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Objectives 

1.1 Introduction 

1.2 Components of Velocity and Acceleration in cylindrical co-ordinates 

1.3 Composition of Velocities and Accelerations 

Objectives 

Upon completion of this Unit, the student is exposed to 

x the notions of velocity and acceleration in cylindrical coordinates. 

x composition of velocities and acceleration. 

BLOCK-I 

UNIT 1 

Kinematics of a Particle 
 

 
 

 
1.1 Introduction 

Let  OX, OY, OZ  be the rectangular axes fixed in a frame of reference and 
→−
i , 

→−
j , 

→−
k   be the unit 

vectors along them. We define the following vectors for any particle P(x, y, z). 

Position vector 
→−
r  = x

→−
i  + y

→−
j  + z

→−
k . 

Velocity   v  =  
d
→−
r
 

dt 
= ẋ

→−
i  + ẏ

→−
j  + ż

→−
k 

 
Acceleration 

 
a  =  

d→−v 

dt 

 
 

= ẍ
→−
i  + ÿ

→−
j  + z̈

→−
k . (1.1.1) 

 

It is required that the components of velocity and acceleration be expressed in directions other 

than 
→−
i  

→−
j , 

→−
k .  In the following section, we consider two cases of components of velocity and 

acceleration. 
 

1 

→− 



2 1.1. INTRODUCTION 

Velocity and Acceleration in Tangential and Normal Components 

Let C be the path of a moving particle P and let Q be a fixed point on C. The arc length QP is 

denoted by  s.  From (1.1.1) the vector  
d
→−
r   

has components  
dx

,  
dy

,  
dz  

along 
→−
i , 

→−
j , 

→−
k .  It is 

 

dt ds 

the unit tangent vector to  C  at  P  and will be denoted by 
→−
T . 

For the velocity of P, 

ds   ds 

→−
v  =  

d
→−
r 

. 
ds  

= ṡ
→−
T (1.1.2) 

 

ds dt 

“The velocity of a particle is directed along the tangent to its path, and has magnitude 

For acceleration, we have 

ṡ . ” 

a = 
d→−v 

dt 
 

= 
 

→−a = 

s̈
→−
T  + ṡ

d
→−
T

 
dt 

s̈
→−
T  + ṡ2

 
d
→−
T

 
ds 

d
→−
T

 

But 
ds

 
= 

→−
N 

,  where 
→−
N  is the unit principal normal vector and  ρ  is the radius of curvature of 

ρ 
 
 

 

 

C at P.  

∴ →−a = s̈
→−
T 

ṡ
2
→−
N

 

ρ 

 

(1.1.3) 

Hence “the acceleration of a particle lies in the osculating plane to its path”, the components in 

the directions of the tangent and principal normal are s̈  and 
ṡ

2
 

 
 

ρ 
respectively. 

→− 

+ . 
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1.2 Components of Velocity and Acceleration in cylindrical 

co-ordinates 

Let P be the position of a particle at time t and M be the foot of the perpendicular from P 

on the plane OXY. The polar co-ordinates (R, ψ, z) of M together with the z− co-ordinate of 

P  are the cylindrical co-ordinates  (R, ψ, z)  of  P.  Let 
→−
i , 

→−
j , 

→−
k   be the unit vectors at  P  in the 

 
 

 

directions of the parametric lines of these co-ordinates. 

To find the components of velocity and acceleration of P  along 
→−
i , 

→−
j , 

→−
k .  The vector 

→−
k   is 

constant in magnitude and direction. The 

however they are dependent on ψ. We have 

→−
i and 

→−
j   directions  do  not  depend  on  R  and  z, 

 

Now 
→−
r  = 

−
O
−→

P = R
→−
i  + z

→−
k . 

d
→−
i 

dψ 
= 

→−
j and 

d
→−
j
 

dψ 
= −

→−
i (1.2.1) 

Differentiating 
→−
r   with respect to  t, we have 

v = 
d→−r 

dt 

=   Ṙ
→−
i  + R

d
→−
i
 

dt 
+ ż

→−
k 

=   Ṙ
→−
i  + R 

 d  dψ→−
i  + ż

→−
k 

dψ dt 

→− 



→− − 
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→−
v  = Ṙ

→−
i  + Rψ̇

→−
j  + ż

→−
k (1.2.2) 

This equation provide the components of velocity in the directions of 
→−
i , 

→−
j , 

→−
k . 

Again differentiating (1.2.2) with respect to t, we get 
 

→−a = R̈
→−
i  + Ṙ 

d
→−
i
 

dt 
+ Rψ̇ 

d
→−
j
 

dt 
+ ψ̇Ṙ

→−
j  + Rψ̈

→−
j  + z̈

→−
k 

=   R̈
→−
i  + Ṙ 

 d  dψ→−
i  + Rψ̇

→−
j  + ψ̇Ṙ

→−
j  + Rψ̈

→−
j 

dψ dt 

=   R̈
→−
i  + Ṙψ̇

→−
j  + Rψ̇2(−

→−
i ) + ż

→−
k , f rom (??) 

=   (R̈ − Rψ̇2)
→−
i  + (Ṙψ̇ + ψ̇Ṙ + Rψ̈ )

→−
j  + z̈

→−
k 

→−
a =   (R̈ − Rψ̇2)

→−
i  + (Ṙψ̇ + ψ̇Ṙ + Rψ̈ )

→−
j  + z̈

→−
k 

a  = (R̈ Rψ̇2)
→−
i  +  

1  d 
(R

2ψ̇)
→−
j  + z̈

→−
k (1.2.3) 

R dt 

The above equation gives the components of acceleration in the direction of 
→−
i , 

→−
j , 

→−
k . 

 

 
1.3 Composition of Velocities and Accelerations 

It is often required to connect the velocities (or accelerations) of a particle relative to two different 

frames of reference S and S J. We consider the case where there is no relative rotation of the 

frames. Let O be a fixed point in S and OJ be a point fixed in S J. A particle P having position 

vectors 
→−
r  = O

−→
P  and 

→−
r J = 

−
O
−→
JP  are connected by 

→−r  = →−r0  + →−r 
J 

where 
→−
r0 = O

−
O
→

J. On differentiation, we have 
 

→−
v  = →−v0 + →−v J and 

→−
a  = →−a0 + →−a J (1.3.1) 
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where  
→−
v , →−a   are the velocity and acceleration of  P  relative to  S , 

5 

→−
v J,→−a J  are the velocity and 

acceleration of  P  relative to  S J and 
→−
v0, →−a0  are the velocity and acceleration of  S J relative to  S . 

The equation (1.3.1) give the laws of composition of velocities and accelerations. 



6  
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Objectives 

2.1 Motion of a Rigid Body with a Fixed Point 

2.2 General Motion of a Rigid Body 

Objectives 

Upon completion of this Unit, students will be able to 

x identify the motion of a rigid body with a fixed point. 

 

 

BLOCK-I 

UNIT 2 

Kinematics of a Rigid Body 
 

 
 

 

2.1 Motion of a Rigid Body with a Fixed Point 

Consider a rigid body constrained to rotate about a fixed point O. Let t1 and t2 be two instants of 

time. The body receives a displacement in the time interval t2 − t1 which is equivalent to a rotation 

→−
n  about  O.  If we keep  t1  fixed and let  t2  approach  t1,  the direction of 

→−
n  will approach some 

limiting direction, which is denoted by the unit vector 
→−
i . 

The ratio of the angle of rotation n to the time interval t2 − t1 will approach a limiting value ω. 

The vector 
→−ω  = ω

→−
i   is called the angular velocity of the body at the instant  t1.  At this instant, 

the body is rotating about a line through the origin O in the direction of ω. This line is known as 

the instantaneous axis of rotation. The rate of turning is ω radians per unit time and is a rotation 

in the positive direction about the instantaneous axis. 

The body receives an infinitesimal rotation ωdt in an infinitesimal time dt and hence the 

displacement of a particle of the body is  
→−
dr = ωdt × →−r ,  where 

→−
r   is the position vector relative 
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to O. The velocity of this particle is 

v  =  
d→−r 

dt 
= →−ω × →−r . 

 

The above relation gives the velocity of any particle of the body in terms of the angular velocity 

→−ω .  Thus  
→−ω  is a known vector function of time, we can find the velocity of any particle at any 

time. As the body turns about O, the instantaneous axis occupies different positions in the body. 

This axis passes through O and hence its locus in the body is a cone with vertex O, which is 

called as “Body cone ”. 

 

Similarly, the locus of the instantaneous axis in space is another cone with vertex O, which 

is called as the “space cone. ”A rigid body moving parallel to a fundamental plane may be 

considered as a body turning about a point at infinity. In this case, the body and space cones 

become cylinders. Their intersections with the fundamental plane are called the body and space 

centrodes respectively. 

We know that the body centrode rolls on the space centrode in the motion of a rigid body parallel 

to the plane. Similarly the body cone rolls on the space cones in the motion of a rigid body with a 

fixed point. To prove this result, we must show that 

(i) The body cone touches the space cone. 

(ii) The particles of the body on the line of constant of the cones are instantaneously at rest. 

Let OP be the position of the instantaneous axis of rotation at some instant. It is a generator of 

both the space cone (fixed) and the body cone (moving). After an infinitesimal time dt, another 

generator OQ of the body comes into coincidence with a generator OQJ of the space cone. But 

the displacement in the time dt is an infinitesimal rotation of magnitude ωdt about OP and hence 

the angle between the planes OPQ, OPQJ is an infinitesimal angle. Since these planes represent 

the tangent planes to the two cones along the generator OP, it follows that the tangent planes 

cannot cut at a finite angle. Therefore the cones must touch which satisfies the first condition. 

Since all particles of the body on the instantaneous axis OP are instantaneously at rest, the second 

condition is also satisfied, which completes the proof. 

→− 



→− 
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2.2 General Motion of a Rigid Body 

Let us consider a rigid body moving in a general manner. A particle P of the body is selected as 

a base point and let its velocity be v1. In an infinitesimal time dt the displacement of the body is 

equivalent to a translation  v1dt  and a rotation  d
→−
n  about  P.  The displacement of any particle  Q 

of the body  v1dt + d→−n  × →−r , where 
→−
r  = 

−
P
−→
Q. Therefore the velocity of  Q  is 

→−
V  = 

−
V
→

1  + →−ω × →−r (2.2.1) 

where  ω =  
d
→−
n 

. 
dt 

This velocity consists of two parts: (i) the velocity  v1  of the base point and (ii) the velocity 
→−ω ×→−

r 

of Q relative to P. The velocity of Q relative to P is same as if the body were turning out P (as 

fixed point) with angular velocity 
→−ω .  If the base point  P  is altered, then the translation  v1dt  is 

changed, but the rotation  d
→−
n  remains the same. The vector  ω pertains to the motion of the body 

as a whole and hence it is the angular velocity of the body. As ω does not depend on the choice 

of the base point it has be considered as a free vector. 

The equation (2.2.1) is the velocity of any point of the body when the angular velocity 
→−ω  and the 

velocity 
→−
v1  are known.  Thus, the two vectors 

→−ω  and 
→−
v1  completely describe the motion.  From 

(2.2.1), the acceleration 
→−
a  can be found by differentiation. 

→−a  =  
d→−v 

=  
d
→−
v1  

+ 
d
→−ω 

× →−r  + →−ω × 
d
→−
r 

, 
   

dt dt dt dt 

where  
d
→−
v1

 

dt is the acceleration 
→−
a1  of the base point  P.  It depends only on the motion of  P  and 

not on the angular velocity. The term  
d
→−
r
 

dt 
is the velocity of Q relative to P. Hence from 

→−
V  =  

d→−r 

dt 
= →−ω × →−r 



dt 
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we have 

→−
a  = →−a1 + 

d
→−ω 

× →−r  + →−ω × (→−ω × →−r ) (2.2.2) 



 

X
I =  m pi 

Objectives 

3.1 Introduction 

3.2 The Momental Ellipsoid 

3.3 Method of Finding Principal Axes and Moments of Inertia 

3.4 Method of Symmetry 

3.5 The Momental Ellipse 

3.6 Moments of Inertia of Some Simple Bodies 

Objectives 

Upon completion of this Unit, the students will be able to 

x find the principal axes and moments of inertia. 

x identify the momental ellipse. 

 

 

BLOCK-I 

UNIT 3 

Moments and Products of Inertia 
 

 
 

 

3.1 Introduction 

Definition 3.1.1. The moment of Inertia of a particle about a line L is defined as I = mp
2, where 

m is the mass of the particle and p is the perpendicular distance of the particle from the line L. 

For a system of particles, the moment of inertia is defined as the sum of the moments of inertia 

of the separate variables. Thus if the system of n particles of masses m1, m2, · · · , mn, located at 

distances p1, p2, · · · , pn from the line L, then the moment of inertia of the system about the line 

L is 
n
 

2 
i 

i=1 

Definition 3.1.2. Let A, B be two planes and let p, q denote the perpendicular distances from 

11 



. 

⇒ 

12 3.1. INTRODUCTION 

them of a particle of mass m. The distance is taken positive or negative according as the particle 

lies on one side or the other side of the corresponding plane. The product of inertia of the particle 

with respect to the planes A, B is defined by the product mpq. For a system of particles, the 

product of inertia is the sum of the products of inertia of several variables. 

If m is the mass of a typical particle, with co-ordinates (x, y, z) in the XYZ plane then the 

moments of inertia of the system of particles about the axes Ox, Oy and Oz are respectively 

given by 

A = 
X 

m(y
2
 + z2

), B = 
X 

m(z
2
 + x2

), C = 
X 

m(x
2
 + y2

) (3.1.1) 

Here the summation extends over all the particles of the system. The product of the inertia with 

respect to the co-ordinate planes, taken in pairs are 

F = 
X 

myz, G = 
X 

mzx, H = 
X 

mxy (3.1.2) 

The summations are replaced by integrations for a continuous distribution of matter. In this case, 

the mass m is replaced by the mass ρdv where ρ is the density of a small volume element dv. 

Result.1 If the moments of inertia and the products of inertia are known, then we can find the 

moment of inertia I of the system about any line through O. 

Proof. By definition, I = mp
2, where p is the perpendicular distance of a typical particle P 

(of mass m ) from the line L. 

 

 

 

From the figure, 

sin θ =
 p 

p = OP sin θ 
OP 



X X X 

X X X 
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where θ is the angle between OP and L. Thus p equals the magnitude of the vector product 
→−
λ × →−r , where 

→−
λ  is a unit vector along  L  and 

→−
r  = O

−→
P  The components of 

→−
λ  are the direction 

cosines α, β, γ, of L and the components of 

components of 
→−
λ × →−r   are 

→−
r   are the co-ordinates  x, y, z  of  P.  Thus the 

βz − γy, γx − αz, αy − βx. 

Since p is the magnitude of the vector with these components, we have 

I = 
X 

m
.
(βz − γy)

2
 + (γx − αz)

2
 + (αy − βx)

2
. 

(3.1.3) 

I =   α2
 m(y

2
 + z2

) + β2
 m(z

2
 + x2

) + γ2
 m(x

2
 + y2

) 

−2βγ myz − 2γα mzx − 2αβ mxy 

I = Aα2
 + Bβ2

 + Cγ2
 − 2Fβγ − 2Gγα − 2Hαβ. 

This gives I in terms of A, B, C, F, G, H and the direction cosines L. Hence the moment of 

inertia of the system about any line through C can be found if A, B, C, F, G, H are known. ■ 

 
3.2 The Momental Ellipsoid 

 
We obtain the moments of inertia about all lines through O by varying α, β, γ in (3.1.3). If I is 

the moment of inertia about the line in consideration, let us measure a distance OQ =
 1  

 
I 

along 

each line through O. The locus of the point Q is 

 
Ax

2
 + By

2
 + Cz

2
 − 2Fyz − 2Gzx − 2Hxy = 1 (3.2.1) 

This represents the equation of a quadratic surface with center O. Since I does not vanish for 

any line, the quadratic surface is generally a closed surface. Hence (3.2.1) is the equation of an 

ellipsoid, which is called the “momental ellipsoid ”at O. 

By inspecting the coefficients in the equation of momental ellipsoid, we can find the moments and 

products of inertia with respect to the axes of coordinates(if the equation of momental ellipsoid 

at point is known). The equation of momental ellipsoid changes from (3.2.1) to the following 
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equation under rotation of axes from oxyz to oxJyJz. 

AJxJ2 + BJyJ2 + CJz
2
 − 2FJyJzJ − 2GJzJxJ − 2HxJyJ = 1 (3.2.2) 

For the new axes, the moments and products of inertia are given by the coefficients 

AJ, BJ, CJ, FJ, GJ and HJ. 

Existence of Principal Axes and Moments of Inertia 

Let oxyz be any axes. Then the moments of inertia I from (3.2.2) attains its maximum value for 

some line L1. Let this maximum be I1. Let us consider the axes oxJyJzJ so that oxJ coincides 

with L1. At present, let the other two axes be unspecified except for the conditions that they shall 

be perpendicular to oxJ and to one another. 

Then for any line L, the moment of inertia is 

 
I = AJαJ2 + BJβJ2 + CJγJ2 − 2FJβJγJ − 2GJγJαJ − 2HαJβJ 

where AJ, BJ, CJ FJ, GJ, HJ are the moments and products of inertia for the axes OxJyJzJ and 

αJ, βJ, γJ are the direction cosines of L relative to OxJyJzJ. If we take αJ = 1, βJ = γJ = 0, then 

L coincides with LJ and hence AJ = I, the maximum moment of inertia. 

We now show that GJ = HJ = 0 is necessary consequence of the fact that I is maximum for 

αJ = 1, βJ = γJ = 0. 

Since αJ2 + βJ2 + γJ2 = 1, we have 

I − I1 = −2αJ(GJγJ + HJβJ) + (BJ − I1)βJ2 + (CJ − I1)γJ2 − 2FJβJγJ (3.2.3) 

If we take a line L near L1, αJ will be approximately one and βJ, γJ are negligibly small. 

If at least one of GJ HJ is different from zero, we choose βJγJ, so that (GJγJ + HJβJ) is negative. 

But since βJ and γJ are small, the sign of the right hand side of (3.2.3) is determined by the first 

term. Hence I − I1 may be made positive. But this is not possible, since I1 is the maximum of I. 

Therefore, the assertion, we made about GJ and HJ is false, and we conclude that GJ = HJ = 0. 
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Therefore, for any line L, we have 

 
I = I1α

2
 + BJβJ2 + CJγJ2 − 2FJβJγJ. 

This is true for all axes oJxJyJzJ, with oxJ coinciding on L1. 

Now let us consider oyJ subject to the condition that, of all lines perpendicular to oxJ, oyJ has the 

maximum moment of inertia say I2. Then BJ = I2 and so for any line L. 

 

I = I1αJ2 + I2βJ2 + CJγJ2 − 2FJβJγJ 

For any line L perpendicular to oxJ, αJ = 0, βJ2 + γJ2 = 1 and hence 

 

I − I2 = −2FJβJγJ + (CJ − I2)γJ2 

If we consider a line near oyJ, then βJ will be approximately one and γJ will be negligibly small. 

It is evident that if FJ does not vanish, we can make I greater than I2 which is again impossible, 

since I2 is a maximum. Hence FJ = 0 and for any line L 
 

 

From, γJ2 = 1 − αJ2 − βJ2, we have 

I = I1αJ2 + I2βJ2 + CJγJ2. 

 

I − CJ = (I1 − CJ)αJ2 + (I2 − CJ)βJ2 ≥ 0 

and so the third moment of inertia CJ is the least of all moments of inertia for lines through o. 

We summarise as “It is always possible to choose rectangular axes oxyz such that the moment of 

inertia I of a system about a line L through o is given by 

 
I = Aα2

 + Bβ2
 + Cγ2

 (3.2.4) 

 
where α, β, γ are the direction cosines of L relative to oxyz. ”“These axes are called principal 

axes of inertia at o, and the moments of inertia A, B, C about them are called principal moments 
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of inertia”. The planes defined by the principal axes are called principal planes. 

From (3.2.4), there are no terms of E, G and H and hence the product of inertia vanishes 

for any pair of principal planes. The equation of the momental ellipsoid for principal axes is 

Ax
2
 + By

2
 + Cz

2
 = 1. 

 
3.3 Method of Finding Principal Axes and Moments of Inertia 

 
Let oxJyJzJ be the principal axes and AJ, BJ, CJ be the principal moments of inertia. Any point P 

has two sets of coordinates (x, y, z) and (xJ, yJ, zJ) according to the axes. One set of coordinates 

are the linear functions of the other such that 

 

x
2
 + y2

 + z2
 = xJ2 + yJ2 + zJ2 

 
for every P. Also 

 
Ax

2
 + By

2
 + Cz

2
 − 2Fyz − 2Gzx − 2Hxy = AJxJ2 + BJyJ2 + CJzJ2 

for every p. Therefore 

Ax
2+By

2
Cz

2−2Fy
2−2Gzx−2Hxy−K(x

2+y
2+z

2
) = AJxJ2+BJyJ2+CJzJ2−K(xJ2+yJ2+zJ2)   (3.3.1) 

is true for any K. 

Let the above identity be denoted by Φ. Consider the equations 
 

 

 
 

Then, we have 

∂Φ 

∂xJ = 0, 
∂Φ 

∂yJ = 0 and 
∂Φ 

∂zJ = 0. (3.3.2) 

 

(AJ − K)xJ = 0, (BJ − K)yJ = 0, (CJ − K)zJ = 0 ⇒ xJ = yJ = zJ = 0 or AJ = BJ = CJ = K. 



. . 

3.3. MeTHOD Of FINDINg PRINCIpal Axes aND MOMeNTs Of INeRTIA 17 

Rejecting the trivial solutions, xJ = yJ = zJ = 0, we have the following solutions, 

 

K = AJ, xJ − arbitrary, yJ = 0, zJ = 0. 

K = BJ, xJ = 0 yJ − arbitrary, zJ = 0. 

K = CJ, xJ = 0, yJ = 0, zJ − arbitrary. 

Thus (3.3.2) have non-trivial solutions with K equal to one of the principal moments on inertia; 

the corresponding values of xJ, yJ, zJ gives the principal axes. 

Now 
∂Φ ∂Φ ∂xJ ∂Φ ∂yJ ∂Φ ∂zJ 

 
Similarly, we can write for 

∂Φ
 

∂y 

∂x 
= 

∂xJ 
. 
∂x 

+ 
∂yJ 

. 
∂x 

+ 
∂zJ 

. 
∂x 

and 
∂Φ 

. 
∂z 

From (3.3.2), 
∂Φ 

= 0, 
∂x 

∂Φ 
= 0 and

∂Φ
 

∂y ∂z 

 
= 0. (3.3.3) 

If K, xJ, yJ, zJ are chosen as above, (3.3.2) is satisfied. Hence (3.3.3) gives 

 

(A − K)x − Hy − Gz = 0 

−Hx + (B − K)y − Fz = 0 

−Gx − Fy + (C − K)z = 0 

These equations have a solution other than x = y = z = 0. Hence 

 

 

 
 

(3.3.4) 

 

.A − K −H −G . 

−H B − K −F = 0 

. −G −F C − K. 
 

The above equation is a cubic equation in K. It’s three roots are the three principal moments of 

inertia. Let us sum up “starting with general axes oxyz with moments and products on inertia 

A, B, C, F, G, H. The three principal moments of inertia at O are the values of K satisfying the 

above cubic equation and the directions of the three principal axes are given by the ratios x : y : z 
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determined by (3.3.4), when the above values of K are substituted. 

 
 

3.4 Method of Symmetry 

If we rotate a body of resolution about it’s axis through any angle, we do not alter the distribution 

of matter - the whole body appears exactly as before. In a similar manner, if we turn a three - 

bladed propeller about it’s axis through an angle 
2π

, the final distribution of matter is the same 
3 

which we started. These rotations are examples of covering operations. 

A covering operation for a body is a transformation which does not alter the distribution of matter 

as a whole, although the individual particles are moved. In the case of a curve or surface, where 

the distribution of matter is involved, a covering operation is a transformation that bears the curve 

or surface unchanged as a whole. 

We shall consider the following covering operations: 

(i) a rotation about a line or axis and (ii) a reflection in a plane. A body is said to possess symmetry 

whenever there exists a covering operation for that body. 

