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COURSE TITLE : COMPLEX ANALYSIS
COURSE CODE : MMT- 202
COURSE CREDIT : 4

COURSE OBJECTIVES
While studying the COMPLEX ANALYSIS, the Learner shall be able to:

CO 1: Review the singular points.

CO 2: Discuss the concept of multiple connected region.
CO 3: Represent Weierstrass theorem on entire functions.
CO 4: Identify the applications of Harnack Principle.

CO 5: Describe the concept of canonical basis.

COURSE LEARNING OUTCOMES
After completion of the COMPLEX ANALYSIS, the Learner will be able to:

CLO 1: Interpret the Cauchy’s integral formula, identify them to solve a problem by using
Cauchy’s integral formula.

CLO 2: Describe the concept of mean value property and properties of harmonic functions.

CLO 3: Enable to extend the Riemann zeta function to the whole complex plane.

CLO 4:Demonstrate and identify that the unit disk can be mapped conformally onto any simply
connected region in the plane, other than the plane itself.

CLO 5: Demonstrate and identify the Weierstrass function, then able to prove the

differential equation satisfied by Weierstrass function.

BLOCK I: COMPLEX INTEGRATION

Fundamental Theorems: Cauchy’s Theorem for a Rectangle- Cauchy’s Theorem in a Disk.
Cauchy’s Integral Formula: The Index of a point with respect to a closed curve - The Integral
formula - Higher derivatives. Local Properties of analytical Functions:Removable
Singularities-Taylors’s Theorem - Zeros and poles - The local Mapping - The Maximum

Principle.



BLOCK II: COMPLEX INTEGRATION

The Genral Form of Cauchy’s Theorem: Chains and cycles- Simple Continuity - Homology -
The General statement of Cauchy’s Theorem - Proof of Cauchy’s theorem - Locally exact
differentials- Multilply connected regions - Residue theorem - The argument principle.
Evaluation of Definite Integrals and Harmonic Functions: Evaluation of definite integrals -
Definition of Harmonic function and basic properties - Mean value property - Poisson

formula.

BLOCK III: SERIES AND PRODUCT DEVELOPMENTS

Partial Fractions and Entire Functions: Partial fractions - Infinite products - Canonical
products - Gamma Function- Jensen’s formula - Hadamard’s Theorem

Riemann Theta Function and Normal Families: Product development - Extension of {(s) to
the whole plane - The zeros of zeta function - Equicontinuity - Normality and compactness

- Arzela’s theorem - Families of analytic functions - The Classical Definition.

BLOCK IV: CONFORMAL MAPPINGS

Riemann mapping Theorem: Statement and Proof - Boundary Behaviour - Use of the
Reflection Principle. Conformal mappings of polygons: Behaviour at an angle - Schwarz-
Christoffel formula - Mapping on a rectangle. Harmonic Functions: Functions with mean

value property - Harnack’s principle.

BLOCK V: ELLIPTIC FUNCTIONS

Simply Periodic Functions : Representation by Exponentials-The Fourier Development -
Functions of Finite Order. Doubly Periodic Functions:The Period Module-Unimodular
Transformations - The Caninical Basis-General Properties of Elliptic Functions. Weierstrass
Theory: The Weierstrass ¢ -function - The functions {(s) and o(s) - The differential equation
- The modular equation A(t) - The Conformal mapping by A().
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BLOCK-I
UNIT 1

Fundamental Theorems

Objectives

Upon completion of this Unit, students will be able to

x identify Cauchy’s theorem for a rectangle.

1.1 Introduction

In this Block we take up complex integral calculus. Many important properties of analytic
functions are very difficult to prove without use of complex integration. For instance, it is only
recently that it became possible to prove, without resorting to complex integrals or equivalent
tools, that the derivative of an analytic function is continuous, or that the higher derivatives exist.

As in the real case we distinguish between definite and indefinite integrals. An indefinite
integral is a function whose derivative equals a given analytic function in a region, in many
elementary cases indefinite integrals can be found by inversion of known derivation formulas.
The definite integrals are taken over differentiable or piecewise differentiable arcs and are not
limited to analytic functions. The reader must be thoroughly familiar with the theory of definite

integrals of real continuous functions.

1.2 Cauchy’s Theorems for a Rectangle

There are several forms of Cauchy’s theorem, but they differ in their topological rather than in
their analytical content. It is natural to begin with a case in which the topological consideration

are trivial.






2 1.2. Cauchy’s TheoreMs for a RecTangle

We consider, specifically, a rectangle R defined by inequalitiecsa < x < b, c <y < d. Its
perimeter can be considered as a simple closed curve consisting of four line segments whose

direction we choose so that R lies to the left of the directed segments. The order of the vertices is
thus (a, ¢), (b, ¢), (b, d), (a, d). We refer to this closed curve as the boundary curve or contour
of R, and we denote it by dR.

We emphasize that R is chosen as a closed point set and hence, is not a region. In the following
theorem, we consider a function which is analytic on the rectangle R.

The following is a preliminary version of Cauchy’s theorem:

Theorem 1.2.1. If the function f(z) is analytic on R, then

J
f(2)dz = 0, (1.2.1)
dR

where dR denotes the boundary of rectangle or contour.

Proof. The proof is based on the method of bisection.

J
nR) =  f(2)dz (1.2.2)
dR

Divide the rectangle R into four congruent rectangles R, R?, R®, R* by joining of the opposite
sides of R then from (12.2.2), we have

J I J J
NR) = f(z)dz + f(z)dz + f(z)dz +

oR

f(z)dz

oR odR oR

n(R) = n(RY + n(R? +n(R®) + n(R% (1.2.3)

INR) < InR)I+INR)I+IR?)|+InRY)]

It follows from (8.2.3) that at least one of the rectangles R\ k=1, 2 3, 4, must satisfy the
condition

INR)I< 4In(RY)
We denote this rectangle by R;. Continuing this process indefinitely, we get a sequence of nested
rectangles Ry, Ry, R3, R, - - -, where R, is the n™ bisection of the rectangles of R such that

Complex Analysis M.Sc.(Mathematics)-TNOU)-I Year- Il Sem



1.2. Cauchy’s Theorewms foR a RecTangle 3

RDR;DR; D -+ DRy - - and this rectangles satisfies the condition
1 1
mRnl 2 —4 |n(Rn71) 2 _4 n(Ran)
1
m(Rn)’Z @‘”(Rn—z)‘ """
1

INR)I> IR
ZInR)I< 4'In(Ry)] (1.2.4)

which is sufficiently large the rectangle R, converges to a point say z, belongs to all the rectangles
Rl/RZIRSI o Rn P

Choose a number d > 0 so small such that the rectangle R, is contained in |z — zo|< 0.

e, Ry Clz—12/<d

Since the function f(z) is analytic on a rectangle R, it is also analytic at the point z, and therefore
differentiable at zp.

Therefore, if given s > 0 we can choose ® > 0 such that

-M - fi(z0) -< S for |z-12]<0

Z—1 :

f(2) - (20) = (z - 20) F(20)| < 51z - 29| (1.2.5)
Now,
J I / J J

[f(2) f(z) (z 2z0)f)(z0)]dz = f(z)dz  f(z0) dz  fi(z0) zdz+20f(z0) ~ dz
3R, o aR, ~ R 3R, aR,
But [ [
R, dz = . zdz = 0.

M.Sc.(Mathematics)-TNOU-I Year- Il Sem Complex Analysis



4 1.2. Cauchy’s TheoreMs for a RecTangle

I
S ar (D) — F(z0) — (2 — 20) P20z

I J
o, f(z)dz _0 0+0= o, f(z)dz

CRf(2) — f(zo) — (2 — 20)FUz)]dz = INRw)
: : [
INRy)| < - 11(2) - f(20) - (2 - 20) P(20)! ldz] .
[
IN(Rn)| < = Slz-1zlldz] by (1.2.5) (1.2.6)

If d, denotes the diagonal of the rectangle R, then |z — zg| < d,.

If 1, denotes the perimeter of the rectangle R, then

[

|d2| =,
3R,

.. from (1.2.6), we get
INRn)| < sdyly (1.2.7)

If L, D denote the perimeter and diagonal of the rectangle R and | and d denotes the perimeter
and diagonal of the rectangle R,, we have

di =

L =

NI O

Complex Analysis M.Sc.(Mathematics)-TNOU)-I Year- Il Sem



1.2. Cauchy’s Theorewms foR a RecTangle 5

Similarly I,, d, perimeter and diagonal of the rectangle R,, then

Iy
l, = )
l, = L
22
d
d, = )
D
d; = 2
LW = —
2n
D
dn = 2n
DL
S@27)=> In(Ry)l <s =
2n 2n
DL
INRn)| < S (1.2.8)
From (1.2.4), we get
INR)| < 4" In(Ry)
i
4n
In(R)|] < sDL
Since s is arbitrary, we can only have
n(R) = 0.
J
i.e., f(z)dz=0
3R
Hence the theorem is proved. [ |

This beautiful proof, which could hardly be simpler, is due to E. Goursat who discovered that the

classical hypothesis of a continuous fJ(z) is redundant. At the same time the proof is simpler than

the earlier proofs in as much as it leans neither on double integration nor on differentiation under

M.Sc.(Mathematics)-TNOU-I Year- Il Sem Complex Analysis



6 1.2. Cauchy’s TheoreMs for a RecTangle

the integral sign.

The hypothesis in Theorem.1.2.1 can be weakened considerably. We shall prove at once the

following stronger theorem which will find very important use.

Theorem 1.2.2. Let f(z) be analytic on the set R obtained from a rectangle R by omitting a
finite number of interior points ;. If it is true that

lim(z _C)f(z)=0
7=

for all j, then [
f(z)dz = 0.
oR
Proof. It is enough to consider the case of a single exceptional point  for evidently rectangle R
can be divided into smaller rectangles containing at most one ;.
We divide the rectangle R into nine rectangles and let Ry be the center of the rectangle containing
the point ; then by applying Theorem.1.2.1, we have

J J
f(z)dz = f(z)dz + 0,
3R 3R
/ f(z)d
z)dz
R fz)dz, * 8Ro :
J J
0 < i) . (L.2.9)

But we are given
lim(z _C)f(z)=0

2=

Corresponding to s > 0 we can write

(Zz-C)f(2)- < s

2= |f@)] < s

1@, < >

-G

Complex Analysis M.Sc.(Mathematics)-TNOU)-I Year- Il Sem




1.2. Cauchy’s TheoreMms foR a RecTangle ( ( 7

f(z)dz’ < >—|dz|

3R " RZ—(j.
Let a be a side of the rectangle which we consider Ry is a square of the centre, then

a
'Z_(J" z 2
2
B
f@d < s-jg]

. oR . BRJ' a

2S
< |dZ|
a
2S
[ < E4a

© 3R f(z)dz. < 8s.
Since s is arbitrary, we get [
o [(2)dz = 0.

Hence the theorem is proved. [ |

M.Sc.(Mathematics)-TNOU-I Year- Il Sem Complex Analysis






BLOCK-I
UNIT 2

Cauchy’s Theorem in a Disk

Objectives

Upon completion of this Unit, students will be able to

X prove Cauchy’s theorem in a disk.

2.1 Introduction

It is not true that the integral of an analytic function over a closed curve is always zero. Indeed,

we have found that
I dz

— —=2ni
cz—a
when C is a circle about a. In order to make sure that the integral vanishes, it is necessary to
make sure that the integral vanishes, it is necessary to make a special assumption concerning the
region Q in which f (z) is known to be analytic and to which the curve vy is restricted. We are not

yet in a position to formulate this condition, and for this reason we must restrict attention to a

very special case. In what follows we assume that Q is an open disk |z — zo| < p to be denoted
by A.

Theorem 2.1.1. If f(z) is analytic in an open disk A, then

J
f(2)dz = 0
Y

for every closed curve y in A.

Proof. Let us define a function [
F(2) = f(2)dz

(&}

9



10 2.1. INTRodUCTION

where 0 consists of the horizontal line segment CD vertical line segment DP. C is the point
(Xo, Yo), D is the point (X, yo), P is a point (x, y) and B is a point (Xo, y) and all the points lie
inside the Q.

J
f(z)dz

J*CD+DP f

f(z)dz + f (z)dz.
CcD DP

S F@

F(2)

Along CD, y is a constant. Therefore dy = 0 This implies that dz = dx. Along DP, xis
constant. Therefore dx = 0 = dz = idy.

J x Iy
F@) = f@dz+  f@)idy

Xo Yo

Differentiating with respect to y partially, we get

9 F@1=0+it@)
ay

E[F(z)] =if(2) (2.1.1)
ay
Now complete the rectangle CDPBC by dot lines. Therefore B is a point (Xo, y). Let @ consists
of the line segments CD and BP and —0o’ is PB and BC.

Therefore 0 + (—@) is the closed rectangle CDPBC.
By Cauchy’s theorem for rectangle,

I
f(zdz = 0
f 0+j»01)
o f@dz+  f@dz = 0
[ I
Q- @% =1
g o]
Fi2) = f (2)dz
F@2) = f@dz+  f(z)dz
CB BP

Complex Analysis M.Sc.(Mathematics)-TNOU)-I Year- Il Sem



2.1. INTRodUCTION 11

Along CD x is constant. Therefore dz = idy Along BP y is constant. Therefore dz = dx

Iy I x
L F@= f@idy+  f(2)dx

Y Xo

Differentiating with respect to x partially, we get

O F@1 =0+ f@)
ox

2 Fan - 1) 2.12)
ox
From (9.2.1) and (2.1.2) we get

9 F@1 = -i ° F@) = 1.
ox ay

Therefore F(z) is an analytic function and also f(z) is the derivative of the analytic function F(z)
in Q.

i.e., f(2) = F(2)
(@) =3 [F@).
dz

Therefore f(z)dz is an exact differentiable. Thus

J
f(2)dz = 0,
Y

y isaclosed curve in Q. [ |

For the applications it is very important that the conclusion of Theorem 2.1.1 remains valid

under the weaker condition of Theorem 1.2.2. We state this as the following theorem.

Theorem 2.1.2. Let f(z) be analytic in the region A obtained by omitting a finite number of
points ¢; from an open disk A. If f(z) satisfies the condition

lim(z _ Cj)f(z) =0

2=

M.Sc.(Mathematics)-TNOU-I Year- || Sem Complex Analysis



12 2.1. INTRodUCTION

for all j, then [
f(z)dz = 0.
Y
holds for any closed curve y in Al
Proof. The theorem is proved using the above theorem. [ |

Complex Analysis M.Sc.(Mathematics)-TNOU)-I Year- Il Sem



BLOCK-I
UNIT 3

Cauchy’s Integral Formula

Objectives

Upon completion of this Unit, students will be able to
x identify Cauchy’s integral formula.

X solve problems by using Cauchy’s integral formula.

X prove Liouville’s theorem.

3.1 Introduction

Integral representation formulae are powerful tools for studying analytic functions. Through a
very simple application of Cauchy’s theorem it becomes possible to represent an analytic function
f (2) as a line integral in which the variable z enters as a parameter. This representation, known as
Cauchy’s integral formula, has numerous important applications. One application of an integral
representation is to estimate the size of the function being represented. The integral representation
will allow us to show that all the derivatives of an analytic function are analytic. It will also allow

us to obtain power series expansions for analytic functions.

3.2 The Index of a Point with Respect to a Closed Curve

As a preliminary to the derivation of Cauchy’s formula we must define a notion which in a precise
way indicates how many times a closed curve winds around a fixed point not on the curve. If
the curve is piecewise differentiable, as we shall assume without serious loss of generality, the

definition can be based on the following lemma:
13



14 3.2. The INDex of a PoINT wiTh RespecT To a Closed Curve

Lemma 3.2.1. If the piecewise differentiable closed curve y does not pass through the point a,
then the value of the integral

is a multiple of 2ni.

Proof. Case.i We can writ

fdz

Z—a
oo

Y

d(log(z — a))

[ d(arg(z — a)) logz = log |z| +iargz

vd(loglz—al)+1i v

When z describes a closed curve, log |z — a| returns to its initial value and arg(z — a) increases
and decreases by a multiple of 2n.

J

—9z2 = o+in(2n)
Z—a

_dz = n.2ni.

Case.ii The simplest proof is computational. If the equation of y isz =z(t), a < t < B, letus

consider the function [
_ 2
h(t) = —~2—dt, (3.2.1)
where h(t) is defined and continuous on the closed interval [a, B]. The derivative of h(t) is
)
oy = 20,
2(t) — a

whenever Z(t) is continuous. ;
“ e _a)] =0.
dt
Hence
e~"O(z(t) — a) = a constant = k (say)
Put t =a.
Therefore e-"@[z(a) — a] = k. But by (14.3.1), h(a) = 0.

coez(a) —a] =k = z(a) —a = k.
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3.2. The InDex of a PoINT wiTh RespecT To a Closed Curve 15

e~"O[z(t) — a] z2(0) — a
e h) — (a)—a

2(t) — a

e () —a

2(0) — a

Putt=0,
h®) — z(B)—a
z(a) —a
Since y isaclosed curveand a <t < .

Coz(a) = z(B)
eh® z(@)—a

z(a) — a
e"® — 1

" h(B) = i2nn,

where n is any integer.
J
1RO G iomn,

o Z(t) —a
I B gz
= i2nn,

a

where z = z(t) and dz = Z(t)dt. Hence the Lemma proved. [ |

Definition. The index of the point a with respect to a curve Y is defined by the equation

ny,a)=— dz_
2ni yZ—a

Itis also called as winding number of y with respect to a.

Properties of the index of the point

1. n(-y,a) = —n(y, a).
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16 3.2. The INDex of a PoINT with RespecT To a Closed Curve

Proof.

I
n(-y,a) = = _dz_
2ni —yz-a
4 I dz
n(-y,a = -n(y,a).
|
2. Ify lies inside of a circle, then n(y,a) = 0 for all points a outside of the same circle.
: : . . 1
Proof. Let a lies outside the circle y then the function = s analytic of y and on v.
Therefore by Cauchy’s theorem, £-a
1 J iz _ g
2ni yz—-a
s.n(y,a) = 0.
|

3. As f(a), the index n(y, a) is constant in each of the regions determined by y, and zero in the

unbounded region.

Proof. Let a, b be two different points in the bounded region determined by y. The unbounded
region contains point at infinity.

Let us join the points a and b by polygon which does not meet .
Now,

n(y,a) —n(y,b) = l_ dz 1 I 4

n(y,a) —n(y,b) = “joq°
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3.3. The INTegRral Formula 17

. - . Z—a
Outside of this line segment, the function , is never real and less than or equal to zero.

Therefore the principal branch of Iog.zz;ﬂe1 is analytic in the complement of straight line
segment. z-b
1 Z—a
oni 97, p_ =0
n(y,a) = n(y,b)

If a lies in the unbounded region then |a| is very large. Choose p such that |z] < p < |al then by
the property (ii), n(y,a) = 0. [

Lemma 3.2.2. Let z3, z, be two points on a closed curve y which does not pass through the
origin. Denote the subarc from z; to z, in the direction of the curve by y; and the subarc from
Z, to z; by y2. Suppose that z; lies in the lower half plane and z, in the upper half plane. If y;
does not meet the negative real axis and y, does not meet the positive real axis, then n(y, 0) = 1.

3.3 The Integral Formula

Theorem 3.3.1. Suppose that f(z) is analytic in an open disk Q, and let y be a closed curve in
Q. For any point a noton y

j
ny,a).f@ =— 1@g (3.3.1)

2ni yZ—a
where n(y, a) is the index of a with respect to .
Proof. Let f(z) be analytic in an open disk Q. Let y be a closed curve in @ and let asD, where

a does not lieon .
Consider the function

Fp - 12=1@ (3.3.2)
Z—a

where F(z) is analytic throughout y except at z = a.

lim(z—a).F@) = lim[f(z) — f(a)]

7—a Z—a

f(a) — f(a)
= 0.
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18 3.3. The InTegral Formula

The hypothesis of the Theorem 2.1.2. Therefore we conclude that

J
F(2dz = 0
¥
I' t@ - t(a)
[ , z-a dz = 0
L S R
J ﬁ)dz = f(a)f _dz_
lez_a yz_a
i@dz = f(a).2ni.n(y, a)
yZ—a
f@aa = = 1@,
2ni yZ—a
|
Note.When n(y,a) = 1, we get, |
f@=—" 1@,
2ni yZ—a '

Let a be interior pointin vy, replace a by z, then we get

f(z) = 1@ g
2ni v C —a

This formula is called the Cauchy’s Integral Formula and this is valid only when n(y, a) = 1.

z

e
—dz.
lz|=1 Z

Solution. Let y be a unit circle.

)
Example 3.3.1. Compute

ie,y:lzl = L
By Cauchy’s integral formula, 1
f=—"" 1@

2ni yZ—a
Here f(z) = ¢* and a = 0. Clearly the function f(z) is analytic and the point a = 0 lies inside
Y.
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3.4. Higher DeRivaTives 19

f.'e:(O) Tomioyz—0

_dz _ f(0)2ni

z
¥ e

—9z — onmi since f(0) = 1.
Y Z

J d
Example 3.3.2. Compute _dz
l2l=2 72 4 1

Solution. Let y be |z| = 2.
By Cauchy’s integral formula,

2ni yz—a
1 A B
Z¥1 C z#i oz
1 __11,11
7+t 2rz++ 2tz—i
J dz _;f dz _11£
vZ2+1 2z 20 yz—i
Here f(z) =1 and a =i, —i
J
bz _ L onir—iy+2 2nif)
y22+1 2i 2i
_dz
v22+1 0
3.4 Higher Derivatives
The representation formula 1 I
@=" 1Qg
2ni YC_Z
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20 3.4. Higher DerivaTives

gives us an ideal tool for the study of the local properties of analytic functions. In particular we

can now show that an analytic function has derivatives of all orders, which are then also analytic.

Theorem 3.4.1. Cauchy’s Higher Derivative Formula. Let f(z) be analytic in the region Q then
it has derivatives of all orders in the region Q which are also analytic function in the region Q.

1 J
e, f) = =  f@
2nif y ¢ — ch
then P = = _f@Q @
2ni y (G —2)
fiiz) = 1 f(Q)

2ni y (G — 2%

In general f(z) = L _f(_Z,)_dc
2ni (g -2t

where y isacircle.

Proof. By Cauchy’s integral formula,

fg) = I 1Q dz. (3.4.1)

2ni YC_Z

Choose |Az| so small such that z + Az lies with infy.

o= f(z+ Az) =—1 f(Q oz
2ni T —(z+Az) '

Now
] 11
fz+A7) - (1) = 5y Yf(C) {—@+A) T -2 d¢
zAn%I f (QdC
= My [0~ @+ Mg - 2]
fe+A)— @) 1 f (g
Az S g (z+ A)IG - 7]
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3.4. Higher Derivatives 21

Now,
f(z+ A2) — f(2) __1 IL(M — l J‘ . i _ L f(c)dc
Az 2ni ]’@ _522 2ni [ v [(—@z+A)][C—2 (C—27?
fz+A2)—f(z) 1 _ Az f(Qd¢
Az M G- T M [ @+ A — 2
fz+Az) - f(z) _1 IL(QQZ, < |A_Z|f 1£(Q)[dC] (3.4.2)
S ni Q-2 2 (- 2PIg — (z+A)

Let 0 denote the mean distance of the point {and y from z. Since f(C) is analytic on y and
therefore it is continuous on y. Hence

f@ < Mony
and [ —z| > 0
1 1

_2§52
¢ — 1

C—z— Azl > | —z| — |AZ
1 1

C—7— A7~ 0-1n

fz+A7) = f(z) _1 IL(M, - a2/’ M _ldg

175.2) = — <
( )= Z 21 (€22 2n 0 — |Az
A n v62
a1
= d]
2n &% (0 — |Az])
J
dd| =1
Y

is the length of y

. f(z+Az)—f(z)__1ff(§)d§ _lagm 1
) Az 2ni y (C—2)2. 2n & (- |Az))

_ f(z+Az)—f(z)__1fL(M_ao as |Az| — 0.
o Az 2ni _ 2.
vy (C—12)
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22 [ 3.4. Higher DerivaTives
J

f1(2) L f(QdQ _ 0

2ni vy (C—2)? [
) = 2. f (Q)d(Q)
2mi yy (G —z2)?
Similarly, fi(z) = %—,if f_{@_d_(f))g
In general f"(z) = ntt Y f (Qd(Q)

2ni (G -2t

Hence the theorem is proved. [ |

Lemma 3.4.1. Suppose that ¢ (C) is continuous on the arc y. Then the function

J
Fn(z) = ¢ (Qd
vy (G-

is analytic in each of the regions determined by y, and its derivative is
F(2) = nFa+1(2).

Proof. First we shall prove that F(z) is continuous.

Let zo be a point not on y and choose the neighborhood |z — z5| < & so that it does not meet Y.
Claim : F1(z) is continuous.

Let us restrict z to the smallest neighborhood so that |z — zo| < 52‘.
Now [

FO-Fi) = 6@Qd ' 6@

IVC—Z v C— 2o

Fi) — Fizo) = — -2 —¢ (QdC (3.4.3)
Y (€ — 2)(C — 20)

Fi@) - Fuz)| < [z -2l 17— 2/t — %
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3.4. Higher DeRivaTives 23

Since |z — 2ol <2 and [T — 2o > B

C—12 = [C—2+2 — 2
¢—1z 2 K—azo\—\Z—Zo\
> E';— 3
¢—1z| = 5
1 2
-2 ° &
Since [¢ (€)l < M and jv dc| = 1.
5. (175.3) = |F1(2) — Fi(z0)] < §.—1MI < MI.
200 )
Put 0 = Ml
€ €
IFi(2) = Fa(@)| < My < €
Therefore F1(z) is continuous.
I
F —F ¢ (O
(175.3) = —l%)jﬁg) = VG-I
im @ =Fuiz) = lim 6@ ¢
A g v G- D — 2
Fllz) = __¢(Q 7
: T )@~ 2
I o@
F@) = -z dg
Fi(z0) = Fa(zo)
I
S B@) = ¢ (@ oz
! v (€ — z0)?
Fi(z) = L1.Fy(2).

The general case is proved by induction. We have already proved by the case n = 1. We shall
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24 3.4. Higher DerivaTives

assume that the result is true forn = n — 1. i.e., we shall assume that

Fi1(2) = (n — 1)Fa(2).

To prove that
Fl(2) = n.Fn1(2).
Consider |
FO-F@) = 0@ o ' _e@
y(@@—2)n v (C— Zo)f“
Y (€ — 2)"(C — 20) YI(C — Zo)"

fé —7+7— Q (Q dc
200 (O — v (@ —2)
y G- (& 20) f
_ 0@ . Q00
) (G A (A C-2"C-3 (G2
Fn(z) — Fa(zo) = 19 dg + (z — zo) (4] o7 — I ¢ (O e
v (€ —2)"Y(C — z0) vC—2)"(C -2 v (€ — 20)""X(C — z0)
f
_ ¢ (@
Define Gn(z) = ¥ = - ZSC
Gn,l(z) — ¢ (C) dC
v (C—2)"(C T Zo)
R - Fiz) =G, 1@~ G @)+ @2 — T —dr (@as)

vy (€—2"(C — )

_6 (@ is continuous on y (T /=125.) Gn 1(2) is continuous on y. Also |z — zo| is bounded.

Since
i.e., ZC 7 Zp -
| — ol <n. [
IFa@) — Fa()l < 1Gy 1(2) — Gu@)l + 12 =2l _|o (Q)l1dT]
. ) Ml 2[ v1C—2"IC — zf
-2 E T
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3.4. Higher Derivatives 25

Choose
6n+1€
n= 2n+1 M|
F (Z) F (Z) € oM+lg mi2"
n - n 0 S - + —.
2 n+1M|° on+l
|Fn(z) - Fn(ZO)l < g %Z - Zo| <n.
Gp-1(z2) — Gp-1(z
Fu2) - Faz) ¥ Gn-1(2) — Gna(z0) | ﬂg—dz
Z -k Z— 1o v (€ —2)"(C — 20)
fim Eold=Falzo) iy Goalt) = Gunalza) 5
=1 Z— 5 -2 Z— 2
Fi(z0) = G)_1(20) + Gn(z0)
= ("N — 1)Gn(z0) + Gn(20)
F#(ZO) = n-(Pn(ZO)
=n ¢ (Q)dC
vy (G —zo)"t
= NFn+1(20)-
Hence by induction the theorem is proved. [ |

Note.1 We have proved that an analytic function has derivatives of all orders which are analytic
and can be represented by the formula
1) =2 f f(@d¢
2ni (T — )"+t
Note.2 As a consequence of the above result we have the following two classical theorems.
Remark. The integral Yff(z)dz, with continuous f, depends only on the end points of y if and

only if f is the derivative of an analytic function in Q.

J

Theorem 3.4.2. If f () is defined and continuous in a region £, and if dez = 0 for all closed

curves y in , then f(z) is analytic in Q.

J

Proof. Since v f(z)dz = 0 for all closed curves y in Q. The integral depends only on end points
of y.
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26 3.4. Higher DerivaTives

Therefore by the above Remark, f(z) is the derivative of an analytic function F(z) in Q.

ie., f(2) = F(2).

Since the derivative of an analytic function is analytic, we say that f(z) is analytic. [ |
Theorem 3.4.3. Cauchy’s Inequality (or) Cauchy’s Estimates If f(z) is analytic within and on
acircle Cgivenby |z —al| =r lying inside A and if |f(z)| < M for every z on C then

n' M
m

[T'(@)] <
Proof. By Cauchy’s higher derivative formula,

J
) = O @,

2ni v (@ - a)n+l

|
Ii @ ™ el
|2ni] v |z —a|™*
n! M2nr
<
2ﬁ rn+l
Mn!
f"(a) T

Theorem 3.4.4. Liouville’s Theorem A function which is analytic and bounded in the whole plane
must reduce to a constant.

Proof. Let C be acircle with centre at a and radius r. By Cauchy’s integral formula for higher
derivative, we have /

=" 0 g

2|'II Y (Z - a)n+1

Since f(z) is bounded, we have f(z) < M, Vz.

1 J
@l < = i@l ldl
|2ﬂ|| Y |Z—a|2
- 1 wmonr
20 2
M
fi(a) < r
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3.4. Higher Derivatives 27

This is true for any circle with radius a. We know that the complex plane is a circle with infinite
radius.

lim [fJ(@)| < lim M =0

r— oo r—co I
i.e., (@) =0
for all points a in the z plane.
S i) =0,V

f(z) = constant.

Theorem 3.4.5. Fundamental Theorem of Algebra. Every polynomial in z of degree n > 0
must have at lest one root.

Proof. Consider the polynomial

p(z) = ap?" + & + ... + @1z +ay, a O.

Suppose that p(z) /= 0 in the whole complex plane then we say that p(z) is analytic in the whole

complex plane and therefore ;) is analytic in the whole complex plane since p(z) /= 0.

ap2" + agz"t + oot BniZ + B

p(@)]

Ip(z)] — o as |z - .

Therefore L is bounded in the whole plane. Hence L is analytic and bounded in the whole
z
complex plaprge).

Therefore by Liouville’s theorem, o) is constant and hence p(z) is constant which is a

contradiction.
Our assumption p(z) /= 0 is not true. Thus p(z) has at least one root. [ |
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BLOCK-I
UNIT 4

Local Properties of Analytic Functions

Objectives

Upon completion of this Unit, students will be able to
X express the analytic function as an infinite series.
X classify the singular points.

X identify the maximum principle.

4.1 Introduction

We have already proved that an analytic function has derivatives of all orders. In this section we
will make a closer study of the local properties. It will include a classification of the isolated

singularities of analytic functions.

