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Objectives 

Upon completion of this Unit, students will be able to 

x identify Cauchy’s theorem for a rectangle. 

BLOCK-I 

UNIT 1 

Fundamental Theorems 
 

 
1.1 Introduction 

 
In this Block we take up complex integral calculus. Many important properties of analytic 

functions are very difficult to prove without use of complex integration. For instance, it is only 

recently that it became possible to prove, without resorting to complex integrals or equivalent 

tools, that the derivative of an analytic function is continuous, or that the higher derivatives exist. 

As in the real case we distinguish between definite and indefinite integrals. An indefinite 

integral is a function whose derivative equals a given analytic function in a region, in many 

elementary cases indefinite integrals can be found by inversion of known derivation formulas. 

The definite integrals are taken over differentiable or piecewise differentiable arcs and are not 

limited to analytic functions. The reader must be thoroughly familiar with the theory of definite 

integrals of real continuous functions. 

 
 

1.2 Cauchy’s Theorems for a Rectangle 

There are several forms of Cauchy’s theorem, but they differ in their topological rather than in 

their analytical content. It is natural to begin with a case in which the topological consideration 

are trivial. 

1 
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∫ 

∫ ∫ ∫ ∫ 

 

We consider, specifically, a rectangle R defined by inequalities a ≤ x ≤ b, c ≤ y ≤ d. Its 

perimeter can be considered as a simple closed curve consisting of four line segments whose 

direction we choose so that R lies to the left of the directed segments. The order of the vertices is 

thus (a, c), (b, c), (b, d), (a, d). We refer to this closed curve as the boundary curve or contour 

of R, and we denote it by ∂R. 

We emphasize that R is chosen as a closed point set and hence, is not a region. In the following 

theorem, we consider a function which is analytic on the rectangle R. 

The following is a preliminary version of Cauchy’s theorem: 
 

Theorem 1.2.1. If the function f (z) is analytic on R, then 

 
f (z)dz = 0, (1.2.1) 

∂R 

 

where ∂R denotes the boundary of rectangle or contour. 

 
Proof. The proof is based on the method of bisection. 

 
η(R) = f (z)dz. (1.2.2) 

∂R 

 

Divide the rectangle R into four congruent rectangles R
1, R2, R3, R4

 by joining of the opposite 

sides of R then from (12.2.2), we have 

 
η(R) = f (z)dz + f (z)dz + f (z)dz + f (z)dz 

∂R1 ∂R2 ∂R3 ∂R4 

 

η(R) = η(R
1
) + η(R

2
) + η(R

3
) + η(R

4
) (1.2.3) 

 
|η(R)| ≤ |η(R

1
)|+|η(R

2
)|+|η(R

3
)|+|η(R

4
)| 

It follows from (8.2.3) that at least one of the rectangles R
k, k = 1, 2, 3, 4, must satisfy the 

condition 

|η(R)|≤ 4|η(R
k
)| 

We denote this rectangle by R1. Continuing this process indefinitely, we get a sequence of nested 

rectangles R1, R2, R3, Rn · · · , where Rn is the n
th

 bisection of the rectangles of R such that 

∫ 
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. − . 

∫   ∫  ∫  ∫ ∫

−
 − −  −  −

 

 f (z) − f (z0) 
f J(z0) < s f or |z − z0|< δ 

 

R ⊃ R1 ⊃ R2 ⊃ · · · ⊃ Rn · · · and this rectangles satisfies the condition 

1 1 
|ηRn|≥ 

4 
|η(Rn−1) ≥ 

4 
η(Rn−2) 

1 
|η(Rn)|≥ 

42 
|η(Rn−2)|· · · · · · 

1 
|η(Rn)|≥ 

4n 
|η(R)| 

∴ |η(R)|≤ 4n|η(Rn)| (1.2.4) 

which is sufficiently large the rectangle Rn converges to a point say z0 belongs to all the rectangles 

R1, R2, R3, · · · Rn · · · 

 

Choose a number δ > 0 so small such that the rectangle Rn is contained in |z − z0|< δ. 

i.e., Rn ⊂ |z − z0|< δ 

Since the function f (z)  is analytic on a rectangle  R, it is also analytic at the point z0 and therefore 

differentiable at z0. 

 
Therefore, if given s > 0 we can choose δ > 0 such that 

 
 

. z − z0 
. 

 
 

Now, 

| f (z) − f (z0) − (z − z0) f J(z0)| < s |z − z0| (1.2.5) 

 

[ f (z) f (z0) (z z0) f J(z0)]dz = f (z)dz f (z0) dz f J(z0) zdz + z0 f J(z0) dz 
∂Rn ∂Rn ∂Rn ∂Rn ∂Rn 

 But ∫

∂Rn 
dz = 

∫

 
 

 
∂Rn 

 

zdz = 0. 
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∫ ∫

− − 

. 

∂Rn 

∫ 

| | 

 

∴ 
∂Rn [ f (z) − f (z0) − (z − z0) f J(z0)]dz = 

∫

 

 

 
∂Rn 

 
f (z)dz 0 0 + 0 = 

∂Rn 

 
f (z)dz ∫

∂Rn 

. 
[ f (z) − f (z0) − (z − z0) f J(z0)]dz

.
 = |η(Rn)| 

∫ 

  

|η(Rn)| < 

∫ 

s |z − z0| |dz| by (1.2.5) (1.2.6) 

If dn denotes the diagonal of the rectangle Rn then |z − z0| ≤ dn. 

If ln denotes the perimeter of the rectangle Rn then 

 
dz = ln. 

∂Rn 
 

∴ from (1.2.6), we get  

|η(Rn)| < s dn ln (1.2.7) 

If L, D denote the perimeter and diagonal of the rectangle R and l and d denotes the perimeter 

and diagonal of the rectangle Rn, we have 

d1 = 
D

 
2 

l1 = 
L 

. 
2 

| f (z) − f (z0) − (z − z0) f J(z0)| |dz| . 
∂Rn 

|η(Rn)| ≤ 
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∫ 

 

Similarly ln, dn perimeter and diagonal of the rectangle Rn, then 

l1 

2 
 L 

22 

d1 

2 
D 

22 

 

 

 

 

 L 

2n 

D 

2n 

∴ (1.2.7) ⇒ |η(Rn)| < s 
D L

 

 

 

 
From (1.2.4), we get 

2n 2n 

DL 
|η(Rn)| < s 

4n 
(1.2.8) 

 
|η(R)| ≤ 4

n
 |η(Rn)| 

< 4
n
 s 

DL
 

4n 

 
 

Since s is arbitrary, we can only have 

|η(R)| < sDL 

 
η(R) = 0. 

 

i.e., 
∂R 

f (z)dz = 0. 

Hence the theorem is proved. ■ 

 
This beautiful proof, which could hardly be simpler, is due to E. Goursat who discovered that the 

classical hypothesis of a continuous f J(z) is redundant. At the same time the proof is simpler than 

the earlier proofs in as much as it leans neither on double integration nor on differentiation under 

l2 = 

l2 = 

d2 = 

d2 = 

.  

.  

. 

ln 

 

= 

dn = 

 



6 1.2. CaUchY’s TheoReMs foR a RecTaNgle 

Complex Analysis M.Sc.(Mathematics)-TNOU)-I Year- II Sem 

 

 

− 

∫ ∫ 

. . 

. ≤ 

∫ 

− 

.z − ζ j. | f (z)| < s 

| | 

 

the integral sign. 

 

 
The hypothesis in Theorem.1.2.1 can be weakened considerably. We shall prove at once the 

following stronger theorem which will find very important use. 

 

Theorem 1.2.2. Let f (z) be analytic on the set RJ obtained from a rectangle R by omitting a 

finite number of interior points ζ j. If it is true that 

 
lim(z ζ j) f (z) = 0 
z→ζ j 

 

for all j, then ∫

∂R 

 
f (z)dz = 0. 

 

Proof. It is enough to consider the case of a single exceptional point ζ for evidently rectangle R 

can be divided into smaller rectangles containing at most one ζ j. 

We divide the rectangle R into nine rectangles and let R0 be the center of the rectangle containing 

the point ζ j then by applying Theorem.1.2.1, we have 

 
f (z)dz = f (z)dz + 0, 

∂R ∂R0 

 

.

∫

∂R 
f (z)dz. = .

∫

 

 

 
∂R0 

 
f (z)dz 

. 

 

 
But we are given 

.

∫

∂R 

 
f (z)dz 

∂R0 
| f (z)| |dz| . (1.2.9) 

lim(z ζ j) f (z) = 0 
z→ζ j 

Corresponding to s > 0 we can write 
 

.(z − ζ j) f (z). < s 

f (z) < 
s
 

  z − ζ j  



7 1.2. CaUchY’s TheoReMs foR a RecTaNgle 

M.Sc.(Mathematics)-TNOU-I Year- II Sem Complex Analysis 

 

 

. . 

z 

z 
≤ 

. 

∫ 

∫ 

| | 

. 

2 
s 

a 
|dz| 

.
∫ 

f (z)dz
. 

< 

∫ 
  s 

|dz| 

. 
∂R 

. 
∂R0 z − ζ j 

Let a be a side of the rectangle which we consider R0 is a square of the centre, then 

a 
. − ζ j. ≥ 

2
 

 

∴ 
1 2 

∫ 
. − ζ j. 

 
   

< 
2s 

dz 
a 
2s 

< 
a 

4a 

 

 
 

Since s is arbitrary, we get 

.

∫

∂R 

 

f (z)dz < 8s. 

∫

∂R 

 

f (z)dz = 0. 

Hence the theorem is proved. ■ 

f (z)dz < 
∂R ∂R 

∴ 
. 

a 
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∫ 

Objectives 

Upon completion of this Unit, students will be able to 

x prove Cauchy’s theorem in a disk. 

 

 

BLOCK-I 

UNIT 2 

Cauchy’s Theorem in a Disk 
 

 

2.1 Introduction 

It is not true that the integral of an analytic function over a closed curve is always zero. Indeed, 

we have found that 
  dz   

= 2πi 

C z − a 

when C is a circle about a. In order to make sure that the integral vanishes, it is necessary to 

make sure that the integral vanishes, it is necessary to make a special assumption concerning the 

region Ω in which f (z) is known to be analytic and to which the curve γ is restricted. We are not 

yet in a position to formulate this condition, and for this reason we must restrict attention to a 

very special case. In what follows we assume that Ω is an open disk |z − z0| < ρ to be denoted 

by ∆. 

Theorem 2.1.1. If f (z) is analytic in an open disk ∆, then 

 
f (z)dz = 0 

γ 
 

for every closed curve γ in ∆. 
 

Proof. Let us define a function  
F(z) = 

9 

 
f (z)dz 

∫ 

σ 
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∫ 

∫ 

∫ 

σ 

∫ 

∫ 

σ 

 

where σ consists of the horizontal line segment CD vertical line segment DP. C is the point 

(x0, y0), D is the point (x, y0), P is a point (x, y) and B is a point (x0, y) and all the points lie 

inside the Ω. 
 

∴ F(z)   = f (z)dz 
CD+DP 

F(z)   = f (z)dz + 
CD DP 

f (z)dz. 

 

Along CD, y  is a constant. Therefore  dy = 0  This implies that  dz = dx. Along DP, x is 

constant. Therefore dx = 0 ⇒ dz = idy. 

 
F(z) = 

x 

f (z)dz 
x0 

y 

f (z)idy 
y0 

 

Differentiating with respect to y partially, we get 

∂ 
[F(z)] = 0 + i f (z) 

∂y 
 

∂ 
[F(z)] = i f (z) (2.1.1) 

∂y 

Now complete the rectangle CDPBC by dot lines. Therefore B is a point (x0, y). Let σJ consists 

of the line segments CD and BP and −σJ is PB and BC. 

Therefore σ + (−σJ) is the closed rectangle CDPBC. 

By Cauchy’s theorem for rectangle, 

∫

σ+(−σJ) 

f (z)dz + 
σ −σJ 

 
f (z)dz = 0 

 
f (z)dz = 0 

∫ 

f (z)dz − 

∫ 

J

 

 

f (z)dz = 0 

F(z)   =   

∫

 

F(z)   =   

∫

 

 

 
f (z)dz 

f (z)dz + 

∫

 

 

 

 

f (z)dz 
  BP CB 

∫ ∫ 
+ 

σJ 



 

 

− 
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Along CD x is constant. Therefore dz = idy Along BP y is constant. Therefore dz = dx 

∴ F(z) = 

 
y 

f (z)idy + 
y0 

 
x 

f (z)dx 
x0 

 

Differentiating with respect to x partially, we get 

∂ 
[F(z)] = 0 + f (z) 

∂x 
 

 

 
From (9.2.1) and (2.1.2) we get 

∂ 
[F(z)] = f (z) (2.1.2) 

∂x 

 

∂ 
[F(z)] = −i 

∂ 
[F(z)] = f (z). 

  

∂x ∂y 
 

Therefore F(z) is an analytic function and also f (z) is the derivative of the analytic function F(z) 

in Ω. 

 

i.e., f (z) = FJ(z) 

f (z) =
 d 

[F(z)]. 
dz 

Therefore f (z)dz is an exact differentiable. Thus 

 
f (z)dz = 0, 

γ 

 

γ is a closed curve in Ω. ■ 

 
For the applications it is very important that the conclusion of Theorem 2.1.1 remains valid 

under the weaker condition of Theorem 1.2.2. We state this as the following theorem. 

 

Theorem 2.1.2. Let f (z) be analytic in the region ∆J obtained by omitting a finite number of 

points ζ j from an open disk ∆. If f (z) satisfies the condition 

 
lim(z ζ j) f (z) = 0 
z→ζ j 
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for all j, then 

 

 

holds for any closed curve γ in ∆J. 

 
f (z)dz = 0. 

γ 

 

Proof. The theorem is proved using the above theorem. ■ 

∫ 



 

 

Objectives 

Upon completion of this Unit, students will be able to 

x identify Cauchy’s integral formula. 

x solve problems by using Cauchy’s integral formula. 

x prove Liouville’s theorem. 

 

BLOCK-I 

UNIT 3 

Cauchy’s Integral Formula 
 

 

3.1 Introduction 

 
Integral representation formulae are powerful tools for studying analytic functions. Through a 

very simple application of Cauchy’s theorem it becomes possible to represent an analytic function 

f (z) as a line integral in which the variable z enters as a parameter. This representation, known as 

Cauchy’s integral formula, has numerous important applications. One application of an integral 

representation is to estimate the size of the function being represented. The integral representation 

will allow us to show that all the derivatives of an analytic function are analytic. It will also allow 

us to obtain power series expansions for analytic functions. 

 
3.2 The Index of a Point with Respect to a Closed Curve 

As a preliminary to the derivation of Cauchy’s formula we must define a notion which in a precise 

way indicates how many times a closed curve winds around a fixed point not on the curve. If 

the curve is piecewise differentiable, as we shall assume without serious loss of generality, the 

definition can be based on the following lemma: 

13 
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∫ ∫ 

∫ 

− 

γ 

 

Lemma 3.2.1. If the piecewise differentiable closed curve γ does not pass through the point a, 

then the value of the integral 
∫ 

  dz   

 
is a multiple of 2πi. 

 
Proof. Case.i We can write 

γ z − a 

∫ 
  dz   = 

∫ 

d(log(z − a)) 
 γ z − a 

 
γ 

= d(log |z − a|) + i 

∫

 

d(arg(z − a)) log z = log |z| + i arg z 

When z describes a closed curve, log |z − a| returns to its initial value and arg(z − a) increases 

and decreases by a multiple of 2π. 

∫ 
  dz   

 
= o + in(2π) 

γ z − a 
∫ 

  dz    = n.2πi. 

γ z − a 

Case.ii The simplest proof is computational. If the equation of γ is z = z(t), α ≤ t ≤ β, let us 

consider the function 

h(t) = 
t
 zJ(t) 

α z(t) − a 
dt, (3.2.1) 

where h(t) is defined and continuous on the closed interval [α, β]. The derivative of h(t) is 
 

 

 
 

whenever zJ(t) is continuous. 

hJ(t) = 
zJ(t)   

, 

z(t) − a 

 

 
Hence 

 

Put t = α. 

 d 
[e−h(t)

(z(t) a)] = 0. 
dt 

 

e−h(t)
(z(t) − a) = a constant = k (say) 

Therefore e−h(α)
[z(α) − a] = k. But by (14.3.1), h(α) = 0. 

∴ e−0
[z(α) − a] = k ⇒ z(α) − a = k. 

γ γ 
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e−h(t)
[z(t) − a] = z(α) − a 

e−h(t) = 
z(α) − a 

z(t) − a 

eh(t) = 
z(t) − a 

.
 

z(α) − a 
 

Put t = β, 

eh(β) = 
z(β) − a 

z(α) − a 

Since γ is a closed curve and α ≤ t ≤ β. 

∴ z(α) =   z(β) 

eh(β) = 
z(α) − a 

z(α) − a 

eh(β) = 1 

∴ h(β) = i2πn, 
 

where n is any integer. 

∴ 
zJ(t)   

dt = i2πn. 

α z(t) − a 
β dz   

z − a 
= i2πn, 

α 

where z = z(t) and dz = zJ(t)dt. Hence the Lemma proved. ■ 

 
Definition. The index of the point a with respect to a curve γ is defined by the equation 

n(γ, a) =
 1 

∫

 
 

  dz   
. 

2πi γ z − a 
 

It is also called as winding number of γ with respect to a. 

 

 
Properties of the index of the point 

1. n(−γ, a) = −n(γ, a). 
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. . 

 

Proof. 

n(−γ, a)  = 
1 

∫

 

 
  dz   

2πi −γ z − a 

= −
 1 

∫
   dz   

2πi γ z − a 

n(−γ, a) =  −n(γ, a). 

■ 

 

2. If γ lies inside of a circle, then n(γ, a) = 0 for all points a outside of the same circle. 
 

Proof. Let a lies outside the circle γ then the function 
   1 

 is analytic of γ and on γ. 

Therefore by Cauchy’s theorem, 

  1  
∫
 

 
 

  dz   

z − a 

 
= 0 

2πi γ z − a 

∴ n(γ, a) = 0. 
 

■ 

 
3. As f (a) , the index n(γ, a) is constant in each of the regions determined by γ, and zero in the 

unbounded region. 

Proof. Let a, b be two different points in the bounded region determined by γ. The unbounded 

region contains point at infinity. 

 
Let us join the points a and b by polygon which does not meet γ. 

Now, 

n(γ, a) − n(γ, b) = 
1 

∫

   dz   
−

 1 
∫
   dz   

2πi γ z − a 2πi γ z − b 

= 
1 

∫
    1 1  

– dz 
2πi 
  1   γ z − a z − a z − b 

n(γ, a) − n(γ, b)   = 
2πi 

. 
log 

. 

z − b

 .
γ
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− 
.   

. . .

−

 

z b 

3.3. The INTegRal FoRMUla 

Outside of this line segment, the function 
z − a

 
z b z a 

17 

 
is never real and less than or equal to zero. 

Therefore the principal branch of log 
− 

is analytic in the complement of straight line 

segment. 
− 

  1 z − a 

2πi 
log 

z b 
= 0 

n(γ, a) = n(γ, b) 

 

If a lies in the unbounded region then |a| is very large. Choose ρ such that |z| < ρ < |a| then by 

the property (ii), n(γ, a) = 0. ■ 

Lemma 3.2.2. Let z1, z2 be two points on a closed curve γ which does not pass through the 

origin. Denote the subarc from z1 to z2 in the direction of the curve by γ1 and the subarc from 

z2 to z1 by γ2. Suppose that z1 lies in the lower half plane and z2 in the upper half plane. If γ1 

does not meet the negative real axis and γ2 does not meet the positive real axis, then n(γ, 0) = 1. 

 

3.3 The Integral Formula 

Theorem 3.3.1. Suppose that f (z) is analytic in an open disk Ω, and let γ be a closed curve in 

Ω. For any point a not on γ 

n(γ, a). f (a) =
 1 

∫

 
 f (z) 

dz, (3.3.1) 

2πi 
 

where n(γ, a) is the index of a with respect to γ. 

γ z − a 

 

Proof. Let f (z) be analytic in an open disk Ω. Let γ be a closed curve in ω and let asD, where 

a does not lie on γ. 

Consider the function  
F(z) = 

 f (z) − f (a) 
(3.3.2)

 

z − a 

where F(z) is analytic throughout γ except at z = a. 

 
 

lim(z − a).F(z) =   lim[ f (z) − f (a)] 
z→a z→a 

= f (a) − f (a) 

= 0. 
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∫ 

∫ 

∫ 

∫ 
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The hypothesis of the Theorem 2.1.2. Therefore we conclude that 

 

F(z)dz =   0 
γ 

 f (z) − f (a) 
dz =   0

 

γ z − a ∫  
 f (z) 

dz − f (a) 

∫  
  dz 

=  0 

γ z − a γ z − a 
 f (z) 

dz = f (a) 

 
  dz   

γ z − a γ z − a ∫  
 f (z) 

dz   = f (a).2πi.n(γ, a) 

γ z − a 

f (a).n(γ, a) = 
1  

 
2πi 

 f (z) 
dz

 

γ z − a 

■ 

 

Note.When n(γ, a) = 1, we get, 

f (a) =
 1 

∫

 
 

 f (z) 
dz.

 

2πi γ z − a 
 

Let a be interior point in γ, replace a by z, then we get 

f (z) =
 1 

∫

  f (ζ) 
dζ.

 

2πi γ ζ − a 
 

This formula is called the Cauchy’s Integral Formula and this is valid only when n(γ, a) = 1. 
z 

Example 3.3.1. Compute 
∫

|z|=1
 

e 
dz. 

z 

Solution. Let γ be a unit circle. 

i.e., γ : |z| = 1. 
By Cauchy’s integral formula, 

 

 
f (a) =

 1  
 

2πi 

 

 
 f (z) 

dz
 

γ z − a 

Here f (z) = e
z
 and a = 0. Clearly the function f (z) is analytic and the point a = 0 lies inside 

γ. 

∫ 
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∫ 

 

 

∴ f (0) = 
  1 

2πi γ 

ez  

dz 
z − 0 

ez 

dz 

γ z 
f (0)2πi 

ez 

dz 

γ z 
=   2πi since f (0) = 1. 

 

Example 3.3.2. Compute 
∫
    dz  

. 
|z|=2 z2 + 1 

Solution. Let γ be |z| = 2. 

By Cauchy’s integral formula, 

f (a) =
 1  

 
2πi 

 
1 A 

 f (z) 
dz

 

γ z − a 

B 

z2 + 1 
= 

z + i 
+ 

z − i 
1 1 1 1 1 

z2 + 1 
=  −

2i z + i 
+ 

2i z − i 
∫ 

   dz 
=   −

 1 
∫ 

  dz  
+

 1 
∫
   dz   

γ z2 + 1 

 

Here f (z) = 1 and a = i, −i 

2i γ z + i 2i γ z − i 

∫ 
   dz  1 1 

=   − .2πi f (−i) + .2πi f (i) 

γ z2 + 1 

   dz  

γ z2 + 1 

2i 2i 

= 0. 

 
 

3.4 Higher Derivatives 
 

 

The representation formula 

f (z) =
 1 

∫

 
 

 f (ζ) 
dζ

 

2πi γ ζ − z 

∫ 

∫ 
= 

∫ 

∫ 
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. . 
2πi ζ − (z + ∆z) ζ −z 

 

gives us an ideal tool for the study of the local properties of analytic functions. In particular we 

can now show that an analytic function has derivatives of all orders, which are then also analytic. 

Theorem 3.4.1. Cauchy’s Higher Derivative Formula. Let f (z) be analytic in the region Ω then 

it has derivatives of all orders in the region Ω which are also analytic function in the region Ω. 

 

i.e., f (z) = 
1 

∫

  f (ζ) 
dζ

 
2πi γ ζ − z 

then f J(z)   = 
1 

∫

    f (ζ)   
dζ

 
2πi γ (ζ − z)2 

f JJ(z)   = 
1 

∫

    f (ζ)   
dζ

 
2πi γ (ζ − z)3 

In general f 
n
(z) = 

1 
∫

   f (ζ) 
dζ

 

2πi γ (ζ − z)n+1 

 
 

where γ is a circle. 
 

Proof. By Cauchy’s integral formula, 

f (z) =
 1  

 
2πi 

 
 f (ζ) 

dζ. (3.4.1) 

γ ζ − z 
 

Choose |∆z| so small such that z + ∆z lies with in γ. 

∴⇒ f (z + ∆z) =
 1 

∫

   f (ζ) 
dζ.