(i) If the operation is a rotation through an angle
 2π

 
n 

about an axis (where n is a positive integer 

other than one), then the axis is called an axis of n -gonal symmetry for n = 2, 3, 4, the symmetry 

is diagonal, trigonal and tetragonal respectively. Thus for a 2− bladed propeller, the axis is of 

diagonal symmetry; the axis is of diagonal symmetry; for a 3− bladed propeller, the axis is of 

trigonal symmetry. (ii) If the operation is a reflection in a plane, then that plane is a plane of 

symmetry for the body. 

 

Theorem 3.4.1. A covering operation for a body, which leaves a point O of the body unchanged, 

is a covering for the momental ellipsoid at O. 

 
Proof. The proof of the theorem depends on the following points: 

(a) When a body rotated about a line, the momental ellipsoid at any point on the on the line turns 

with the body. 

(b) When a body is reflected in a plane, the momental ellipsoid at any point on the plane is also 

reflected in this plane. 
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When the rotation (or reflection) is a covering operation for the body, the distribution of matter is 

unaltered and the momental ellipsoid at a point on the axis of rotation (or in the plane of reflection) 

is the same as before. The rotation (or reflection) is hence a covering operation for the momental 

ellipsoid also, which proves the theorem. ■ 

 

From the geometry of ellipsoid, we know that, there are only very special covering operations, 

in the case where the axes are unequal. They are 

(i) a rotation through an angle π about a principal axis and (ii) a reflection in a principal plane. 

If the ellipsoid has more general covering operations, it must necessarily be of revolution or in 

particular, a sphere. 

For example, if the covering operation is a rotation through an angle 
2π

, then the ellipsoid must 
3 

be of revolution. If the covering operation is a rotation through an angle π about a line L, then L 

must be a principal axis. If the covering operation is a reflection in a plane P, then P must be a 

principal plane. 

Let us now apply the above facts to the momental ellipsoid. Then the following facts are obvious. 

(a) An axis of n− gonal symmetry is a principal axis of inertia at any point of itself (Eg. - a 2-

bladed propeller). 

(b) At any point on an axis of trigonal or tetragonal symmetry, the momental ellipsoid has this 

axis for the axis of revolution and two of the principal moments of inertia are equal (Eg. - a 3− 

or 4 bladed propeller) 

(c) The normal to a plane of symmetry is a principal axis of inertia at a point where it cuts the 

plane of symmetry. (Eg. - the hull of a ship). 

 
3.5 The Momental Ellipse 

 
We now consider a distribution of matter in a plane P and let ox, oy be the rectangular axes in 

the plane. Since plane P is a plane of symmetry, its normal at O is a principal axis of inertia and 

the section of the momental ellipsoid at O by the plane P is a principal section. This is called 

the momental ellipse at O. Let A and B be the moments of inertia about ox and oy respectively 
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and H be the products of inertia with respect to planes through ox, oy perpendicular to P. Then 

the equation of this ellipse is 

Ax
2
 − 2Hxy + By

2
 = 1 (3.5.1) 

(We obtain this by introducing the third axis oz and putting z = 0 in the equation of momental 

ellipsoid). It is clear that the principal axes of this ellipse are the principal axes of this ellipse are 

the principal axes of inertia at O. We proceed in the following way to find them. Let oxJ, oyJ 

be the new axes, oxJ making an angle θ with ox. If (xJ, yJ) and (x, y) are the co-ordinates of a 

point referred to the axes oxJyJ and oxy respectively, then 

 

x = xJ cos θ − yJ sin θ 

y = xJ sin θ + yJ cos θ 

 
(3.5.2) 

 

The equation of ellipse (3.5.1) referred to the axes oxJ, oyJ is 
 
 

A(xJ cos θ − yJ sin θ)
2
 − 2H(xJ cos θ − yJ sin θ)(xJ sin θ + yJ cos θ)  

+B(xJ sin θ + yJ cos θ)
2
 = 1 

A(xJ2 cos
2
 θ + yJ2 sin

2
 θ − 2xJyJ cos θ sin θ) 

−2H(xJ2 sin θ cos θ − xJyJ sin
2
 θ + xJyJ cos

2
 θ − yJ2 sin θ cos θ) 

+B(xJ2 sin
2
 θ + yJ2 cos

2
 θ + 2xJyJ sin θ cos θ) 

 

 

 

 
= 

 

 

 
1 

 

or 

 

 
where 

 
AJxJ2 − 2HJxJyJ + BJyJ2 = 1, (3.5.3) 

 
AJ = A cos

2
 θ − 2H sin θ cos θ + B sin

2
 θ 

HJ = (A − B) sin θ cos θ + H(cos
2
 θ − sin

2
 θ) 

BJ = A sin
2
 θ + 2H sin θ cos θ + B cos

2
 θ 

(3.5.4) 
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If HJ = 0, then (3.5.3) represents the equation of an ellipse referred to principal axes at it’s center. 

HJ = 0 ⇒  
(A − B) 

 
sin 2θ 

2 
+ H(cos 2θ) (3.5.5) 

(From (3.5.5) and using the trigonometric identities sin 2θ = 2 sin θ cos θ, cos 2θ = cos
2
 θ −sin

2
 θ. 

Dividing (3.5.5) by cos 2θ  on both sides, we get 
 

tan 2θ =
 2H  

 

B − A 

Hence oxJ and oyJ are the principal axes of inertia at O if (3.5.6) is satisfied. 

 
 

3.6 Moments of Inertia of Some Simple Bodies 

 

(3.5.6) 

 

Let us consider the equation of an ellipsoid E with semi axes a, b, c referred to as principal axes 

at its center. The equation is 

x2 y2 z2 

a2 
+ 

b2 
+ 

c2 
= 1 

The moment of inertia about the x− axis is 

$ 
A 

= (y
2
 + z2

)dxdydz 
ρ 

C 

 

where ρ is the density. Let xJ 

 
A 

x 
= 

a
, yJ 

$ 

y 
= 

b
, 

z 
zJ = 

c
. 

 
Then the above equation becomes 

= (b
2
yJ2 + c2

zJ2)(adxJ)(bdyJ)(cdzJ), (3.6.1) 
ρ 

S 
 

where S is a unit sphere and range of integration is the interior of S. From the symmetry of S, 

we have $ 

 
S 

 

$ 

yJ2dxJdyJdzJ = 

S 

 
zJ2dxJdyJdzJ 

$ $ 

yJ2dxJdyJdzJ = 
1

 
2 

S S 

(yJ2 + zJ2)dxJdyJdzJ (3.6.2) 
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The last integral is the moment of inertia of s sphere (of unit radius and density) about a diameter. 

To find the moment of inertia of a solid sphere of mass m and radius a about a diameter, we 

imagine that it is split into thin circular disks by planes perpendicular to the diameter. 

 

 

 

 
The above figure shows the section of the sphere by a plane through the diameter (ox) about 

which the moment is to be calculated. If ρ is the density of the material, the mass of the disk 

between planes at distances x, x + dx from the center is ρπy
2
dx, where y is the radius of the disk. 

The moment of inertia of the disk is 

 

dI = 
1 

πρy
4
dx 

2 
1 

I = 
2 

πρ 

 8  

a

(a
2
 

−a 

x
2
)

2
dx, (∵ y2

 = a2
 − x

2
) 

I = 
15 

πρa
5
 

 

As the sphere is of unit radius and density,  
I = 

8π 

15 

 

 

(3.6.3) 

∫ 

− 



× 
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Hence 

A 
=   abc 

8π 
(b

2
 + c2

) (using (3.6.2) and (3.6.3) in (3.6.1)) 

ρ 2 × 15 

A   = 
4πρabc 

(b
2
 + c2

) 
15 

But m   = 
4 

πρa
3
 (here a is the radius o f the sphere) 

3 

m   = 
4 

πρ 
3 

∴ A   = 
m 

(b
2
 + c2

) 
5 

S imilarly, B = 
m 

(c
2
 + a2

) 
5 

B   = 
m 

(a
2
 + b2

) 
5 

 
The following table gives the principal axes and moment of inertia at the mass center of some 

simple bodies. In all cases, the bodies possess constant density. 
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Body(mass= 

 
m) 

Principal axes (at mass center 

O) 

Principal moments of 

inertia 

 
Rectangular plate (edges 

2a, 2b) 

Ox, Oy parallel to 

edges 2a, 2b respectively; Oz 

perpendicular to plate 

 
A 

C 

1 
= 

3 
mb

2, B = 1
 ma

2, 
3 

= 1
 m(a

2
 + b2

) 
3 

 
Solid rectangular 

cuboid (edges 2a, 2b, 2c) 

 
Ox, Oy, Oz parallel 

2a, 2b, 2c, respectively 

 
edges 

A = 
1 

m(b
2
 + c

2
), B = 

1 
3 

3 
m(c

2
 +a

2
), C = 1 m(a

2
 + 

3 

b
2
) 

Circular plate (semi axes 

a, b) 

Ox, Oy  in plane  of plate; Oz 

perpendicular to plate 

A = B = 
1 

ma
2, C = 

1 
4
 

2 
ma

2, 

 

Elliptical 

axes a, b) 

 
plate (semi 

Ox, Oy along semi axes,a, b 

respectively; Oz 

perpendicular to plate 

 

A 

C 

1 1 
= 

4 
mb

2, B = 
4 

ma
2, 

1 
= 

4 
m(a

2
 + b2

) 

Solid circular cylinder 

(radius a, length 2l) 

Ox, Oy perpendicular to axis; 

Oz along axis 

A = B =
 1 

m(3a
2
 + 4l

2
), 

1 
12 

C = 
2 

ma
2
 

Solid elliptical cylinder 

(semi axes a, b; length 

2l) 

Ox, Oy along semi axes a, b 

of section, respectively; Oz 

along axis of cylinder 

A = 
1 

m(3b
2
 + 4l

2
), 

1 
12 

B = 
12 

m(3a
2
 + 4l

2
), C = 

1 
m(a

2
 + b2

), 
4 

Sphere (radius a) 
Ox, Oy, Oz any 

perpendicular line 

three 
A = B = C = 

2 
ma

2
 

5 

 
Solid ellipsoid (semi 

axes a, b, c) 

 
Ox, Oy, Oz along semi axes 

a, b, c respectively 

A = 
1 

m(b
2
 + c

2
), 

1 
5 

B = 
5 

m(c
2
 + a2

), C = 

1 

5 
m(a

2
 + b2

), 

 

The most of the results given in the table provide us the following rule known as Routh’s rule: 

Routh’s Rule: 

For solid bodies of the cuboid, elliptical cylindrical and ellipsoidal types, the moment of inertia 
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about a principal axis through the center is equal to 
m(a2 + b2)

 
n 

25 

 
where m is the mass of the body, 

a, b are the semi axes perpendicular to the principal axis in consideration, and n = 3, 4 or 5 

according as the body belongs to the cuboid, elliptical cylindrical or ellipsoidal type. 

The Methods of Decomposition and Differentiation The method of decomposition to calculate 

the moment of inertia of a body consists of dividing the body into a number of parts for each 

which the moment of inertia known. By adding the moments of inertia of these parts, we get the 

moment of inertia of the whole body. 

The method of differentiation can be used to find the moment of inertia of a shell when the 

corresponding moment of inertia for a similar solid is known. 

Equimomental Systems 

Two distribution of matter which have the same total mass and the same principal moments of 

inertia at the mass center are said to be equimomental systems. 

Example 1. A hoop of mass m and radius
 a  

 
2 

is equimomental with a circular plate of mass m 

and radius a. Two rigid bodies are equimomental have the same dynamical behavior. That is, two 

such bodies will behave in the same way, when acted on by identical force systems. 

, 
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2 

X 

Objectives 

4.1 The Kinetic Energy of a Rigid body with respect to a Fixed Point 

4.2 The Kinetic Energy of a Rigid Body in General 

4.3 Angular Momentum 

4.4 Angular Momentum of a Rigid Body 

4.5 Worked Examples 

Objectives 

Upon completion of this Unit, the students are expected to 

x understand the concept of kinetic energy of a rigid body. 

x identify angular momentum of a rigid body. 

x find moment of inertia, magnitude of velocity and acceleration. 

 

 

BLOCK-I 

UNIT 4 

Kinetic Energy 
 

 
 

 

4.1 The Kinetic Energy of a Rigid with respect to a Fixed Point 

 
Consider a rigid body turning about a fixed point O with angular velocity ω. A particle P of this 

body with velocity 
→−
v   and mass  δm  has kinetic energy  

1 
δmv

2. 

The kinetic energy of the body is  
T = 

1 
δmv

2
 (4.1.1) 

2 

where the summation extends over all particles of the body. Let us find an alternative expression 

for T, involving the angular velocity  ω and the principal moments of inertia at  O. Let  oxyz 

be the rectangular axes with origin o and 
→−
i , 

→−
j , 

→−
k   be  the  unit  vectors  along  them.   Then 



.
. 

.
.
 

n 

1 2 3 

2 1 2 3 

2 1 2 3 

= 
2 

ω i i 2 
i=1 
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→−
r  = x

→−
i  + y

→−
j  + z

→−
k   and 

→−ω = ω1

→−
i  + ω2

→−
j  + ω3

→−
k , where 

→−
r  = 

−
O
−→

P. 

For the velocity 
→−
v   of  P, 

→−
v  = →−ω × →−r (4.1.2) 

→−
i
 

. 
→−
j
 →−

k
 . 

→− →− →− 

i.e.,→−v  =  ω1 ω2 ω3   = (ω2z − ω3y) i  + (ω3 x − ω1z) j  + (ω1y − ω2 x) k 

x y z 

Using (4.1.2) in (4.1.1), we get 

2T = 
X 

δm
.
(ω2z − ω3y)

2
 + (ω3 x − ω1z)

2
 + (ω1y − ω2 x)

2
.
 

2T =  ω2
 
X 

δm(y
2
 + z2

) + ω2
 
X 

δm(z
2
 + x2

) + ω2
 
X 

δm(x
2
 + y2

) 

–  2ω2ω3 
X 

δmyz − 2ω3ω1 
X 

δmzx − 2ω1ω2 
X 

δmxy 

i.e., T = 
1 

Aω2
 + Bω2

 + Cω2
 − 2Fω2ω3 − 2Gω3ω1 − 2Hω1ω2

 
(4.1.3) 

 

where A, B, C are the moments and products of inertia for oxyz. If the axes are the principal 

axes of inertia, then F = G = H = 0. Therefore (4.1.3) reduces to 

T = 
1 

Aω2
 + Bω2

 + Cω2
 

(4.1.4) 
 

where A, B, C are now principal moments of inertia. 

Remark. For a rigid body turning about a fixed line L through O, the expression (4.1.3) 

simplifies to 

T 
1  2 

X 
m

2
r

2
 =

 1
Cω2

 

where C is the moment of inertia about the line L [we have to take oz along L, which gives 

ω1 = ω2 = 0, ω3 = ω]. 



T1 = 
1 

Aω2
 + Bω2

 + Cω2
 
 

2 0 2 1 2 3 
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4.2 The Kinetic Energy of a Rigid Body in General 

Let us find the kinetic energy T of a rigid body moving in space. From Konig’s theorem, we have 

T = 
1 

mν2
 + T1 (4.2.1) 

2 0 

 
where m = mass of the body 

ν0 = speed of mass center 

T1 = kinetic energy of motion relative to mass center. 

The mass center may be regraded as a base point in the body and hence the motion relative to the 

mass center is the motion of a rigid body turning about a fixed point. Thus 

 

 

 
Hence 

2 1 2 3 

T = 
1 

mν2
 + 

1 
Aω2

 + Bω2
 + Cω2

 
(4.2.2) 

 

where A, B, C are the principal moments of inertia at the mass center and ω1, ω2, ω3 are the 

components of the angular velocity ω in the directions of principal axes of inertia at the mass 

center. 

 

 
 

4.3 Angular Momentum 

 
The angular momentum of a particle about a line is the moment of the linear momentum vector 

about the line in consideration. 

Angular Momentum of a Particle 

Let us consider a particle of mass  m  moving with velocity 
→−

v  relative to same frame of reference 

S .  The linear momentum is the product of mass and velocity  i.e.,  m→−
v .  The angular momentum 



X→−  
×
 

X 
−
 X 

−
 X 

−
 

X→−  
×
 

XJ→−  
×
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H  about any point  O  is defined as the moment of  m
→−

v   about  O. 

→−
H = →−r  × m→−

v (4.3.1) 

where 
→−

r   is the position vector of the particle with respect to  O. 

Angular Momentum of a System of Particles 

The angular momentum of a system of particles is the vector sum of the angular momenta of the 

several particles.  Let  mi− be the mass of the  i
th

  particle,  
→−

ri ,  the position vector of the particle 

relative to a point  O, and 
→−

vi  the velocity of the  i
th

  particle. The angular momentum about  O  is 

m 

H = (
→−

ri mi
→−

vi ) (4.3.2) 

i=1 

 

where n is the number of particles in the system. If O is fixed in the frame of reference, then 
 

→−v1  = →−r
˙ = ẋi

→−
i  + ẏi

→−
j  + żi

→−
k . 

 

From (4.3.2), the components of H along the rectangular axes fixed in the frame are 
 

n 

mi(yiz˙i ziy i̇), 
i=1 

n 

(zi x i̇ xiz˙i) and 
i=1 

n 

mi(xiy˙i yi x i̇) (4.3.3) 
i=1 

 

If we change the frame of reference to a new frame say  S J, with velocity 
→−
v1  of transition relative 

to  S , then the velocities of a particle 
→−

vi  and 
→−

vi J relative to  S  and  S J are connected by 

→−
vi  = →−v1 + →−vi J (4.3.4) 

 
Then the angular momenta about O are 

 

 

 

 
for S and 

n 

H = (
→−

ri mi
→−

vi ) 

i=1 

 

 
n 

H   = (
→−

ri mi
→−

vi J) 
i=1 

i 



  X  →− 
 →−

×
 

X 

  J→−

 →−
⇒
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for  S J Substituting (4.3.4) in the above expression for 
→−

H , we have 

 

 

 

If O is the mass center, then 

 
n 

H = mi
→−

ri 
→−
v1 + H (4.3.5) 

i=1 

n 

mi
→−

ri  = 0 H = H 

i=1 

i.e., angular momentum about the mass center is the same for all frames of reference in relative 

transitional motion. 

 

 
 

4.4 Angular Momentum of a Rigid Body 

 
The angular momentum about O can be written as 

→−
H = 

X
(
→−

r  × δm . →−v ) (4.4.1) 

where  δm  is the mass of a typical particle 
→−

r ,  the position vector of the particle with respect to 

O  and 
→−

v ,  the velocity of the particle.  Since 
→−

v  = →−ω × →−r ,  where 
→−ω  is the angular velocity of 

the body, we have 

 

 

 

 
using vector triple products. 

→−
H = 

X 
δm

.→−
r  × (→−ω × →−r )

.
 

→−
H = 

X 
δm . 

.
ωr

2
 − →−r (

→−ω . →−r )
. 

(4.4.2) 

Let 
→−

i , 
→−

j , 
→−

k   represent an orthogonal triad about  O. Then 
 

→−
r  = x

→−
i  + y

→−
j  + z

→−
k and 

→−ω = ω1

→−
i  + ω2

→−
j  + ω3

→−
k 



− 
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Let  A, B, C, F, G, H  be the moments and products of inertia with respect to the triad 
→−

i , 
→−

j , 
→−

k . 

The 
→−

H  component in 
→−

i   direction is 

H1 = 
X 

δm
.
ω1(x

2
 + y2

 + z2
) − x(ω1 x + ω2y + ω3z)

.
 

H1 =  ω1 
X 

δm(y
2
 + z2

) − ω2 
X 

δmxy − ω3 
X 

δmzx 

H1 = Aω1 − Hω2 − Gω3 (4.4.3) 

When A, B, C, F, G, H are known for any set of rectangular axes through the mass center, the 

moment of inertia I of the system about any line L can be found in the following manner: 

(i) Find the moment of inertia about a line through the mass center parallel to L. 

(ii) Apply the theorem of parallel axes to find I. 

If A, B, C, F, G, H are known for a point other than the mass center, then I can be found in a 

similar manner by the application of the theorem of parallel axes. 

 

 
 

4.5 Worked Examples 

 
Example 2. Find the moment of inertia of a spherical shell about a diameter. 

 
Solution. Let us consider uniform solid sphere of density ρ and radius a. Its moment of inertia 

about a diameter is 
8π

ρa
5. If the radius of the sphere is increased to a + da, the moment of inertia 

15 

is increased by dI = 
8π

ρ5a
4
da. That is 

15 
 

dI = 
8π

ρa
4
da 

3 

This is the moment of inertia of a spherical shell of radius a, thickness da and mass 4πρa
2
da. 

Hence the moment of inertia of a spherical shell of radius a and mass m, about a diameter is 

2 
ma

2. 
 8π

ρa
4
da = 4πρa

2
da × 

2 
a

2
 
 

Example 3. At time t, the position of a moving particle relative to axes Oxyz is given by 

x = 5 cos 2t, y = 5 sin 2t, z = 4t. Find the magnitude of velocity and acceleration at t = 2. 



, 

, 
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Solution. The position vector of the particle is 

→−
r = x

→−
i  + y

→−
j  + z

→−
k 

→−
r =   5 cos 2t

→−
i  + 5 sin 2t

→−
j  + 4t

→−
k 

velocity →−v = →−r
˙ 

→−
v =   −10 sin 2t

→−
i  + 10 cos 2t

→−
j  + 4

→−
k 

Magnitude o f velocity  = 102 sin
2
 2t + 102 cos2 2t + 42 

= 
√

116 units. 

Acceleration →−a = →−r
¨ 

→−
a =   −20 cos 2t

→−
i  − 20 sin 2t

→−
j 

Magnitude o f acceleration  = 202 cos2 2t + 202 sin
2
 2t 

= 20units. 

 
Example 4. What is the kinetic energy of a circular cylinder of mass m and radius a rolling on 

a plane with linear velocity v. 

Solution. The kinetic energy of a rotating body is given by 
 

1 
T = 

2 
mν 

2 
1
 k2 

+ 
a2

 

 

where 
k
 

a 
is the ratio of radius of gyration to the radius of the body 

k2

 

a2 

 
∴ Kinetic energy T = 

1 
mv

2
 
1 + 

1  
 

for a solid cylinder is 
1 

. 
2 

2 2 

= 
3 

mv
2
 

4 

Example 5. A circular wheel is rolling with constant speed along a straight level track. Find the 

acceleration of the wheel. 

Solution.  Let the base point be the center  O  of the wheel and its velocity be  
→−

v .  This velocity 

lies in the plane of the wheel and it is a constant vector acting along the horizontal. The angular 

velocity 
→−ω  of the wheel is a vector perpendicular to its plane and it is also a constant vector. Let 

A  be a particle of the wheel. Then its velocity is given by 
→−

v  + →−ω × →−r ,  where 
→−

r   is the position 

vector of 
→−

A , i.e.,
→−

r  = O
−→

A. Now  ω × →−r   is a vector perpendicular to 
→−

a . This velocity lies in the 

plane of the wheel (
→−

a  × 
→−

b   is perpendicular to both 
→−

a   and 
→−

b ).  Since 
→−ω  and 

→−
v   are 

constant 



r 
, 
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vectors, the acceleration of A is  
→−a = 

= 

 
→−ω × (→−ω × →−v ) 

→−ω (→−ω .→−r ) − →−r (
→−ω .→−ω ) 

=   [→−ω ,→−ω ,→−ω ] − →−r ω2
 

→−
a =   −→−

r ω2
 

Thus each particle of the wheel has an acceleration of magnitude rω2
 directed towards the center 

O. 

 
 

Check Your Progress 

 
1. Show that the angular velocity about a fixed point A of a particle P moving uniformly in a 

straight line varies inversely as the square of the distance of the line from the fixed point. 

2. A particle moves so that the radial and transverse components of velocity are ar and bθ. Show 

that the radial and transverse components of its acceleration are a
2
r − 

b2θ2

 abθ + 
b

2θ 
 

 

r 

3. A car is travelling with a velocity of v m/s and having a kinetic energy of 12500 kgm
2
 s

2
 and 

it has mass of 250 kg. Compute its velocity. 

4. The motion of a creature in three dimensions are described by x(t) = 3t
2
 + 5, y(t) = −t

2
 + 3t − 2 

and z(t) = 2t + 1 in the x, y and z directions. Find the magnitude of the velocity and acceleration 

at t = 0. 



p 

p AP AP2 
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Answer to Check Your Progress 

 

1. Hint: x = p tan θ ⇒ x˙ = p sec
2
 θθ˙ ⇒ θ˙ =

 k 
cos

2
 θ, where 

35 

 

 

 

x˙ = k, a constant. 

