated, in Fig. 9.8. The 'child' has two direct base

classes 'parent1' and 'parents2’ which themselves have a common base

class 'grandparent'. The 'child' inherits the traits of 'grandparent' via two

separate paths, It can also inherit directly as shown by the broke line. The

'grandparent' is sometimes referred to as indirect base c!ass.

Fig. 9.8 Multipath inheritance

Inheritance by the 'child' as shown in Fig. 9.8 might pose some

problems. All the public and protected members of ‘grandparent' are inherited

into 'child' twice, first via ‘parent1’ and again via 'parent2'. This means, 'child’

would have duplicate sets of the members inherited from 'grandparent'. This

Introduces ambiguity and should be avoided.

The duplication of inherited members due to these multiple paths can

be avoided by making the common base class (ancestor class) as virtual

base class while declaring the direct or intermediate base classes as shown

below:

class A // grandparent

{

………..

………..

};

class B1: virtual public A //parent1

{

………….

………….

};

228

class B2: virtual public A parent 2

{

…………..

………….

};

class C : public B1, public B2 //child

{

…………… //only one copy of A

…………… //will be inherited

};

When a class is made a virtual base class, C++ takes necessary care

to see that only one copy of that class is inherited, regardless of how many

inheritance paths exist between the virtual base class and a derived class.

For example, consider again the student results processing system

discussed in Sec. 9.8. Assume that the class sports derives the roll_number

from the class student. Then, the inheritance relationship will be as shown in

Fig. 9.9.

Fig. 9.9 Virtual base class

229

Program 9.6 illustrates the implemention of the virtual base class concept

/* program illustrating virtual base class */

#include<iostream>

#include<iomanip>

using namespace std;

class student

{

protected:

int roll_number;

public:

void get_number()

{

cout<<"\n Enter roll number";

cin>>roll_number;

}

void put_number()

{

cout<<"\n Roll number="<<setw(5)<<roll_number;

}

};

class test:public virtual student

{

protected:

float sub1,sub2;

public:

void get_marks()

{

cout<<"\n Enter marks in two subjects";

cin>>sub1>>sub2;

}

230

void put_marks()

{

cout<<"\n Mark obtained";

cout<<"\n sub1="<<setw(15)<<sub1;

cout<<"\n sub2="<<setw(15)<<sub2;

}

};

class sports:public virtual student

{

protected:

float score;

public:

void get_score()

{

cout<<"Enter the score in sports";

cin>>score;

}

void put_score()

{

cout<<"\n score in sports="<<setw(4)<<score;

}

};

class result:public test,public sports

{

float total;

public:

void display();

};

void result :: display()

{

total=sub1+sub2+score;

put_number();

put_marks();

231

put_score();

cout<<"\n Total score"<<setw(11)<<total;

}

int main()

{

int i,n;

result student[10];

cout<<"\n How many students?";

cin>>n;

for(i=0;i<n;i++)

{

student[i].get_number();

student[i].get_marks();

student[i].get_score();

}

cout<<"\n Result\n";

for(i=0;i<n;i++)

student[i].display();

return 0;

}

The output of the program would be:

How many students?

2

Enter Roll number

111

Enter marks in two subjects

90

90

232

Enter the score in sports

90

Enter Roll number

222

Enter marks in two subjects

80

80

Enter the score in sports

80

Roll number 111

Marks obtained

Sub1 = 90

Sub2 = 90

score in sports = 90

Total score = 270

Roll number 222

Marks obtained

Sub1 = 80

Sub2 = 80

score in sports = 80

Total score = 240

9.10 Abstract Classes

An abstract class is one that is not used to create objects. An abstract

class is designed only to act as a base class (to be inherited by other classes).

233

It is a design concept in program development and provides a base upon

which other classes may be built. In the previous example, the student class

is an abstract class since it was not used to create any objects.

9.11 Constructors in Derived Classes

As we know, the constructors play an important role in initializing

objects. We did not use them earlier in the derived classes for the sake of

simplicity. One important thing to note here is that, as long as no base class

constructor takes any arguments, the derived class need not have a

constructor function. However, if any base class contains a constructor with

one or more arguments, then it is mandatory for the derived class to have a

constructor and pass the arguments to the base class constructors.

Remember, while applying inheritance we usually create objects using the

derived class. Thus, it makes sense for the derived class to pass arguments

to the base class constructor. When both the derived and base classes

contain constructors, the base constructor is executed first and then the

constructor in the derived class is executed.

In case of multiple inheritance, the base classes are constructed in

the order in which they appear in the declaration of the derived class.

Similarly, in a multilevel inheritance, the constructors will be executed in the

order of inheritance.

Since the derived class takes the responsibility of supplying initial

values to its base classes, we supply the initial values that are required by all

the classes together, when a derived class object is declared. How are they

passed to the base class constructors so that they can do their job? C++

supports a special argument passing mechanism for such situations.

The constructor of the derived class receives the entire list of values

as its arguments and passes them on to the base constructors in the order in

which they are declared in the derived class. The base constructors are called

and executed before executing the statements in the body of the derived

constructor,

234

Derived-constructor (Arglist1, Arglist2, …. ArglistN, Arglist D)

Arglist1 base1(arglist1)

Arglist2 base2(arglist2)

…………………………..

…………………………….