 

 

Now 

2πi 

 

f (z + ∆z) − f (z)   = 
1 

∫

 
 

γ ζ − (z + ∆z) 

 
  1  1  

f (ζ) − dζ 

= 
∆z 

∫
   f (ζ)dζ  

2πi γ [ζ − (z + ∆z)][ζ − z] 

 f (z + ∆z) − f (z) 
= 

1  
∫
   f (ζ)dζ  

∆z 2πi γ [ζ − (z + ∆z)][ζ − z] 

γ 

∫ 
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. . 

. 

∆z 2πi γ (ζ − z)2 
2πi [ζ − (z + ∆z)][ζ −z] (ζ − z)2 

γ (ζ − z)2 

γ δ2 

. 

      

. 

 

Now, 

 f (z + ∆z) − f (z) 
−

  1 
∫
 

 
 f (ζ)dζ 

= 
1 

∫
 

 

 

 
  1    1  

– f (ζ)dζ 

 f (z + ∆z) − f (z) 
−

  1 
∫
 

 f (ζ)dζ 
= 

∆z 
∫
   f (ζ)dζ  

∆z 2πi γ (ζ − z)2 2πi γ [ζ − (z + ∆z)][ζ − z]2 

 

.
 f (z + ∆z) − f (z) 

−
 1 

∫
  f (ζ)dζ 

. ≤ 
|∆z| 

∫
 

 

  | f (ζ)| |dζ |  
 

(3.4.2) 
∆z 2πi γ (ζ − z)2 

. 

2π γ  |ζ − z|2 |ζ − (z + ∆z)| 

Let δ denote the mean distance of the point ζ and γ from z . Since f (ζ) is analytic on γ and 

therefore it is continuous on γ. Hence 

 

| f (ζ)|   ≤ M on γ 

and  |ζ − z|   ≥   δ 
1 1 

|ζ − z|2 
≤ 

δ2
 

 

|ζ − z − ∆z|   ≥   |ζ − z| − |∆z| 
1 

|ζ − z − ∆z| 
≤
 

(17.5.2) ⇒ .
 f (z + ∆z) − f (z) 

−
 1 

∫
 

   

1 

δ − |∆z| 

 
 f (ζ)dζ 

. 

 

≤ 
|∆z| 

∫
 

 

 
 

M     |dζ | 

 
. ∆ π 

∫
 

 

 

 

 

 
is the length of γ 

2π δ2 (δ − |∆z|) γ 

∫  

|dζ | = l 
 

∴ .
 f (z + ∆z) − f (z) 

−
 1 

∫
  f (ζ)dζ 

. ≤ 
|∆z| M 1 

l
 

 

∆z 2πi γ (ζ − z)2 . 2π δ2 (δ − |∆z|) 

∴ .
 f (z + ∆z) − f (z) 

−
 1 

∫
  f (ζ)dζ 

. → 0 as |∆z| → 0. 
∆z 2πi 

γ (ζ − z)2 . 

γ 

|dζ | 
1 

≤ 
|∆z| M 

δ − |∆z| 2π i 2 z 

γ 

. 
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2 

∫ 

2πi 

∫

 

f J(z) −
  1  

∫

  f (ζ)d(ζ) 
= 0 

2πi γ (ζ − z)2 

f J(z)   = 
1!

 
2πi γ 

 f (ζ)d(ζ) 

(ζ − z)2 

S imilarly, f JJ(z)   = 
2!

 

In general f 
n
(z) = 

n! 
∫

 

 f (ζ)d(ζ) 

(ζ − z)3 

 f (ζ)d(ζ) 

2πi γ (ζ − z)n+1 

 
 

Hence the theorem is proved. ■ 

Lemma 3.4.1. Suppose that ϕ (ζ) is continuous on the arc γ. Then the function 

Fn(z) = 

∫

 
ϕ (ζ)dζ 

γ (ζ − z)n 
 

is analytic in each of the regions determined by γ, and its derivative is 

 

Fn
J (z) = nFn+1(z). 

 
Proof. First we shall prove that F1(z) is continuous. 

Let z0 be a point not on γ and choose the neighborhood |z − z0| < δ so that it does not meet γ. 
Claim : F1(z) is continuous. 

Let us restrict z to the smallest neighborhood so that |z − z0| < δ . 

Now 

F1(z) − F1(z0)   =    

∫

 ϕ (ζ)dζ 
− 

∫  
ϕ (ζ)dζ 

γ  ζ − z γ ζ − z0 

F1(z) − F1(z0) = 

∫

 
  z − z0 

ϕ (ζ)dζ (3.4.3) 

γ (ζ − z)(ζ − z0) 

|F1(z) − F1(z0)| ≤ |z − z0|

∫

 
   |ϕ (ζ)| |dζ | 

γ |ζ − z| |ζ − z0| 

 

(3.4.4) 

γ 
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2 

δ 

 

Since |z − z0| < δ and  |ζ − z0| > δ.  
|ζ − z|   =   |ζ − z0 + z0 − z| 

|ζ − z|   ≥   |ζ − z0| − |z − z0| 

≥ δ − 
2
 

δ 
|ζ − z|   ≥ 

2
 

1 2 

|ζ − z| 
≤ 

δ 
.
 

Since  |ϕ (ζ)| ≤ M  and  
∫

γ 
|dζ | = l. 

 

∴ (17.5.3) ⇒ |F1(z) − F1(z0)| ≤ 
δ 

. 
2 1 

Ml ≤ 
Ml 

. 

 
Put δ = 

Ml
 

ε 

2 δ δ δ 

 
 
ε 

 
Therefore F1(z) is continuous. 

|F1(z) − F1(z0)| ≤ Ml 
Ml 

≤ ε 

 
 

(17.5.3) ⇒ 
F1(z) − F1(z0) 

=   

∫
 ϕ (ζ) 

dζ
 

z − z0 γ (ζ − z)(ζ − z0) 

lim 
F1(z) − F1(z0) = lim 

∫

   ϕ (ζ) 
dζ

 
z→z0 z − z0 z→z0 γ (ζ − z)(ζ − z0) 

FJ (z0) =   

∫

   ϕ (ζ) 
dζ

 
1 

γ (ζ − z0)(ζ − z0) 

F1
J (z0)   =   

∫

 
   ϕ (ζ)   

dζ
 

γ (ζ − z0)2 

F1
J (z0)   = F2(z0) 

 

 

∴ FJ (z) = 

∫

    ϕ (ζ)   
dζ

 
1 

γ (ζ − z0)2 

F1
J (z) = 1.F2(z). 

The general case is proved by induction. We have already proved by the case n = 1. We shall 
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∫ ∫

−

 

− 

 

assume that the result is true for n = n − 1. i.e., we shall assume that 

Fn
J
−1(z) = (n − 1)Fn(z). 

 

To prove that 

 

Consider 

Fn(z) − Fn(z0)   =    

∫

 

 

Fn
J (z) = n.Fn+1(z). 

 
   ϕ (ζ)   

dζ − 

∫ 
   ϕ (ζ)  

dζ
 

γ (ζ − z)n 
γ (ζ − z0)n 

=  

∫ 
  (ζ − z0)ϕ (ζ)   

dζ − 

∫ 
   ϕ (ζ)  

dζ
 

γ (ζ − z)n(ζ − z0) γ (ζ − z0)n 

= 
(ζ − z + z − 

z0)ϕ (ζ) 
dζ
 

γ (ζ − z)n(ζ − z0) 

   ϕ (ζ)   
dζ

 

γ (ζ − z0)n 

=  

∫ 
   (ζ − z)ϕ (ζ)   

dζ + (z − 

z0)

∫
 

  ϕ (ζ) 
dζ − 

∫
    ϕ (ζ)   

dζ
 

γ (ζ − z)n(ζ − z0) γ (ζ − z)n(ζ − z0) γ (ζ − z0)n 

Fn(z) − Fn(z0)   =    

∫

 
  ϕ (ζ) 

dζ + (z − z0) 

∫

   ϕ (ζ) 
dζ − 

∫
   ϕ (ζ) 

dζ
 

γ (ζ − z)n−1(ζ − z0) 

 

De f ine Gn(z)   =   

∫

 

γ (ζ − z)n(ζ − z0) 

 
  ϕ (ζ) 

dζ
 

γ (ζ − z)n(ζ − z0) 

γ (ζ − z0)n−1(ζ − z0) 

Gn− 
1(z)   =   

∫

   ϕ (ζ) 
dζ

 

γ (ζ − z)n−1(ζ − z0) 

∴ Fn(z) − Fn(z0) = Gn 1(z) − Gn 1(z0) + (z − z0) 

∫
 ϕ (ζ) 

dζ (3.4.5) 
– − 

γ (ζ − z)n(ζ − z0) 

Since
 ϕ (ζ)  is continuous on γ ( ζ /= z0. ) Gn 1(z) is continuous on γ. Also |z − z0| is bounded. 

 i.e., ζ z0 − z z 
| − 0| < η. 

|Fn(z) − Fn(z0)| ≤ |Gn 1(z) − Gn 1(z0)| + |z − z0| 

∫

 
 

    |ϕ (ζ)| |dζ |  
– − 

ε Ml 2
n
 

γ |ζ − z|n |ζ − z0| 

= 
2 

+ η. 
δn 

. 
δ
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∫ 

∫ 

∫ 

 

Choose 
δn+1ε 

η = 
2n+1 Ml 

 

 F (z)  F (z ) ε δn+1ε 
 

 

Ml2
n
 

 

| n − n  0 | ≤ 
2 

+ 
2n+1 Ml 

. 
δn+1 

|Fn(z) − Fn(z0)| ≤ ε, |z − z0| < η. 
 

Fn(z) − Fn(z0) = 
Gn−1(z) − Gn−1(z0) 

+ ∫
 

  ϕ (ζ) 
dζ

 

z − z0 z − z0 γ (ζ − z)n(ζ − z0) 

lim 
Fn(z) − Fn(z0) 

= lim 
Gn−1(z) − Gn−1(z0) 

+ Gn(z0)
 

z→z0 z − z0 z→z0 z − z0 

Fn
J (z0)   =   Gn

J 
−1(z0) + Gn(z0) 

= (n − 1)Gn(z0) + Gn(z0) 
Fn

J (z0)   =   n.Gn(z0) 

= n 

∫

    ϕ (ζ)dζ   

γ (ζ − z0)n+1 

= nFn+1(z0). 

 
 

Hence by induction the theorem is proved. ■ 

 
Note.1 We have proved that an analytic function has derivatives of all orders which are analytic 

and can be represented by the formula 

f 
n
(z) =

 n! 
∫

    f (ζ)dζ 
. 

2πi γ (ζ − z)n+1 
 

Note.2 As a consequence of the above result we have the following two classical theorems. 

Remark. The integral 
γ 

f (z)dz, with continuous f , depends only on the end points of γ if and 

only if f is the derivative of an analytic function in Ω. 

Theorem 3.4.2. If f (z) is defined and continuous in a region Ω, and if 
γ 

f dz = 0 for all closed 

curves γ in Ω, then f (z) is analytic in Ω. 

 
Proof. Since 

γ 
f (z)dz = 0 for all closed curves γ in Ω. The integral depends only on end points 

of γ. 
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rn 

∫

≤| | 

≤ 

≤ 

 

Therefore by the above Remark, f (z) is the derivative of an analytic function F(z) in Ω. 

i.e., f (z) = FJ(z). 

Since the derivative of an analytic function is analytic, we say that f (z) is analytic. ■ 

Theorem 3.4.3. Cauchy’s Inequality (or) Cauchy’s Estimates If f (z) is analytic within and on 

a circle C given by |z − a| = r lying inside ∆ and if | f (z)| ≤ M for every z on C then 

| f n(a)| ≤ 
n! M 

. 
 

Proof. By Cauchy’s higher derivative formula, 

 

f 
n
(a) = 

n! 
∫

 

 
  f (z) 

dz
 

2πi γ (z − a)n+1 

f 
n
(a) 

n!  
 

|2πi| 

| f (z)| |dz| 

γ |z − a|n+1
 

n! M2πr 
≤ 

2π rn+1 

f 
n
(a) 

Mn! 
. 

rn 

■ 
 

Theorem 3.4.4. Liouville’s Theorem A function which is analytic and bounded in the whole plane 

must reduce to a constant. 

Proof. Let C be a circle with centre at a and radius r. By Cauchy’s integral formula for higher 

derivative, we have 

f 
n
(a) =

 n! 
∫

   f (z) 
dz.

 

2πi γ (z − a)n+1 

Since f (z) is bounded, we have f (z) ≤ M, ∀z. 

| f J(a)|   ≤ 
  1   

∫

 | f (z)| |dz| 
 

|2πi| γ |z − a|2
 

1 
≤ 

2π 
M2πr 

r2 

f J(a) 
M 

r 
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. . 

. 
. 0 

.= 

p(z) 

|p(z)| = a0z
n
 + a1z

n−1
 + .... + an−1z + an 

. 
. 

 

This is true for any circle with radius a. We know that the complex plane is a circle with infinite 

radius. 

lim | f J(a)| ≤ lim  
M  

= 0 

r→∞ r→∞ r 

 

for all points a in the z plane. 

i.e., f J(a) = 0 

 
∴ f J(z) = 0, ∀z. 

f (z) = constant. 

■ 

Theorem 3.4.5. Fundamental Theorem of Algebra. Every polynomial in z of degree n > 0 

must have at lest one root. 
 

Proof. Consider the polynomial 

 

p(z) = a0z
n
 + a1z

n−1
 + .... + an−1z + an, a0 0. 

 

Suppose that p(z) /= 0 in the whole complex plane then we say that p(z) is analytic in the whole 

complex plane and therefore 
  1  

 
p(z) 

is analytic in the whole complex plane since p(z) /= 0. 

 

 

n a1z
n−1

 + .....+ an 
 

= |a0z | 1 +    
a zn

 

|a0| |z
n| 1 + 

a1
 

  a2 an   + + .... + . 
. a0z a0z2 a0zn . 

|p(z)| → ∞ as |z| → ∞. 

∴
 1   

→ 0 as |z| → ∞. 
 

Therefore 
  1  

 
p(z) 

complex plane. 

is bounded in the whole plane. Hence  
  1  

 
p(z) 

 

is analytic and bounded in the whole 

Therefore by Liouville’s theorem,   
  1  

 
p(z) 

is constant and hence p(z) is constant which is a 

contradiction. 

Our assumption p(z) /= 0 is not true. Thus p(z) has at least one root. ■ 
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Objectives 

Upon completion of this Unit, students will be able to 

x express the analytic function as an infinite series. 

x classify the singular points. 

x identify the maximum principle. 

 

 

BLOCK-I 

UNIT 4 

Local Properties of Analytic Functions 
 

 

4.1 Introduction 

 
We have already proved that an analytic function has derivatives of all orders. In this section we 

will make a closer study of the local properties. It will include a classification of the isolated 

singularities of analytic functions. 

 
4.2 Removable Singularities. Taylor’s Theorem 

 
In Theorem.1.2.2 we introduced a weaker condition which could be substituted for analyticity at a 

finite number of points without affecting the end result. We showed moreover, in Theorem 2.1.2, 

that Cauchy’s theorem in a circular disk remains true under these weaker conditions. This was 

an essential point in our derivation of Cauchy’s integral formula, for we were required to apply 

Cauchy’s theorem to a function of the form 

 f (z) − f (a) 
. 

z − a 
 

29 
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− 

 

Finally, it was pointed out that Cauchy’s integral formula remains valid in the presence of a 

finite number of exceptional points, all satisfying the fundamental condition of Theorem 1.2.2, 

provided that none of them coincides with a. This remark is more important than it may seem 

on the surface. Indeed, Cauchy’s formula provides us with a representation of f (z) through an 

integral which in its dependence on z has the same character at the exceptional points are such 

only by lack of information, and not by their intrinsic nature. Points with this character are called 

removable singularities. We shall prove the following precise theorem. 

Theorem 4.2.1. Suppose that f (z) is analytic in the region ΩJ obtained by omitting a point a 

from a region Ω. A necessary and suflcient condition that there exists an analytic function in Ω 

which coincides with f (z) in ΩJ is that 

 
lim(z a) f (z) = 0. 
z→a 

The extended function is uniquely determined. 

 
Proof. Since the extended function must be continuous at a, the necessary and the uniqueness 

are trivial. 

To prove the sufficiency part: 

Draw a circle C about the point a such that C and its interior points are contained in Ω. Then 

the Cauchy’s integral formula is valid and we can write 

f (z) =
 1 

∫

  f (ζ)dζ 
, ∀ z a 

2πi 
C  ζ − z 

in C. The integrand   
 f (ζ)

 
ζ − z 

 
is an analytic function throughout the inside of the circle C. 

Consequently, the function has the value which is f (z) for z /= a. 

i.e., f (z) =
 1 

∫

  f (ζ)dζ 
, ∀ z a 

2πi 
C  ζ − z 

f (a) =
 1 

∫

  f (ζ)dζ 
, ∀ z = a. (4.2.1) 

 
We apply this result to the function 

2πi C  ζ − z 

 

F(z) =
 f (z) − f (a) 

,
 

z − a 
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− 

− − − 

/1 

 

where f (z) is not defined at z = a. F(z) satisfied by the condition 

 
lim(z − a)F(z) =   lim[ f (z) − f (a)] 
z→a z→a 

lim(z a)F(z) =   0 
z→a 

∴ lim F(z) =   lim
 f (z) − f (a)

 

z→a z→a z − a 
i.e., lim F(z) = f

 J(a). 
z→a 

Hence there exists an analytic function which is equal to  F(z)  for  z =/ a  and equal to  f J(a)  for 

z = a. Hence the theorem is proved. ■ 

Theorem 4.2.2. Taylors’s theorem If f (z) is analytic in a region Ω, containing a, if it possible 

to write 

f (z) = f (a) + 
f J(a)

(z a) + 
1! 

where fn(z) is analytic in Ω. 

f JJ(a)
(z a)2 

2! 
+ · · · + 

f (n−1)(a)
(z a)n−1

 

(n − 1)! 
fn(z)(z − a)

n, 

 
(4.2.2) 

 

Note. This finite development must be well distinguished from the infinite Taylor’s series which 

we will study later. It is however, the finite development (4.2.2) which is the most useful for the 

study of the local properties of f (z). 

 

Proof. Consider the function  
F(z) =  f (z) − f (a) 

z − a 

is defined and analytic in Ω except at z = a. 

 

∴ F(z) = f J(a) f or z = a. 

 

F(z) can be denoted by the F(z) = f1(z). 

i.e., f (z) =
 f (z) − f (a) 

, z = a 

z − a 

and  
f1(z) = f J(a), z = a. 

+ 
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− − 

− 

1 

 

where f1(z) is analytic in Ω.  
(z − a) f1(z)   = f (z) − f (a) 

 

 

f (z) = f (a) + (z − a) f1(z) (4.2.3) 

Repeating the above process we can obtain an analytic function 
 

 f1(z) − f1(a) 
, z a

 

f2(z) = 
 

z a 
JJ 
(a), z = a 

 

 

 

 
Using (4.2.4) in (4.2.3), we get 

(z − a) f2(z) = f1(z) − f1(a) 

f1(z) = f1(a) + (z − a) f2(z) (4.2.4) 

 

f (z) = f (a) + f1(a)(z − a) + (z − a)
2
 f2(z). 

Continuing in this way, we get 

 

f (z) = f (a) + f1(a)(z − a) + (z − a)
2
 f2(z) + · · · + fn−1(a)(z − a)

n−1
 + fn(z)(z − a)

n
 

Differentiating the above expression n times and setting z = a we get 
 

 

f 
n
(a) = 

f 
n
(a) 

 
 

n! 
 

f (a) = 
f J(a)

, f (a) = 
f JJ(a)

, · · · f 
 

  

 (a) f 
n−1

(a) 
 

 

1 
1! 

2 
2! 

n−1 
= 

(n − 1)!
.
 

∴ f (z) = f (a) + 
f J(a)

(z a) + 
1! 

f JJ(a)
(z a)2 

2! 
+ · · · 

f 
n−1

(a) 

+ 
(n − 1)!

(z − 
a) 

+ fn(z)(z − a)
n. 

Hence the proof of Taylor’s theorem completed. ■ 

 
Example. Express fn(z) as a simple line integral. 

Solution. Let C be a circle with centre at a contained in the region ω. Since fn(z) is analytic 

n−

1 

f 
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−1 

z − a 2πi C ζ −z 2πi 

 

throughout C. We can use Cauchy’s integral formula 

fn(z) = 
  1 

∫  
 fn(ζ) 

dζ (4.2.5) 

 

By Taylor’s formula, we have 

2πi C ζ − z 

 

f ( 
f J(a) 

 
 

f JJ(a) 2 
 

 

f 
n−1

(a) 
 

 

n−1 n 

ζ) = f (a) + 
1!  

(ζ − a) + 
2!   

(ζ − a) + · · · + 
(n − 1)!

(ζ − a) 
+ fn(ζ)(ζ − a) 

 

( n f J(a) 
 

 

f JJ(a) 2 
 

 

f 
n−1

(a) 
 

 

n−1 

ζ − a)  fn(ζ) = f (ζ) − f (a) − 
1!  

(ζ − a) − 2!   
(ζ − a) – · · · − 

(n − 1)!
(ζ − a) 

(4.2.6) 

Using (4.2.6) in (4.2.5), we get 

fn(z) = 
  1 

∫

   f (ζ) 
−

 f (a) 
∫
 

 

  dζ  
– · · · 

2πi C (ζ − z)(ζ − a)n 2πi C (ζ − z)(ζ − a)n 

Thus there is one main term containing f (ζ). The remaining terms are, except for constant factors 

of the form 

F (a) = 

∫
 dζ 

, γ ≥ 1. 

 
Put γ = 1, we have 

C (ζ − z)(ζ − a)γ 

F1(a) = 

∫
 dζ 

 

C (ζ − z)(ζ − a) 
 

Consider
 1 

 
(ζ − z)(ζ − a) 

A = 
ζ −z 

B + 
ζ − a 

F1(a)   = 
1   . 1 

∫

   dζ 
–
 1  

∫
 

  dζ 

F (a)   = 
1 

[n(c, z) n(c, a)] 

z − a 

Since n(γ, a) = n(γ, b) where a and b are any two points inside C. Here z and a are points 

inside C. 

 

∴ n(c, z) = n(c, a) 

n(c, z) − n(c, a) = 0 

F1(a) = 0 

 

∴ F1
J (a) = 0,  F2

JJ(a) = 0,  F2
JJJ(a) = 0, · · · 

C ζ − a 

γ 

. 
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− − 

 

By Lemma 3.4.1, we have  
Fn

J (z) = n Fn+1(z) 

Fγ
J (a) 

 
Put γ = 2, we have F2(a) = 0. 

Similarly, F3(a) = 0 · · · Hence 

∴ Fγ+1 = 
γ 

. 

fn(z) =
 1 

∫

   f (ζ)dζ  
. 

 

4.3 Zeros and Poles 

2πi 
C (ζ − z)(ζ − a)n 

 

Definition 4.3.1. The zero of an analytic function f (z) is a value of z for which f (z) = 0. 

Example 4.3.1. Let f (z) = z sin z. 

sin z = 0 ⇒ z = nπ, n ∈ Z are the zeros of f (z). 

Theorem 4.3.1. If f (z) is analytic in the region Ω and f (a) together with all derivatives f 
γ
(a) 

vanishes in Ω then f (z) = 0 in Ω. 

 
Proof. Since f (z) is analytic in the region Ω. By Taylor’s theorem, f (z) can be expressed as 

 

f (z) = f (a) + 
f J(a)

(z a) + 
1! 

f JJ(a)
(z a)2 

2! 
+ · · · 

f 
n−1

(a) 

+ 
(n − 1)!

(z − 
a) 

+ fn(z)(z − a)
n. 

 

Since f (a), f J(a), f JJ(a), · · · vanishes. Therefore the above expression reduces to 

f (z) = (z − a)
n
 fn(z) 

| f (z)| ≤ |z − a|n | fn(z)| (4.3.1) 

Let C be a circle centre at a contained in Ω. 

fn(z)   = 
1 

∫

   f (ζ)dζ  
2πi 

| fn(z)| ≤ 
1 

∫

 
C (ζ − a)n(ζ − z) 

   | f (ζ) |dζ || 

2π C |ζ − a|n |ζ − z| 

n−

1 
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| ≤|n 

⇒ | |   ≤ −| 

 | 

 

| f (ζ)| ≤ M  and  |ζ − a| = R, where  R  is the radius of the circle. 

|ζ − z|   =   |ζ − a − (z − a)| 

≥   |ζ − a| − |z − a| 

|ζ − a|   ≥   R − |z − a| 
1 

|ζ − z| 
≤
 

1 
 

 

R − |z − a| 

∴ f (z) 
  M  

Rn−1(R − |z − 
a|) 

(4.3.1) f (z) z a 
n
 .