θ˙ = 
k AN 2 

= kp
 1   

 

 

 

2. Hint: ṙ = ar  and  rθ̇ = bθ. Differentiate them with respect to  t, and obtain  r̈ − tθ̇2   and  2ṙθ̇ + rθ̈ 

in terms of r and θ. 

3. Hint: Kinetic energy = 
1 

mv
2
 = 

1 
× 250 × v2

 = 12500 ⇒ v2
 = 100 ⇒ v = 10 m/s. 

2 2 

4. Hint: →−v   = ẋ
→−

i  + ẏ
→−

j  + ż
→−

k   =  6t
→−

i  + (−2t + 3)
→−

j  + 2
→−

k .  At  t  =  0, →−v   =  3
→−

j  + 2
→−

k   and so 
 

|→−v |=  
√

32  + 22   units 
→−

a  = 6
→−

i  − 2
→−

j  ⇒ |→−a |=  
,

62  + (−2)2   units. 
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dt dt 

Objectives 

5.1 Equations of Motion 

5.2 Principle of Angular Momentum 

5.3 Principle of Energy 

Check Your Progress 

Answer to Check Your Progress 

Objectives 

Upon completion of this Unit, the students will be able to 

x find the equation of motion. 

x apply principle of energy. 

 

 

BLOCK-II 

UNIT 5 

Motion of a Particle 
 

 
 

 

5.1 Equations of Motion 

A particle of mass  m  is acted on by a force 
→−

F . Then by the fundamental law, we have 

→−
F  = m→−

a (5.1.1) 

where 
→−

a  is the acceleration relative to a Newtonian frame of reference. Equation (5.1.1) can also 

be written in the form 
 d 

(m
→−

v ) = 
→−

F 
 
since 

→−
a  =  

 d 
(
→−

v )
  

(5.1.2) 



→− − 

– R 
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where  
→−

v   is the velocity of the particle.  The above result is often referred to as the principle of 

linear momentum for a particle: “The rate of change of linear momentum of a particle is equal to 

the applied force.  ”(linear momentum  p =  mass  × velocity).  By resolving the vectors  
→−

a   and 
→−

F  in the directions of rectangular axes  Oxyz, fixed in the frame of reference , we get 

 
mx¨ = X, my¨ = Y, mz¨ = Z (5.1.3) 

where  X, Y, Z  are the components of 
→−

F  along the axes.  Let 
→−

i ,
→−

j ,
→−

k   be the unit vectors along 

the tangent principal normal and binormal to the path of the particle. Then 

→−a = s̈
→−

i 
ṡ

2
→−

j
 

ρ 

 
by(5.1.3) (5.1.4) 

 

where  s  is the arc length along the path and  ρ is the radius of curvature. Let 
→−

F  = F1

→−
i  + F2

→−
j  + 

F3

→−
k  , we get the following intrinsic equations of motion from 

→−
F  = m→−

a . 
 

 
ms¨ 

 

= F1, 
ms˙

2
 

ρ 
= F2, 0 = F3 (5.1.5) 

 

Let us now take 
→−

i ,
→−

j ,
→−

k  be the unit vectors in the directions of the parametric lines of cylindrical 

coordinates (R, ϕ, z). We have from (5.1.3) 

a  = (R̈ Rψ̇2)
→−

i  +  
1  d 

(R
2ψ̇)

→−
j  + z̈

→−
k (5.1.6) 

R dt 

Thus if  
→−

F  =  FR

→−
i  + Fψ

→−
j  + Fz

→−
k ,  then we get the following equations of motion in cylindrical 

polar coordinates. 

m(R̈ Rψ̇2) = F  , m 
1  d 

(R
2ψ̇) = F 

R dt 
ψ 

 
and mz¨ = Fz. (5.1.7) 

+ , 



. . . . 

. . . . 

i.e.,→−r  × F  = . x y z . = . x y z . 
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5.2 Principle of Angular Momentum 
 

By (5.3.1), the angular momentum of a particle about a fixed point O is 

→−
H = →−r  × m→−

v (5.2.1) 

Let us find the rate of change of 
→−

H . Differentiating (5.2.1), we have 
 

→−̇ →−̇ →−
 →
− 

→−̇ 

H = r × m v + r × m v 

=   →−v  × m→−
v  + →−r  × m→−

a 
→−̇ →− →− 
H = 0 + r × F 

 

→−̇ →− →− 

H = r × F (5.2.2) 

where  
→−

F   is the force acting on the particle.  i.e., the rate of change of angular momentum of a 

particle about a fixed point is equal to the moment of the applied force about that point. 

If we take O as the origin of rectangular axes Oxyz and resolve vectors in the directions of these 

axes we get from (5.1.3) and (5.2.2), the following equations, where X, Y, Z are the components 

of F. 
→−

i 
→−

j 
→−

k 
→−

i 
→−

j 
→−

k
 

→− 
 

X Y Z mẍ  mÿ  mz¨ 

i.e.,
→−

i (yZ − Yz) −
→−

j (xZ − Xz) + 
→−

k (xY − Xy) == 
→−

i (myz̈ − mÿz) −
→−

j (mxz̈ − mẍz) + 
→−

k (mzÿ 

− mẍy) i.e., yZ − zY = m(yz̈ − zÿ) 

zX − xZ = m(zx¨ − 

xz̈) 

xY − yX = m(xÿ − 
yẍ) 

(5.2.3) 



2 
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5.3 Principle of Energy 
 

 

For a moving particle 
 

Ṫ  = Ẇ 

 

 
(5.3.1) 

 

where T˙ is the rate of increase of the kinetic energy and  Ẇ is the rate at which the applied 

forces do work. This form of principle of energy is useful in the case where the working forces 

are conservative.  Then  Ẇ   =  −V̇ ,  where  V  is the potential energy of the particle.  Thus (1.3.1) 

becomes  Ṫ  = −V̇ . On integrating 
 

T + V = E (5.3.2) 
 

where E is a constant. ( E = total energy) 

 

Example 6. Apply the principle of energy to the motion of a particle on a smooth sphere. Use 

cylindrical coordinates (R, ψ, z) with origin at the center of the sphere, the axis of z being directed 

vertically upward. 

Solution. The equation of the required sphere is 

 

R
2
 = a2

 − z2
 (5.3.3) 

The force acting on the particle are its weight mg and the normal reaction N of the sphere. By 

resolving these forces along the parametric lines of R, u, z we get from (5.3.3) 

m(R̈ − Rψ̇2) = Fn 

m 
1  d 

(R
2ϕ̇) = F 

R dt 
ψ 

(5.3.4) 

mz¨ = Fz 

 
The above three equations along with (5.3.3) can be used to find N, R, ψ, z as functions of time. 

Hence we notice that, since N does no work, the principle of energy applies. The potential energy 

of the particle is mgz and its kinetic energy is 
1
 mv

2, where v is the velocity of the particle. Hence 

from T + V = E, we have 
1 

mv
2
 + mgz = mE, (5.3.5) 

2 

, where E is the energy constant per unit mass. From (1.2.2) the components of velocity are 



⇒ 

– − 

a2 g 

a2 g 2gR2 

, 
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Ṙ, Rψ̇ and z˙.  
∴ (5.3.5) 

1 
m(Ṙ2  + R2ψ̇ + ż2

) + mgz = mE (5.3.6) 
2 

N and the weight have no moment about Oz. Hence the angular momentum about Oz is constant. 

 
The components of linear momentum in the R and z directions have no moments about Oz. 

The  φ component is  mRψ̇ and its moment is  mR
2ψ̇. Hence 

 
R

2ψ̇  = h (5.3.7) 
 

where h is a constant. This result also follows from the second equation of (5.3.4), since Fψ = 0 

in this case. When the initial position and velocity are known, the constants E and h can be 

obtained and the equations (5.3.3), (5.3.6) and (5.3.7) provide three equations to find R, ψ and Z. 

By differentiating (5.3.3) we have 

Ṙ =  
1
 (−2zz˙) = −, 

zz˙ 
. 

2 

From (5.3.7)  ψ̇  =  
 h 

. Substituting  Ṙ 

R2 

a2 − z2 

and  ψ̇ 

a2 − z2 

in (5.3.6), we have 

 

1 . z
2
z˙

2
 

 

 

2  h2     J2. 
 

2 a2 z2 
+ R 

R4 
z
 

z
2
z˙

2
 h

2 
2
 

+ gz   = E 

a2 − z2 
+ 

R2 
+ z˙ + 2gz = 2E 

z2 

a2 − z2 
+

 
1
    

= 

z˙
2
 

2E 2gz  
h2 

R2 

2g(a
2
 − z2

). E 
− z

  
− 

h
2
 . 

z˙
2
 = 2g .

(z
2
 − z2

)
 
z – 

E   h2 

– 
2g

, since a
2
 − z2 = R2

 (5.3.8) 

The above equation is a single equation for z as a function of t. When this equation is solved, we 

can get  R  in terms of  t  from  R
2
 = a2

 − z2
  and  ψ by a quadrature from  R

2ψ̇  = h. 

− 

 
2ż 

= 
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Check Your Progress 

 
1. Verify the principle of conservation of energy for a particle falling freely under gravity. 

2. Verify the principle of conservation of energy for a particle sliding down as inclined plane 

freely under gravity. 

 
Answer to Check Your Progress 

 
1. Hint: Let the particle start from rest at O and hits the surface of the earth at A with OA = h 

(say). At time t let p be the position of the body with OP = x. T = 1
 mv

2
 = 1

 m(2gx) = mgx 
  

2 2 

 

 

 

 

 

 

[v
2
 = u2

 + 2as] 

V = mg(AP) = mg(h − x). 

T + V = mgx + mg(h − x) = mgh = constant. 

2. Hint: Let OP = x, where P is the position of the particle at time t. 
 
 



− 
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T + V = 
1 

mv
2
 + mg(OA x) sin α 

2 
1 

= 
2 

m(2g sin α) + mg sin α(OA − x) 

= mgOA sin α 

T + V = constant. 
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X→− 

i   i 

n 

Objectives 

6.1 Principle of Linear Momentum 

6.2 Motion of the Mass Centre 

6.3 Principle of Angular Momentum 

Objectives 

Upon completion of this Unit, the student is exposed to 

x motion of the mass centre. 

x principle of angular momentum. 

 

 

BLOCK-II 

UNIT 6 

Motion of a System 
 

 
 

 

6.1 Principle of Linear Momentum 

If  mi  and 
→−

vi  are the mass and velocity of the  i
t
h  particle of a system, then the linear momentum 

is 
n 

P  = mi
→−

vi (6.1.1) 

i=1 

where n is the number of particles. From (6.1.1), 
 

˙ 
P = 

i=1 

m 
→−

v
˙  = 

X

i=1 

 
miai = 

→−
F , (6.1.2) 

 

where 
→−

F   is  the  vector  sum  of  the  extremal  forces.   This  is  known  as  the  principle  of  linear 

momentum. It is stated as follows: “The rate of increase of the linear momentum of a system is 

equal to the vector sum of the external forces ”. 

→

− 

n X 



→− X 
×
 

46 6.2. MOTION Of THe Mass CeNTRe 

6.2 Motion of the Mass Centre 

If  
−
v
→

m   is the velocity of the mass center and  m  is the total mass, the linear momentum 
→−

P  is  m
−
v
→

m 

and (6.1.2) gives 

m
−
v
→

m  = 
→−

F (6.2.1) 

 
This is the equation of motion for a single particle of mass  m  under a force 

→−
F .  We have the 

following result: “The mass center of a system moves equal to the mass of the system, acted on 

by a force equal to the vector sum of the external forces acting on the system”. 

The above statement is useful in the sense that it reduces the determination of motion of the mass 

center of any system under known external forces to a problem in particle dynamics. As examples, 

we may consider the motion of a high - explosive shell or of the earth in its orbit round the sun. 

To find the motion of the mass center of the shell, we need to know only the sum of the forces 

exerted by the air on the elements of its surface and the weight of the shell. 

Similarly, in the case of the earth, its mass center moves like a particle subject to the gravitational 

fields of the sun, moon and other bodies in the solar system. 

 
6.3 Principle of Angular Momentum 

 
The angular momentum of a system of a particles about a point O is 

 

n 

H = (
→−

ri mi
→−

vi ), (6.3.1) 

i=1 

where  mi  is the mass of the  i
t
h  particle, 

→−
ri  is the position vector of the  i

th
  particle relative to  O, 

→−
vi  is the velocity of the  i

th
  particle relative to  O,  n  is the number of particles in the system. 

Let us consider O to be either a fixed point in a Newtonian frame of reference or the mass center 



n 

X 
× × 

→

− 

X 

→

− 

X X 

→

− 

X X n 

n 

H = 

n 

H = 

n 

H = 
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of the system. The rate of change of 
→−

H  is 

→−̇ X  →−̇ →− →− →−̇ 
 
 

H = 
i=1 

n 

ri × mi vi + ri × mi vi 

= (
→−

vi mi
→−

vi + →−ri mi
→−

ai ) 

i=1 

˙ 
(→−ri

 

i=1 

× mi
→−

ai ), (6.3.2) 

where 
→−

ai  is the acceleration of the  i
th

  particle relative to  O. 

If  O  is a fixed point then 
→−

ai  is the acceleration relative to a Newtonian frame and hence 

mi
→−

ai  = 
→−
Fi + 

→−
Fi

J

, 
 

where 
→−
F

i,
 

→−
Fi

J   

are the external and internal forces on the  i
th

  particle respectively.  Hence (??) 

becomes, 
˙ →−ri

 

i=1 

× 
→−
Fi + 

 

n 

→−
ri

 

i=1 

× 
→−
Fi

J 
 
. (6.3.3) 

The internal forces have no moment about any point and so the second summation vanishes. Hence 
 

→−̇ →− 
H = G (6.3.4) 

where 
→−

G  is the total moment of the external forces about the fixed  O.  If  O  is the mass center, 

the acceleration of the i
t
h particle relative to a Newtonian frame S is 

acceleration of O relative to S. 

Therefore the equation of motion of the i
t
h particle is 

−
a
→

m  + →−ai ,  where  a
−→

m   is the 

 

mi(
−
a
→

m  + →−ai ) = 
→−
Fi + 

→−
Fi

J 

(6.3.5) 

Substituting for  mi
→−

ai  in (6.3.3), we have 
 

˙ →−ri
 

i=1 

× (
→−
Fi + 

→−
Fi

J – mi
−
a
→

m) = 

n 

→−
ri

 

i=1 

× 
→−
Fi + 



 

X 
n 

→−ri
 

i=1 

× 
→−
Fi

J – 
X

i=1 

mi
→−ri

 × 

−a→m
 



→

− 

X X n 

i=1 

→

− 

X 

H 

m 

n 

H = 

H = 
n 
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As before, the second summation vanishes and 
 

˙ →−ri
 

i=1 

× (
→−
Fi + 

→−
Fi

J 
– mi

−
a
→

m) = 

n 

→−
ri

 

i=1 

× 
→−
Fi

 – 
X

i=1 

mi
→−

ri
 

× −a→m
 

The last term vanishes, since  
.n

 mi
→−

ri  = 0. Hence, we obtain 
 

˙ →−ri
 

i=1 

× 
→−
Fi

 = 
→−

G
 

 

as in (6.3.4), where G is now the total moment of the external forces about the mass center. 

Hence the principle of angular momentum may be stated as follows: “The rate of change of the 

angular momentum of a system about a fixed point, either fixed or moving with the moving center, 

is equal to the total moment of the external forces about that point. Symbolically, 
→−̇  

= 
→−

G . 
 

Example 7. Let us consider a cylinder rolling down an inclined plane. The mass center moves in 

a vertical plane and so the vectors  
−
v
→̇   

and 
→−

F  lie in this plane. The angular velocity 
→−ω  is parallel 

to the axis of the cylinder and the angular momentum about the mass center is 
→−

H = I→−ω , where  I 

is the moment of inertia about the axis of the cylinder. 

 
Principle of Energy The law of conservation of energy states that the total mechanical energy of 

a system is constant. 

i.e., T + V = E, 

 
where T is the kinetic energy, V is the potential energy and E is the constant total energy. 



 

Objectives 

7.1 Rigid Body with a Fixed Point 

7.2 General Motion of a Rigid Body 

7.3 worked Examples 

Objectives 

Upon completion of this Unit, the students will be able to 

x identify the rigid body with a fixed point. 

x understand general motion of a rigid body. 

 

 

BLOCK-II 

UNIT 7 

Motion of a Rigid Body 
 

 
 

 

7.1 Rigid Body with a Fixed Point 

 
Consider a rigid body constrained to rotate about a fixed point O. The angular momentum about 

O is 
→−

H = Aω1

→−
i  + Bω2

→−
j  + Cω3

→−
k (7.1.1) 

where 
→−

i ,
→−

j ,
→−

k  are the unit vectors in the directions of principal axes of inertia at  O.  A, B, C  are 

the principal moments of inertia at  O,  and  ω1, ω2, ω3  =  components of the angular velocity 
→−ω 

of the body in the directions of, 
→−

i ,
→−

j ,
→−

k   respectively. 

In general, the principal axes at  O  are fixed in the body, where the triad 
→−

i ,
→−

j ,
→−

k   has the angular 

velocity 
→−ω .  In some cases, a principal triad which is neither fixed in the body nor in space may 

be used. Hence to check for all possibilities, let us denote the angular velocity of the triad by 
→−
Ω, 

where 
→−

Ω = →−ω  if the triad is fixed in the body. 
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Let 
→−

Ω = Ω1

→−
i  + Ω2

→−
j  + Ω3

→−
k (7.1.2) 

If 
→−

P  is any vector, then using rate of change of vector, 
 

d
→−

P 

dt 

δ
→−

P
 

= 
δt 

+ 
→−

Ω × 
→−

P (7.1.3) 

Applying (7.1.3) to the angular momentum 
→−

H , we have 
 

→−̇ δH →− →− 
H = 

δt 
+ Ω × H (7.1.4) 

 

→−
˙ 

→− →− →− →− →− →− →− →− →− 

H = Aω˙1 i + Bω˙2 j + Cω˙3 k + (Ω i + Ω2 j + Ω3 k ) × (Aw1 i + Bw2 j + Cw3 k ) 
→−
˙ 

→− →− →− →− →− →− 

H = Aω 1̇ i + Bω 2̇ j + Cω 3̇ k + i (CΩ2ω3 − Bw2Ω3) − j (Cw3Ω1 − AΩ3ω1) + k (Bw2Ω1 − Aw1Ω2) 
 

→−̇ →− →− →− 

H = (Aω̇1 − Bw2Ω3 +CΩ2ω3) i  +(Bω̇2 −Cw3Ω1 + Aw1Ω3) j +(Cω̇3 − Aw1Ω2 + Bw2Ω1) k   (7.1.5) 
 

We know that →

−
˙ 

=  
→−

G ,  where 
→−

G  is the total moment of the external forces about  O.  Hence 

(7.1.5) gives “the equations of motion of a rigid body with a fixed point”which are 

 

Aω˙1 − Bw2Ω3 + Cw3Ω2 = G1 

Bω˙2 − Cw3Ω1 + Aw1Ω3 = G2 

Cω˙3 − Aw1Ω2 + Bw2Ω1 = G3 

where  G1, G2, G3  are the components of 
→−

G  along 
→−

i ,
→−

j ,
→−

k . 

If 
→−

i ,
→−

j ,
→−

k   are fixed in the body, so that 
→−

Ω = →−ω , the equations becomes 

Aω˙1 − (B − C)ω2ω3 = G1 

Bω˙2 − (C − A)ω3ω1 = G2 

Cω˙3 − (A − B)ω1ω2 = 

G3 



 

 

 

 

 
(7.1.6) 

 

 

 

 

 

 

 
 

(7.1.7) 
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The above equations (7.1.7) are called the “Euler’s equation of motion of a rigid body with a fixed 

point. ”If T is the kinetic energy given by 
1
 mν2

 and V is the potential energy, then T + V = E 

by the principle of energy, where E is the energy constant. 

When the working forces are conservative, we can use in place of any of the three equations in 

(7.1.6) or (7.1.7), the following equation is deduced from the above principle of energy. 

1 
(Aw

2
 + Bw

2
 + Cw

2
) + V = E. (7.1.8) 

2 1 2 3 

 
 

7.2 General Motion of a Rigid Body 

Let us consider a rigid body moving in a general motion.  Let 
→−

F  be the total external force and 

→−
G  be the total moment of the external forces about the mass center. 

If  m  is the mass of the body and 
→−

a  is the acceleration of the mass center, then 
→−

F  = m→−
a .  If the 

angular momentum about the mass center is  G, then 
→−̇  

= 
→−

G , for any motion relative to the mass 

center. 

Let us resolve the vectors  
→−

a ,
→−

F ,
→−

H ,
→−

G  along a principal triad  
→−

i ,
→−

j ,
→−

k   at the mass center.  Its 

angular velocity will be denoted by 
→−

Ω .  If the triad is fixed in the body, then 
→−

Ω = −ω→1   the 

angular velocity of the body. Then by (7.1.3) 

a  =  
δ→−v 

δt 
+ Ω × →−v , (7.2.1) 

where 
→−

v  = ν1

→−
i  + ν2

→−
j  + ν3

→−
k   is the velocity of the mass center. Substituting for 

→−
a  in 

→−
F  = m→−

a 

and noting that  
→−̇   

=  
→−

G   leads to equations of the form (7.1.6),  we have the following scalar 

→

− 
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equations of motion. 

m(v˙1 − v2Ω3 + v3Ω2) = F1 

m(v˙2 − v3Ω1 + v1Ω3) = F2 

m(v˙3 − v1Ω2 + v2Ω1) = F3 

Aω˙1 − Bw2Ω3 + Cw3Ω2) = G1 

Bω˙2 − Cw3Ω1 + Aw1Ω3) = G2 

Cω˙3 − Aw1Ω2 + Bw2Ω1) = G3 

 

 

 

 
(7.2.2) 

Here the constants A, B, C are the principal moments of inertia at the mass center. The equations 

(7.2.2) are six equations for the components of velocity of the mass center and the components 

of angular velocity of the body. For any one of these six equations, we can substitute the law of 

conservation of energy 

T + V = E (7.2.3) 

 
provided the external forces are conservative. Explicitly (7.2.3) yields 

 
1 

m(v
2
 + v2

 + v2
) + 

1 
(Aw

2
 + Bw

2
 + Cw

2
) + V = E (7.2.4) 

2 1 2 3 2 1 2 3 

 
 

7.3 Worked Examples 

Example 8.  Show from Euler equations (7.1.7) that if 
→−

G  = 
→−

0  and  A = B, then 
→−ω  is a constant. 

Solution.  
→−

G  = 
→−

0  ⇒ G1

→−
i  + G2

→−
j  + G3

→−
k  = 

→−
0  ⇒ G1 = G2 = G3 = 0.  Putting  A = B,  the three 

Euler’s equations of motion become 

 

Aω˙1 − (A − C)ω2ω3 = G1 = 0 

Aω˙2 − (C − A)ω3ω1 = G2 = 0 

Cω˙3 − (A − A)ω1ω2 = G3 = 0 

 

The third equation become Cω˙3 = 0 ⇒ ω3 = constant = k1(say) 



− 

2 

k 

, 
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Substituting ω3 = k1 in the first two equations, we have 

 

Aω˙1 − (A − C)ω2k1 =0 

Aω˙2 − (C − A)ω1k1 =0 

53 

 

 

 
(7.3.1) 

 

 

(A − C)ω2k1 

ω˙1 
= 

(C − A)ω1k1 

ω2 
ω2 

ω 1̇ 
= 

ω1 

ω˙2 
= k2 (say) 

1 
⇒ ω 2̇ =   k3ω1 (k3 = −

k 
) 

1 
ω˙1 =   k4ω2 (k4 = ) 

2 
 

Hence differentiating the two equations (7.3.1) with respect to time, we have 
 
 

Aω¨1 − (A − C)k1ω˙2 = 0 

Aω¨2 − (C − A)k1ω˙1 = 0 

i.e., Aω¨1 − (A − C)k1k3ω1 = 0 

Aω¨2 − (C − A)k1k4ω2 = 0 

 

 
 

The above two equations represent the equation of simple harmonic motion given by 

where n is the frequency about z axis. 

x¨ + n2
 x = 0, 

 
 

n = 
A − C 

k, (7.3.2) 
A 

 

where K is a constant. We know the simple harmonic oscillation can be written as ω1 = C1 

constant and ω2 = C2 sin nt where C1 and C2 are constants and n is given by (7.3.2). Thus 

→−ω =   ω1

→−
i  + ω2

→−
j  + ω3

→−
k 

→−ω =   C1 cos nt
→−

i  + C2 sin nt
→−

j  + k1

→−
k , (ω3 = k1). 



a 
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The vector  ω1

→−
i  + ω2

→−
j   =  C1 cos nt

→−
i  + C2 sin nt

→−
j   is a vector rotating round the fixed vector 

ω3

→−
k   with frequency  n. Hence the angular velocity 

→−ω  is a constant. 