ArglistN baseN(arglistN)

{

Body of derived Constructor

}

The general form of defining a derived constructor is:

The header line of derived constructor function contains two parts

separated by a colon(:). The first part provides the declaration of the

arguments that are passed to the derived constructor and the second part

lists the function calls to the base constructors.

base1(arglist1), base2(arglist2) ... are function calls to base

constructors base1(), base2(),,… and therefore arglistl, arg!ist2, ... etc.

represent the actual parameters that are passed to the base constructors.

Arglist1 through ArglistN are the argument declarations for base constructors

base1 through baseN. ArglistD provides the parameters that are necessary

to initialize the members of the derived class.

Example:

D(lnt a1, int a2, float b1, float b2, int dl);

A(al, a2), /* call to constructor A */

B(bl. b2) /* call to constructor B */

{

d = d1; // executes its own body

}

235

A(a1, a2) invokes the base constructor A() and B(bl, b2) invokes,

another base constructor B(). The constructor D() supplies the values for

these four arguments. In addition, it has one argument of its own. The

constructor D() has a total of five arguments. D() may be invoked as follows:

…………..

D objD(5, 12, 2.5. 7.54, 30);

…………….

These values are assigned to various parameters by the constructor

D() as follows:

5 a1

12 a2

2.5 b1

7.54 b2

30 d1

The constructors for virtual base classes are invoked before any non-

virtual base classes. If there are multiple virtual base classes, they are

invoked in the order in which they are declared. Any non-virtual bases are

then constructed before the derived class constructor is executed. See Table

9.2.

Table 9.2 Execution of base class constructors

Method of inheritance Order of execution

class B: public A A() : Base constructor

{ B(): derived constructor

};

236

class A: public B, public C

{

};

B() : Base first

C() : base second

A(): derived

class A: public B, virtual public C C() : virtual base

{ B() : ordinary base

}; A(): derived

9.12 Member Classes, Nesting of Classes

Inheritance is the mechanism of deriving certain properties of one

class into another. We have seen in detail how this is implemented using the

concept of derived classes. C++ supports yet another way of inheriting

properties of one class into another. This approach takes a view that an object

can be a collection of many other objects. That is, a class can contain objects

of other classes as its members as shown below:

class alpha { };

class beta { };

class gamma

{

alpha a; // a is on object of alpha class

beta b; // b is an object of beta class

};

All objects of gamma class will contain the objects a and b. This kind

of relationship is called containership or nesting. Creation of an object that

contains another object is very different than the creation of an independent

object. An independent object is created by its constructor when it is declared

with arguments. On the other hand, a nested object is created in two stages.

237

First, the member objects are created using their respective constructors and

then the other 'ordinary' members are created. This means, constructors of

all the member objects should be called before its own constructor body is

executed. This is accomplished using an initialization list in the constructor of

the nested class.

Example:

class gamma

{

alpha a; // a is object of alpha

beta b; // b is object of beta

public:

gamma(arglist) : a(arglist1), b(arglist2)

{

// constructor body)

}

arglist is the list of arguments that is to be supplied when a gamma

object is defined. These parameters are used for initializing the members of

gamma. arglist1 is the argument list for the constructor of a and arglist2 is

the argument list for the constructor of b. arglist1 and arglist2 may or may not

use the arguments from arglist. Remember, a(arglist1) and b(arglist2) are

function cails and therefore the arguments do not contain the data types.

They are simply variables or constants.

Example:

game(int x, int y, float z) : a(x), b(x, z)

{

Assignment section (for ordinary other members)

}

238

We can use as many member objects as are required in a class. For

each member object, we add a constructor call in the initializer list. The

constructors of the member objects are called in the order in which they are

declared in the nested class.

SUMMARY

 The mechanism of deriving a new class from an old class is called

inheritance. Inheritance provides the concept of reusability, The C+ +

classes can be reused using inheritance.

 The derived class inherits some or all of the properties of the base class.

 A derived class with only one base class is called single inheritance.

 A class can inherit properties from more than one class which is known

as multiple inheritance.

 A class can be derived from another derived class which is known as

multilevel Inheritance.

 When the properties of one class are inherited by more than one class, it

is called hierarchical inheritance.

 A private member of a class cannot be inherited either in public mode or

in private mode.

 A protected member inherited in public mode becomes protected,

whereas inherited in private mode becomes private in the derived class.

 A public member inherited in public mode becomes public, whereas

inherited in private mode becomes private in the derived class.

 The friend functions and the member functions of a friend class can

directly access the private and protected data.

 The member functions of a derived class can directly access only the

protected and public data. However, they can access the private data

through the member functions of the base class.

 Multipath inheritance may lead to duplication of inherited members from

a 'grandparent' base class. This may be avoided by making the common

base class a virtual base class.

239

 In multiple inheritance, the base classes are constructed in the order in

which they appear in the declaration of the derived class.

 In multilevel inheritance, the constructors are executed in the order of

inheritance,

 A class can contain objects of other classes. This is known as

containership or nesting.

Review Questions

1. What does inheritance mean in C++?

2. What are the different forms of inheritance? Give an example for each.

3. Describe, the syntax of the single inheritance in C++.

4. We know that a private member of a base class is not inheritable. Is it

anyway possible for the objects of a derived class to access the private

members of the base class? If yes, how?

5. How do the properties of the following two derived classes differ?

a. class Dl: private B({ }…);

b. class D2 : public B({ }….);

6. When do we use the protected visibility specifier to a class member?

7. Describe the syntax of multiple inheritance. When do we use such an

inheritance?

8. What are the implications of the following two definitions?

a. class A: public B, public C{[]……};

b. class A: public C. public B{[]……};

9. What is a virtual base class?

10. When do we make a class virtual?

11. What is an abstract class?

12. In what order are the class constructors called when a derived class

object is created?