4.2 Removable Singularities. Taylor’s Theorem

In Theorem.1.2.2 we introduced a weaker condition which could be substituted for analyticity at a
finite number of points without affecting the end result. We showed moreover, in Theorem 2.1.2,
that Cauchy’s theorem in a circular disk remains true under these weaker conditions. This was
an essential point in our derivation of Cauchy’s integral formula, for we were required to apply

Cauchy’s theorem to a function of the form

f(z) — f(a)
Z—a

29



30 4.2, Removasle SiNgulariTies. Taylor’s TheoreM

Finally, it was pointed out that Cauchy’s integral formula remains valid in the presence of a
finite number of exceptional points, all satisfying the fundamental condition of Theorem 1.2.2,
provided that none of them coincides with a. This remark is more important than it may seem
on the surface. Indeed, Cauchy’s formula provides us with a representation of f (z) through an
integral which in its dependence on z has the same character at the exceptional points are such
only by lack of information, and not by their intrinsic nature. Points with this character are called

removable singularities. We shall prove the following precise theorem.

Theorem 4.2.1. Suppose that f (z) is analytic in the region ) obtained by omitting a point a
from a region Q. A necessary and suficient condition that there exists an analytic function in Q

which coincides with f(z) in ) is that

limz _a)f (@) = 0.

Z—a

The extended function is uniquely determined.

Proof. Since the extended function must be continuous at a, the necessary and the uniqueness
are trivial.

To prove the sufficiency part:

Draw a circle C about the point a such that C and its interior points are contained in Q. Then
the Cauchy’s integral formula is valid and we can write

= f@d .,

!

2ni c C_Z

a
in C. The integrand - is an analytic function throughout the inside of the circle C.

Consequently, the function has the value which st f(z) for z /= a.

e, fg)=— 1@

, a
2I'Ifi c (—z2
1
f@=— HQL o, _, (4.2.1)
2ni . (—z

We apply this result to the function

F(D) = f(z) — f(a)’

Z—a
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4.2. Removasle SingulariTies. Tavlor’s TheoreM 31

where f(z) is not defined at z = a. F(z) satisfied by the condition

limz — a)F@) = lim[f@) - f(a)]

z—a z—a
lim@z _a)F@ = 0
z—a
limE@) = limA=1@)
z—a z—a Z—a
e, limF@) = f(a).
z—a

Hence there exists an analytic function which is equal to F(z) for z # a and equal to fJ(a) for
z = a. Hence the theorem is proved. [ |

Theorem 4.2.2. Taylors’s theorem If f(z) is analytic in a region (), containing a, if it possible
to write

f(-1(a)
=)

(@)
@)= f@+ 2+ D8 _ap, C-a o) —ay, (422)

where f,(2) is analytic in Q.

Note. This finite development must be well distinguished from the infinite Taylor’s series which
we will study later. It is however, the finite development (4.2.2) which is the most useful for the

study of the local properties of f(z).

Proof. Consider the function

F(2) = f(z) —f(a)
z—a

is defined and analytic in Q exceptat z = a.

.. F@) =fi(a) for z=a.

F(z) can be denoted by the F(z) = f1(2).

i&,unsi@:i@{ _
Z—a

and
fi(z) =fl(a), z=a.
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32 4.2. Removasle SingulariTies. Tavlor’s Theorem

where fi(z) is analytic in Q.

@-af@ = f@) - f(a)

f(2) = f(a) + (z — ) f1(2) (4.2.3)

Repeating the above process we can obtain an analytic function

fi(z) = fi(a)
fo(z) = z_a '
‘f,@), z=a
(z —a)h(z) = fi(z) — f(a)
f1(2) = f1(a) + (z — ) F2(2) (4.2.4)
Using (4.2.4) in (4.2.3), we get

f(2) = f(a) + f.(a)(z — @) + (z — a)* F2(2).
Continuing in this way, we get
f(2) = f@Q) + L@@z —a)+ @z —a)P’h@) + -+ + fr1(@)z — )" + fo(2)(z — )"

Differentiating the above expression n times and setting z = a we get

i = (1@

fl(a) .

f@="@ - @ )
2

n— 1)!
f)(a) fu(a) f"(a) ]
TR TR LR ; R R Ol

Hence the proof of Taylor’s theorem completed. [ |

Lo = f(a) +

Example. Express f,(z) as a simple line integral.

Solution. Let C be a circle with centre at a contained in the region w. Since fy(z) is analytic
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4.2. Removasle SiNgulariTles. Tavlor’s Theorem 33

throughout C. We can use Cauchy’s integral formula

Ma:—lfmgx (4.2.5)
2ni ¢ (—z
By Taylor’s formula, we have
f fi(a) fi(a) ) f"-'(a) n-1 n
Q=”®+TT@_®+2!@_ai”'rajﬁ@‘ + fa(Q(C — a)
fi(a) fi(a) 2 f"-'(a) n-1

BeD) W0 =10~ f@= € 5 @G-34 (426)

Using (4.2.6) in (4.2.5), we geJt
W) = @ f@! —d
n c@-2@C-9 20 c@C-2)@G-ar

Thus there is one main term containing f ({). The remaining terms are, except for constant factors
of the form I

m—ln@_

FY (@ = ac , Y > 1.
c (C—2)(@C—a)
Put y = 1, we have [} il
Fi(a) =
c(C-2@C—-a

. 1 _ A B

ConS|der(c ~ ) —a) = = + ? -
Fi(a) =l“i_ g, od
—e2ni o g—z2M QT

F@ = = Iz n(a)l

Z—a

Since n(y,a) = n(y, b) where a and b are any two points inside C. Here z and a are points
inside C.

..n(c,2) = n(c,a)
n(c,z) —n(c,a) =0
Fl(a) = 0

FJl(a) =0, FJZJ(a) =0, FJZJJ(a) =0,
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34 4.3. Zeros aND Poles

By Lemma 3.4.1, we have
F2(@) = nFrea(2)
F(@)

Y

" Fy+1 =

Put y = 2, we have F,(a) = 0.

Similarly, F3(@) =0 - - - Hence |

fn(2) =_1 —(M—f d .
2 ¢ (G —2)(@C—a)n

4.3 Zeros and Poles

Definition 4.3.1. The zero of an analytic function f(z) is a value of z for which f(z) = 0.

Example 4.3.1. Let f(z) = zsinz.

sinz=0=z=nn,n & Z are the zeros of f(z).

Theorem 4.3.1. If f(z) is analytic in the region Q and f(a) together with all derivatives f'(a)
vanishes in Q then f(z) = 0 in Q.

Proof. Since f(z) is analytic in the region Q. By Taylor’s theorem, f(z) can be expressed as

f(2) = f(a) + ()( a)+ﬂ( 2, f"(a)

e T e
a - -

Since f(a), fi(a), f¥(a), - - - vanishes. Therefore the above expression reduces to
f(z2) = (2 —a)" (@)

1f@)] < [z - al" [f(2)] (43.1)

Let C be acircle centre at a contained in Q. |

f.(z2) = 1 f (QdC
ZT'f c(C—aC—2
@) < T 8@
2n clg—a"l¢—z
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'f(Q)l < M and | — al = R, where R is the radius of the circle.

C—12 = [C—a—(z— a)
> [(—a —z—a
(—a > R—|z—a
1 . 1
=2 ~R-|z-a
_ M
L@ & R1R — |z —
9 M
(4.3.1):>‘f(z)| - z|_a”.
LT R-1(R — |z — al)
Z=a" MR

< :
- R - R-1z-a]

7 — n
But | a|

— O0for n — oo, since |z—al < R. Hence f(z) = 0 inside of C. Let E; be the
set on Vhich f (2) and all derivatives vanish and E, the set on which the function or one of the

derivatives is different from zero. E; is open by the above reasoning and E; is open because the
function and all derivatives are continuous. Since Yy is connected, one of the sets E; or E; must
be empty.

E: @ = E, =@. Therefore Q = E;, since Q = E; U E,. Therefore Q = E;. Hence f(z) =0
in Q. [ |

Theorem 4.3.2. The zero’s of an analytic function which is not identically to zero are isolated
points.

Proof. Let f(z) be an analytic function in the region 2 and z = a be a zero of f(z). Supposethat
fn(@) /= 0. From Taylor’s theorem, we have

f(2) = (2 - a)" (),

where f,(z) is analytic and f,(a) /= 0.

. Z=a isazero of order n for f(2).

If there exists any other zero of f (z) it should arise from f,(z) only. But f,(z) is analytic at a
and f,(a). Therefore f,(z) is not equal to zero in the neighborhood of a. Hence f (z) has no

other zero in the neighborhood of a except a. Thus the zero f(z) are isolated. [

Definition 4.3.2. Let f(z) be analytic in the region Q and defined for 0 < |z—a] < 0. In
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otherwords, f(z) should be analytic in the neighborhood of a except at a itself then z =a is
called isolated singularity.

_1
Example 4.3.2. f(2) = has an isolated singularity at z = a.

z—a
Definition 4.3.3. Pole. If lim,—~, f(z) = oo then the point z = a is called the pole of f(z).
1
Example 4.3.3. f(2) =
(z—a)m

lim,—, f(2) = co.
.z =a isapole of f(2).
Note. If z = a is a pole of f(z) then z = a is zero of l. Also the function g(z) :—l has a

z f(2)
removable singularity at z = a. If z = a is a zero of order n for g(z) then in the neighborhood

of a, g(z) can be expressed as
9(2) = (z - 8)'9:(2)

where gn(z) is analytic and gn(a) /= 0. The number h is the order of the pole.

f@) = (z-a)"f@

where fy(z) = g—(z) is analytic and different from zero in the neighborhood of a.
h

Definition 4.3.4. Removable Singularity.Let f (z) be defined in a region Q and if lim,—, f (2)

exists finitely then z = a is called removable singularity of f (z). In otherwords if lim,—,(z —
a)f(z) = 0 then z = a is called removable singularity.

sinz
Example 4.3.4. _z has a removable singularity at z = 0.

z
Example 4.35. f(2) = € z_ 1has removable singularity at z = 0.

Definition 4.3.5. Meromorphic Function. A single valued function f(z) which is analytic
except for poles in the region Q is called meromorphic function.tanz, cotz, and any function

z
f(2) = 4@ where p(z) and q(z) are polynomial function are meomorphic functions.

Definition 4.3.6. Essential Singularity. Let f(z) be defined in the region Q. We consider the
conditions (i) lim,—a |z —a|®.|f(z)| =0, a is real.

(ii) lim—a |z — alP. | f(2)| = o, P is real.
If neither condition (i) nor (ii) holds for any real a, B is called essential singularity of f(z).
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Note. If lim,—, f(z) does not exist then z = a is called an essential singularity.

Example 4.3.6.
fz) = es
L
fz) = 1+° + po
1 ]
f(2) =1+ir—l+Li+”.

z 21722 312

o lim,—, f(z) does not exist at z = 0.
..z =0 is an essential singularity.

Theorem 4.3.3. Weierstrass Theorem. An analytic function comes arbitrarily close to any
complex value in every neighborhood of an essential singularity.

Proof. Suppose that the assertion is not true then there exists a complex value A anda & > 0
such that

|f(z2) — Al >s for [z—a| <0.
Forany a <0, we have

. a B
lim |z —al® [f(2) — Al = co.

.. Z = a cannot be an essential singularity of f(z) — A. Accordingly, there exista B with
i _q|B _ Al =
Ilzrnalz al® [f(z) — Al =0,

and we are free to choose B > 0.

lim|z-alP|f@)| = limjz—al? |[f@@) -A+A
Z—a Z—a
lim z af[f@ A+ A]
2-a <

ggh—aﬁﬁaﬂ = . =

This implies that z = a cannot be an essential singularity of f(z). This is a contradiction to the
statement. Therefore our assumption is wrong.

S f@) - Al <s, V |z—al <.

Hence f (z) comes arbitrarily close to any complex value A in every neighborhood of an essential
singularity. n
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38 4.4. Local Mapping

Note. From the above theorem we observed that the behavior of an function in the neighborhood
of essential singularity is very complicated.
Singular part of a function. Let z = a be a pole of order h for a function f(z) then the

neighborhood of z = a we can write

f@) __f(@)

z-a)r

where fy(z) isat a and fy(a) /= 0 By Taylor’s theorem,
fu(2) = By + (@ — a)Bh-y + - - - + (z — )" !By + (z — @)"P(2)

where @(z) is analytic in the neighborhood of a. Substituting this in f(z), we get

1
o G -ar Bt - @B+ +@—a) B+ (2 - a) )
f)) = "+ Pl +0(2)
G- @ apte o+
(z—a)
The part
Bn_ Bh-1
Z-a" (_art+ +i
(z—a)

is called the singular part or principal part of f(z) in the neighborhood of the pole z = a of order
h.

4.4 Local Mapping

We begin with the proof of a general formula which enables us to determine the number of zeros

of an analytic function.

Theorem 4.4.1. Let z; be the zeros of a function f(z) which is analytic in a disk A and does not
vanish identically, each zero being counted as many times as its order indicates. For every closed
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curve y in A which does not pass through a zero

X 1w
j n(y, zj) = oni yﬁdz, (4.4.1)

where the sum has only a finite number of terms /= 0.

Proof. Consider a function f (z) which is analytic and not identically zero in an open disk A. Let

21, 2y, * * + , Zn be the finite number of zeros of f (z) inside A, each zero being counted according
to its degree of multiplicity. Then we can write

f@)=C-n)z-2) - @z-2)90)

where g(z) is analytic and not equal to zero in A.

log(f(z)) = log(z —z) +log(z —2z2) + - - - +log(z — zn) + log(g(2))

Differentiating with respect to z, we get
fi(2) 1 1 1 0(2)

+...+— +_
Z—-12, 0(2)

f(z) Z—21+Z—22

. 1
Multiply by o and integrating each term along with y, we get

J J I [ /
1
1My, 10 1 e 10 10 9@,
2ni  f(2) n yz—z 2N yz-2 2ni z—gz 2ni y 9(2)

J
Since g(z) is analytic and non-null in A and ¢(z) is also analytic and hence @ must be

analytic. f
9@
.. by Cauchys theorem Z7dz=0.
| v 9(2)
1 Edz =n(y,z) +n(y,z2) + - - - +n(y,z) +0
2ni y (2)
1 f fJ(Z) X
A Py, _ |
ni @), ")
Hence the theorem. _
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Note.1 The function w = f(z) maps y onto a closed curve I' in the w— plane, and we find

taw 1 ra,

rw o f@

) )

1 dw _ 10 PO,
2ni p w 2ni  f(2)
1w >
ity g =, "B by (44D
X
n(F,O) - n(YJI Zj)
j=1

Note.2 Let
n(y,z)= 1 ifzjlies inside y
J
0, if z; lies outside y

Therefore the above result reduces to

J
1° 2
— ——=dz=N
2ni , f(2) £=
where N is the total number of zeros of f(z).

Note.3 Let zj(a) denote the number of zeros of the function f(z) — a inside y, then replacing

f(z) by f(z) — a in the above result, we get

Xy 2ty =+ @ g
=1 J 2n | f(z) —a

If ' is the image of y under the mapping w = f(z) then we get

_11 f(2) dz:—1 dw
2ni , f(z)—a 2N pw-a

J
10 )
oni T ;SZ n(T, a)
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If a and b lie in the same region determined by I', we have

X
n(y,zj@) = n(y,zj(b)
j=1 j=1
n(l',a) = n(T,b)

Thus if y is a circle, it follows that f(z) takes the value a and b equally many times of .

The following theorem on local correspondence is an immediate consequence of this result.

Theorem 4.4.2. Suppose that f (z) is analytic at zo, f (z0) = Wp and that f (z) — wp has a zero of
order n at z,. If s > 0 is suficiently small, there exists a corresponding & > 0 such that for all

a with |a — wg| < d the equation f(z) = a has exactly n roots in the disk |z — zo| < s.

Proof. Let I' be the circle |z — zp| = s and f (z) defined and analytic for |z — zp| < s and given
that f (zo) = wo. f (z) — wo has a zero of order n at z,. The image of y under f (z) be the closed
curve I' inthe w— plane. Now

|
17 "Dy~ Total number of zeros of f(2)
2mi r f(2)
n(y, &) = n(y, wo)
ny,a) = n

i.e., the function takes all the values in the neighborhood of the point wy equally many times
inside .
.. the equation f(z) —wp has exactly n roots. Thus every value a istaken n timesinside y. ®

Corollary 4.4.1. A non-constant analytic function maps open sets onto open sets.

Proof. Let z = z; be a zero of order n for the analytic function f (z) — wp. Consider the disc
Yy whichis |z — z5] < s. Let G denote the image of the disk. Let U be an open subset of the
region Q and let zo € U such that f (zo) = wp then there existan s > 0 as above and a region
G containing wp such that [z — zo| < s is a subset of open set U. We know that each w € G is
assumed by f(z) at n pointsin |z — zy| <.

Since G is an open set and wy € G there exists a ® > 0 such that |w — wg| < 0 is a subset of G.
But G is contained in f (U). Hence |w — wg| < 0 is completely contained in f (U). We can state
that image of every sufficiently small disk |z — zg| < s contains a neighborhood |w — wp| < 0. ®
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42 4.5. The MaxiMuM PRiNciple

Corollary 4.4.2. If f(z) is analytic at z; with fJ(zp) # O, it maps a neighborhood of 2
conformally and topologically onto a region.

4,5 The Maximum Principle

Corollary 4.4.1 of Theorem 4.4.2 has a very important analytical consequence known as the
maximum principle for analytic functions. Because of its simple and explicit formulation in the
theory of functions. As a rule all proofs based on the maximum principle are very straightforward

and preference is quite justly given to proofs of this kind.

Theorem 4.5.1. The Maximum Principle. If f(z) is analytic and non-constant in a region Q
then its absolute value |f(z)| has no maximum in Q.

Proof. Let zp € Q. Suppose that | f (z)| takes maximum value | f (zg)| in Q corresponding to
® > 0. There exists a neighborhood |w — wp| < @ in which there exists a point w so that |w| > |wp|.

Hence | f (z9)| is not the maximum value of f (z) in Q. Therefore maximum value of | f (z)| cannot
occur in Q.

Let y be a circle |z — zo| < & in the region Q and f (zo) = wo. We know that a non-constant
analytic function maps open sets onto open sets.

Let T be a image of y under the mapping w = f (z). Suppose that | f (zo)| is the maximum
value of | f(z)| in the region bounded by I' then we can say that there is at least one point w in
the w— plane such that |w| > |wp| . That is f (z) > f (z0). Therefore our assumption is wrong and
hence | f(z)| has no maximum in the region Q. |

In a positive formulation essentially the same theorem can be stated in the form:

Theorem 4.5.2. Maximum Modulus Theorem. If f (z) defined and continuous on a closed

bounded set E and analytic on the interior of E, then the maximum of | f (z)] on E is assumed
on the boundary of E.

Proof. Consider the closed disk T' and | — zo| = r which is contained in a set E. Since f(z) &
analytic in the interior of E it must be analytic in the closed disk.
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.". by Cauchy’s integral formula,

/
f(20) 4 fQ dC ony.

C—12 = r
C =1z2+re® 0<B8<2n
I .
f(zg) = L " f(zo + re'®)dd
20 o

Hence the value of the function f(z) at centre z, is equal to the arithmetic mean values of the

function f(z) onacircle vy.
f 2n
10" ;-
+ §)
f(zo re)d

| f(20)

| <
2n

Suppose that | f (zo)| is a maximum. Then we have f (zo + re’®) < | f (z)| and if the strict
inequality held for a single value 6 it would hold, by continuity, on a whole arc. But then the
mean value of f(z +re®) < f(z).

0
1 ,[ 2n
L@ < on . | f(z0)[ dB

[f@) < [f@)l,

which is a contradiction.
F(zo + 1e®) = | (o)l

Hence f (z) reduces to a constant function in the neighborhood of f (zo). Since | f (z)| is constant
equal to | f (zg)| on a circle y of radius r and it is arbitrary. Thus the maximum value of | f (z)|
occurs on the boundary of E. [

Consider now the case of a function f (z) which is analytic in the open disk |z] < R and

continuous on the closed disk |z| < R. Ifit is known that |f(z)] < M on |z| =R, then |[f(z)] < M
in the whole disk. The equality can hold only if f (z) is a constant of absolute value M. Therefore,

if it is known that f (z) takes some value of modulus < M, it may be expected that a better estimate

can be given. Theorems to this effect are very useful. The following particular result is known as
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the lemma of Schwarz:

Theorem 4.5.3. If f(z) is analytic for |z| < 1 and satisfies the conditions |f(z)] < 1, f(0) =0,
then |f(z)| < |z| and f)(0) < 1. If |f(z)| = |z| forsome z O, orif |fJ(0)] = 1, then f(z) = cz
with a constant ¢ of absolute value 1.

Proof. We apply the maximum principle to the following function.

fo) .
fl(z)z- L ifz O
‘f2(0), ifz=0
f(z
e = @
|z|
1
< Tl since |f(z)| <1 on the circle |z| =r<1
1
@l <

. . (@)
Letting r — 1 we have |fi(z)| < 1. () If z /=0 =" ; (<l= [f(2)| < |z]
If z=0= |f(0) < L

(ii) If [f@2)] = [z]
i@
. Z . -
f(2)
, = ¢, where |c|=1
f(zy) = cz,when |[c|=1.
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BLOCK-II
UNIT 5

The General Form of Cauchy’s Theorem

Objectives

Upon completion of this Unit, students will be able to

X identify the general statement of Cauchy’s theorem.

X understand the concept of multiply connected region.

5.1 Introduction

In our preliminary treatment of Cauchy’s theorem and the integral formula we considered only
the case of a circular region. For the purpose of studying the local properties of analytic functions
this was quite adequate, but from a more general point of view we cannot be satisfied with a result
which is so obviously incomplete. The generalization can proceed in two directions. For one
thing we can seek to characterize the regions in which Cauchy’s theorem has universal validity.
Secondly, we can consider an arbitrary region and look for the curves y for which the assertion

of Cauchy’s theorem is true.

5.2 Chains and Cycles

In the first place we must generalize the notion of line integral. Consider an arc y. Divide the arc

Y into subdivision y, Y2, - - -, Yn then we can write

J / J I
f(z)dz = f(z)dz + fdz+ - - -+ f(2)dz (5.2.1)
Yi+Y2++Yn Y1 Y2 Yn

45
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Since the right hand member of (15.2.1) has a meaning for any finite collection, nothing prevents
us from considering an arbitrary formal sum of finite collection y; + y, + - - - + Yy, which need not
be an arc and we define the corresponding integral by means of equation (15.2.1). Such formal
sums of arcs are called chains. Also the following operations do not change the identity of the

chains.

1. Permutations of two arcs.

2. Subdivision of an arc.

3. Fusion of sub arcs to a single arc.
4. Reparametrization of an arc.

5. Cancellation of opposite arcs.

The sum of two chains is defined by way of positions. Therefore it is clear that the additive
property (15.2.1) of line integrals remains valid for a arbitrary sum of chains. When identical
chains are added, it is convenient to denote the sum as a multiple. With this notation every chain

can be written in the form
Y=aiy1 + a2+ - -+ +an¥h (5.2.2)
where the a; are positive integers and the y; are all different. For opposite arcs we can write

a(—y) = ay.

Zero Chain. The zero chain is either an empty sum or sum with all coefficients equal to zero.
Cycle. A chain is a cycle if it can be represented as a sum of closed curves. That is a chain is a
cycle if and only if any representation the initial and end points of the individual arcs are identical

in pairs.
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5.3 Simple Connectivity.

Definition 5.3.1. A region is simply connected if its complement with respect to the extended
plane is connected.

Example 5.3.1. Any half - plane is simply connected and any open disk is simply connected.

Theorem 5.3.1. A region Q is simply connected if and only if n(y,a) = 0 for all cycles y in Q
and all points a which do not belong to (.

Proof. Necessary part.The necessary part of the theorem is almost trivial. Let y be any cycle in
Q. If the complement of Q is connected, it must be contained in one of the regions determined

by y, and since the point co belongs to the complement this must be unbounded region. Hence
n(y,a) = 0 for all finite points in the complement.

Sufficiency part. Assume that the complement of Q can be represented as the union of two

disjoint closed sets A and B. One of these two sets contains co and the other one is bounded set.
Let A be the bounded set. The sets A and B haye the shortest distance & > 0 cover the whole

plane with a net of squares Q of side less than =
2

We are free to choose the net so that a certain point a € A lies at the centre of a square. The
boundary curve of Q is denoted by dQ. We assume that the squares Q are closed and the interior
of Q lies to the left of the directed line segments which make up 9Q. Consider the cycle

x
y=""09Q (5.3.1)

where the sum ranges over all squares Q; in the net which have a point in common point in
A. Because a is contained in one and only one of these squares, it is evident that n(y, a) = 1.
Furthermore, it is clear that y does not meet B. But if the cancellations are carried out, it is
equally clear that y does not meet A.

Indeed, any side which meets A is common side of two squares included in the sum (5.3.1), and
since the directions are opposite the side does not appear in the reduced expression of y. Hence

y is contained in Q and therefore the theorem is proved. [
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5.4 Homology

The characterization of simple connectivity by Theorem 1.3.1 singles out a property that is
common to all cycles in a simply connected region, but which a cycle in an arbitrary region or
open set may or may not have. This property plays an important role in topology and therefore

has a special name.

Definition 5.4.1. A cycle y in an open set Q is said to be homologous to zero with respect to Q
if n(y,a) = 0, for all points a in the complement of .

In symbols we write y ~ (mod Q) . When it is clear to what open set we are referring, Q need
not be mentioned. The notation y-y, shall be equivalent to y; — Yy, ~ 0. Homologies can be

added and subtracted, and y ~ (mod Q) implies y ~ 0 (mod Q) forall & D> Q.

5.5 The General Statement of Cauchy’s Theorem

The definitive form of Cauchy’s theorem is now very easy to state.

Theorem 5.5.1. If f(z) is analytic in w, then

J
f(2)dz = 0 (5.5.1)
Y

for every cycle y which is homologous to zero in Q.

Proof. Assume that the region Q is bounded, but otherwise arbitrary. Given & > 0 we cover

the plane by a net of squares of side ® and we denote by Qj, j € J, the closed squares in the
net which are contained in Q. Since Q is bounded must get finite number of closed squares and
therefore the set J is finite, and if & is sufficiently small it is also non - empty. The union of the

squares Qj, j € J, consists of closed regions whose oriented boundaries make up the cycle

jed
where I's is the sum of the oriented line segments which are the sides of exactly one Q;. We
denote the interior of the union UQ; by Qs.
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Let y be a cycle which is homologous to zero in Q; we choose & so small such that y is

contained in Q5. Consider a point { € Q —Qs. it belongs to at least partial square Q which is not
a Qj a full square. There is a point {; belonging to Q which is not in w. It is possible to join ¢
and (, by a line segment which lies in Q and therefore does not meet Qs.

Since y is contained in Qs it follows that n(y, ¢) = n(y, {) = 0. Since { and (, are points not
belonging to Qs in particular n(y, {) = 0 for all points { on I's. Suppose that f (z) is analytic in
Q. If z lies in the interior of Qj,, then by Cauchy’s theorem

1 tod_ fw ifi= i
M aq {—z 0, ifj o

and hence

1/
f(2) =" f—@d—z‘. (5.5.2)
2ni I C —7
Since both sides are continuous functions of z, this equation will hold for all z € ws. As a
consequence we obtain [
"o L 10

Z)dz = i dz. 55.3
y y 2ni I C —7 ( )

The integrand of the iterated integral is a continuous function of both integration variables namely
C and z which are parameters of I's and y. Therefore the order of integration can be reversed.
In other words,

/ /

I
f(2)dz = .LJ 1QdC o, _ -AJ _4C £ @dt.
v vy 2 -z r; 2N —z
By the index number,
J J
A R e A
2 C—z 2mi yz—C

)
S.(653)=> f(@dz=0.
4

Thus we proved the theorem for bounded region Q.

If Q is unbounded, we replace it by its intersection & with a disk |z| < R which is large
enough to contain y. Any point a in the complement of ¥ is either in the complement of Q or
lies outside the disk. In either case n(y, a) = 0, sothat y ~ 0 (mod Q) . The proof is applicable
to ), and we conclude that the theorem is valid for arbitrary Q. [
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Corollary 5.5.1. If f(z) is analytic in a simply connected region Q, then
J
f(2)dz=0
y
holds for all cycles y in Q.

Corollary 5.5.2. If f(z) is analytic and /= 0 in a simply connected region (, then it is possible

to define single-valued analytic branches of log f(z) and " f(z) in Q.

5.6 Locally Exact Differentiable

A differential pdx + qdy is said to be locally exact in  if it is exact in some neighborhood of

each point in Q which is possible if and only if
J
pdx + qdy = 0 (5.6.1)
¥
for all y = dR where R is a rectangle contained in Q. This condition is fulfilled if pdx + qdy =
f(z)dz with f analytic in Q, and by Theorem 1.5.1, (5.6.1) is true for any cycle y ~ 0 (mod Q).
Theorem 5.6.1. If pdx + qdy is locally exact in , then

J
pdx + gqdy = 0
¥

for every cycle y ~ 0 in Q.

Proof. It is sufficient if we prove the theorem for polygon o with sides parallel to the axis. We
construct 0 as an approximation of y. Let the distance form y to the complement of Q be p.
If v is given by z = z(t) where z(t) is uniformly continuous on the closed interval [a, b]. We

determine & > 0 so that [z(t) — Z(t)| < p for [t — )| < & and divide [a,b] into subintervals @
length < 3.

The corresponding subarcs y; of y have the property that each is contained in a disk of radius
p which lies entirely in Q. The end points of y; can be joined within that disk by a polygon o;
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consisting of a horizontal and a vertical segment. Since the differential is exact in the disk,

) )
pdx + qdy = pdx + qdy
Gj Yi
and if o = " 0j, we obtain
xJ xJ
pdx + qdy = pdx + qdy
JUi J- Yi

pdx + qdy = pdx + qdy

o Y

We extend all segments that make up o to infinite lines. They divide the plane into some finite
rectangles Ri and some unbounded regions R); which may be regarded as infinite rectangles.

Choose a points a; from the interior of each R; and form the cycle

X
Op = n(o, ai)aRi (5.6.2)
i
where the sum ranges over all finite rectangles and the coefficients n(o, a;) are well determined,

for no oj lies on 0. We can also make use of points &; chosen from the interior of each R);. It is

clear that )
_ 1, fork=i
n(aR}, ak) =
0 fork /=i

Similarly, n(dR;, &) = 0 forall j. With this in mind, it follows from (5.6.2) that
n(0o, &) = n(o, &)

and
n(0o, &) = 0.

It is also true that n(o, a;) = 0, for the interior of R); belongs to the unbounded region determined
by 0. Hence we have proved that

n(o —0p,a) =0, for all a=a; and a=a).

Therefore from this property of 0 — 0p we wish to conclude that gy is identical with o up
to the segments that cancelled against each other. Let ok be the common side of two adjacent
rectangles Rj, Rx; we choose the orientation so that R; lies to the left of gik.
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Suppose that the reduced expression of 0 — 0y contains the multiple coik. Then the cycle
0 — Op — CAR; does not contain gik and it follows that a; and ax must have the same index with

respect to this cycle. On the other hand, these indices are —c and 0, respectively; we conclude
that ¢ = 0. The same reasoning applies if 0; j is the common side of a finite rectangle R; and an

infinite rectangle R);. Thus every side of a finite rectangle occurs with coefficient zero in 0 — 0y,

proving that >

0= n(o, ai)aRi (5.6.3)
i

whose corresponding coefficient n(o, a;) is different from zero are actually contained in Q.

Suppose that a point a in the closed rectangle R; were not in Q. Then n(o, a) = 0 because

0 ~ 0 (mod Q) . On the other hand, the line segment between a and a; does not intersect g, and
hence
n(o,a) =n(o,a) = 0.