 M 
 

Rn−1(R − |z − a|) 
. z − a .

n
 MR  

 
But 

|z − a|n
 

 
 

≤ . R . . 
R − |z − a| 

R 
→ 0 for n → ∞, since |z − a| < R. Hence f (z) = 0 inside of C. Let E1 be the 

set on which f (z) and all derivatives vanish and E2 the set on which the function or one of the 

derivatives is different from zero. E1 is open by the above reasoning and E2 is open because the 

function and all derivatives are continuous. Since γ is connected, one of the sets E1 or E2 must 

be empty. 

E1 ∅ ⇒ E2 = ∅. Therefore Ω = E1, since Ω = E1 ∪ E2. Therefore Ω = E1. Hence f (z) = 0 

in Ω. ■ 

Theorem 4.3.2. The zero’s of an analytic function which is not identically to zero are isolated 

points. 

 

Proof. Let f (z) be an analytic function in the region Ω and z = a be a zero of f (z). Suppose that 

fn(a) /= 0. From Taylor’s theorem, we have 

f (z) = (z − a)
n
 fn(z), 

 

where fn(z) is analytic and fn(a) /= 0. 

∴ z = a is a zero of order n for f (z). 

If there exists any other zero of f (z) it should arise from fn(z) only. But fn(z) is analytic at a 

and fn(a). Therefore fn(z) is not equal to zero in the neighborhood of a. Hence f (z) has no 

other zero in the neighborhood of a except a. Thus the zero f (z) are isolated. ■ 

Definition 4.3.2. Let f (z) be analytic in the region Ω and defined for 0 < |z − a| < δ. In 
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otherwords, f (z) should be analytic in the neighborhood of a except at a itself then z = a is 

called isolated singularity. 

Example 4.3.2. f (z) =
  1 

 

z − a 
has an isolated singularity at z = a. 

Definition 4.3.3. Pole. If limz→a f (z) = ∞ then the point z = a is called the pole of f (z). 

Example 4.3.3. f (z) =
 1 

 
(z − a)m 

limz→a f (z) = ∞. 

∴ z = a is a pole of f (z). 

Note. If z = a is a pole of f (z) then z = a is zero of 
1 
. Also the function g(z) =

 1  
 

 

 

 
has a 

z f (z) 

removable singularity at z = a. If z = a is a zero of order n for g(z) then in the neighborhood 

of a, g(z) can be expressed as 

g(z) = (z − a)
h
gn(z) 

where gn(z) is analytic and gn(a) /= 0. The number h is the order of the pole. 

f (z) = (z − a)−h
 fh(z) 

 

where fn(z) = 
   1 

 
gh(z) 

is analytic and different from zero in the neighborhood of a. 

 

Definition 4.3.4. Removable Singularity.Let f (z) be defined in a region Ω and if limz→a f (z) 

exists finitely then z = a is called removable singularity of f (z). In otherwords if limz→a(z − 
a) f (z) = 0 then z = a is called removable singularity. 

Example 4.3.4. 
sin z

 
z 

has a removable singularity at z = 0. 

Example 4.3.5. f (z) = 
e

z
 − 1 
z 

has removable singularity at z = 0. 

Definition 4.3.5. Meromorphic Function.  A single valued function f (z) which is analytic 

except for poles in the region Ω is called meromorphic function. tan z, cot z, and any function 

f (z) = 
p(z)

 
q(z) 

where p(z) and q(z) are polynomial function are meomorphic functions. 

Definition 4.3.6. Essential Singularity. Let f (z) be defined in the region Ω. We consider the 

conditions (i) limz→a |z − a|α . | f (z)| = 0, α is real. 

(ii) limz→a |z − a|β . | f (z)| = ∞, β is real. 

If neither condition (i) nor (ii) holds for any real α, β is called essential singularity of f (z). 
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1 

z→a 

z→a 

.        
≤ 

 −   −|  | | 

 | |  | 
z→a 

 

Note. If limz→a f (z) does not exist then z = a is called an essential singularity. 

Example 4.3.6. 
 

f (z) = e z 
1 ( 1 )2 

  

f (z) = 1 + z
 + z

 + · · · 
1! 2! 

f (z) = 1 + 
1 

+
 1 1

 1 1 
+ + · · · 

 

∴ limz→a f (z) does not exist at z = 0. 

∴ z = 0 is an essential singularity. 

z 2! z2 3! z3 

Theorem 4.3.3. Weierstrass Theorem. An analytic function comes arbitrarily close to any 

complex value in every neighborhood of an essential singularity. 

Proof. Suppose that the assertion is not true then there exists a complex value A and a δ > 0 

such that 

 

For any α < 0, we have 

| f (z) − A| > s f or |z − a| < δ. 

 
lim |z − a|α | f (z) − A| = ∞. 

∴ z = a cannot be an essential singularity of f (z) − A. Accordingly, there exist a β with 

lim |z − a|β | f (z) − A| = 0, 
 

and we are free to choose β > 0. 

 
lim |z − a|β | f (z)| = lim |z − a|β | f (z) − A + A| 

z→a z→a 

lim z a 
β [ f (z) A + A ] 

z→a 

lim |z − a|β | f (z)| = 0. 

This implies that z = a cannot be an essential singularity of f (z). This is a contradiction to the 

statement. Therefore our assumption is wrong. 

 

∴ | f (z) − A| < s, ∀ |z − a| < δ. 

Hence f (z) comes arbitrarily close to any complex value A in every neighborhood of an essential 

singularity. ■ 
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– · · · 

– · · · 

 

Note. From the above theorem we observed that the behavior of an function in the neighborhood 

of essential singularity is very complicated. 

Singular part of a function. Let z = a be a pole of order h for a function f (z) then the 

neighborhood of z = a we can write 

f (z) =
  fh(z)   

(z − a)h 

where fh(z) is at a and fh(a) /= 0 By Taylor’s theorem, 

fh(z) = Bh + (z − a)Bh−1 + · · · + (z − a)
h−1

B1 + (z − a)
hφ(z) 

where φ(z) is analytic in the neighborhood of a. Substituting this in f (z), we get 

1 

f (z) = 
(z − 

 

a)h 

.
Bh + (z − a)Bh−1 + · · · + (z − a)

h−1
B1 + (z − a)

hφ(z)
.
 

f (z) = 
Bh 

+
 Bh−1 

+ φ(z) 

 

 

The part 

(z − a)h (z a)h−1 + + 
   B1 

 

(z − a) 

    Bh 
+

 Bh−1  

(z − a)h (z a)h−1 + + 
   B1 

 

(z − a) 

is called the singular part or principal part of f (z) in the neighborhood of the pole z = a of order 

h. 

 
 

4.4 Local Mapping 

 
We begin with the proof of a general formula which enables us to determine the number of zeros 

of an analytic function. 

Theorem 4.4.1. Let z j be the zeros of a function f (z) which is analytic in a disk ∆ and does not 

vanish identically, each zero being counted as many times as its order indicates. For every closed 
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n 

2πi f (z) 

∫ 

 

curve γ in ∆ which does not pass through a zero 

X 
n(γ, z j) = 

  1  
∫

 
 

 

 
f J(z) 

dz, (4.4.1) 

 

where the sum has only a finite number of terms /= 0. 

Proof. Consider a function f (z) which is analytic and not identically zero in an open disk ∆. Let 

z1, z2, · · · , zn be the finite number of zeros of f (z) inside ∆, each zero being counted according 

to its degree of multiplicity. Then we can write 

 

f (z) = (z − z1)(z − z2) · · · (z − zn)g(z) 

where g(z) is analytic and not equal to zero in ∆. 

log( f (z)) =  log(z − z1) + log(z − z2) + · · · + log(z − zn) + log(g(z)) 

 
Differentiating with respect to z, we get 

 

f J(z) 1 1 1 gJ(z) 

f (z) 
= 

z − z1 
+ 

z − z2 
+ · · · + 

z − zn 
+ 

g(z) 

Multiply by
 1  

 
2πi 

 
and integrating each term along with γ, we get 

  1  
∫
 f J(z) 

dz = 
  1 

∫
 

 

   dz   
+

 1 
∫
    dz  

+ · · · +
 1 

∫
    dz   

+
 1 

∫
 gJ(z) 

dz
 

 

2πi γ f (z) 2πi γ z − z1 2πi γ z − z2 2πi γ z − zn 2πi γ g(z) 
 

Since g(z) is analytic and non-null in ∆ and gJ(z) is also analytic and hence 
gJ(z)

 
g(z) 

 

must be 

analytic.  

∴ by CauchyJs theorem 
γ 

gJ(z) 
dz = 0. 

g(z) 

  1 
∫
 f J(z) 

dz = n(γ, z1) + n(γ, z2) + · · · + n(γ, zn) + 0 
 

2πi γ f (z)  
  1 

2πi 

 
f J(z) 

dz =
 

γ f (z) 

X

j=1 

 

n(γJ, z j) 

Hence the theorem. ■ 

j 

∫ 

γ 
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∫ X 

X 

n ∫

j

 

w f (z) 

2πi f (z) 

f (z) 

 

Note.1 The function w = f (z) maps γ onto a closed curve Γ in the w− plane, and we find 

∫ 
dw 

= 

∫ 

 

 

f J(z) 
dz.

 

 

  1 
∫ 

dw 
 

   

= 
1 

∫
 f J(z) 

dz
 

  1 

2πi Γ 

  dw   

w − 0 
=

 

n 

 
 

j=1 

n 

n(γJ, z j) by (4.4.1) 

n(Γ, 0) = n(γJ, z j) 
j=1 

 

Note.2 Let  

 
n(γ, z ) = 

 
1, if z j lies inside γ 

j 

 

 
Therefore the above result reduces to 

0, if  z j lies outside γ 

  1 
∫
 

 

 

f J(z) 
dz = N, 

 

where N is the total number of zeros of f (z). 

Note.3 Let z j(a) denote the number of zeros of the function f (z) − a inside γ, then replacing 

f (z) by f (z) − a in the above result, we get 
 

X

j=1 

n(γ, z (a)) =
 1  

 
2πi 

f J(z)   
dz

 

γ f (z) − a 
 

If Γ is the image of γ under the mapping w = f (z) then we get 

  1 
∫
 f J(z) dz = 

  1 
∫

 
 

  dw   

2πi γ f (z) − a 2πi Γ w − a 
 

  1 

2πi 

f J(z) 
 

γ f (z) − a 
dz = n(Γ, a) 

2πi 

w Γ 2πi 

Γ 

∫ 

γ 

γ 

γ 
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X X 

 

If a and b lie in the same region determined by Γ, we have 
 

n 

n(γ, z j(a)) = 
j=1 

n 

n(γ, z j(b)) 
j=1 

n(Γ, a) = n(Γ, b) 

 
Thus if γ is a circle, it follows that f (z) takes the value a and b equally many times of γ. 

The following theorem on local correspondence is an immediate consequence of this result. 

Theorem 4.4.2. Suppose that f (z) is analytic at z0, f (z0) = w0 and that f (z) − w0 has a zero of 

order n at z0. If s > 0 is suflciently small, there exists a corresponding δ > 0 such that for all 

a with |a − w0| < δ the equation f (z) = a has exactly n roots in the disk |z − z0| < s. 

Proof. Let Γ be the circle |z − z0| = s and f (z) defined and analytic for |z − z0| ≤ s and given 

that f (z0) = w0. f (z) − w0 has a zero of order n at z0. The image of γ under f (z) be the closed 

curve Γ in the w− plane. Now 

  1 
∫
 f J(z) 

dz   =   Total number o f zeros o f   f (z) 
 

2πi Γ f (z) 

n(γ, a) = n(γ, w0) 

n(γ, a) = n 

 

i.e., the function takes all the values in the neighborhood of the point w0 equally many times 

inside γ. 

∴ the equation f (z) − w0 has exactly n roots. Thus every value a is taken n times inside γ.  ■ 

Corollary 4.4.1. A non-constant analytic function maps open sets onto open sets. 

 

Proof. Let z = z0 be a zero of order n for the analytic function f (z) − w0. Consider the disc 

γ which is |z − z0| ≤ s. Let G denote the image of the disk. Let U be an open subset of the 

region Ω and let z0 ∈ U such that f (z0) = w0 then there exist an s > 0 as above and a region 

G containing w0 such that |z − z0| < s is a subset of open set U. We know that each w ∈ G is 

assumed by f (z) at n points in |z − z0| < s. 

 
Since G is an open set and w0 ∈ G there exists a δ > 0 such that |w − w0| < δ is a subset of G. 

But G is contained in f (U). Hence |w − w0| < δ is completely contained in f (U). We can state 

that image of every sufficiently small disk |z − z0| < s contains a neighborhood |w − w0| < δ. ■ 
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Corollary  4.4.2.  If   f (z)  is  analytic  at  z0   with   f J(z0)   =/    0,  it  maps  a  neighborhood  of  z0 

conformally and topologically onto a region. 

 
 

4.5 The Maximum Principle 

 
Corollary 4.4.1 of Theorem 4.4.2 has a very important analytical consequence known as the 

maximum principle for analytic functions. Because of its simple and explicit formulation in the 

theory of functions. As a rule all proofs based on the maximum principle are very straightforward 

and preference is quite justly given to proofs of this kind. 

Theorem 4.5.1. The Maximum Principle. If f (z) is analytic and non-constant in a region Ω 

then its absolute value | f (z)| has no maximum in Ω. 

Proof. Let z0 ∈ Ω. Suppose that | f (z)| takes maximum value | f (z0)| in Ω corresponding to 

δ > 0. There exists a neighborhood |w − w0| < δ in which there exists a point w so that |w| > |w0|. 

Hence | f (z0)| is not the maximum value of f (z) in Ω. Therefore maximum value of | f (z)| cannot 

occur in Ω. 

 
Let γ be a circle |z − z0| ≤ δ in the region Ω and f (z0) = w0. We know that a non-constant 

analytic function maps open sets onto open sets. 

 

Let Γ be a image of γ under the mapping w = f (z). Suppose that | f (z0)| is the maximum 

value of | f (z)| in the region bounded by Γ then we can say that there is at least one point w in 

the w− plane such that |w| > |w0| . That is f (z) > f (z0). Therefore our assumption is wrong and 

hence | f (z)| has no maximum in the region Ω. ■ 

 
In a positive formulation essentially the same theorem can be stated in the form: 

 

Theorem 4.5.2. Maximum Modulus Theorem. If f (z) defined and continuous on a closed 

bounded set E and analytic on the interior of E, then the maximum of | f (z)| on E is assumed 

on the boundary of E. 

 

Proof.  Consider the closed disk  Γ  and  |ζ − z0| = r  which is contained in a set  E. Since  f (z)  is 

analytic in the interior of E it must be analytic in the closed disk. 
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∴ by Cauchy’s integral formula, 

f (z0) =
 1 

∫

 

43 

 

 
  f (ζ) 

dζ on γ. 

2πi γ ζ − z0 

 
|ζ − z0|   =   r 

ζ = z0 + re
iθ, 0 ≤ θ ≤ 2π 

 
f (z0) =  1 

∫ 2π  
f (z0 + re

iθ
)dθ 

2π 0 

Hence the value of the function f (z) at centre z0 is equal to the arithmetic mean values of the 

function f (z) on a circle γ. 

 1 
∫ 2π 

. i . 
+ θ θ 

| f (z0)| ≤ 
2π 0 

f (z re ) d 
 

Suppose that | f (z0)| is a maximum. Then we have f (z0 + re
iθ

) ≤ | f (z0)| and if the strict 

inequality held for a single value θ it would hold, by continuity, on a whole arc. But then the 

mean value of f (z + re
iθ

) < f (z ).       
 

∴ | f (z0)| ≤ 
1 2π 

2π 0 
| f (z0)| dθ 

 
 

which is a contradiction. 

| f (z0)| < | f (z0)| , 

 
∴ f (z0 + re

iθ
) = | f (z0)| 

Hence f (z) reduces to a constant function in the neighborhood of f (z0). Since | f (z)| is constant 

equal to | f (z0)| on a circle γ of radius r and it is arbitrary. Thus the maximum value of | f (z)| 

occurs on the boundary of E. ■ 

 

Consider now the case of a function f (z) which is analytic in the open disk |z| < R and 

continuous on the closed disk |z| ≤ R. If it is known that | f (z)| ≤ M on |z| = R, then | f (z)| ≤ M 

in the whole disk. The equality can hold only if f (z) is a constant of absolute value M. Therefore, 

if it is known that f (z) takes some value of modulus < M, it may be expected that a better estimate 

can be given. Theorems to this effect are very useful. The following particular result is known as 
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z 

r 

. . 

. . = 

Letting r → 1 we have | f1(z)| ≤ 1. (i) If z /= 0 ⇒ ≤ 1 ⇒ | f (z)| ≤ |z| 

 

the lemma of Schwarz: 

Theorem 4.5.3. If f (z) is analytic for |z| < 1 and satisfies the conditions | f (z)| ≤ 1, f (0) = 0, 

then | f (z)| ≤ |z| and f J(0) ≤ 1. If | f (z)| = |z| for some z 

with a constant c of absolute value 1. 

0, or if  | f J(0)| = 1, then  f (z) = cz 

 

Proof. We apply the maximum principle to the following function. 

 
 

f (z) =  
 f (z) 

, if  z 0 

1 

 

 

 

 

| f1(z)| = 
| f (z)|

 

1
|z| 

 f J(0), if  z = 0 

≤ 
|z| 

, since | f (z)| ≤ 1 on the circle |z| = r < 1 

| f1(z)| ≤ 
1
 

 f (z) 

If  z = 0 ⇒ | f J(0)| ≤ 1. 

(ii) If | f (z)| = |z| 
 

 
 f (z) 

1
 

. z . 

. z . 
f (z) 

z 
= c, where |c| = 1 

f (z) = cz, when |c| = 1. 

■ 



 

 

Objectives 

Upon completion of this Unit, students will be able to 

x identify the general statement of Cauchy’s theorem. 

x understand the concept of multiply connected region. 

 

BLOCK-II 

UNIT 5 

The General Form of Cauchy’s Theorem 
 

 

5.1 Introduction 

 
In our preliminary treatment of Cauchy’s theorem and the integral formula we considered only 

the case of a circular region. For the purpose of studying the local properties of analytic functions 

this was quite adequate, but from a more general point of view we cannot be satisfied with a result 

which is so obviously incomplete. The generalization can proceed in two directions. For one 

thing we can seek to characterize the regions in which Cauchy’s theorem has universal validity. 

Secondly, we can consider an arbitrary region and look for the curves γ for which the assertion 

of Cauchy’s theorem is true. 

 
5.2 Chains and Cycles 

 
In the first place we must generalize the notion of line integral. Consider an arc γ. Divide the arc 

γ into subdivision γ1, γ2, · · · , γn then we can write 

∫

γ1+γ2+···+γn 

 
f (z)dz = 

γ1 

 
f (z)dz + 

γ2 
f (z)dz + · · · + 

∫

 
 

 
f (z)dz (5.2.1) 

 

45 

γn 

∫ ∫ 
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Since the right hand member of (15.2.1) has a meaning for any finite collection, nothing prevents 

us from considering an arbitrary formal sum of finite collection γ1 + γ2 + · · · + γn which need not 

be an arc and we define the corresponding integral by means of equation (15.2.1). Such formal 

sums of arcs are called chains. Also the following operations do not change the identity of the 

chains. 

 
1. Permutations of two arcs. 

 
2. Subdivision of an arc. 

 
3. Fusion of sub arcs to a single arc. 

 
4. Reparametrization of an arc. 

 
5. Cancellation of opposite arcs. 

 
The sum of two chains is defined by way of positions. Therefore it is clear that the additive 

property (15.2.1) of line integrals remains valid for a arbitrary sum of chains. When identical 

chains are added, it is convenient to denote the sum as a multiple. With this notation every chain 

can be written in the form 

γ = a1γ1 + a2γ2 + · · · + anγn (5.2.2) 

where the aj are positive integers and the γ j are all different. For opposite arcs we can write 

a(−γ) = aγ. 

Zero Chain. The zero chain is either an empty sum or sum with all coefficients equal to zero. 

Cycle. A chain is a cycle if it can be represented as a sum of closed curves. That is a chain is a 

cycle if and only if any representation the initial and end points of the individual arcs are identical 

in pairs. 
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5.3 Simple Connectivity. 

 
Definition 5.3.1. A region is simply connected if its complement with respect to the extended 

plane is connected. 

Example 5.3.1. Any half - plane is simply connected and any open disk is simply connected. 

Theorem 5.3.1. A region Ω is simply connected if and only if n(γ, a) = 0 for all cycles γ in Ω 

and all points a which do not belong to Ω. 

 
Proof. Necessary part.The necessary part of the theorem is almost trivial. Let γ be any cycle in 

Ω. If the complement of Ω is connected, it must be contained in one of the regions determined 

by γ, and since the point ∞ belongs to the complement this must be unbounded region. Hence 

n(γ, a) = 0 for all finite points in the complement. 

Sufficiency part. Assume that the complement of Ω can be represented as the union of two 

disjoint closed sets A and B. One of these two sets contains ∞ and the other one is bounded set. 

Let A be the bounded set. The sets A and B have the shortest distance δ > 0 cover the whole 

plane with a net of squares Q of side less than 
δ 

. 
2 

We are free to choose the net so that a certain point a ∈ A lies at the centre of a square. The 

boundary curve of Q is denoted by ∂Q. We assume that the squares Q are closed and the interior 

of Q lies to the left of the directed line segments which make up ∂Q. Consider the cycle 

 
γ = ∂Qj (5.3.1) 

j 

 

where the sum ranges over all squares Qj in the net which have a point in common point in 

A. Because a is contained in one and only one of these squares, it is evident that n(γ, a) = 1. 

Furthermore, it is clear that γ does not meet B. But if the cancellations are carried out, it is 

equally clear that γ does not meet A. 

Indeed, any side which meets A is common side of two squares included in the sum (5.3.1), and 

since the directions are opposite the side does not appear in the reduced expression of γ. Hence 

γ is contained in Ω and therefore the theorem is proved. ■ 
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5.4 Homology 

 
The characterization of simple connectivity by Theorem 1.3.1 singles out a property that is 

common to all cycles in a simply connected region, but which a cycle in an arbitrary region or 

open set may or may not have. This property plays an important role in topology and therefore 

has a special name. 

Definition 5.4.1. A cycle γ in an open set Ω is said to be homologous to zero with respect to Ω 

if n(γ, a) = 0, for all points a in the complement of Ω. 

 

In symbols we write γ ∼ (mod Ω) . When it is clear to what open set we are referring, Ω need 

not be mentioned. The notation γ∼γ2 shall be equivalent to γ1 − γ2 ∼ 0. Homologies can be 

added and subtracted, and γ ∼ (mod Ω) implies γ ∼ 0 (mod Ω)J for all ΩJ ⊃ Ω. 

 
5.5 The General Statement of Cauchy’s Theorem 

 
The definitive form of Cauchy’s theorem is now very easy to state. 

Theorem 5.5.1. If f (z) is analytic in ω, then 

 
f (z)dz = 0 (5.5.1) 

γ 

 

for every cycle γ which is homologous to zero in Ω. 

 
Proof. Assume that the region Ω is bounded, but otherwise arbitrary. Given δ > 0 we cover 

the plane by a net of squares of side δ and we denote by Qj, j ∈ J, the closed squares in the 

net which are contained in Ω. Since Ω is bounded must get finite number of closed squares and 

therefore the set J is finite, and if δ is sufficiently small it is also non - empty. The union of the 

squares Qj, j ∈ J, consists of closed regions whose oriented boundaries make up the cycle 

Γδ = ∂Qj 

j∈J 

where Γδ is the sum of the oriented line segments which are the sides of exactly one Qj. We 

denote the interior of the union ∪Qj by Ωδ. 

∫ 
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Let γ be a cycle which is homologous to zero in Ω; we choose δ so small such that γ is 

contained in Ωδ. Consider a point ζ ∈ Ω −Ωδ. it belongs to at least partial square Q which is not 

a Qj a full square. There is a point ζ0 belonging to Q which is not in ω. It is possible to join ζ 

and ζ0 by a line segment which lies in Q and therefore does not meet Ωδ. 

Since γ is contained in Ωδ it follows that n(γ, ζ) = n(γ, ζ0) = 0. Since ζ and ζ0 are points not 

belonging to Ωδ in particular n(γ, ζ) = 0 for all points ζ on Γδ. Suppose that f (z) is analytic in 

Ω. If z lies in the interior of Qj0 , then by Cauchy’s theorem 
 

  1 
∫
  f (ζ)dζ 

= f (z) if j = j0 

 

 
and hence 

2πi ∂Qj ζ − z 0, if j j0. 

f (z) =
 1  

 
2πi 

 f (ζ)dζ 
. (5.5.2) 

Γδ  
ζ − z 

Since both sides are continuous functions of z, this equation will hold for all z ∈ ωδ. As a 

consequence we obtain 

f (z)dz = 
γ γ 

  1   

2πi 

 f (ζ)dζ 

ζ − z   
dz. (5.5.3) 

The integrand of the iterated integral is a continuous function of both integration variables namely 

ζ and z which are parameters of Γδ and γ. Therefore the order of integration can be reversed. 