240

13. Class D is derived from class B. The class D does not contain any data

members of its own. Does the class D require constructors? If yes,

why?

14. What is containership? How does it differ from inheritance?

15. Describe how an object of a class that contains objects of other classes

created?

Programming Exercises

Assume that a bank maintains two kinds of accounts for customers, one

called as savings account and the other as current account. The savings

account provides compound interest and withdrawal facilities but no cheque

book facility. The current account provides cheque book facility but no

interest. Current account holders should also maintain a minimum balance

and if the minimum balance falls below this level, a service charge is imposed.

Create a class account that stores customer name, account number and type

of account. From this derive the classes cru_acct and sav_acct to make them

more specific to their requirements. Include necessary member functions in

order to achieve the following tasks:

(a) Accept deposit from a customer and update the balance.

(b) Display the balance.

(c) Compute and deposit interest

(d) Permit withdrawal and update the balance.

(e) Check for the minimum balance, impose penalty, necessary, and

update the balance.

Do not use any constructors. Use member functions to initialize the

class members.

241

UNIT – X

POINTERS, VIRTUAL FUNCTIONS AND POLYMORPHISM

10.1 Introduction

Polymorphism is one of the crucial features of OOP. It simply means 'one

name, multiple forms'. We have already seen how the concept of

polymorphism is implemented using the overloaded functions and operators.

The overloaded member functions are 'selected' for invoking by matching

arguments, both type and number. This information is known to the compiler

at the compile time and, therefore, compiler is able to select the appropriate

function for a particular call at the compile time itself. This is called early

binding or static binding or static linking. Also known as compile time

polymorphism, early binding simply means that an object is bound to its

function call at compile time.

Now let us consider a situation where the function name and prototype

is the same in both the base and derived classes. For example, consider the

following class definitions:

class A

{

Int x;

public:

void show() {…………..} //show() in base class

};

class B: public A

{

int y;

public:

void show() {………} //show() in derived class

};

242

How do we use the member function show() to print the values of objects of

both the classes A and B?. Since the prototype of show() is the same in both

the places, the function is not overloaded and therefore static binding does

not apply. We have seen earlier that, in such situations, we may use the

class resolution operator to specify the class while invoking the functions with

the derived class objects.

It would be nice if the appropriate member function could be selected

while the program is running. This is known as run time polymorphism. How

could it happen? C++ supports a mechanism known as virtual function to

achieve run time polymorphism.

At run time, when it is known what class objects are under

consideration, the appropriate version of the function is invoked. Since the

function is linked with a particular class much later after the compilation, this

process is termed as late binding. It is also known as dynamic binding

because the selection of the appropriate function is done dynamically at run

time.

Dynamic binding is one of the powerful features of C++. This requires

the use of pointers to objects. We shall discuss in detail how the object

pointers, and virtual functions are used to implement dynamic binding.

10.2 Pointers

Pointers is one of the key aspects of C++ language similar to that of

C. As we know, pointers offer a unique approach to handle data in C and

C++. We have seen some of the applications of pointers in unit 2 and unit 5.

In this section, we shall discuss the rudiments of pointers and the special

usage of them in C++,

We know that a pointer is a derived data type that refers to another

data variable by storing the variable's memory address rather than data. A

pointer variable defines where to get the value of a specific data variable

instead of defining actual data.

243

Like C, a pointer variable can also refer to (or point to) another pointer

in C++, However, it often points, to a data variable. Pointers provide an

alternative approach to access other data objects.

Declaring and Initializing Pointers

As discussed in Unit 2, we can declare a pointer variable similar to other

variables in C++. Like C, the declaration is based on the data type of the

variable it points to. The declaration of a pointer variable takes the following

form:

data-type *pointer-variable;

Here, pointer-variable is the name of the pointer, and the data-type

refers to one of the valid C++ data types, such as int, char, float, and so an.

The data-type is followed by an asterisk (*) symbol, which distinguishes a

pointer variable from other variables to the compiler.

Note that we can locate asterisk (*) immediately before the pointer

variable, or between the data type and the pointer variable, or immediately

after the data type. It does not cause any effect in the execution process,

As we know, a pointer variable can point to any type of data available

in C++. However, it is necessary to understand that a pointer is able to point

to only one data type at the specific time. Let us declare a pointer variable,

which points to an integer variable, as follows:

int 'ptr;

244

Here, ptr is a pointer variable and points to an integer data type. The

pointer variable, ptr should contain the memory location of any integer

variable. In the same manner, we can declare pointer variables for other data

types also.

Like other programming languages, a variable must be initialized

before using it in a C++ program. We can initialize a pointer variable as

follows:

int *ptr, a; // declaration

ptr = &a; // initialization

The pointer variable ptr, contains the address of the variable a. Like

C, we use the 'address of ’ operator or reference operator i,e, ‘&' to retrieve

the address of a variable. The second statement assigns the address of the

variable a to the pointer ptr.

We can also declare a pointer variable to point to another pointer,

similar to that of C. That is, a pointer variable contains address of another

pointer. Program 10.1 explains how to refer to a pointer's address by using a

pointer in a C++ program.