Thus we conclude by the local exactness that the integral of pdx + qdy over any dR; occurs in
(5.6.3) is zero and hence

J J
(pdx +qdy) =  (pdx + qdy) = 0.
(o)
Hence the theorem is proved. Y [ |

5.7 Multiply Connected Regions

A region which is not simply connected is called multiply connected. More precisely, Q is said

to have the finite connectivity n if the complement of Q has exactly n components.

Similarly Q is said to have infinite connectivity if the complement has infinitely many

components.

A region is said to have connectivity n if there exists n holes in the Riemann sphere. In the

case of finite connectivity, let A;, A, - - -, Ay be the components of the complement  and assume

that oo belongs to A,. If y is an arbitrary cycle in 2, we can prove, just as in Theorem 1.5.1,
that n(y, a) is constant when a varies over any one of the components A; and that n(y,a) = 0

in An. Moreover, duplicating the construction used in the proof of the Theorem 1.5.1, we can find

cycles yi, i =1,2,---,n—1, suchthat n(y,a) = 1 for a € A; and n(y;,a) = 0 for all other
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points outside Q.

For a given cycle y in Q, let c; be the constant value of n(y, a) or a € A;. We find that any
point outside of Q has the index zero with respect to the cycle y — ciy1 — Coy2 =+ - —

Cn-1Yn-1.hother words,
Y ~ CiY1 +C¥Y2 + - -+ + CaYn-1.

Thus every cycle is homologous to a linear combination of the cycles vy, Y2, © * *, Yn-1. This
linear combination is uniquely determined, for if there are two linear combinations namely

C1Y1+CaY2+: +Ch—1Yn—1 and cly1+Cly2+ - +¢)_,;Yn—1 €ach linear combination is homologous

to zero.
.8, Y ~ Ciy1+Co¥2 + + +Co—1Yn—1 and ChY1+ChY2 + +Ch_1Yn—1
SCi=¢Cl, Co=0Ch ' Ch_1=0Cl_,4
It is clear that the cycle c1y; + Coy2 + + - - + Ch-1Yn—1 WiInds c; times around the points in A; and

c, times around the points in A, and so on. Hence it cannot be homologous to zero unless all the

¢i vanish.

In view of these circumstances the cycles yi, Y2, © * -, Yn-1 are said to form a homology basis for
the region Q. It is not the only homology basis, but by an elementary theorem in linear algebra
we may conclude that every homology basis has the same number of elements. Also every region
with a finite homology basis has a finite connectivity and the number of basis element is one less

than the connectivity.

By Theorem we obtain, for any analytic function f(z) in Q,

I I I
f@)dz=c, fdz+c, fdz+ +cp-1  fdz
v Vi Y2 Yn-1

The numbers

I
P; = fdz
Yi

depend only on the function, and not on y. They are called modules of periodicity of the

differential fdz or the periods of the indefinite integral. We have found that the integral of f (2)
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over any cycle is a linear combination of the periods with integers as coefficients, and the integral
along an arc from zy to z is determined up to additive multiples of the periods. The vanishing
of the periods is a necessary and sufficient condition for the existence of a single valued indefinite

integral.

Illustration. Consider the extremely simple case of an annulus, defined by r; < |z| < r. The
component of this annulus has two components namely |z| < r; and |z,| > r,. We include the
degenerate cases r; = 0 and r, = co. The annulus is doubly connected and a homology basis is
formed by any circle |z| =, ry < r < ry. If this circle is denoted by C, any cycle in the annulus

satisfies y ~ nC where n = n(y, 0). Therefore the integral of an analytic function over a cycle is
a multiple of the single period

whose values is independent of the radius.
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BLOCK-II
UNIT 6

The Calculus of Residues

Objectives

After completion of this Unit, students will be able to
X prove argument principle.

X identify Rouche’s theorem.

X solve definite integral by the method of residues.

6.1 Introduction

The results of the preceding section have shown that the determination of line integrals of analytic
functions over closed curves can be reduced to the determination of periods. Under certain
circumstances it turns out that the periods can be found without or with very little computation. We
are thus in possession of a method which in many cases permits us to evaluate integrals without
resorting to explicit calculation. This is of great value for practical purposes as well as for the

further development of the theory.

In order to make this method more systematic a simple formalism, known as the calculus of
residues, was introduced by Cauchy, the founder of complex integration theory.

Definition 6.1.1. The residye of f(z) at an isolated singularity a is the unique complex number
R which makes f(z) — the derivative of a single valued analytic function in an annulus

z—a
0<|z—al <0.
Theorem 6.1.1. Let f(z) be analytic except for isolated singularities a; in a region Q. Then
1 X
2ni ) I
! 55



56

6.1. INTRoducTION

Proof. Let f(z) has finite number of singularities at a;, j = 1,2,- - -,n in the region Q. Let
P 1 bethe singular point of f(z) with respect to the isolated singularity a;.
17— g

X o

T lz—g
is not analyticat z =aj, j=1,2,- - -,n. The function f(z) is analytic in the region ¥ obtained
excluding the points a; from Q.

i'e'l‘(» = - {all ay "t lan}-
By defining n
X 1

9(2) = f(2) T Piz — T

The function g(z) is analytic in Q, where y ~ 0 (mod Q), we have

x .
- 1
v f@ _ Pif73% dz=0
x[ .,
ie., f(z)dz= Pj -
Y j=1 v 274
1 1
But P,-'Z 2 is a polynomial in and therefore
9 -9
J 0, ifm>1
y(@—a)™ "2nin(y,a;), ifm=L1.
Hence
J >
f(2)dz 2ni n(y, &)
Y J:]_
X
2ni- n(y,a)(Res f(z) at z = a;) -
j=1
S |
Ile.’2ni n(y, a)(Res f(z) at z = a).

=1

Complex Analysis
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Hence the proof is complete. [ |
Definition 6.1.2. A cycle y is said to bound the region Q if and only if n(y, a) is defined and
equal to 1 for all points a € Q and either undefined or equal to zero for all points a notin Q.

6.2 The Argument Principle

Cauchy’s integral formula can be considered as a special case of the residue theorem. Indeed, the
function

z—a
integral formula results.

has a simple pole at z = a with the residue f(a), and when we apply (9.2.1), the

Another application of the residue theorem occurred in the proof of Theorem 4.4.1 which served

to determine the number of zeros of an analytic function. For a zero of order of h, we can write

f(ze = (z—a) fh( \$VIth fn@) # 0O, ancfi obtain )(z) = h(z—a)"—*f(z)+(z—a)" f!(z). Consequertly
) , and we see that has a simple pole with the residue h. In the formula
@ z-a fh(Z) f
Xn y,z) =+ " @)
S oni T
this residue is accounted for by a corresponding repetition of terms.

Now we can generalize Theorem 4.4.1 to the case of meromorphic function. IJf f has a pole of
order h, we find by the same calculation as above, with _h replacing h, that _ pas the residue
f

—h.
Theorem 6.2.1. If f(z) is meromorphic in Q with the zeros a; and the poles by, then
)
17 @ X X
oni |, 2= () = n(y,bo (6.2.1)

for every cycle y which is homologous to zero in ) and does not pass through any of the zeros
or poles.

Proof. Letz = a; be the zeros of order h for the meromorphic function of f(z), then f(z) can
be expressed as

f@) = (- a)" f(2),
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where f(z) is analytic in Q and fu(a;) /= 0.

log f(z) = hlog(z — a;) = log fn(z)
Differentiating with respect to z, we get

fi(2) _h 1 N fhjﬂ
f(2) z—a; f(2)

L i) . . _ f(2)
z=g 5@ simple pole of __" " withresidue h. Since ___ ;¢ analytic and non-null at z = a,
f@) fn(2)
fi(z
I )dz = 0.
v F(2)
Let us assume that z = by be a poles of order m for f(z) then we can write f(z) as
g =2
(z — by

where gn(z) is analytic and gm(bk) # O.

log f(2) = log(gm(2)) — mlog(z — by)

Differentiating with respect to z, we get

@ _ In(2) m_l
f(Z) gm(z) Z— bk

But |
G
v Im(2)
- 9@

RG] is analytic.
m

From the above equation, we see that z = b; is a simple pole of

F@)

Ei0) with residue —m. Therefore
by the residue theorem, we have

J
17 1@ X X
2ni |, f@2) dz = j n(y, aj) — ) n(y, b

where each a; and by are counted according to its degree of multiplicity. [ |
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Corollary 6.2.1. Rouche’s Theorem.Let y be homologous to zero in Q and such that n(y, 2)
is either 0 or 1 for any point z not on y. Suppose that f (z) and g(z) are analytic in Q and

satisfy the inequality | f (z) — g(z)| < | f(2)| ony. Then f (z) and g(z) have the same number of
zeros enclosed by .

Proof. Let us prove f (z) and g(z) are zero free on y. Suppose that g(a) = 0, a belongs to the
boundary of .

. f(a) = f(a) —g(a) +9(a)

| ()l [f(a) —g(a)l - lg@)[ or
| ()l l9@@)] - 1 (a) — 9(a)l
[f@ = lg@)] - (@)

2[f@! = [g(a)l

v

v

Since g(a) =0 = |f(a)| > 0.

[f(@) - 9@ < [f@)
[f@l < [f(@)

which is a contradiction. Also, |f(z) — g(z)| < |f(2)| on y.

. i(l):g-(l) <
o -
a@)
:1_— f(zj- <1
1 1
_ 9@ _ 9@ - <
Put F()= "7, f(2=0 . ) )
ut F(z) @ (2 ony f(2)
SF@ - 1] < L

Let w = F(z). As z moves on y w moves I' such that |w — 1| < 1. That is w moves on the
unit circle T with 1 as centre and radius is 1 unit. w moves on I'" which lies only inside the

unit circle |w — 1| = 1 with centre 1 and radius a. Therefore n(I', 0) = 0. By applying Theorem
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2.2.1to F(z), we get

1 J
R
1" g
i g-fd=0
J
1fde_r_1fgdz

oni o f n g
Number of zeros of f (z) inside y = Number of zeros of g(z) inside y. This completes the
proof. [

6.3 Evaluation of Definite Integrals

The calculus of residues provides a very efficient tool for the evaluation of definite integrals. It is
particularly important when it is impossible to find the indefinite integral explicitly, but even if the
ordinary methods of calculus can be applied the use of residues is frequently a laborsaving device.
The fact that the calculus of residues yields complex rather than real integrals is no disadvantage,
for clearly the evaluation of a complex integral is equivalent to the evaluation of two definite
integrals.

Methods for the evaluation of residues

1. (@) If z =a isasimple pole of f(z) then the residue of f(z) at z = a is given by

Res. f(2) p=a= lim(z _a)f(z).

Z—a

- P(@2)
1. (b) If z = a is a simple pole of f(z) = then the residue of f(z) at z = a is given by

Q)
. P@)
Res. f(2)|,=a= Ian;Q Q'

2. If z = a is apole of order m of f(z) then the residue of f(z) at z = a is given by

dm—l
Res. f (2)] =a= lim L@ )" ().
(m — 1)! -~adz

Complex Analysis M.Sc.(Mathematics)-TNOU)-I Year- Il Sem



6.3. EvaluaTioN of DefiniTe INTegRrals 61

Type . I All integrals of the form

f 2n
R(cos 6, sin 6)d6 (6.3.1)
0

where the integrand is a rational function of cos® and sin© can be easily evaluated by means of

residues. 4
Put z = ®. dz = izd®, do = &
iz
2
22+1 . 7 _1
cosO = > and sin 8= =i

Substituting these in (16.4.1), the integral reduces to the line integral is of the form

J
f(z)dz
Y

where y is the unit circle. By residue theorem, we have

/ X
f(2)dz = 2ni Ri,
¥ i

where ~;R; denotes the sum of all residues at the poles of f(z) that lies within the unit circle .

J
Example 6.3.1. Evaluate ”d—e, a>1
0 a+cosB
Solution. Iy 40 1 I on 46
. _ a+cosB’
since 0 a+}:ose 2
I 2 F(x)dx = "2 Zf(x)dx, if f(2a — x) = f(X)
0 - 0, iff 2a — x) = —f(x).
Put z = ¢ then dz = ie®®d®, d-z =06, 7= 1. As 0 varies from 0 to 2n, z varies through the
iz
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circle |z| = 1.
I e _ 1f n_ de
o a+cos@ 2 o a+cosB
f dz
l iz
2 [r-a+ *g + 9
0 = l l21=1 22 + 282 + 1
J doe lf
= f (z)dz
o a+cos6 i
where f(2) =—1. The poles of f(z) is given by 72 + 2az + 1 = 0.
2+2az+1

ie,z=—-a+ a?-1.

Leta=—-a+ a?—1and B=—-a— a?-1.Since a> 1, thepole z=a liesinside y
andtepole z = B lies outside .

" residue of f(z) at z=a is

limz—-a)f(z) = lim(z—-aq)
z—a z—a ?+2az+1
- limz_aq)— L+
=4 z—-a)z-B)
T a_p
1
limz-a)f@ = /[ —
z—a 2 a2 -1
Therefore by Cauchy’s residue theorem, we have
I X 1 ni
f(z)dz=2ni R; = 2ni. _
Y 2 @2-1 a -1
J " de 1 ni
[o a+cos® T VTl
— a J—
0
n N,
a+dc%se a? -1
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n dx
Example 6.3.2. Evaluate ,— la] > 1.
O a+sin’x’

Solution.

J 7 dx

Let | = )
JO a+sin“x
7 2dx

o 2a+ 1 — cos2x
Put t = 2x = dt = 2dx
whenx=0,t=0

n
when x = 2,t_n.
[n dt

l1j+2§a — cog tto
2 o 1+2a—cost

Put z=e" = Z=dt

iz

7+l
CoSt = —s—
As t varies from 0 to 2n, z varies over the circle y : |z| = 1.
| = l f iz
- az
‘] 1
2 yfl+2a—_(z+_)
| = it e Y
1 I
| = —i f(2)dz, (6.3.2)
y
1 L
where f(z) = . The poles of f(z) is given by

22—-(2+4a)z+1
?_(2+4a)z+1 = 0

Zz = 1+2a+2 a+a?
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Lleta=1+2a+2 a+a’and B=1+2a—2 a+a? Thepole z= lies inside Y.

Res. f(z)lZ=B = lim(z — [3)#
=h z-a)z—-B)
= B—al
e 10l = o
Therefore by Cauchy’s residue theorem, we have
AU S S ni
z)dz = 2ni i = 2ni =/ —a :
y() | 4 ara V2 ara
2
1 ni
5 (1642)=>1 = - —
| I 2 a+a?
2 dx, = 4/ :
a+sinx — 2
0 2 a+a

Type.2 An integral of the form S R(x)dx, where R(x) is the rational function in X. This

integral converges if and only if the degree of the denominator of R(x) is at least two units higher

than the degree of the numerator, and if no poles lies on the real axis.

J

To evaluate this integral, we evaluate . R(z) dz where C is the closed curve consisting of a
line segment (—R, R) and the semicircle from R to —R in the upper half plane. If R is large
enough this curves encloses all poles in the upper half plane, and the corresponding integral is
equal to 2ni times the sum of the residues in the upper half plane. As R — oo obvious estimate
show that the integral over the semicircle tends to 0, and we obtain

[ o X
R(X)dx = 2ni  Res. R(z).
- y>0

Example 6.3.3. Evaluate 0°° o where a is real , by the method of residues.
(C+a?)3
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Solution. Consider [ 9 J
z

— _dz= f(2dz,
e a2)3dz . @
z2

where (z) = (@ +a2p and C is the upper half of the semicircle |z| = R along the diameter on

the real axis from —R to R, where R is sufficiently large. The poles of f(z) are given by
(2> +2a%® =0 = z = ~+ia thrice

The pole z = ia of order 3 lies inside C and the pole z = —ia lies outside C.

To find the residue of f(z) at z = ai

Res. f@)leai = 2! timi 022"z — ai)® (2)’
1. d. 7

=lim— :
2 z—ai dz? (z + ai)®
_1

Therefore by Cauchy’s residue theorem, we have

I X
f(z2)dz = 2ni° Ry
C

= 2ni

—n 'T6ias
f(z)dz =
c 8as
R i n
f(x)dx + f@)dz = g s (6.3.3)
—R CR
72 72

f(2) = 2 + a2)? - 25(1 + fﬁ)s —0as [zl=R—
ZZ

f(2)dz =0
CR
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Letting R — oo in (16.4.3), we get

I 0
f(ydx = —
| oo 8as
X2 o _
—e (X2 + a2)3 8a3
® X2 _n_
" ————dx = .
o (X2 +a?)3 16a3
X2 — X+ 2
Example 6.3.4. Evaluate _______ 4y py the method of residues.
x* +10x2 +9
Solution. Consid
olution. Consider [ 2 742 [ o
47 = 2)dz,
Cz“+1022+9dZ c

72— 742
where 1(z) 7+ 1022+ 9 and C is the upper half of the semicircle |z| = R along the diameter

on the real axis from —R to R, where R is sufficiently large.

The poles of f(z) are given by
' +102+9=0=z==+i, z= +3i.

The simple poles z = i and z = 3i are lies inside C and the poles z = —i and z = —3i lies
outside C.

Ry = Res.f(2)}-=
1 - P((%Jz i
= lim
z—i Q' (2)
limZ° —Z+2
3
—id4z + 20z
1—-1i
16i
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67

R, = Res.f(2)}-=3i
2 - é(;ﬁz 3i
= lim
z—3i QJ (Z)
= limZ -2+2
3
-3 4z + 20z
7+ 3i

48i

R, =

Therefore by Cauchy’s residue theorem, we have

I X
f(z)dz = 2ni° Ry
C
= 2|'|i.R1+R2.
1—i 3
= oomi — 14
fQdz = 151 O
¢ 98
R J 50
f)dx +  f(z)dz = 1
—R CR
Now ,
f f 5 —1+2, Idz|
e "< ¢ 77 T 72+9
On Cg, lz| =R ez R
72+1 =2 A1
#+1 = R*—:
1 < 1
z 1 R2 -1
+
and
72+tg = A-9
72+9 = R%Z ¢
1 1
5 <
zz 9 R2_ 9
=+_

(6.3.4)
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[ [

J J
- f@dz < R®+R+2 |y

Cq cx (RZ = 1)(R* - 9)
—R*FRF2z— [ ¢
<
< R - DER® ~9) nr
)
f(z)dzl 0 as R — oo

C G

. f(zdz=0as R — o,

Letting R — oo in (6.3.4), we get
J

Type. 3 Integrals of the form

o XA+ 10x% + 9dx

2

X° _X+2 5n

12°

R(x)e™dx,

— 00

where R(X) is the rational function in x. We can use Type.2 method to evaluate this integral.

The real and imaginary parts determine the important integrals

f 00

R(x) cos x dx,

.[ 00
R(x) sin x dx.

Since e” = e~ is bounded in the upper half plane, we can again conclude that the integral over

the semicircle tends to zero, provided that the rational function R(z) has a zero of at least order

two at infinity. We obtain

I _ X _
R(x)e™dx = 2ni Res. R(z)e".
- y>0
Example 6.3.5. Evaluate COs X dx, a isreal.
0 X2 + a2

Solution. Consider ) _ [

eIZ f d

_ dz= 2)dz,

c 22 +a? oz ¢ @

Complex Analysis
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e’ . . :
where f(z) 724 a2 and C isthe upper half of the semicircle |z| _ R along the diameter on the
real axisfrom— R where R issu ciently large.

—R to , ffl
The poles of f(z) are given by

Z+a’=0=>z=+ia

The simple pole z = ia lies inside C and the pole z = —ia lies outside C.
Res. f(D)p=ia = lim(z _ia)f(z)
z—ia
i i eiz
= lim(z _ia
z—»ia( h )22+<':12
e—a

Res. f(2)];=ia = 2ai

Therefore by residue theorem, we have
I X

fdz=2ni’ R =2n,.f . _ M
C 2ai a
J‘ R Jﬂ ne*a
fXdx +  f(z)dz = (6.3.5)
—R CR
Now,
e
. @)z, 7 |dz|
. ct .
el =Yk
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7> at = A-.al
t . R ;az
1 1—
- =
72 a2 R2 -~ -a2:
[ +fdz < Idz|
. ' 2 2
. CR CR R .a' .
)
<
- Rz aZ
< - Cr
= AR .
[ f@dz — &%as B— .
.. . CR :
Letting R — oo in (6.3.5), we get
f oo elX ne—a
dx =
[ —o0 X2 + @2 a
® COS X + isin X ne—@
x+az dx = —a—
Equating real parts on both sides, we get
[ = COS X ne—@
X +azdx = ——
I “a
X \
: ) X (?Ea dx = Efa—
J w_xsinx :
Example 6.3.6. Evaluate dx, where a is real.
X2 + a2
Solution. Consider [ _ [
ze" £
- z)dz
cZ?+a’ 0z c (2)az,

iz
where f(z) _
real axis from —

—R to , ffi

ze : . .
72 + g2 and C is the upper half of the semicircle |z| _ R along the diameter on the
R where R issu ciently large.

The poles of f(z) are givenby 7 +a’ = 0 = z = +ia.
The simple pole z = ia lies inside C and the pole z = —ia lies outside C.

Complex Analysis
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6.3. EvaluaTioN of DefiniTe INTegRals 71
) ) iz
Res. f(2)] lim(z — ia)
z=ia T 722 +a?
o
Res.f(2)l;=ia = 2_
2
Therefore by Cauchy’s residue theorem, we have
[ X
. f(z2)dz = 2ni° Ry = nie-®.
R
T +f @z _ ie* (6.3.6)
—R CR
[ e
ooz, A,
. Cr T R 22 @

On Cg, |z| =R, z=Re® = dz =Re®idd = |dz] =RE6, 0 <0 <n.

f f 7 ei(Rcose+isin6)
. f(z)dz_ < 1. RZ — .a2.
R? I'n
. iRcose € 6 v
— «« —Rsin
=< f ‘e
- R2gra® Yo"
RE—72 2 _ 2R
o €nde
nR
- [1_¢™"
- RZ__@?
R -
R
R2'1_-}L%2|
I' f@dz — 0asR— .
: G .
Letting R — oo in (6.3.6), we get
[ o yeix
oxerFa®® = nie?
I o .
x(cos x + isin X)dx _ hie-e

X2 + a2

M.Sc.(Mathematics)-TNOU-I Year- Il Sem
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72 6.3. EvaluatioN of DefiNiTe INTegRals

Equating the imaginary parts on both sides, we get

(e 9]

XSin X
KX g~ pee
[ X2 + a2
® xsinxdx _ ﬂe_a
o X2+a? 2
J % sinx
Example 6.3.7. Prove that = = = —dx = p
X
Solution. Consider [ [

eiZ
—dz= f(2)dz
_ c ? c
e" : . .
where f(z) = ~ dz and C is the upper half of the semicircle |z| = R along the diameter on the
Z
real axis from —R to R, where R is sufficiently large, but with an indent i.e., a small semicircle
at the origin, which is introduced to avoid the singularity z = 0, which lies on the real axis.

The poles of f(z) is givenby z = 0.
iz

. : . e
The closed curve does not include the singularity of f(z) = —,

z
.. by Cauchy’s residue theorem, we get

J
f2dz = 0

C

| J J r J
i.e., f(x)dx + f(2)dz + f(x)dx + f(2)dz=0 (6.3.7)
_ BDE p RGA

The equation of BDE is lz| = p.
s z=pe® and dz = pe®ido.
As BDE is described in the clockwise sense, 6 varies from n to 0. Thus

I I

elZd _ eirele if:
z = re "ido
BDE 2 rei @
f ) fﬂo -
lim ey “lim(e™ )idg
r—'OIBDE z n r—0
, e"
lim —dz - _jp
r—0 BpE Z
f I
L @)= o 7 —0as 2 T R — oo
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Letting R — co and p — 0 in (6.3.7), we get

f 0eix fooeix
—dx _j —dx = in
n +
_o X 0 X
fmelx
—X—dX = in

— 00

Equating the imaginary parts on both sides, we get

Type. 4 The next category of integrals have the form

| o
X“R(x)dx
0

where the exponent a is real and may be supposed to lie in the interval 0 < a < 1. For
convergence R(z) must have a zero of at least order two at co and at most a simple pole at
the origin. The new feature is the fact that R(z)z® is not single-valued. This, however, is just the

circumstance which makes possible to find the integral from 0 to oo.

J o x3
Example 6.3.8. Evaluate dx.
0 1+x?
Solution. Consider [
73 J
dz =" f(2)dz,
cl+ 22 C
1
where f(z) = ) £ 2and C be the simple closed contour consisting of the circles |z| = R (R
+1

is large) and |z = p (p is small) and position of real axis between them. The poles of f(z) are

givenby 1+7° =0 = z = +i and z = 0 is a branch point for f(z).
The simple pole z =i lies inside C.
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74
.. the residue of f(z) is given by
. P
o= lim
Res. f (2)],=i 21 Q X2)
A
= lim _
1—i 22
e's
Res.f(2)|,=i = >
.. by Cauchy’s residue theorem, we have
J X
f(z)dz = 2ni R’

C

I f@dz = ne" s

C
I o f f s f )
l.e., f(x)dx + f(z)dz + f(x)dx + f(z)dz = ne's (6.3.8)
-R BDE p FGA
Now,
I / HE
. . dZ
" BDE fe)dz, = BDE -1 + 2.|
On BDE, |z| =p.
1 22 > 1-[z
+ 1 .1
1 2z 1-p?
ﬂ_
) v
fodz < P |dz|
" BDE ' 1-p% BoE
ps
< 7 _dpznp
ps
<
1-p?

L f@dz, ~0as 2l =p~0 (6.3.9)
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Now,
: 2
fz)dz < dz|
FGA ' Fea 1l 22
On FGA, *
1 22 > |z21°-
1
+ N 1
1z R2 -1
?l.
j o
fidz < |dz|
FGA ) R2 — 1 Foa
R}
< nRk
2 __
RR§ 1
<
R2 -1
J f(z)dz - 0 as |z] =R — oo, (6.3.10)
o FGA )
Letting R — oo and p — 0 in (6.3.8) and usir]g (6.3.9) and (6.3.10) in (6.3.8), we get
X3 dx+0+ “ dx+0=ne’
—eo 1+ X2 0 1+x2

Put x = —y inthe first integral, we have
J I e
° (-y)2(—dy) Xs i
_ + 0
[ e, L&Y -
0 (_1)3y3 f o 1 +1x2

Ty Y : red = ne

dx = nes

I I :
on 3 in
s X © X _dx = ne's
o 1+x2dx+ . 1+ x2
1
X3 ;
® dx = ne's

(L+€%) o 1+x
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76 6.3. EvaluatioN of DefiNiTe INTegRals

Equating the real parts on both sides, we get

Y
‘1 + cos D ['o xi 3
3, Tee® = Mg
e a x =
' o 1+x2 _V%
[l
Example 6.3.9. Evaluate _OngX
0 1+x2
Solution. Consider I )
9Ly -t
cl+22 c

I . . :
where f(2) _—odz and C be the simple closed contour consisting of the circles [z|] = R (R

1+22
is large) and z| = p (p is small) and position of real axis between them. The poles of f(z) are

givenby 1+2° =0 =z = +i and z = 0 is a branch point of the function log z.
The simple pole z =i lies inside C.

.. the residue of f(z) is given by

_ jim P&
Res. f(2)l=i = 7% )
. 1ogz
= lim_
—i 22
n
Res.f(2)],-i = i
.". by Cauchy’s residue theorem, we have
-X -
f(2)dz = 2ni R
Cf ’ n%i
dz =
@ 5
[ [ © I r J n’i
ie,” Pf(x)d f(2)d f (x)d f(2)dz = —
i.e., - ()dx + “oe (2)dz + ) (x)dx + Con (2)dz , (6.3.11)

Now, [

CBOEf(7)dz < . 1422
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77

On BDE, |z| =p.

1-[z]?

[uEN

N
N

\%

IA

1 22 1_p2

7 = pe®

logp +i6

logz

IA

Jogz. dogp .+ iB]

IA

logp + 6

IA

logz logp+n, 0<6<n

J J
logp + dz
p2

IA

" BDE f(2)dz. BDE 1 _

n+logp
1 —p2 BDE |dZ|
n+logp
1 _2 P
n;p +F|)'|plogp

IN —

IA

IA

1-p?

Thus  epe f(z)dz - 0 as [zl=p—0
Now, [

| FoA f(z)dz, < FeA -1 + 72

On FGA,

-
N
N
v
~
o
|

IA

(6.3.12)
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logz = logR +i0
.logR .+ i8]
logR + 0

.log z.

IA

IA

Jdogz < logR+n, 0<6 <n, maximum value of O is n.

J I

< logR + M

" roa f(Ddz, FGA p2 _q ’dz\
n+logR

Z—HR

n°R + nR log R

IA

IA

R2 -1

Thus  rea f(z)dz — 0 as [z] =R — co.

(6.3.13)

Letting p — 0 and R — oo in(6.3.11) and using in (6.3.12) and (6.3.13), we get

[ o Iogxdx [ e IogxOIX i
+ = _
o 1+ X2 o 1+x? 2

Put x = —y in the first integral, we get

[ e Iog(—y)dy+f 0 Iogxdx

o 1+ o 1+x2
J o 1qa(— J
log( 1)+quvu, N IOngx
0 1+y? J 0o 1+x2
inf *_dy fmm +f “_logx |
o 1+y2 o 1+y? o 1+x
inf ® dy Zf o Iogxdx i
o 1+y? o 1+x2 2

Complex Analysis
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6.4 Exercises

1. Find t|1e poles and residLies of the foIIovi/ing functions:

(@) o O () 7, (d) cotz
22+?+6 (22— 1) sin z

(f) (m, n are positive integers).
(1 —z)m

2. Evaluate the following integrals by the method of residues:

I'w  x2dx [
L O (1 + x*)~" log xdx

1
ORy
SIN~z

M.Sc.(Mathematics)-TNOU-I Year- Il Sem
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BLOCK-II
UNIT 7

Harmonic Functions

Objectives

Upon completion of this Unit, students will be able to
X prove the properties of harmonic functions.

X identify the Poisson integral formula.

X understand the concept of the mean - value property.

7.1 Introduction

The real and imaginary parts of an analytic functions are conjugate harmonic functions. Therefore,
all theorems on analytic functions are also theorems on pairs of conjugate harmonic functions.
However, harmonic functions are important in their own right, and their treatment is not always
simplified by the use of complex methods. This is particularly true when the conjugate harmonic
functions is not single-valued. In this section we discuss some facts about harmonic functions that

are intimately connected with Cauchy’s theorem.

7.2 Definition and Basic Properties

Definition 7.2.1. Harmonic Function. A real - valued function u(z) or u(x, y), defined and single-
valued in a region €, is said to be harmonic in , or a potential function, if it is continuous
together with its partial derivatives of the first two orders and satisfies Laplace’s equation

d%u 9

AU = =

aX2 + a—y2 = 0. (721)
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82 7.2. DefiNITION aND Basic PRopeRTies

Example 7.2.1. The simplest harmonic functions are the linear functions ax + by.

Note. In polar coordinates (r, 8) equation (14.2.1) takes the form
O (r au) d°u

o°u ar1 al?r 41- a8

a2 Trar T aw

Example 7.2.2. The function log r is a harmonic function r > 0.

Example 7.2.3. The function a log r + b is a harmonic function.

Example 7.2.4. The argument 8 is a harmonic function.