In other words, 
∫ 

f (z)dz = 

∫

 . 1  
∫

  f (ζ)dζ 
dz = 

∫
 . 1  

∫
   dζ   

f (ζ)dζ. 

γ 

 

By the index number, 

γ 2πi 
Γδ  

ζ − z Γδ   
2πi γ ζ − z 

  1 
∫
   dz   

= −
 1  

∫
   dz   

= −n(γ, ζ) = 0. 
2πi γ ζ − z 2πi γ z − ζ 

∴ (5.5.3) ⇒ 

∫ 

f (z)dz = 0. 
 

Thus we proved the theorem for bounded region Ω. 

If Ω is unbounded, we replace it by its intersection ΩJ with a disk |z| < R which is large 

enough to contain γ. Any point a in the complement of ΩJ is either in the complement of Ω or 

lies outside the disk. In either case n(γ, a) = 0, so that γ ∼ 0 (mod Ω)J . The proof is applicable 

to ΩJ, and we conclude that the theorem is valid for arbitrary Ω. ■ 

γ 

Γδ 
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Corollary 5.5.1. If f (z) is analytic in a simply connected region Ω, then 

 
f (z)dz = 0 

γ 
 

holds for all cycles γ in Ω. 

Corollary 5.5.2. If f (z) is analytic and /= 0 in a simply connected region Ω, then it is possible 
 

to define single-valued analytic branches of  log f (z)  and  
,

n   
f (z)  in  Ω. 

5.6 Locally Exact Differentiable 
 

A differential pdx + qdy is said to be locally exact in Ω if it is exact in some neighborhood of 

each point in Ω which is possible if and only if 

 

pdx + qdy = 0 (5.6.1) 
γ 

 

for all γ = ∂R where R is a rectangle contained in Ω. This condition is fulfilled if pdx + qdy = 

f (z)dz with f analytic in Ω, and by Theorem 1.5.1, (5.6.1) is true for any cycle γ ∼ 0 (mod Ω) . 

Theorem 5.6.1. If pdx + qdy is locally exact in Ω, then 

 
pdx + qdy = 0 

γ 
 

for every cycle γ ∼ 0 in Ω. 

Proof. It is sufficient if we prove the theorem for polygon σ with sides parallel to the axis. We 

construct σ as an approximation of γ. Let the distance form γ to the complement of Ω be ρ. 

If γ is given by z = z(t) where z(t) is uniformly continuous on the closed interval [a, b]. We 

determine  δ > 0  so that  |z(t) − zJ(t)| < ρ  for  |t − tJ| < δ  and divide  [a, b]  into subintervals of 

length < δ. 

The corresponding subarcs γi of γ have the property that each is contained in a disk of radius 

ρ which lies entirely in Ω. The end points of γi can be joined within that disk by a polygon σi 

∫ 

∫ 

∫ 
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X 

n(∂R , a ) = 
1, for k = i 

∫ 
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consisting of a horizontal and a vertical segment. Since the differential is exact in the disk, 

and if σ = 
. 
σi, we obtain 

∫

σi

 

pdx + qdy = 
γi 

pdx + qdy 

X ∫

σi

 

pdx + qdy   = 
γi 

pdx + qdy 

pdx + qdy = 
σ γ 

pdx + qdy 

We extend all segments that make up σ to infinite lines. They divide the plane into some finite 

rectangles Ri and some unbounded regions RJ
j which may be regarded as infinite rectangles. 

Choose a points ai from the interior of each Ri and form the cycle 

 
σ0 = n(σ, ai)∂Ri (5.6.2) 

i 

 

where the sum ranges over all finite rectangles and the coefficients n(σ, ai) are well determined, 

for no σi lies on σ. We can also make use of points aJ
j chosen from the interior of each RJ

j. It is 

clear that 
 

i k 

0 for k /= i 

Similarly, n(∂Ri, aJ
j) = 0 for all j. With this in mind, it follows from (5.6.2) that 

n(σ0, ai) = n(σ, ai) 
 

and  
n(σ0, aJ

j) = 0. 

It is also true that n(σ, aJ
j) = 0, for the interior of RJ

j belongs to the unbounded region determined 

by σ. Hence we have proved that 

 

n(σ − σ0, a) = 0, f or all a = ai and a = aJ
j. 

Therefore from this property of σ − σ0 we wish to conclude that σ0 is identical with σ up 

to the segments that cancelled against each other. Let σik be the common side of two adjacent 

rectangles Ri, Rk; we choose the orientation so that Ri lies to the left of σik. 

∫ 
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Suppose that the reduced expression of σ − σ0 contains the multiple cσik. Then the cycle 

σ − σ0 − c∂Ri does not contain σik and it follows that ai and ak must have the same index with 

respect to this cycle. On the other hand, these indices are −c and 0, respectively; we conclude 

that c = 0. The same reasoning applies if σi j is the common side of a finite rectangle Ri and an 

infinite rectangle RJ
j. Thus every side of a finite rectangle occurs with coefficient zero in σ − σ0, 

proving that 

σ = n(σ, ai)∂Ri (5.6.3) 
i 

whose corresponding coefficient n(σ, ai) is different from zero are actually contained in Ω. 

Suppose that a point a in the closed rectangle Ri were not in Ω. Then n(σ, a) = 0 because 

σ ∼ 0 (mod Ω) . On the other hand, the line segment between a and ai does not intersect σ, and 

hence 

n(σ, ai) = n(σ, a) = 0. 

Thus we conclude by the local exactness that the integral of pdx + qdy over any ∂Ri occurs in 

(5.6.3) is zero and hence 

∫ 

(pdx + qdy) = 

∫ 

(pdx + qdy) = 0. 

Hence the theorem is proved. ■ 

 
5.7 Multiply Connected Regions 

 
A region which is not simply connected is called multiply connected. More precisely, Ω is said 

to have the finite connectivity n if the complement of Ω has exactly n components. 

Similarly Ω is said to have infinite connectivity if the complement has infinitely many 

components. 

A region is said to have connectivity n if there exists n holes in the Riemann sphere. In the 

case of finite connectivity, let A1, A2, · · · , An be the components of the complement Ω and assume 

that ∞ belongs to An. If γ is an arbitrary cycle in Ω, we can prove, just as in Theorem 1.5.1, 

that n(γ, a) is constant when a varies over any one of the components Ai and that n(γ, a) = 0 

in An. Moreover, duplicating the construction used in the proof of the Theorem 1.5.1, we can find 

cycles γi, i = 1, 2, · · · , n − 1, such that n(γ, a) = 1 for a ∈ Ai and n(γi, a) = 0 for all other 

γ σ 
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points outside Ω. 

For a given cycle γ in Ω, let ci be the constant value of n(γ, a) or a ∈ Ai. We find that any 

point outside of Ω has the index zero with respect to the cycle γ − c1γ1 − c2γ2 · · · − 

cn−1γn−1. In other words, 

γ ∼ c1γ1 + c2γ2 + · · · + c2γn−1. 

Thus every cycle is homologous to a linear combination of the cycles γ1, γ2, · · · , γn−1. This 

linear combination is uniquely determined, for if there are two linear combinations namely 

c1γ1 + c2γ2 + · · · + cn−1γn−1  and  cJ
1γ1 + c2

J γ2 + · · · + cJ
n−1γn−1  each linear combination is homologous 

to zero. 

i.e., γ ∼ c1γ1 + c2γ2 + · · · + cn−1γn−1  and  cJ
1γ1 + c2

J γ2 + · · · + cJ
n−1γn−1 

∴ c1 = cJ
1,  c2 = c2

J , · · ·  cn−1 = cJ
n−1 

It is clear that the cycle c1γ1 + c2γ2 + · · · + cn−1γn−1 winds c1 times around the points in A1 and 

c2 times around the points in A2 and so on. Hence it cannot be homologous to zero unless all the 

ci vanish. 

In view of these circumstances the cycles γ1, γ2, · · · , γn−1 are said to form a homology basis for 

the region Ω. It is not the only homology basis, but by an elementary theorem in linear algebra 

we may conclude that every homology basis has the same number of elements. Also every region 

with a finite homology basis has a finite connectivity and the number of basis element is one less 

than the connectivity. 

By Theorem we obtain, for any analytic function f (z) in Ω, 

 
f (z)dz = c1 f dz + c2 f dz + + cn−1 f dz. 

γ γ1 γ2 γn−1 
 

The numbers  

Pi = 
γi 

 

f dz 

depend only on the function, and not on γ. They are called modules of periodicity of the 

differential f dz or the periods of the indefinite integral. We have found that the integral of f (z) 

∫ 
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∫ 

 

over any cycle is a linear combination of the periods with integers as coefficients, and the integral 

along an arc from z0 to z is determined up to additive multiples of the periods. The vanishing 

of the periods is a necessary and sufficient condition for the existence of a single valued indefinite 

integral. 

Illustration. Consider the extremely simple case of an annulus, defined by r1 < |z| < r2. The 

component of this annulus has two components namely |z| ≤ r1 and |z2| ≥ r2. We include the 

degenerate cases r1 = 0 and r2 = ∞. The annulus is doubly connected and a homology basis is 

formed by any circle |z| = r, r1 < r < r2. If this circle is denoted by C, any cycle in the annulus 

satisfies γ ∼ nC where n = n(γ, 0). Therefore the integral of an analytic function over a cycle is 

a multiple of the single period 

P = 
C 

whose values is independent of the radius. 

f dz 



 

 

Objectives 

After completion of this Unit, students will be able to 

x prove argument principle. 

x identify Rouche’s theorem. 

x solve definite integral by the method of residues. 

 

 

BLOCK-II 

UNIT 6 

The Calculus of Residues 
 

 

6.1 Introduction 

 
The results of the preceding section have shown that the determination of line integrals of analytic 

functions over closed curves can be reduced to the determination of periods. Under certain 

circumstances it turns out that the periods can be found without or with very little computation. We 

are thus in possession of a method which in many cases permits us to evaluate integrals without 

resorting to explicit calculation. This is of great value for practical purposes as well as for the 

further development of the theory. 

In order to make this method more systematic a simple formalism, known as the calculus of 

residues, was introduced by Cauchy, the founder of complex integration theory. 

Definition 6.1.1. The residue of f (z) at an isolated singularity a is the unique complex number 

R which makes f (z) −
   R     

the derivative of a single valued analytic function in an annulus 

0 < |z − a| < δ. 
z − a 

Theorem 6.1.1. Let f (z) be analytic except for isolated singularities aj in a region Ω. Then 

  1  
∫  

f (z)dz = 
X 

n(γ, aj)Resz a 
 

 

 
f (z) (6.1.1) 

2πi γ 
j
 

55 

j 

= 
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n 

    1  

    1  

X 

. X . 

X 

z − aj 

z − aj 

j=1 
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Proof. Let f (z) has finite number of singularities at aj, j = 1, 2, · · · , n in the region Ω. Let 

Pj

. 

z − aj 

  
be the singular point of f (z) with respect to the isolated singularity aj. 

∴ 
X 

Pj

. 1
 

 

is not analytic at z = aj, j = 1, 2, · · · , n. The function f (z) is analytic in the region ΩJ obtained 

excluding the points aj from Ω. 

 

 
 

By defining 

i.e., ΩJ = Ω − {a1, a2, · · · , an}. 

 
n 

g(z) = f (z) − 
X 

Pj

. 1 
. 

 

The function g(z) is analytic in Ω, where γ ∼ 0 (mod Ω) , we have 
∫ 

. X 

 

. . 

f (z) γ 

∫ 

Pj 
j=1 

X 

z − aj 

∫ 

dz = 0 

.   
i.e., 

 1 

f (z)dz = 
γ 

 1 

 

j=1 

Pj . 

γ z − aj 

But Pj

. 

z − aj 

  
is a polynomial in 

z − aj  

and therefore 

∫  
  dz   

= 
0, if m > 1 

 

 
Hence 

γ (z − aj)m 

 

n 

f (z)dz = 
γ j=1 

2πi  n(γ, a j), if m = 1. 

2πi n(γ, aj) 

n 

=   2πi  n(γ, aj)(Res f (z) at z = aj) 
j=1 

i.e.,
 1 

= 
2πi 

n 

n(γ, aj)(Res f (z) at z = aj). 
j=1 

− 

n 

n 

j=1 

∫ 
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− 

2πi f (z) 

f (z) 

 

Hence the proof is complete. ■ 

Definition 6.1.2. A cycle γ is said to bound the region Ω if and only if n(γ, a) is defined and 

equal to 1 for all points a ∈ Ω and either undefined or equal to zero for all points a not in Ω. 

 
6.2 The Argument Principle 

 
Cauchy’s integral formula can be considered as a special case of the residue theorem. Indeed, the 

function 
 f (z)

 
z − a 

has a simple pole at z = a with the residue f (a), and when we apply (9.2.1), the 

integral formula results. 

Another application of the residue theorem occurred in the proof of Theorem 4.4.1 which served 

to determine the number of zeros of an analytic function. For a zero of order of h, we can write 

f (z) = (z−a)
h
 fh(z), with  fh(a) =/   0, and obtain  f J(z) = h(z−a)

h−1
 fh(z)+(z−a)

h
 fh

J(z). Consequently 
f J(z)  

=  
   h    

+  
fh
J(z)

, and we see that   
f J   

has a simple pole with the residue  h. In the formula 
   

f (z) z − a fh(z) f 

X 
n(γ, z j) = 

  1  
∫

 
 

 

 
f J(z) 

dz,
 

 

this residue is accounted for by a corresponding repetition of terms. 

 

Now we can generalize Theorem 4.4.1 to the case of meromorphic function. If f has a pole of 

order h, we find by the same calculation as above, with h replacing h, that 
f J

 

f 
has the residue 

−h. 

Theorem 6.2.1. If f (z) is meromorphic in Ω with the zeros aj and the poles bk, then 

  1 
∫
 

 

 

f J(z) 
dz = 

X 
n(γ, aj) − 

X 
n(γ, bk) (6.2.1) 

  
 

for every cycle γ which is homologous to zero in Ω and does not pass through any of the zeros 

or poles. 

 

Proof. Let z = a j be the zeros of order h for the meromorphic function of f (z), then f (z) can 

be expressed as 

f (z) = (z − aj)
h
 fh(z), 

k j 
2πi 

j γ 

γ 
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where f (z) is analytic in Ω and fh(aj) /= 0. 

log f (z) = h log(z − aj) = log fh(z) 

Differentiating with respect to z, we get 

 
f J(z) 

= h
    1 

+ 
fh

J(z) 
  

f (z) z − aj fh(z) 
 

 

z = aj 
is a simple pole of 

f J(z)
 

f (z) 
with residue h. Since 

fh
J(z)

 
fh(z) 

is analytic and non-null at z = aj, 

 

fh
J(z) 

dz = 0. 

γ fh(z) 
 

Let us assume that z = bk be a poles of order m for f (z) then we can write f (z) as 

f (z) =
  gm(z) 

, 

(z − bk)m 

where  gm(z)  is analytic and  gm(bk) =/ 0. 

log f (z) = log(gm(z)) − m log(z − bk) 

Differentiating with respect to z, we get 

 

f J(z) 
= 

gJ
m(z) 

− m
 1  

  

 
But 

f (z) gm(z) z − bk 

∫ 
gJ

m(z) 
dz = 0

 

as 
gJ

m(z) 

gm(z) 

 

is analytic. 

γ gm(z) 

From the above equation, we see that z = bj is a simple pole of 
f J(z)

 
f (z) with residue −m. Therefore 

by the residue theorem, we have 

  1 
∫
 

 

 

f J(z) 
dz = 

X 
n(γ, aj) − 

X 
n(γ, bk) 

  
 

where each aj and bk are counted according to its degree of multiplicity. ■ 

k j 
2πi γ 

∫ 
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∴ 
−  

. . 

. 1 1 

 

Corollary 6.2.1. Rouche’s Theorem.Let γ be homologous to zero in Ω and such that n(γ, z) 

is either 0 or 1 for any point z not on γ. Suppose that f (z) and g(z) are analytic in Ω and 

satisfy the inequality | f (z) − g(z)| < | f (z)| on γ. Then f (z) and g(z) have the same number of 

zeros enclosed by γ. 

 
Proof. Let us prove f (z) and g(z) are zero free on γ. Suppose that g(a) = 0, a belongs to the 

boundary of γ. 

 
 
 
 
 

Since g(a) = 0 ⇒ | f (a)| > 0. 

∴ f (a) = f (a) − g(a) + g(a) 

 
| f (a)| ≥ | f (a) − g(a)| − |g(a)| or 

| f (a)| ≥ |g(a)| − | f (a) − g(a)| 

| f (a)| ≥ |g(a)| − | f (a)| 

2 | f (a)| ≥ |g(a)| 

 
| f (a) − g(a)| < | f (a)| 

| f (a)| < | f (a)| 
 

which is a contradiction. Also, | f (z) − g(z)| < | f (z)| on γ. 

 f (z) g(z) . . < 
. f (z) . 

g(z) 

.1 − 
f (z) . 

< 1 

 

Put F(z) = 
g(z) 

, f (z) = 0 on γ. 
f (z) 

g(z) 
. f (z) 

− . <
 

 

∴ |F(z) − 1| < 1. 

Let w = F(z). As z moves on γ w moves Γ such that |w − 1| < 1. That is w moves on the 

unit circle Γ with 1 as centre and radius is 1 unit. w moves on Γ which lies only inside the 

unit circle |w − 1| = 1 with centre 1 and radius a. Therefore n(Γ, 0) = 0. By applying Theorem 

1 
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∫ 

.   

| − 

a J 

− 

Γ 

g f 

2πi f 2πi g 

 

2.2.1 to F(z), we get  

  1 

2πi 

 
FJ(z) 

dz =   0
 

Γ F(z) 

        1 
∫
 

 

 

gJ f J 

– dz  =   0 

1 
∫ 

f J 
dz = 

  1 
∫
 

gJ 

dz 

 

Number of zeros of f (z) inside γ = Number of zeros of g(z) inside γ. This completes the 

proof. ■ 

 
6.3 Evaluation of Definite Integrals 

 
The calculus of residues provides a very efficient tool for the evaluation of definite integrals. It is 

particularly important when it is impossible to find the indefinite integral explicitly, but even if the 

ordinary methods of calculus can be applied the use of residues is frequently a laborsaving device. 

The fact that the calculus of residues yields complex rather than real integrals is no disadvantage, 

for clearly the evaluation of a complex integral is equivalent to the evaluation of two definite 

integrals. 

Methods for the evaluation of residues 

1. (a) If z = a is a simple pole of f (z) then the residue of f (z) at z = a is given by 

 
Res. f (z) z=a= lim(z a) f (z). 

z→a 
 

1. (b) If z = a is a simple pole of f (z) =
 P(z)

 
Q(z) 

 

Res. f (z)|z= 

 

then the residue of f (z)  at z = a  is given by 

 
 P(z)  

= lim . 
z→a Q (z) 

 

2. If z = a is a pole of order m of f (z) then the residue of f (z) at z = a is given by 
 

Res. f (z)|z=a= 
  1 

lim 
dm−1 

(z a)
m
 

m−1 

 
f (z). 

(m − 1)! z→a dz 

2πi 

Γ Γ 
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− 

X 

0 

| | 

Example 6.3.1. Evaluate 
∫ π dθ 

, a > 1 

∫ 

0 0 

 

Type . I All integrals of the form 

2π 

R(cos θ, sin θ)dθ (6.3.1) 
0 

 

where the integrand is a rational function of cos θ and sin θ can be easily evaluated by means of 

residues. 

Put z = eiθ. dz = izdθ, dθ = 
dz

 
iz 

 

 

cos θ = 
z2 + 1 

and sin 
2z 

z
2
 1 

2iz 
.
 

Substituting these in (16.4.1), the integral reduces to the line integral is of the form 

 
f (z)dz 

γ 

 

where γ is the unit circle. By residue theorem, we have 
 

f (z)dz = 2πi Ri, 
γ i 

where  
.

i Ri  denotes the sum of all residues at the poles of  f (z)  that lies within the unit circle  γ. 

 

 
Solution. 

0 a + cos θ 

∫ π
 dθ  1 

∫ 2π
 dθ  

 
since 

a + cos θ 
= 

2 
a + cos θ 

,
 

∫ 2a  f (x)dx = 2 
∫ a  

f (x)dx, if  f (2a − x) =  f (x) 

0    0, if f (2a − x) = − f (x). 

Put z = eiθ then dz = ieiθ
dθ, 

dz 
= dθ, z = 1. As θ varies from 0 to 2π, z varies through the 

iz 

∫ 

θ = 

∫ 
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∫ 

− 

− 

0        

a + cos θ 
=

 

2 2 

 

circle |z| = 1. 

∫ π
 dθ  

 

 

1 
∫ 2π

 dθ  
 

   

= 
1 

∫ 
dz 

  iz  
 

2 |z|=1 a + 1 (z + 1 ) 

= 
1 

∫ 
 

  dz  

π
 dθ  

a + cos θ 
=

 

1 

i |z|=1 

f (z)dz 

 

where f (z) =
 1 

. The poles of f (z) is given by z
2
 + 2az + 1 = 0. 

z2 + 2az + 1 

i.e., z = −a ± 
√

a2 − 1. 

Let α = −a + 
√

a2 − 1 and β = −a − 
√

a2 − 1. Since a > 1, the pole z = α lies inside γ 

and the pole z = β lies outside γ. 

∴ residue of f (z) at z = α is 

lim(z − α) f (z)   =   lim(z − α)
 1 

 

z→α z→α 

=   lim(z α) 
z→α 

1 

z2 + 2az + 1 
1 

(z − α)(z − β) 

= 
α β 

 1  
lim(z − α) f (z)   = √ 
z→α 2 a2 − 1 

Therefore by Cauchy’s residue theorem, we have 

∫  

f (z)dz = 2πi
. X 

Ri

. 
= 2πi. 

 

 

1 

2 
√

a2 − 1 
=
 

πi 

√
a2 − 1 

 

∫ π
 dθ  1   πi  

 

a + cos θ 
=

 
∫ 

 
 

i 
. √

a2 − 1 
 

π dθ ∴ 
a + cos θ 

=
 

π 
√

a2 − 1 
.
 

0 

γ 

i 

a + cos θ 0 2 0 

∫ 

0 

|z|=1 z2 + 2az + 1 
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2 

∫ 
  dx  

∫ 
  2dx  

1 + 2a − cos t0 

iz 

− 

i 

∫ 

2 z 

Example 6.3.2. Evaluate 
∫ π dx 

 |a| > 1. 

 
Solution. 

 

 

 

 

 

Put t = 2x ⇒ dt = 2dx 

when x = 0, t = 0 

when x = 
π
, t = π. 

2 

0
 a + sin

2
 x 

 

 
Let I = 

 
= 

 
 
 
 
 

 
π 

 

2 

 

0 a + sin
2
 x 

π 
2 

0 2a + 1 − cos 2x 

π
 dt  

I = 

1 
∫ 2π

 dt  

 
Put z = eit

 ⇒ dz = dt 

= 
2 0 1 + 2a − cos t 

cos t = 
z

2
 + 1 

 
 

2z 

As t varies from 0 to 2π, z varies over the circle γ : |z| = 1. 

 

I = 
1 

∫
 iz  

dz 

 
 

2 γ 1 + 2a − 1 (z + 1
 ) 

I =   −
1 

∫
 dz  

i γ z2 − (2 + 4a)z + 1 
 

I = −
1 

∫ 

f (z)dz, (6.3.2) 
 

where f (z) =
 1 

. The poles of f (z) is given by 

z2 − (2 + 4a)z + 1 

z
2
 (2 + 4a)z + 1 =   0    

z = 1 + 2a ± 2 
√

a + a2 

γ 

, 
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–    
−√

 
2

 

∫ 

∫ 

0 

∫ π

 dx    π  

− 

γ 

Let α = 1 + 2a + 2 
√

a + a2 and β = 1 + 2a − 2 
√

a + a2. The pole z = β lies inside γ. 

Res. f (z)|z 
  1  = lim(z − β) 

=β 
z→β 

1 
= 

β − α 

(z − α)(z − β) 

Res. f (z)|z=β 
 1  

= 
4 

√
a + a2 

 

Therefore by Cauchy’s residue theorem, we have 

∫  

f (z)dz = 2πi
. X 

Ri

. 
= 2πi

. 