//Example of using Pointers

include<iostream>

using namespace std;

int main()

{

int a, 'ptr1 , **ptr2;

ptrl = &a;

ptr2 = &ptrl;

cout<<"The address of a : “ « ptr1<< '\n";

cout << "The address of ptr1 : "<< ptr2;

cout<< “ \n\n After incrementing the address values”;

245

ptr1 = ptr1 + 2;

cout<<”The address of a :”<< ptr1<<”\n”;

ptr2 = ptr2 + 2;

cout << "The address of ptr1 : "<< ptr2;

}

The memory location in always addressed by the operating system. The

output may vary depends on the system, Output of Program 10,1 would look

like:

The address of a : ox8fb6fff4

The address of ptr1 : ox8fb6fff2

After incrementing the address values:

The address of a : ox8fb6fff8

The address of ptr1 : ox8fb6fff6

We can also use void pointers, known as generic pointers, which refer

to variables of any data type. Before using void pointers, we must type cast

the variables to the specific data types that they point to.

The pointers, which are not initialized in a program, are called Null

pointers. Pointers of any data type can be assigned with one value i.e., ‘\0’

called null address.

Manipulation of Pointers

As discussed earlier, we can manipulate a pointer with the indirection

operator, i.e. “ * ", which is also known as dereference operator. With this

operator, we can indirectly access the data variable content. It takes the

following general form:

*pointer-variable

As we know, dereferencing a pointer allows us to get the content of

the memory location that the pointer points to. After assigning address of the

variable to a pointer, we may want to change the content of the variable.

246

Using the dereference operator, we can change the contents of the memory

location.

Let us consider an example that illustrates how to dereference a

pointer variable. The value associated with the memory address is divided by

2 using the dereference operator. The division affects only the memory

contents and not the memory address itself. Program 10.2 illustrates the use

of dereference operator in C++.

//Manipulation of pointers

#include<iostream>

using namespace std;

void main()

{

int a = 10, *ptr;

ptr = &a;

cout<<”The value of a is : “<<a <<”\n”;

*ptr = (*ptr)/2;

cout<< “The value of a after division by 2 is :”<<(*ptr)

}

The output of the program would be:

The value of a is: 10

The value of a after division by 2 is: 5

Care must be taken before dereferencing a pointer. It is essential to

assign a value to the pointer. If we attempt to dereference an uninitialized

pointer, it will cause runtime error by referring to any other location in memory.

Pointer Expressions and Pointer Arithmetic

As discussed in Unit 2, there are a substantial number of arithmetic

operations that can be performed with pointers. C++ allows pointers to

247

perform the following arithmetic operations:

 A pointer can be incremented (++) (or) decremented (--)

 Any integer can be added to or subtracted from a pointer

 One pointer can be subtracted from another

Example:

int a[6];

int *aptr;

aptr = &a[0];

Obviously, the pointer variable, aptr, refers to the base address of the

variable a. We can increment the pointer variable, shown as follows:

aptr++ (or) ++aptr

This statement moves the pointer to the next memory address.

Similarly, we can decrement the pointer variable, as follows:

aptr -- (or) --aptr

This statement moves the pointer to the previous memory address.

Also, if two pointer variables point to the same array can be subtracted from

each other.

We cannot perform pointer arithmetic on variables which are not

stored in contiguous memory locations, Program 10.3 illustrates the

arithmetic operations that we can perform with pointers.

// ARITHMETIC OPERATIONS ON POINTERS

#include<iostream>

using namespace std;

int main()

{

Int num[] = {56, 75, 22, 18, 90};

Int *ptr;

248

int i;

cout<<”The array values are:\n”;

for (i=0; i<5; i++)

cout<<num[i]<<”\n”;

/*initializing the base address of str to prt */

ptr = num;

/*printing the value in the array */

cout<<”\n vaule of ptr :”<<*ptr<<”\n”;

ptr++;

cout<<”\n vaule of ptr++ :”<<*ptr<<”\n”;

ptr--;

cout<<”\n vaule of ptr-- :”<<*ptr<<”\n”;

ptr = ptr + 2;

cout<<”\n vaule of ptr + 2 :”<<*ptr<<”\n”;

return 0;

}

Output of the program 10.3 would be:

The array values are:

56

75

22

18

90

value of ptr : 56

value of ptr++: 75

value of ptr--: 56

value of ptr + 2 : 22

249

Using Pointers with Arrays and Strings

Pointer is one of the efficient tools to access elements of an array. Pointers

are useful to allocate arrays dynamically, ie, we can decide the array size at

run time. To achieve this, we use the functions, namely malloc() and calloc().

Accessing an array with pointers in simpler than accessing the array index.

In general, there are some differences between pointers and arrays.

array refer to a block of memory space, whereas pointers do not refer to any

section of memory. The memory addresses of arrays cannot be changed,

whereas the content of the pointer variables, such as the memory addresses

that it refer to, can be changed.

Even though there are subtle difference between pointers and arrays,

they have a strong relationship between them.

Note that there is no error checking of array bounds in. C++. Suppose

we declare an array of size 25. The compiler issues no warnings if we attempt

to access 26th location. It is the programmer's task to cheek the array limit.

We can declare the pointer to arrays as follows:

int *nptr;

nptr = number[0];

or

nptr = number

Here, nptr points to the first element of the integer array, number[0].