Example 9. A rectangular plate spins with constant angular velocity ω about a diagonal. Find 

the couple which must out on the plate in order to maintain this motion. 

Solution.  Let  O  be the mass center of the plate and let 
→−

i ,
→−

j   and 
→−

k   be the unit vectors along 

the perpendicular axes of inertia at O. 

The vector 
→−

k  is normal to the plate and 
→−

i   and 
→−

j  lie on the plane of the plate, 
→−

i   being parallel 
 
 

to the length. The principal moments of inertia at O are 

A = 
1 

mb
2, B = 

1 
ma

2, C = 
1 

m(a
2
 + b2

) (7.3.3) 

3 3 3 

where m is the mass of the plate, 2a its length and 2b its breadth. Let α be the angle between 
→−

i   and the axis of rotation so that  tan α =  b . Then the angular velocity of the plate is 

→−ω = ω cos α
→−

i  + ω sin α
→−

j . 

Therefore, the 
→−

i ,
→−

j   and 
→−

k   components of 
→−ω  are 

ω1 = ω cos α, ω2 = ω sin α ω3 = 0 (7.3.4) 

respectively. Substituting (7.3.3) and (7.3.4) in the Euler’s equations of motion, we have 

Aω˙1 − (B − C)ω2ω3 =   G1 

Aω˙2 − (C − A)ω3ω1 = G2 

Cω˙3 − (A − B)ω1ω2 =   G3 



3 

⇒ 

3 

3 3 
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implies that G1 = 0, G2 = 0, G3 = 0 −
 1 

ma
2
 − 

1 
mb

2
 
ω2

 sin α cos α 

i.e., G3 =
 1 

m(a
2
 − b2

)ω2
 sin α cos α. 

tan α = 
b 

sin α = 
a 

b 
√

a2 + b2 

, cos α = 
a 

√
a2 + b2 

.
 

∴ G3 = 
1 

mω2
(a

2
 − b2

) √ 
ab 

a2 + b2 

These are the components of the couple 
→−

G  acting on the plate. 

Example 10. A circular disc of radius r and mass m is supported on a needle point at its center. 

It is set spinning with angular velocity ω0 about a line making an angle θ with the normal to the 

disk. 

(i) Find the angular velocity of the disk at any subsequent time. 

(ii) Find the motion in space of the disk. 

Solution.  In the following figure, 
→−

k   is a unit vector normal to the disk at the center  O,  and 
→−

j 

are fixed in the plane of the disk.  Let us choose 
→−

j   so that the initial velocity of the disk lies in 

the plane of 
→−

k   and 
→−

j . 

The angular velocity at any time is 
→−ω = ω1

→−
i  + ω2

→−
j  + ω3

→−
k .  At  t = 0,  ω1 = 0,  ω2 = ω0 sin θ, 

 

 
ω3 = ω0 cos θ. The principal moments of inertia at O are 

A = 
1 

ma
2, B = 

1 
ma

2, C = 
1 

ma
2. 

4 4 2 

The external forces are the reaction and the weight of the disk. These forces have no moment 
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about O, the Euler’s equations become 

 

Aω˙1 − (A − C)ω2ω3 =   0 

Aω˙2 − (C − A)ω3ω1 =   0 

Cω˙3 =   0 
 

From the last equation, ω˙3 = 0 ⇒ ω3 = constant. 

ω3 = ω0 cos θ. 

Multiplying the second equation by i(= 
√

−1) and adding with the first equation. 

A(ω˙1 + iω˙2) + (C − A)ω3(ω2 − iω1) = 0 

A(ω˙1 + iω˙2) − i(C − A)ω0(ω1 + iω2) = 0 

Let ψ = ω1 + iω2, then we have 

Aψ̇ − i(C − A)ω0 cos θ(ω1 + iω2) = 0. 

A = 
1 

ma
2
 C = 

1 
ma

2
 ⇒ C = 2A 

4 2 

Hence the above equations becomes 
 

Aψ̇ − i(A)ω0 cos θ(ψ)   =   0 

⇒ ψ̇ − iω0 cos θ(ψ)   =   0 

Solving the above differential equation 

ψ = keiω0t cos θ, 

 
where k is a constant. Now ψ = ω1 + iω2, At t = 0, ψ = 0 + iω0 sin θ = k. Hence 

ψ = iω0 sin θ
. 

cos(ω0t cos θ) + i sin(ω0t cos θ)
.
. 
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Equating the real and imaginary parts of ψ, we have 

ω1 = −ω0 sin θ sin(ω0t cos θ) 

ω2 = ω0 sin θ cos(ω0t cos θ) 

 
and ω3 = ω0 cos θ. (ii) To find the motion of the disc in sphere: 

In figure,  
→−

H  is the angular momentum,  
→−ω  is the angular velocity,  

→−
i   and  

→−
j   are unit vectors 

 

 
in the plane of the disk, but not fixed in it, 

→−
k   is a unit vector normal to the plane. The vector 

→−
j 

is taken in the plane determined by  
→−

H  and  
→−

k .  The following facts are noted:  (a) The external 

forces have no moment about  O.  Hence  
→−

H  is a constant vector.  i.e., it has a fixed direction in 
space determined by the initial conditions. 

(b) 
→−

H   =  Aω1

→−
i   +  Bω2

→−
j  + Cω3

→−
k   and  since  A  =  B,  

→−
H   =  Aω1

→−
i   + Aω2

→−
j  + Cω3

→−
k   and 

H1 = Aω1 = 0  implies  ω1 = 0. So  ω lies in the plane of 
→−

j   and 
→−

k . 

(c) The orthogonal triad 
→−

i ,
→−

j ,
→−

k   is not fixed in the disk. So its angular velocity 
→−

Ω  is not same 

as  
→−ω .  The vector  

→−
k   is fixed both in the triad and in the disk.  Here the extremity of  

→−
k   has a 

velocity 
→−

Ω ×
→−

k  (considering as a point of the triad) and a velocity 
→−ω ×

→−
k  (considering as a point 

of the disk). 

∴ (Ω1

→−
i  + Ω2

→−
j  + Ω3

→−
k ) × 

→−
k  = (ω1

→−
i  + ω2

→−
j  + ω3

→−
k ) × 

→−
k 

⇒ Ω1 = ω1 = 0 and Ω2 = ω2 



Ω2 

− 

− 
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Substituting these in the equations of motion of a rigid body with a fixed point which are given by 

 

Aω˙1 − Bω2Ω3 + Cω3Ω2 = G1 

Bω˙2 − Cω3Ω1 + Aω1Ω3 = G2 

Cω˙3 − Aω1Ω2 + Bω2Ω1 = G3 
 

We have 

 

−Bω2Ω3 + Cω3Ω2 =   0 

Aω˙2 =   0 

Cω˙3 =   0 

 

i.e., −Aω2Ω3 + Cω3Ω2 = 0 (since A = B) 

Aω˙2 =   0 

Cω˙3 =   0 
 

Thus ω2, ω3, H2, H3 are constants and 

Ω3 

Ω2 

 
= 

Ω3 

ω2 

 

Cω3 
= 

Aω2 

 

H3 
= 

H2

 

From the first equation, Aω2Ω3 = Cω3Ω2 ⇒ 
Ω3

 = 
Ω3 
ω2 

Cω3 = 
Aω2 

 
Therefore the angular velocity Ω 

of the triad has a constant magnitude and lies along the fixed direction 
→−

H . 

Hence we have the following obvious facts. 

(a) The disc spins about its normal 
→−

k   at a constant rate  ω1. 

(c) The angle  β  between  
→−

k   and  
→−

H  given by  H cos β =  h3  is constant; the normal to the disc 

moves on a cone with axis 
→−

H , turning about 
→−

H  at the constant rate  Ω. 
(c) The angle  θ  between 

→−ω  and 
→−

k   given by  ω cos θ = ω3  is constant; the angular velocity 
→−ω 

describes a cone about the normal to the disk. This is the body cone. The angle  θ β between 
→−ω 

and 
→−

H  is also a constant and so the space cone has constant semi vertical angle  θ β  and axis 
→−

H . It lies inside the body cone. 



 

Objectives 

8.1 Introduction 

8.2 Analytic Method 

Check Your Progress 

Answer to Check Your Progress 

Objectives 

Upon completion of this Unit, the students will be able to 

x identify the method of poinsot. 

x find quantitative description of motion by using analytic method. 

 

 

BLOCK-III 

UNIT 8 

Motion of a rigid body with a fixed point 

under no forces 

 
 

 

8.1 Introduction 

 
If a rigid body is constrained to turn about a smooth fixed axis under no forces other than the 

reaction of the axis, the motion is extremely simple: the body spins with constant angular velocity. 

But if instead of fixing “a line ”in the body, we fix “a point ”only, the motion under no forces is 

very much complicated. The problem of finding the motion in the latter case is interesting than the 

former case. The mouting of a body so as to fix only one point may be done by an arrangement 

of light rings called as “Cardan’s suspension ”. The body is represented by the inner circle. The 

points P and Q are the fixed points. Rotation of the ring r1 about PQ gives one degree of 
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freedom. Rotation of the ring r2 about RS gives the second degree of freedom. Rotation of the 

body itself about AB gives the third. The point C is the common intersection of PQ, RS and 

AB. The body can take up all positions in which the point C of the body is fixed in space. In the 

 

 

Figure 8.1.1: Cardan’s suspension 

 
mathematical theory, all the apparatus except the body itself is to be regarded as massless. But 

this is practically impossible. The masses of r1 and r2 are made as small as possible compared 

with the mass of the body. 

The problem of motion of a body with a fixed point under no force can be treated in two ways 

viz the descriptive method and the analytic method. The descriptive method otherwise known as 

the method of Poinsot gives a good qualitative idea of the motion. The analytic method gives a 

quantitative description. 

 

 
 

The Method of Poinsot 

 
Let O be the fixed point in the body and A, B, C the principal moments of inertia at O. Let 

→−
i ,

→−
j ,

→−
k  be unit vectors fixed in the body and directed along the principal axes at  O. The angular 

velocity and angular momentum are given by 

→−ω = ω1

→−
i  + ω2

→−
j  + ω3

→−
k (8.1.1) 



H 

1 2 3 
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and 
→−

H = Aω1

→−
i  + Bω2

→−
j  + Cω3

→−
k (8.1.2) 

respectively. When we say that the body is under no forces, we mean that the forces acting on the 

body have no moment about O. i.e., the external forces do no work and have no moment about 

O. Then we have 

(i) The kinetic energy T is constant. 

(ii) The angular momentum 
→−

H  is a constant vector. 

 
(i) ⇒ T =

 1 
(Aω2

 + Bω2
 + Cω2

) = constant 

2 1 2 3 

i.e., 2T = Aω2
 + Bω2

 + Cω2
 = constant (8.1.3) 

1 2 3 

The angular momentum 
→−

H  has a direction fixed in space and a constant magnitude. 

 
(ii) ⇒ A2ω2

 + B2ω2
 + C2ω2

 = H
2
 = constant (8.1.4) 

 

We draw through O a line OP in the fixed direction of 
→−

H  (see Fig.)   This line is called the 

“invariable line. ”Let 
−
O
−→

Q represent the angular velocity 
→−ω  at any instant. Drop the perpendicular 

QN  on  OP. Then  ON = →−ω .

→−
H

 

 

 



1 2 3 
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From (8.1.1) and (8.1.2), 
 

→−ω .
→−

H = Aω2
 + Bω2

 + Cω2
 

 

=   2T f rom (8.1.3) 

i.e., ON = 
2T

 
H 

= constant. 

 

Then N is a fixed point during the motion and so the plane through N, perpendicular to the 

invariable line OP, is a fixed plane; It is called the “invariable plane. ”The point Q of the angular 

velocity vector 
→−ω  moves on the invariable plane. 

Let us consider the point of the view of an observer who moves with the body. To him the vectors 

→−
i ,

→−
j ,

→−
k   are fixed, but both the vectors  

→−
h   and  

→−ω  are changing.  If  
→−

i ,
→−

j ,
→−

k   are taken as 

the co-ordinate axes and the extremity of the vector  
→−ω  is given co-ordinates  x, y, z.  Then  x  = 

ω1, y = ω2, z = ω2. Therefore (8.1.3) and (8.1.4) become 

 
A

2
 x

2
 + B2

y
2
 + C2

z
2
 = h2

 (8.1.5) 

 
which represents the equations of ellipsoid. i.e., “To an observer moving with the body, the 

extremity Q of the angular velocity 
→−ω  describes a curve which is the intersection of the two 

ellipsoids (8.1.5) fixed in the body. ”The first ellipsoid is similar to the momental ellipsoid and 

has the same axes. It is called “the poinsot ellipsoid.” 

The invariable plane is fixed in space, but it is moving plane to the observer moving with the 

body. It touches a sphere of radius ON, but it has another remarkable property, which states, “the 

invariable plane touches the poinsot ellipsoid at the extremity of the angular velocity vector.” 

Proof. The tangent plane to the poinsot ellipsoid at the point (ω1, ω2, ω3) is 

 
Aω1 x + Bω2y + Cω3z = 2T 

 
The direction ratios of the normal to the ellipsoid at this point are Aω1, Bω2, Cω3. But these are 

the components of angular momentum. Hence the normal to the poinsot ellipsoid at the extremity 

of the angular velocity vector is parallel to the angular momentum vector, i.e., parallel to OP 

which proves the result. 
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Remark. There are two different points of view : 

(a) the point of view of an observer S fixed in space 

(b) the point of view of an observer S
 J fixed in the body. 

It would be confusing to try to look simultaneously from two points of view. We have to see the 

situation separately. 

(a) The observer S fixed in space, cuts away (in his imagination) all the body except an ellipsoid 

pointsot ellipsoid. His attention is on the moving ellipsoid and on a fixed plane (the invariable 

plane). As the bodymoves, the ellipsoid always touches the plane. It actually rolls on the plane, 

since it has angular velocity vector which passes through the point of contact of the ellipsoid and 

the plane. This complicated motion becomes simple when the poitsot ellipsoid is a surface of 

revolution. If we think of the invariable plane as a sheet of paper and the poinsot ellipsoid as an 

inked surface, then a curve can be drawn in ink on the invariable plane in the course of motion. 

On joining the fixed point O to the points on this curve, we get the “space cone.” 

(b) The observer S
 J fixed in the body, turns his attention to the two ellipsoids fixed (according to 

him) and in particular to their curve of intersection. The angular velocity vector traces out a cone 

(“body cone ”) formed by joining the fixed point O to this curve. 

In general, the body cone rolls on the space cone. The difference between the two cases is “ S 

regards the space cone as fixed, but S J regards the body cone as fixed.” ■ 

 
8.2 Analytic Method 

 
The Poinsot method gives a qualitative description of the motion where as the analytic method 

gives a quantitative description. 

Since the external forces have no moment about O , Euler’s equation give 
 

 

 

 

 

 
 

From (8.1.3) and (8.1.4) 

Aω˙1 − (B − C)ω2ω3 = 

0 Bω˙2 − (C − A)ω2ω1 

=0 Cω˙3 − (A − 

B)ω1ω2 = 0 

 

(8.2.1) 



1 3 

2 

2 

2 3 
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Aω1

2
 + Bw

2
 + Cw

2
 = 2T 

2
 

3
 (8.2.2) 

A
2ω1

2
 + B2ω2

 + C2ω2
 = H

2
 

2 3 
 

where H and T are constants, which can be obtained by inserting the values of ω1, ω2, ω3 at 

t = 0 . 

 

Let us assume that A, B, C are all distinct. We may suppose 

A > B > C . 

From (8.2.2)  2AT − H2
 = (A − B)Bw

2
 + (A − C)Cw

2
 

→−
i ,

→−
j ,

→−
k   be choosen,  so that 

 

=⇒ 2AT − H2
 > 0 (By our assumption A > B > C ). 

Again from (8.2.2) 2GT − H2
 = (G − A)Aw

2
 + (G − B)Bw

2
 + (G − C)Cw

2
 

=⇒ 2GT − H2
 < 0 

1 2 3 

 

Equation (8.2.1) has three simple particular solutions. They are 

 

ω1 = constant, ω2 = 0 , ω3 = 0 

ω2 = constant, ω3 = 0 , ω1 = 0 

ω3 = constant, ω1 = 0 , ω2 = 0 

Thus three solutions correspond to steady rotations about the three principal axes of inertia. 

These are the only axes about which the body will spin steadily under no forces. To find the most 

general solution of (8.2.1) we have to eliminate two of the unknowns to get a differential equation 

involving one unknown. 

Let us solve (8.2.2) for ω2
 and ω2

 to obtain 
 

 

ω1
2
 = P − Qw

2
 

ω3
2
 = R − S w

2
 

where p, Q, R, S are positive expressions involving A, B, C, T, H . 

 
(8.2.3) 



  ! 
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Substitution of the above in Bω˙2 − (C − A)ω3ω1 = 

0 We get ω˙2 = 
(C − A) 

ω3ω1 
B 

squaring   ˙ (C − A)
2
   2    2 

 
 

ω2 = 
B2 

ω3ω1 

(C − A)
2
 2 2 

 

Let ζ = 
ω2 

, τ = pt 
β 

= 
B2 

(P − Qω2)(R − S w2) (8.2.4) 

where β, p are constants which are positive functions of A, B, C, T, H . 

Then (8.2.4) becomes, 

 

 

 

 
where 

dζ 2
 

dτ = (1 − ζ 2)(1 − k2ζ 

 
2
) (8.2.5) 

 

 

ζ = 
ω2 

, τ = pt (8.2.6) 
β 

 

the constants β, p, k being positive functions A, B, C, T, H with k < 1 . 

 

Hence 

 

 

ω2 = β sn [p(t − t0)] (8.2.7) 

where sn is the elliptic function and t0 is a constant of integration. 

 

Substituting in (8.2.3) we have either 

 

 

ω1 = α dn [p(t − t0)], ω3 = γ cn [p(t − t0)] (8.2.8) 
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or   ω1 = α cn [p(t − t0)], ω3 = γ dn [p(t − t0)] (8.2.9) 

where α and γ are functions of  A, B, C, T, H determined except for sign. 

Substituting in (8.2.1) we have αβγ to be negative. 

For definiteness we may take  ‘αJ positive by suitable choice of the sense of the vector 
→−

i  , then  γ 

is negative. 

 

The constants β, p, k are chosen in such a way that k is less than unity. 

 

For the case H
2
 > 2BT , we get 

ω1 = α dn [p(t − t0)] 

ω3 = γ cn [p(t − t0)] 

For H
2
 < 2BT , we get 

ω1 = α cn [p(t − t0)] 

ω3 = γ dn [p(t − t0)] 

But this does not complete the solution of the problem. 

 

From the given initial conditions, we should be able to tell the position of the body at any time. 

 

For this, let the directions of the trial 
→−

i ,
→−

j ,
→−

k   relative  to  a  triad 
→−

I ,
→−

J ,
→−

K   fixed  in  space  be 

expressed by means of the Eulerian angles θ, φ and ψ . Then 
 

 

ω1 = sin ψθ̇ − sin θ cos ψφ̇ 

ω2 = cos ψθ̇ + sin θ sin ψφ̇ 

ω3 = cos θφ̇ + ϕ̇ 

 

(8.2.10) 

 

If we substitute for ω1, ω2, ω3 for (8.2.7), (8.2.8), (8.2.9), we get three differential equations for 

θ, φ, ψ . 

We choose the vector 
→−

k   in the direction of the invariable line defined by the constant vector 
→−

H . 
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Then the components of  
→−

H  along  
→−

i 
→−

j 
→−

k   are found by multiplying  H  by the direction cosines 

of 
→−

k   relative to 
→−

i ,
→−

j ,
→−

k  , which are given by  −sinθcosψ ,  sinθsinψ ,  cosθ . 

Hence 

 

 

Aw1 = −Hsinθcosψbw2 = HsinθsinψCw3 = Hcosθ (8.2.11) 

From the equation (8.2.11), we have 

 

cosθ = 
Cw3 

tanψ = − 
Bw2

 
 

(8.2.12) 
H aω1 

 

∴ We get θ and ψ as functions of ‘tJ without any integration. 

From the first two equations of (8.2.10) 

 

ω2 sinψ = sinψcosψθ̇ + sinθsin
2ψφ̇ 

ω1cosψ = sinψcosψθ̇ − sinθcos
2ψφ̇ 

ω2 sinψ − ω1cosψ = sinθψ̇ 

 

 

 

 

(8.2.13) 

 

From the above equation φ is obtained by a quadrature (Since θ, Ψ, ω1, ω2 are already known 

functions of t ). 

From the periodic property of elliptic funcxtions,  we see that  θ ,  sinψ ,  cosψ ,  φ̇ 

functions of t . 

are periodic 

In general φ does not increase by a multiple of 2π in a period, and the motion is not periodic as 

a whole. 



→

− 

2 2 2 
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Check Your Progress 

1. Find the kinetic energy of rotation of a rigid body with respect to the principal axes terms of 

Eulerian angles and interpret the result when A = B. 

2. If T is the kinetic energy, 
→−

G  is the external torque about the instantaneous axis of rotation 

and ω is the angular velocity, then prove that 
dT

 
dt 

= 
→−

G  • →−ω  3.  If  A, B, C, D, E, F, G, H  are the 

moments and products of inertia of a rigid body about three mutually perpendicular and concurrent 

axes. Prove that the moment of inertia of the rigid body about an axis making angles α, β, γ with 

the original axes is given by I = A cos
α +B cos

2
 β + C cos

2
 γ − 2F cos β cos γ − 2G cos γ cos α − 

2H cos α cos β. 

 
 

Answer to Check Your Progress 

 
1. Hint: T =

 1 
(Aω2

 + Bω2
 + Cω2

) 

2 1 2 3 

 

T = 
1 .

A(sin ϕ θ̇ − sin θ cos ϕ φ̇)
2
. 

+ 
1 .

B(cos ϕ θ̇ + sin θ sin ϕφ̇)
2
. 

+ 
1

C(cos θ φ̇ + ϕ̇)
2
 

when A = B, T = 
1 

A(φ̇2 sin
2
 θ + θ̇2) + 

C 
(φ̇ cos θ + ϕ̇)

2
 

2 2 

2. Hint:  
→−ω = ω1

→−
i  + ω2

→−
j  + ω3

→−
k ,  

→−
G  = G1

→−
i  + G2

→−
j  + G3

→−
k ,  T  =  

1 
Aω2

 + 
1 

Bω2
 + 1

Cω2
 

 

 
dT 

dt 
= Aω1ω̇1 + Bω2ω̇  + Cω3ω̇3 

2 1 2 2 2 3 

=  ω1[G1 + (B − C)ω2ω3] + ω2[G2 + (C − A)ω3ω1] + ω3[G3 + (A − B)ω1ω2] f rom EulerJs equation 

= G1ω1 + G2ω2 + G3ω3 

dT 

dt 
=

 
→−

G • →−ω 
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3. Hint: 

69 

 

PM = r sin θ = |→−r  × →−n |, →−r  = x
→−

i  + y
→−

j  + z
→−

k . 

PM = |→−r  × →−n |2= (y cos γ − z cos β)
2
 + (z cos α − x cos γ)

2
 + (x cos β − y cos α)

2
 

I = 
. 

m PM
2
 gives the required expression. 
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Objectives 

9.1 Introduction 

9.2 Steady Precession of a Top 

9.3 General Motion of a Top 

Objectives 

Upon completion of this Unit, the student is exposed to 

x general motion of a top. 

 

 

BLOCK-III 

UNIT 9 

The Spinning Top 
 

 
 

 

9.1 Introduction 

 
The spinning top is one of the most familiar example of a gyroscope system. The word 

“gyroscope”is used for any system in which a rapidly rotating body is a mainted that it may 

change the direction of its angular velocity vector. 