4
 

1  
= 

a + a 

πi  

2 
√

a + a2 
.
 

 

1 πi 

∴ (16.4.2) ⇒ I = − 
i 

. 
− 

2 
√

a + a2 

 
 

 

a + sin
2
 x 

= √ 
2 
.
 

 

0 2 a + a 
 

Type. 2 An integral of the form ∞ R(x)dx, where R(x) is the rational function in x. This 
−∞ 

integral converges if and only if the degree of the denominator of R(x) is at least two units higher 

than the degree of the numerator, and if no poles lies on the real axis. 

 

To evaluate this integral, we evaluate 
C 

R(z) dz where C is the closed curve consisting of a 

line segment (−R, R) and the semicircle from R to −R in the upper half plane. If R is large 

enough this curves encloses all poles in the upper half plane, and the corresponding integral is 

equal to 2πi times the sum of the residues in the upper half plane. As R → ∞ obvious estimate 

show that the integral over the semicircle tends to 0, and we obtain 

∫ ∞ 

R(x)dx = 2πi 
X 

Res. R(z). 

Example 6.3.3. Evaluate 
∫ ∞

 

−

∞ 

 
x2dx 

 

(x2+a2)3 

y>0 

 

where a is real , by the method of residues. 

2 
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= 
2 2 3 

. 

1 . . 

z2 

2! z→ai dz2 

∫ 
= 

d2 

∫ 

C 

 

Solution. Consider  
z2 

C (z2 + a2)3 
dz 

C 

 
f (z)dz, 

where f (z) 
z2

 

(z + a ) and C is the upper half of the semicircle |z| = R along the diameter on 

the real axis from −R to R, where R is sufficiently large. The poles of f (z) are given by 

(z
2
 + a2

)
3
 = 0 ⇒ z = ±ia thrice 

The pole z = ia of order 3 lies inside C and the pole z = −ia lies outside C. 

 
To find the residue of f (z) at z = ai 

 

 

1 

Res. f (z)|z=ai = lim 
.
(z − ai)

3
 f (z)

.
 

 
= 

1 
lim  

d z
 

Res. f (z)|z= 

2 z→ai dz 
   1  

ai
 

= 
16ia3 

(z + ai) 

Therefore by Cauchy’s residue theorem, we have 

∫  

f (z)dz  =   2π i
. X 

Ri

.
 

= 2π i 
16ia3

 

f (z)dz = 
π
 

C 8a3 

 

R 

f (x)dx 

−R CR 

 
f (z)dz 

  π 
= 

8a3 

 
(6.3.3) 

z2 

= 
(z2 + a2)3 

z2 

= 
z6(1 + a2 

)3 
→ 0 as |z| = R → ∞ 

∴ 

∫

C

  
f (z)dz = 0 

∫ 

f (z) 

R 

∫ 

2 

2 

. 
2 

3 

∫ 

+ 
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∫ 

2 

=   
4 2 

| 

− 

− 
∫ 

= 

 

Letting R → ∞ in (16.4.3), we get 
∫ ∞ 

f (x)dx = 
π
 

−∞ 
∞ x 

dx   = 

−∞ (x
2 + a2)3 

∞ x2 

∴ 
0 (x2 + a2)3 

dx
 

8a3 

  π 

8a3 

   π   

16a3 
.
 

 

Example 6.3.4. Evaluate 
x2 − x + 2

 
x4 + 10x2 + 9 

 

dx by the method of residues. 

Solution. Consider  
z

2
 z + 2 

C z4 + 10z2 + 9 
dz 

C 

 
f (z)dz, 

where f (z) 
z2 − z + 2

 
z + 10z + 9 and C is the upper half of the semicircle |z| = R along the diameter 

on the real axis from −R to R, where R is sufficiently large. 

 
The poles of f (z) are given by 

 

z
4
 + 10z

2
 + 9 = 0 ⇒ z = ±i, z = ±3i. 

The simple poles z = i and z = 3i are lies inside C and the poles z = −i and z = −3i lies 

outside C. 

 

 
R1 = Res. f (z) z=i 

P(z) 
= lim 

z→i QJ (z) 

= lim z
2
 z + 2 

 
 

3 

z→i 4z + 20z 

R1 = 
1 − i 

16i 

∫ 

= 

∫ 
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| 

− 

. − . 

. . .
  .+ 

. + . ≥ . . 

. + . ≥ 

.                                                   

.+ 

. + . ≥ . . 

. + . ≥ 

.                                                   

.+ 

z
2
 1 R

2
 − 1 

z
2
 9 R

2
 − 9 

∫ 

= 2πi 
1 − i 

+ 
7 + 3i 

R 

 

R2 = Res. f (z) z=3i 
P(z) 

= lim 
z→3i QJ (z) 

= lim z
2
 z + 2 

 
 

3 

z→3i 4z 

R2 = 
7 + 3i 

48i 

Therefore by Cauchy’s residue theorem, we have 

+ 20z 

∫  

f (z)dz  =   2πi
. X 

Ri

.
 

= 2πi
.
R1 + R2

.
 

 

f (z)dz = 
C 5π 

. 

16i 

12 

48i 

.

 

 

 
Now 

R 

f (x)dx 

−R CR 

f (z)dz 
5π 

= 
12 

(6.3.4) 

.
∫ 

. 
∫ z

2
 z + 2 

 

 

On CR, |z| = R 

. C
R

 

f (z)dz . 

C z2 1 z2 + 9 
|dz|

 

 

z
2
 1 z

2
 − 1 

 

 

 

 
and 

1 

z2 1 
≤

 

1 

R2 − 1 

 

z
2
 9 z

2
 − 9 

 

1 

z2 9 
≤

 

1 

R2 − 9 
.
 

∫ 

≤ 

C 

∫ 

+ 
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. 

∫ 

. . 

− 

−

∞ 

−

∞ 

.
∫ 

f (z)dz. ≤ 

∫

 R
2
 + R + 2 |dz| 

. C
R 

. CR  
(R2 − 1)(R2 − 9) 

 
 

R
2
 + R + 2 

≤ 
(R2 − 1)(R2 − 9) 

R
2
 + R + 2 

∫

CR

 
|dz| 

≤ 
(R2 − 1)(R2 − 9)

.πR
 

.

∫

CR

 
 
f (z)dz 

. 
→ 0 as R → ∞ 

 

∴ 

∫

C

  
f (z)dz = 0 as R → ∞. 

 

Letting R → ∞ in (6.3.4), we get 

∴ 
∞ 

−∞ 

 
x

2
 x + 2 

x4 + 10x2 + 9 
dx  =

 

 
5π 

12 
.
 

 

Type. 3 Integrals of the form 
∞ 

R(x)e
ix
dx, 

−∞ 

where R(x) is the rational function in x. We can use Type.2 method to evaluate this integral. 

The real and imaginary parts determine the important integrals 

∫ ∞ 

R(x) cos x dx, 

∫ ∞ 

R(x) sin x dx. 

Since e
iz
 = e−y

 is bounded in the upper half plane, we can again conclude that the integral over 

the semicircle tends to zero, provided that the rational function R(z) has a zero of at least order 

two at infinity. We obtain 

∫ ∞ 

R(x)e
ix
dx = 2π i 

X 
Res. R(z)e

iz. 
−∞ 

Example 6.3.5. Evaluate 
∫ ∞   cos x 

dx, a is real. 

y>0 

 

Solution. Consider 

0 x2 + a2 

∫

C

 

 

eiz 

z2 + a2 
dz = 

 
 
f (z)dz, 

R 

∫ 

∫ 

C 
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= 

| − 

− 

. . 

. . 
≤ 

.                                                   

.+ 

f (z)dz 
. z2 a2 

|dz| 

∫ 

R 

where f (z) 
eiz 

and C is the upper half of the semicircle |z| R along the diameter on the = 
 

real axis from 
z2 + a2 

R where R is su ciently large. 

−R to , ffi 

The poles of f (z) are given by 

z
2
 + a2

 = 0 ⇒ z = ±ia 

The simple pole z = ia lies inside C and the pole z = −ia lies outside C. 

 
Res. f (z) z = ia = lim(z ia) f (z) 

z→ia 

= lim(z ia) 
z→ia z2 

eiz 

+ a2 

 

 

Res. f (z)|z = ia = 
e−a 

 
 

2ai 

Therefore by residue theorem, we have 

∫

C 

f (z)dz 

 
= 2π i

. X 
Ri

. 
 
= 2π 

e−
a 

i 
2ai 

πe−a 

= 
a 

. 

 

 
 

Now, 

R 

f (x)dx 

−R CR 

 
f (z)dz = 

πe−a 
 

 

a 

 
(6.3.5) 

.
∫ 

. 
∫ 

 

  

eiz 

 
 

 

.eiz. = e−y
 ≤ 1 

R C 

∫ 

. C 

+ 
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. . . . .
 .+ 

≥ .
 .−  

.                                                   

.+ 

– . . 

. 

. 

– . . 

. 

∫ 

∫ 

∫ 

= 

Example 6.3.6.  Evaluate 
∫ ∞ x sin x 

dx, where  a  is real. 

.

∫ 

∫ 

. 

 

z
2
 a

2
 ≥ z

2
 − a

2
 

 
1 

z2 a2 
≤

 

1 

R2 a2 

f (z)dz ≤ 

∫

 |dz| 
 

 
. C

R 
. CR − . . 

 
1 ≤ 

R2 .
a2. 

 
 

|dz| 

– CR 

πR ≤ 
R2 a2 

∴ .

∫ f (z)dz → 0 as R → ∞. 
CR 

 

Letting R → ∞ in (6.3.5), we get 

. 

∞ eix 

dx
 

−∞ x2 + a2 

 

 
 

πe−a 
 

 

a 
∞ cos x + i sin x

dx =
 

x2 + a2 

πe−a 
 

 a 
−∞ 

Equating real parts on both sides, we get 

∞
 cos x 

dx   =
 

x2 + a2 

 

 
πe−a 

 
 a 

−∞ 

∴ 
∞ 

  cos x 
dx   =

 
x2 + a2 

πe−a 

2a 
.
 

0 

 
 

 
Solution. Consider 

0 x2 + a2 

∫

C

 

 

 
zeiz 

z2 + a2 
dz = 

 
 

f (z)dz, 

where f (z) 
zeiz 

and C is the upper half of the semicircle |z| R along the diameter on the = 
 

real axis from 
z2 + a2 

R where R is su ciently large. 

−R to , ffi 

The poles of f (z) are given by z
2
 + a2

 = 0 ⇒ z = ±ia. 

The simple pole z = ia lies inside C and the pole z = −ia lies outside C. 

R2 a2 

   R
2
 a

2
 

∫ 

= 

∫ 

C 
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∫ 

z eiz 

≤ 
.                                                   
.+ 

| | . . 

– .  
.

2

 
π dθ . 

– . . 

R2 

. 

∫ 

. 
f (z)dz 

. z2 a2 
|dz| 

− 
πR 

. 

x2 + a2 

C 

∫ 
+ 

. . . . 

.

∫ 

R 

θ e θ θ 

 
 

Res. f (z)| lim(z − ia)   
zeiz

 
 

 

z = ia = 
 

Res. f (z)|z = ia = 

z→ia 

e−
a 

 
 

2 

z2 + a2 

Therefore by Cauchy’s residue theorem, we have 

∫  

f (z)dz = 2πi
. X 

Ri

. 
= πie−a. 

 
R 

f (x)dx f (z)dz ie−a
 (6.3.6) 

= π 
−R CR 

.
∫ 

. 
∫ 

 

  

| | . . 
 

 

On CR, |z| = R, z = Re
iθ ⇒ dz = Re

iθ
idθ ⇒ |dz| = Rdθ, 0 ≤ θ ≤ π. 

.

∫

CR

 

f (z)dz
. 

≤ 

∫

CR

 
z ei(R cos θ+i sin θ) 

R2 − .a2. 
Rdθ

 

 
R2 

∫ π 
.
 

 
 iR cos 

 
 . . −R sin . 

≤ 
R2 a2 

0 

e d 
2R 

∫ π

 ≤ 
R2

 .
a2. 2  

e− 2R 

 

  ≤ 
R2 a2 

− 

πR 

≤ 
R2

.
1 − 

|a2|  
 

(1 − e−R
) 

f (z)dz → 0 as R → ∞. 
. C

R 
. 

 

Letting R → ∞ in (6.3.6), we get  
∞ xeix    

dx
 

−∞ x2 + a2 

 

 
= πie−a

 

∫ ∞ x(cos x + i sin x) 
dx =   πie−a 

e−R

] 

0 

 

[1 

R C C 

−

∞ 
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−∞ x2 + a2 

∫ 

= 

0 x2 + a2 2 

Example 6.3.7. Prove that 
∫ ∞ sin x

dx = π 

. . . 
. 

= 
∫ 

 

Equating the imaginary parts on both sides, we get 

∫ ∞
 x sin x 

dx =   πe−a 

∴ 

∫ ∞
 x sin x 

dx = 
π 

e−a.
 

 

 

 
Solution. Consider 

0 x 2
 

eiz 

dz
 

C   z C 
f (z)dz 

where f (z) = 
eiz 

dz and C is the upper half of the semicircle |z| = R along the diameter on the 
 

real axis from 
z 

−R to R, where R is sufficiently large, but with an indent i.e., a small semicircle 

at the origin, which is introduced to avoid the singularity z = 0, which lies on the real axis. 

The poles of f (z) is given by z = 0. 

The closed curve does not include the singularity of f (z) = 

∴ by Cauchy’s residue theorem, we get 

eiz 

z 
. 

 

 
∫ −ρ 

 

 

f (z)dz = 0 
C 

 

∫ ∫ R ∫ 

 
 

 
 

The equation of BDE is |z| = ρ. 

∴ z = ρe
iθ and dz = ρe

iθ
idθ. 

As BDE is described in the clockwise sense, θ varies from π to 0. Thus 

∫ 
eiz 

 
 

 
dz   = 

∫ 0 eirei θ 
 

 

 
re

i
 
θ
idθ 

BDE z 
π rei θ 

lim 

∫

 eiz 

dz
 

 

∫ 0 . 
lim(e

irei θ 

)
.
id 

r→0 

lim 
r→0 

BDE 

 

 
BDE 

z 

eiz 

dz 
z 

π 

= −iπ 

r→0 

.
∫ 

f (z)dz
. .

∫

 
 

eiz 

dz. → 0 as |z| R → ∞ 
RGA 

f (x)dx + f (z)dz + 
BDE 

f (x)dx + 
−

R 

∫ 

i.e., 
ρ RGA 

f (z)dz = 0 (6.3.7) 

RGA z 
= . 

∫ 

= θ 
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1 

z 

x 

Example 6.3.8. Evaluate 
∫ ∞  x 3 

dx. 

∫ 

−

∞ 

1 

 

Letting R → ∞ and ρ → 0 in (6.3.7), we get 
 

0 eix 

dx
 

−∞ x 

 
– iπ + 

∞ eix 

dx
 

0 x 
∞ eix 

dx
 

x 

 
=   iπ 

 
=   iπ 

−∞ 

Equating the imaginary parts on both sides, we get 

∫ ∞ sin x 
= π

 

∴ 

∫ ∞ sin x 
= 

π
.
 

 

Type. 4 The next category of integrals have the form 

∞ 

x
α
R(x)dx 

0 

where the exponent α is real and may be supposed to lie in the interval 0 < α < 1. For 

convergence R(z) must have a zero of at least order two at ∞ and at most a simple pole at 

the origin. The new feature is the fact that R(z)z
α is not single-valued. This, however, is just the 

circumstance which makes possible to find the integral from 0 to ∞. 
 

 

 
Solution. Consider 

 

 
1 

 
 

0  1 + x2 

∫

C

 

 
z 3 

dz = 
1 + z2 

C 

 

 

f (z)dz, 

where f (z) =
  z 3 

and C be the simple closed contour consisting of the circles |z| = R ( R 

is large) and 
1 + z2 

| | = ρ ( ρ is small) and position of real axis between them. The poles of f (z) are 

given by 1 + z2
 = 0 ⇒ z = ±i and z = 0 is a branch point for f (z). 

The simple pole z = i lies inside C. 

∫ ∫ 

∫ 

∫ 

0 x 2 
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1 

i J 

6 

6 

. . 

1 

1 2 
|  

|
z
 

.                                                   

.+ 

.                                                   

.+ 

− 

− 

1 z
2
 ≥ 1 − |z|2

 

 

∴ the residue of f (z) is given by  
Res. f (z)|z= 

 
 

 P(z)  
= lim 

z→i Q (z) 
z 3 

= lim 
z→i 2z 

ei π 

Res. f (z)|z=i = 
2i

 

∴ by Cauchy’s residue theorem, we have 

∫

C

 

∫

C

 

∫ ρ ∫ 

f (z)dz = 2π i 
X 

Ri 

f (z)dz = πe
i
 
π

 

∫ R ∫ 
i π

 

 
 

 
Now, 

i.e., f (x)dx + 
−R 

.
∫ 

 

BDE 

f (z)dz + 
ρ 

 

. 
∫ 

f (x)dx + 
 

|z| 3 
 

 

 

FGA 

f (z)dz = πe 6 (6.3.8) 

 
On BDE, |z| = ρ. 

. 
BDE 

f (z)dz. ≤ 
dz 

BDE . + . 

 
 

1 

1 z2 
≤

 

1 

1 − ρ2 

 

.

∫

BDE 

f (z)dz. ≤ 

 
 

1 

ρ 3 
 

 

1 ρ2 
1 

ρ 3 

 
 

∫

BDE 

|dz| 

≤ 
1 ρ2 

πρ 
4 

ρ 3 

≤ 
1 − ρ2 

∴ .

∫  
 
BDE 

f (z)dz. → 0 as |z| = ρ → 0 (6.3.9) 
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|z| 
| |

 

.                                                   

.+ 

.                                                   

.+ 

.                                                   

.+ 

1 

1 

4 

1 1 

6 

1 1 

6 

3 

∫ 1 ∫ 

6 

6 

1 z
2
 ≥ |z|2 − 1 

3 

1 + y2 

3 

dy + 
3 

1 + x2 

3 

1 + x2 

−

∞ 

0 

 

Now, 

 

 
On FGA, 

.

∫

FGA 

f (z)dz. ≤ 

 
 

1 
3 

dz 
FGA   1 z2

 

 

 

1 

1 z2 
≤

 

1 

R2 − 1 
 

.

∫

FGA 

f (z)dz. ≤ 

 
R 3 

R2 − 1 
R 3 

 
 

∫

FGA 

|dz| 

≤ 
R2 − 1 

πR 

R 3 

≤ 
R2 − 1 

∴ .

∫ 
 

 
FGA 

f (z)dz. → 0 as |z| = R → ∞. (6.3.10) 

Letting R → ∞ and ρ → 0 in (6.3.8) and using (6.3.9) and (6.3.10) in (6.3.8), we get 

∫ 0 
x 3

 

dx + 0 + 

∫ ∞

 
x 3 

dx + 0 = πe
i
 
π

 
 

−∞ 1 + x2 

Put x = −y in the first integral, we have 

0 1 + x2 

∫ 0   (−y) 3 (−dy) 
∫ ∞ x 3 

i π 
 

  

 
   1 + y2 

+
 

1 + x2 
dx   =   πe 6 

∫ ∞ (−1) 
1 

y 
1

 
 

 
 

 

∫ ∞ 
x 

1 

  
 

 

ei π ∞ x 3 
 

 

0 1 + x2 dx + 
∞

 
0 

∫ ∞ 
 

 

x 3 
 

 

1 + x2 

x 
1 

 
 

dx = πe
i
 
π

 

 
 

 dx = πe
i
 
π

 

0 

dx = πe
i
 
π

 

0 

0 

1 

3 (1 + ei
 
π 

) 

∫ 
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1 

z 

i J 

. . 

C 1 + z2 

π 

C 

 

Equating the real parts on both sides, we get 

.
1 + cos 

. 

3
 

∞ x 3 

 
 

0 1 + x2 
 

 

√
3
 

dx =   π 
2

 

∴ 

 

Example 6.3.9. Evaluate 
∫ ∞ log x 

dx 

∞ x 3 

dx   = 
0 1 + x2 

π 
√

3 
. 

 
Solution. Consider 

0  1 + x2 

∫  log z 
dz = 

∫
 

 
 

f (z)dz, 
 

where f (z) =
 log z 

and C be the simple closed contour consisting of the circles |z| = R ( R 

is large) and 
1 + z2 

| | = ρ ( ρ is small) and position of real axis between them. The poles of f (z) are 

given by 1 + z2
 = 0 ⇒ z = ±i and z = 0 is a branch point of the function log z. 

The simple pole z = i lies inside C. 

∴ the residue of f (z) is given by 

Res. f (z)|z= 
 P(z)  

= lim 
z→i Q (z) 

log z 

 
Res. f (z)|z= 

=   lim 
z→i 2z 
π 

i = 
4
 

 

∴ by Cauchy’s residue theorem, we have 
∫  

f (z)dz  =   2π i
. X 

Ri

.
 

∫

C

 

∫ ρ ∫ 

f (z)dz 
π2

i 
= 

2
 

∫ R ∫ 

 

 
π2

i 
 

 
Now, 

i.e., f (x)dx + 
−R BDE 

f (z)dz + 
ρ 

f (x)dx + 
FGA 

f (z)dz = 
2 

(6.3.11) 

.

∫

BDE f (z)dz. ≤ 

∫

 

  log z 

BDE .1 + z2. 
|dz| . 

C 

1 

∫ 

∫ 
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.                                                   

.+ 

.                                                   

.+ 

. . 

. . . . 

| | 

∫

≤

 

− 

. . 

.                                                   

.+ 

.                                                   

.+ 

1 z
2
 ≥ |z|2 − 1 

 

On BDE, |z| = ρ. 

1 z
2
 ≥ 1 − |z|2

 

1 

1 z2 
≤

 

 
z =   ρe

iθ 

1 

1 − ρ2 

log z = log ρ + iθ 

log z ≤ log ρ + |iθ| 

≤ log ρ + θ 

log z ≤ log ρ + π, 0 ≤ θ ≤ π 

 

.

∫

BDE 

 
f (z)dz 

≤ 

∫

BDE 

log ρ + π 
dz

 

1 − ρ2 

π + log ρ 

1 ρ2 

π + log ρ 

 

 
BDE 

|dz| 

≤ 
1 − ρ2   

πρ 

π2ρ + πρ log ρ 

≤ 
1 − ρ2 

 

 

Now, 

Thus .

∫

 

 

 
BDE 

f (z)dz. → 0 as |z| = ρ → 0 (6.3.12) 

 

 
 

On FGA, 

.

∫

FGA f (z)dz. ≤ 

∫

 

  log z 

FGA .1 + z2. 
|dz| . 

 

 
1 

1 z2 
≤

 

1 

R2 − 1 

.. 
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. . 

. . . . 

| | 

− 

∫ 

∫ 

∫ ∫ 

∫ ∫ 

1 + x2 

1 + x2 

0 

 

log z = log R + iθ 

log z ≤ log R + |iθ| 

≤ log R + θ 

log z ≤ log R + π, 0 ≤ θ ≤ π, maximum value o f θ is π. 

 

.

∫

FGA 

 
f (z)dz 

≤ 

∫

FGA 

log R + π 
dz 

R2 − 1 
π + log R 

≤ 
R2 1 

πR 

π2
R + πR log R 

≤ 
R2 − 1 

Thus .

∫

 

 

 
FGA 

f (z)dz. → 0 as |z| = R → ∞. (6.3.13) 

Letting ρ → 0 and R → ∞ in (6.3.11) and using in (6.3.12) and (6.3.13), we get 
 

0  
 log x 

dx
 

−∞ 1 + x2 

∞
 log x 

dx   =
 

0 1 + x2 

π2
i 

 
 

2 

Put x = −y in the first integral, we get 

∞ log(−y) 
dy +

 

0 1 + y2 

∞ log(−1) + log y
dy +

 

0 1 + y2 

 
∞

 log x 
dx   =

 

0 1 + x2 

∞
 log x 

dx   =
 

0 1 + x2 

 

 
π2

i 
 

 

2 

π2
i 

 
 

2 

iπ 
∞ 

   dy   
+

 

0 1 + y2 

∞
 log y 

dy +
 

0 1 + y2 

∞
 log x 

dx   =
 

0 1 + x2 

π2
i 

 
 

2 
 
 

iπ 
∞ 

   dy   
+

 

0 1 + y2 
2 

∞
 log x 

dx   =
 

0 1 + x2 

π2
i 

 
 

2 
 

 

Equating real parts on both sides, we get 

2 

∫ ∞
 log x 

dx = 0
 

Hence 

∫ ∞
 log x 

dx =   0. 

.. 