Also, consider the following example:

float *fptr;

fptr = price[0];

or

fptr = price;

Here, fptr points to the first element of the array of float, price[0]. Let

us consider an example of using pointers to access an array of numbers and

250

sum up the even numbers of the array. Initially, we accept the count as an

input to know the number of inputs from the user. We use pointer variable,

ptr to access each element of the array. The inputs are checked to identify

the even numbers. Then the even numbers are added, and stored in the

variable, Sum. If there Is no even number in the array, the output will be 0,

Program 10.4 illustrates how to access the array contents using pointers,

//Pointers with Arrays

#include<iostream>

using namespace std;

int main()

{

Int numbers[50], *ptr;

Int n,i;

cout<<”\n Enter the count\n”;

cin>>n;

cout<<”\nEnter the numbers one by one\n”;

for (i=0; i<n; i++)

cin>>number[i];

/*assigning the base address of numbers to ptr and initializing the sum
to 0 */

ptr = numbers;

int sum = 0;

/*check out for even inputs and sum up them *’

for (i=0; i<n; i++)

{

if (*ptr % 2 == 0) sum = sum + *ptr;

ptr++;

}

cout<< “\n Sum of even numbers: “<<sum;

return 0;

}

251

Output of the program 10.4 is:

Enter the count

4

Enter the numbers one by one

10

15

20

40

Sum of even numbers: 70

Array of Pointers

Similar to other variables, we can create an array of pointers in C++.

The array of pointers represents a collection of addresses. By declaring array

of pointers, we can save a substantial amount of memory space.

An array of pointers point to an array of data items. Each element of

the pointer array points to an item of the data array. Data items can be

accessed either directly or by dereferencing the elements of pointer array.

We can reorganize the pointer elements without affecting the data items.

We can declare an array of pointers as follows:

int *inarray[10];

This statement declares an array of 10 pointers, each of which points

to an integer. The address of the first pointer is inarray[0], and the second

pointer is inarray[1], and the final pointer points to inarray|9|. Before

initializing, they point to some unknown values in the memory space. We can

use the pointer variable to refer to some specific values, Program 10.5

explains the implementation of array of pointers.

252

//Array of pointers

#include<iostream>

#include<cstring>

#include<conio.h>

#include<ctype.h>

using namespace std;

void main()

{

int i=0;

char *ptr[10] = {“books”, “television”,”computer”,”sports”};

char str[25];

clrscr();

cout<<”\n Enter your favorite leisure pursuit ”;

cin>>str;

for (i=0; i<4; i++)

{

If (!strcmp(str, *ptr[i]))

{

cout<<”\n your favorite pursuit is available here”

break;

}

}

if (i==4)

cout<<”\n Your favorite persuit is not available here”;

getch();

}

The output of the program 10.5 is

Enter your favorite leisure persuit: book

your favorite persuit is available here.

253

Pointers and Strings

We have seen the usage of pointers with one dimensional array elements.

However, pointers are also efficient to access, two dimensional and multi-

dimensional arrays in in C++. There is a definite relationship between arrays,

and pointers. C++ also allows us to handle the special kind of arrays, i.e.

string with pointers.

We know that a string is one dimensional array of characters, which

start with the index 0 and ends with the null character ‘\0’ in C++. A pointer

variable can access a string by referring to its first character. As we know,

there are two ways to assign a value to a string. We can use the character

array or variable of type char *. Let us consider the following string

declarations:

char num[] = “one”;

const char *numptr = "one":

The first declaration creates an array of four characters, which

contains the characters ‘o’, ‘n’, ‘e’, ‘\0’, whereas the second declaration

generates a pointer variable, which points to the first character,, i.e. ‘o’ of the

string, There is numerous string handling functions available in C++. All of

these functions are available in the header file <cstring>.

Program 10.6 shows how to reverse a string using printers and arrays.

//Accessing string using pointers and arrays

#include<iostream>

#include<cstring>

using namespace std;

void main()

{

char str[] = “Test”;

int leg = strlen(str);

254

for (int i=0; i<len; i++)

{

cout<<str[i] <<i[str]<<*(str+i) <<*(i+str);

}

cout<<endl;

//string reverse

int lenM = len/2;

len--;

for (i=0; i<lenM; i++)

{

str[i] = str[i] + str[len-i];

str[len-i] = str[i] – str[len-i];

str[i] = str[i] – str[len-i];

}

cout<<”The string reversed :”<<str;

}

Output of program is:

TTTTeeeesssstttt

The string reversed : tseT

Pointers to Functions

Even though pointers to functions (or function pointers) are introduced in C,

they are widely used in C++ for dynamic binding, and event-based

applications. The concept of pointer to function acts as a base for pointers to

members, which we have discussed in Unit 5.

The pointer to function is known as call back function. We can use

these function pointers to refer to a function. Using function pointers, we can

allow a C++ program to select a function dynamically at run time. We can also

pass a function as an argument to another function. Here, the function is

passed as a pointer. The function pointers cannot be dereferenced. C++ also

allows us to compare two function pointers.

255

C++ provides two types of function pointers: function pointers that

point to static member functions and function pointers that point to non-static

member functions. These two function pointers are incompatible with each

other. The function pointers that point to the non-static member function

requires hidden argument.

Like other variables, we can declare a function pointer in C++. It takes

the following:

data_type (*function_name()();

As we know, the data_type is any valid data types used in C++. The

function_name is the name of a function, which must be preceded by an

asterisk (*). The function_name is any valid name of the function.

Example:

int (*num_function(int x));

Note that declaring a pointer only creates a pointer. It does not create

actual function. For this, we must define the task, which is to be performed by

the function. The function must have the same return type and arguments.