Properties of Harmonic Functions

1. The sum of two harmonic functions is also harmonic function.

Proof. Let ui(x,y) and ux(x,y) are harmonic functions. Let U = u; + U,

+

U U % (ui+uy) 9%(up + Up)

ox2  9y? ox? 2
|
2. A constant multiple of a harmonic function is also a harmonic function.
Proof. Leu u(x,y) be a harmonic function.
d%cu d%cu  du
- — _ t— -
o2 gy T Caet a2 = 0.
". cu is harmonic. [ |

. 3. If u(x,y) is harmonic in Q then f(z) = u_ i@ is analytic.
ox oy

Proof. Let U = du and V= —
oax ay

Complex Analysis M.Sc.(Mathematics)-TNOU)-I Year- Il Sem



7.2. DefinimioN aND Basic PRopeRTles 83
ou 3% v du
3y ayax' y oy?’

Since u is harmonic,

o°u d% ouU oV
Erc vy O T
Al
%0 U av
X

: : . d d d aVv
. U, V satisfy Cauchy’s - Riemann equations. Also —, — , ~, and ~ are continuous.

ox dy ox ay

L@ =U+iV = du _ i@ is analytic.

ox oy
|
Theorem 7.2.1. If u; and u, are harmonic in a region , then
I
Uq >|<dUz — Uy *dUl =0 (722)

Y

for every cycle y which is homologous to zero in Q.

Proof. Let vi, v, denote the conjugate harmonic functions of u;, u, in the region Q. Let us
choose cycle y to be boundary of the rectangle R contained in Q.

y =0R.

*duy = dvy and *du, = dv,

Couiduy — usdug udvy — updvy

uidvy + vidu, — vidu, — uodvq

u1dV2 + VldUZ — (V1dU2 + U2dV1)
UldVZ + V1dU2 — d(Ule)

I I ]
uidu, — usduy = (updvy +vidup) —  d(uavy)
Y Y Y
J I ]
uidu, — usduy = (uidvy +vidup) —  d(uavy) (7.2.3)
\'% dR dR
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84 7.3. The Mean-Value PropeRTY

Since d(uyvsy) is an exact differential,

J
d(Ule) = 0.
oR

Now u;dv, + vidu, represents the imaginary points of an analytic function for

(up + ivy)(duy +idvy) = ugup — vidvy + i(urdv, + viduy)

Fl(z)adz(uz +ivp)dz = updu, — v — 1dv; + i(udvy + viduy).

Here the product F;. f; being analytic inside and on R.

J

J. " aRFl.fle =0
J

arlUiduz —vidvo) + i aR(uldvz +viduy) = 0

Equating the real parts and imaginary parts on both sides, we get

I [
(uduy —v1dv,) = 0 and (uidvy + vidup) =0
3R aR

/
S.(7.23) >  ujdu, — usdug = 0.
Y

Note. In the classical notation (10.2.2) would be written as

7.3 The Mean-Value Property

Theorem 7.3.1. The arithmetic mean of a harmonic function over concentric circles |z| =r isa
linear function of logr,
1 J udd = alogr + B, (7.3.1)
2n =
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7.3. The Mean-Value ProperTY 85

and if u is harmonic in a disk a = 0 and the arithmetic mean is constant.

Proof. By Theorem 3.1.1, [

(U1 *dU2 — Uy *dUl) = 0.
Y

Put u; = logr, u; = u
For Q we choose the punctured disk 0 < |z| < p, and for y we take the cycle C; — C; where C;
(i=1,2)isacircle |z =ri<p Jdescribed in the positive sense.

[ CCe(up *dup — Uz *dug) = 0
[ Cﬁcz(log r ra;urde ~udg) = 0
du ou
(logriri= d6 — udB) — (logr, rza—de —udg) = 0
r
C or C: au ) [ du I
logr,> i~ d6— ud® = logr, ;" d8 - yq4p
C1 or Cy Cs or C,
Each value is constant, say [.
- T
logr r—d® " 4de = constant = p.
J. lz]=r r lz]=r
J du
ud® _logr r—db = constant = .
\z\=r J, |z\=r ar J,
1 1 au
= udé — logr— r—do =P (7.3.2)
20 - 2n . Or
|z|=r |2|=r
Since u is harmonic, [
CG—Cxdu = 0
C
[ *kdu—  xdu 0
C CZ i
I au [ r a—“de = constant
rl_de =
c, Or [ Cé or
1 r Mo = a (7.3.3)
2n ., or
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86 7.3. The Mean-Value PropeRTY

Using (7.3.3) in (14.3.2), we get

1]
N udd — (logrna = B
1 J
— ud® = alogr +B.
2n lz|=r
|
Note. f

1 _
on udé =alogr+f

lz]=r
Let us choose the circle |z —z)| =r >z =120+ reie, 0<8<2n.
If u is harmonic in the whole disk of radius r < (p), then a = 0.

I o0 .
172 u(zo + re®)dd = B

2n o
uizo)) = Bpasr—0
2 .
AL Tz +e®)de = B = u(zo).
20 o

Theorem 7.3.2. Maximum Principle. A nonconstant harmonic function has neither a maximum
nor a minimum in its region of definition. Consequently, the maximum and the minimum on a
closed bounded set E are taken on the boundary of E.

Proof. Let f (z) represents an analytic function u = Real part of f (z). Consider the closed

disk |z — zp| < r contained in a region Q.
.. by Cauchy’s integral formulaI
fa) = & — g,

onC, |lz—z|=r=2=2z+re®

2ni clZ—1p
f(z) = 1 I an f(zo + re'®)dd
20 o
f 2n

Sou(zo) + iv(zo) = 2_1r| . [u(zo + re®) + iv(zo + re®)]de
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7.4. PoissoN’s Formula 87

Equating the real parts on both sides, we get

" U(zo + re®)do
fO 2n

U(zo) =

@)l < 5, | Uz e % .|de|

Suppose that |u(z)| < |u(zo)| throughout |z — zo| < r, then

1f2n

|u(zo)| dB
2
" 01 [ 2nd6 < [u(zo)l

U(zo) ;.I

|u(zo)|

IA

0

which is a contradiction. |u(z)| = |u(zo)| , |z — zol < r. On concentric circles Q, |u(z)| is also a
constant. Therefore u(z) reduces to a constant in Q. u(z) cannot attain maximum value in Q.

Since u is continuous on a closed set E and hence u attains into maximum value |u(z)| on the
boundary of E.

The minimum principle can be obtained by applying the above result to the harmonic function
(—u). ]

7.4 Poisson’s Formula

Theorem 7.4.1. Poisson Formula for Harmonic Functions. Suppose that u(z) is harmonic for
|z| < R, continuous for |z| < R. Then

u@="- = — ul4 (7.4.1)
forall |a] <R.
Proof. Let u(z) be harmonic for |z| < R. The linear transformation
_ R(RC + &)

2=50 = R+a(

maps the circle |/ < 1 onto |z < R with { = 0 corresponding to z = a. The function
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7.4. PoissoN’s Formula

u(S (€)) = u(z) is harmonicin || < 1.

1/
usO) =" u(s(@)d(arg(@)
2N g
by mean value property.
s(0) = a, 1
u@ ="""  u(s(@)d(arg(®)
g1
- o dg
(=1=>C=e"=>dp= —iz = d(arg(Q) = —i z
J
W@ =" uGs@) - i
20 g C
;= R(RC + a)
- R+

Riz—a) = {(R*—az)

7 = R(z — a)
R2 — az
Io% = logR = log(z;~ @) + log(R* —az)
C T s-a R -az az
2]2= R? = dz = Re®idB = dz = zid®.
[4 1 a
SC -z —a - az izd®
—l= = .—+i de
C z—a Z-—a
2> - |al?
= ds
Ez_a|22
g Rl
c |Z _ a|2

J R? — |a/?
1 2
LQTAY S u@ =5 . el O

(7.4.2)

(7.4.3)

Complex Analysis
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Note.(i) In (17.4.1), put u(z) = 1 (which is analytic everywhere), we get

_1f2”R2—|a|2ce

1 = 2
2n o |z—a|
J n g2 F312
2“ = — de
2
0 [z-a

(i) Put z=Re® a=re", r<R.

ure®) = 2 R - uRe) g,
2N o |Re® — reio|?

Now

Re® 192 = (Re® — re'®)(Re® — re®)

R® — 2Rrcos(® — @) + r*

. I i
ure® = 17" RP-ruRe®) g8, r<r.
2N o R2— 2Rrcos(8 — @) + r2

This is called polar form of Poisson’s formula.
(iii). Another form of Poisson’s formula:

The other form of Poisson formula is

1! R
u(a) =on i, Re L u(z)de.
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7.4. PoissoN’s Formula

Proof. Now

Z+a Z+azZ—a

7—a z7—-az—a
|z* - |al® + |az —az

z—-al> —
R? — |a|? + a2 — (az)
|z —al?
_ R?—al? + 2ilm(az)
- 2
z a R? — |dp— @l
. - - — _ 2
. Re Z+ a |z — a
From Poisson’s formula,
] R-p
u@ = - u@2)q
2Ny |z - al?
Z+a
u@ = - z+a
2N Re S g u(z)de

Complex Analysis
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BLOCK-III
UNIT 38

Partial Fractions and Factorization

Objectives

Upon completion of this Unit, students will be able to
X prove Mittag - Leffler theorem.
x understand the concept of infinite products.

X identify Weierstrass theorem on an entire function.

8.1 Introduction

A rational function has standard representations, one by partial fractions and the other by
factorization of the numerator and the denominator. The present section is devoted to similar

representations of arbitrary meromorphic functions.

8.2 Partial Fractions

Theorem 8.2.1. Mittag-Leffler Theorem. Let {b,} be a sequence of complex numbers with

limy~« by = oo, and let P,() be a polynomials without constant term. Then there are functions
which are meromorpfjic in the whole plane with poles at the points by, and the corresponding

singular parts PY'Z . Moreover, the most general meromorphic function of this kind can be

by

written in the form
X

f(z) = .Pv.z%ly_ P @) +9@2) (8.2.1)
Y

where the Py(z) are suitably chosen polynomials and g(z) is analytic in the whole plane.
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92
Proof. Let us suppose that no by equal to zero. Consider a circle with centre at the origin and

radius less than b . Then from Taylor’s series we get

v
_ 2 n n+1
PYZ y =doy tayZtayl + oo AVt QpeyZ e
— 2 ny _ n+1
PYZ q—aoy+alvz+azyz +oc Az = apeyZ o+ s
Choose
Py(2) = QY +anZ + - -+ - + apZ"
1
P p = a -+ +
z—by .
Pl —p. _ clEhg MR
v, vy T .
' _bY - R (R_|Z|)
1

where M, - max value of P, on the circle of radius R Put R = 5 b, -

1

ML b
2ty My By

Py(z) — < '
D =Pe= gy

where |z| < 3 .by.. The above result is also valid for |z| < ‘%L.
X- - -
Lt = R )
Y Y

represents function in the whole complex plane without pole. That is it represents an entire

function say g(z).

_ X, 1

--f(Z)—Y Z_bv—p(ll) = 902
o X-P-L .
SO = PP @ a0

where g(z) is analytic in the whole plane. If some by = 0, we choose Py(z) = 0.
2
n o ]

Example 8.2.1. Prove that

sin“nz_ —w (zZ—N)?’
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2
Solution. Let f(z) = sTr:_ZIE The poles of f(z) are given by

sin?nz =0 = nz =nn (twice) = z = n (twice.)

n? - n?
sin nz ] i )
n2z2'1 =312 + - - -
t., 14, =2
= 221—3!nz+---
2
n 1., .. 1 1
= 22_1+23!122+2--- +33!n_22J5--- +

sin® nz

T
= 2 Jipowers of z

+ powers of z

(z -0y
..z =0 isadouble pole with singular part—1 . Singular part with respect to double pole z =n is
2
1 z
(z—n)y
o 1 1
n Z - bn (Z - n)2
B 1
| -2?,

1 1

Since © ——and ~ ,—etc., are convergent, we choose Pn(z) = 0. By Mittag - Leffler theorem,
n n
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we have
o _ 2> .1 )
e n P’ o~ Pu(z) +9(2)

X 1 .

= T 0440
e (Z—n)
x4

= +9(2)
_ (—np

where g(z) is analytic in the whole plane. Since csc? nz is periodic of period 1.
Consider the strip 0 < x < 1.

2 1
csc nz =
(sin nz)?
sin z ginz _ g—inz
onl =7 .
" in% e_2' inz_ 'g_
> Se ™ —eW
2
csc nz —
| E e—ny _ eny
4
csclnz <
(el‘ly — efl'ly)Z
g chcznz' P ——
- <

&2 (1 — e-2m)2
< 4n,—e=2W °

(1 — e72ny)2
.n°csc’nz. — 0 as y— oo,

. . . 1
Thus n®csc?nz — O uniformly in the strip as ly] — . Also =2 (22 has the same

property. Indeed, the convergence is uniform for |y| > 1, say, and the limit for |y| — oo can thus
be obtained by taking the limit in each term.

.. g(2) — 0 uniformly for |y| — oo. This is sufficient to infer that |g(z)| is bounded in a period
strip 0 < x < 1, and because of the periodicity |g(z)| will be bounded in the whole plane.
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.". by Liouville’s theorem g(z) must reduce to a constant.

.. 0(2) = k.
oX
n?csc’nz =
@z—ny

As |z| — oo inthe strip, both sides of the above equation tends to 0.

..k =0. Hence X
2 2 _
n°csc Nz = .
o (2—n)
1 < 2z
Example 8.2.2. Prove that ncotnz = — B
o 1z+n-122—n2
Solution. Since n®csc?nz =
T (z—-n)?’
nee
1 X
nfesc’nz = © + 1
22 o, (@—ny
d N P Xd. 1
gz (-ncotnz) =4, —, +n0dz (z-1
_ . d1 Xd.1 1
B dz z n/:OdZ z—1 N
d di1 dX, 1 1.
— - " _ - 4+
dz(”COt”Z) T odz z dz 5 z—1 N
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Integrating on both sides, we get

1 X1 1.
ncotnz = Z+ + n+c
zZ—1
1 58_1
= T+ +C
z 2!
= 1+X—1 +Xo 1 c
z T z-nt 7
_ 1 1 x b laci b
= z+n=12—n+ :1Z_ﬁc y replacing n by —1
X
ncotnz ="~ +2z +C (8.2.2)
z L 22 —n?
n=
Replacing z by —z, we have
1 250( 1 (8.2.3)
—ncotnz =~ — <% +C &
z n=lzz—r’f

(122.2)+(823)=>2c=0=>c=0
Hence
X 2z

1
ncotnz=—+ 5 p
7 ¢ — Ir

n=1

8.3 Infinite Products

Definition 8.3.1. Consider a sequence of non - zero complex numbers ps, p2, © =+, Pny =+ + . A
product of the form

13

Pn=P1P2... Pn...

n=1

is called an infinite product.

To see the convergence of the product, let us define

Pn:plpZ' * o P
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It is said to converge to the value P, if

P = lim P,
n— oo
if the limit exists and is different from zero.
Now,
P
P __Pn_
n—1 P
. . n
limp, = Ilim
n—oo n— oo Pn—l
lim = 1, when the product is convergent
n—oo

In view of this fact it is preferable to write all infinite products in the form

T (1+ay),
n=1

where a, are complex numbers.This product is convergent if a, — 0. This condition is only
necessary. Then converse is not true.

Theorem 8.3.1. The infinite product go(1 +an) with (1+a,) /= 0 converges simultaneously wih
1

the series ~ log(1+a,) whose terms represent the values of the principal branch of the logarithm.
1

Proof. Let us write

Pn = l+a)(l+a)---(1+ay)
S log(P,) = log(l+ap) +log(l+ay))+ - - - +log(l+ a)

X
log(Pn) = (1+a)
k=1
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We suppose that the series “ log(1 + an) is convergent.

n=l1
|Og Pn = Sn
Pn = ES”
limP, = glM-=Sn
n— oo
limP, = e°.
n— oo

[e]

- log(1 + a,) is convergent implies that the sequence of the n™ partial sum of the given series
n=1

Sy is convergent.
o lim Py = e’(/=0) since S, = S as n — .

Hence ~ is convergent.
n=1
[o]

Conversely, let us assume that the product '1(1 + ap) is convergent then a, — 0.
o=
Now

Ph = (l+a)(l+ay)---(L+ay)- - -
log(P,) = log(l+aj) +log(l+ay)+:--+log(l+ay)+---

X
log(P,) = log(1 + a,) + 2nh,

n=1

where h, is well determined integers. Equating imaginary parts on both sides,
argP, = arg(1 +a;) + - - - +arg(l + ay) + 2nh,.
Put B, = arg P, and a, = arg(1 + an).
Bn=0a1+0+ - - - +ay+2nh,

Bn+1 =0+ + - +0y+0pep + 2I'Ihn+1

Bn+1 - Bn = Op+1 + 20(Np+1 — hp)
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Let us assume thatas n — oo, P, — p.

.. Bn+1 = arg Pp+1 and B, = arg Py,
Ong = arg(l + aps) =argl =0
argP; —argP =0+ 2n(hp+1 — hp), n is large.
" hps1 — hp — 0n is large.

.. hns1 = hywhere n is large.

Hence h, becomes a unique integer h. Now,

X
logP, = log(1 + a,) + 2nh,

n=1
Let n — oo, P, — P(/=0).
X
S logP = log(1 + a,) + 2nh
n=1
X
log(1 + a,) = logP —2nh
n=1
Hence
X
log(1 + a,)
n=1
is convergent. [ |

Definition 8.3.2. An infinite product ® log(1+a,) issaid to be absolutely convergent if and only
n=l

00

if the series log(1 +a ) converges

absolutely.
Theorem®B8.2. A necessary and suficient cgndition for the absolute convergence of the product

~ (1 +ay,) is the convergence of the series ~ |an/.
1 1

Proof. We know that

lim log(1 +2) _1
-0 z

00 0

If either the series - log(L + a,) or
=1

" lan| converges, we have a, — 0, n — o and we have
n "1

n
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" |an| is convergentas a, — 0. Let s be any positive given number.

lim log(1 + an) _ 1
a,—0 an
Ilm Iﬂ‘l(ﬂn). — 1
n— oo an
lim .Iog(l + an). _ 1
n—oo * an :
log(1 + an)

.. .—1 < s for large n

a.n "
1_s <.Iog(1+ an) -
.

(1-9)]a) < log(1+ay) < (1+5)]a,] for large n

< 1+s for large n

" Since- a - is
éoﬁvg}g@hﬁ; b ifoaRseletely converggry ang I)emg@oﬁ\,@gvemn) is copverges absolutely. |
o 1 1
Example 8.3.1. Showthat = 1 — , = >
Solution. Here n2 n 1 -
P_: 1 - = __l—
: n2 n n
. 132, n-3n-1n-2n n-1n+l
CPhERP =gy gy n—2: .n-1 - 0
1ns—24 Sn-1 n

Pn—»zlasn—»oo
1
P=,.

.". the product is convergent.

Example 8.3.2. Prove that for |z| < 1,

Q+)Q+D)A+HL+2°) =",

Solution.

T (1+2), <L
n=0
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Leta, _2* _ lal=2" =217

Since Iir[ <1, "|z|* is convergent.
" a isconvergent| }
re

Ph=p@i--p =(1+21+D) - -1+

For |z] <1,

QL-2)A+)Q+D) - (1+7)
Q-+ -1+
A-Ha+- - @+

(1 - Z)Pn

1-2P, = A-2)1+7)

= 1- (22”)2
- 127
1-2P, = 1-72"
lim(1 - 2P = lim(l - 2, 2] < 1
n—oo n—oo
lim(1 _2)P, =1
n—oo 1
n— oo 1 — 27
.- 2n 1
LT @A+) = , <l
1, [

8.4 Canonical Products

Definition 8.4.1. Entire Function. A function which is analytic in the whole plane is called an
entire function or an integral function. The simplest entire functions which are not polynomials

are e, sinz, and cosz.

Theorem 8.4.1. If g(z) is an entire function then f(z) = e%@ is entire and /= 0.

. #(2)
Proof. Since f(z) O itfollowsthat ___ s analytic in the whole plane.

f@)
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% represents an entire function say h(z).
Integrating along a simple path from z, to z.
.[ Zf) f z
@dz = h(z)dz
» (2 Z |
z
log f(z) — log f(zo) = H(z), where H(z) =  h(z)dz
Zo
i(l). — eH(z)
f(20)
f) = f(z)e"®
= €@, where f(z) = a constant = e
S f@) = e
where g(z) = k + H(z2) is an entire function. [ |

Theorem 8.4.2. Weierstrass Theorem on an Entire Function. There exists an entire function

with arbitrarily prescribed zeros a, provided that, in the case of infinitely many zeros, a, — oo.
Every entire function with these and no other zeros can be written in the form

z17z: 1 zm

Z +oot
My an (8.4.1)

R +
f(z) = 7M 9@ - edn 2 8,

n=1 ¢

where the product is taken over all a, /= 0, the m, are certain integers, and g(z) is an entire
function.

Proof. Consider an arbitrary sequence of complex numbers a, 0 with lima, = . Letus
prove the existence of polynomials pn(z) such that S

. YA
1—7 eP® (8.4.2)
1

converges to an entire function. The above product converges absolutely and uniformly if the

corresponding series n-log ‘1 — & + pa(z) converges absolutely and uniformly.
For a given R we consider only the terms with |a,| > R. Inthe disk |z| < R the principal branch

Complex Analysis M.Sc.(Mathematics)-TNOU)-I Year- Il Sem



8.4. CanoNical ProducTs 103

. z . .
of log 1 — = can be developed in a Taylor’s series

n

g z z l.z, 1.z,
9 l- " Ta 2a 3a
We reserve the signs and choose pn(z) as a partial sum
z 1z , 1 z N
= —+ = +... +—" M
Pa(2) as, 2a ' mpa,
Then
z
gl —p@) = gt Pt mR_
) an m, +1 a, my + 2 a,
Tog’'l ,  p@) 1 z™ 4 mp+1 2z
S l . . .
. m + -a .
— an + n n n ) L L 2
m,+2:a,"
o 1 Zm”+1 . + . + .
S mp+l-a,. 1 1'an LRCTNR
. z 1 . .
log 'L~ 2+ py(2). < LIRS
' an - m, + 1 Tag| |an
z 1 R . R .
. . . mp+1- —
109 1 =g, +P(@- = my+1 || 1 | (8.4.3)
Suppose that the series
x
—1_R mp+1 (844)

M+ 1 ]

converges. %
X . z :
L log 1 -7, +pn(2

n
is absolutely and uniformly convergent for |z] < R and therefore the product

T £ op®

n=1 an

is uniformly convergent for |z| < R. Thus the product (8.4.2) represents an analytic function in
lz| <R.

It remains only to show that the series (8.4.4) can be made convergent for all R. But this is obvious,
for if we take m, = n, it is clear that (8.4.4) has a majorant geometric series with ratio < 1 for
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z
Since R is arbitrary, __ €M@ js an entire function

-
n=t % z 1z, 1 Zm

ot
Mp an

O Z +
f@= 1- a2
an

n=1

Let f(z) be an entire function with zero’s a;, a, - - - and zero of order m at the origin then the
quotient

m Tl =t e
is an entire function without zero’s and it is equal to e%®, g(z) is entire. Thus

i) _ 90
Z_+u 2t 1zm
zm ';021'1 _;z ean 2 & Mp an
- Z Z +1—Z 2 +w+l —Z m
Ci@eDe®  p_ e 23 ma

n=1 a
[
Corollary 8.4.1. Every function which is meromorphic in the whole plane is the quotient of two

entire functions.

Proof. If F(z) is meromorphic function in the whole plane, we can find an entire function g(z)
with the poles of F(z) for zeros. The product F(z)g(z) is then an entire function f(z), and we

obtain F(z) = : -
9(2)
Definition 8.4.2. Genus of the canonical product. From the Weierstrass theorem, we have
- Z Z_ +l_z 2 +m+l _Z mn
cf@)=7" 9@ 1 — gdn 2 an Mp an
n=1 a
Consider the product
z 1z 1l zm
- Z +2 ot
1— gl ¢ M (8.4.5)
n=1 a’
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which is convergent and represents an entire function provided that the series

X 1 .R
N+ 1 fa|
converges for all R.
That is provided the series
X _1
< 0.
|an|h+1 L
Assume that h is the smallest positive integer for which the series = ——= converges. Then the
a]

product (8.4.5) is called the canonical product associated with the sequence {a,}, and h is the
genus of the canonical product.
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BLOCK-III
UNIT 9

Entire Functions

Objectives

Upon completion of this Unit, students will be able to

X identify Poisson - Jensen formula.

X prove Hadamard’s theorem.

9.1 Introduction

We have already considered the representation of entire function as infinite products, and, in
special cases, as canonical products. In this unit we study the connection between the product
representation and the rate of growth of the functions. Such questions were first investigated
by Hadamard who applied the results to his celebrated proof of the Prime Number Theorem.
Space does not permit us to include this application, but the basic importance of Hadamard’s

factorization theorem will be quite evident.

9.2 Jensen’s Formula.

Theorem 9.2.1. Poisson - Jensen Formula. Let f (z) be analytic in |z| < p and suppose that the

non - null zeros of f(z) inside the circle |z| = p are a— 1, a,, - - -, a, and each zero being counted
according to its degree of multiplicity. Then

- /
X o p_ag. 1" pe® 7z, .
=-  log—— + *——log :f(pe”) " db. 921
log | f(z)] y g_(z_ai), n o " e g .f(pe”). (9.2.1)
= P
where log | f(z)] 0, and f(z) /=0.

107
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9.2. JenseN’s Formula.

Proof. Let C be the circle |z| = p. Consider the function

- o’ —az
F@2) =f(2) B
iz1 P(z — ai)
The zeros of f(z) exactly cancels with the factors of the denominator on the right hand side of
F(2).

.. F(2) is analytic throughout the circle C. Zeros of F(z) are given by

2

2 _— P™
—az=0=>z== (=12--+,n
p”—a 2 ( )
02 p? .
= (=12 ,n) being inverse point as & with respect to the circle C, — lies
I 1
outside C. Therefore F(z) has no zeros inside and on C. Thus log f(z) is analytic on and

inside C. This implies that log | f(z)| is harmonic on and inside C. Applying Poisson formula
for log | f(z|, we get

The point

. : :
| log | f(@)] = ,_ Re peid log F(pe®) db.
Buton C, F(pe®) = F(pe®) . When z is any point of C, f(z) /=(

log"f@ = p*—az, 1 | 2n1pe P Z log 'F(pe®) db

. b

) p(ZZ —a;) g

log p° az 2N 0 Re i
Ioglf(z)|+i><1 '.(zia:).' = ignfozn %ee,% z |Og.F(peie).de

n -z
e Aaa Eaei€) .
Xlog-ﬁz_—a'?'-JrTf 2nRepFLe_[Iog_F(pe ):d6,
R e-a) 2n
= P

= P .
log [ f(z)!

when f(z) /= 0.

Note. Put z = 0 in the above formula,

logkf (0)| = log + 1 [ 09 f(pe®) db.

i=1 lal 2n
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on a circle to the moduli of the zeros.
The Jensen and Poisson - Jensen formulas have important applications in the theory of entire

functions.

9.3 Hadamard’s Theorem.

Let f (z) be an entire function with zeros a;, a,, -+ + +, a,, @, — o as n — co. For the sake of

simplicity we will assume that f (0) /= 0. If h is the smallest positive integer such that f can e
represented in the form

z 1z, 1z,
(oI .
f(2) = 9@ 1 — 4 ean+2 an T an

n=1

where g(z) is a polynomial of degree < h. Then f is of finite genus h. If there is no such
representation the genus is infinite.

Order of an entire function. Denote by M(r)lghe rximum of [f(z)| on |z| = r. The order of

the entire function f(z) is defined by lim log and we denote it by A.
r— logr
log M(r)

i.e., A= limlog
r— logr

According to this definition A is the smallest number such that

rhts

M(r) <e

forany given s > 0 as soon as r sufficiently large.

Theorem 9.3.1. The genus and the order of an entire function satisfy the double inequality
h<A<h+1

Proof. Assume that f(z) is of finite genus h. Then f(z) can be represented in the form

z 1z, 1z,
f(z) — eg(z) '1 _ Z ean+2 an ¥ +n an

n=1
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where g(z) is a polynomial of degree < h. Since g(z) is a polynomial of degree < h, we have
%@ is an entire function of order < h. Also the order of a product cannot exceed the orders of

both factors. Hence it is sufficient to show that the canonical product is of order < h + 1.
The convergence of the canonical product gives that

X
The< oo,
T |an|h+1
Let
“« _ .z
P(Z) = En — ,
n=1 an
where 1 1

u+ Wt "

En(uy=(1-u)e 2 h

and Eo(u) = 1 — u. We shall show that

log |En(u)| < (2h + 1) |ul™? (9.3.1)
for all u.
If lul <1, we have by power series development
1 1
log En(u) = log(l —u) + u+ 21]2 TR +T]uh
w ul u o out 1 1
UT Ty T T T
- Ol o,
il N2
u u
Jog Ep(u) . < hetl' h+2+-~
u h+1

e l+ul+uf+e
h+1

Jog E, (u). S 1] e

(h+ 1)1 - [ul)

IA
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Re[log Ep(u)] < log Ep(u) .
i.e., log [En(u)] < .log Ep(u).
. log [Ep(u)] < L
(h+ 1)1 - ul)
1 - ful
(1= lul)log |Ex(u)| < |ul™* (9.32)

For arbitrary u and h > 1,

1 1
_En(u) _ - l-)eu+§u o
En-1(u) u+ u;+---+ 1 uh—1
l-ue?2 h—-1
— ) u
et

ER)
h
ORI

. Eh—l(U)'

log |En(u)l — log|[Ep—a(u)l < uf

" log|[En(u)| < log |En—1(u)| + lul". (9.33)
Let us prove (16.3.2) by mathematical induction. For h =0,

(16.3.2) = log |Eo(u)| < |ul
Also [Eg(u)] < 1-u<1+|u
i.e., log [Eo(u)] < log(l+ |u]) < |ul.

Therefore (16.3.2) is true when h = 0. Now we assume that (16.3.2) is true when we replace h
by h — 1.
log |[Ep—1(u)| < (2h — 1) |ul". (9.3.4)
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If jul > 1, from (16.3.3), we have

log [Ex(u)l < (2h = 2)[ul" + |ul"
log [Ex(u)| < (2h+1)[ul"

IA

If Jul <1, we have proved that

|h+1

(1 = [ul]) log |En(u)| lu

log [En(u)|

IA

ul “log |En—1(u)| + [u]" + [ul™?

|h+1

IA

ullog [En—1(u)| + 2 u
log |Ex(u)| < |ul (2h — 1) Ju|" + 2 |u|™*

S log |En(u)] < (2h + 1) Jul™?,

This completes the proof of the induction.
Now consider the canonical product

P@)

I
m
|

P@)

log [P(2)|

log'E "z *
. han-

= 7 log [Ex(u)

(2h +1) ub+t

% |Z‘h+1
(2h + 1)

n=1 ENYS

X|_]h_

=1 ap[™!

IA

IA

log |PZ)| < (2h+1) |z|h+f1
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and it follows that P(z) is at most of order h + 1.

X
log [P(z)] < (2h +1) [z|™**C, where C = Tag | |1h+1-
n=l1 ah

On |z| =y, max|P(z)| = M(y), we have

logM(y) < C(2h+ 1)y"+

jim 109 10g M(Y) o logC2h+1)  (h+1)logr,

y— 00 logy = YI'JQ logr * logr
For the opposite inequality, assume that f(z) is of finite order A and let h be the largest integer
< A. Then h+1 > A. First we have to prove

X 3

. |ah|h+1

converges.

Let us denote v(p) the number of zeros a, with |a,| < p. In order to find an upper bound for
v(p), we apply Jensen’s formula.

log | f(0)] = -Y® Iog_—g + 1 J g f(pe®) a8
n=1 EN 2n o .
v(p) 2n
2p 1
— = ) P
. log |a| 2n log - f( €°) 8 —log | f(0)]

_1f2|'l

IA

on o, '09.f(pe®) d6, since log|f(0)l >0

We know that .f(2pe®).