∫ ∫ 

∫ 

∫ 

∫ 

0 

+ 
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2 

0 x4 + 5x2 + 6 0 
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6.4 Exercises 

 
1. Find the poles and residues of the following functions: 

(a)
 1 

, (b)
 1 

, (c) 
 1 

, (d) cot z, (e) 
  1 

, 
z2 + 5 + 6 (z2 − 1)2 sin z sin

2
 z 

( f )
 1 

 

zm(1 − z)m 

( m, n are positive integers). 

 

 
2. Evaluate the following integrals by the method of residues: 

(a) 
∫ ∞ x dx 

dx, (b) 
∫ ∞

(1 + x2
)−1

 log xdx 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

80 



 

 

Objectives 

Upon completion of this Unit, students will be able to 

x prove the properties of harmonic functions. 

x identify the Poisson integral formula. 

x understand the concept of the mean - value property. 

 

 

BLOCK-II 

UNIT 7 

Harmonic Functions 
 

 

7.1 Introduction 

 
The real and imaginary parts of an analytic functions are conjugate harmonic functions. Therefore, 

all theorems on analytic functions are also theorems on pairs of conjugate harmonic functions. 

However, harmonic functions are important in their own right, and their treatment is not always 

simplified by the use of complex methods. This is particularly true when the conjugate harmonic 

functions is not single-valued. In this section we discuss some facts about harmonic functions that 

are intimately connected with Cauchy’s theorem. 

 
7.2 Definition and Basic Properties 

Definition 7.2.1. Harmonic Function. A real - valued function u(z) or u(x, y), defined and single-

valued in a region Ω, is said to be harmonic in Ω, or a potential function, if it is continuous 

together with its partial derivatives of the first two orders and satisfies Laplace’s equation 
 

∂2
u ∂2

u 
∆u = 

∂x2 
+ 

∂y2 
= 0. (7.2.1) 

81 
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− 

82 7.2. DefINITIoN aND BasIc PRopeRTIes 

Example 7.2.1. The simplest harmonic functions are the linear functions ax + by. 

 
Note. In polar coordinates (r, θ) equation (14.2.1) takes the form 

 

r 
∂ 

(r 
∂u 

) 
 

  

∂2
u 

0
 

 
 . 

∂r ∂r + 
∂θ2 

= 
∂2

u 1 ∂u 1 ∂2
u 

∂r2 
+ 

r ∂r 
+ 

r2 ∂θ2 
= 0.

 

Example 7.2.2. The function log r is a harmonic function r > 0. 

Example 7.2.3. The function a log r + b is a harmonic function. 

Example 7.2.4. The argument θ is a harmonic function. 

Properties of Harmonic Functions 

1. The sum of two harmonic functions is also harmonic function. 

 
Proof. Let u1(x, y) and u2(x, y) are harmonic functions. Let U = u1 + u2 

 

∂2
U 

∂x2 
+

 

∂2
U 

∂y2 
=

 

∂2
(u1 + u2) 

∂x2 
+

 

∂2
(u1 + u2) 

∂y2 
= 0. 

■ 

 

2. A constant multiple of a harmonic function is also a harmonic function. 

 
Proof. Leu u(x, y) be a harmonic function. 

 

∂2
cu ∂2

cu ∂2
u ∂2

u 

∂x2 
+

 ∂y2  
= c

. 

∂x2 
+ 

∂y2 

. 
= 0. 

∴ cu is harmonic. ■ 
 

. 3. If u(x, y) is harmonic in Ω then f (z) = 
∂u 

− i 
∂u

 
 
is analytic. 

 
Proof. Let U = 

∂u
 

∂x 

 
and V = 

∂u
 

∂y 
 

∂U 

∂x ∂y 

 

 

 
∂2

u ∂V 

 

 

 
 
∂2

u 

∂x 
= 

∂x2 
, 

∂x 
= −

∂x∂y 
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∂U 

 
 
∂2

u 

83 

∂V ∂2
u 

 

Since u is harmonic, 

= , 
∂y ∂y∂x ∂y 

= −
∂y2 

.
 

∂2
u ∂2

u ∂U ∂V 

 

Also 

∂x2 
+ 

∂y2 
= 0 ⇒ 

∂x 
= 

∂y 
.
 

∂U ∂V 

∂y 
= − 

∂x 

∴ U, V satisfy Cauchy’s - Riemann equations. Also 
∂U 

, 
∂U 

, 
∂V 

, and 
∂V

 

 

 
are continuous. 

∂x ∂y ∂x ∂y 

∴ f (z) = U + iV = 
∂u 

− i 
∂u 

is analytic. 
∂x ∂y 

■ 
 

Theorem 7.2.1. If u1 and u2 are harmonic in a region Ω, then 

∫ 

u1 ∗du2 − u2 ∗du1 = 0 (7.2.2) 
 

for every cycle γ which is homologous to zero in Ω. 

 
Proof. Let v1, v2 denote the conjugate harmonic functions of u1, u2 in the region Ω. Let us 

choose cycle γ to be boundary of the rectangle R contained in Ω. 

 
γ = ∂R. 

 
∗du1 = dv1 and ∗du2 = dv2 

 
∴ u∗

1du2 − u2
∗ du1 =   u1dv2 − u2dv1 

=   u1dv2 + v1du2 − v1du2 − u2dv1 

= u1dv2 + v1du2 − (v1du2 + u2dv1) 
=   u1dv2 + v1du2 − d(u2v1) 

∴ 

∫  

u∗
1du2 − u2

∗ du1 =   

∫ 

(u1dv2 + v1du2) − 

∫  

d(u2v1) 

 

∫

γ 

u1
∗ du2 − u2

∗ du1 = 

∫

∂R

(u1dv2 + v1du2) − 

∫

∂R 

d(u2v1) (7.2.3) 

γ 

γ γ γ 
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dz 

∫ 

∫

−

 

∫

−

 

∂u ∂u 

∂n ∂n 

 

Since d(u2v1) is an exact differential, 

 
d(u2v1) = 0. 

∂R 
 

Now u1dv2 + v1du2 represents the imaginary points of an analytic function for 

 

(u1 + iv1)(du2 + idv2)    =    udu2 − v1dv2 + i(u1dv2 + v1du2) 

F1(z)
 d 

(u2 + iv2)dz = u1du2 − v − 1dv2 + i(u1dv2 + v1du2). 

Here the product F1. f1 being analytic inside and on R. 

 

∴ F1. f1dz = 0 
∂R ∫

∂R 

 

(u1du2 v1dv2) + i 
∂R 

 

(u1dv2 + v1du2) =   0 

 

 

Equating the real parts and imaginary parts on both sides, we get 

∫

∂R 

 
(u1du2 v1dv2) = 0 and 

∂R 

 
(u1dv2 + v1du2) = 0 

∴ (7.2.3) ⇒ 

∫

 u∗
1du2 − u∗

2du1 = 0. 

■ 

 

Note. In the classical notation (10.2.2) would be written as 

∫ 
.
u1 

2
 − u2 

1 |dz| = 0. 
 

 

7.3 The Mean-Value Property 

Theorem 7.3.1. The arithmetic mean of a harmonic function over concentric circles |z| = r is a 

linear function of log r, 

 1 
∫
 udθ = α log r + β, (7.3.1) 

 
|z|=r 

∫ 

γ 

γ 

2π 
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− 

∫

−

 

∂r ∂r 

7.3. The MeaN-ValUe PRopeRTY 85 

and if u is harmonic in a disk α = 0 and the arithmetic mean is constant. 

Proof. By Theorem 3.1.1, 

Put u1 = log r, u2 = u 

∫ 

(u1 ∗du2 − u2 ∗du1) = 0. 
 

For Ω we choose the punctured disk  0 < |z| < ρ, and for γ we take the cycle C1 − C2 where Ci 

( i = 1, 2 ) is a circle |z| = ri < ρ described in the positive sense. ∫

C1−C2 (u1 ∗du2 − u2 ∗du1) =  0 ∫

C1−C2 
(log r r 

∂u
dθ udθ)   =   0 

∂r ∫ 

(log r1 r1 
∂u

dθ − udθ) −

∫

 (log r2 r2 
∂u

dθ − udθ)  =  0 

C1 
∂r C2 

log r1 

∂r 

r1 
∂u

dθ − 

∫

 udθ =   log r2 

∫ 

r2 
∂u

dθ − 

∫

 
 

udθ 

 

Each value is constant, say β. 

C1 
∂r C1

 C2 
∂r C2

 

log r 

∫

  
|z|=r 

r 
∂u

dθ 
∂r 

 
 

|z|=r 

 
udθ = constant = β. 

∫

|z|=r 

 
udθ log r 

|z|=r 

r 
∂u

dθ = constant = β. 
∂r 

 1 
∫ 

udθ − log r
 1 

∫

 r 
∂u

dθ = β (7.3.2) 

 
Since u is harmonic, 

2π |z|=r 

∫

C1−C

2 

2π 

 

 
∗du = 0 

|z|=r  ∂r 

∫

C1

 ∗du − 

∫

C 

∗du 0 
= 

 

 

∫ 

r1 
∂u

dθ =   

∫

 
r2 

∂u
dθ = constant 

 

∴
 1  

2π 
 

|z|=r<ρ 

r 
∂u

dθ = α (7.3.3) 
∂r 

2 

γ 

∫ 

∫

−

 

∫ 
C1 C2 
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∫ 

[u(z0 + re 
θ
) + iv(z0 + re 

θ
)]dθ 

∫ 

 

Using (7.3.3) in (14.3.2), we get 

 1 

2π 

 
 
 

|z|=r 

 
udθ − (log r)α = β 

 1  

2π |z|=r 

udθ = α log r + β. 

 

■ 

 

Note. 
 1 

∫
 

 

 

 
udθ = α log r + β 

Let us choose the circle |z − z0| = r ⇒ z = z0 + re
iθ, 0 ≤ θ ≤ 2π. 

If u is harmonic in the whole disk of radius r < (ρ), then α = 0. 

 1 
∫ 2π  

u(z0 + re
iθ

)dθ = β 
2π 0 

 
 1 2π 

∴ 

u(z0)   =   β as r → 0 

u(z0 + re
iθ

)dθ = β = u(z0). 
2π 0 

 

Theorem 7.3.2. Maximum Principle. A nonconstant harmonic function has neither a maximum 

nor a minimum in its region of definition. Consequently, the maximum and the minimum on a 

closed bounded set E are taken on the boundary of E. 

 

Proof. Let f (z) represents an analytic function u = Real part o f  f (z). Consider the closed 

disk |z − z0| ≤ r contained in a region Ω. 

∴ by Cauchy’s integral formula, 

f (z0) = 
1 

∫
 f (z) 

dz, on C, |z − z0| = r ⇒ z = z0 + re
iθ 

2πi C z − z0 
 

f (z0) =  1 
∫ 2π 

f (z0 + re
iθ

)dθ 
2π 0 

 1 
∫ 2π 

i i 

  0 2π 

2π 

∫ 

|z|=r 

∴ u(z0) + iv(z0) = 
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∫ 

. 

∫ 

∫ 

2π 0 

 

Equating the real parts on both sides, we get 

 
 1 2π 

u(z0) = 

 

 
u(z0 + re

iθ
)dθ 

2π 0 
 1 

∫ 2π 
. i . 

|u(z0)| ≤ 
2π 0 

.u(z0 + re 
θ
) |dθ| 

 

Suppose that |u(z)| ≤ |u(z0)| throughout |z − z0| ≤ r, then 

 1 
∫ 2π 

 1 2π 

≤ u(z0) 
2π 0

 

dθ ≤ |u(z0)| 

 

which is a contradiction. |u(z)| = |u(z0)| , |z − z0| ≤ r. On concentric circles Ω, |u(z)| is also a 

constant. Therefore u(z) reduces to a constant in Ω. u(z) cannot attain maximum value in Ω. 

Since u is continuous on a closed set E and hence u attains into maximum value |u(z)| on the 

boundary of E. 

The minimum principle can be obtained by applying the above result to the harmonic function 

(−u). ■ 

 
7.4 Poisson’s Formula 

 
Theorem 7.4.1. Poisson Formula for Harmonic Functions. Suppose that u(z) is harmonic for 

|z| < R, continuous for |z| ≤ R. Then 
 

 
 

for all |a| < R. 

 
u(a) =

 1  

2π |z| =R 

R2 − |a|2 

u(z)d 

|z − a|2
 

 

(7.4.1) 

 

Proof. Let u(z) be harmonic for |z| ≤ R. The linear transformation 

z = S (ζ) = 
R(Rζ + a) 

R + aζ 

maps  the  circle  |ζ |  ≤  1  onto  |z|  ≤  R  with  ζ  =  0  corresponding  to  z  =  a.  The  function 

|u(z0)| ≤ |u(z0)| dθ 

θ 
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ζ 

dζ 

.   dζ z a 

∴ (17.4.3) ⇒ u(a) = 
2π

 |z − a|2 
u(z)dθ 

 

u(S (ζ)) = u(z)  is harmonic in  |ζ| ≤ 1. 

u(s(0)) =
 1 

 
2π 

 
 
 

|ζ | =1 

 

 
u(s(ζ))d(arg(ζ)) 

 

by mean value property. 

s(0) = a,  
u(a) =

 1 
 

2π 

 
 

 
|ζ | =1 

 

 

u(s(ζ))d(arg(ζ)) (7.4.2) 

|ζ | = 1 ⇒ ζ = eiφ ⇒ dφ = −i
dζ

 
dζ 

⇒ d(arg(ζ)) = −i 
ζ
 

u(a) = 
 1 

∫ 

u(s(ζ))
. 
− i 

  
(7.4.3) 

2π |ζ | =1 ζ 

 
z   = 

R(Rζ + a) 
 

R + aζ 

R(z − a)  =   ζ(R2
 − az) 

 
ζ = 

R(z − a) 

R2 − az 

log ζ = log R = log(z − a) + log(R
2
 − az) 

dζ 1 a 

ζ 
=  

. 

z − a 
+ 

R2 − az

 
dz

 

|z|2 = R2
 ⇒ dz = Re

iθ
idθ ⇒ dz = zidθ. 

dζ 1 a 
 

ζ 
= 

. 

z − a 
+ 

zz − az

 
izdθ

 
−i 

ζ 
= 

z − a 
+ 

z − a 
dθ

 
|z|2 − |a|2

 
 

= 
|z − a|2 

dθ
 

dζ R
2
 − |a|2

 
 

−i 
ζ 

= 

|z − a|2 
dθ
 

 1 
∫
 

 
R

2
 − |a|2

 
 

 

 
|z| =R 

∫ 

∫ 
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0 

∫ 
− | | 

. − . 

.   

|z − a|2 
dθ
 

2π z − a 

 

■ 

 

Note.(i) In (17.4.1), put u(z) = 1 (which is analytic everywhere), we get 

 1 
∫ 2π R

2
 − |a|2

 

  

2π = 

 
(ii.) Put z = Re

iθ, a = re
iφ, r < R. 

2π R2 a 2 

|z − a|2 
dθ

 

 

 
∴ u(re

iφ
) =  1 

∫ 2π (R
2
 − r2

)u(Re
iθ

) 
 

 
dθ. 

 
Now 

2π 0 |Reiθ − reiφ|2
 

 

Re
iθ re

iφ 2 =   (Re
iθ − re

iφ
)(Re

iθ − re
iφ

) 

=   R
2
 − 2Rr cos(θ − φ) + r2

 

 

 
u(re

iφ
) =  1 

∫ 2π 
(R

2
 − r2

)u(Re
iθ

) 
 

dθ, r < R. 
2π 0 R2 − 2Rr cos(θ − φ) + r2 

 

This is called polar form of Poisson’s formula. 

(iii). Another form of Poisson’s formula: 

The other form of Poisson formula is 

u(a) =
 1 

∫

 

 

 

 

z + a 
Re u(z)dθ. 

 
|z| =R 

2π 
1 = 

0 
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∫ 

∫ 
.   

 

Proof. Now  
 

z + a 
 

 

 
= 

z + a 
. 
z − a 

 
 

z − a z − a z − a 

|z|2 − |a|2 + |az − az| 

|z − a|2   
 

R
2
 − |a|2 + a2z − (az) 

|z − a|2
 

R
2
 − |a|2  + 2iIm(az) 

|z − a|2
 z a R

2
 − |a|2

 

 

 

From Poisson’s formula, 

∴ Re
. 

z 

− 

a 

    
= |z − a|2

 

 

 

u(a) = 
 1  

2π |z| =R 

R2 − r2 

u(z)d 

|z − a|2
 

u(a)   = 
1 

 
2π 

 
|z| =R 

z + a 

Re 
z − a 

u(z)dθ. 

■ 

+ 

= 

= 

= 

θ 



 

 

. 

−

 

γ 

γ 
z − b γ 

γ 

Objectives 

Upon completion of this Unit, students will be able to 

x prove Mittag - Leffler theorem. 

x understand the concept of infinite products. 

x identify Weierstrass theorem on an entire function. 

 

BLOCK-III 

UNIT 8 

Partial Fractions and Factorization 
 

 

8.1 Introduction 

 
A rational function has standard representations, one by partial fractions and the other by 

factorization of the numerator and the denominator. The present section is devoted to similar 

representations of arbitrary meromorphic functions. 

 
8.2 Partial Fractions 

Theorem 8.2.1. Mittag-Leffler Theorem. Let {bγ} be a sequence of complex numbers with 

limγ→∞ bγ = ∞, and let Pγ(ζ) be a polynomials without constant term. Then there are functions 

which are meromorphic in the whole plane with poles at the points bγ and the corresponding 1 

singular parts Pγ 
z b 

written in the form 

 
. Moreover, the most general meromorphic function of this kind can be 

f (z) = 
X .

P 
.   1 

− P (z)
. 

+ g(z) (8.2.1) 

where the Pγ(z) are suitably chosen polynomials and g(z) is analytic in the whole plane. 

 
 

91 

γ 
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          1 

          1 

.  

.γ 

z − bγ 

z − bγ 

.     n  +1γ− 

   · · ·γ  γ

 (n+1)γ 

    1  . n +1 

. . . .= 

. n +1 

bγ 

.  .γ  γ

  2   . .2 

where |z| < 1
 .b . . The above result is also valid for |z| ≤ 

|bγ| 
. 

γ 
z − b 

γ 

∴ f (z) − 
X .

P 
.   1 

− p (z) = g(z) 

γ 
z − bγ 

γ 

γ 

γ 

 

Proof. Let us suppose that no bγ equal to zero. Consider a circle with centre at the origin and 

radius less than b . Then from Taylor’s series we get 

Pγ
. 

= a0γ + a1γz + a2γz
2
 + · · · + anγz

nγ + a(n+1)γz
nγ+1 + · · · 

Pγ
. 

− a0γ + a1γz + a2γz
2
 + · · · + anγz

nγ = a(n+1)γz
nγ+1 + · · · 

 

Choose 

pγ(z) = a0γ + a1γz + · · · + anγz
nγ

 

P 
1 

p =   a z + 

z − bγ 

∴ .P 
. 

− p . 

 
= 

|z| γ .
 MγR  

 

– bγ . R (R − |z|) 
 

 
 where M max value of P on the circle of radius R. Put R = 

1 
b   . γ γ 

 
 
 

Pγ(z) − pγ ≤ 

 

 

 

2 |z| γ 

. . 

2 
γ 

 
M 

1
 b 

. 
1 bγ − |z| 

 
 

2 γ 4 

∴ f (z) = 
X .

P 
.   1 

− p (z)
.
 

 

represents function in the whole complex plane without pole. That is it represents an entire 

function say g(z). 

 

γ 
z − bγ 

 
γ 

 

∴ f (z)   =   
X .

P 
.   1 

− p (z)
. 

+ g(z) 
 

 
 

where g(z) is analytic in the whole plane. If some bγ = 0, we choose Pγ(z) = 0. ■ 
π2

 ∞ 1 
 

Example 8.2.1. Prove that 

sin
2
 πz  

= 
−

.

∞ (z − n)2 
.
 

γ 

z 

γ 

γ 
. 

γ 
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1 

− 

− 

n 

  

 
Solution. Let f (z) 

π2 

= 
sin

2
 πz 

.
 

 
The poles of f (z) are given by 

 

sin
2
 πz = 0 ⇒ πz = nπ (twice) ⇒ z = n (twice.) 

 

 

π2 π2 

2 
= 

1
 

sin πz 
π2z2

.
1 − 

 
 

π2z2 + · · · 
.2

 

1 
= 

z2
 

.
1 − π2

z
2
 + · · · 

.−2
 

 

π2
 1 1 1 

sin
2
 πz 

= 
z2 

.
1 + 2

. 

3! 
π z + · · ·

 
+ 3

. 

3! 
π z + · · ·

 
+ · · · 

.
 

2 2 2 2 
   

 

 
1 

= 
z2 

+ powers o f z 
1 

= 
(z − 0)2 

+ powers o f z 

∴ z = 0 is a double pole with singular part
 1 

. Singular part with respect to double pole z = n is 
z2 

1 

(z − n)2 
.
 

Pn

. 

z − bn

    
=
 

= 

 
 

1 
 

 

(z n)2 

1 
 

 

(n z)2 1 z 
 

 

     = 
2 

.
1 − 

n 

−
 1 

= 
1 

+
 2 

z +
 3 

z
2
 + · · · 

(z − n)2 

1 1 
n2 n3 n4 

Since 
. 

n2 
and 

. 

n3   
etc., are convergent, we choose Pn(z) = 0. By Mittag - Leffler theorem, 

2 

3! 

1 

3! 
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    1  

. 
. iπz.  . iπz. 

.
≥

  − 

| ≤| 

csc
2
 πz ≤ 

− 

1 . 

−

 

(z − n)2 

.π π . 

. . 

1 

2 

−

∞ 

 

we have  
 

π2 

sin
2
 πz 

=
 Pn

. 

z − bn 

 

 
 

 

– Pn(z)
.
 

 
 

+ g(z) 

= 
X . 1 

− 0
. 

+ g(z) 

n=−

∞ ∞ 

(z − n)2 

=   
X 1 

+ g(z) 

where g(z) is analytic in the whole plane. Since csc
2
 πz is periodic of period 1. 

Consider the strip 0 ≤ x ≤ 1. 

 

csc
2
 πz   = 

  1 
 

(sin πz)2 

sin z 
. e

iπz − e−iπz 
.
 

 
 

 

 

| π | = 
2i

 
1 e e− 
2 

 

≥ 
.
e−πy − eπy. 

csc πz 
  2 

 
e−πy eπy 

  4  

. . 
(eπy − e−πy)2 

 . 2 csc
2
 z

.
 4π2 1 

≤ 
 

≤ 4π 
(1 − e−2πy)2 

.π2
 csc

2
 πz. → 0 as y → ±∞.    

Thus  π2
 csc

2
 πz  →  0  uniformly  in  the  strip  as  |y|  →  ∞.  Also n

∞
=−∞ (z n)2    

has  the  same 

property. Indeed, the convergence is uniform for |y| ≥ 1, say, and the limit for |y| → ∞ can thus 

be obtained by taking the limit in each term. 

∴ g(z) → 0 uniformly for |y| → ∞. This is sufficient to infer that |g(z)| is bounded in a period 

strip 0 ≤ x ≤ 1, and because of the periodicity |g(z)| will be bounded in the whole plane. 

∞ 

. 

e2πy (1 − e−2πy)2 

2 e−2πy 

X 

n 
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∞ 

∞ 

= 

∞ 

.    

(z − n)2 

π2
 csc

2
 πz = 

X 1 
. 

z2 
0 

(z − n)2 

dz dz z 
n 0 

dz (z − n) 

dz z 
n/=0 

dz
 z − n n 

dz dz z dz 
n
 z − n n 

−

∞ 

 

∴ by Liouville’s theorem g(z) must reduce to a constant. 

 

∴ g(z) = k. 

π2
 csc

2
 πz = 

X 1 
+ k 

As |z| → ∞ in the strip, both sides of the above equation tends to 0. 

∴ k = 0. Hence 
 

−∞ 
1 ∞ 2z 

 
 

(z − n)2 

Example 8.2.2. Prove that π cot πz = 

z  
+ 

n

.

1  z2  − n2 

Solution. Since π2
 csc

2
 πz = 

n=

.

−

∞ 

1 

(z − n)2 
.
 

π2
 csc

2
 πz   = 

1
 + 

X 1  
 

 

 d 
(−π cot πz)   = 

d . 
− 

1  
+ 
X d . 

−
   1   

 

=  −
 d . 1  

− 
X d .  1   

+ 
1 . 

 

 

d d   1 d 

– (π cot πz)   =   − − 
X .  1   

+ 
1 . 