Program 10.7 explains how to declare and define function pointers in C++

//Pointers to functions

#include<iostream.h>

typedef void (*FunPtr)(int, int);

void add(int i, int j)

{

cout<< i<< “ + “<< j << “ = “<< i + j;

}

void subtract(int i, int j)

{

cout<< i<< “ - “<< j << “ = “<< i - j;

}

256

void main()

{

FunPtr ptr;

ptr = &add;

ptr(1, 2);

cout<<endl;

ptr = &subtract;

ptr(3, 2);

}

Output of program 10.7 is:

1 + 2 = 3

3 – 2 = 1

10.3 Pointers to Objects

We have already seen how to use pointers to access the class members, As

stated earlier, a pointer can point to an object created by a class. Consider

the following statement:

item x;

where item is a class and x is an object defined to be of type item.

Similarly we can define a pointer it_ptr of type item as follows:

item *it_ptr;

Object pointers are useful in creating objects at run time. We can also

use an object pointer to access the public members of an object. Consider a

class item defined as follows:

class item

{

int code;

float price;

257

public:

void getdata (int a, float b)

{

code = a;

price = b;

}

void show(void)

{

cout<<”Code = “<<code<<”\n”

<<”Price =”<<price;

}

};

Let us declare an item variable x and a pointer ptr to x as follows:

item x;

item *ptr = &x;

The pointer ptr is initialized with the address of x.

We can refer to the member functions of item in two ways, one by

using the dot operator and the object, and another by using the arrow

operator and the object pointer. The statements

x.getdata(100,75.50);

x.show();

are equivalent to

ptr -> getdata(100, 76.50);

ptr -> show();

Since *ptr is on alias of x, we can also use the following method:

(*ptr).show();

258

The parentheses are necessary because the dot operator has higher

precedence than the indirection operator*.

We can also create the objects using pointers and new operator as follows:

item *ptr = new item;

This statement allocates enough memory for the data members in the

object structure and assigns the address of the memory space to ptr, Then

ptr can be used to refer to the members as shown below:

ptr -> show();

If a class has a constructor with arguments and does not include an

empty constructor, then we must supply the arguments when the object is

created.

We can also create an array of objects using pointers. For example,

the statement

item *ptr = new item[10]; // array of 10 objects

creates memory space for an array of 10 objects of item. Remember,

in such cases, if the class contains constructors, it must also contain an empty

constructor. Program 10.8 illustrates the use of pointers to objects.

//Pointer to Objects

#include <iostream>

using namespace std;

class item

{

int code;

float price;

259

public:

void getdata(int a, float b)

{

code = a; price = b;

}

void show()

{

cout<<”code =”<< code <<”\n”;

cout<<”price = “<<price;

}

};

const int size = 2;

int main()

{

item *p = new item[size];

item *d = p;

int x,i;

float y;

for (i=0; i<size; i++)

{

cout<<”Input code and price for item”<< i+1;

cin>>x>>y;

p -> getdata(x,y);

p++;

}

for (i=0; i<size; i++)

{

cout<<”Item “<< i+1<<”\n”;

d->show();

d++;

}

return 0;

}

260

The output of the program 10.8 would be

Input code and price for item 1 40 500

Input code and price for item 2 60 700

Item 1

code 40

price 500

Item 2

code 60

price 700

In Program 10.8 we created space dynamically for two objects of

equal size. But this may not be the case always. For example, the objects of

a class that contain character strings would not be of the same size. In such

cases, we can define an array of pointers to objects that can be used to

access the individual objects. This is illustrated in Program 10.9.

//Array of pointers to objects

#include<iostream>

#include<cstring>

using namespace std;

class city

{

protected:

char *name;

int len;

261

public:

city()

{

len = 0;

name = new char[len + 1];

}

void getname(void)

{

char *s;

s = new char[30];

cout<<”Enter city name:”;

cin>>s;

len = strlen(s);

name = new char[len+1];

strcpy(name, s);

}

void printname(void)

{

cout<<name<<”\n”;

}

};

int main()

{

city *cptr[10]; //array of 10 pointers to cities

int n= 1;

int option;

do

{

cptr[n] = new city; //create new city

cptr[n] -> getname();

n++;

cout<<”Do you want to enter one more name?\n”;

cout<<”Enter 1 for yes and 0 for no”;

262

cin>>option;

}while(option);

cout<<”\n\n”;

for (int i=1; i<=n; i++)

{

cptr[i]->printname();

}

return 0;

}

The output of program 10.9 would be

Enter city name: Chennai

Do you want to enter one more name?

Enter 1 for yes and 0 for no 1

Enter city name: Madurai

Do you want to enter one more name?

Enter 1 for yes and 0 for no 0

Chennai

Madurai

10.4 This Pointer

C++ uses a unique keyword called this to represent an object that invokes a

member function. this is a pointer that points to the object for which this

function was called. For example, the function call A.max() will set the pointer

this to the address of the object A. The starting address is the same as the

address of the first variable in the class structure.

This unique pointer is automatically passed to a member function

when it is called. The pointer this acts as an implicit argument to all the

member functions.

263

Consider the following simple example:

class ABC

{

int a;

…….

……

};

The private variable ‘a’ can be used directly inside a member function, like

a = 123;

We can also use the following statement to do the same job

this ->a = 123:

Since C++ permits the use of shorthand form a = 123, we have not

been using the pointer this explicitly so far. However, we have been implicitly

using the pointer this when overloading the operators using member function.