IA

M(2p) < e
(2p)+

= log - f(2pe®®).
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_1f 2nlog“f(2pe™ d8 < (2p)"+SI 2n 49

114
2n 0 . ___ 2n 0
A
Mg 2 - @
¢ "(2 |an] 2n -’
v(p Vi
. log 20, log20 < (2p)™+*
1 |an| v(p+1) |an|
2
We have |a,| < p :TBIQ > 2.
" V() v(p) v(p)
X 2 X X
log .I_a% > log2=1log2 =v(p)log2
1 N 1
> V(p) log 2 = (2p)+°
S lim : — 0 for every s >0
p=o (2p)M
S lim v(e) 0 for every s > 0.
p— 0 p)\+$ -

i.e., v(p) < p+° for every p.

We assume that the zeros a, are ordered according to absolute values

lag < fag] < v v fag <0

Then it is clear that,
n < v(la]) < la.™* .

.. 1
Then, it is clear that n < v(|a,)*+° :—nA+S< EN
1 1
— < [
|an| h*s
X_l X_l
< h+l
n=1 ‘an| n=1 hrss
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9.3. Hadamarp’s Theorem. 115

Since h < A, we choose s, sothat A+s < h+ 1.

(o]

X 1

IS convergent.

. h+1
n=1 hﬁ

Hence
X

|h+1 IS convergent.

n=1 |an
Thus we have proved that f(z) can be written in the form

Z 1z,

f(Z) — eg(Z) 1 — Z ean+ “h an

n=1

where g(z) is an entire function. It remains to prove that g(z) is a polynomial of degree < h.
It is enough to prove that g"+Y(z) = 0. For this purpose it is easiest to use the Poisson - Jensen
formula. Apply Poisson - Jensen formula to f(z) :

v(p) I 2n i0

: - 1 pe” 7 i0

log | f(z)| = - pYoar Re*— log - f(pe”™).d®.
91f@) ¥ log :_(Z_aﬁ)p =gy, t 2n pei® —z

If the operation
ox

f _j(z) "V(P) o) _ 1 f on

T -, - a T et man) o o 20e°(pe”® — 2)-" - f (pe"). dB.

d
- iay is applied to both sides, we obtain

Differentiating with respect to z, for h times, we get

v(p) Xo _
J : N h
UWA%§=_N -0t At -a)
1
H

1 I an o
i+ 0 2pe ®(pe ® — 3~"-2log :f(pe®):dB. (9.3.5)

It is our intention to let p tendto oo. In order to estimate the integral in (16.3.5), we observe that

f 2n ) )
pe(pe® — 3780 =0.
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116 9.3. Hadamarbp’s Theorem.

Therefore nothing changes if we subtract log M(p) from log | f|. If p > 2]z| it follows that the
last term in (16.3.5) has a modulus at most equal to
1 J e
(h+1)1 22 ;=12 g _M(p) qgp
2n o | (pe®)|

!

M
for Iog—('m . 0. But

[F(pe®)] ~ o
51 log | f|d6 > log |f(0)]

by Jensen’s formula, and p~"-'log M(p) — 0, since A < h + 1. We conclude that the integral h

(16.3.5) tends to zero.

The second sum in (16.3.5), the same preliminary inequality p > 2 |z| together with |a,| < p
h+1

makes each term absolutely less than , and the whole sum has modulus at most 2h+1v(p)pfh71.

We have already proved that this tends to zero.

fi(z X
Cpn @ a I
n
@ -1
If we take f(z) = e%®P(z), we find that
! P
h+1 7) = D(h)_ _ D(h)_ .
9" (2) - 5

p
By Weierstrass’s theorem the quantity D(h)3 can be found by separate differentiation of each

J
factor, and in this way we obtain precisely the right hand side of D fT Consequently, g™+(z) is

identically zero, and g(z) must be polynomial of degree < h. Hence the proof is complete. m

Corollary 9.3.1. An entire function of fractional order assumes every finite value infinitely many
times.

Proof. It is clear that f and f — a have the same order for any constant a. Therefore it is enough
to prove that f has finitely many zeros. If f has only finite number of zeros we can divide by a
polynomial and obtain a function of the same order without zeros. By the theorem it must be of
the form e where g is polynomial. But it is evident that the order of e® is exactly the degree of
g, and hence an integer. The contradiction proves the corollary. [
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BLOCK-III
UNIT 10

The Riemann Zeta Function

Objectives

Upon completion of this Unit, students will be able to
X understand the concept of Riemann zeta function.

x extend the Riemann zeta function to the whole plane.

X prove the Riemann zeta function satisfies functional equation.

10.1 Introduction

The series = n-° converges uniformly for all real o greater than or equal to a fixed g, > 1
n=1

i.e.,0>0p > 1. Heres = 0 +it.

0 = Res

0 < Re|s|

[e]

the series = n-“ is a majorant of these series
n

X o
((s) = n-,s=0+it.
n=1

The series {(s) is convergent and represents an analytic function of s in the half plane Res > 1.
The function {(s) is known as Riemann zeta function. It plays a central role in the applications
117
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of complex analysis to number theory.

10.2 The Product Development

The number - theoretic properties of {(s) are inherent in the following connection between the
(— function and the ascending sequence of primes py, p2, * * =, Pn, * *

Theorem 10.2.1. For 0 =Res > 1,

% - - A=) (10.2.1)

where pi.pz, - - -, Pn, + + - . are ascending sequence of primes.

Proof. The infinite product 201(1 - p7;°) converges absolutely if and only if nozol .p—% converges.
n=
Under the assumption ¢ > 1, it is seen at once that

(A -27) = Ys)—277s)

X X
— nfs _ 273 n S
n=1 n=1
= [n—-@n)]
n=1
X

(-2 = m

where m runs through the odd integers.
By the same reasoning,

X X
s)(1 —2-51 — 37 = m-°>—3-° m-°
X X
= . m*—=_ (Bm°
X S S S
()1 —27)(-37) = m-
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10.2. The ProducT DevelopmeNTt 119

where the sum runs through the integers that are neither divisible by 2 nor by 3. More generally,

* X
(1 -27)1-3)2 =5 - - (h—p)= m” (10.2.2)

m=1

where the sum of the right being over all integers that contains none of the prime factors
2,3,5, 7, - pn-

G(s) n_l(l —p%) = 14+ A,
. x
C(s) (@L-p3°) = 1+ p,°

n=1 n=N+1

Iz 0

the first term in the sum is 1 and the next term is pg;.

X

s S
N+1 T Pns2 400
m=1

Mm=1+p
Therefore the sum of all terms except the first tends to zeroas N — co. Hence

img(s) ~ (- ps) =1
N—co n=1

This proves the theorem. [ |

Result. The number of primes is infinite.

Proof. Suppose on the contrary that, the number of primes is finite. Let the largest prime be py.
Then (10.2.2) reduces to

L -2)1-39 - -A-p)=1

Replace s by o we get

(L -2 -39 -(Iwp)=1
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120 10.3. ExtensioN of {(s) To The whole plane

As 0 — 1, we have

MA-2H1-3YH - -@Awph =1

@ = ﬁl_ll_ o0
N=1 Pn
o 1 o 1
-1 N -
i oo which is a contradiction to the fact that is divergent.
Therefore our assumption is wrong. Hence the numberlof prime is infinite. [ |

10.3 Extension of ((s) to the whole plane

The Gamma function is [

I'(s) = x*~te=*dx for o > 1.
0

On replacing x by nx, in the integral, we obtain

[
s = (nx)*—*e—""d(nx)
IS
n—°T(s) = x*—te~"dx
0
X .
n*s I'(s) = xS*l e~ dx
n=1 n=1
I«
_ Xs—l-)(e‘”X dx
J,O n=1
B 0 Xs—l
(S)L(s) = . oo ldx

Because 0 > 1, the integral is absolutely convergent at both ends and this justifies the interchange
of integration and summation.

Theorem 10.3.1. For 0 > 1,

I(Z)slz

10.3.1
(=~ om — (103.1)

where (—z)°*-! is defined on the complement of the positive real axis as e®-P"%-2 with —n <
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10.3. ExtensioN of {(s) To The whole plane 121

Imlog(—z) < n.

Proof. Here there are two infinite paths C, and C both begins and ends near the positive real
axis. Let us consider only C, its precise shape is irrelevent as large as the radius of the circle
about the origin is less than 2n. We have

O N G et -, (-2,

cer—1 circle €2 — 1 Backpositive €2 — 1 Frontpositive €2 — 1

The integral is obviously convergent. By Cauchy’s theorem its value does not depend on the shape
of C as long as C does not enclose any multiples of 2ni. In particular, we are free to let r — 0.
It is readily seen that the integral oyer the circle tends to zero with r.

_ 2\s—1
ie D ~0asr—o0

A
circle €2 — 1

J
J s s s
PR g (G (G

C Backpositive Frontpositive
On the upper edge,
(_Z)sfl — (_1)571(2)571 — efin(sfl)xsfl

and the lower edge
(_Z)s—l — (_1)5—1(2)5—1 — ein(s—:l.)Xs—l

.[ 0 Ain(s—1)
€ s-1
— X dXx
cet—1 o e —1 o & —-1

_ —e—in(s_l)C(S)F(S) + ein(s_l)C(S)F(S)

J _7)s-1 J —in(s—1)
o=y 7™

s—1

—{(s)I'(s)2isinn(s — 1)
—C(s%I‘(s)Zi sin ns

ni
= — ((s), since T(S)['(1 — s)

Jr(l B S) ( Z)S 1
'l —5s) —Z)"
LU = o ced 0!

n

- sin(ns)
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122 10.3. ExtensioN of {(s) To The whole plane

Note. The importance of the formula (14.3.1) lies in the fact that the right - hand side is defined
and meromorphic for all values of s, so the formula can be used to extend {(s) to a meromorphic
function in the whole plane. It is indeed quite obvious that the integral in (14.3.1) is an entire
function of s, while I'(1 — s) is meromorphic with polesat s=1,2,- - -.

Corollary 10.3.1. The {— function can be extended to a meromorphic function in the whole plane
whose only pole is a simple pole at s = 1 with the residue 1.

Proof. The integral in (14.3.1) is an entire function of s, in the whole plane, T'(1 — s) is
meromorphic with polesat s=1,2,- - - . For,

e—vY(l—s) = el
T(l_s)= 14 1= 87 e
1—c n=1 n
. 1-—-
and the poles of I'(1 — s) aregivenby 1 —s=0 and 1+ n_§ =0
ie,s=1and s=n+1, n=12 - -
.s=1,2,+ - - are the poles of I'(1 — s). Since ((s) is already known to be analytic for o > 1,

the poles at the integers n > 2 must cancel against the zeros of the integral. Ats =1, —TI'(1 — 3§
has a simple pole.

To find the residue of —T'(1 —s) at s=1:

Res.of T(1 — s)|s=1

Isiml(s —1DI'(1 —5s)

e*F(l*S) x '1+ 1 . §_1 EL—S

= lim n
s=1 1 —S 1 n
Res.of T(1 - §)|=1 = —
1
" Res.of (-I(L—5s) = 1.
On the other hand,
if f(z)dz L Sum of the residues of f(z)
2ni . ~2ni !

where f(z) :—1. The poles of f(z) are given by
ez —1

e’ =0=z=2nni.
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The pole z = 0 lies inside C.

Res.of f(z)‘Fo = limz f(2)
-0
= lim___2
Z—2€ero , 22
Zt ot
Res.of f(2)|;=0 = 1

Hence the zeta function can be extended to a meromorphic function in the whole plane whose
only poleis at s = 1 with residue 1. [

Note. The values {(—n) at the negative integers and zero can be evaluated explicitly.
We have

- =7 —o t i (—1) Z2k|) - (10.3.2)

From (14.3.1) [
(_1)n n! (_Z)—(n+l)
C(_n) = 2|-|| c eZ -1 d

Hence {(—n) isequal to (—1)"n! times the coefficient of z" in (14.3.2)

i.e., {(—n) = (-1)"n

coefficient of z". in (14.3.2). We also have

1
{0) = 4(-2m) = 0

and (—1)"B,
2m
for positive integers m. We also have the following values: {(0) = —3, {(—2m) = 0. The points

(—2m+1) =

—2m are called the trivial zeros of the {— function.
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10.4 The Functional Equation

In the half plane ¢ > 1 the {— function is given explicitly by the series {(s) ::1 “h, andi
therefore subject to the estimate |{(s)| < {(c). Riemann recognised that there is § rather simple
relationship between {(s) and {(1 — s). As a consequence, one has good control of the behavior
of the {— function also in the half plane o < 0. We shall reproduce one of the standard proofs of

the functional equations, as it is commonly called.

Theorem 10.4.1. Prove that the functional equation
SS_1 aipy * 1S
{(s) = 2°m>—"sin 5 'l —s)¢1—ys).

Proof. We assume that the square part lies on the lines t = +(2n + 1)n and 0 = =(2n + 1)n. The
cycle C, — C has windinsglnumber one about the points +2mni withm = 1,2, - - -, n. At these

i ) -2)
points the function

has simple pole with residues (+2mni)*—* For,

ez —1
, . (-2
ee—1 0=>z +£2mim 0%1.--=
= = I-II = 4 4
ez —1
has polesatz = +2mni, m=1,2, - - - ,n.
s_1
o _aim (9T
RES.f(Z)|Z:¢2m|—|. T z—+2mni d(er — 1)
Res. f(2)|ecomni = (=2mni)*-!
It follows that
[ X, :
1 (2)-1dz = (—2mni)*-* + (2mni)*-!
2 z n
Tl c,-c € — n
m=1
X . 1 N =in -
= X @mn)*—e ")t +E) !
= wm=2mn)’—'2cos(s — 1)~
n 2
m=
5L J (H*tdz = " (2mny*-!cos'm —ns
M c.ce —1 m=1 2 2
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[ X .
1 (—2)° dz=2 " (2mn)*-!sin TS (10.4.1)
1

2ni Coe ez — 1 m=1 2
C

We divide C, into C}+C¥ where C}, is the part of the square and C¥ the part outside the square.

It is easy to see that |e* — 1| is bounded below on by afixed positive constant, independent of
Gn while (—2)*-' is bounded by a multiple of
afe'length of C is of the order n and we find that

f s—1
. 2 dz- < An°

G er—-1

for some constant A.

If g <0, the integral over C} will tendsto 0 as n — co and the same is true of the integral

over C.
.f _f - 0.
© G Cpch
B L e
2ni c,— € — ©oo2ni -
- i
) 1 ce—-1
N A O]
2m . ez—1 I'(1—s)
C
U)X s
174.1) = T(1-s) 2m_1(2mn) sin 5

Taking limitas n — oo, we get
.0
_{s) @mny*—tsin >
T'(1—s) =1 2
ns X s 1
m

I
N

= 2°n*-tsin'g m
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126 10.4. The FuncTional EquaTion

For 0 > 0, the series —(1-9m

1
1—-59)

=
SN g

ns

2 Qs) = 22t sin '? T'(1 - s){(1 — s).

|
Note. Using the identity I'(s)I'(1 _s) = : ,
sinns
ns 1 n
s) = 220" sin" T rsysimTs =9
_ 2571 S 1 1 1 _S)
M cos 2T() «
. l1ss ns
{(1—s)=2-Nn""cos— ) I'(s) {(s).

(104.2)
The content of Theorem 3.3.1 can also be expressed in the following form:

Corollary 10.4.1. The function
1 s S

4s) = s —9eT) 1)

is entire and satisfies {(s) = {(1 — s).
Proof. Given 1 q
()= s(1—9s)e*' I &(s)-

Since the factor 1 — s cancels with the poles of {(s). Also the poles of I';° cancel against
the trivial zeros of {(s). Hence ((s) is an entire function. By use of (17.4.2) the assertion

{(s) = ((1 — s) translates to
1 s S 1 1-s

pSA=9e T s = p@-9A-(1-9) glz__s)F'T 1 ~s)

_s S 1-—s ¢ 1 1-s —s ns

_n2F'2 {s) = I' , M 22 . n cos'2 {(s)

Complex Analysis
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Because of the relation 1—s 1+s n

the last equation is equivalent to
1 s 1+s

- _ns_1 . .
n:I()=2-'1", ",

and this equation is called Legendre’s duplication formula. The corollary is proved. [ |
Result. Prove that the order of {(s) is one.

Proof. Since {(s) = {(1 — s), it is sufficient to estimate |{(s| for o > 7. As a consequence of
Stirling’s formula, we have

logT"s* < Als|log |s]
for some constant A and large |s|, and this estimate precise for real values of s. So to prove that
the order is equal to one, we can show that {(s) relatively small when ¢ > 3.
Let [x] denote the largest integer < x. Assume first that g > 1. Then we have

f [ 00 fn+1
[X] x—s dx = n xS~ 1dx
N -1 n=N n
X
= s "n+ nn+1) ¢
n=N s1
sl X
— S—l'N—s+l+ n—s
n=N+1
It follows that
X g [«
{(s) = NS+ 7N —s (X — [X])x—Stdx (10.4.3)
n=1 s—1 N

For o > 1 where the integral on the right hand side converges and the equality will therefore
remain valid for o > 0. Incidently, (17.4.3) exhibits the pole at s = 1 with residue 1.

1 . .
For o > 5 , (17.4.3) yields an estimate of the form

2(s) < N+A N2 s

2
valid for large |s| with A independent of s and N. By choosing N as the integer closest to |s|3,
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2
we find that [{(s)| is bounded by a constant times |s|¢. Therefore this factor does not influence
the order. [

10.5 The Zeros of the Zeta Function

We know that the product development of {(s) is
1

-nzl(l - pﬁs)

for 0 = Res > 1. It follows from this product development that {(s) has no zeros in the half

(s) =

plane o > 1. With this information the functional equation implies that the only zeros in the half

plane 0 < 0 are the trivial ones.

In other words, all nontrivial zeros lie in the so-called critical strip 0 < ¢ < 1. The famous

Riemann conjecture asserts that all nontrivial zeros lie on the critical line 0 = 5 There are no

zeroson 0 =1 and 0 = 0. Let N(T) be the number of zeros with 0 < t < T. For the information
of the reader we state without proof that
T T T

— -~ +0(logT)

N(T) = 2Flog 2_n on
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BLOCK-III
UNIT 11

Normal Families

Objectives

Upon completion of this Unit, students will be able to
X understand the concept of normality.
X prove Arzela’s theorem.

X identify the families of analytic functions.

11.1 Introduction

A function can be regarded as a point in a space and as such there is no difference between a set of
points and of functions. In order to make a clear distinction we shall nevertheless prefer to speak
of families of functions, and usually we assume that all functions in a family are defined on the
same set. We are primarily interested in families of analytic functions, defined in a fixed region.

The aim is to study the convergence properties of within such families.

11.2 Equicontinuity

Let F denote a family of functions defined in a fixed region Q of the complex plane and with
values in a metric space (S, d) where d is the distance function in S . Let us review the definition
of continuous function f with values in a metric space.

Definition 11.2.1. A function f is continuous at zo if for every s > 0 there exists a ® > 0 such
that

d(f(2), f(z)) <s, whenever |z-— 2z <.
129
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f is said to be uniformly continuous if we can choose 0 independent of z,.

Definition 11.2.2. The function in a family F are said to be equicontinuous onaset E C Q if
and only if, if for each s > 0, there existsa ® > 0 such that

d(f(2), f(z)) <s, whenever |z—12| <39,

and zy,z € E, simultaneously for all functions f € F.

Note. In the above definition, we observe that each f is an equicontinuous family is itself

uniformly continuous on E.

Definition 11.2.3. A family F is said to be normal in Q if every sequence {f.} of functions
f, € F contains a subsequence which converges uniformly on every compact subset of Q.

Note. This definition does not require the limit functions of the convergent subsequences to be

members of F.

11.3 Normality and Compactness

We shall prove that in the family of functions there exists the convergence with respect to the
distance p is equivalent to the uniform convergence on compact sets.

i.e., convergence with respect to p if and only if uniform convergence on compact set.

Proof. To prove this, we need the following observations;

(i) An exhaustion of Q by an increasing sequence of compact sets Ex C . This means that
every compact subset E of  shall be contained in an Ex. The construction is possible in many
ways: To be specific, let Ey consist of all points in Q at distance < k rom the origin, and at
distance «from the boundary Q. It is clear that each Ex is bounded and closed, and hence

compact. Any compact set E C Q is bounded and at positive distance from 0Q; therefore it is
contained in an Ey.

Complex Analysis M.Sc.(Mathematics)-TNOU)-I Year- Il Sem



11.3. NormaliTy anD CompacTness 131

(ii) Let f and g be any two functions on Q with values in S. We shall define a distance
p( f, g) between these functions, not to be confused with the distances d( f (z) g(s)) between their
values. To do this, we first replace d by the distance function

d(a, b)

3D = 3By

which also satisfies the triangle inequality and all distances lie under a fixed bound and is bounded
and so S is bounded.

(ii1) Next, we set
0u(f, 9) = sup d(f(2), 9(2))

7€ E¢

which describes the distance between f and g on Ex.

(iv) Finally we define
X )
p(f,9) =  O«(f,0)2- (11.3.1)

k=1
p(f, g) is finite and satisfies all the conditions for a distance function.

Now, we prove the result. Suppose that f, — f inthe sense of p distance.

p(f,, f) < s, for sufficiently large n
X K
(11.3.1) d(f,, )2 <'s
k=1
S(f, f) < 2
supd(fa(), f@)} < 2s
7€ Ey
d(fu(2), f(2) < 2¢s
d(fa(z), f(2))

k
L d(h@), f0)  °°
d(f @) @) 2's
" S 12

This implies that f,(z) — f (z) uniformly on Ex with respect to & metric, but hence also with

respect to the d— metric. Since every compact E is contained in an Ey it follows that the
convergence is uniform on E.
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132 11.3. NormaliTy anp CompacTness

Conversely, suppose that f, converges uniformly to every compact set.

d(fi(z), f(2)) <s Vz e E C Q.
Since Q = UE, there exists an ny such that E C E, forevery n > no.

i.e, d(fi(2), f(2)) — 0 VzeE, n=ng
0(fi(2), f(2)) — 0 VzeE, n=ng

5(f, f) — 0 Vk
X K
S5(fo, £)2= — 0.

k=1

Hence p(f,, f) — 0. That is the convergence with respect to the distance p. Hence we proved
that the convergence with respect to the distance p is equivalent to the uniform convergence on

compact sets. |

Recall: Bolzano - Weierstrass Theorem A metric space is compact if and only if every sequence

has a convergent subsequence.

Theorem 11.3.1. A family F is compact if and only if its closure F with respect to the distance
function (11.3.1) is compact.

Proof. Let F be normal. We have to prove that F is compact.

Let { f.} be a sequence of functions in F then f, € F for every n. This implies that f, is a
sequence of function in F. Since F is normal, every sequence { f,} of functions in F will have
a subsequence {f,} which converges uniformly on every compact subset of .

Therefore by Bolzano - Weierstrass theorem, F s compact.

Conversely, assume that F is compact.

Consider a sequence {f,} of function in F. Then {f,} is a sequence of functions in F. Since

F is compact, by Bolzano - Weierstrass theorem, { f,} has a convergent subsequence { f, } with
respect to the distance function p.
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.". the convergence is uniform, since the convergence with respect to p if and only if uniform
convergence on compact set.

Hence F is normal. [ |

Definition 11.3.1. F is relatively compact if F is compact.

Note. Normal and relatively compact are same.

Remark. If S is complete then F is normal if and only if it is totally bounded.

Definition 11.3.2. A set E is totally bounded if for every s > 0 E can be covered by finitely
many balls of radius s

The following theorem serves to state the condition of total boundedness in terms of the original

metric on S rather than in terms of the auxiliary metric p.

Theorem 11.3.2. The family F is totally bounded if and only if to every compact set E C Q and

every s > 0 it is possible to find fi, f, - - - f, € F such that f € F satisfies d(f, f;) < son E for
some fj.
Proof. Assume that F is totally bounded, then for any s > 0 there exists f;, f,, - - -, f, such that

forany f € F,
p(f, f}) <s for some f;
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But, we have
X K
p(f, fy) = O(f, f))2-
k=1
X
" ok(f, ]CJ')Z*k <S§
k=1
d(f, f)2-% < s for each k
sup 8(f(2), fi2)) < 2%
3(f(2), i) < 2%
d(f(z), fi(2) K
< 2s
1+d(f(@), f;(2)
2%
d(f@), fi@) < 1=ore =
d(f(z), fj(z)) < s, Vze€E and for some f;
d(f, fj < s on for some fj.
Assume that to every compact set E and every s > 0 it is possible to find f;, f;, - - -, f, € F such

that every f € F satisfies
d(f, f) <s on E for some fj.

To prove that F is totally bounded. That is to prove that p(f, f;) <'s for some f;. We choose ko
such that

S
2% < >
By assumption, we can find f;, f,, - - -, f; € F suchthatany f € F satisfies one of the inequalities
d(f, f) S
o(f, fj) = ms d(f, fj) < e on E,

Hence it follows that s

A(f, f)) < x* for k > k.
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But we also know, for k > ko, O(f, f)) <1

ko
ot k X k
p(f, fj) = 5k(f, fj)Z’ +k=k +16k(f, fj)Z’
k=1 0
) ¢ X
< O(f, )+ S(f, fj)2-
k=1 k=ko+1
X Yoo
< = 7 gk
1 2Ko k=ko+1
s 1
- IR

Hence p(f, f;) < s for some fj.

11.4 Arzela’s Theorem

We shall now study the relationship between Definition 4.1.2 and Definition 4.1.3. The connection
is established by a famous and extremely useful theorem known as Arzela’s theorem(or the Arzela

- Ascoli theorem)

Theorem 11.4.1. A family F of continuous functions with values in a metric space S is normal
in the region Q of the complex plane if and only if

(i) F isequicontinuous on every compact set E C Q;
(i) for any z € Q the values f(z), f € F, lie in a compact subset of S.

Proof. Necessary part:
Assume that F is normal.
To prove (i):

Since F is normal, its closure F is compact. Therefore F is totally bounded. This implies
that F is totally bounded. To every compact subset E C Q) and every s > 0 it is possible to find
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fy, f, -+ +, f, € F suchthat every f € F satisfies

d(f, f}) <s on E for some fj.

Since each f; is continuous on a compact set E and hence each f; is uniformly continuous on
E. Hence we can find & > 0 such that

d(fj(2), fi(z0)) <s for z,zp € E and |z —zo| <9,
1=1,2,- -+ ,n. Therefore for any given f € F and corresponding f;, we obtain

d(f@), @) = d(f@, ;@) + d(fj@), fj(z0)) + d(fj(z0), f(20))
< S+S+S

d(f(z), f(z)) < 3s, whenever |z -1z <?9.

Therefore F is equicontinuous on E C Q.

To prove (ii):

Toprove {f(z) : f € F} Vz € Q lies in a compact set.

i.e., we have to show that the closure of the set formed by the values f(z), f € F is compact.
Let {wn} be a sequence in this closure. To each w, we can find f, € F so that

d(f(2), w) <
n

for positive integer n. Since {f.} € F, by the definition of normality, {f.(z)} has a subsequence
{f..} which converges uniformly on every compact subset of Q.

.. the corresponding subsequence {w,} converges to the same value. Hence an infinite sequence
W, converges. The closure of the image set is compact. Therefore the image set is lies in a

compact set.
Sufficiency part:

The sufficiency of (i) together with (ii) is proved by Cantor’s famous diagonal process. Let
condition (i) and (ii) be true simultaneously. To prove that F is normal. We shall prove that every

sequence { f.} of functions f, € F contains a subsequence {f, } € F which converges uniformly
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on every compact subset of Q.

By condition (ii), { f,(C)} lies in a compact set. By the definition of compactness, this infinite
sequence {f,(G)} has a convergent subsequence {f,, (((k))} lies in a compact set.

By the repeated application of this process for all points of {x we can obtain an array of
subscripts

Ny < M <o K< e
Nap < My <o KM <e e
Mg < M <o Ky <eee

such that each row is contained in the preceding one, and such that the diagonal sequence n;; is
a strictly increasing sequence and thus it forms a subsequence of each row of the above. In other
words, the sequence of functions

fou, friz - -+ converges at @
fro1, a2 -+ converges at G
foky, fake © + + converges at
Hence
lim fo; exists k.
j—oo
The diagonal sequence { fu j} = { fu1, fizz - - -} converges at all points of . That is the

subsequence { f,;;} of { f.} converges at all points §. For convenience, we can replace n; j by
n;. Therefore the subsequence {f,j} of {f.} converges at all points of . It remains to show that
{fa;} is uniformly converges on E.

By hypothesis (i), the sequence { f,;} is equicontinuous on E as {f,j} € F is equicontinuous.
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Therefore for any given s > 0 we can find ® > 0 such that for every z;, z € E and f,; € F we
have

S
d(j(2), faj(z0)) < 3 Whenever |z — 20| <.
Since E is compact it can be covered by a finite number of 2 neighborhoods. We select a point

(x from each of these g neighborhood so that we can find an ip such that i, j > ig. This implies
that S
d(fi(G), fi(Gd) < —
ni nj 3 v Ck

For each z € E one of the  is within the distance ® from z. Hence

d(fu(2), (%) < %

A6, @) < 5 Vi i > o

d(fi(2), fhj(2)) < Sd(fnis(z): ani(Z,k)) + d(fi(G), frj(G)) + d(fj( G0, ai(2))
< ztzta
d(fni(2), fnj(2)) < s

Therefore all values f (z) belong to a compact set and consequently a complete subset of S, it
follows that the sequence {fy;} is uniformly convergent on E. This implies that F is normal. m

11.5 Families of Analytic Functions

Analytic functions have their values in C the finite complex plane. In order to apply the preceding
considerations to families of analytic functions it is therefore natural to choose S = C with the

euclidean distance.
Theorem 11.5.1. A family F of analytic functions is normal with respect to C if and only if the
functions in F are uniformly bounded on every compact set.

Proof. Necessary Part:
Assume that the family F of analytic functions is normal with respect to C.
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To prove that the functions in F are uniformly bounded on every compact set.

That is to prove that if E is any compact subset of Q then |f(z)| < M for everyz € E and for

every f € F. Therefore the family F satisfies the following conditions:
(i) F isequicontinuous on every compact subset E of ().

(i) Forany z € Q the values f(z), f € F liesin a compact subset of C.

The condition (ii) implies that these values are bounded for each z € Q and these bounds may
depend upon z.

Let E be any compact subset of Q. In C, closed bounded set is a compact set. Therefore for

given zo € Q, we can determine p so that the closed disk |z — zg| < p is contained in Q. Since
this disk is compact, by condition (i), F is equicontinuous on this disk, therefore for agiven s > 0
there exists ® > 0 such that

|f(2) — f(z)| <s for [z—2z| <d<p,

L,ig€lz—-17| <p V feF.

Consider the d— neighborhood for all points in E. These form an open covering of E. Since E
is compact, it has finite subcover. Therefore finite number of these d— neighborhood cover E.

Let 3,2, - - -, Z, be the centre of this finite collections of these neighborhoods.

Consider the set{|f(z)| : f € F} i=1,2,- - -, n By condition (i) they belong to compact subset E
and hence bounded.

That is there exists constant My, My, - - -, M, such that
f@l <M ({i=L42"---,n)
Let M = max{My, My, - - -, My}. Then

) <M VYi=12--n VfeF.
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Consider any z € E then z lies in some 0— neighborhood of some z;.
S @) - f(z) < s VEEF.

Now consider,

@) = [1(2) - (@) + f(@)]
< [f@) - f@ + [f@)]
<s+M

fz)) < MVfeF ViekE

Hence F is uniformly bounded. Sufficient Part:
Assume that F is uniformly bounded on every compact set.

To prove that F is normal with respect to C, it is enough to prove that the two conditions of
Arzela - Ascolis theorem is satisfied.
That is we have to prove that
(i) F is equicontinuous on every compact subset of Q.