A top means a rigid body with an axis of symmetry acted on by the force of gravity. A point on 

the axis of symmetry is fixed. Thus we idealise the ordinary top by supposing it to terminate in s 

a sharp point (vertex) and to spin on a floor rough enough to prevent slipping. 
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9.2 Steady Precession of a Top 

 
The motion of any rigid body with fixed point O satisfies the equation 

 

→−
Ḣ

 
= 

→−
G (9.2.1) 

 

where 
→−

H  is the angular momentum about  O  and 
→−

G  is the moment of the external forces about 

O. In most of dynamical problems, we usually consider the forces as “given ”and the motions as 

“unknown.  ”In these cases 
→−

G  is given and 
→−

H  is to be found.  But we look at (9.2.1) in another 

way.  We may regard the motion as “prescribed ”so that 
→−

H  is known as a vector function of the 

time.  Then (9.2.1) shows directly the moment 
→−

G  which must be applied to the body in order to 

give this motion. 

Let us now describe a simple motion of a top, called “steady precession ”and find what forces must 

act on the top in order that this motion may take place. In steady precession, the axis of symmetry 

of the top describes with constant angular velocity a right circular cone with the vertical for axis. 

At the same instant, the top spins about its axis of symmetry with constant angular velocity. 

We use the following notations: 

 

 

 
m = mass of the top. 

a = distance of mass center M from fixed vertex O. 

A = transverse moment of inertia at O. 

C = axial moment of inertia at O. 
→−

K  =  unit vector directed vertically upward 
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φ = inclination of OM to the vertical. 
→−

i ,
→−

j ,
→−

k  =  unit orthogonal triad with 
→−

k   along  OM  and 
→−

i   in the plane of 
→−

k   and 
→−

K . 

We see that  
→−

K  =  sin φ
→−

i  + cos φ
→−

k .  The angular velocity vector  
→−ω  of the top lies in the plane 

(
→−

k ,
→−

K ). We resolve 
→−ω  along 

→−
i   and 

→−
k , 

i.e.,→−ω = ω1

→−
i  + s

→−
k (9.2.2) 

 
where s denotes the “spin ”of the top. The velocity of the point M is 

→−ω × a
→−

k =   (ω1

→−
i  + s

→−
k ) × a

→−
k 

=   −ω1a
→−

j , (
→−

i  × 
→−

k  = −
→−

j ). 

We under by the “precession p ”the angular velocity with which OM rotates about 

velocity of M is 

 

 

 

 

→−
K .  The 

φ
→−

K × a
→−

k = pa sin φ(−
→−

j ) 

=   −pa sin φ
→−

j 

Equating the two expressions for the velocity of M, we have 

 

−ω1a
→−

j  = −pa sin φ
→−

j 

ω1 = p sin φ (9.2.3) 

 
In the study precession, φ, s and p are constants. The angular momentum is 

→−
H = Aω1

→−
i  + C s

→−
k 

→−
H = Ap sin φ

→−
i  + C s

→−
k (9.2.4) 



× 
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The above vector lies in the plane  (
→−

k ,
→−

K )  and rotates rigidly with it. Thus 
→−
Ḣ 

 

is the velocity of a 

point with position vector 
→−

H  in a rigid body whose angular velocity is  p
→−

K . Hence 
 

→−
Ḣ

 
= p

→−
K × 

→−
H 

= p(sin φ
→−

i  + cos φ
→−

k ) × (Ap sin φ
→−

i  + C s
→−

k ) 

= p sin φCs(−
→−

j ) + Ap sin φp cos φ
→−
j 

= p sin φ(Ap cos φ − Cs)
→−

j 

k
− −→−

i
− 

=
− →−

j
 

 

 

→−
Ḣ

 
= p sin φ(Ap cos φ − Cs)

→−
j (9.2.5) 

 

The steady precession takes place with assigned values of φ, p and s provided that the moment 

of about O of all forces (including gravitational force) is 

→−
G  = p sin φ(Ap cos φ − Cs)

→−
j , since (

→−
Ḣ = 

→−
G ) (9.2.6) 

 

Now the weight of the top is a force given by  −mg
→−

k   at  M  and hence has a moment 

a
→−

k  × (−mg
→−

k ) = −mga sin φ
→−

j (9.2.7) 
 

about O. If this moment is equal to 
→−

G ,  then from (9.2.6) and (9.2.7) no force other than the 

weight of the top is required to maintain the motion. Thus the steady precession takes place under 

gravitational force alone if 

 

p sin φ(Ap cos φ − Cs) = −mga sin φ 

i.e., p(Cs − Ap cos φ) = mga (9.2.8) 

This is the single equation connecting the three constants φ, p and s. Therefore, there is a 

doubly infinite set of steady precessions corresponding to arbitrary values of two out of the three 

constants. However, it is not possible to assign completely arbitrary values of two of the constants; 



9.3. GeNeRAL MOTION Of a TOp 75 

these values must be such that (9.2.8) yields a real value for the third constant. 

If we see a top spinning, φ and p are easy to observe. Therefore s in terms of φ and p is given 

by 

s = 
mga 

+ 
Ap cos φ (9.2.9) 

pC C 

We see that if the precession is small, the spin is great and is given approximately by 

 

s = 
mga 

pC 

 

 

(9.2.10) 

 
 

9.3 General Motion of a Top 

Let 
→−

I ,
→−

J ,
→−

K  be a fixed orthogonal triad,  
→−

K  being directed vertically upward.  Let 
→−

i ,
→−

j ,
→−
k   

be an orthogonal triad with 
→−

k  pointing along  OM, the axis of symmetry of the top, and 
→−

i   

coplanar with 
→−

k   and 
→−

K ;  thus 
→−

j   is horizontal. The triad 
→−

i ,
→−

j ,
→−

k   is fixed neither in space 

nor in the top, but 
→−

k   is fixed on the top. 

Let  φ,  ϕ  represent the polar angles of 
→−

k   relative to the fixed triad.  Variation in  φ  are referred 

to as “nutation ”and variations in ϕ are referred to as “precession. ”Let 

→−ω = ω1

→−
i  + ω2

→−
j  + ω3

→−
k (9.3.1) 

be the angular velocity of the top, and 

Ω = Ω1

→−
i  + Ω2

→−
j  + Ω3

→−
k (9.3.2) 

be the angular velocity of the triad 
→−

i ,
→−

j ,
→−

k . Now 

 

Ω1 = ϕ̇ sin φ, Ω2 = −φ̇, ϕ̇ cos φ (9.3.3) 



H 

H 
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The relative motion of the top and the triad 
→−

i ,
→−

j ,
→−

k   consists only of a rotation about 
→−

k . 

 

 
 
 

The angular momentum is 

ω1 = Ω1 = ϕ̇ sin φ 

ω2 = Ω2 = −φ̇ 

 
(9.3.4) 

 

 
and its rate of change is 

→−
H = Aω1

→−
i  + Aω2

→−
j  + Cω3

→−
k (9.3.5) 

→−̇ →− →− →− →− →− 

(since  
d
→−

p
 

dt 

 

δ
→−p 
δt + 

→−
Ω × →−p 

, 

H = Aω˙1 i + Aω˙2 j + Cω3 k + Ω × H (9.3.6) 

→−
p  any vector,  Ω  angular velocity relative to a frame  s ) 

The moment about O of the weight of the top is 

→−
G  = a

→−
k  × (−mg

→−
K ) 

→−
G  = −mga sin φ

→−
j (9.3.7) 

The motion of the top satisfies  
→−̇   

= 
→−

G .  Whenever substitute the expressions from (9.3.6) and 

(9.3.7), the vector equation 
→

−

˙ 

=  
→−

G  gives three scalar equations for  φ,  ϕ  and  ω3.  The third 

component in the direction of 
→−

k   gives  Cω̇3  =  0,  since from (9.3.4) and (9.3.5) 
→−

Ω
→−

H  has no 

component in the direction of 
→−

k . 

Hence  ω3  =  s,  a constant.  That is the spin of the top is a constant.  Resolving 
→−

K  along 
→−

i   and 

→−
k , we have 

→−
K  = sin φ

→−
i  + cos φ

→−
k . (9.3.8) 

Since the weight of the top has no moment about 
→−

K , the component of angular momentum in this 

fixed direction is constant and hence 

→−
H • 

→−
K  = α,  a constant (9.3.9) 

= 



φ + 
C 

φ = φ φ 
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From (9.3.8), (9.3.4) and (9.3.5), we have 
   

(Aω1

→−
i  + Aω2

→−
j  + Cω3

→−
k ) • (sin φ

→−
i  + cos φ

→−
k 

) 

Aω1 sin φ + Cω3 cos φ 

 
= 

 

= 

α 

α 

 

i.e., A(ϕ̇ sin φ) sin φ + Cs cos φ = α 
 

i.e., Aϕ̇ sin
2
 φ + Cs cos φ = α 

  

(9.3.10) 

The equation of energy is 
   

T + V = E   (9.3.11) 

where 
   

T = 
1 

A(ω2
 + ω2

) + 
1
Cω2

 

2 1 2 2 3 
 

is the kinetic energy, E being a constant. From ω3 = s and (9.3.4), (9.3.11) becomes 
 

1 
A(φ̇2  + ϕ̇2

 sin
2
 

2 

 

φ) + 
Cs

2
 

2 
= E − mga cos φ 

 

⇒ a(φ̇2  + ϕ̇2
 sin

2
 φ) + Cs

2
 = 2(E − mga cos φ) (9.3.12) 

Let us take Cs = β. Then (9.3.10) and (9.3.12) become 

Aϕ̇ sin
2
 φ = α − β cos φ 

A(φ̇2
 

 

+ ϕ̇2
 sin

2
 

β2 

φ) + 
C 

= 2(E − mga cos φ) 

(9.3.13) 

 

Let  x = cos φ. Then 1− x2
 = sin

2
 φ and  ẋ = sin φ(φ̇). Multiplying the second equation in (9.3.13) 

by  sin
2
 φ and substituting for  ϕ̇  from the first equation, we get 

 

A(φ̇2 sin
2
 

 

φ + ϕ̇ 2 sin
4
   ) 

β2 

sin
2
 2(E − mga cos   )(sin

2
   ) 

 

A
 
x˙

2
 + 

(α − βx)
2
 

A2 

β2 
2
 

+ 
C 

(1 − x ) = 2(E − mgax)(1 − x2
) (9.3.14) 

The above equation can be written as 

x˙
2
 = f (x) 

  



A 

A 

2A 

2A 

√ 

= 
A

 
C A2 

= 
A

 
C 
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where 

f (x) 
1 .

2(E − mgax)(1 − x2
) − 

β2 

(1 − x2
) − 

(α − βx)2

 

1 β2 (α − βx)
2
 

⇒ f (x) 2E − 2mga − (1 − x2
) − 

 

(9.3.15) 
 

This is a cubic in x. Its graph is shown in figure. The function f (x) has three real zeros x1, x2, x3 

such that −1 < x1 < x2 < 1 < x3. Thus f (x) may be written as 
 
 

 

f (x) = 
2mgx 

(x − x1)(x − x2)(x − x3) (9.3.16) 

 

Let  u = x − x1. Then  u
2
 = x − x1  and  x = u2

 + x1.  2uu̇ = ẋ. From x˙
2
 = f (x), we have 

 

4u
2
u̇ = 

2mga
u

2
(x − x2)(x − x3) 

u̇
2
 = 

mga 
(x2 − x)(x3 − x) 

u̇
2
 =  

mga 
(x2 − x1 − u2

)(x3 − x1 − u2
) (9.3.17) 

 

This suggests the differential equation x˙
2
 = f (x) for the elliptic function sn. 

 
 

Let ω =    u 
= 

 x − x1  
 

x2 − x1 x2 − x1 

k =  

, 
x2 − x1 

, p =  

,
mga(x3 − x1) 

x3 − x1 2A 

A2 



n 

n 

n 

n 

n 

2A 
(x2 − x1) 1 − 

x2
 – x1 

(x3 − x1) 1 − 
x3
 

2A 
(x3 − x1)(1 − ω ) 

1− 
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(9.3.16) becomes then 

 
2 
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mga u

2
 u

2
 

 
  

 

mga 
2
 (x2 − x1)ω

2
   

 
 

= p
2
(1 − ω2

)(1 − k2ω2
) 

i.e., ω̇ 
2
 = p2

(1 − ω2
)(1 − k2ω2

) (9.3.18) 

∴ ω = sn(p(t − t0)) where t0 is a constant of integration. 

x − x1 = (x2 − x1)s
2
(p(t − t0)) 

x2 − x = (x2 − x1)c
2
(p(t − 

t0))x−x = (x3 − x1)d
2
(p(t − 

t0)) 

(9.3.19) 

Any one of these three equations gives x as a function of t. From the first equation of (9.3.19) 

 
x = x1 + (x2 − x1)s

2
(p(t − t0)) 

cos θ = x1 + (x2 − x1)s
2
(p(t − t0)) (9.3.20) 

 

where p and the modulus k of the elliptic function 

 

p2 = 
mga(x3 − x1) 

, k2 =  
x2 − x1 

2A x3 − x1 
 

The constants x1, x2, x3 are functions of the constants occuring in (9.3.15). i.e., the constants of 

the top and α, β, E. The constants α, β and E are known when the initial position and regular 

velocity of the top are known. The complete solution for the motion of the axis of the top is given 

by (9.3.20) and 

ϕ =  
  α − βx   

A(1 − x2) 
(9.3.21) 

Since x is a known function as a function of t, this last equation gives ϕ by a quadrature. This 

analytic solution does not give a clear idea of the way in which the top behaves. However, we can 

– x1 3 x 

ω̇ = 
– x1 

= 



β 
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construct the essential features of the motion, by fixing our concentration on the intersection of 

the axis of the top with a unit sphere having its center at O. 

From (9.3.20) we see that the representative point on the unit sphere oscillates between two levels 

φ = φ1 and φ = φ2 given by 

cos φ1 = x1 cos φ2 = x2. 

 
In the case of the top, we may have loops on the curve. The absence of loops are the presence 

 
 

 

 

of loops(see figure) depends on the way in which the motion is started i.e., on the values of the 

constants α, β, E. The criterion for the existence of a loop is that ϕ should sometimes increase 

and sometimes discrease, and the condition for this is that ϕ should vanish during the motion. By 

(9.3.21), ϕ = 0 implies 

  α − βx 
= 0 ⇒ x = 

α 

A(1 − x2) β 

Since x oscillates between x1 and x2, the presence of loops depends on whether 
α lies in this 

range of oscillation. If it lies in the range, there are loops; if not, there are no loops. 



 

Objectives 

10.1 Lagrange’s Equations for a particle in a plane 

Objectives 

Upon completion of this Unit, the students will be able to 

x identify the Lagrange’s equations for a particle in a plane. 

 

 

BLOCK-IV 

UNIT 10 

Introduction to Lagrange’s Equations 
 

 

 

 

The methods of Lagrange and Hamilton are useful in helping us to carry out the primary task 

of dynamics namely “how systems move”. 

 

 
 

10.1 Lagrange’s Equations for a particle in a plane 

 
Let us consider a particle of mass ‘mJ moving in a plane. If oxy are the rectangular axes and 

X, Y are the components of the force acting on the particle, then by equation of motion (force = 

mass × acceleration), we have 

 
mx¨ = X, my¨ = Y (10.1.1) 

 
Let q1q2 be any curvilinear co-ordinates. Then (x, y) are functions of (q1, q2) and hence 

 
x = x(q1, q2), y = y(q1, q2) (10.1.2) 

81 



dt 
= 

∂q2
 

1
 
+ 

∂q1∂q2 
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The four partial derivatives 

 

 
are the functions of q1 and q2 . 

∂x 
, 

∂q1 

∂x 
, 

∂q2 

∂y 
, 

∂q1 

∂y 
 

 

∂q2 
(10.1.3) 

 

If the particle moves in any manner, then (x, y, q1, q2) are all functions of time- t . 

Differentiating (10.1.2), we have 
 
 

ẋ = 
∂x 

q̇ 1 + 
∂x 

q̇ 2, ẏ = 
∂y 

q̇ 1 + 
∂y 

q̇ 2 (10.1.4) 

 

Let 

∂q1 ∂q2 ∂q1 ∂q2 

x˙ = f (q1, q2, q˙1, q˙2) 

y  ̇= g(q1, q2, q˙1, q˙2) 

Equations (10.1.4) and (10.1.5) are one and the same. 

Differentiating (10.1.4) w.r. to q˙1 and q˙2 , we get 

(10.1.5) 

 

∂x˙ 
 

 

∂q˙1 

∂x 
= 

∂q1 

∂x  ̇
 

 

∂q̇ 2 

∂x 
= 

∂q2 

∂ẏ  
 

 

∂q̇ 1 

∂y 
= 

∂q1 

∂ẏ  
 

 

∂q̇ 2 

∂y 
= 

∂q2 

 

(10.1.6) 

 

The above result is called “The cancellation of the dots”. 

Again Differentiating (10.1.4) 

 

∂x˙ ∂2
 x ∂2

 x 

∂q1 
= 

∂q1
2 
q˙1 + 

∂q1∂q2 
q˙2

 

 
 

∂x˙ ∂2
 x ∂2

 x 

 
But 

∂x
 

q1 

 
and 

∂x
 

q2 

∂q2 

= 
∂q2∂q1 

q˙1 + 
∂q2

2 
q˙2 (10.1.7) 

are functions of q1 and q2 and these are in term functions of t . 

Hence 
d
 

  
∂x 

! 
 

 

∂2
 x 

q˙
 

 

 

∂2
 x 

q˙
 

1 
∂q1 

2 

, , , 



dt ∂q1 ∂q1 dt ∂q2 ∂q2 

dt ∂q1 ∂q1 dt ∂q2 ∂q2 

!   
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 d 
 
∂x 

!
 ∂2

 x ∂2
 x 

 

dt 
 

Comparing (10.1.7) and (10.1.8), 

∂q2 = 
∂q1∂q2 

q˙1 + 
∂q2

2 
q˙2 (10.1.8) 

 

 d 
  
∂x 

! 

= 
∂x˙ 

,  
 d  

  
∂x 

! 

= 
∂x˙ 

 

 

 d  
  
∂y 

! 

= 
∂y˙ 

,
 d 

  
∂y 

! 

= 
∂y  ̇ 

 
(10.1.9) 

 

The above result is very important (i.e) “ the interchange of d and ∂ ” in the above equation is an 

important result. 

Let the motion of the particle be arbitrary. Its kinetic energy is 

 

T  =  
1 

m(ẋ
2
 + ẏ2

) (10.1.10) 
2 

 

From (10.1.4) 
T = 

1 
m 

 
∂x 

q̇  + ∂x 
q˙

 
 

2
 ∂y + q˙ + ∂y 

q˙
 !2  

 
(10.1.11) 

2 
 
∂q1 

1
 ∂q2 

2
 ∂q1 

1
 ∂q2 

2
  

 

Therefore T can be expressed as a function of q1, q2, q˙1, q˙2 . (i.e), 

 
T = T (q1, q2, q˙1, q˙2) (10.1.12) 

 

From (10.1.4), we see that T is a quadratic in q˙1 and q˙2 so that 

 
 

T = 
1 

(aq˙1
2
 + 2hq˙1q˙2 + bq˙2

2
) (10.1.13) 

2 
 

where a, h, b are functions of q1, q2 . From (10.1.11), we get 



  ! 

2 

∂q1 2 ∂q1 ∂q1 

∂q1 ∂q1 
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∂T 
= 

1 
m

 

2x  ̇
∂x  ̇

+ 2ẏ  
∂ẏ  

!

 

 

 

 
 

= mẋ  
∂x  ̇

 
 

∂q1 

 

+ mẏ  
∂ẏ  

 
 

∂q1 

 

(10.1.14) 

 

From equation (10.1.6), the above equation becomes 
 
 

∂T 

∂q̇ 1 

∂x 
= mẋ  

∂q1 

 d 
+ my  ̇

dt
 

∂x 
(10.1.15) 

∂q1 
 

Differentiating the above equation w.r. to ‘ t ’ 

 d ∂T ∂x 
= mẍ  

 d 
+ mẋ  

  
∂x 

! 

+ my¨ 
∂y 

 d 
+ mẏ  

  
∂y 

! 
 

 

Using (10.1.9), the above equation becomes 
 
 

d ∂T ∂x ∂y ∂x˙ ∂y˙ 

 

 
(10.1.16)-(10.1.14) gives, 

dt ∂q̇1   

= mẍ 
∂q1  

+ mÿ 
∂q1  

+ mẋ
∂q1  

+ mẏ 
∂q1 

(10.1.16) 

 
 

d ∂T ∂T ∂x ∂y 

dt ∂q˙1 
− 

∂q1 
= mx¨ 

∂q1 
+ my¨ 

∂q1 
 
 

d ∂T ∂T ∂x ∂y 

dt ∂q˙2 

− 
∂q2 

= mx¨ 
∂q2 

+ my¨ 
∂q2 

(10.1.17) 

Consider small displacement of the particle corresponding to increments ∂q1, ∂q2 in the co-

ordinates q1.q2 . Then, 

 

∂x 
∂x = 

∂q1 

∂x 
δq1 + 

∂q
 

∂y 
δq2, ∂y = 

∂q
 

∂y 
δq1 + 

∂q
 δq2 (10.1.18) 

∂q1 

1 2 

dt ∂q 1̇ ∂q1 dt dt 



dt ∂q̇ 1 ∂q1 

dt ∂q̇ 2 ∂q2 
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The work done by the forces in this displacement is 

 
δW = Xδx + Yδy (10.1.19) 

 

substituting from (10.1.18), we have 

 

δW = X

 
∂x 

δq1 + 
∂x 

δq2

! 

+ Y

  
∂y 

δq1 + 
∂y 

δq2

!

 

 
(i.e), 

∂q1 ∂q2 ∂q1 ∂q2 

δW = Q1δq1 + Q2δq2 (10.1.20) 

 

where 

Q1 = X 
∂x

 

 
∂y ∂x ∂y 

+ Y ; Q2 = X + Y 

 

(10.1.21) 
∂q1 ∂q1 ∂q2 ∂q2 

 

From (10.1.1) and from the first equation (10.1.17), we have 
 

d ∂T ∂T ∂x ∂y 

dt ∂q˙1 

− 
∂q1 

= X 
∂q1 

+ Y 
∂q1 

(10.1.22) 

and from (10.1.21), the above equation becomes 

 d 
  
∂T 

! 

− 
∂T 

 
= Q1 (10.1.23) 

 
 

Similarly the second equation of (10.1.17) becomes 

 d 
  
∂T 

! 

− 
∂T 

 
= Q2 (10.1.24) 

 
 

where q1, q2 are any curvilinear co-ordinates, T is the kinetic energy (expressed classificaation 

of dynamical systems as a function of q1, q2, q˙1, q˙2 ) and Q1, Q2 can be obtained from (10.1.20) 

for the work done in an arbitrary small displacement. (10.1.23) and (10.1.24) are the Lagrange’s 

equations of motion, q1q2 are the generalised co-ordinates Q1, Q2 are the generalised forces. 



1 
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If the system is conservative, with potential energy V , then 
 

∂V 
δW = −δV, Q1 = −

∂q
 

∂V 
, Q2 = −

∂q
 

 

(10.1.25) 

 

Here V is a function of q1, q2 . 

Define the Lagrangian function L as 

 
 

where 

 

 
L = T − V (10.1.26) 

 

L = L(q1, q2, q˙1, q˙2) (10.1.27) 

 

Hence we have 
 

 

 

∂L 
 

 

∂q̇ 1 

∂T 
= 

∂q˙1 

∂L 
 

 

∂q̇ 2 

∂T 
= 

∂q˙2 
 

 

∂L 
 

 

∂q1 

∂T 
= 

∂q1 

∂V 
, 

∂q1 

∂L 
 

 

∂q2 

∂T 
= 

∂q2 

∂V 
– 

∂q2 

 

(10.1.28) 

 

The Lagrange’s equations (10.1.23) and (10.1.24) may be written in the form 
 
 

d ∂L ∂L d ∂L ∂L 
dt ∂q˙1 

− 
∂q1 

= 0 
dt ∂q  ̇ ∂q 

, − 
2 2 

= 0 (10.1.29) 

2 

, 

− 



 

Objectives 

11.1 Introduction 

11.2 Lagrange’s equations for simple Dynamical System 

11.3 Lagrange’s equations for Non-holonomic systems with moving constraints 

11.4 Worked examples 

Check Your Progress 

Answer to Check Your Progress 

Objectives 

Upon completion of this Unit, the students will be able to 

x find the Lagrange’s equation for simple dynamical system. 

x understand Lagrange’s for non - holonomic systems with moving constraints 

 

 

BLOCK-IV 

UNIT 11 

Classification of Dynamical Systems 
 

 
 

 

11.1 Introduction 

 
A system may be classified as scleronomic or   Rheonomic according as which has only 

 fixed constraints or moving constraints respectively. As an example, a pendulum with a fixed 

support is Scleronomic whereas a pendulum for which the point of support is given an assigned 

motion is rheonomic. The next classification is based on the generalised forces. If the generalised 

forces are derivable from a potential energy V , then the system is said to be conservative. 