Recall, that, when a binary operator is overloaded using a member

function, we pass only one argument to the function. The other argument is

implicitly passed using the pointer this. One important application of the

pointer this is to return the object it points to. For example, the statement

return *this;

inside a member function will return the object that invoked the

function. This statement assumes importance when we want to compare two

or more objects inside a member function and return the invoking object as a

result,

264

Example:

person & person :: greater (person & x)

{

if x.age > age

return x; //argument object

else

return *this; //invoking object

}

Suppose we invoke this function by the call

max = A.greater(B);

The function will return the object B (argument object) if the age of the

person B is greater than that of A, otherwise, it will return the object A

(invoking object) using the pointer this. Remember, the dereference operator

* produces the contents at the address contained in the pointer. A complete

program to illustrate the use of this is given in Program 10.10.

//this POINTER

#include<iosteam>

#include<cstring>

using namespace std;

class person

{

char name[20];

float age;

265

public:

person(char *s, float a)

{

strcpy(name, s);

age = a;

}

person & person :: greater(person & x)

{

if (x.age >= age)

return x;

else

}

return *this;

void display(void)

{

cout<<”Name: “<<name<<”\n”

<<”Age: “<<age<<”\n”;

}

};

int main()

{

person P1(“John”,37.5), P2(“Guru”, 30.2), P3(“Samy”, 40);

person P = P1.greater(P3);

cout<<”Elder person is:”;

P,display();

P = P1.greater(P2);

cout<<”Elder person is:”;

P,display();

return 0;

}

266

The output of the program 10.10 would be

Elder person is:

Name: Samy

Age : 40

Elder person is:

Name: John

Age : 37.5

10.5 Pointers to Derived Classes

We can use pointers not only to the base objects but also to the objects of

derived classes. Pointers to objects of a base class are type-compatible with

pointers to objects of a derived class. Therefore, a single pointer variable can

be made to point to objects belonging to different classes. For example, if B

is a base class and D is a derived class from B, then a pointer declared as a

pointer to B can also be a pointer to D. Consider the following declarations

B *cptr; // pointer to class B type variable

B b; // base object

D d; // derived object

cptr = &b; // cptr points to object b

We can make cptr to point to the object d as follows:

cptr = &d; // cptr points to object d

This is perfectly valid with C++ because d is an object derived from

the class B.

However, there is a problem in using cptr to access the public

members of the derived class D. Using cptr, we can access, only those

members which are inherited from B and not the members that originally

belong to D. In case a member of D has the same name as one of the

267

members of B, then any reference to that member by cptr will always access

the base class member.

Although C++ permits a base pointer to point to any object derived

from that base, the pointer cannot be directly used to access all the members

of the derived class. We may have to use another pointer declared as pointer

to the derived type.

Program 10.11 illustrates how pointers to a derived object are used.

//Pointers to Derived Objects

#include<iostream>

using namespace std;

class BC

{

Public:

int b;

void show()

{

cout<<”b =”<<b<<”\n”;

}

};

class DC : public BC

{

public:

int d;

void show()

{

cout<<”b =”<<b<<”\n”

<<”d = “<<d<<”\n”;

}

};

268

int main()

{

BC *bptr; //base pointer

BC base;

bptr = &base; // base address

bptr -> b= 100; //access BC via base pointer

cout<<”bptr points to base object \n”;

bptr ->show();

//derived class

DC derived;

bptr = &derived; //address of derived object

bptr -> b = 200

/*bptr -> d = 300; */ won’t work

cout<< “bptr now points to derived object \n”;

bptr ->show(); //bptr now points to derived object

/*accessing d using a pointer of type derived class DC */

DC *dptr; //derived type pointer

dptr = &derived;

dptr -> d = 300;

cout<<”dptr is derived type pointer\n”;

dptr ->show();

cout<<”using (DC *)bptr)\n”;

((DC *)bptr) ->d = 400;

((DC *)bptr) ->show();

return 0;

}

269

Program 10.11 produces the following output

bptr points base object

b = 100

bptr now points derived object

b = 200

dptr is derived type pointer

b = 200

d = 300

using ((DC *)bptr)

b = 200

d = 400

10.6 Virtual Functions

As mentioned earlier, polymorphism refers to the property by which objects

belonging to different classes are able to respond to the same message, but

in different forms. An essential requirement of polymorphism is therefore the

ability to refer to objects without any regard to their classes. This necessitates

the use of a single pointer variable to refer to the objects of different classes.

Here, we use the pointer to base class to refer to all the derived objects. But,

we just discovered that a base pointer, even when it is made to contain the

address of a derived class, always executes the function in the base class.

The compiler simply ignores the contents of the pointer and chooses the

member function that matches the type of the pointer. How do we then

achieve polymorphism? It is achieved using what is known as 'virtual'

functions.

When we use the same function name in both the base and derived

classes, the function in. base class is declared an virtual using the keyword

virtual preceding its normal declaration. When a function is made virtual,

C++ determines which function to use at run time based on the type of object

270

pointed to by the base pointer, rather than the type of the pointer. Thus, by

making the base pointer to point to different objects, we can execute different

versions of the virtual function. Program 10.12 illustrates this point.

//virtual Functions

#include<iostream>

using namespace std;

class Base

{

public:

void display()

{

cout<<”\n Display Base”;

}

virtual void show()

{

cout<<”\n Show Base”;

}

};

class Derived : public Base

{

public:

void display()

{

cout<<”\n Display Derived”;

}

virtual void show()

{

cout<<”\n Show Derived”;

}

};

271

int main()

{

Base B;

Derived D;

Base *bptr;

cout<<”\n bptr points to Base\n”;

bptr = &B;

bptr -> display(); //calls base version

bptr -> show(); //calls base version

cout<<”\n bptr points to derived\n”;

bptr = &D;

bptr -> display(); //calls base version

bptr -> show(); //calls derived version

return 0;

}

The output of the program 10.12 would be

bptr points to Base

Display Base

Show Base

bptr points to Derived

Display Base

Show Derived

272

One important point to remember is that, we must access virtual

functions through the use of a pointer declared as a pointer to the base class.