(i) For any z € Q, the values f(z), f € F lies in a compact subset of C.

To prove F is equicontinuous.
Let C be the boundary of the closed disk in Q of radius r. Since f is analytic, if z, z; are points
inside C, by Cauchy’s integral formula, we have

1
f = = f
(z) 2”1i o C_(—dec and
= = f
f(ZO) 2ni C C_—(Agodc
[l 1

@) - fz) = %ﬂ R [

Since F is uniformly bounded on C, we have |[f(z]| < M on C and if we restrict z,z, to the
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: : N
smaller circular disk of radius —, it follows that

2
j
Z—17
- fwl < P e
VIO ]
< ==z - 2]
2n T

f@) - Tl < s if lz—2/ <8 and 54y VfEF

Thus,
[f(2) — f(zo)] <s if [z—12]<d ;
and this proves equicontinuity on the smaller disk. The open disk of radius ~ form an open
4

covering of E. Since E is compact, there exists a finite subcover. We select a finite subcovering
and denote the corresponding centres, radii and bounded by  ry and M respectively.

Let r be the smallest of ris and M be the largest of the M;s.

e, r = min{rll /PR (TR -}

and
M:maX{MllMZI' c oy My e }

Foragiven s >0, Let
r Sr

0 = min 4 AM

Let z,zo € E with |z — zo| < d. We have to show that
|f(z) — f(z0)| <s, Vf €F.

Since 2o € E, 2o will belong to one of the balls B'g, " ,for some k=1,2,- - -, n. Then

L1
IZ—Ck|<4.

Also
1% Ik

2 — Gl <lz—z0l+ 20 — Gl <8+ , <
Hence m
@) -t < -2l

M.Sc.(Mathematics)-TNOU-I Year- Il Sem Complex Analysis



142 11.5. Families of AnalyTic FUNCTIONS

is applicable. We find

1f(2) - f)l < Tklz—ZoI
1f(2) - f(zo)] < @m

Thus we have,
[f(2) - f(z)| <s, Vo € E V f € F.

Therefore F is continuous on every compact subset of E.
Condition (ii): follows immediately, since F is uniformly bounded on every compact set for any

z € Q, thevalues f(z), f € F lies in a compact subset of C. Hence the family F is normal.

Remark. If a family has the property of the above theorem, we say that it is locally bounded.
Indeed, if the family is bounded in a neighborhood of each point, then it is obviously bounded on
every compact set.

Therefore the above theorem can be stated as ” every sequence has a subsequence which converges

uniformly on compact sets if and only if it is locally bounded.” [

Theorem 11.5.2. A locally bounded family of analytic functions has locally bounded derivatives.

Proof. Let F be a family of locally bounded analytic functions. Take any f € F and a point
Zo € w. By the property of local boundedness, there exists a neighborhood |z — zo| < r in which

|f(z)] <M, Vze€B(r) and f € F.

By the Cauchy’s representation of the derivative, we have if C is the boundary of a closed disk in
Q of radius r, then |

fiz) = 1—_ f(Q) oC
T e @2

L

2n C|< _Z|2

1 m2nr

2n (%)

1fI(2)|

IA

IA

r
< M Vzelz—zol<—2and VfeF
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Hence
DO <M, Yzelz-ul<y ¥ feF

This implies that f/ is locally bounded. We know that what is true for first derivative is also true
for higher derivatives.

AR I DT

are locally bounded. Thus a locally bounded family of analytic function has locally bounded
derivatives. [

11.6 The Classical Definition

If a sequence tends to oo there is no great scattering of values, and it may well be argued that for
the purposes of normal families such a sequence should be regarded as convergent. This is the

classical point of view, and we shall restyle our definition to conform with traditional usage.

Definition 11.6.1. A family of analytic functions in a region Q is said to be normal if every
sequence contains either a subsequence that converges uniformly on every compact set E C (,
or a subsequence that tends uniformly to co on every compact set.

Lemma 11.6.1. If a sequence of meromorphic functions converges in the sense of spherical
distance, uniformly on every compact set, then the limit function is meromorphic or identically

equal to oo.
If a sequence of analytic functions converges in the same sense, then the limit function is either
analytic or identically equal to oc.

Proof. Let { f,(z)} be a sequence of analytic functions which converges to a limit function f (z)
in the sense of spherical distance, uniformly on every compact set. Since the limit function of a
uniformly convergent sequence of continuous functions in continuous, f (z) is continuous in the
spherical metric.

Case. (i If f(z9) /= o then f (z) is bounded in a neighborhood of z, and for large n, the functions

f, are not equal to oo in the same neighborhood. Therefore by ordinary form of Weierstrass
theorem, f(z) is analytic in a neighborhood of z,.
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Case. (ii) If f(zs)O =, we consider the reciprocal i which is the limit of f_l(z in the
n

spherical sense. Therefore by Weierstrass theorem,f—() is analytic near z,. Also f) -
Z 2

L 1
Thus by Hurwitz’s theorem, ¢ must be identically zero. Therefore f is identically equal to

00, [ |

0.

Theorem 11.6.1. F. Marty Theorem A family of analytic functions or meromorphic functions f
is normal in the classical sense if and only if the expressions
2|f)(2)

p(f) = =L (11.6.1)
1+]f())?

are locally bounded.

Proof. Sufficient Part:
Suppose the expression (11.6.1) are locally bounded.

By using formula,

—
d(2,2) = — 2z — 7|

1+ ZHA+ 2P

we write 21f(z) - f(z)]
2
d(f(z), f(z) = :
COTE @ @)+ @)D
Thus f followed by the stereographic projection maps an arc y on an image with length

I
LP@) |dz] .

If p(f) < M on the line segment between z; and z, we conclude that
d(f(z2), f(z2)) <= Mz -1z

. This immediately proves the equicontinuity when p(f) is locally bounded. Therefore the family
F is normal in the classical sense.

Necessity Part: 1

First let us prove that p(f) = p’ £
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Consider,

1+ |f(2)P

p'lf = p(f).

Assume that the family F of meromorphic functions is normal but p(f) fails to be bounded on a

compact set E. Consider the sequence {f,} in F such that the maximum of p(f,) on E tends to
oo, Let f denote the limit function of a convergent subsequence {f,}. Around each point of E

we can find a small closed disk, contained in € on which either f or ™ js analytic.
f

If f is analytic, it is bounded on the closed disk and by the spherical convergence it follows
that { f,,} has no poles in the disk as soon as k is sufficiently large, then by Weierstrass theorem,

p(fa) — ()

uniformly on a slightly smaller disk. Since p(f) is continuous, p(f, ) is bounded on the smaller
disk.

1 1

If T is analytic the same proof applies to p'fT which is same as p(f,). Since E is compact,

it can be covered by a finite number of the smaller disk. Therefore p(f,) are bounded on E. This
contradicts the hypothesis. Hence p(f) is locally bounded. [ |
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BLOCK-IV
UNIT 12

The Riemann Mapping Theorem

Objectives

After completion of this Unit, students will be able to
X identify that the unit disk can be mapped conformally onto any simply connected region

in the plane, other than the plane itself.

X understand the concept of boundary behavior and the use of reflection principle.

12.1 Introduction

We shall prove that the unit disk can be mapped conformally onto any simply connected region
in the plane, other than the plane itself. This will imply that any two such regions can be mapped
conformally onto each other, for we can use the unit disk as an intermediary step. The theorem is

applied to polygon regions, and in this case an explicit form for the mapping function is derived.

12.2 Statement and Proof

Definition 12.2.1. Univalent Function. An analytic function g is defined on a region Q is
univalent if g(z1) = g(z2) only for z; = z,. In other words, if the mapping by g is one - one.

Theorem 12.2.1. Riemann Mapping Theorem. Given any simply connected region Q which
is not the whole plane, and a point zo € Q, there exists a unique analytic function f (z) in Q,

normalized by the conditions f(zp) = 0, f)(zo) > 0, such that f(z) defines a one - to - one
mapping of Q onto the disk |w| < 1.

Proof. Suppose that Q is any simply connected region which is not the whole plane and z, € Q.
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Existence of f(z):

Let us consider the family F formed by all functions g with the following properties:
(i) g isanalytic and univalent in Q.

(i) 1g(@)] <1 in Q.

(iii) g(z0) = 0 and ¢/(z) > 0

The proof will consists of three parts: That is, we have to show that
(i) F isnon - empty;

(i) f € F with maximal derivative;
(iii) f has the desired properties.

To prove that F is non - empty:

Since by hypothesis  is not the whole plane, there exists at least one point a /= oo which §
not in €, then z — a has no zero in Q. Also z — a is analytic in Q. Since € is simply connected,
it is possible to define a single-valued analytic branch of ¢z_a— in Q, we denote it by h(z). That
IS

h(z)= z-—a.
This function does not take the same value twice, nor does it take opposite values.
For, if
h(z)) = h(zo)
V.

Z; —a = Z; —a

1 = 17

This implies that h is univalent in Q.

Alsoif h(z;) =b and h(zx) = —b, z1 /=12,

h%(z1) = h%(z2) = 71 = 2,

which is a contradiction. Therefore h will not take opposite values. This implies that h is a
constant analytic function. But by open mapping theorem, we have that A non - constant analytic
function maps open sets onto open sets”. Therefore the image of Q under h is an open set. That
is h(€) is open. Since h(Q) is open there exists a real number p > 0 such that the neighborhood
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|w — h(zp)| < p is contained in h(Q).

Since opposite values are not taken by h in Q. There is no point zo € Q, for which h(z)
takes opposite values h(zo), —h(zo). Therefore h(Q2) does not meet the disk |w + h(zp)| < p. The

distance between all points of h(Q) and h(zo) must be > p. That is to say for every h(z) € h(Q2),
we have

h(@) — (—h(z)) = p
In other words,
Ih(z) + h(zo)| = p.

When z = zg,

1 2
21h@) = p = ) = & = <*
2 |h@)l p
Now consider the function go(z) defined as
go(z) = P 1P h(zo) (h(2) — hz) (12.2.1)

" 4 |h(zo)[2 P(zo) (h(@) + h(zo))

Since h(z) isanalytic and univalentin €, and go(z) is linear transformation in h(z), go(z) is also
analytic and univalent in Q. Also go(zo) = 0 Differentiating with respect to z, we get

_P W(20)l h(zo) h(zo)W(2)
2 |h(ze)[? M(z0) [N(2) + h(zo)]?

Now p h(z) S0
Po(20) = 8 m

%(2)
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Finally for all z € Q, we have

P M) Ih@zg)l |h(@) - h(zo)|
4 |h(zo)| IP(z0)! Ih(2) + h(zo)|
= P 1 |h@) +h(zo) — 2h(zo)|
4 [h(zo)| |h(z£+h(zo)|

p 1

90(2)|

4 'h(zo) h(2) +h(zo):
p 1 2

IA

4 1h@)l " Ih@) + h(zo)

o) = Pibo®

" go(z) € F.
This implies that F is non - empty.

(2) To prove that f € F with a maximal derivative:
Let

B =sup{g®):g € F}

which may be finite or infinite. There is a sequence of functions g, € F such that ¢’,(zo) — B.
Since |g(z)] <1, Vg€ F and Vz € Q. The family F is normal.(since F is totally bounded)

Since F is normal, there exists a subsequence {gn } which is uniformly convergent to an
analytic function f(z) on a compact set.

k“m g, (20) = F(20)
Since [gn(z)] < 1in Q, [f(2)] <1 in Q. Also

lim gn(z0) = f(20)

n— oo

Therefore f(zo) = 0, since g(z0)) =0, g€ F

limgh,(z) = B = f(z) = B= B is finite

Next, we prove that f is univalent. Since fi(zp) = B > 0, f is not a constant. Choose a point
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z € Q and consider the function

0:(2) =92 —9(z), g €F.

They are all not equal to zero in the region ¥ = Q — {z;}. By Hurwitz’s theorem, every limit

function is either identically zero or never zero. But f (z) — f (z1) is a limit function and it is not
identically zero. Hence

f@) /= (@), Vz/=1.

Since z; is arbitrary, f is univalentin Q. Therefore f € F and f has maximal derivative B at
Z0.

(3) To show that f takes every value w with |®| < 1.

Suppose it were true that f(z) W, for some wy, |wo| < 1. Since Q is simply connected, it
is possible to define a single valued branch of

F(Z) — 7 ﬂl)__wg

L — oot (12.2.2)

It is clear that F is univalent and that |F| < 1. To normalize it we form

6 - |P@) FQ = F)
Flzo) 1 - FoF(@)

Clearly G is univalent and G(zo) = 0.

F) PO — FeF)FP@

G =
V7R Frer
Now
oy - [P g 1= F(z)F ()
F(20) (1 — F(z0)F(z))?
IF(20)!
1 - [F@))
Also F@) = Tzo) — 0o
1 — wof(20)
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Since f(z) = 0, F(z) = ¢—_m0

1

 F(0) = [(— o) = ol < 1
log F@) = 2 1og(f @) — w0) — < log(1 —wof (2)

2 2
On Differentiation,
F(2) 1 1@ o F(2)
— = +
F(z) 2 (f(z) —wo) 2(1 =Zwof(2))
At 7 =z, pﬁZO) _ 1 fiizg) 4+ Wofiz0)

F(20) i (f__(éo) - ﬂ’) 2(1 — wof(2))

2wp T2
_ B'_—@Ql
- 2o
FJ(Z ) = B 2
| 2g (1 = 100l IF@)
= 2 !
21'%@(1 — ol ) [wol?
Fi) = — (1 — o)
2 |wol2
S Gz0) = B(ll_ @0l
2 [wol2 (1 — [wol)
Bl+|w
G =
|Wol?
> B

Glz) = fi(z0)

Thus G(z) is analytic and univalentin Q. |G(z)| <1, G(zo) =0 and G)(zo) > 0.
Therefore G(z) € F and G(z0) > f-Y(zo). This is a contradiction. (since f)(zo)) = B and f)(zo)
is the only maximum). Therefore assumes every value w with || < 1.

To prove Uniqueness:

Suppose that fi(z) and fy(z) are two functions which map Q onto |w| < 1. Then f;[f, }(w)]
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is a one - to - one mapping of |w| < 1 onto itself. Also the mapping is conformal. We know that
such a mapping is given by a linear transformation S. Also

S(w) . £,71(0) = f, f,7(0)" = fu(zo) = 0
and
$3(0) = "(f1. f, )(0)" >0,

because both f(zo) and f,'(zo) are greater than 0. This conditions implies that S(w) = w. Hence
S is the identity transformation 1.

e, fif, =1 f=h

This completes the proof. [ |

12.3 Boundary Behavior

Definition 12.3.1. Let Q be a simply connected region. Consider a sequence {z,} of points in Q

or consider an arc z(t), 0 < t < 1 such that all z(t) are in Q. We say that the sequence or the
arc tends to the boundary if the points z, or z(t) will ultimately stay away from any point in Q.

In other words, if z € Q, there shall existsan s > 0 and an ny or a ty such that |z, — z| > s for
n > ng orsuchthat |z(t) — z| >s forall t > t.

Note. The disks of centre z and radius s (which may depend on z) form an open covering of Q.
Hence any compact subset K C  is covered by the finite number of these disks.

Result. A sequence of points or an arc in a simply connected region Q tends to the boundary of

Q if and only if for every compact K C Q there exists a tail end of the sequence or of the arc

which does not meet K.

Theorem 12.3.1. Let f be a topological mapping of a region Q onto a region . If {z,} or z(t)
tends to the boundary of Q, then {f(z,)} or {f(z(t))} tends to the boundary of Q.

Proof. Given that (i) f is a topological mapping of a region { onto the region . Then f is
one - to - one and onto, f and f-* are continuous
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(ii) {z,} or z(t) tends to the boundary of Q.

To prove that { f (z,)} or { f (z(t))} tends to the boundary of (. It is enough to prove that { f (z,)}
or f(z(t)) stay away from every compact subset K in (.

Let K be a compact subset of Q. Since f is a topological mapping of Q onto &, f -*(k)
is compact in Q. Since {zn} or z(t) tends to the boundary of Q. We have that the end of the
sequence or of the arc does not meet f —!(K). That is there exists an integer no or a real number
ty such that for every n > ng, {z.} is not contained in f -*(K) or for every t > t5, z(t) is not in
f-1(K).

Since f is a topological mapping, f (z,) not in K if n > ng or f (z(t)) not in K if t > t,. This
implies that { f (z,)} or f (z(t)) does not meet K ultimately. That is { f (z,)} or f (z(t)) stay away
from every compact subset K in Q. Hence {f(z,)} or f(z(t)) tends to the boundary of (V. m

12.4  Use of Reflection Principle

Definition 12.4.1. Free Boundary Arc. Let Q be a simply connected region and let 0Q be
its boundary containing a segment y of a straight line which is the real axis, let it be the interval
a < x <bh. Theny is said to be free boundary arc, if to each point of y there exists a neighborhood
whose intersection with the boundary 9Q is the same as its intersection with y. In other words,

y is a free boundary arc if to each point xo € y there exists a neighborhood A of xo such that
AN dQ = ANy =the real diameter of the disk A along the real axis.

Definition 12.4.2. Let y be a free boundary arc of the region Q then A N dQ = A N y = the real
diameter of the disk A where A is the neighborhood of a point in y. Then it is clear that each
of the half disks determined by this diameter are entirely in or entirely outside of Q and at least
one must be inside. If any one is inside, we call the point a one sided boundary point. If both are
inside, it is a two sided boundary point.

Theorem 12.4.1. Suppose that the boundary of a simply connected region {2 contains a line
segment y as a one - sided free boundary arc. Then the function f (z) which maps Q onto the
unit disk can be extended to a function which is analytic and one to one on Q U y. The image of
y isan arc y' on the unit circle.
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Proof. Suppose that the boundary of a simply connected region Q contains a line segment y as
a one - sided free boundary arc. To prove that the function f (zZ) which maps Q onto the unit disk
can be extended to a function which is analytic and one - to - one on U Yy and the image of
y is an arc y on the unit circle. Since Q is a simply connected region which is not the whole
plane by Riemann mapping theorem, we can find a unique univalent function and analytic function

f:Q — |w| <1 such that

f(zo) = 0and f)(zy) >0 for some z5 € Q.

Since y is a free boundary arc, every point of y has a neighborhood A whose intersection with
the boundary dQ containing a segment of a straight line is same as the intersection with y, which
is also equal to the real diameter of the disk A. Since y is a one sided free boundary arc, one of
the half disks determined by this diameter is entirely inside (.

Consider the disk A around xo € y which is so small that the half disk in the region Q will not
contain a point zo with f(z) = 0. That is for every z in this half disk, f(z) # 0. This implies
that log f (z) has a single valued branch in the half disk A and the real part by log f(z) — 0 as
z approaches the diameter. Because as z — the boundary of y in Q U vy, f (z) approaches the
boundary |w| < 1. Sothat |f(z)| — 1.

Therefore log | f (z)] — 0 as z — y. Hence by the reflection principle, log f (z) has an analytic
extension to the whole disk. Therefore log f (z) and consequently f (z) is analytic at z,. The

extension to overlapping disks must coincide and define a function which is analytic on Q U .
Since f(2) is analytic at xo, fi(z) /=0 on Y.

For, suppose f)(z) = 0 for z = xo. That is fJ(xo) = 0. This implies that f (xo) where a multiple
value so that the two subarcs of y meeting at xo would be mapped on arcs forming an angle *_
with n > 2; this is clearly impossible. This is a contradiction. Therefore f(xo) /= 0.

Hence considering the upper half disks lying in Q,

d ]
a—yloglf(z)l = 3, arg(f(z)) <0 on .

Hence by the reflection principle, arg(f(z)) moves constantly in the same direction. [ |
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BLOCK-IV
UNIT 13

Conformal Mapping of Polygons

Objectives

After completion of this Unit, students will be able to
x find the mapping function.

X identify the Schwarz - Christoffel formula.

X understand the concept of mapping on rectangle

13.1 Introduction

When Q is a polygon, the mapping problem has an almost explicit solution. Indeed, we shall find
that the mapping function can be expressed through a formula in which only certain parameters

have values that depend on the specific shape of the polygon.

13.2 The Behavior at an Angle.

Assume that Q is bounded simply connected region whose boundary is closed polygon line

without self-intersections. Let the consecutive vertices be z3, z,, - + +, z, in positive cyclic order.

We set zp+1 = z3. Let the angle at z, be ain.
Zk—1 — Z

Lan=ag’ T 6, where 0 <8 <2n.

When 6=0, aqn=0= q, =0.
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When 6 = 2n, axn =2n = ax = 2. Therefore 0 < ax < 2.

Also the outer angle at zxk = n— 8 = n— awn = BN, where Bx = 1 — ax. Then
80 < ax < 2, -1 < B¢ < 1. Also we have B¢ = 2. Since the sum of the interior angles

of apolygon of n— sidesis (n — 2)n and hence

X
an = (n-2)n
k=1

—~
[ERN
5
Il
>

|
N

n k=1 n
X X
k=11_k=l B =n-2
n
n)_( B« = n 2
k=1
X J—
B =2
k=1

The polygon is convex if and only if all B¢ > 0.

13.3 The Schwarz- Christoffel Formula

The formula we are looking for refers not to the function f, but to its inverse function, which we

shall denote by F.

Theorem 13.3.1. The functions z = F(w) which map |w| < 1 conformally onto polygons with
angles ayn (k=1,2, - - -,n) are of the form
f o N

Fw)=C T (@ — 0)~Pdw + C (13.3.1)
0 k=1
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where Bx = 1 — qy, the wy are points on the unit circle, and C, C are complex constants.

Proof. Let Q is bounded simply connected region whose boundary is closed polygon line without

self-intersections. Let the consecutive vertices be z;, z,, - -+, z, in positive cyclic order. We set
Zn+1 = Z3. Letthe angle at zx be ayn.

Zy—1 — Z

Zk+1 — Zy

When 6 =0, aqn=0= ax =0.
When 6 = 2n, axn =2n = ax = 2. Therefore 0 < ax < 2.

Also the outer angle at zxk = n— 08 = n— aw = BN, where Bx = 1 — ak. Then
30 < ax < 2,—1 < By < 1. Also we have "By = 2.

The mapping function f (z) can be extended by continuity to any side of the polygon and that
each side is mapped in one - one way onto an arc of the unit circle. Consider a circular sector S
which is thelintersection of Q with a sufficiently small disk about z. A single valued branch of

C = (z — z)« maps Sk onto a half disk Si.

A suitable branch of z, + (% has its values in  and we may consider the function
9(Q = f(z+T*)

in S{. Then as C approaches the diameter [g(C)|. Therefore by the reflection principle, we
conclude, g() has an analytic continuation to the whole disk.

Since g(Q) = f(zx + ) is analytic at the origin, it has the Taylor’s series development,

900 =f(z + O = f(z) + fjj%l(zk+(°k)2 TR

X ©
fze+ (%) =+ an (13.3.2)

m=1

where a; 0 for otherwise the image of the half disk S,/ could not be contained in the unit disk.
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Therefore the series can be innverted.

Set
W = f(z + %) (13.3.3)
X X
W=+ a">w-—wx= and.
m=1 m

After inversion we have
X mo
(= bn(w—_owy)" with by =0,

m=1

the development being valid in a neighborhood of .

G < bm(w @) ¢
m=1 m_

¢ = (0 — W)™ Gy(w) (13.3.4)

where Gy(w) is analytic and /=0 near Gx.
(16.3.3) = f-1w) = z + {* = F(w) = * = F(0) — .

(16.3.4) = F(0) — z = (0 — W)™ Gr(w).

Differentiating with respect to w, we get

P = a(w— 0)* G (w) + (0 — w)* G\ (w)
O = GG (O~ eIl

P(w) (0 — 0’ = aGrw) + (0 — W) G(w).
Since Gk(w) is analytic and not equal to zero in the neighborhood of wy, (W — wk)Bk, F(w) is
analytic and not equal to zero at wy. Consider the product,

n

Hw) = P) (0 - o)
k=1

which is analytic and not equal to zero in the closed unit disk |w| < 1. We shall complete the
proof by showing that H(w) is constant.
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For this purpose, we examine its argument when @ = e'® lies on the unit circle between
wy = €% and w1 = %1, Consider F(w) = F(e')

dF
Pw)=" _ i6
P G
arg P = argdF — argdw

where arg dF denotes the angle of the tangent to the unit circle at w = e'® and argdw denotes
the angle of tangent to its image F(w) = F(e").

Since F describes a straight line, argdF is a constant and we have

n
argdy = -,
w=0+ .

Hence

n
argF = -0 -+ constant
Also

_ 846 ek—k+IZCOS'LeK B — 6
= 28sIn 0 8 sin 5 sin >
0+6 0+0
= 2isir]' oS +isin K
w—w = 2isin 5 2 - 9 2
) %Q i 046k
= arg(w —wy) = E + constant.
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Also

arg F(w) + arg - X((o i)
k=1
X
arg F(w) + By arg(w — wx)
k=1
= arg (@) + Brarg(w — wigt - - - + Brarg(w — wy)g

S

arg(H(w))

ot constant + [31'5 +constant + - - - + Bn—'z + constant
n o

= —e—é +é(Bl+BZ+ + + + + [3,) + constant

= —0 — (2) + constant

M
arg(H(w)) = __ + constant
2

Thus we conclude that, H(w) is a constant between wy and wy+; and since it is continuous, it
must be constant on the whole unit circle. Therefore by the maximum principle,
arg(H(w) = Img(log(H(w)) = constant inside the unit disk

This implies that

H(w) = constant = c(say)
Also

S

Hw) = PO (@-w)
k=1

=)

Fl@) = Hw) (@-o)™
k=1

n

P@ = ¢ (@ -w)"
k=1

Complex Analysis
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On integrating from 0 to w, we get
f(.l) f © N
Fldo = ¢ = " (- wy)~Prdw + constant
k=1
..r o 0 B
Fw) = ¢ . (0 — wy)~"*dw + constant + F(0)
k=1
f ® 0 _B
Flw) = ¢ (W — o) FHdw + ¢
0 k=1
|

13.4 Mapping on a Rectangle

J wn
F(w) =c (0 — w)~Prdw + ¢
0 k=1

F(w) maps the unit disk |w| < 1 conformally onto polygons with angles axn (interior) and

BN = (1—ay)n (exterior) and wy are the points on the unit circle and ¢, ¢ are complex constants
and Q is a bounded simply connected region whose boundary is the above said closed polygonal
lines.

If Q becomes a rectangle then

Bin = 2n

Bl+"'+B4 = 2

m
|31|'| = |32|'| = B3|'| = B4|'| = E
in a rectangle. We have .
[31=[32=[33=[34=§

Choosing the three verticesasx; =0, x =1, x3=p <l andforc=1, ¢ = 0 the above
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mapping function will be given by

I

F(w)
F(w)

C(@- 07— T - gridw
[re dw

0 Te-w-p
This equation is called an elliptic integral. To avoid ambiguity, let "®w, -1, "~ — p liesin
the first quadrant. Consider the mapping F(w) as w traces the real axis. When w is real each of

the square root is either positive or purely imaginary with a positive imaginary part.

As0 < w < 1landp > 1, there are one real and two imaginary square roots, this means F(w)

decrease from 0 to a value —K where
(13.4.2)

K=J*
o Ttl—1tp—t

dt

For 1 < w < p there is only one imaginary square root and the integral
I dw

"o — 1)@ — p)

1

is purely imaginary with a positive imaginary part. Thus F(w) follows a vertical segment from
—K to —K — iK! where K/ is given by
To g
1 Tt =t —t)

Therefore for w > p, the integral is positive and F(w) will trace a horizontal segment in the

positive direction. Since the image is to be a rectangle, it terminates at —iK’ and the lengths of

the segment is given by
I oo dt

o Tt — 1)(t —

Let
tzp_—g:uzp_—l
1—u 1-—-t
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dt= 21 q
(1 —u)?
—1
Fo [ g
= du
b tt—1t—p) o .p—u.p—1.u@—1)
foo dt J‘l 1—dh1_l 1_|

= =K

ottt — 1)t — p) o T (1—u)p— uu
1

s analytic within a semicircle with radius R and as
“tt - 1)t - p)
' IR dt [ e dt
s~ . = - . - O
- tt- 1)t - -ttt = D(t -

This implies that K — 0. That is the real part, become zero. Therefore we can claim that the

By Cauchy’s theorem,

R - o

horizontal segment are equal.

Similarly, when the imaginary part is zero, —oo < w < 0 is mapped onto the segment —iKJ to
0. Therefore —K means (—K, 0). —K —iKJ implies (—K, —KJ) and 1—iKJ implies that (O,

—Hlhese points form a rectangle.

. . 1

Note. If we consider the verticesas , =, 0 <K <1,
K
Fw) =7 ° dw
— 0 (1 — w)(l — K2w?)
as w?, K’w? are positive L~ al)<2, 1 — K202 have the positive real part so that the vertices of
the rectangle become ——, —, — +iKJ, —— +iKJ, where
2 2 2 2
I dt [ 1
K and K/ K dt
—1 (1 — 021 — K2t?) (2 — 1)1 — K2t)

and the corresponding rectangle is given by ABCD.
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BLOCK-IV
UNIT 14

A Closer Look at Harmonic Functions

Objectives

Upon completion of this Unit, students will be able to

X understand the concept of Mean Value Property.

X identify the Harnack’s Principle.

14.1 Introduction

We have already discussed the basic properties of harmonic functions. At that time it was
expedient to use a rather crude definition, namely one that requires all second-order derivatives
to be continuous. This was sufficient to prove the mean-value property from which we could
in turn derive the Poisson representation and the reflection principle. We shall now show that a
more satisfactory theory is obtained if we make the mean-value property rather than the Laplace

equation our starting point.

In this connection we shall also derive an important theorem on monotone sequence of harmonic

functions, usually referred to as Harnack’s Principle.
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14.2 Functions with the Mean-Value Property

Let u(z) be a real valued continuous function in a region Q. We say that u satisfies the mean

value property if [
Uzo) = 1 7 u(zo + re®)do (14.2.1)
2n o
when the disk |z — zg] < ris contained in Q.

Theorem 14.2.1. A continuous function u(z) which satisfies condition (14.2.1) is necessarily
harmonic.

Proof. Let u(z) be a real valued continuous function in a region . Suppose that the disk
|z — 20| < p is contained in Q and let u(z) satisfies the mean-value property.
: 2 i
e, u@z) =L 7 u(z + re®)do
2n o
By the use of Poisson’s formula, we can construct a function v(z) which is harmonic for
|z — 25| < p continuous and equal to u(z) on |z — zp| = p. Since v(z) is harmonic, it satisfies

both maximum and minimum principle. This implies that u(z) — v(z) satisfies maximum principle
on the boundary of the disk |z — zg| < p contained in Q. Therefore u < v.

Similarly, it can be proved using minimum principle that u > v. Thus, we have u = v in the
whole disk. Since v(z) is already harmonic, u(z) is harmonic. Thus the function u(z satisfies the

mean-value property is necessarily harmonic. [

The implication of Theorem 3.1.1 is that we may, if we choose, define a harmonic function to be
a continuous function with the mean-value property. Such a function has automatically continuous
derivatives of all orders, and it satisfies Laplace’s equation.
. . .. o%u 9°
Result. Suppose that u(z) is continuous and that the derivatives — — %Y . iqc ang satisfy

ox?'  ay?
Au = 0 then u is harmonic.

Proof. By use of Poisson’s formula, we can construct a function v(z) which is harmonic for
|z — 20| < p. Also u =v on the boundary |z — zo| = p.
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Let
V=u—-Vv+s(X—X)>, s>0
2 2
If V had a maximum the rules of the calculus would vyield =2 <0, 37 < 0, and hence

AV < 0 at that point. On the other hand,
AV = Au—Av +2s =2s > 0.