Otherwise it is said to be non-conservative. 

We classify the system as holonomic accordingly as the arbitrary independent variations 
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can be given to the generalised co-ordinates without violating the constraints. In the case of 

non-holonomic systems this cannot be done. 

 

We refer the system as simple if it is scleronomic, conservative or holonomic. 

 

 

11.2 Lagrange’s equations for simple Dynamical System 

 
Let us consider a simple system with n−  degrees of freedom and generalised co-ordinates 

q1, q2, · · · , qn . The system has a potential energy V which is a function of the q ’s given by 

V = V(q) (11.2.1) 

 

Let  N  be the number of particles,  mi  be the mass of the  i
th

  particle and  
→−

ri   be its position 

vector, which is a function of q ’s. 

Hence 

→−
ri  = →−ri (q) (11.2.2) 

 

which gives  

→−r
˙  =   

n
 

 
∂→−ri  

q̇
 

 
 

 

 

 
(11.2.3) 

i Σ 
p=1 ∂qp 

p
 

 

The quantities q˙p are the generalised co-ordinates, p = 1, 2, · · · , n . 

We may write 
→−
r
˙
 = →−vi (q, q̇)  which is a function of  2n  co-ordinates  q p, q˙p (p = 1, 2, · · · , n) . 

 

thus (11.2.2) gives 

∂→−

r
˙ 

∂→−

ri
 

 

 

 
 

(11.2.4) 

 

Again from (11.2.3) 
 

∂→−

r
˙ 

∂q˙σ 

 

 
n 

∂qσ 

 
∂2→−r 

 i
 = Σ i

 q˙p (11.2.5) 

 
But 

∂qσ p=1 ∂qσ∂qp 

i 

i 
= 



Σ 

= 
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d  ∂→−ri n ∂2→−ri
 

 

dt ∂qσ 
= Σ 

p=1 ∂qp ∂qσ 
q˙p (11.2.6) 

 

comparing (11.2.5) and (11.2.6), we have 

 

d 

 

∂→−

ri
 

 

∂→−r

˙ 
 

 

 

 

 
(11.2.7) 

dt ∂qσ 

(11.2.7) shows that d and ∂ can be interchanged. 

The kinetic energy of the system is 

∂qσ 

T = 
1
 N   

m →−r
˙ →−r ̇
 

= T (q, q̇) (11.2.8) 

2 i=1 
i   i    i 

 

 

∂T   
=  

N   

m 
→−

r
˙ . ∂→−

r
˙ 

 
(11.2.9) 

 
and 

∂qp 

 
   

i 
i=1 

 
→−̇  

 
 

i
 ∂qp 

→− 
∂T N = m →−r

˙  ∂ri =  
N   

m 
→−

r
˙  ∂ri

 (11.2.10) 
 

 
which follows from (11.2.4). 

∂q̇ p 

Σ 
i=1 

i
 

i
 ∂q˙p 

Σ 
i=1 

i   i 
∂qp

 

 

Differentiating (11.2.10) w.r. to ‘ t ’ and subtracting (11.2.9), we have from (11.2.7) 

 d  ∂T  ∂T  

 
 

N
  m 

→−
a . 

∂→−ri
  (11.2.11) 

where 

dt 
 
∂q̇ 

 − 
∂qp  

= Σ 
i=1 

i   i 
∂qp

 

→−ai  = →−v
˙ = →−r ̈ (11.2.12) 

 

is the acceleration of the i
th

 particle. 

Let  
→−
Fi  be the total force acting on the  i

th
  particle including both applied forces and constraint 

forces. By Newton’s law, 

p 

Σ 

i 

i 

i i 



∂qp 
i
 ∂qp 

Σ 
i=1 

i Σ 
p=1 

Σ 
i=1 

i
 ∂qp 

Σ 
i=1 

i
 ∂qp ∂qp 
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→−
Fi = mi

→−
ai (11.2.13) 

 

Thus (11.2.11) becomes  

 
 

d ∂T ∂T N 

− = 

 
→−
F . 

∂→−ri 

 

 

 
(11.2.14) 

 

Let us consider a new set of arbitrary infintinetsimal increments δqp . From (11.2.2) 
 

δ→−ri
 

 
The work done in these displacements is 

 

n 

= Σ 
p=1 

∂→−ri  
.δq 

∂qp 
p
 

 
(11.2.15) 

δW =  
N  →−

F δ→−r = 
n 

" 
N 

F 
∂→−ri  

# 

δq 

 
(11.2.16) 

 

 

But this work can also be expressed as 
 
 

δW = −δV = − 
n 

Σ 
p=1 

∂V 
 

 

∂qp 
.δqp (11.2.17) 

 

Comparing (11.2.16) and (11.2.17) as δqp are arbitrary, we have 
 

N  →−
F 

∂→−ri  
= − 

∂V 
 

(11.2.18) 

 
 

Using (11.2.18), the equations (11.2.14) may be written as 
 
 

d ∂T ∂T ∂V 

dt ∂q˙p  

− 
∂qp  

= −
∂qp 

(11.2.19) 

Let us introduce the Lagrangean L as 
 

L = T − V = L(q, q̇) (11.2.20) 

dt ∂q ṗ 
Σ 

1=1 

i p 



Σ 
i=1 

i i 
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Thus (11.2.19) transforms into 
d ∂L ∂L 

dt ∂q˙p 

− 
∂qp 

= 0 (11.2.21) 

Thus any simple dynamical system moves in accordance with Lagrange’s equations of the form 

given by (11.2.21). We note that if the conservative condition is removed, Lagrange’s equations 

take the form 
d ∂T ∂T 

dt ∂q˙p 

− 
∂qp 

= Qp (11.2.22) 

where Qp are the generalised forces obtained from 

δW = 

 

n 

Σ 
p=1 

 
Qp.δqp (11.2.23) 

 

where δW is the work done in an arbitrary displacement. 

The equations (11.2.21) form a set of n− oridnary differential equations of second order. The 

solution of these equations will contain 2n arbitrary constants. 

 

11.3 Lagrange’s equations for Non-holonomic systems with 

moving constraints 
 

Consider  a  system  of   N−  particles  with  masses  mi ,  position  vectors  
→−

ri   and  accelerations 

→−
ai (i  =  1, 2, · · · , N) .   Let  

→−
Fi  be  the  total  force  acting  on  the  i

th
  particle.   Then  by  Newton’s 

law 

 
→−
Fi = mi

→−
ai , i = 1, 2, · · · , N (11.3.1) 

 

We note that these N vector equations are equivalent to the single scalar equation 
 

 

N
 (m 

→−
a – 

→−
F ).

→−
P = 0 (11.3.2) i i 



+ 
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where →−
Pi  indicates a set of  N−  arbitrary vectors.  If 

→−
Pi  =  δ→−ri   and consider  δ→−ri   as arbitrary 

virtual displacements, we have 
 

 
N   

m →−a δ→−r = δW (11.3.3) 
 

where 

Σ i   i i 
i=1 

δW =  
N  →−

F .δ→−r (11.3.4) 
Σ i i 

i=1 

which is the virtual work done by the forces in the virtual displacements. 

 

Let us suppose that the system is subject to non-holonomic constraints. the generalised 

co-ordinates qp (p = 1, 2, · · · , n) together with time t determine the positions of the particles. 

Let us consider the functions 

ri = ri(q, t) (11.3.5) 

 
as known functions. The time t is included to allow for moving constraints (Rheonomic system). 

Theses equations of non-holonomic constraints are of the form 

 
n 

Σ 
p=1 

Aαpq˙p + Aα = 0 (α = 1, 2, · · · , m < n). (11.3.6) 

 

where the A ’s are functions of q ’s and t . 

Equivalently, we may write 

 

n 

Σ 
p=1 

Aαpdqp + Aαdt = 0 (α = 1, 2, · · · , m) (11.3.7) 

The kinetic energy of the system is  
T = 

1
 
 

N   
m →−r

˙ .→−r ̇
 

 
 (11.3.8) 

 
By (11.3.5), we have 

2 i=1 
i   i i

 

→−r
˙  =   

n
 ∂→−ri  

q̇  
∂→−ri

 
 

 

(11.3.9) 
i Σ 

p=1 ∂qp 
p
 ∂t 

Σ 
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and so we can write 

T  = T (q, q̇, t) (11.3.10) 

We now define S p by 

S p =
 d ∂T 

− 
∂T  (11.3.11) 

Again from the previous section 

dt ∂q˙p ∂qp 

∂→−r
˙ ∂→−ri  

,
 

 

d  ∂→−ri ∂→−

r
˙ 

 

(11.3.12) 

∂q˙p 
 

From (11.2.13) and (11.3.11), we have 

 
S 

∂qp 

 

 

N = 

dt ∂qp 

 

 

m 
→−

a . 
∂→−ri

 

∂qp  

 

 
 (11.3.13) 

 
 

Let δqp satisfy the equations 

p Σ 
i=1 

i   i 
∂qp

 

 

n 

Σ 
p=1 

Aαpδqp = 0 (α = 1, 2, · · · , m) (11.3.14) 

 

Otherwise let there be arbitrary. 

 

By (11.3.5) these variations generate virtual displacements 

δ→−ri
 

 

n 

= Σ 
p=1 

∂→−ri  
.δq 

∂qp 
p
 

 
(11.3.15) 

 

We note that (11.3.14) agrees with (11.3.7) except for the omission of the terms in dt , we say that 

δ→−ri   are the virtual displacements satisfying the instantaneous constraints.  When we substitute 

from (11.3.15) in the D-Alembert’s equation (11.3.3) and apply (11.3.11), we have 
 

n 

Σ 
p=1 

S p.δqp = δW (11.3.16) 

 

Here δW represents the work done by all forces in the virtual displacements (11.3.15). These 

forces are split into (i) applied forces (such as gravity) and (ii) constraint forces. Let us neglect the 

effect of sliding friction. Then the constraint forces do no work in virtual diaplacements satisfying 

i 

i 
= 

= 



− 
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the instantaneous constraints and so the work δW arises only from the applied forces. We can 

write 

δW = 
n 

Σ 
p=1 

Qp.δqp (11.3.17) 

 

where Qp are the generalised forces expressible in terms of the applied forces and hence (11.3.17) 

becomes 

 
n 

Σ (S p Qp).δqp = 0 (11.3.18) 
p=1 

If δqp were arbitrary, we could conclude that S p = Qp , which would be again in the form of 

Lagrange’s equations
 d ∂T 

− 
∂T 

= Qp . But δqp are not arbitrary. It is necessary to subject the 
dt ∂q˙p ∂qp 

constraint forces with the following conditions, to eliminate them 
 

n 

Σ 
p=1 

Aαpδqp = 0 (α = 1, 2, · · · , m) (11.3.19) 

 

and hence we have to find the consequences of (11.3.18) when it holds for all δqp which satisfy 

(11.3.19). 

Let S p − Qp = Bp and define F by 

F = (B1 − λ1A11 − λ2A21 − · · · − λmAm1)δq1 

+(B2 − λ1A12 − λ2A22 − · · · − λmAm2)δq2 + · 

· · 

+(Bn − λ1A1n − λ2A2n − · · · − λmAmn)δqn. 

(11.3.20) 

 

where the λ ’s are arbitrary at this instant. We note that F = 0 for all δqp satisfying (11.3.19), 

since (11.3.19) implies (11.3.18). Let us choose λ ’s to satisfying the ‘mJ equations 

 

B1 = λ1A11 + λ2A21 + · · · + λmAm1 

B2 = λ1A12 − λ2A22 − · · · − λmAm2 

· · · · · · · · · 

Bm = λ1A1m − λ2A2m − · · · − λmAmm 

 

 
(11.3.21) 
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So that F reduces to 

F = (Bm+1 − λ1 A1,m+1 − · · · − λm Am,m+1)δqm+1 

+(Bm+2 − λ1 A1,m+2 − · · · − λm Am,m+2)δqm+2 

+ · · · · · · · · · 

+(Bn − λ1A1n − · · · − λmAmn)δqn. 

 
 
 

(11.3.22) 

 

this must vanish for arbitrary values of δqm+1, · · · , δqn , since when these values are given, we can 

always choose δq1, · · · , δqm to satisfy the m− equations (11.3.19) and we have seen that these 

imply F = 0 . 

Hence we have, 

Bm+1 = λ1 A1,m+1 + λ2 A2,m+1 + · · · + λm Am,m+1 

Bm+2 = λ1 A1,m+2 − λ2 A2,m+2 − · · · − λm Am,m+2 

· · · · · · · · · 

Bn = λ1A1n − λ2A2n − · · · − λmAmn 

 

 
(11.3.23) 

combining the equations (11.3.23) and (11.3.21), we see that there exist λ1λ2 · · · λm ( called 

Lagrange multipliers) such that 

 
 

S p − Qp = Bp = 
m 

Σ 
α=1 

λαAαp (11.3.24) 

 

Hence the extension of Lagrange’s equations for systems which are rheonomic, non-conservative 

and non-holonomic with ‘nJ generalised co-ordinates and constraints is the form 

 

n 

Σ 
p=1 

Aαpq˙p + Aα = 0 (α = 1, 2, · · · , m < n) (11.3.25) 

 

The equations of motion consist of the above m - equations and the following n - equations 
 
 

d ∂T ∂T m 
 

 

dt ∂q˙p 

– 
∂qp 

= Qp + Σ 
α=1 

λαAαp (p = 1, 2, · · · , n) (11.3.26) 



2 

− 

∂ṙ  ∂r dt ∂̇  ̀ ∂` 

dt 2 2 r2 
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where T is the kinetic energy and Qp are the generalised forces calculated from the applied 

forces by (11.3.17). These (m + n) equations are to be solved for the (m + n) quantities 

q1q2 · · · qn, λ1λ2 · · · λm . 

11.4 Worked Examples 
 

Example 11. A particle of mass m is moving in a plane under an attractive force 
µm

 
 
directed to 

the origin of polar co-ordinates r, θ . Find the Lagrange’s equations of motion. 
r
 
2 

 

 

Solution. The kinetic energy of the system is 

 

T  =  
1 

m(ṙ
2
 + r2θ̇2) 

2 
 

The potential energy of the system is V = −
µm

 
r 

Lagrangean L = T − V 

=  
1 

m(ṙ
2
 + r2θ̇2) + 

µm 
. 

2 

The Lagrangean equations are 

 

 d 
 

 

r 

 

 
∂L 

! 

− 
∂L 

= 0 and 
 d  

 
∂L

! 

− 
∂L 

= 0 (11.4.1) 

 

where r and θ are the generalised co-ordinates. ∴ (11.4.1) becomes 

 d  
 
1 

m.2ṙ

! 

− 

 
1 

m(2r)θ̇2  − 
µm 

! 

= 0 

and
 d

 
dt 

 
1 

m.2θ˙

! 

− (0) = 0 

(i.e)  mr̈ mrθ̇2  + 
µm  

= 0 

r2 

and m
 d 

(r
2θ˙) = 0 are the equations of motion. 

dt 

Example 12. A particle of mass m is moves under gravity on a smooth sphere of radius - b . 

Find the Lagrangean equations of motion, taking x, y, z as the generalised co-ordinates. The 

generalised co-ordinates are the rectangular cartesian co-ordinates with the origin at the center of 

the sphere and z measured vertically upward. 

dt 



dt ∂ẋ  ∂x 2 

dt ∂ẏ  ∂y 

dt ∂ż  ∂z 
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Solution. The equation of constraint is 
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x
2
 + y2

 + z2
 = b2

 (11.4.2) 
 

[Equation of sphere with centre at origin and radius - b units]. 

The constraint equation is of the form 

 

n 

Σ 
p=1 

Aαpq˙p + Aα = 0 (α = 1, 2, · · · , m < n) 

 

Expressing (11.4.2) in the above form, we have 

 

xẋ + yẏ + zż = 0 (11.4.3) 

The kinetic energy of the system is  T  =  
1 

m(ẋ
2
 + ẏ2

 + ż2
) . The generalised forces are  X = 0, Y = 0 

2 

and Z = −mg (gravitational force). 

Since there is only one constraint (11.4.3), there is only one Lagrange multiplier λ . The (m + n) 

equations are given by (11.3.15) and (11.3.16). 

From (11.3.15) we have  xẋ + yẏ + zż = 0 , (11.3.16) yields 

 d  
 
∂T 

! 

− 
∂T 

1 

= 0 + λx =⇒ (2x¨).m − 0 = λx 

 d  
 
∂T 

! 

− 
∂T = 0 + λy =⇒ my¨ = λy 

 d  
 
∂T 

! 

− 
∂T = −mg + λz =⇒ mz¨ = −mg + λz 

Hence the four equations are 

xẋ + yẏ + zż = 0 ,  mẍ = λx ,  mÿ = λy , and  mz̈ = −mg + λz . 

Example 13. Find the Lagrange’s equations of motion of a spherical pendulum consisting of 

a particle of mass - m , which moves under gravity on a smooth sphere of radius - a . The 

generalised co-ordinates are the spherical polar angles θ and φ . 

Solution. The kinetic energy of the system is 

T  =  
1 

ma
2
(θ̇2  + sin

2θφ̇2)  (under spherical polar co-ordinates). 
2 



∂θ̇  

  ! 
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m 

 

The potential energy V = −mgacosθ . 

L = T − V 

=  
1 

ma
2
(θ̇2  + sin

2θφ̇2) + mgacosθ 
2 ∂L 

= 
1 

ma
2
(2θ˙) = ma

2θ˙ 
∂θ˙ 2 

d ∂L   
= ma2θ̈ 

dt 
∂L  

=  
1 

ma
2
(2sinθcosθφ̇2) − mgasinθ. 

∂θ 2 
 

∴ The θ - equation is 

 d  
 
∂L 

! 

− 
∂L 

= 0
 

dt ∂θ˙ ∂θ 
 

=⇒ ma
2θ̈ − ma

2
 sinθcosθφ̇2  + mgasinθ = 0 (11.4.4) 

∂L  
=  

1 
ma

2
 sin

2θ(2φ̇) 

∂φ̇ 

∂L 
 

 

∂φ 

2 
 

= 0 . 

∴ The φ - equation is 

 

ma
2
 
 d 

(sin
2θφ̇) = 0. (11.4.5) 

dt 

(11.4.4) and (11.4.5) are the Lagrange’s equations of motion. 

Example 14. Consider a particle of unit mass moving in space, whose position is described by 

the spherical polar co-ordinates r, θ, φ . Find the components of acceleration along the parametric 

θ g 

a 

φ 



− 

dt ∂ṙ  ∂r 

dt ∂θ̇  ∂θ 

dt ∂φ̇ ∂φ 

dt 2 2 

∂x ∂x ∂y ∂z ∂x 
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lines. 

Solution.  The kinetic energy  T  =  
1 

(ṙ
2
 + r2θ̇2  + r2

 sin
2θφ̇2) . 

2 

Let R, θ and ψ be the generalised forces acting on the particle. 

Then the Lagrange’s equations of motion are 

 d 
 
∂L 

! 

− 
∂L 

= R
 

 d
 

∂L 
! 

− 
∂L 

= θ
 

 d
 

∂L 
! 

− 
∂L 

= ψ
 

which takes the form, 

 d  
 
1

2ṙ

! 

− 
1 

(2rθ̇2  + 2rsin
2θφ̇2) = R 

(i.e),  r̈ − rθ̇2  − rsin
2θφ̇2  = R . 

The other two equations are 

 d 
(r

2θ˙) r
2
 sinθcosθφ2

 = θ 
dt 
 d 

(r
2
 sin

2θφ̇) = ψ . 
dt 

Let ar, aθ, aφ be the components of acceleration along the parametric lines. Since the particle is of 

unit mass, these are equal to the components of force in these directions. Let us equate the two 

expressions for the work done in an arbitrary displacement. 

δW = arδr + aθrδθ + aφrsinθδφ = Rδr + θδθ + ψδφ 

Equating the co-efficients of δr, δθ and δφ , we get 

ar = R = r̈ − rθ̇2  − rsin
2θφ̇2

 

a 
1 1 d 2 ̇  ˙2 

θ = 
r 

θ = 
r dt 

(r θ) − rsinθcosθφ 

ψ 1 d 
a   = = (r

2
 sin

2θφ̇) . 
  

φ rsinθ rsinθ dt 

which are the components of acceleration. 

Example 15. A particle moves in space with the Lagrangean  L =  
1 

m(ẋ
2+ẏ

2+ż
2
)−V + ẋA+ẏB+żC 

where V, A, B, C are given functions of x, y, z 2 
. Show that the equations of motion are mx¨ = 

−
∂V 

+ y˙

 
∂B 

− 
∂A 

! 

− z˙

 
∂A 

− 
∂C 

! 

and two similar equations. 



dt ∂ẋ  ∂x 

∂x ∂x ∂y ∂z ∂x 
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Solution. 
∂L 

= 
1 

m(2x˙) + A = mx˙ + A 
∂x˙ 2 

 d
 

∂L 
! 

=
 d 

(mẋ  + A) = mẍ  + 
∂A 

ẋ + 
∂A 

ẏ + 
∂A 

ż 

dt ∂x˙ dt ∂x ∂y ∂z 

∂L ∂V ∂A ∂B ∂C 

∂x 
= − 

∂x 
+ x˙ 

∂x 
+ y˙ 

∂x 
+ z˙ 

∂x
 

∴ The Lagrange’s equation is
 d

 
 
∂L 

! 

− 
∂L 

= 0
 

(i.e),  mẍ + 
∂A 

ẋ + 
∂A 

ẏ + 
∂A 

ż + 
∂V  

− ẋ
∂A 

− ẏ 
∂B 

− ż
∂C  

= 0 
∂x ∂y ∂z ∂x ∂x ∂x ∂x 

m = x¨ = −
∂V 

+ y˙

 
∂B 

− 
∂A 

! 

− z˙

 
∂A 

− 
∂C 

!

 

which is the first equation of motion. In a similar manner, the other two equations can be found. 

 
 

Check Your Progress 

 
1. A particle of mass m can slide without friction on the inside of a small tube which is bent in 

the form of a circle of radius r. The tube rotates about a vertical diameter with a constant angular 

velocity ω as shown in the figure. Find the differential equation of motion. 

2. Suppose a mass spring system is attached to a frame which is translating with a uniform velocity 

v0 as shown in the figure. Let l0 be the unstressed spring length and use the elongation x as the 

generalised co-ordinate. Find the differentia equation of motion. 

 



2 

2 

11.4. WORKed ExaMples 

 

Answer to Check Your Progress 

 
1. Hint:  T  =  1 mr

2
(θ̇2  + ω2

 sin
2
 θ), v = mgr cos θ. 

 

 

mr
2θ¨ − mr

2ω2
 sin θ cos θ − mgr sin θ = 0. 
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2. Hint: T = 1
 m(v0 + x˙)

2, v = 
Kx

2
 

2 
. 

mx¨ + Kx = 0. 
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Objectives 

12.1 Introduction 

12.2 Lagrangean from Hamiltonian 

12.3 Ignorable Co-ordinates 

12.4 Conservative Systems 

12.5 Worked Examples 

Check Your Progress 

Answer to Check Your Progress 

Objectives 

Upon completion of this Unit, the students will be able to 

x obtain Lagrangean from Hamiltonian. 

x identify conservative systems 

 

 

BLOCK-IV 

UNIT 12 

Hamilton’s Equations 
 

 
 

 

12.1 Introduction 
 

 

The Lagrangean L is a function of n - quantities qp , their derivatives 

itself and hence we write 

q˙p with respect to t and 

 

 

L = L(q, q̇, t) (12.1.1) 



Σ 
p=1 
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write, 

pp = 
∂L 

∂q˙p 
(12.1.2) 

 

These n - quantities are known as the generalised momenta. In these equations, we see pp 

expressed as functions of q ’s, the q˙ ’s and t . (i.e), expressed as functions of q ’s, p ’s and t . 

Then L itself can be regarded as a function of the q ’s, the p ’s and t . 