Why can't we use the object name (with the dot operator) the same way as

any other member function to call the virtual functions?. We can, but

remember, run time polymorphism is achieved only when a virtual function is

accessed through a pointer to the base class.

Rules for Virtual Functions

When virtual functions are created for implementing late binding, we should,

observe some basic rules that satisfy the compiler requirements:

1. The virtual functions must be members of some class.

2. They cannot be static members.

3. They are accessed by using object pointers.

4. A virtual function can be a friend of another class.

5. A virtual function in a base class must be defined, even though it may

not be used.

6. The prototypes of the base class version of a virtual function and all

the derived class versions must be identical. If two functions with the

same name have different prototypes, C++ considers them as

overloaded functions, and the virtual function mechanism is ignored,

7. We cannot have virtual constructors, but we can have virtual

destructors.

8. While a base pointer can point to any type of the derived object, the

reverse is not true. That is to say, we cannot use a pointer to a derived

class to access an object of the base type.

9. When a base pointer points to a derived class, incrementing or

decrementing it will not make it to point to the next object of the

derived class. It is incremented or decremented only relative to its

base type. Therefore, we should not use this method to move the

pointer to the next object,

273

10. If a virtual function is defined in the base class, it need not be

necessarily redefined in the derived class. In such cases, calls will

invoke the base function.

10.7 Pure Virtual Functions

It is normal practice to declare a function virtual inside the base class and

redefine it in the derived classes. The function inside the base class is seldom

used for performing any task. It only serves as a placeholder. For example, if

we do not define any object of base class media then the function display()

in the base class has been defined 'empty’ . Such functions are called “do-

nothing" functions.

A "do-nothing" function may be defined an follows:

virtual void display() = 0;

Such functions are called pure virtual functions. A pure virtual function

is a function declared in a base class that has no definition relative to the base

class. In such cases, the compiler requires each derived class to either define

the function or re-declare it as a pure virtual function. Remember that a class

containing pure virtual functions cannot be used to declare any objects of its

own. As stated earlier, such classes are called abstract base classes, The

main objective of an abstract base class is to provide some traits to the

derived classes and to create a base pointer required for achieving run time

polymorphism.

SUMMARY

 Polymorphism simply means one name having multiple forms.

 There are two types of polymorphism, namely, compile time

polymorphism and run time polymorphism.

 Functions and operators overloading are examples of compile time

polymorphism. The overloaded member functions are selected for

invoking by matching arguments, both type and number. The compiler

274

knows this information at the compile time and, therefore, compiler is able

to select the appropriate function for a particular call at the compile time

itself. This is called early or static binding or static linking. It means that

an object is bound to its function call at compile time.

 In run time polymorphism, an appropriate member function is selected

while the program is running. C++ supports run time polymorphism with

the help of virtual functions. It is called late or dynamic binding because

the appropriate function is selected dynamically at run time. Dynamic

binding requires use of pointers to objects and is one of the powerful

features of C++.

 Object pointers are useful in creating objects at run time. It can be used

to access the public members of an object, along with an arrow operator.

 A this pointer refers to an object that currently invokes a member function.

For example, the function call a.show() will set the pointer 'this' to the

address of the object 'a'.

 Pointers to objects of a base class type are compatible with pointers to

objects of a derived class. Therefore, we can use a single pointer variable

to point to objects of base class as well as derived classes.

 When a function is made virtual, C++ determines which function to use at

run time based on the type of object pointed to by the base pointer rather

than the type of the pointer. By making the base pointer to point to

different objects, we can execute different versions of the virtual function.

 Run time polymorphism is achieved only when a virtual function is

accessed through a pointer to the base class. It cannot be achieved using

object name along with the dot operator to access virtual function,

 We can have virtual destructors but not virtual constructors.

 If a virtual function is defined in the base class, it need not be necessarily

redefined in the derived class. In such cases, the respective calls will

invoke the base class function.

 A virtual function, equated to zero is called a pure virtual function. It is a

function declared in a base class that has no definition relative to the base

class. A class containing such pure function is called an abstract class.

275

Review Questions

1. What does polymorphism mean in C++ language?

2. How is polymorphism achieved at (a) compile time, and (b) run time?

3. Discuss the different ways by which we can access public member

functions of an object

4. Explain, with an example, how you would create space for an array of

objects using pointers.

5. What does this pointer point to?

6. What are the applications of thin pointer?

7. What is a virtual function?

8. Why do we need virtual functions ?

9. When do we make a virtual function "pure"? What are the implications of

making a function a pure virtual function?

Programming Exercises

Create a base class called shape. Use this class to store two double type

values that could be used to compute the area of figures. Derive two specific

classes called triangle and rectangle from the base shape. Add to the base

class, a member function get_data() to initialize base class data members

and another member function display_area() to compute and display the

area of figures. Make display_area() as a virtual function and redefine this

function in the derived classes to suit their requirements. Using these three

classes, design a program that will accept dimensions of a triangle or a

rectangle interactively, and display the area. Remember the two values given

as input will be treated an lengths of two sides in the case of rectangles, and

as base and height in the case of triangles, and used as follows: Area of

rectangle - x * y Area of triangle - 1/2 * x * y.

	PAPER 1 (MMT-104).pdf (p.1)
	PAPER 4.pdf (p.2-284)