The contradiction shows that V has a maximum on the boundary. Thatis V < sp® in the disk
|z — 20| < p. Since on the boundary u =v and

X—X =Re(z—12) < |z—12| <p.
Again by minimum principle V > sp?. Therefore V reduce to a constant. Hence
Sp” = U — V + S(X — Xo)%

Let s — 0, we find that u = v. Therefore u is harmonic. [ |

14.3 Harnack’s Principle

Theorem 14.3.1. Harnack’s inequality. Let u(z) be a positive harmonic function defined in the
disk |z — 0| = |z| < p contained in Q. Then for any z such that |z — 0| = rp, we have
p—r p+r

par WO =u@ <) U (14.3.1)

Proof. Let us consider a circle |z| = r < p. By Poisson’s formula, the harmonic function u(z)
can be expressed throughout its value on the circle and it is given by

J o .
uz) =L PP — P u(pe®)ds (14.3.2)
20 o |pe® — Z|2

where u is assumed to be harmonic in |z| < p. (on harmonic for |z| < p, continuous for |z| < p)
We know that

pe® -z < .pe® 4zl =p+r.

M.Sc.(Mathematics)-TNOU-I Year- Il Sem Complex Analysis



170 14.3. HarNack’s PRiNciple

and
pl_z>.e% —|z1=p-r.
Therefore P
p—r .e%—z<p+r
=p
1 1 1
> : >
p—r lpel® —z| ~ p+r
pz_rz pz_rz pz_rz

(P+N2 = Jpd—2f = (p— 1)
.p—r pz_rz ptr

c < -
p+l’ |pel9_z|2Sp_r

I _
_1 n.E —r2. . by -
on . u(pe ).de

(14.3.2) = |u()|

_ ) . . ) 0 _ 42
Since u(z) is a positive harmonic function, we have |pe® — 2|

I . I on : I .
17 M p—gpe®yae < L " p® — P upe®yde < LT T RETy(pe®)ap

d1p—r" " lp+r® @ !
Mp+r udd < u(z) < onp -t udd, u(pe®) =u
- 0
But the arithmetic mean of u(peie) equals u(0). Therefore, we have
p—r p+r

+ru(0) <u@) < .p—r u(0)

P

The main application of (14.3.1) is to series with positive terms or, equivalently, increasing
sequence of harmonic functions. It leads to a powerful and simple theorem known as Harnack’s

principle.

Theorem 14.3.2. Harnack’s Principle.Consider a sequence of functions u,(z), each defined
and harmonic in a certain region (2,. Let { be a region such that every point in  has a
neighborhood contained in all but a finite number of the Q,, and assume moreover that in
this neighborhood u,(z) < un+1(2) as soon as n is suficiently large. Then there are only two
possibilities: either u,(z) tends uniformly to +oco on every compact subset of Q, or u,(z) tends
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to a harmonic limit function u(z) in Q, uniformly on compact sets.

Proof. Given that,

(i) the sequence of functions un(z) is defined and harmonic in a certain region (.

(ii) Q isaregion such that every pointin Q has a neighborhood contained in all but finite number
of Q.

(iii) In the above neighborhood, un(z) < un+1(z) as soon as n is sufficiently large.

To prove that, either u,(z) tends uniformly to oo on every compact subset of Q or u,(z) tends to
a harmonic limit function u(z) in  uniformly on compact sets.

Suppose that
lim u,(2) = u(2).

n—oo

It is enough if we prove that, either u(z) tends to co or u(z) is harmonic, and in both the cases
the convergence is uniform in all compact subset of Q.

Case.(i) Let zp € Q be such that u(zp) = .

1.e., im un(2o) = oo/

n—oo

then by hypothesis of the theorem (i), (ii), (iii) there exists r and m such that the function u,(z)

are harmonic and form a non-decreasing sequence for |z — z| < r and n > m.

Un(2) = um(2) for n > m.
JoUn(2) — um(2)
is a positive harmonic function. Hence from the left hand Harnack’s inequality applied to

|z — 20| 2 < r, we have
r

= r
P T
r_%(un(zo) —Un(Z0)) < Un(@) —Un(z), Vn=m
2
%(Un(zo) — Un(20)) < Un(@) —Un(z), Vn=m
limun(z) = 4

n— oo
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in the disk |z — zp| <7 . Since
limuy(z) = o at zo.

n—oo

That is un(zp) = oo. Therefore un(z) — oo on every compact subset of Q.

Case.(ii) Suppose that lim u,(zo) < co. Then by the same argument, from right handed Harnack’s

n—oo

;
inequality applied to |z — zo] < 5 <rT.

r
r+

Un(@) = Un(@) = —2 (uy(z0) — un(zo))
r—2
Un(2) — um(z) < 3(un(z0) — Um(z0))

It shows that un(z) is bounded on the disk |z — zo| < LA {u} is monotonic and bounded it

converges to the function u(z). Therefore the sets on %/vhich lim un(z) is respectively finite or
infinite are both open, and since Q is connected, one of the sets must be empty. Suppose that the
limit is infinite at a single point say zo, it is hence identically infinite. The uniformity follows by
the usual compactness argument.

Suppose that the limit function u(z) is finite everywhere with the same notations as above. By
using Harnack’s inequality

Un+p(z) — Un(z) < 3(Un+p(z) — Un(20))

r N . :
for |z — zo| <5 and n+p > n > m. Hence convergence at z, implies uniform convergence in the
neighborhood of zo and use of the Heine Borel property shows that the convergence is uniform

on every compact set. The harmonicity of the limit function can be inferred from the fact that u(z)
can be represented by Poisson’s formula.
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BLOCK-V
UNIT 15

Simply Periodic Functions

Objectives

Upon completion of this Unit, students will be able to

X know the concept of simply periodic function.

X understand the concept of Fourier development and functions of finite order.

15.1 Introduction

Definition 15.1.1. A function f(z) is said to be periodic with period w(/= 0) if f(z+ w) = (2),
V.

Example 15.1.1. Let f(z) = €.

fz+2ni) = e
= ¢e’(cos2n + isin2nm)
= eZ

f(z+2n) = f(2).

Hence €’ is a periodic function with period 2ni.

Example 15.1.2. sinz and cosz have the period 2n, since sin(2n+z) = sinz and cos(2n +z) =
COS Z.

Note.(i) If w is a period, so are all integrals multiples nw. That is, if w is a period then the

integrals multiples nw are also the periods.
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Note.(ii) If w; and w, are the periods of f(z) then a linear combination of w; and w,,

N1 + NW; Is a period.

15.2 Representation by Exponentials

2niz

(1) The simplest function with period w is the exponential e ® . It is a fundamental fact that

any function with period w can be expressed in terms of this particular function.

(ii) Let © be a region with the property that z = implies z+® cQ and z _w ¢ Q. We define
2niz

Q) inthe Z— plane to be the image of Q under the mapping { = e @ ; it is obviously a region.

For instance, if Q is the whole plane then  is the plane punctured at 0. If Q is a parallel strip

defined by a < Im'2% < b, then Q is the annulus e—° < [/ < e—?,

i2nz

For proving this,let (=e ® , z=x+1iy and w = a+ib. Then
2nz 2n

Im’ o " a2+ (ay — bx).
Now
2niz 2n
ET _ ea_i_—bz((bx—ay)+i(ax+by))
2n(bx — ay) i2n(ax +by)
=e a’+b?2 e aZ+bh?
2n0(bx — ay)
Hence, || = e @ +b?
2n(ay — bx)
7 = e al+b?
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Now consider,

.2nz
a < Im_— <p
w

n
& < Zipz@ —bx)<b

—=2n

e=? > [ >e"

e < g <ed

(iif) Suppose that f(z) is meromorphic in Q and has a period w then there exists a unique

function F in € such that )

2niz
fz)=F — . (15.2.1)

()

2niz

Indeed, to determine F(() we write ( = e @ ; z is unique upto an additive multiple of w,
and this multiple does not influence the value f (z). Since f (z) is meromorphic, F is also
meromorphic. Conversely, if F is meromorphic in ¥ then there exists a function f in Q with

period @ which is also meromorphic in Q given by (15.2.1).

15.3 The Fourier Development

Assume that ) contains an annulus r; < || < r, in which F has no poles. In this annulus F
has a Laurent development

X n
F(Q = Cnc /4
n=—oo
and we obtain o o
X - E n 2nniz
fa)= C,eo = Clew,
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since
.2niz
f@)=F_
W

This is the complex Fourier development of f(z) valid in the parallel strip that corresponds to the
given annulus. The Fourier coefficients are given by

1 ‘f n_1
C,=—" F(OCd;, (i <r<r).
2ni Qe

2niz
Substitute { =e ® , we get

2ninz
f(z)e ® dz

f a+w

co_ 1
n= O .

Here a is an arbitrary point in the parallel strip and integration is along any path a to a+w which

remains within the strip. If f (z) is analytic in the whole plane, the same Fourier development is

valid everywhere.

15.4 Functions of Finite Order

When Q is the whole plane, F({) has isolated singularities at { = 0 and { = co. If both these
singularities are in essential that is either removable singularities or poles, then F is a rational

function. We say in this case that f has finite order, equal to the order of F.

A rational function assumes every complex value including oo, the same number of times,
provided that we observe the usual multiplicity convention. If w is a period of a simply periodic
function and if there is no distinction between z and z + w, we obtain a same result for simply
periodic functions.

For convenient terminology, we say that z + nw is equivalent to z. If f is of order m, we find that

every complex value ¢ /= F(0) and F(c0) is assumed at m inequivalent points with due count &
multiplicities. We observe further that,
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z
f(z) © E0) when Im = and
@
f(z) — F(c0) when Im'6 — oo, If we are willing to agree that these values are also assumed,

we can maintain that all complex values are exactly m times.

z
For another interpretation we may consider the period strip, defined by 0 < Im 0‘)— < 2n. Since

this strip contains only one representation from each equivalence class we find that f (z) assumes

each complex value m— times in the period strip, except that the values F(0) and F(co) require
a special convention.
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BLOCK-V
UNIT 16

Doubly Periodic Functions

Objectives

Upon completion of this Unit, students will be able to
X know the concept of doubly periodic function.
X identify periodic modules.

X understand the concept of canonical basis.

X prove the properties of elliptic functions.

16.1 Introduction

The terms elliptic function and doubly periodic function are interchangeable; we have already met
examples of such functions in connection with the conformal mapping of rectangles and certain
triangles. Elliptic functions have been the object of very extensive study, partly because of their
function theoretic properties and partly because of their importance in algebra and number theory.

Our introduction to the topic covers only the most elementary aspects.

Definition 16.1.1. An analytic function f(z) is said to be doubly periodic function with period
w; and w; if
(i) f(z+w) =1(2)
(i) f(z+wy) =1(2)
(iii) is non-real.
W1
Definition 16.1.2. A doubly periodic meromorphic function defined in the whole complex plane

is called an elliptic function.
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Example 16.1.1. Consider X X

fgy= = ° 1

[z—(m+in)]?

m=—00 N=—00

(i)
xX X 1
fe+1) = I [z+1—(Mm+in)P
X X 1
T - (m—-1) ]
X X 1

m=—con=_ [Z — (m + in)]3
fz+1) = f1(2).

Hence f(z) is a periodic function with period 1.

(if)
. X X 1
ferd) = +i-(m+inf
X X 1
- m=—con=_ [Z — (M +n — Df
X X 1
T meeone [z (M+in)P
fz+i) = 1(2).

Therefore f (z) is a periodic function with period i. Hence f (z) is doubly periodic function with
period 1 and i. Also f (z) has got a pole at z = m + in of order 3. Therefore f (z) is an elliptic
function.

16.2 The period Module

Definition 16.2.1. Periodic Module. Let f (z) be meromorphic in the whole plane. Let M be the
set of all its periods. If w is a period, so are all integral multiples nw, and if w; and w; belong
to M so does w; + Wy, as a consequence all linear combinations n;w; + nw, are in M. A set
with these properties is called a module and we shall call M the period module.(This module can

Complex Analysis M.Sc.(Mathematics)-TNOU)-I Year- Il Sem



16.2. The period Module 181

be called more precisely as module over the integers.)

Result. The points of a period module M are isolated.

Proof. Let f be a meromorphic function. If w is a period of f, we have
f(w) =f(0), Vo € M, sincef(w) = f(0 + w) = (0).

ie., f(w) — f(0) = 0.

Therefore w is a zero of f(z) — f(0). Since the zeros of a meromorphic function are isolated, it
follows that the periods are isolated. [

Definition 16.2.2. A module with isolated points is said to be discrete.

Our first step is to determine all discrete modules.

Theorem 16.2.1. A discrete module consists either of zero alone, of the integral multiples nw

of a single complex number w = 0, or of all linear combinations n;w; + N, with integral

coeficients of two numbers w;, w, with non-real ratio =2
w1

Proof. Let M be a discrete module. Then M is a module with isolated points. If M consists of

anumber 0 then nw € M Vn € Z. Also it contains one number call it w;, whose absolute
value is @ minimum. That is w; € M such that |w:| < |®|, Vw € M.

Consider adisk |z| < r for sufficiently large r so that the disk contains at least one non - zero

integral multiple of w. That is for large r, the disk |z| < r contains a point from M, other than
zero. Since M is a discrete module, its points are isolated. Because the points are isolated there

are only a finite number of such points, and we choose w; to be one closest the origin. Since
w1 € M, the multiples nw; arein M, Vn € Z. Thus M may be just the set of all integral
multiples nw;, w; /=0.

Suppose now there exists an @ € M which is not an integral multiple of w;. Among all such
there is one w, whose absolute value is smallest.
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. Wy . (V)
Now, let us claim that —- is not real. If — is real then we can find an integer n, such that

W, (O] (V]
N<™" < n+1. This implies that
Wy
(V)] 07

0< g, ~N<L=0<y —n<1=0<|w-nol <l

Hence nw; — w; € Mand |nw; — w,| < |w¢|. This is a contradiction to our choice of w;. Hence

. 2 . . 2
our assumption that — is real is wrong. Therefore =" s non-real.
(V] (O]

Now let us assume that any complex number @ can be written in the form w = Ajw; + Aw;
with real A; and A,. Consider the equations

w = )\1(,01 + )\2(.02

W = )\1(1T + )\2(1)2_

Since the determinant w;w, — w,w; is O the system has a unique solution (A1, A2). Now,

These two equations also have unique solution (A1, A;). Therefore the equations
XW1 + YW, = @ and X®; + yi; = ©
are both satisfied by (A1, A2), and (A1, A;). Since the solutions are unique, we must have
M=MNand A, = \,.

Hence A; and A, are real. Hence any complex number @ can be written in the form w =
Mg + Aw; uniquely, where Ay, A, are real.

Now, let us show that any w € M can be written uniquely in the form n;w; + n,w, where n;
and n, are integers. Suppose ® = A;0; + A,,. Let m; and m, be integers such that

1 1
|)\1 —m1| S—Z and |)\2 —m2| S—2.
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Let W =w— mw; — mw,. If w € M, then w € M.

Now

W = |0 — mw; — mw,
= [M; + Aw; — My — Myw;|
< M —m|Jor| + |A2 — my| [y
1 1
< W+ =W
o] + o |
| < oyl

where the first inequality is strict because w, is not a real multiple of w;. (Since —2 is not real)
(O]
Equality holds if
A = my| = [Ap — my

and

lg| + ] = oy wzﬁfﬂ
.1+ @z. = 1+ T
01 [o
w, 2 . o)
L9l [OF
;_1 o (o2
1+ 1y 2 _ - 2 2
- W % i |1c:|\w1!
22 + 22 =9 2 ‘
o gn
2 Re’ = 2
W, |, |

This implies that © is real, which is a contradiction. Therefore, by the way w, was chosen, it
1

follows that w is an integral multiple of w; and hence w has the asserted form. [ |

16.3 Unimodular Transformations

Definition 16.3.1. Any pair (w1, @) is called a basis of M, if any @ € M has a unique
representation of the form w = niw; + N, where n;, n, are integers.
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Definition 16.3.2. A linear transformation of the form

W, = aw; + bw; and w; = cw, + dw;

where (w;, W) and (w}, w)) are two bases and a, b, ¢, d are all integers is such that the
determinant

ab
=ad —bhc==1
.Cc d.

then this transformation is called an unimodular transformation.

Result. Any two bases of the same module are connected by a unimodular transformation.

Proof. Let (w1, W) and (w}, w}) be two bases for the period module M. Since (w;, w,) isa
basis, there exists an integers a, b, ¢, d such that

W, = aw; + b(l)l

(16.3.1)
W, = cw, +dw;
This can be put in matrix form P N
Wn_ @ by (16.3.2)
@ ¢ dw
Taking conjugate of (16.3.1) we get
Wy = aw;+ bw;
WY = cwp+dw;
The matrix form of the equation is
o7 @ b @, (16.3.3)
wg ¢ dop
Thus we have . = ab w o
(.021] o c ‘dw @ (16.3.4)
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Since (w!, w)) is also a basis, we have
O aw, +bw,
0 = cwb+dw)
w2 W A by w)h

;- (16.3.5)
W 0 ¢ de @
where &, by, ¢/, d are integers. From (16.3.4) and (16.3.5), we have

Wy ey _ @ Pa b'wy W (16.3.6)

‘O O ¢ o " _
! ! c d w; W
Hence
w; W
. =1 —W1W7z 0,

'(1)1 (Dl_

A matrix with determinant /= 0 has an inverse matrix and if we multiply (16.3.6) by the inverse
of the matrix . .
wy; w7

= W

(O] 1!

we obtain

@ ba bl 0 10

g 01 01

¢ @cepda b 10
= - o = .
01

o d'c d

This implies that the matrices .
a b
A

and .
ab
A

and are inverse to each other. In particular, their determinant must satisfy

a b ab _

1 0._1
¢ d-c d 01
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Since both the determinant are integer valued, we have

a b ab
- e =+ 1.
'.CJ d_]'. '.C d'.
Hence the transformation is an unimodular transformation. Thus any two bases of the same

module are connected by a unimodular transformation. [ |

Note. (i) The set of all matrices

with integral entries and with determinant =1 form a group under multiplication. This group is
called as modular group.

(i.e.,) the unimodular matrices, or the corresponding linear transformation, forms a group, the

modular group

(ii) We divide the complex plane geometrically into parallelogram spanned by the period module
M, with (w1, W) as a basis. Also ;21 is non-real. Therefore the whole complex plane is divided
into network of congruent parallelogram. The vertices of the parallelogram niw; + nyw,. If f(2)
is w— periodic with periods (w1, w;) then we see that the values of f (z) are identical in each
and every one of the congruent parallelogram. So it is enough to study the properties of f (z) in

one parallelogram.

(iif) The following figure shows two bases of the same module. Observe that the parallelogram

have equal area.

16.4 The Canonical basis

Among all bases of M it is possible to single out one, almost uniquely, to be called the canonical

. . W . . : .
basis. If we call the ratio EZ, the following theorem shows that there exists a basis (w;, w;) with
1
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special requirement on T, such a basis is called a canonical basis.

. : . )
Theorem 16.4.1. There exists a basis (w;, w,) such that the ratio T = =2 satisfies the following
1

o . .1 1 . . . .
conditions: (i) ImT > 0, (ii) ——2< ReT < —2, (iii) || = 1, (iv) ReT > 0 if |T| = 1. Theratio T

is uniquely determined by these conditions, and there is a choice of two, four, or six corresponding
bases.

Proof. Let M be the period module. We choose w; € M to be the one closer to the origin. There

are always possible two, four, or six closest points. Next, we select w; and w; such that w; is
having smallest absolute value. Also

|y

IA

[0%)
[

IA

lwg| + |yl
[0%)

IA

|01 — Wyl

w .
Let T = —2. Since
(O]]

[0}

Wi < fwp = 1< 0 > |1 >1
This proves (iii). '

IA

Since |w,] Wy + Wy
(V) W + W

|w; | oWy
7| 11+T]

IA

IA

T2 < |1 +71) (16.4.1)
Again

W, < |01 — Wyl

> TP < |17 (16.4.2)
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From (16.4.1), we have

TT < (1+7(1+7)

T
0< 1+T+T
T+T
2ReT

1
ReT > 5

|
[EEN
A

|
-
A

From (16.4.2), we have

-
IA

QA-na-73
l1-7-71

2ReT
1

2

IA

20
)
N P H 2, o 4]
v

IA

1
< ReT< 5
This proves (ii).
Next we prove that ImT > 0. If ImT < 0, we replace the basis (wy, ;) by (—wi, wy). This
makes Im > 0 without changing the condition on ReT. If ReT = —2—, we replace (w;, w,) by

(w1, W1 + 92), and if [T| =1, ReT < 0 we replace it by (—w, @ ).After these minor changes
all the conditions are satisfied.

Now, we prove that the four conditions fix T uniquely. Suppose there exists another

basis (w), w}) satisfying four conditions. Then these two bases are connected by a modular
transformation.

W, = aw;+bw;
W; = cw; + dw;
"Wy
W _ oy _ a2 +bwt =@ +hb
W cwy +dw;  C%2 +d
[O1
, _ar+b

=T = 4 q With ad —bc = +1
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(ar + b)(cT + d)

Now, T =
lcT + d|?
- ac ‘T‘Z +bd + (adT + bcF)
lcT + d|?
Hence
ImT
ImT = (ad — bc
( )|CT+d|2

Firstas ImT and ImT are both > 0 and ad — bc = 1.

ImT = ImT

(16.4.3)
lcT + d|?

Without loss of generality we may assume that ImT > ImT then [cT+d| < 1. Ascandd are
integers there are very few possibilities for this inequality to hold.

Case.(i) c =0, d = +£1, the relation ad — bc =1 reduces to eitherra=d =1 ora=d = —1.
Hence ” = T+ b. Thatis ¥ — T isreal. Since —= < ReT, Rem” < =. |b| = |ReT” —ReT| < 1.

2 2
As b isaninteger, b = 0. Hence T =T.

Case.(ii) d = 0, then ad —bc =1 = bc = —1. Therefore b=1,c=-1orb=-1,¢c=1.
Further |cT +d| < 1 becomes T < 1. Since T > 1 by assumption. T = 1. Then

1
=4+ — ~_ = +a —
T *a T Ta—T.

Thus +a = T + T and hence

la] = Re(®+7)

= FieTJT_LReT

la] < “+7 =1
2 2

1
If Re” +ReT=1then Re?” =ReT="

5 8 |T| = 1. It follows that

T=T :eI%,

ReP+ReT<1=la]<1l=a=0.

M.Sc.(Mathematics)-TNOU-I Year- Il Sem Complex Analysis



190 16.5. GeNeRral PropeRTies of EllipTic FUNCTIONS

Therefore

But since |T| =1, ReT > 0.
. ReT = —ReT = —ReT < 0.

But Re™ >0, so ReT=0=ReT. As [T|=1=[P|. Thisimpliesthat T=1 = 1.

Case.(iii) c /=0, d # 0 then |cd| > 1 as ¢ and d are integers. Now,
lct+d]? = c®|1)°+d*+2cdReT

> ¢ +d? + 2cd( _l)
2

Add and subtract |cd|, wehave
lcT +d|% = (lc| = |d])® + |cd| = 1.

Therefore |cT+d| > 1, a contradiction. Hence this case cannot arise. Thus T = T and the
uniqueness of T satisfying conditions (i) to (iv) above is established.

Geometrically, the conditions (i) to (iv) means that the point T lies in the part of the complex

plane shown in the diagram below. It is bounded by the circle |T| = 1 and the vertical lines
ReT = i% , but only part of the boundary is included. Although the set is not open, it is referred

to as the fundamental region of the unimodular group. [ |

16.5 General Properties of Elliptic Functions

Let f (z) be a meromorphic function which admits all numbers in the module M with basis
(w1, w,) as periods. We shall not assume that the basis is canonical, and it will not be required

that M comprise all the periods.

We say that z; is congruent to z,, z; = zz( (mod M)), if the difference z; —z, € M, i.e,

Z1 — Zp = N1W1 + NoWo.
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The function f takes the same values at the congruent points, and may thus be regarded
as a function on the congruent classes. Let P, denote the parallelogram with vertices at
a,a+ W, a+ Wy, a+ w;+ w, where a is any complex number. By including part of the boundary
we may represent each congruence class by exactly one point in P,, and then f is completely
determined by its values on P,. The choice of a is irrelevant, and we leave it free in order to

attain, for instance, that f has no poles on the boundary of P,.

Theorem 16.5.1. An elliptic function without poles is a constant.

Proof. Let f (z) be an elliptic function without poles. Let P, denote the parallelogram vertices
at a, a+ Wy, a+ Wy, a+ W + W, where a is any complex number. Since f (z) has no poles, f (z)
is either within and on P,. It follows that f (z) is continuous. Therefore f (z) is bounded on the
closure of P,. By double periodicity, f (z) is analytic. Thus, f (z) is analytic and bounded in the
whole complex plane. Therefore by Liouville’s theorem, f (z) must reduce to a constant. Hence

an elliptic function without poles is a constant. [
Theorem 16.5.2. The sum of the residues of an elliptic function is zero.
Proof. Let P, denote the parallelogram vertices at a, a + Wy, a + Wy, a + W1 + W,. Let us choose

the complex number a, so that none of the poles fall on the boundary of P,. If the boundary dP,
is traced in the positive sense, the sum of the residues at the poles in P, is given by

_11 f(2)d
2N gp, (@)dz. |
l.e.,the sum of the residues L f (z)dz.
2ni P,
Consider
f f a+0; f a+w;+w; f a+w;
f(z)dz = f(2)dz + f(2)dz + f(z)dz
P, a a+w; a+w;+w;
[ f@dz = Li+lh+Il3+1,

P,
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Inls, Put z=u+ w,. Then dz=du and U=z — W,
J‘a+031 J‘a

lh+13 = f(z)dz + f(u+ wy)du
a a+w;

I+ 13 0.

Similarly, in 1, put z = u+ w;, we get

f a+w; f a
I+ 14 = f(u+w)+ f(z)dz = 0.

a a+w;

Hence )
ap. f(z)dz = 0.

That is the sum of the residues of f(z) at its poles in P, is zero. [ |

Note. From the above theorem, it is clear that every elliptic function should have at least two
simple poles or a simple of order two. That is there does not exists an elliptic function with a

single simple pole.

Theorem 16.5.3. A non-constant elliptic function has equally many poles as it has zeros.

Proof. Let P, denote the parallelogram vertices at a, a + W, a + Wy, a + Wy + W,. Let N and
P denote the number of zeros and poles of an elliptic function f (z) with P,, each zero and pole
being counted according to its multiplicity. From the calculus of residues, we have

! "
— (Z)
2ni g, f9Z=N—P.

: : . : . - . fl
Since f(z) isananalytic function, f!(z) isalso an elliptic function. Hence % is also an elliptic
z

function. [

1 fi2) . fiz)
ST e, 1) dz = sum of residues of Q)

0.

N = P = Number of zeros of f(z) = Number of poles of f(2).

Hence a non - constant elliptic function has same number of poles and zeros. [ |

Note. If ¢ isany constant, f(z) — ¢ has the same poles as f(z). Therefore all values are assumed
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equally many times. The number of incongruent roots of the equations f (z) = ¢ is called the

order of the elliptic function.

Theorem 16.5.4. The zeros a;, - - -, a, and poles by, - - -, b, of an elliptic function satisfy
a+---+a,=by+---+by (Mmod M).
Proof. Let f (z) be an elliptic function defined in a period parallelogram P,. Let a;, - - -, &, and
by - - -, by be the zeros and poles of f (z) respectively. Choose a such that none of the zeros and
poles lie on the boundary of P,.
_1f 2f(z
2r“ . f(Z) = (al + a2 + -+ an) - (b]_ + b2 + -+ bn) (1651)
onio, f %27

| n(v, 2)9(@) = Ny, bJadw,

from the argument principle. Hence from (16.5.1), g(z) = z, 9(&) = a; and g(bx) = bx. Now
consider,

_1J‘ ZfJ(Z) _1 f a+wi ZfJ(Z) _1 J. a+wi+w? ZfJ(Z)

1 = - ——Q0z
2ni » 1) dz 2ni —f @ dz + o asn Q)
17 e zfi(z) 1 I a 20(z)
2ni Z+ == T z
a+Wy+w; f (Z) 201 atw;

1 7 fi(2)

+

dz = I+ 1, + |3 + Iy (1652)
2ni e, f(2)
Consider I3, put z = u+ w,, we have
lh+13 = 1 e 2002) 47 + 100 (u+ o))—fj(u + W)
! 2ni J.a f(Z) 2ni a+w; ? f(U + 0)2)
_ _@27. a+w; fJ(U) du
2ni a f(u)
|1 + |3 = —0.)2(—”2),

where n, represents the winding number around the origin of the closed curve denoted by f(2)
where z varies from a to a + w; and consequently it is an integer. Thus

Ii + 13 = Ny,
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Similarly,

I, T Iy = |J’11(1)1.
652 >—~ My

2ni g, f(2)

Z = N1 + Ny (1653)

From (16.5.1) and (16.5.3), we have

(a1+a2+---+an)—(b1+b2+---+bn) = N7 + Ny
>@+a+---+a)—(br+bhy+---+b) € M
> @+a+---+a) = (by+by+ -+ - +by) (mod M).
Hence the theorem is proved. [ |
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BLOCK-V
UNIT 17

The Weierstrass Theory

Objectives

After completion of this Unit, students will be able to
x identify the Weierstrass g function.

X prove the differential equation satisfied by (z) .

X solve problems in Weierstrass function.

17.1 Introduction

The simplest elliptic functions are of order 2, and such functions have either a double pole with
residue zero, or two simple poles with opposite residues. We shall follow the classical example of

Weierstrass, who chose a function with a double pole as the starting point of a systematic theory.

17.2 The Weierstrass g Function

Weierstrass considered an elliptic function f(z) with double pole at the origin.

. 1 1
St = _+regular part = f(-2) =+ regular part
z

5 f@) - f(-2) =k

Putz=" then ', —f =k

.(Dl . (Dl
o —f =+t =k

195



196 17.2. The WeleRsTrass § FUNCTION

Since w; is aperiod of f(z), —w; isalso a period. Therefore
() ()

f"—w +2 =f2t=>k=0

Sof@ =1(-2)
This implies that f(z) is an even function. Hence

1
M= e sadts---.
72

Thus f(z) is uniquely determined and it is denoted by a special typographical symbol p(z).

1

A7) = , ral val + -
is an elliptic function which is even and has a double pole at the origin and points of the form
N1 + Nw2. Our next result shows that,

1 X 1 1.
22 o @—WPF w?

§2) =

where the sum ranges over all @ = n;w; + n,w, except 0.

Result. The Weierstrass g function has the following properties,

(i) §(2) isan gven function. ¢ 1

(i) A7) = 5z + w/=0 TT—0) Z_E' is well defined, where the sum ranges over all w =
n1w; + Ny, except 0.
(i) g(z) is meromorphic with double poles at the origin and all the points @ = n1w; + Ny,

(iv) #4z) is doubly periodic with periods w; and w,.

Proof. To prove (i):
From the definition

p(2) :—122+ at vaz + - - = p(-2) = p(2)

.. 9(2) is an even function.To
prove (ii):
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To prove that the series

X_ 1 1.
o @—wP w2
: . 1
converges. Consider the singular part——— . Choose z, such that ?) ‘> 2 f\'
(z—-w)y
1 _ 1 2700 — 7°
(Z _ w)z (1)2 = 0.)2(2 - (,0)2
_ 72 _z
R
Z
w¥l - 2
2]
1 1- -zl 2+
_ < wW—
(Z_w)z wz._ .(1)3 1 _Z
[0
= ? 2
2
. wP12
L1 oy
<
- w)? W |w]?
Hence the series is uniformly convergent on every compact set, if the series
X
WS < 0.
/=0
Now,
X1 X 1

0o 0 o My + Nyl

N1 + N2

2 . . Wy : :
is the arithmetic mean of (|ny|+|n,|) quantities. Since ai is nonreal, the arithmetic

In| + [y
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mean is zero. Hence there exists k such that

[n1w; + oty
————— > k, for real pairs (ng, np)
ng + [ngl ! !