 

Define the quantity H as 
n 

H = q˙ 
∂L 

– L (12.1.3) 

 

The quantity H is the Hamiltonian function. We write 

 
H = H(q, p, t) (12.1.4) 

 
in the case of a simple dynamical system, We have 

 
L = T (q, q̇) − V(q) (12.1.5) 

in the above equation, T is homogenous and quadratic in the generalised velocities. 

By Euler’s theorem for homogenous functions, 

n ∂T  q˙ = 2T (12.1.6) 
Σ 

p=1 
p
 ∂q ṗ 

 

∴ (12.1.1) becomes  
H = 2T − (T − V) = T + V (12.1.7) 

 

which is the total energy consisting of the kinetic and potential energy. 

Let us write (12.1.1) in the form 
n 

H = Σ 
p=1 

q˙pPp − L (12.1.8) 

The connection between L and H is given by (12.1.9) where we regard n - equations connecting 

the 3n + 1 quantities. 

q,q˙p, pp, t (12.1.9) 

p
 ∂q̇ p 



p 

−p 

dt ∂q ṗ ∂qp 
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thus giving variations to the quantities in (12.1.9), we have from (12.1.8). 

n n n ∂L ∂L ∂L 
δ + 1 = Σ 

p=1 
ppδq˙p + Σ 

p=1 
q˙pδpp − Σ 

p=1 ∂q  ̇
δq ṗ − 

∂q δqp − 
δt (12.1.10) 

∂t 

the first and third terms of the R.H.S of the above equation cancel each other by (12.1.7). 

The remaining differentials δqp, δpp, δt being 2n + 1 in number, may be regarded as independent 

and arbitrary, and since H = H(q, p, t) , δH = 
∂H 

δqp + 
∂H 

δpp + 
∂H 

δt . We have from (12.1.10) 
∂qp ∂pp ∂t 

∂H ∂H ∂L ∂H ∂L 

∂pp 
= q ṗ, 

∂qp 
= −

∂qp

 
∂t  

= − 
∂t 

(12.1.11) 

The 2n - equations of motion from (12.1.7) 

 

q˙p = 
∂H 

, 
∂pp 

 
p˙p = 

∂H
 

∂qp 

 

 

(12.1.12) 

 

The Hamilton’s equations of motion or Hamilton’s canonical equations of motion. 

 
 

12.2 Lagrangean from Hamiltonian 

Suppose that we are given a function H(q, p, t) and the motion of the system satisfies the canonical 

equations 

q˙p = 
∂H 

, 
∂pp 

p˙ = 
∂H

 
∂qp 

(12.2.1) 

We solve the first set of equations in the above equation for the p ’s in terms of the q ’s, 

t . 

Then we write 

q  ̇’s and 

n 

L = Σ 
p=1 

q˙p pp − H (12.2.2) 

and express L as a function of the q ’s, q˙ ’s and t . This is the required Lagrangean and the 

motion which satisfies the Hamilton’s canonical equations, also satifies the Lagrange’s equations 

of motion
 d

 
  

∂L 
! 

− 
∂L 

 
= 0 and vice versa. 

p 

, 



−1 − 
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12.3 Ignorable Co-ordinates 
 

Suppose that one co-ordinate say q1 is absent from H , so that, 
∂H

 
∂q1 

 

= 0 . Then by (12.2.1), 

p˙1 = 0 =⇒ p1 is a constant of the motion. 

Let p − 1 = q1 . 

substituting p1 = a1 in (12.2.1), we have 
 
 

q˙1 = 
∂H

 
∂p1 

∂H 
= 

∂a1 

 

and p˙ = 
∂H

 
∂q1 

(i.e) 0 = 
∂H

 
∂q1 

 

Dropping the above equations from the set of 2n equations, we have a set of canonical equations 

for 2(n − 1) quantities q2, q3, · · · , qn , p2, p3, · · · , pn . 

The co-ordinate q1 is called an ignorable co-ordinate. We see that if there is an ignorable 

co-ordinate, the number of degrees of freedom is reduced by unity, without loss of the canonical 

form of the equations. The ignorable co-ordinate q1 is to be found from the equation q˙1 = 
∂H 

. 
∂p1 

If there are m - ignorable co-ordinates then the number of degrees of freedom is reduced by m . 

From 
∂H

 
∂qp 

∂L 
= −

∂qp

 
, we see that 

∂H
 

∂q1 

∂L 
= 0 is equivalent to 

∂q1 

 

= 0 . 

So, if we start from a Lagrangean instead of a Hamilton, an ignorable co-ordinate can be detected 

through its absence from L . 

 
12.4 Conservative Systems 

 

 

By (12.1.11), the equations  
∂L 

= 0, 
∂t 

 
∂H 

= 0 (12.4.1) 
∂t 

are equivalent; We shall say that a system is conservative if they are satisfied or equivalently if L 

or H does not depend explicitly on t . 



2 

 + 

−x 

 m x 
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On applying the canonical equations of motion (12.2.1), we have 

107 

 

Ḣ  =   
n

 
∂H 

q˙ + 
n

 ∂H 
p˙

 ∂H ∂H + =  (12.4.2) 
Σ 

p=1 ∂qp 
p
 

Σ 
p=1 ∂pp  

p
 ∂t ∂t 

 

This vanishes if (12.4.1) is satisfied; Hence for a conservative system, the Hamiltonian H is a 

constant of the motion, its value being determined by the initial conditions. 

 
12.5 Worked Examples 

 
Example 16. Write the Hamilton’s canonical equations of motion for a particle of mass m moving 

in a plane with potential energy V(x, y) . 

Solution.  The Lagrangean is  L = T − V =  
1 

m(ẋ
2
 + ẏ2

) − V(x, y)  ························ (∗) 

where we know that the kinetic energy T = 
1 

mv
2
 . 

The generalised momenta are given by 
2
 

px = 
∂L

, py = 
∂L

 

∂x˙ ∂y˙ 

With the aid of (*), the above equations become, px = mx˙ and py = my˙ 

=⇒ ẋ = 
px 

and y˙ = 
m 

py 
.
 

m 

The Hamiltonian  H = T + V =  
1 

m(ẋ
2
 + ẏ2

) + V(x, y) 
2 

1  p2 p
2
  

(i.e) H = 

+ 
y 

V(x, y) 2 
 
m2 m2  

(i.e) H =
 1 

(p
2
 + p2

) + V(x, y) . 

2m x y 

The canonical equations of motion are 

x  ̇= 
∂H

   1 px = (2px) = 
∂px 2m m 

y˙ = 
∂H 

= 
py

 

∂py m 

p˙ = 
∂H

 
∂x 

∂V 
= − 

∂x
 



−y 

− 

= 
2

 
m2 

+ 
2 

= 
2m 

+ 
2
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p˙ = 
∂H

 
∂y 

∂V 
= − 

∂y
 

 

Example 17. The Harmonic oscilator consistes of a particle which can move on a straight line 

(say) along  x  - axis.  It is attracted towards the origin by a controlling force  −kx
→−

i   where  
→−

i 
is the unit vector along the positive direction of x - axis. Show that it is a simple system with 

T = 
1 

mx˙
2
 

2 , V = 
1 

kẋ
2
 

2 , L = 
1 

mẋ
2
 

2 

1 
– 

2 
kẋ

2
 , p = mx˙ , H = 

  1 
p2 +

 
2m 

kx2 

. Hence obtain the 
2 

Lagrangian equation of motion mx¨ + kx = 0 and the canonical equations of motion 

p  ̇= −kx . 

kx 

0 x 

 p 
ẋ  = 

m 
, 

Solution. The motion is along x - axis only, hence the system is simple with kinetic energy. 

T = 
1 

mx˙
2
 , 

2 

The potential energy  V =  
1 

kẋ
2
  [ 

k 
× square of the distance  ] 

2 2 

∴ Lagrangean  L = T − V =  
1 

kẋ
2
 − 

1 
kẋ

2
 . 

2 2 

The Lagrangean equation is 
 d  

 
∂L 

! 

− 
∂L 

= 0 (i.e),
 d  

  
1 

m2x˙

! 

− 
1 

(−2kx) = 0 

dt ∂x˙ ∂x 

d 

dt   2 2 

(i.e) 
dt 

(mx˙) + kx = 0 

=⇒ mx¨ + kx = 0 

The Hamiltonian  H = T + V =  
1 

mẋ
2
 + 

1 
kẋ

2
 

2 2 

The generalised momentum p = 
∂L

 
∂x˙ 

(i.e), p = 
m 

(2x˙) = mx˙ 
2 
p 

=⇒ x˙ = 
m

 

∴ H 
1 

m 

  
p

2
 
! 

kx
2
 

 
  1 

p2 

 
1 

kx
2
 

The Hamilton canonical equations are 

x  ̇= 
∂H

 
∂p 

and p˙ = 
∂H

 
∂x 



− 

− 

m 

r − 
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∴ x˙ =
 1 

(2p) and 
2m 

p˙ = 
k(2x) 

2 

are the canonical equations. 

(i.e) x˙ =
 p

 
m 

and p  ̇= −kx . 

 

Check Your Progress 

1. A particle of mass m is attracted to a fixed point O by an inverse square force 
µ m

, where µ 

r2 

is the gravitational coefficient. Using the polar coordinates (r, θ), find the Hamilton’s canonical 

equations of motion. 

2. Given a mass spring system consisting of a mass m and a linear spring of stiffness K, find the 

Hamilton’s canonical equations of motion. 

 

 

 
 

Answer to Check Your Progress 

 
1. Hint:  H = T + V =  

1 
m(ṙ

2
 + r2θ̇2  − µ m 

) 

2 r 

pr = 
∂L 

= mr˙, p = 
∂L 

= mr
2θ˙, where L = T − V. 

∂r˙ 
θ ∂θ˙ 

pr p
2
 µm 

Answer : 
p 

ṙ  = , p˙ =     θ 
m mr3 r2 

θ̇ = θ 
 

mr2 
, ṗ θ = 0. 

2. Hint: L = T − V = 1
 mx˙

2
 − kx2 

, p = ∂L
 = mx˙ 

  

p2 

H = T + V = 
2m 

+ 

2 2 

kx
2
 

 
 

2 

∂x˙ 

Answer: ẋ = p
 , ṗ = −kx (or) mẍ  + kx = 0. 
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Objectives 

13.1 Introduction 

13.2 The space of Events 

13.3 Hamilton’s Principle 

Objectives 

Upon completion of this Unit, the students will be able to 

x identify the space of events. 

x find the Jacobi’s principle of least action 

 

 

BLOCK-V 

UNIT 13 

Natural Motions 
 

 
 

 

13.1 Introduction 

 
Let us consider a dynamical system with n - degrees of freedom and a Hamiltonian H(q, p, t) 

where q, p refers to the 2n quantities qp, pp (p = 1, 2, · · · , n) . The canonical equations are 

 

q˙p = 
∂H 

, 
∂pp 

p˙ = 
∂H

 
∂qp 

 

(13.1.1) 

 

We call a motion to be “natural” if it satisfies the above equations (13.1.1) 



c 
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13.2 The space of Events 

Let us consider the set of numbers (q1, q2, · · · , qn, t) as a point in a representative space of 

(n + 1) dimensions. Since a point corresponds to a configuration or position of the system at 

a certain time, we may refer to a point of the representative space as an event and call the space 

as space of events En+1 to distinguish it from other representative spaces. 

Any motion of the system (not necessarily a natural motion) may be described by considering 

the q’s as functions of t . 

Q 
pp 

Q
 

 

 

 

 

 

P P 

Fig 13.2 (a) Fig 13.2 (b) 

 
The geometrical image of this motion in En+1 is a curve c , analogous to the curve in ordinary 

space given by the equations x = x(t), y = y(t), z = z(t) as shown in figure 13.2 (a). 

For n = 2 , we can make a model of the curve c in wire and obtain our picture by projection 

on the plane of the paper. We cannot do this for n > 2 , but we can still think of c as a projection 

of an (n + 1) dimensional model on the plane of the paper. 

 
Action for an Arbitrary motion 

 
We can describe a motion from an event P to an event Q by writing 

 
qp = qp(u), pp = pp(u), t = t(u) (13.2.1) 

 

These being (2n + 1) functions of a parameter ‘ u ’ which runs from u = u1 at P to u = u2 at Q . 

We may think of the p ’s as defining a momentum vector pp at each point of c . Fig 5.1(b). We 

c 



Σ 

! 

Σ 

= 

= 
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u = u1 

113 

 

 

 

 
 

Q 

 

 

 

 

 

 

P 

Fig 13.2 (c) 

 

say that (13.2.1) define a “curve with momentum”. 

 

We define the action along c to be the integral 

S 

∫ u2   
   n dqp 

pp 
du  

− H 
dt   

du (13.2.2) du 

 
Equivalently, we have 

u1  
p=1 

S 

∫ Q   n 
ppdqp − Hdt

! 

(13.2.3) 

p 

 

where the integration is taken along c . 

 
 

The Variation of Action 

p=1 

 

 

Consider an infinity of motions each with attached momentum. We describe them as 

 
qp = qp(u, v), pp = pp(u, v), t = t(u, v) (13.2.4) 

 

where u is a parameter which is constant for each motion this parameter ‘ v ’ serves as a label to 

pick on any particular one of the motions. Let us take u1, u2 be constants independent of v . 

The set of motions appear in En+1 as a set of curves (fig 13.2(c)) and for each there is an action 

which is a function of V . Fig 13.2(c) represents at singly infinite set of motions with attached 

pp 

v 
c 



Σ 

! 

dv 
=

 
Σ 

u1 
p=1 

. + 
∂v ∂u 

pp 
∂v∂u 

−
 ∂v ∂u 

− H 
∂v∂u 

u1 p
 ∂v∂u u1 p

 ∂u ∂v 

pp 
∂v 

du (usingintegrationbyparts) (13.2.8) 
∂v 

Similarly 
∫ u2 

H
 ∂ t 

du = 
∫ u2 

H 
∂ ∂t 

du (From (13.2.7)) 

H 
∂v 

du (13.2.9) 
∂u ∂v 

dv 
=

 
Σ 

p=1 

pp  
∂v  

− H 
∂v ∂u 

−
 ∂v 

−
 ∂v ∂u 

+
 

u1 
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moments. 

We write 

S (v) = 

∫ u2    
    n ∂qp 

pp 
∂u  

− H 
∂t   

du (13.2.5) ∂u 
u1  

p=1 

with partial derivatives, since v does not change as we follow a motion. 

 

We want to see how the acttion changes as we pass from motion to motion. For this we differentiate 

(13.2.5) w.r. to ‘ v ’. 

ds 
∫ u2

 n    
  
∂pp ∂qp n ∂2

qp ∂H ∂t ∂2
t 

!
 

 

 
 

 

 

As the second order partial derivatives are continuous. We have 
 

∂2
qp 

∂v∂u 
=

 

∂2
qp 

∂u∂v 
=

 

∂ ∂qp 
 

 

∂u ∂v 

 

(13.2.7) 

 

u 
2q u ∂ ∂q 

Now consider 
∫ 

2 
p 

∂ p 
du = 

∫
 2 

p 
p
 du [from (13.2.7)] 

 

" 
∂qp 

#u2
 

 

 

∫ u2   ∂pp ∂qp 
 

  
 
 

 
 

u1 ∂v∂u u1 ∂u ∂v 

" 
 

 
∂t 

#u2
 

 

 

∫ u2   ∂H ∂t 
 

Using (13.2.8) & (13.2.9) in (13.2.6), we have 
 

 

ds 
" 

n 

 
∂qp ∂t 

#u2
 

 

 

∫ u2    
    n 

 

 
 

 
∂pp ∂qp 

 

 

 
n    ∂pp ∂qp 

 

 

 
∂H ∂t ∂H ∂t 

!
 

 

 

 

Let us consider the infinitesimal change in S resulting from an infitesimal change ∂v in v (i.e), 

in passing from a curve c to a neighbouring curve. 

∂u ∂v ∂u ∂v u1 

+ 
u1 

u1 

= 

2 

∂u u1 u1 

Σ 
p=1 

du (13.2.6) 

= − 

− 

Σ 
p=1 

Σ 
p=1 

du (13.2.10) 



∫ n 
n n 
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We write 
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∂qp 
du = dq − p, 

∂pp 
du = dp , 

∂t
 ∂H = dt, = dH (13.2.11) 

∂u ∂u 
p
 ∂u ∂u 

these being the increments in passing along c . 

Now we write 

ds 

dv
δv = δs, 

∂qp 

∂v 
δv = δqp, 

∂pp 

∂v 
δv = δpp, 

∂t 
δv = δt, 

∂v 

∂H 
δv = δH (13.2.12) 

∂v 
 

these being the variations resulting from the change in v . 

Multiplying (13.2.10) by δv we get, 

 
δs = σ ppδqp − Hδt 

 
u2 

+ 

 
Q 

σ δppdqp − σ δqpdpp − δHdt + δtdt

!

 
 

(13.2.13) 
p=1 

u1 P p=1 p=1 

[Using (13.2.11) and (13.2.12) in (13.2.10)] 

 

where the integration is to be carried out w.r. to ‘ d ’ and not δ . 

 

 

Remark 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 13.2 (d) 

 
To avoid the use of partial derivatives, we proceed as follows: The curves in (13.2)(c) form a 

surface of two dimensions. If we draw on that surface the curves u = constant and v = constant, 

we get a network, a typical cell of which is shown in figure 13.2(d). The figure 13.2(d) shows 

δv 

du 

" # 



∫ 

∂u ∂v ∂v ∂u 

= 
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a cell on the surface formed by a set of motions. The sides correspond to an increment du and 

variation δv . 

Since u has the same bounds (u1, u2) for all the curves, we can make du and δv constant 

infinitisimals over the whole of the surface. Now if f is any function of  u  and  v , we have 

∂2
 f 

∂u∂v 
=

 

∂2
 f 

 
 

∂v∂u 

 
(13.2.14) 

 

Multiplying (13.2.14) by du δv and using the fact that these infinitesimals are constants, we get 

 

du 
∂
 

 
∂ f 

δv

! 

= δv 
∂
 

 
∂ f 

du

! 

(13.2.15) 
 

The above equation may be written with the aid of (13.2.11) and (13.2.12) as 

 
dδ f = δd f (13.2.16) 

 

(i.e), 

dδ = δd (13.2.17) 

 

We use to denote the set of n - quantities qp and p to denote the set of n - quantities pp . 

 

For example, we write 

 

 
thus (13.2.18) in (13.2.5), we have 

n 

Σ 
p=1 

ppdqp = pdq (13.2.18) 

 

S 
Q

(pdq 
P 

 

 

∫ Q 

 
 

 
Hdt) (13.2.19) 

Using (13.2.17) in (13.2.20) we have 

P 

δS = δpdq + pδdq − δHdt − Hδdt (13.2.20) 

− 



P 

P 

P p P P P 

− − 
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δS = 

∫ Q
(δpdq + pdδq − δHdt − Hdδt) 
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δS = 
Q 

(δpdδq Hdδt) + 
P 

Q 

δpdq δHdt (13.2.21) 
P 

 

= [pδq]
Q
 − 

∫ Q 
δqdp −

 
[Hδt]

Q
 − 

∫ Q 
δtdH

 

+ 
∫ Q 

δpdq − δHdt 

(Applying integration by parts for the first integral in (13.2.21)) 
 

∴ δs = [pδq − Hδt]
Q
 + 

which is same as (13.2.13). 

Q 

(δpdq − δqdp − δHdt + δtdH) (13.2.22) 

 

Hence the use of partial derivatives is eliminated. 

 

 

13.3 Hamilton’s Principle 

 
We now discuss the variations of action when the end events P and Q are held fixed. 

 

 

 

Q 

 

 

 

 

 

 

 
P 

 

Fig 13.3 (e) 

 

Figure 13.3(e) shows two cutves in En+1 with the same end points and with attached moments 

need not be the same at the end pointa for the two curves. 

c 

∫ ∫ 

∫ 

P 



−p 

p ∂q ∂p ∂t 

= 
∫ Q 

(

δp 

 

dq − 
∂H 

dt

! 

− δq 

 

dp + 
∂H 

dt

! 

+ δt 

 

dH − 
∂H 

dt

!)

 

H − 
∂t 
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Since δq = 0, δt = 0 at p and Q (13.2.22) gives 
 

 

 
 

As H = H(q, p, t) we have 

δs = (δpdq − δqdp − δHdt + δtdH) (13.3.1) 

 

 

δH(q, p, t) = 

 
Substituting (13.3.2) in (13.3.1), we get 

∂H 
δq + 

∂q 

∂H 
δp + 

∂p 

∂H 
δt (13.3.2) 

∂t 

δs = 
∫ Q 

(

δpdq − δqdp − 

" 
∂H 

δq − 
∂H 

δp − 
∂H 

δt

# 

dt + δtdH

)

 

 

p 
 

∫ Q ( 
 

 
 

∂p 

∂H 
!
 

 

 

∂q 

∂H 
!
 

 

 

∂t 

  
˙ 

∂H 
!) 

So far the motion represented by c has been completely arbitrary. 

Suppose now that it is a natural motion satisfying 

q˙p = 
∂H 

, 
∂pp 

p˙ = 
∂H 

, 
∂qp 

Ḣ  =  
∂H 

∂t 
 

Then by (13.3.3), we have δs = 0 , no matter what the variations δq, δp, δt may be. Thus we say 

that “ s has a stationary value for the natural motion when compared with arbitrary adjacement 

motions with the same end events. 

Let us now prove the converse (v) “ If s has a stationary value for variations δq, δp, δt which are 

arbitrary for end conditions, then c represents a natural motion”. 

To prove this, we choose the variation to be 

∂q ∂p p 

= 

∫ Q 

δp q̇ − – δq ṗ − + δt dt (13.3.3) 

p 



∂q 

∂p 

∂t 

−p 

∫

S  =  (p 
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δq = −

 

p˙ + 
∂H 

! 

Fδv 

δp = −

 

q  ̇− 
∂H 

! 

Fδv 

δt   = − 

 

Ḣ − 
∂H 

! 

Fδv 
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(13.3.4) 

 

where δv > 0 and F is any function along c such that F ≥ 0 and F = 0 at the ends. When 

we substitute (13.3.4) in (13.3.3) we get a non-negative integrand; then the assured stationary 

character of s (δs = 0) implies the vanishing of the integrand along c , which implies immediately 

that the canonical equations 

 

 
are satisfied. 

q˙p = 
∂H 

, 
∂pp 

p˙ = 
∂H

 
∂qp 

 

The result what we have established is known as Hamilton’s Principle. It states that “The integral 

of action 
n 

Σ 
p=1 

pdqp – Hdt) (13.3.5) 

S = 

∫ 

(pdq − Hdt) (13.3.6) 

has a stationary value for the natural motion when compared with adjacent motions having the 

same end events”. 

We can express Hamilton’s principle by the variational equation 

δ 

∫ 

(pdq − Hdt) = 0 (13.3.7) 

We have the connection between the Hamiltonian ‘ H ’ and the Lagrangean ‘ L ’ as H = pq˙ − L. 

(i.e), 

 

 
Substituting (13.3.8) in (13.3.7), we get 

L = pq˙ − H (13.3.8) 

 

δLdt = 0 (13.3.9) 



∫ 

− 

∫ ∫ 

dt ∂q̇  ∂q 

∂p ∂q 
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This is the usual form in which Hamilton’s principle is quoted and equivalent to Lagrange’s 

equations 

 d  
 
∂L 

! 

− 
∂L 

= 0 (13.3.10) 

The equations (13.3.10) are called the Euler-Lagrange equations associated with the variational 

equation (13.3.9). 

Consider the formula 

 

δ pdq = (δpdq + pδdq) 

 

= (δpdq + pdδq) 

Applying integration by parts to second integral, we have 

= [pδq] + 

∫ 

(δpdq − δqdp) (13.3.11) 

Suppose that the motion c , from which the variation is made, is natural. 

Then dq = 
∂H 

dt 
∂p 

dp = 
∂H 

dt 
∂q 

(13.3.11) becomes 

δ 
∫ 

pdq = [pδq] + 
∫
 

δp
∂H 

+ δq
∂H 

! 

dt 

 

= [pδq] + 

∫ 

δHdt (13.3.12) 

This vanishes if δq = 0 at the ends and δH = 0 along c . 

We know that  H  is a constant for any natural motion of a conservative system.  ( ∵ Ḣ  =  
∂H

 
∂t 

= 0) . 