 

 0 

n 
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∞ 

. 
· · · · · · 

z z − n n 

z 
0  

z − n 

= 
1 

+ 
X 1  

+ 
X 1  

+ c
 

= 
1 

+ 
X  1   

+ 
X  1   

+ c by replacing n by  − n 

π cot πz = 
1 

+ 2z 
X 1 

+ c (8.2.2) 

1  
z2 − n2 

z 1  
z2 − n2 

n 0 

 

Integrating on both sides, we get 

π cot πz = 
1 

+ 
X .  1   

+ 
1 . 

+ c 

= 
1 

+ 
X 1  

+ c 

 

∞ −∞ 

z 
n=1 

z − n 

∞ 

n=−1 
z − n 

∞ 

z 
n=1 

z − n 
n=1  

z − n 

∞ 

 
Replacing z by −z, we have 

z 
n= 1  

z2 − n2 

 
∞ 

1 

−π cot πz = 2z 
X 1 

+ c (8.2.3) 
 

 
 

 
 

Hence 

(12.2.2) + (8.2.3) ⇒ 2c = 0 ⇒ c = 0 

π cot πz = 
1 

+ 
X   2z 

 
 

 

 
 

8.3 Infinite Products 

Definition 8.3.1. Consider a sequence of non - zero complex numbers p1, p2, · · · , pn, · · · . A 

product of the form 

 

 
is called an infinite product. 

∞ 

pn = p1 p2 pn 
n=1 

 

To see the convergence of the product, let us define 

 
Pn = p1 p2 · · · pn. 

n= 

n= 

n 

– 
z 

− 
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. 

∞ 

∞ 

n X 

 

It is said to converge to the value P, if 
 

P = lim Pn 
n→∞ 

 

if the limit exists and is different from zero. 

Now, 

pn =
 Pn   

Pn−1 

lim pn = lim
 Pn 

 

n→∞ 

lim 
n→∞ 

n→∞ Pn−1 

= 1, when  the product is  convergent 

 

 
 

In view of this fact it is preferable to write all infinite products in the form 

∞ 

(1 + an), 
n=1 

 

where an are complex numbers.This product is convergent if an → 0. This condition is only 

necessary. Then converse is not true. 

Theorem 8.3.1.  The infinite product  
.

1  
(1 + an)  with  (1 + an) /= 0  converges simultaneously with 

the series  
.

1  
log(1 + an)  whose terms represent the values of the principal branch of the logarithm. 

Proof. Let us write 
 

Pn = (1 + a1)(1 + a2) · · · (1 + an) 

∴ log(Pn) =  log(1 + a1) + log(1 + a2) + · · · + log(1 + an) 

log(Pn) = (1 + ak) 
k=1 
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∞ 

= 

. 

n→∞ 

=1 

X 

We suppose that the series  
n

.

1 
log(1 + an)  is convergent. 

 

∴ log Pn = S n 

Pn = e
S
 n 

lim Pn = e
limn→∞ S n

 

n→∞ 

lim Pn = e
S
 . 

n→∞ 

∞ 

log(1 + an) is convergent implies that the sequence of the n
th

 partial sum of the given series 
n=1 

S n is convergent. 

 

∴ lim Pn = eS
 (/= 0) since S n → S as n → ∞. 

∞ 

Hence  
n

.

=1  
is convergent. 

∞ 

Conversely, let us assume that the product  
n

.
(1 + an)  is convergent then  an → 0. 

Now 
 

Pn = (1 + a1)(1 + a2) · · · (1 + an) · · · 

log(Pn) = log(1 + a1) + log(1 + a2) + · · · + log(1 + an) + · · · 
∞ 

log(Pn)   = log(1 + an) + 2πhn 
n=1 

 

where hn is well determined integers. Equating imaginary parts on both sides, 

 

arg Pn = arg(1 + a1) + · · · + arg(1 + an) + 2πhn. 

Put βn = arg Pn and αn = arg(1 + an). 

 

βn = α1 + α2 + · · · + αn + 2πhn. 

∴ βn+1 = α1 + α2 + · · · + αn + αn+1 + 2πhn+1 

βn+1 − βn = αn+1 + 2π(hn+1 − hn) 



99 8.3. INfINITe PRodUcTs 

M.Sc.(Mathematics)-TNOU-I Year- II Sem Complex Analysis 

 

 

X 

X 

X 
−
 

X 

∞ 

= 

.
if the series  log(1 + a )  converges 

absolutely.
n   1

 

= = 

 

Let us assume that as n → ∞, Pn → p. 

∴ βn+1 = arg Pn+1 and βn = arg Pn 

 

αn+1 = arg(1 + an+1) = arg 1 = 0 

arg P1 − arg P = 0 + 2π(hn+1 − hn), n is large. 

∴ hn+1 − hn → 0 n is large. 

∴ hn+1 = hn where n is large. 

Hence hn becomes a unique integer h. Now, 

∞ 

log Pn = log(1 + an) + 2πhn 
n=1 

 

Let n → ∞, Pn → P(/= 0).  
∞ 

∴ log P = log(1 + an) + 2πh 
n=1 

 

 
 

Hence 

∞ 

∴ log(1 + an) = log P 2πh 
n=1 

∞ 

log(1 + an) 
n=1 

is convergent. ■ 

Definition 8.3.2. An infinite product  
n

.

1 
log(1 + an)  is said to be absolutely convergent if and only 

∞ 

n 
= 

 

Theorem 8.3.2. A necessary and suflcient condition for the absolute convergence of the product ∞ ∞ 

.

1  
(1 + an)  is the convergence of the series  

.

1  
|an| . 

Proof. We know that 

 
∞ 

 
lim 
z→0 

∞ 

 
log(1 + z) 

z 

 

= 1. 

If either the series 
n

.

1 
log(1 + an)  or 

n

.

1 
|an| converges, we have  an  → 0,  n → ∞ and we have 
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. . 

. . . − . 

. 

.    

. 

. 

.

Since  a  is 

convergent, it follows that  log(1 + a ) is convergent.| |n

      n 

−n 

2 

· · · 

. 
2n 

| | 

lim 
log(1 + an) 

log(1 + an) 
1 < s f or large n 

1 − s < . 
log(1 + an) 

an 

. 

1 3 2 
4  .   

∞ 1 1 

 

|an| is convergent as an → 0. Let s be any positive given number. 

lim 
log(1 + an) 

an→0 an 

lim 
log(1 + an) 

n→∞ an 

 

n→∞ . an 
. 

 

 

. . an 
. 

.

 

 

(1 − s) |an| < log(1 + an) < (1 + s) |an| f or large n 

∴ 
. 

log(1 + an)  is absolutely convergent and

.

hence  
.

(1

. 

+ an)  is converges absolutely. ■ 

Example 8.3.1.  Show that  
n

.

2 

.
1 − 

n2 

  
=  

2 
. 

Solution. Here 
P = 1 

1 
= 

n2 

n − 1 
.
 

n 

n + 1 

n 
. 

∴ Pn = p2 p3 · · · pn = 
. 

2 
. 
2

 . 

3 
.
 

3

 
· · · 

.
 
n − 3 
.
 

n − 2 

n − 1 

n − 2 

n − 2 
.
 

n − 1 

n 

n − 1 

 n − 1 
.
 

n 

n + 1 

n 
. 

1 n + 1 1 1 

Pn = 
2 
. 

n 
= 

2 

.
1 + 

n 

 
 

Pn → 
1 

as n → ∞. 

∴ the product is convergent. 

Example 8.3.2. Prove that for |z| < 1, 

1 
∴ P = 

2 
. 

 
 
 

Solution. 

(1 + z)(1 + z2
)(1 + z4

)(1 + z8
) =

  1   
. 

1 − z 

∞ 

(1 + z ), z < 1. 
n=0 

. 

= 

 . 

< 1 + s f or large n 

= 1 

= 1 

= 1 
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= ⇒ .  
.n 

.
∴  a  is convergent.| |n 

n 0   1 n 

− 

. 
| | 

 
n n n 

Let an z
2
 |a | = z

2
 = |z|2

 

Since |z| < 1, 
. 
|z|2n 

is convergent. 

Here 

 
For |z| < 1, 

P = p p · · · p = (1 + z)(1 + z2
) · · · (1 + z2n 

) 

 

(1 − z)Pn =  (1 − z)(1 + z)(1 + z2
) · · · (1 + z2n 

) 

=  (1 − z2
)(1 + z2

) · · · (1 + z2n 

) 

=  (1 − z4
)(1 + z4

) · · · (1 + z2n 

) 
 
 

(1 − z)Pn 

 

(1 − z)Pn 

=   (1 − z2n 

)(1 + z2n 

) 

= 1 − (z2n 

)
2
 

= 1 − z2.2n

 

=   1 − z2n+1

 

 
 

lim(1 − z)P = lim(1 − z2n+1 

), |z| < 1 

n→∞ 
n 

n→∞ 

lim(1 z)Pn = 1 
n→∞ 

lim Pn = 
1 

, |z| < 1 

n→∞ 1 − z 

∴ (1 + z2n 

) = 
1   

, z < 1. 
1 − z 

 

8.4 Canonical Products 

 
Definition 8.4.1. Entire Function. A function which is analytic in the whole plane is called an 

entire function or an integral function. The simplest entire functions which are not polynomials 

are e
z, sin z, and cos z. 

Theorem 8.4.1. If g(z) is an entire function then f (z) = eg(z)
 is entire and /= 0. 

 
Proof. Since f (z) 0, it follows that 

f J(z)
 

f (z) 

 
is analytic in the whole plane. 
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∞ 
        

∞ 

∞ 

.
1 − 

a
 
  

ean
 2 an 

an 

n=1 an 

1 

∴ 
f J(z) 
f (z) 

 

represents an entire function say h(z). 

Integrating along a simple path from z0 to z. 
 

z f J(z) 
dz

 

z0   
f (z) 

z 

h(z)dz 
z0 

log f (z) − log f (z0)   = H(z), where H(z) = 
z 

h(z)dz 
z0 

  f (z) 

f (z0) 
=   eH(z) 

f (z) = f (z0)e
H(z)

 

= e
k
e

H(z), where f (z0) = a constant = ek
 

∴ f (z) = e
g(z)

 

where g(z) = k + H(z) is an entire function. ■ 

Theorem 8.4.2. Weierstrass Theorem on an Entire Function. There exists an entire function 

with arbitrarily prescribed zeros an provided that, in the case of infinitely many zeros, an → ∞. 

Every entire function with these and no other zeros can be written in the form 
 

. z  
 

  

z   1 z 2 1   z mn 

+ +···+ 

 

where the product is taken over all an /= 0, the mn are certain integers, and g(z) is an entire 

function. 
 

Proof. Consider an arbitrary sequence of complex numbers an 

prove the existence of polynomials pn(z) such that 

0 with lim an = . Let us 
n→∞ 

 

. .
1 −

 z  
e

pn(z) (8.4.2) 

 

converges to an entire function. The above product converges absolutely and uniformly if the ∞ 

 

corresponding series 
. 

log 
.
1 − z    + pn(z) converges absolutely and uniformly. 

For a given R we consider only the terms with |an| > R. In the disk |z| ≤ R the principal branch 

n 
n=1 

∫ ∫ 

∫ 

f (z) = zm
 e

g(z)
 mn an (8.4.1) 

= 
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z 

. 2 
−
 . 3 

− · ·· 

. 2 
· · · 

. mn 

.  
−  −n

 .  m  +1n 
−
 .  m  +2n − · · · 

z . . . . . 

. . . 

.   . 
1 

−
 

∞ 

≤ + 1 . a . . a . + · · · 

.log 
.
1 − + pn(z). ≤ 

. mn+1.
1 − 

−1 
(8.4.3) 

X 1 . R  mn+1 
(8.4.4) 

an 

an 

z z 1   

. 

. 

 z   z  2 

n=1 

of log 
.
1 − 

an 

   
can be developed in a Taylor’s series 

 

log 
.
1 − 

 z 

an 
= −

an 
− 

2 an 

1   z 
. 

3 an 
 

We reserve the signs and choose pn(z) as a partial sum 
 

 

 
 

Then 

pn(z) = 
z 1 

an 
+ 

2 

z 1 z 

an 
+ + 

mn an 

z 
log 1      + p (z)   = 

an 

1 z 
 

 

mn + 1 an 

1 z 
 

 

mn + 2 an .
log 

.
1 

  
p (z)

.
   1 z 

mn+1
 1 mn + 1   z  

 
 

. − 
an   

+ n 
. ≤ 

mn + 1 . an 
. 

+ 
mn + 2 . an 

. + · · · 
 

         1 z 
mn+1

 
1 1 

. . 
 

 

 

1 
. . . 

 

 

.log 
.
1 − + pn(z). ≤ |z| mn+1 |z| −1 . an

 . mn + 1 |an| |an| 
 

 

Suppose that the series

.

 

an mn + 1 

 
∞ 

|an| |an| 

 
converges. 

n=1 
mn + 1 |an| 

∞ 

∴ 
X . 

log 
.
1 −

 z  
+ pn(z)

.
 

 

is absolutely and uniformly convergent for |z| ≤ R and therefore the product 

. .
1 −

 z 
epn(z) 

 

is uniformly convergent for |z| ≤ R. Thus the product (8.4.2) represents an analytic function in 

|z| < R. 

It remains only to show that the series (8.4.4) can be made convergent for all R. But this is obvious, 

for if we take mn = n, it is clear that (8.4.4) has a majorant geometric series with ratio < 1 for 

z   1 R R  

n n 

. + . + 

z 

mn n 
. a . 

n=1 

. 

1 
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any fixed value R. 
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∞ 
        

        

an 

        

an 

∞ 
        

∞ 
        

∞ 
        

.
1 − 

an

  
ean 

2 an 

.
1 − 

an

  
ean 

2 an 

∞ z 
 

Since R is arbitrary, 

n

.

=1 

.
1 − 

an 

 
e

pn(z) is an entire function 

. z  
 

 

z   1 z 2 1   z mn 

+ +···+ 

 

Let f (z) be an entire function with zero’s a1, a2, · · · and zero of order m at the origin then the 

quotient 
f (z) 
z   1 z 2 1 z mn + +···+ 

zm 
.∞

n=1 

.
1 −  z    ean 

2 an mn an 

is an entire function without zero’s and it is equal to e
g(z), g(z) is entire. Thus 

  f (z) 
= eg(z).

 
z   1 z 2 1 z mn + +···+ 

zm 
.∞

n=1 

.
1 −  z    ean    2  an 

mn an 

. z  z   1 z 2 1   z mn + +···+ 

∴ f (z) = zm
 e

g(z)
 
 

 
n=1 

.
1 − 

an
 

  
ean

 2 an mn an . 

■ 
 

Corollary 8.4.1. Every function which is meromorphic in the whole plane is the quotient of two 

entire functions. 

 
Proof. If F(z) is meromorphic function in the whole plane, we can find an entire function g(z) 

with the poles of F(z) for zeros. The product F(z)g(z) is then an entire function f (z), and we 

obtain F(z) =
 f (z) 

. ■ 
g(z) 

Definition 8.4.2. Genus of the canonical product. From the Weierstrass theorem, we have 
 

. z  z   1 z 2 1   z mn + +···+ 

 
 

Consider the product 

∴ f (z) = zm
 e

g(z)
 
 

 
n=1 

.
1 − 

an
 

  
ean

 2 an mn an . 

. z  
 

 

z   1 z 2 1   z mn 

+ +···+ 

n=1 

n=1 

f (z) = mn an . 

mn an (8.4.5) 
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X 
∞

 

. 

|a | 

X 1   . R  h+1 

 

which is convergent and represents an entire function provided that the series 
 

 

 

 
converges for all R. 

That is provided the series 

n=1 
h + 1 |an| 

    1 
< .

 

|an|
h+1 

1 
Assume that h is the smallest positive integer for which the series 

h+1 
converges. Then the 

n 

product (8.4.5) is called the canonical product associated with the sequence {an}, and h is the 

genus of the canonical product. 

∞ 
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∞ ρ2
 a z . + 

. . . log . log f (ρe 
θ
) dθ. (9.2.1) 

Objectives 

Upon completion of this Unit, students will be able to 

x identify Poisson - Jensen formula. 

x prove Hadamard’s theorem. 

 

 

BLOCK-III 

UNIT 9 

Entire Functions 
 

 

9.1 Introduction 

 
We have already considered the representation of entire function as infinite products, and, in 

special cases, as canonical products. In this unit we study the connection between the product 

representation and the rate of growth of the functions. Such questions were first investigated 

by Hadamard who applied the results to his celebrated proof of the Prime Number Theorem. 

Space does not permit us to include this application, but the basic importance of Hadamard’s 

factorization theorem will be quite evident. 

 
9.2 Jensen’s Formula. 

Theorem 9.2.1. Poisson - Jensen Formula. Let f (z) be analytic in |z| ≤ ρ and suppose that the 

non - null zeros of f (z) inside the circle |z| = ρ are a − 1, a2, · · · , an and each zero being counted 

according to its degree of multiplicity. Then 

X . − i . 

   

 1 
∫ π

 
 

  

 
ρe

iθ z 
 

 

. i  . 

= . ρ . 
where log | f (z)| 0, and f (z) /= 0.  

107 

ρeiθ −z 0 2π (z − ai) 1 i 

+ log | f (z)| = − Re 
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. 

i 

. + 
. 

. . . . 

. + 

ρ2
 a z . + 

. 

– z 
. . . . 

ρ2
 a z 

. + 

. 
. . 

(z − ai) 
. 

Re 
ρeiθ

   

log F(ρe
iθ

) dθ 

log . 
Re 

ρeiθ −z 

∫ 

. . 

∫ 

n 

108 9.2. JeNseN’s FoRMUla. 

Proof. Let C be the circle |z| = ρ. Consider the function 
 

n 

F(z) = f (z) 
i=1 

ρ2
 − aiz 

ρ(z − ai) 
 

The zeros of f (z) exactly cancels with the factors of the denominator on the right hand side of 

F(z). 

∴ F(z) is analytic throughout the circle C. Zeros of F(z) are given by 
 

ρ2
 − aiz = 0 ⇒ z = 

ρ2 

a 
, (i = 1, 2, · · · , n.) 

 

The point 
ρ2

 

ai 
(i = 1, 2, · · · , n) being inverse point as ai 

 

with respect to the circle C, 
ρ2   

lies 
ai 

outside C. Therefore F(z) has  no zeros  inside and on C. Thus log f (z) is  analytic on and 

inside C. This implies that log | f (z)| is harmonic on and inside C. Applying Poisson formula 

for log | f (z| , we get 

 1 
∫ 2π 

 
 

ρe
iθ z 

 
 

. i  . 

log | f (z)| = 
2π

 Re ρeiθ −z 
log F(ρe 

θ
) dθ. 

 

 
log 

. 
f (z) 
.
 

 
 

ρ2
 − aiz . 

  

 

 
 1 2π 

Re 

 
ρe

iθ z 
 

 

 
log 

.
F(ρe

iθ
)
. 

dθ 

. 
i=1 

 

ρ(z − ai) . 
 

 

2π 0 
ρeiθ − z 

. .
 

 
 

X . − i . 
 

  
 1 

∫ 2π 
 

 
 

 

ρe
iθ z 

= . ρ .          X . − i . 

   

1 
∫ 2π 

 

  

ρe
iθ z 

= . ρ . 
when f (z) /= 0. ■ 

 
Note. Put z = 0 in the above formula, 

log | f (0)| = 

− 
X
 

log
 ρ

  1 2π 
+ 

 log 
. 

f (ρe
iθ

)
. 

dθ. 

 
i=1 |ai| 2π 0 

. . 

 

which is called Jensen’s formula. Its importance lies in the fact that it relates the modulus | f (z)| 

0 2π (z − ai) 1 i 

n 

0 1 i 

log 

= 

0 

. 

n 

+ 

n 

But on C, F(ρe
iθ

) = F(ρe
iθ

) . When z is any point of C, f (z) /= 0. 

log | f (z)| + = 

2π 

log | f (z)| = − 

log F(ρe
iθ

) dθ, 

. 

. . 
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∞ 
        

∞ 
        

.
1 − 

an

 

  
ean

 2 an 

.
1 − 

an

 

  
ean

 2 an 

 

on a circle to the moduli of the zeros. 

The Jensen and Poisson - Jensen formulas have important applications in the theory of entire 

functions. 

 
9.3 Hadamard’s Theorem. 

 
Let f (z) be an entire function with zeros a1, a2, · · · , an, an → ∞ as n → ∞. For the sake of 

simplicity we will assume that f (0) /= 0. If h is the smallest positive integer such that f can be 

represented in the form 

. z  
 

 

z   1 z 2 1 z n 

+ +···+ 

 

where g(z) is a polynomial of degree ≤ h. Then f is of finite genus h. If there is no such 

representation the genus is infinite. 

Order of an entire function. Denote by M(r) the maximum of | f (z)| on |z| = r. The order of 

the entire function f (z) is defined by lim log 
log M(r) 

and we denote it by λ. 

r→∞ log r 
 

i.e., λ = lim log
 log M(r) 

. 

r→∞ log r 
 

According to this definition λ is the smallest number such that 

 

M(r) ≤ erλ+s

 

for any given s > 0 as soon as r sufficiently large. 

Theorem 9.3.1. The genus and the order of an entire function satisfy the double inequality 

h ≤ λ ≤ h + 1. 

Proof. Assume that f (z) is of finite genus h. Then f (z) can be represented in the form 
 

. z  
 

 

z   1 z 2 1 z n 

+ +···+ 

n=1 

n=1 

f (z) = eg(z)
 n an 

f (z) = eg(z)
 n an 
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. . 

h + 1 

. h . ≤ 
  |u|  

X  1 
< ∞. 

P(z) = 
. 

Eh

. z  
, 

uh uh+1 1 1 

h + 1 

u h+1 

log Eh(u) ≤ 
|u| 

+ 
|u| 

+ · · · 

= 

h + 2 

 

where g(z) is a polynomial of degree ≤ h. Since g(z) is a polynomial of degree ≤ h, we have 

e
g(z)

 is an entire function of order ≤ h. Also the order of a product cannot exceed the orders of 

both factors. Hence it is sufficient to show that the canonical product is of order ≤ h + 1. 

The convergence of the canonical product gives that 
 

 

 

 
Let 

n 1 
|an|

h+1 

∞ 

 
where 

 

n=1 
an 

 
u+ 

1 
u2+···+

  1  
uh 

Eh(u) = (1 − u) e 2 h 

and E0(u) = 1 − u. We shall show that 
 

 

 
for all u. 

log |Eh(u)| ≤ (2h + 1) |u|h+1 (9.3.1) 

If |u| < 1, we have by power series development 

1 1 

log Eh(u) = log(1 − u) + 
.
u + 

2 
u

2
 + · · · + 

h
u

h  

 

=  −u − 
2 

− 
3 

− · · · − 

 
  

h 
− 

h + 1 
· · · + 

.
u + 

2 
u

2
 + · · · + 

h
u

h  

uh+1 uh+2 
= −

h + 1 
− 

h + 2 
· · · 

h+1 h+2 
 

= 
| | .

1 + |u| + |u|2 + · · · 
.
 

h+1 

log E (u) 

(h + 1)(1 − |u|) 

∞ 

u2 u3 



111 9.3. HadaMaRD’s TheoReM. 

M.Sc.(Mathematics)-TNOU-I Year- II Sem Complex Analysis 

 

 

.

. 

.

. 

   . 
. . 

 

Re[log Eh(u)] ≤ log Eh(u) 

i.e., log |Eh(u)| ≤ log Eh(u) 

|u|h+1 
 

∴ log |Eh(u)| ≤ 

≤ 

(h + 1)(1 − |u|) 

|u|h+1 

1 − |u| 
 

(1 − |u|) log |Eh(u)| ≤ |u|h+1 (9.3.2) 

For arbitrary u and h ≥ 1, 

1 1 

  Eh(u)   = (1 − u) 
u+ 

2 
u2+···+ 

h
uh 

Eh−1(u) 1 1  
u+    u2+···+ uh−1 

(1 − u) e 2 h − 1 
. . . 

 

 
 

Eh(u) 
.
e h . 

. Eh− 1(u). . 

|u|h

.

 . E (u) . 
 

≤ e h 
. . ≤ e|u|

h

 

. Eh−1(u). 

log |Eh(u)| − log |Eh−1(u)|   ≤   |u|h 

 
∴ log |Eh(u)| ≤ log |Eh−1(u)| + |u|h . (9.3.3) 

Let us prove (16.3.2) by mathematical induction. For h = 0, 

(16.3.2) ⇒ log |E0(u)| ≤ |u| 

Also |E0(u)| ≤ 1 − u ≤ 1 + |u| 

i.e., log |E0(u)| ≤ log(1 + |u|) ≤ |u| . 