1 1
—— S —
IN1w; + Npwy| k(Ing| + [n2])

1 X 1

<

[N + nz(-l)2|3 K(In1| + [ngl)®

If we consider only integers there are 4n pairs (ny, ny) with [ny| +[nl =n, n=1,2, - - -

X 12 _1Xan
K(Ins| + [ngf)? S 1 n3
xX__ 1
Qnyl + el <
T < e
wf?
Hence the series
X_ 1 1
wo - W) w?
is convergent.
= X
pe)=" .1 1
z
. . 2 90 - w? w?
is well defined.
To prove (iii):

Since #z) is a meromorphic function with double pole at z = 0, and at all convergent points
Z=0=N10W; + N2>.

To prove (iv):
First to prove that, p(z + 1) = p(z), Vz.
Consider

o ot X1 1.
RN
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Since it is convergent, it is differentiable term by term.
X
S P(2) = - G-

Putting z = z + w;, we get

P+ w) = —2
v - (- w)P
= X _2
oo @— WP
X
0
Hence @/(z + w;1) = #/(z) . On integrating, we get
Pz + w1) = p(2) + c.
Take z = %. Then
-2 W W w
e R e S by

C=Py —bo
2 2

Hence p(z+ w1) = p(z). Similarly, we can prove that p(z + w;) = p(z). Therefore p(z) is doubly
|

periodic with periods w; and w,.
Note. For convenient reference we display the important formula

X

0== (z - w)*

P2) = -2

17.3 The Functions {(z) and 0(2)

Complex Analysis
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%8enote the antiderivative of g(z) by —((z), and to normalize it siJﬁQachi(te {,%J d

IERSTRass § FUNcTION

Weierstrass zeta function:
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We obtain Weierstrass zeta function {(z) using the relation,

p(@2) = —8@),

provided that
lim-g -1 —o.
z—0 Z
To prove that
P 1 X1 1 2z
(2) ="+ + 7+
Z L, I-0 0 W
Consider, 0(z) = —g(z2).
1 X1 1
) = = —
X1 1
_ z2 00 (7 _@)? @
Integrating along the path 0 to z, we have
I
. 1
. ¢ 72 dz : X 1 1 dr
x 0 wo (z— (1))2
@1 _ X1z
VA Z —
_ 0 0 W
Since @0y
lim*¢z) -— =0,
z—0 z
we get
1 X
= 1 Z .1 .
C(z)—Z = o S ot 0 +0
X
() = l+ —L + Z +l
z Z—0 w2

where {(z) is an odd function and also it has a simple pole at the origin with residue 1.

Legendre’s Relation.
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The constants n; and n, are connected with w; and w, by the relation, Niw, — Nxw; = 2ni.

Proof. Consider Weierstrass zeta function {(z). Let us choose a periodic parallelogram P,
having vertices at a, a + W1, a + W1 + Wy, a + W,. Let a, be chosen, so that the origin is
the only pole of {(z) lying inside P..

By Cauchy’s residue theorem,

J
{(2)dz = 2ni[Residue of ((z) at z = 0].
aP,

But, {(z) has a simple pole at z = 0 with residue 1. Hence, we have

J
((2)dz = 2ni(1) = 2ni.
P,
Consider,
f f a+w; f a+W+W, f a+w; f a
((2)dz = ((2)dz + {(2)dz + ((2)dz + ((z)dz
oP, a a+w; a+W;+W; a+w,
= |1+|2+|3+|4
Consider, [
I3 = {(2)dz
a+wi+wy
Putz=u+w;, >u=z-— w; = du=dz.
J a J a
L= [{(u) + {(w7)]du = (C(u) + n2)du,
a+w; a+w,
where n; = {(w;). Now
f a+w; f a+w;
i+l = {(z)dz — (¢(u) + nz)du
[ ave, )
a
li+13 = —Ney
Now consider, [
I, = ((2)dz
a+w;

M.Sc.(Mathematics)-TNOU-I Year- Il Sem Complex Analysis



202 17.3. The FuncTions {(z) anp 0(2)

Putz=u+w; >u=z—w; = dz =du.

-[ a+w, f a+w;

= ((u + wy)du = (C(u) + ny)du

a a

J‘ a+; f a+0;

b+, = [ a+(UC)(u) + Nydu — {(2)dz
=M a dw
+1s = MW
J
o ((2)dz = Nuw, — Moy
Hence 1w, — N.w; = 2ni. [ |

Weierstrass 0 Function. The canonical product representation of Weierstrass sigma function

o(z) is given by
z 1z
- Z B + ’
o(z) =z '1——0e03 Z W
w0

where the product ranges over @ = N1W; + N2w; except 0.

Proof. Consider the Weierstrass zeta function

X
C(z):zl+ R +_Z+l.

wo Z—0 o O

This is analytic at the origin. Hence the series,

X_ 1 z 1
+T +
o 170 w2 W

converges absolutely and uniformly about the origin. Hence we can integrate the series termwise
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along any path starting from the origin and not passing through the point z = w.

I, [
. . 1 z X 1
Consider l2)-=dz = 1 .z 24
0 z 0 p02-W W ¢
_x. log 2= 2 1z
—0 + o+
w0 2(1)2
29) z
X z — .
= OIog 1-—",+log e2W? + Jogew
®
z 17z,
= log "1 _Zo eu)+2 0]
w/
1 !
M= -. z zlz:
z = 1_ ew 2 W
e° w0
The o function is defined by 1
fz:(z)—; dz
oz) =ze"
This implies that
21z,
- 2w

W/

where the product converges and represeﬁts an entire function. This is the canonical product

representation of o0(z).

Properties of ¢ function.
L 0(2)
(if) o(z) is an odd function.

(iif) When z is changed to z + w3, 0(z) is multiplied by an exponential function.

oz+w) = —0@) n @21
1 € )
(V)]
N2 2+ 2
oz+w2 = —0(2)¢
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Proof. To prove (i):
Consider
-. oz zlz:
o) =z 1-— ew 2w,
()
w0

Taking logarithms on both sides, we get

X . 7z z
log(0(2)) = logz+ “log’l——" +~  l.z2
W 0 20

w0
On differentiating, we get
X

o) = 1 + L1 + 1 L= (2).

o@ z ,,z-06 ® @
Hence o)

= {(2).
0(2)
To prove (ii):
Consider P 1
. {—2+ d(-2)
o(—z) = —ze z
Consider
R JRE e
; 4(=2) = . 5 (\—d

Since C is an odd function, {(—z) = —{(2). Therefc}re

P .

- 1
(-+,d( )= o -, d
Put —z =t, we have
J‘ ft f z
—Z . l . .
-1 L

Therefore {2) -, dz= o A0 ¢ dt= o Q) __z dz

l2,
qQ-2) = —z¢° @7 =_qy)
This implies that a(z) is an odd function.
To prove (iii):

Complex Analysis M.Sc.(Mathematics)-TNOU)-I Year- Il Sem



17.3. The FuncTions {(z) anD 0(2) 205

J
We know that () = ((z). When z =z + w;, we have
0(2)
oz+w) _
0(z + W) o+ w)
= {(z) +m
oz + wy) o'(2)
R — +r]1
0(z + wy) o(2)
Integrating with respect to z, we get
logo(z + w;) = log(o(z)) + niz +Cy
= logo(z) + logem**<
logo(z + ;) — logo(z) = logeh
Ml). — eﬂ12+Cl
0(2)
To find C&):
1
Put z = _? in the above equation, we have
W1
B g
bio)
- . —n, W1
O-%l = e f 2 +Cy
o 2 N
—=—0 . (O] c
_ «C,
—1 = e ' 2
C. = log(~1) + 12"’1
N1,
L O(z+w1) _ o Mzt +log(—1)
' 0(2) W1
- "2 g
N 2+ 2
oz+w) = —0(2)€

Similarly, we can prove

oz + w2) = —0(z)€
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17.4. The DifferenTial EQuaTions

Note. (i) o(z) is not an elliptic function and it has a single simple pole at the origin with residue

1 and w;, W, are not periods.

Note. (ii) The functions {(z) and o(z) are called pseudo periodic functions of Weierstrass.

17.4 The Differential Equations

Prove that the differential equation satisfied by g(z) is

(B(2)* = 469'@) — g2642) — 0.

Proof. Consider the function ((z),

%)=+

X 1

_Z

T+

wo £—C

m?2

1.
w

The Laurent’s expansion of {(z) around the origin can be obtained. Consider

1 1 +l+_z.
w1 w—z ® 0?2
l'1+Z+ ?Z_2+
w w

3
X

_(1)4 _1
w0m4

X.-
© =+
_1, X
Z 0o
X
-1 = %3
Z (.1){ (.1)0(1)3
W- = -7

Since ((z) is an odd function only odd powers of z occurs in its expression (regular part).

Therefore

Let

%) - =

X 1

d

Z3
w/=0

(17.4.1)

Complex Analysis
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In general,
1
Gk = w2k
/=0
1 X,
(1741) =>4)—, = -G’ -Gt — - - =— &
k=2
1 X
=; - G
k=2
Differentiating with respect to z, we get
1 X
40 =~ G2k Dz,
1 x
1 k=2
[ = +3Gy7° + 56" + - - -
2
P@ = 166z + 206+ - - -
( J 2 42 ng G3Z
p@) = -24 , —8—,...
Z Z 73
Now
1 9G,7? 15Gsz*
P2 = - + b
5 2
o 4 VU2
4o = ", +60Gs + - - -
76 22
60Gp(z) = EOGH 180G, 2% + - - -
Consider (p(2))° — 4¢°(2) + 60Gap(z) = =" 24G; —80G; 4 36Gz - 60G; + 60Gz + . -
76 72 z6 B Z2 Z2
= —140G3+ - - -

Here left hand side is doubly periodic function and right hand side has no poles. Also right hand
side is an analytic function in the whole complex plane. Therefore right hand side is an elliptic

function without poles. Hence it must reduce to a constant. Let the constant be k = —140Gs.
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Hence we have

(0(2)* — 4¢9(2) + 60Gdz) = —140G;
(P(2))> = 49(z) — 60G4z) — 140G,

Take g, = 60G, and g; = 140G3 then we have

(0Q2)° = 40'@2) — 92442) — G-

Note. (/(2))? = 4p%(2) — 920(2) — g3 is a first order differential equation for ® = p(z).w(2)

= §2)
dw(z)
dz = JO(Z)
dw ) ,
we have d—z = 40’ —g w,g
dw
== T 40% — gow — s
dz [ L
z = dw

0 4w — g — g3
which shows that g1z) is the inverse of an elliptic integral. Moreover,

J. #2) dw

Z— 17 =

#(20) ,40.)3 - 0o — U3
where the path of integration is the image under g of a path from z; to z that avoids the zeros

and poles of ¢(z) and where the sign of the square root must be chosen so that it actually equals

$(2).

Problems.

Problem 17.4.1. Show that ¢(z) _ {u) = _0(2 — u)o(z + u)

0(2)2 o(u)?

Solution. Let f(z) = p(z) — p(u). Then f(z) is an elliptic function with zeros at z = u and
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z = —u double pole at the origin. Therefore f(z) can be written as

f(2)

f(2)
() - §Au)
— )

L e varts
72 1 2

(1 +a1z" +a2® + ) — Z%p(u)

Taking lim z — 0 we get

C0(2 — u)o(z + u)
o(z — 0)o(z — 0)
0(z — u)o(z + u)
0(2)?
0(z — u)o(z + u)
c
0(2)?
0(z — uwo(z +u)
0(2)?
,0(z — u)o(z + u)
cz
o(
2 0(z = u)o(z + u)
z 1z,

- - +

7 )
= e 2 W
w

C = constant

co(z — u)a(z + u)

1=l z 1z,
- 0-1_10 ew+2 w
1 = co(—u)a(u)
1
- 0(u)?
Hence
0(z — u)o(z + u)
00 o= 2
Problem 17.4.2. Prove that ﬂ =z — u)+ Lz + u) — 20(2)
PO - o) '

Solution.

Since p(z) p(u) =

Taking logarithmic derivatives, we get

(@)

0(z — u)o(z + u)
— 0(2)20(u)?

oz—-u) 0O@E+u) _0(2)

pu) = p(@)

0(z — u)

o(z +u) 8(2)
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o {z —u) +{z+u) - 202)
————~ = {z—-u)+{(z+u)—2(z
XJ(U&’?JJ G §0(Z)
o) — o) {(z—u)+{z+u)—2{2)
Problem 17.4.3. Prove that {(z + u) = ((z) + ((u) + _1 P(2) = PU)
2 p(2) = p(u)

Solution. We have

$()

D) — W) " {(z—u)+qz+u)—2((2)
Also, ()

= {(u — z) + {(u + 2) — 20(u)

) — §12)
2()
9@ — pu) ey~ 2w
= {z+u) = {(2)+qu)+ {M
2 p(z) — p(u)

Problem 17.4.4. The addition theorem for the g— function gz + u) = —gz) — gu) +
1.p@) - p)-2

4 p@) - p(u)

Solution. We have 1 9(2) — P()

Cz+u) =82+ LU+ 5 pa) — p(u)
Differentiating with respect to z, we have
1

Qz+u)=0@) + 22) — @) (=4u) + (2))2(2) — (P(2) — P(U)P(2) (17.4.2)

Differentiating with respect to u

0z +u) = Qu) + AP ) — (P(2) — PU)PU) (17.4.3)

.
262) — guy? D~
Adding (17.4.2) and (17.4.3), we get

P2 — Pu) _ 1.602) — $Uu) >
20@) — p) 2 p() — p(u)

=26z + u) = —gdz2) — gu)+
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Consider the differential equation

($(2)* = 469'@) — 92642) — Gs.

Differentiating we get

PP = 126000 - L)
PO = 850 - ,u

Similarly, ¢'(u) 647 (U) — %gz
P - PU) = 6(F@ - Fu)

672 _FW) 1 p0) - )
L2z +u) = —(#(2) +8"(“))1 UL D) 2 @) - o)
fz+u) = @) -+ 2

#(2) 4' Az) — $u) |

Problem 17.4.5. Prove that p(2z) = '3 (2) " — 2642)
Solution. In addition theorem, put u =z + h, then we get

L p@)-p@+h).
2z+h) = — - h
2z +h) = —§d2) — $z + )+4p(z)_p(z+h)

Taking limit h — 0, we get

10(2)
p(22) = 100 200(2).
Problem 17.4.6. Prove g(z) = _g(@
o(z)*

Solution. Consider
Z — uWo(z +u)

0(z)%0(u)?

o) - oy = &
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Put u=z+h
| _ o(=h)a(2z + h)
P -2 == oG+ hy
hn b lho
— Two it '
Wew?2w g@z+h)
= - o270tz + hy
- =1 4 h w2 :
—+— e
p@) —pz+h = 00 d%z)Zo(zjﬁ)Jz e
h 1h-:
} . ~0 =L +glr a2 0 o2z h)
O T MR i z
N _ o2
A’d(z) - 0-(2)20-(2)2
_ 022
Sd(z) - _0-(2)4

Problem 17.4.7. Prove that
§42) $(2) 1

' (Eﬂ)z) —gé?&ul 2) f‘lzo
N :

Solution. Since ¢(z) and g(z + u) are both elliptic function of same periods there exists an
algebraic relation between the two functions. To determine this relation we proceed as follows:
Let

f(2) = P@@)Ap(z) + B (17.4.4)
where A and B are constant. Since g(z) is an elliptic function of order 2 with a double pole at

the origin and.,its congruent points. g(z) is a pole of order 3 at z = 0 and its congruent points.

Since ¢dz) =— 2
) 2t 2P =57

The incongruent points of f(z) are 0, 0 and 0. Hence f(z) has 3 zeros and their sum is zero
in the fundamental parallelogram. Let a, z and u be the zeros of f(z). We have
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sum of poles

sum of zeros
z+u+a =0+0+0

a = —(z+u)

.. the incongruent zeros of f(z) are z, u, —(z +u).

f@)=0=p02) +Ap@z)+B=0 (17.4.5)
f(uy=0= pU)+Apu)+B=0 (17.4.6)
f(-(z+u)=0=>@(-(z+u)+AE—(z+u)+B=0
—PzZ+u)+A@z+u)+B=0 (17.4.7)
Eliminating A and B from (17.4.5), (17.4.6) and (17.4.7) we get
$(2) HAz) 1 2) $pa 1
~ p) fu) 1= gu) pu) 1=0
;O_J(z+u) fz+u) 1 z+u) —-@z+u) A
17.5 The Modular Function A(T)
The Weierstrss g— function satisfies the differential equation
(#Q)° = 4(§42))° — 92442) — Gs.
Let e;, e, and e; be the roots of the polynomial
4642)° — 92442) — s
Therefore
#(2)" = 4(2) — en)(#2) — e2)(#(2) — e3) (17.5.1)
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214 17.5. The Modular FuncTioN A(T)

To find the value of e, we determine the zeros of @)(z). Since p(z) is periodic and even.

p(w1 —2) = p(z — w1) = p(2)

Differentiating with respect to z, we get

P —2) = —9(2)

Substitute z = %.
2 (0] w W
.1 -1 .1
P2 =P =>£2’)T=0-
' is a zero of #(2). Similarly, we can show that —22 and @15_002 are also zeros of £(z).
W W W+

The numbers o1 9 ) are the incongruent roots. We note that all the zeros of §(z)
are simple and g(z) is of order 3. Now, we can set,
) ) W +w

2

1 2 .
er=gp— ,6=p— and ez =
1 802 2 @2 3=

§Az) takes each value e, with multiplicity 2. If any two roots are equal, then that value will be

taken four times which is a contradiction to the fact that goz) is of order 2. Therefore all the roots

are distinct.
Consider the function,
D) = + +X 1 1
Z (z - w)2 o2
. (O] /=0
Substitute z = ?
o A X 4 1
2 w2, —2w?2 o
X 4 1
T :é +w 0 (0)1 — 20))2— >
Replace w; by tw;, we get
4 X 4

1 .
= =t p(wy) .

ey = + —
YT 8wr o (o — 202 w2
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17.5. The Modular FuncTioN A(T) 215

If the period are multiplied by t, then e, are multiplied by t-2 (i.e., ex are homogeneous of order

—2 in w1, ;). Now we consider the quantity,

€3 — €
A(T) = (17.5.2)
€1 — €2
: W . : . .
where A depends only on the ratio T = 621' Since e; /= ey, A isanalytic rather than meromorphic.

Again, since es e, A is never equal to zero. Also e3 e, A is never equal to one. Also A(T)
is a quotient of two analytic function in the upper half plane Im(T) > 0. Now, we shall study the

dependence of T. If the periods are subjected to unimodular transformation

w, = aw; + b(l)l

(17.5.3)
w; = Ccw; + d(l)l
where
ab
==+]1
.c d.

Then the gofunction does not change. Therefore by looking at (17.5.1) the roots e can atmost be
permuted. Ifa = d = 1 (mod 2) and b = ¢ = 0 (mod 2) then W, = wy; W; = W1. This implies
that

a b, 10
= (mod 2)

cd 01
under this condition the e, do not change and we have shown that

aT+b

Nva =0

for a b
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Congruence subgroup (mod 2). The transformation which satisfy the congruence relation
a b 11

0
= (mod 2)
cd 01

form a subgroup of the modular group, known as the congruence subgroup (mod 2)

Automorphic Function. An analytic function or meromorphic function which is invariant under
a group of linear transformation is called automorphic function. A function which is automorphic
with respect to a subgroup of the modular group is called a modular function or an elliptic modular
function.

A(T) 1
Result. Show that A(T) satisfies the functional equation A(T+1) = NT) — 1 and )\'—T = 1-A\(T).
Solution. Consider the matrices congruent (mod 2)
11 0
S oand o,
01 10
In the first case,
Let
a
1 = (mod 2)
‘c
then 0w+ W
% = 2 1- = —3
2 2 2
and
W _
2 2"

This means that, e, and e; are interchanged while e; remains fixed and hence A goes over into
€ — €3

€1 — €3

Now
€ — €

_)\(I)_ e, — € _ € —6
)\(T)_lzwz.l €3 — €1
e, — €
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NT+1) =—)\(I)—.
AT) -1

In the second case, let b .0 1-
2 b ~ (mod 2)

cd 10

Then ]

€3 — €1

. Now consider,
€, — €1

This means that e; and e, are interchanged and hence A goes over into

1 AN =1 B2

e1— €6 €1 —€6 € —€6

_ 61 —€ €E3—-€
.1
Thus A —_ 1 — N(T).

17.6 The Conformal Mapping by A(T)

Theorem 17.6.1. The modular function A(T) effects a one - one conformal mapping of the region
 onto the upper half plane. The mapping extends continuously to the boundary in such way that

T=0, 1oo correspondto A =1, oo, 0.

Proof. Consider the modular function,

)\(T) — €3 — €&

€1 — €2
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(V)
where T = B isnon - real. T is normalized by taking w; = 1 and w, =T.
1

d) = 4+ —1-_L1

Consider, e;

(W = N1 + N2Wz = W = Ny + N2T)

(ny + nT)?

xX . 1 1

4 1 ¢ 2

€1 = 1 1

.m—7 +nm2 —(M+nT)*

m,n=—

Similarly,

€o =(§02* =w2+ ., _(1)2

— Ny — T (ng + T 2
. I

. _ 1y 2
m+T1(n —1)*  (M+nT)

-T
_ T n1+ n2T= 0 2
e = 1

Xe
H
.

X _
g3 = .
Consider ’ mn=_ m—2 +T(n - 2 (m+nT)?
X 1 3% L

: _ 1y¢
m+T(h —5)

€3 — € =

H 1 2
mp=— M—3 +T(Nn = e
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and

Consider, when T is purely imaginary (T = —T)

_ X . 1 1 ]
e = — c — —
P e M= (M (m+n(m)?
X . 1
g1 = €1 -.m—f+nTz_(m+nT)2-
- m,n=— 2

e; is purely real when T lies on the imaginary axis. This implies that e/, s are real and T is
imaginary. Therefore A(T) is real when T lies on the imaginary axis.

Now, we consider a matrix .
12

0 1
in the congruence subgroup (mod 2), we have A(T + 2) = A(T). This implies that A is periodic
function of period 2. A(T) can be written in the form €™ because

eiI'I(T+2) - einT

To show that A(T) — 0 as Im(T) — oo.

We know that Y
n__ 1
SIn nz . (z - m)2
But
X 1 X 1 ’
T :m,n=— m—3 +T(n -2 ST MATO 5

Keeping n fixed and letting m to vary, we get

X 2 X
€3 — € = .2 -1 T
o SIPTE =T 5 e ., . 3
" ( " esinn —nf?

(o]
o Xz X :
o cos2n’n 21 n=__sin?n'n21

=n

T T
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Similarly,
X 1 x 1

“m+T(n —*)°

€1 — €=

m,n=— m,n=—

Keeping n fixed, we get

00 2 2
e—e _ X. n I
3 2 = .2 1, L2
Nz 00 2ZSII’]I'I 2 SIN AN
—nT - T
e1—e X 0 o

— - ZI ] -
ne— cos2nnT _ Sin“ ' n—3z m

Now the series are strongly convergent for both n — o and n — —oo. Also, [cosnnT| and

sinnnT are comparable to e!"™™™, The consequence is uniform for Im(t) = & > 0. Now, once

again consider the function €3
A= "€

e, — ezl
Now we take term wise limits. When n =0, e; — e, = 0 and e; — e, = n’. Therefore A(T) —0

as Im(T) — oo uniformly with respect to the real part of T. When T — 0 along the imaginary
axis.

] . . €3 — 6

i.e., lim lim_~_

-0 0081 — €
= ]_,

along the imaginary axis. Along the imaginary axis the series e — e, and e; — e; are the terms
corresponds to n = 0 and n = 1. Therefore the sum of the terms when n= 0, and n= 1 in
es3 — €, We have
1 1 1 1
) 7 ot o2 m T 5T -
cos* sin QT cos® T sin ?
1

€3 — € = |'|2
=on® 1
2°0T . 5.
COS™ 5 sin*' %
_ 2I'IZ. 4eiI'IT + 4eiI'IT

(eiI'IT )22n' einT 1)2
ez — € = l6n%en (ﬂle m

(ei2l'lT _ ]_)2

Similarly, . ol 4 1

2- .
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lim A\m)e-™ = 16.

Im(T)— 0

Consider the region Q bounded by the imaginary axis, the line Re(T) = 1 and circle .T —3% = 7.
The transfoSiratioh () +islrempa the imaginary axis, anfdtkows Hy eidué of thegRtRR(E) = 1 on

T = = 2t

A(T)
ANT+1)= 1— A(T)
and
N1 — 1A
T

that it is real on the whole boundary of Q. Furthermore, A(T) — 1 as T tends to zero and
A(T) — oo as T tendsto 1 inside Q.

We apply the argument principle to determine the number of times A(T) takes a nonreal value
wo in Q. Cut off the corners of Q by means of a horizontal line segment Im(T) = t; and its

' i = 1 - i
images under the transformations ~ 7 and 1— 2. For sufficiently large to itis clear that A(T) g

in the portions that have been cut off.

1 1

The circle near T =1 is mapped by A(T) onacurve A=A 1— == 1- W; where T = s+itp,

0 < s < 1. But A(7T)e™ — 16 as Im(T) — co. This is approximately a large semicircle in the
upper half plane. The image of the contour of the truncated region Q has winding number about

o, when Im(wg) > 0 and winding number 0, when Im(wo) < 0. Therefore A(T) takes every

value in the upper half plane exactly once in Q and no value in the lower half plane. [

Theorem 17.6.2. Every point T in the upper half plane is equivalent under the congruence

subgroup (mod 2) to exactly one point in Qu .

) ) . 1 1 T-—-1 T
Proof. Consider the linear transformation T, ——, T—1, — , ~—  ~, — which are denoted

T _ _
by S1, S2,S3,S4,Ss Se respectively. =7 7 =7

(1) Consider1 the region blounded by Re(T) =0, Re(T) = 15 T > 1. We denote it by A;.
i) P=—T=>T1=—"".

T
Re(M=0=>T1+7=0.
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1 1 F+T

T J
- __I_J=O=>—TJT =>T+T =0=Re(T)=0.

Re(T) = 1 N 2Re(T) = 1.
2

T+T =1 1 1_1
= — ——
L T T
1+ =—" = P+1 =1
T T
Also,
o1 1
Tl= - =
- T |T|

T >1= Pl <1

Clearly, T lies in the region bounded by Re(T) = 0.

W+1 =1 and [P <1
Let it be A,.

(iii) Consider the transformation T — 1. Put ¥ =T — 1.

Re(T) = 0 = Re(T) =Re(T) — 1= -1 = Re(P) = —-1.

Re(T)=l = Re(TJ)=l—1=—l.
2 2 2
T2l=>TP=T—1=>P+1=1>1

T lies in the circle centre at —1 and radius 1. T lies in the region bounded by Re(T) = —1.

1 .
Re(™) = — T +1| > 1. Letitbe As.

, 1
(iv)Put ¥ =——

1-—71
1
) 1T 2T —1 1
Re(T)=0=>T+T =0=>"1-— + 1=, =0=>—""_
T T T T

Complex Analysis
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2r=1 4. 2r—-1l=1=""—"

1 1
This is a circle with centre atp® and radiug - : -
R 2 2
2 2
1 1
TE(T)z >T+TP=1=>1- +1—=1:TJ—1=_1
2 T T a¢, ag
-1 1.
._T_] . e
T-1=1
T=21=>1 1
-TJ_-21:>\TJ—1|2|TJ\

w—1F 2 P
@-1)T -1 = 77
T+T

2 Re(T_J)

Re(T)

IA

'_\
N R

IA

Therefore T lies in the region bounded by Re(T) < 5
| J
T

2. 2°

1] =1 and T _l._ 1

Let it be As.

(v)PutTJ:T—_lzl—l

T T

T1-7
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Re(t) = 0
1 T-{TJ =
i—vtre -~ °
T+7 =2
2Re(M) = 2
Re(®) = 1
Re(T) = 1
2
1 T-:tTJ =1
=1

+—
1-7 1—7
1—TP+1—T= 1-P+7P+PP

PZ=1= P =1
|T|21:>_1_TJ_21
1—7<l=>P-—-1 <1

Therefore T lies in the region enclosed by
Rem)=1, Ml=1 [P —-1<L

(vi) Put T =
1-71

Complex Analysis
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)
This implies that T =
1+7

Re(T) =
T+T =
T B2

+ =0
1+7 Bt
1]

— +
T T

+
ul
Il
N

Re(T) =

™ ™
+—

1+7 1+
T+TP+T+77 = 1+T+T+7T

1
2
T+T7 =1
1

Pi=1=pl=1

T = 1

T
1

14+
[
[

ik
2Re(T) < -1
1

) 1
Re(T) < 5"

1+ 1)
Ql+m™MA+71)
1+T7P+7+1T7V

v

v

IA v

.. . 1 .
Therefore T lies in the region bounded by Re(T) < —2—, =1 P+ % = % Let it be As.
1 1 11

Then T is mapped on the region by means of the transformation 7, — T — 1 11T
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T
-1 Let the transformation be Sy, k=1,2, - - - 6.
. 1 —1 0 1. 11 -1 1 O
1 0 b r o / ro
01'"'-10 0 1 11 1 0 —11

The matrices of the inverse transformation are

10 01 11 -1y g 10
01 1 0’01 T ' g 11
1
) _ 1 0 1 T-— 1 T
The corresponding transformation S-*, k=1,2,---6areT, =, T+1, — 7, ,
K T T 1-T71+1

We note that every unimodular matrix is congruent (mod 2) to exactly one of them. Therefore
these matrices form a complete set of mutually incongruent matrices. Let A}, (k = 1,2, - - 6)
denote the regions symmetric to the imaginary axis. Therefore the transformations S, (k =
1,2, - - - 6) corresponding to the regions A, (k =1,2, - - - 6) are obtained by replacing T by —T.

T+1 T

- 1 _1 . :
The transformations are —17,—, —-T—1, / / . The region AJ is mapped on
T
T+1 T T+1

the unshaded region A}, AJ, - Al by the means of the linear transformation S{, k=1,2, 6.
The matrices obtained by S{ k=1,2,--:6 are

-106 01 -1 4 O 11 .—1 0O

! ! - ! ! !

o1 10 0 0 10 ‘1909 1 1

The matrices of the inverse transformations are

—1 0 01, -1 —1 .—1 0 1; .—1 0
, oy ' ,
01 10 0 1° 10 1 o4 11
The transformation (S!)- (k=1,2, - - - 6) are —T, l, _T_l, —= 1, L " . These
k T 1 T T-1 T_+_l o

matrices form a complete set of mutually incongruent matrices. Clearly the image of A, A are
Ay, Ay, - Ag and A, A, - AL They cover QU Q.
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the shaded region. There exists a modular transformations such that S+ lies in AUN. Suppose

. : . 1 .
that Sy C A. The matrices of S is congruent (mod 2) to the matrix of an Sy . The matrix
of T =SS is congruent to the identity matrix; in other words, T belongs to the congruence

subgroup. Since S+ liesin A we have Tr = Sk (S+) liesin QuO.

Similarly, if we suppose that S, € A, The matrix of TJ = S{S is congruent (mod 2) to the
matrix of an (Si)—l. Therefore the matrix of TJ = S}S is congruent to the identity matrix.

Therefore T belongs to the congruent subgroup. Since S lies in AJ we have
T% = SJk(S 1)

lies in Q U Q. Therefore there is always a map T in Qu Q. Trivially which can be choosen in
Qu . Since Sk and S§ are mutually incongruent. T+ is unique. |
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