Hence we have the following variational principle: 

δ 

∫ 

pdq = 0 (13.3.13) 

for variations from a natural motion of a conservative system provided the end configurations are 

fixed and H has, in the varied motion, the same constant value which it has in the natural motion. 



p=1 σ=1 
Σ 
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Application 
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Let us apply this principle to a simple dynamical system with n - degrees of freedom and 

generalised co-ordinates qp (p = 1, 2, · · · , n) . Let N be the number of particles in the system. Let 

mi  be the mass of a typical particle and 
→−

ri  its position vector.  Let the system have the potential 

energy v = v(q) . 

For such a system, 

H = T + V,   p =  
∂T 

,   pdq =  
∂T 

q̇dt = 2Tdt (13.3.14) 

∂q˙ ∂q˙ 

Since T is homogenous of the second degree in the velocities. 

 

“In the natural motion H = E , a constant. (13.3.13) can be written as 

δ 

∫ 

Tdt = 0 (Using(13.3.14)) (13.3.15) 

With the understanding that the end configurations are fixed and that in it, T + V = E ”. 

This principle is often called as the principle of least (or stationary) action. 

For a simple system, the kinetic energy is of the form 
 

T = 
1 n n   

a q̇  q̇   (13.3.16) 

2 
Σ Σ pσ   p   σ 

 
1 1 1 

p=1 σ=1 

 

1 
 

    

Now we write T = T 2 T 2 = (E − V) 2 T 2 

1 1 
 

∴ Tdt = (E − V) 2 

  
1 n n   

a dq dq 

!
2 

(13.3.17) Σ pσ p σ 

 

We note that a constant factor is of no significance in a variational principle. Hence we may 

express δ 
∫ 

Tdt = 0 in the form 

δ 

∫ 

ds = 0 (13.3.18) 

2 



Σ 
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where 

ds
2
 = (E − V) 

n

 
n 

Σ apσdq pdqσ (13.3.19) 
p=1 σ=1 

 

If we consider the n - dimensional configuration space, as a Riemannian space with a distance 

ds between adjacent points then (13.3.18) may be stated as “The natural curves of motion are 

geodesics or curves of stationary length”. 

The formula (13.3.18) is called Jacobi’s principle of least (or stationary) action. 



 

Objectives 

14.1 Introduction 

14.2 The Bilinear Invariant 

Check Your Progress 

Answer to Check Your Progress 

Objectives 

Upon completion of this Unit, the student is exposed to 

x the space of events. 

x construction of generating function. 

 

 

BLOCK-V 

UNIT 14 

Phase Space 
 

 
 

 

14.1 Introduction 

 
Let us consider a space of 2n - dimensions in which the co-ordinates of a point are the n 

- generalised co-ordinates (q) and the n - generalised momenta (p) to represent the natural 

motions of a system with n - degrees of function. This 2n - dimensional space is called 

phase space. 

We discuss only conservative systems in this section so that H = H(q, p), 
∂H 

= 0 and H is a constant of the motion. 
∂t 
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− 

= 
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The stream lines in phase space 

 
At each point of phase space, the canonical equations 

 
 

q  ̇= 
∂H 

, 
∂p 

p˙ = 
∂H

 
∂q 

 

(14.1.1) 

 

Define the ratios dq1 : dq2 : · · · : dqn : dp1 : dp2 : · · · : dpn . 

Thus they define a directionat the point and so the totality of natural motions give us a 

congruence of curves, filling phase space, with one curve through each point. Those curves are 

called as stream lines. We have to consider the representative points moving along the stream 

lines. 

 

 

 

 

 

 

 

 
 

Figure 14.1.1: The congruence of streamlines in phase space 

 

The increments in (q, p) are related to the increment in the time by 

 

dq = 
∂H 

dt, dp = −
∂H 

dt (14.1.2) 

∂p ∂q 
 

Example 18. For a particle of unit mass moving on a straight line under no force, the Hamiltonian 
 

H 
p2    

(q and t happen to be absent) (14.1.3) 
2 

 

(14.1.3) gives dq = 
1 

(2p)dt and dp = 0 
2 

(i.e), dq = pdt, dp = 0 

To show diagramatically, let q and p be taken as a rectangular co-ordinates. The streamlines 

are parallel to the q - axis [ dp = 0 =⇒ p = constant ]. The representative point stays at rest on 



2 

− 
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p = 0 (equilibrium) and on the other streamlines it moves with a velocity proportional to p . 
 

Example 19. The Hamiltonian for a simple harmonic oscillator may be written as 

H =
 1 

p
2
 + 

1 
kq

2
 (14.1.4) 

2m 2 

The streamlines are given by 

dq = 
∂H 

dt, dp = −
∂H 

dt 

∂p ∂q 

(i.e) dq = 
  1 

2pdt =⇒ dq =
 p 

dt 

2m m 

dp = − 
k 

(2q)dt =⇒ dp = −kqdt 

Since H is a constant during the motion, from (14.1.4) we see that the streamlines are ellipses. 

p 

q 

 

 

 

Canonical Transformations 

For a given dynamical system defined physically. We are free to choose the generalised 

co-ordinates ‘ q ’. Thus general dynamical theory is clearly invariant under transformations 

q → qJ (i.e), a set of n - equations expressing one set of n - generalised co-ordinates ‘ q ’ interms 

of another set qJ . The term “invariant” here means that any general statement in dynamical theory 

is equally true no matter which system of co-ordinates is used. Hence the Hamilton’s canonical 

equations 

q  ̇= 
∂H 

, 
∂p 

p˙ = 
∂H

 
∂q 

(14.1.5) 



− 
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transform into 

q̇J =  
∂H 

, 
∂pJ 

ṗJ = 
∂H

 
∂qJ 

(14.1.6) 

Such transformations are called Canonical or contact transformation. 

 
 

14.2 The Bilinear Invariant 

 
Let (∂q, ∂p) and (∆q, ∆p) be two arbitrary infinitesimal displacements in phase space. The 

expression 

 
 

is called a bilinear form. 

δq∆p − δp∆q (14.2.1) 

 

For n - variables the above expression reads 

δq1∆p1 + δq2∆p2 + · · · + δqn∆pn − δp1∆q1 − δp2∆q2 − · · · − δpn∆qn (14.2.2) 

For the transformation 

q = q(qJ, pJ), p = p(qJ, pJ) (14.2.3) 

We can express the differntials occuring in (14.2.2) in terms of δqJ, δpJ, ∆qJ, ∆pJ and then 

substitute in (14.2.2). 

Theorem 14.2.1. If the transformation is canonical, then 

 

δq∆p − δp∆q = δqJ∆pJ − δpJ∆qJ (14.2.4) 

Conversely if (14.2.4) holds, for all infinitesimal displacements, then the transformation 

 

q = q(qJ, pJ), p = p(qJ, pJ) (14.2.5) 

 
is canonical. 



− 

− 

∂q ∂p 
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Proof. To prove the if part, we note that if (14.2.5) is canonical then the following are satisfied 
 

 

 

 

 

 

∴ for arbitrary δq, δp , we have 

q˙ = 
∂H 

dt, 
∂p 

q̇J =  
∂H 

dt, 
∂pJ 

p˙ = 
∂H 

dt (14.2.6) 
∂q 

ṗJ = 
∂H 

dt (14.2.7) 
∂qJ 

δq

 

dp + 
∂H 

dt

! 

− δp

 

dq − 
∂H 

dt

! 

= 0 (14.2.8) 
 

 
∂H ∂H 

δqdp + δq 
∂q 

dt − δpdq + δp 
∂p 

dt = 0 (i.e), 

δqdp − δpdq + δHdt = 0 (14.2.9) 
 

Similarly 

 

(14.2.9)-(14.2.10) yields 

δqJdpJ − δpJdqJ + δHdt = 0 (14.2.10) 

 
δqdp − δpdq = δqJdpJ − δpJdqJ (14.2.11) 

Here (δq, δp) are arbitrary, but (dq, dp) are not since they correspond to a displacement along a 

streamline. A transformation is considered to be canonical if it must preserve the canonical form 

of equations of motion for every H . But by changing H , we can make (dq, dp) as we like and 

so let us change d to ∆ in (14.2.11). 

Hence δq∆p − δp∆q = δqJ∆pJ − δpJ∆qJ which proves (14.2.4). 

To prove the converse part, we have to prove (14.2.4) and (14.2.6) together reply (14.2.7). We see 

that (14.2.6) imply (14.2.9) and that with (14.2.4) [used instead of ∆ ] implies (14.2.10). 

This can be written as 

δqJ

 

dpJ + 
∂H 

dt

! 

− δpJ

 

dqJ + 
∂H 

dt

! 

= 0 (14.2.12) 

 

From the above equation, we have 

dqJ = 
∂H 

dt, dpJ = −
∂H 

dt 

∂qJ ∂pJ 

∂pJ ∂qJ 

which gives (14.2.7), since (δqJ, δpJ) are arbitrary which proves the converse part. ■ 



− 

− 

q
J2 

q
J2 
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Example 20. Prove the transformation p =
 1

 
qJ and q = pJq

J2 is canonical. 

Solution. δp = 
1 

δqJ, δq = pJ(2qJ)δqJ + q
J2δpJ 

q
J2 

 
∆p =  

1 
∆qJ, ∆q = pJ(2qJ)∆qJ + q

J2∆pJ 
q

J2 

Consider δq∆p − δp∆q 

= (2pJqJδqJ + q
J2δpJ) 

"

−
 1  

∆qJ

# 

− 

 

−
 1  

! 

δqJ(2pJqJ∆qJ + q
J2∆pJ) 

= −
2pJ 

δqJ∆qJ − δpJ∆qJ +
 2 

pJδqJ∆qJ + ∆pJδqJ 
 

qJ qJ 

= δqJ∆pJ − δpJ∆qJ 

Hence the transformation is canonical. 

 
 

Generating Functions 

 
The Bilinear unvariant is used to test whether a given transformation is canonical or not. But it 

does not tell us how to construct canonical transformation. 

 
Construction of generating functions 

 

Let G(q, qJ) be a function of 2n quantities (q, qJ) . Let 

p = 
∂G

, pJ = − 
∂G

 

 

 

 
(14.2.13) 

∂q ∂qJ 

 

which is equivalent to 

pδq − pJδqJ = δG = 
∂G

δq + 
∂G 

δqJ (14.2.14) 

∂q ∂qJ 

where (δq, δqJ) is arbitrary. 
 

In (14.2.14), we have 2n equations connecting 4n - quantities (q, p, qJ, pJ) . Solving for (q, p) 

we have a transformation. 

q = q(qJ, pJ), p = p(qJ, pJ) (14.2.15) 
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We show that the transformation (14.2.15) is canonical. 

 

Consider a surface with two dimensions in phase space with equations. 
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q = q(u, v), p = p(u, v) (14.2.16) 

 
where u and v are parameters. 

 

Let δ, ∆ denote the changes arising from constant infinitesimal variations δu, ∆v respectively. 

Then for any function f on u and v , we have 

 
δ f = 

 
∂2

 f 

∂ f 
δu, ∆ f = 

∂u 

∂2
 f 

∂ f 
δv (14.2.17) 

∂v 

 
 

(i.e), 

∆δ f =  
 

∂v∂u 
∂u∆v =  

 

∂u∂v 
∂u∆v = vδ∆ f (14.2.18) 

∆δ = δ∆ (14.2.19) 

 
Applying the operator ∆ to (14.2.14) 

 
∆pδq + p∆δq − ∆pJδqJ − ∆pJδqJ = ∆δG (14.2.20) 

Applying (14.2.19) in (14.2.20) we have 

 
δp∆q + pδ∆q − δpJ∆qJ − δpJ∆qJ = δ∆G (14.2.21) 

Subtracting (14.2.21) from (14.2.20) and using (14.2.19), we get 

δq∆p − δp∆q = δqJ∆pJ − δpJ∆qJ 

thus the invariance of the bilinear form is established. Hence the transformation (14.2.15) is 

canonical. 

The function G(q, qJ) is called the generating function of the canonical transformation. 

Example 21. Find the generating function for the transformation p =
 1 

, q = pJqJ2 
qJ 



  ! 

  ! 

  ! 

, , 

    

    pJ 
(a) q = 

1 .
qJ2 + pJ2

 
; p = − tan−1

  qJ  
 

2 
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Solution. pδq − pJδqJ = δG 

(i.e), 
1 

(δq) 
q 

 q 

q
J2 δqJ = δG 

(i.e), δG = q

 

−
 1 

! 

δqJ +
 1 

! 

δq 

q
J2 

= δ q
 1

 
qJ 

= δ
 q 

qJ 

Hence G(q, qJ) =
 q

 
qJ 

q
J 

 

 

 

 
is the generating function. 

 

Example 22. Find the generating function for the transformation q = −pJ, p = qJ 

Solution. pδq − pJδqJ = δG 

=⇒ qJδq + qδqJ = δG 

(i.e), δG = q(δqJ) + qJ(δq) 

= δ(qqJ) 

Hence G(q, qJ) = qqJ 

 
Check Your Progress 

 
1. Show that the following transformations are canonical. 

 

(b) q = 2qJe
t
 cos pJ ; p = 2qJe−t

 sin pJ 

(c) q = log  
sin pJ  

; p = qJ cot(pJ) 
qJ 

 
 

Answer to Check Your Progress 

 
1. Hint : Prove δq∆p − δp∆q = δqJ∆pJ − δpJ∆qJ 

− 



 

− 

Objectives 

15.1 Introduction 

15.2 Canonical Transformations generated by the Motion 

15.3 Liouville’s Theorem 

Objectives 

Upon completion of this Unit, the students will be able to 

x identify canonical transformation generated by the motion. 

x identify Liouville’s theorem. 

 

BLOCK-V 

UNIT 15 

Poisson Brackets 
 

 
 

 

15.1 Introduction 

Let f (q, p) be any function of (q, p) . Then as the system moves in accordance with the canonical 

equations, 

 

 
the rate of change of f is 

q  ̇= 
∂H 

, 
∂p 

p˙ = 
∂H

 
∂q 

(15.1.1) 

 

d f ∂ f dq ∂ f dp ∂ f ∂ f 

 

 
where 

dt 
= 

∂q dt 
+ 

∂p dt 
= 

∂q 
q˙ + 

∂p 
p˙

 

 
[ f , H] = 

∂ f ∂H 
− 

∂ f ∂H 

= [ f , H] (15.1.2) 

 

 

(15.1.3) 
∂q ∂p ∂p ∂q 

The last expression is a particular case of the Poisson bracket 

131 



132 15.1. INTRODUCTION 

The Poisson bracket for any two functions f (q, p), g(q, p) is defined as 
 

[ f , g] = 
∂ f ∂g 

− 
∂ f ∂g 

 
(15.1.4) 

 

In full form 

∂q ∂p ∂p ∂q 

 

[ f , g] = 
∂ f ∂g

 
∂q1 ∂p1 

∂ f ∂g 
– 

∂p1 ∂q1 

∂ f ∂g 
+ 

∂q2 ∂p2 

∂ f ∂g 
– 

∂p2 ∂q2 

∂ f ∂g 
+ · · · + 

∂qn ∂pn

 

∂ f ∂g – 
∂pn ∂qn 

 

(15.1.5) 

 

Note 
 

1. It is clear that  
[ f , g] = −[g, f ] (15.1.6) 

 

so that the Poisson brackets are skew symmetric. 

 
2. [ f , f ] = 0 

 

If f = q − 1 is substituted in (15.1.2) then 
 

 
 

q˙1 = [q, H] (15.1.7) 
 

The above is an alternative way of meeting the first of the canonical equations (15.1.1). The full 

set of canonical equations may be expressed in terms of Poisson brackets as follows: 

q˙ = [q, H], p˙ = [p, H] 
 

If f = H is substituted in (15.1.2) then Ḣ  = [H, H] = 0  by (15.1.7). 
 

If the Poisson brackets are considered with the co-ordinates themselves, then from (15.1.5) we 

have 

 

(i) 

[qp, qσ] = 0 [pp, pσ] = 0 (15.1.8) 



A 

(q0, p0) 

B 
(q, p) 

t 
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(ii) 

[qp, pσ] = −[pσ, qp] = δpσ (15.1.9) 

where p, σ = 1, 2, · · · , n and δpσ is the kronecker delta defined by 

δpσ = 1 i f p = σ 

and δpσ = 0 i f p /= σ 

(15.1.10) 

 
the Poisson brackets plays an important role in the generalisation of quantum mechanics out of 

classical dynamics. 

 
15.2 Canonical Transformations generated by the Motion 

 
Consider the dynamical fluid in motion. Figure(5.2) shows a portion of the fluid at time ‘ t0 ’ and 

that same portion as a later time t . By “the same portion” we mean it is composed of the same 

“particles” of the dynamical fluid, each such particle moving in accordance with the canonical 

equations. 

Let A be the position of a particle at time ‘ t ’. Now A at t0 and B at t are two events and 

between those two events there is an action S (q0, t0, q, t) where q0 and q refer to A and B 

respectively. 

 

 

 

 

 

 

 

 

 

 

 

t0 

 

Figure 15.2.1: Canonical transformations generated by the motion of the dynamical fluid 
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Action is given by 

S = 

 
The moments at A and B are give by 

B,t 

A,t0 
(pdq − Hdt) (15.2.1) 

 

p = 
∂S 

, p0 = − 
∂S 

 
 

(15.2.2) 
∂q ∂q0 

 

Remembering that t0 and t are merely two constants, we recognise in (15.2.2), the canonical 

transformations, p = 
∂G

, pJ = − 
∂G 

. 

∂q ∂qJ 

The characteristic function S playing the part of generating function. 

 

thus we have proved that “if (q0, p0) is the position in phase space at time t0 of a particle of the 

dynamical fluid and (q, p) the position of the same particle at time ‘ t ’, then the transformation 

 

(q0, p0) → (q, p) 

is a canonical transformation and Hamilton’s characteristic function is a generating function of 

that transformation”. 

Note 

 

1. If we vary the parameters t0 and t of the transformation, we get a continuous group of 

canonical transformations. 

2. The Poisson brackets are invariant under a canonical transformation . i.e., [ f , g]q,p = [ f , g]qJ, pJ . 

Hence if the transformation is canonical then [ f , f ] = [g, g] = 0 and [g, f ] = 1. 

 
 

15.3 Liouville’s Theorem 

For one degree of freedom 

The area of any finite domain remains constant as that domain is carried along with the dynamical 

fluid. 

∫ 



∫ ∫ 
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(i.e)
 d

 
dt 

∫ ∫ 
δqδp = 0 , where p and q are the rectangular co-ordinate axes. 

 

Proof. Let A be the position of a particle at time t0 and B be the position of the same particle 

at time t . 

At A , let us draw an infinitesimal parallelogram with edges (∂q0, ∂p0) and (∆q0, ∆p0) 
 

p 

 

 

 

 

 

 

 

 

 

 

 

 
 

q 

O 

 

Its area is δq0∆p0 − δp0∆q0 . This parallelogram is carried along by the motion of the dynamical 

fluid and at time ‘ t ’ it has edges (δq, δp) and (∆q, ∆p) . 

It’s area at B is δq∆p − δp∆q . But the transformation produced by the motion is canonical and 

therefore by the invariance of the bilinear form under canonical transformations, we have 

 

δq∆p − δp∆q = δq0∆p0 − δp0∆q0 (15.3.1) 

= Thus the area of the infinitesimal parallelogram is unchanged by the motion. Since a finite area 

may be split up into infinitesimal parallelograms, it follows that “the area of any finite domain 

remains constant as that domain is carried along with the dynamical fluid” which proves the 

Liouville’s theorem for a system with one degree of freedom. 
(i.e), 

d 
δqδp = 0 (15.3.2) 

dt 

■ 

 

For n - degrees of Freedom 

A 

(q0, p0) 

(δq0, δp0) 



−1 −n 

∂x ∂y ∂z 
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The volume 

∫ 

· · · 

∫ 

δq1 · · · δqn, δp1 · · · δpn 

of any domain in phase space remains constant as that volume is carried along with the dynamical 

fluid, moving in accordance with the canonical equations. 

Proof. Consider a system with n - degrees of freedom phase space of 2n - dimensions and we 

regard the 2n - variables (q, p) as rectangular cartesian co-ordinates in it. 

The volume of any domain in phase-space is 

∫ 

· · · 

∫ 

δq1 · · · δqn, δp1 · · · δpn (15.3.3) 

At each point in phase space there is a “velocity vector with - 2n components, 

q̇1 = 
∂H 

, q̇2 = 
∂H 

· · · q̇n = 
∂H

 (15.3.4) 
∂p1 

 
p˙ = 

∂H 
, 

∂q1 

 

 

ṗ 2 = 

∂p2 

 
∂H 

−
∂q2 

· ·· 

∂pn 

 
p˙ = 

∂H
 

∂qn 

 

 
 

(15.3.5) 

Using the fact that “the divergence of the velocity vanishes”, we have 
 

∂q˙1 ∂q˙n ∂p 1̇ ∂p˙n 

∂q1 

+ · · · + 
∂qn 

+ 
∂p1 

+ · · · + 
∂pn 

= 0 (15.3.6) 

For a moment let us consider an ordinary fluid moving in arbitrary space. Let (u, v, w) be the 

components of velocity of the fluid at the point with co-ordinates (x, y, z) . Then for any volume 

bounded by a surface and we have by Green’s theorem 

∫ ∫ ∫   
∂u 

+ 
∂u 

+ 
∂w 

! 

dxdydz = 

∫ ∫ 

(lu + mv + nw)dζ (15.3.7) 

 

The integral on the LHS is taken throughout the volume and the integral on the RHS is taken over 

ζ . The quantities l, m, n are the direction cosines of the outward drawn normal to ζ . 

But 

lu + mv + nw = V (15.3.8) 

the component of velocity normal to ζ and so as ζ is carried along with the fluid, in a time 



,
2pJ cos qJ 

dt 
here represents a 2n - fold integration and δq δp n - dimensional element in 
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interval dt , the volume contained inside ζ increases by an amount 
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dt 

∫ ∫ 

Vdζ = dt 

∫ ∫ ∫   
∂u 

+ 
∂u 

+ 
∂w 

! 

dxdydz (15.3.9) 

 

Thus 

∂x ∂y ∂z 

 
∂u ∂u ∂w 

∂x 
+

 ∂y 
+ 

∂z 
= 0 (15.3.10) 

is a necessary and sufficient condition that the volume of any domain remains constant when that 

domain is carried along with the fluid. The constancy of the volume is implied by the vanishing 

of the divergence of the velocity vector. 

The equation is mathematically same as the one in (15.3.10) in 2n dimensions instead of in 3 

dimensions. Green’s theorem can be applied for a space of any dimensionality and so if we apply 

it to a 2n - dimensional volume in phase space bounded by a (2n − 1) dimensional surface, 

carried along with the dynamical fluid, then the above hydro-dynamical argument sends to the 

general form of Liouville’s theorem. 
 

Note The Liouville’s theorem can be expressed as
 d ∫ 

δqδp =  0 , where the single integration 

represents the  2 

∫ 
· · · 

∫ 
δq1 · · · δqn, δp1 · · · δpn . ■ 

Check Your Progress 

1. Using  Poisson  bracket,  show  that  the  transformation  is  canonical  q  =   
,

2pJ sin qJ; p  = 

2. For what values of m and n do the transformation equations qJ = q
m
 cos np; pJ = qm

 sin np 

present a canonical transformation. 

3. For what values of α, the following transformation qJ = q cos α− p sin α; pJ = q sin α+ p cos α 

is canonical. 

4. Show that (ad − bc) = 1, in order that the transformation qJ = aq + bp; pJ = cq + dp is 

canonical. 
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Answer to Check Your Progress 
 

1. The transformation can be written as tan qJ = 
q 

; pJ = 
p 

q2 + p2 

; Prove [qJ 
2 

pJ] = [pJ, pJ] = 0 

and [qJ, pJ] = 1 for thr transformation to be canonical. 

2. For the transformation to be canonical, we show that [qJ, pJ] = 1. Using this condition we get 

mnq
2m−1

 = 1. Equating coefficient of q
0
 on both sides, 2m − 1 = 0 ⇒ m 

1 
= 

2 
. Using mnq

0
 = 1, 

and m 
1 

= 
2 

, we get n = 2. 

3. [qJ, pJ] = 1 ⇒ cos
2
 α + sin

2
 α = 1, for all α. 

4. [qJ, pJ] = 1 ⇒ 
∂qJ ∂pJ  

− 
∂qJ ∂pJ 

= 1 ⇒ ad − bc = 1. 
  

∂q ∂p ∂p ∂q 

, 
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