Therefore (16.3.2) is true when h = 0. Now we assume that (16.3.2) is true when we replace h 

by h − 1. 

log |Eh−1(u)| ≤ (2h − 1) |u|h . (9.3.4) 

h 

   
= 

e 

uh 
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. . 

∞ 

 z  

∞ z 

X 
h+1|  | 

X 
| | 

. h 
an . 

1 
|ah|

h+1 

 

If |u| ≥ 1, from (16.3.3), we have 

log |Eh(u)| ≤ (2h − 1) |u|h + |u|h
 

log |Eh(u)| ≤ (2h + 1) |u|h
 

 

If |u| < 1, we have proved that 

(1 − |u|) log |Eh(u)| ≤ |u|h+1
 

log |Eh(u)|   ≤   |u|  log |Eh−1(u)| + |u|  + |u|h+1
 

=   |u| log |Eh−1(u)| + 2 |u|h+1 

log |Eh(u)| ≤ |u| (2h − 1) |u|h + 2 |u|h+1
 

 
∴ log |Eh(u)| ≤ (2h + 1) |u|h+1 . 

This completes the proof of the induction. 

Now consider the canonical product 

 
P(z) = 

. 
Eh

. z    

 
|P(z)| = 

 
n=1 

. 
 

 

an 

.
E 

. . 

log |P(z)| =   
X 

log 
.
E 

. .
 

 
n=1 

∞ 

. an 
. 

= log Eh(u) 
n=1 

∞ 

(2h + 1) u 
n=1 ∞ h+1 

≤   
X

(2h + 1) 
|z|

 
 

n=1 |ah|
h+1 

∞ 

log |P(z)| ≤ (2h + 1) |z|h+1 
X 1

 

h 

n=1 

∞ 

   

n= 

≤ 
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. 

X . 

2ρ 
.ρ 

. 

. . 

log |P(z)| ≤ (2h + 1) |z|h+1 C, where C = 
X  1 

. 

γ→∞ γ→∞ log r 

X  1  

= 

. 

= 

∫ 

 

and it follows that P(z) is at most of order h + 1. 

∞ 

 
On |z| = γ, max |P(z)| = M(γ), we have 

log M(γ)   ≤ C(2h + 1)γh+1
 

n 1 
|ah|

h+1 

lim 
log log M(γ) 

 

 

 log C(2h + 1) 

≤ lim + 
(h + 1) log r 

 

 
 

For the opposite inequality, assume that f (z) is of finite order λ and let h be the largest integer 

≤ λ. Then h + 1 > λ. First we have to prove 
 

 

 
 

converges. 

n 1 
|ah|

h+1 

Let us denote ν(ρ) the number of zeros an with |an| ≤ ρ. In order to find an upper bound for 

ν(ρ), we apply Jensen’s formula. 
 
 

log | f (0)| = − ν(ρ) log 
  ρ

  1 2π 
+ 

 log 
. 
f (ρe

iθ
)
. 

dθ 
 

 
ν(ρ) .   

 
 

 
n=1 

 1 
∫ 2π 

 
 

|an| 

. 

2π 0 

. . 

. 

log 1 

|an| 
= 

2π 
log . f ( e

iθ
) dθ − log | f (0)| 

 1 
∫ 2π 

. i . 
≤ 

2π 0 
log . f (ρe 

θ
) dθ, since log | f (0)| > 0 

 

 

We know that f (2ρe
iθ

) ≤ M(2ρ) ≤ e2ρλ+s

 

⇒ log . f (2ρe
iθ

). = (2ρ)
λ+s 

0 

∞ 

log r log γ 

X 
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 2ρ 

|a 

|n 

→ 

nλ+s 

n 

h 

∴ 
X 

log 
. 2ρ    

= 
(2ρ) 

.2π 

|an| 

|an| 
h+1 

n=1 λ+s 

∫  1 
∫ 2π log 

. 
f (2ρe

iθ. 
dθ ≤ (2ρ)λ+s 2π dθ 

 
 

2π 0 

ν(

.

ρ) 

.  

 

2π 0 

λ+s 

 
 ν(ρ) 

1 
ν(2ρ) 

|an| 2π 

∴ 
X 

log 
. 2ρ 

+ 
X 

log 
. 

≤ (2ρ)
λ+s 

 
We have |an| ≤ ρ ⇒

 2ρ
 

 

1 

 
 

≥ 2. 

ν(ρ) 

|an| 
 

ν(ρ+1) 

 

 

 

 

 
ν(ρ) 

|an|  

 

 

 

 
ν(ρ) 

X 
log 

. 2ρ 
≥ 
X 

log 2 = log 2 
X 

= ν(ρ) log 2 

 

⇒ ν(ρ) log 2 = (2ρ)
λ+s 

∴ lim 
ν(ρ) log 2 

→ 0 f or every s > 0 
ρ→∞ (2ρ)λ+s 

∴ lim 
ν(ρ) 

0 f or every s > 0. 
ρ→∞ ρλ+s 

i.e., ν(ρ) < ρλ+s f or every ρ. 

We assume that the zeros an are ordered according to absolute values. 

 

|a1| ≤ |a2| ≤ · · · |an| ≤ · · · 
 

Then it is clear that,  
n ≤ ν(|an|) < |an|

λ+s . 

Then, it is clear that n ≤ ν(|an|)
λ+s ⇒

 1 
< |an| 

 

1 

|a | 
<
 

∞ 

1 
 

 

h+1 
 

λ+s 
 
∞ 

X 1 
< 
X 1 

.
 

 n=1 

h 

1 1 1 
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X
∴
 

h 

∞ 

∞ 
    

X 
ρ2

 a z . + 

. 

X 
−
 ∫ 

X 
−
 

. 

.
1 − 

an

 

  
ean

 

. 

2ρe 
θ
(ρe 

θ − z) log . f (ρe 
θ
) dθ. (9.3.5) 

ρe 
θ
(ρe 

θ − z) 

 

Since h ≤ λ, we choose s, so that λ + s < h + 1. 
∞ 

 

 
Hence 

  1   
h+1 

n=1 λ+s 

is convergent. 

X  1  
 

 

is convergent. 

Thus we have proved that f (z) can be written in the form 
 

. z  
 

 

z 1 z h 

+···+ 

 

where g(z) is an entire function. It remains to prove that g(z) is a polynomial of degree ≤ h. 

It is enough to prove that g
(h+1)

(z) = 0. For this purpose it is easiest to use the Poisson - Jensen 

formula. Apply Poisson - Jensen formula to f (z) : 
 

ν(ρ) 
 

 
  

. − n . 

 

 1 
∫ 2π 

 

  

ρe
iθ z 

 

       = 
. ρ .

 

If the operation 
∂
 

∂x 

∂ 
– i 

∂y
 

 
is applied to both sides, we obtain 

 

f J(z) 
 

 

f (z) 
=

 

ν(ρ) 

 
 

1 

(z − an)−1+ 

ν(ρ)        

an(ρ
2
 anz)−1

 + 
1 

 1 2π 

2π 0 
2ρe

iθ
(ρe

iθ − z)−2
 log . f (ρe

iθ
). dθ. 

 

Differentiating with respect to z, for h times, we get 
 

 
D

(h)
(z) 

f J(z) 
 

f (z) 
= −h! 

ν(ρ) 

 
 

1 
(an − z)−h−1

 + 
h! 

ν(ρ)        

an
h+1(ρ2 anz)−h−1 

1 

 1 
∫ 2π 

i i 

  

−h−2 . i   . 

 

It is our intention to let ρ tend to ∞. In order to estimate the integral in (16.3.5), we observe that 

∫ 2π 
i i 

 

 

 
−h−2 

0 

0 2π 

ρeiθ −z 0 2π (z − an) 1 n 

log | f (z)| = − 

n=1 

1 
|an|

h+1 

n= 

+ . . 

X 

X 

f (z) = eg(z)
 h an 

log 
Re log f (ρe

iθ
) dθ. 

+ (h + 1)! 

dθ = 0. 

. . 
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≥ 

.   

 

Therefore nothing changes if we subtract log M(ρ) from log | f | . If ρ > 2 |z| it follows that the 

last term in (16.3.5) has a modulus at most equal to 

 
(h + 1)! 2

h+2
 −h−1  1 

∫ 2π
 
 
log 

 

  M(ρ)   
 
dθ, 

 
for log 

  M(ρ) 
0. But 

| f (ρeiθ)| 

 
 1 

∫ 2π 

 

  

2π 0 | f (ρeiθ)| 

by Jensen’s formula, and ρ−h−1
 log M(ρ) → 0, since λ < h + 1. We conclude that the integral in 

(16.3.5) tends to zero. 

The second sum in (16.3.5), the same preliminary inequality ρ > 2 |z| together with |an| ≤ ρ 

makes each term absolutely less than 
2 h+1 

ρ 
, and the whole sum has modulus at most 2

h+1
 ν(ρ)ρ−h−1. 

We have already proved that this tends to zero. 

∴ D(h)
 
f J(z)  

= −h! 
X∞  

(a 
 

 

 
– z)−h−1. 

f (z) 

 
If we take f (z) = eg(z)

P(z), we find that 

n 

n=1 

 

gh+1(z) = D(h) f 
J 

− D(h) P
J 

.   

f P 

PJ 

By Weierstrass’s theorem the quantity D
(h)

 
P 

can be found by separate differentiation of each 

factor, and in this way we obtain precisely the right hand side of D
(h)

 
f J 

. Consequently, g
h+1

(z) is 
f 

identically zero, and g(z) must be polynomial of degree ≤ h. Hence the proof is complete.    ■ 

Corollary 9.3.1. An entire function of fractional order assumes every finite value infinitely many 

times. 

Proof. It is clear that f and f − a have the same order for any constant a. Therefore it is enough 

to prove that f has finitely many zeros. If f has only finite number of zeros we can divide by a 

polynomial and obtain a function of the same order without zeros. By the theorem it must be of 

the form e
g
 where g is polynomial. But it is evident that the order of e

g
 is exactly the degree of 

g, and hence an integer. The contradiction proves the corollary. ■ 

0 2π 

ρ 

log | f | dθ ≥ log | f (0)| 



 

 

∞ . 

 1 

. 

X σ 

Objectives 

Upon completion of this Unit, students will be able to 

x understand the concept of Riemann zeta function. 

x extend the Riemann zeta function to the whole plane. 

x prove the Riemann zeta function satisfies functional equation. 

 

BLOCK-III 

UNIT 10 

The Riemann Zeta Function 
 

 

10.1 Introduction 
 
 

The series n−σ converges uniformly for all real σ greater than or equal to a fixed σ0 > 1 
n=1 

i.e., σ > σ0 > 1. Here s = σ + it. 

 

σ  =  Re s 

σ < Re |s| 

n−σ >   n−|s| 

As . ns . 

 

 

 1  
≤ 

nσ
 

the series n−σ is a majorant of these series 
n=1 

 

∞ 

ζ(s) = n− , s = σ + it. 
n=1 

 

The series ζ(s) is convergent and represents an analytic function of s in the half plane Re s > 1. 

The function ζ(s) is known as Riemann zeta function. It plays a central role in the applications 
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∞ 

∞ . 
−
 ∞ 

. .n 

X 
−
 

X
− − 

ζ(s) n 

n=1 

m m 
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of complex analysis to number theory. 

 
 

10.2 The Product Development 

 
The number - theoretic properties of ζ(s) are inherent in the following connection between the 

ζ− function and the ascending sequence of primes p1, p2, · · · , pn, · · · 

Theorem 10.2.1. For σ = Re s > 1, 
 

  1    
= 
.

(1 − p−s
) (10.2.1) 

 

where p1.p2, · · · , pn, · · · . are ascending sequence of primes. 
 

Proof. The infinite product (1 p−
n 

s)  converges absolutely if and only if 
n=1 

n

.

=1 p−s
 converges. 

Under the assumption σ > 1, it is seen at once that 

 

ζ(s)(1 − 2−s
)    =    ζ(s) − 2−sζ(s) 

∞ ∞ 

= 
X 

n−s − 2−s 
X 

n−s 

n=1 

∞ 
n=1 

= [n−s
 (2n)−s

] 
n=1 

ζ(s)(1 − 2−s
)  =   

X 
m−s

 
 

where m runs through the odd integers. 

By the same reasoning, 

ζ(s)(1 − 2−s
)(1 − 3−s

)  =   
X 

m−s
 − 3−s

 
X 

m−s
 

=   
X 

m−s
 − 

X
(3m)−

s
 

m m 

ζ(s)(1 2−s
)(1 3−s

)   = m−s
 

m 

m 
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∞ 

N 

. 
−
 ∞ 

N+1 

X 
−s 

 −sm = 1 + p 

+ p− 

∞ 

N 

N 

ζ(s) 
.

(1 − p−
n 

s)   =   1 + p−s
 1  + p−s

 2  + · · 

· 

N→∞ 

N 

n=1 
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where the sum runs through the integers that are neither divisible by 2 nor by 3. More generally, 

ζ(s)(1 − 2−s
)(1 − 3−s

)(1 − 5−s
) · · · (1 − p−s

) = 
X 

m−s
 (10.2.2) 

m=1 

 

where the sum of the right being over all integers that contains none of the prime factors 

2, 3, 5, 7, · · · pN. 
 

 

 
n=1 

N 

ζ(s) (1 p−
n 

s)   =   1 + 
n=1 

N+ 
 

n=

X

N+1 

N+ 

 
 

p−
n 

s 

 

the first term in the sum is 1 and the next term is p−s
 . 

 

∞ 

N+1 

 
s 

N+2 + · · · 
m=1 

 

Therefore the sum of all terms except the first tends to zero as N → ∞. Hence 

lim ζ(s) 
.

(1 − p−
n 

s) = 1. 

 

This proves the theorem. ■ 

 
Result. The number of primes is infinite. 

 

 
Proof. Suppose on the contrary that, the number of primes is finite. Let the largest prime be pN. 

Then (10.2.2) reduces to 
 

ζ(s)(1 − 2−s
)(1 − 3−s

) · · · (1 − p−s
) = 1. 

 

Replace s by σ we get  
ζ(s)(1 − 2−σ

)(1 − 3−σ
) · · · (1 − p−σ

) = 1. 
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N 

∫ 

0 
∫ 

X s 
X 

s  1 nx 

∫ 

ex − 1 
dx

 

1 

 

As σ → 1, we have 

ζ(1)(1 − 2−1
)(1 − 3−1

) · · · (1 − p−1
) =   1 

ζ(1)   = 
n 1 

∞ 

 
 ∞ 1 ∞ 1 
 

  

N

.

=1 

.
1 − 

pN 

 

 

n

.

=1  n 
∞ which is a contradiction to the fact that  

n

.

=1  n  
is divergent. 

Therefore our assumption is wrong. Hence the number of prime is infinite. ■ 

 
10.3 Extension of ζ(s) to the whole plane 

 

 

The Gamma function is  

Γ(s) = 
∞ 

x
s−1

e−x
dx f or σ > 1. 

0 

On replacing x by nx, in the integral, we obtain 

Γ(s)   =    

∫ ∞

(nx)
s−1

e−nx
d(nx) 

n−sΓ(s)   = 
∞ 

x
s−1

e−nx
dx 

0 

∞ 

n− Γ(s) = 
n=1 

∞ 

x − e−  dx 
n=1 

=   

∫ ∞ 

xs−1. 
X∞

 e−nx  
dx 

0 

∫ ∞  xs−1 

 

 

n=1 

 

Because σ > 1, the integral is absolutely convergent at both ends and this justifies the interchange 

of integration and summation. 

Theorem 10.3.1. For σ > 1, 
 

ζ(s) = − 
Γ(1 − s) 

2πi C 

(−z)s−1 

dz (10.3.1) 

ez − 1 
 

where (−z)
s−1

 is defined on the complement of the positive real axis as e
(s−1)

 
log(−z)

 with −π < 

0 

ζ(s)Γ(s)   = 
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∫ ∫ 

∫

−

 

∫ 

 

Im log(−z) < π. 

Proof. Here there are two infinite paths Cn and C both begins and ends near the positive real 

axis. Let us consider only C, its precise shape is irrelevent as large as the radius of the circle 

about the origin is less than 2π. We have 
 

(−z)
s−1

 
dz
 

C ez − 1 

 

= 
circle 

(−z)
s−1

 
dz 

ez − 1 

 

 

Backpositive 

(−z)
s−1

 
dz 

ez − 1 

 

+ 
Frontpositive 

(−z)
s−1

 
dz 

ez − 1 
 

The integral is obviously convergent. By Cauchy’s theorem its value does not depend on the shape 

of C as long as C does not enclose any multiples of 2πi. In particular, we are free to let r → 0. 

It is readily seen that the integral over the circle tends to zero with r. 

i e 

∫

 
(−z)s−1 

dz → 0 as r → 0 
 

 . 
 

∴ 
(−z)

s−1
 
dz
 

ez − 1 

., 
circle 

= − 

∫

 

ez − 1  
(−z)

s−1
 
dz

 
ez − 1 

. 
 

(−z)
s−1

 
dz

 
ez − 1 

C 

On the upper edge, 

Backpositive Frontpositive 

 

and the lower edge 

(−z)s−1  = (−1)s−1(z)s−1  = e−iπ(s−1) xs−1 

 
(−z)s−1 = (−1)s−1(z)s−1  = eiπ(s−1) xs−1 

■ 

 

 
 

(−z)
s−1

 
dz
 

C ez − 1 

∞ e−iπ(s−1) 

xs−1dx
 

0 ex − 1 

∞ eiπ(s−1) 

xs−1dx
 

0 ex − 1 

=     −e−iπ(s−1)ζ(s)Γ(s) + eiπ(s−1)ζ(s)Γ(s) 

=    −ζ(s)Γ(s)2i sin π(s − 1) 

=   −ζ(s)Γ(s)2i sin πs 
2πi π 

=   −
Γ(1 − s) 

ζ(s), since Γ(s)Γ(1 − s) = 
sin(πs)

 

∴ ζ(s) = 
Γ(1 − s) 

2πi C 

(−z)
s−1

 
dz 

ez − 1 

∫

−

 ∫ ∫ ∫ 

+ 

∫ 

∫ 

=  − + 

. 
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 −1 
e
 

n 

s→1 

 −1 
e
 

− 
1 − s 

n 

2πi 

 

Note. The importance of the formula (14.3.1) lies in the fact that the right - hand side is defined 

and meromorphic for all values of s, so the formula can be used to extend ζ(s) to a meromorphic 

function in the whole plane. It is indeed quite obvious that the integral in (14.3.1) is an entire 

function of s, while Γ(1 − s) is meromorphic with poles at  s = 1, 2, · · · . 

Corollary 10.3.1. The ζ− function can be extended to a meromorphic function in the whole plane 

whose only pole is a simple pole at s = 1 with the residue 1. 

 

Proof. The integral in (14.3.1) is an entire function of s, in the whole plane, Γ(1 − s) is 

meromorphic with poles at s = 1, 2, · · · . For, 
 

 
(1 s) 

e−γ(1−s)  .∞   
.
1
 

 

 

1 − s 1−s 

 
 

and the poles of Γ(1 − s) are given by 1 − s = 0 and 1 + 
1 − s 

= 0 

i.e., s = 1 and s = n + 1, n = 1, 2, · · · 

∴ s = 1, 2, · · · are the poles of Γ(1 − s). Since ζ(s) is already known to be analytic for σ > 1, 

the poles at the integers n ≥ 2 must cancel against the zeros of the integral. At s = 1, −Γ(1 − s) 

has a simple pole. 

To find the residue of −Γ(1 − s) at s = 1 : 

Res.o f Γ(1 − s)|s=1 =  lim(s − 1)Γ(1 − s) 

lim 
e−Γ(1−s)  .∞ 

 

.
1 + 1 − s 1−

n 
s 

s→1 1 − s n=1 
n 

Res.o f Γ(1 − s)|s=1 = −

1 

∴ Res.o f (−Γ(1 − s)) = 1. 

 

On the other hand, 

  1  
∫
 

 

 

 
f (z)dz =

 1  
 

 

 
S um o f the residues o f f (z), 

 

where f (z) =
  1 

. The poles of f (z) are given by 

ez − 1 

e
z
 = 0 ⇒ z = 2nπi. 

2πi 

n 
n=1 

Γ = + 

C 

= 
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| 

∞ 

∫ 

z 
. 

2 

    1   
=  

1 
− 

1 
+ 
X

(−1)
k−1

 
  Bk     

z
2k−1

 (10.3.2) 

 

The pole z = 0 lies inside C. 

 
Res. o f f (z) z=0 = lim z f (z) 

z→0 

z
 

= lim 
z→zero .

z +
 z2 

2! 
+ · · · 

Res. o f f (z)|z=0 = 1 

Hence the zeta function can be extended to a meromorphic function in the whole plane whose 

only pole is at s = 1 with residue 1. ■ 

 

Note. The values ζ(−n) at the negative integers and zero can be evaluated explicitly. 

We have 
 

 

From (14.3.1) 

ez − 1 z 2 
k=1 

(2k! ) 

ζ(−n) = 
(−1)

n
 n! 

2πi C 

(−z)−(n+1) 

dz 
e − 1 

Hence ζ(−n) is equal to (−1)
n
 n! times the coefficient of z

n
 in (14.3.2) 

 
i.e., ζ(−n) = (−1)

n
 n! 

coefficient of z
n. in (14.3.2). We also have 

 

 

 
and 

1 
ζ(0) = 

2 
ζ(−2m) = 0 

 
(−1)

n
Bn 

 

ζ(−2m + 1) = 
2m

 
 

for positive integers m. We also have the following values: ζ(0) = −1 , ζ(−2m) = 0. The points 

−2m are called the trivial zeros of the ζ− function. 
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.   −sn   , and it 

is 

πs 

∫ 
− 

n 

∫ 
− π 

2 2 

n 

 

10.4 The Functional Equation 
 

In the half plane σ > 1 the ζ− function is given explicitly by the series ζ(s) = 
∞ 

n=1 

therefore subject to the estimate  |ζ(s)| ≤ ζ(σ). Riemann recognised that there is a rather simple 

relationship between ζ(s) and ζ(1 − s). As a consequence, one has good control of the behavior 

of the ζ− function also in the half plane σ < 0. We shall reproduce one of the standard proofs of 

the functional equations, as it is commonly called. 

Theorem 10.4.1. Prove that the functional equation 

ζ(s) = 2sπs−1
 sin 

. 

2 

  
Γ(1 − s) ζ(1 − s). 

Proof. We assume that the square part lies on the lines t = ±(2n + 1)π and σ = ±(2n + 1)π. The 

cycle Cn − C has winding number one about the points ±2mπi with m = 1, 2, · · · , n. At these 

points the function 
(−z)s−1

 

ez − 1 
has simple pole with residues (±2m πi)

s−1

. 

For, 

e
z
 − 1 0 ⇒ z ±2m i m 0 ±1 · · · ⇒ 

(−z)s−1

 
 

 = = π , =   , , 
ez − 1 

has poles at z = ±2mπi, m = 1, 2, · · · , n. 

Res. f (z)|z=±2mπi = 

 
 

lim 
z→±2mπi 

 
(−z)

s−1
 

d(ez − 1) 

 

 
It follows that 

Res. f (z)|z=±2mπi =   (±2mπi)
s−1

 

 

  1 ( z)
s−1

 
 

2 z 

dz   =    
X .

(−2mπi)
s−1

 + (2mπi)
s−1. 

 
πi Cn−C   e  − 1 

m=1 

=   
X

(2mπ)
s−1.

(e−i
 
π 

)
s−1

 + (ei
 
π 

)
s−1. 

=   
X

(2mπ)
s−1

2 cos(s − 1) 
π
 

 
  1 ( z)

s−1
 

2 z 
 

 
m=1 

dz   =   2 
X
 

2 

(2mπ)
s−1

 cos 
. 

− 

πi Cn−C e − 1 m=1 
2 2 

n 

  

m=1 

n 

πs 
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πs 

. ., 

∫

−

 
ez − 1 −

C 

ez − 1 

(17.4.1) ⇒ 
   ζ(s)     

= 2 
X

(2mπ)
s−1

 sin 
. πs  

 

2 

  1 
∫
 (−z)

s

−1
 

 

dz = 2 
X
 (2mπ)

s−1
 sin 

.  
 
 

(10.4.1) 

2πi 
Cn−
C 

ez − 1 m=1 
2 

We divide Cn  into Cn
J +Cn

JJ
 where Cn

J
 is the part of the square and Cn

JJ
 the part outside the square. 

It is easy to see that |ez
 − 1| is bounded below on 

Cn
J n while (−z)

s−1
 is bounded by a multiple of 

n
σ−1. 

by a fixed positive constant, independent of 

.
∫ 

(−z)s−1 

dz. ≤ An
σ 

 

 

for some constant A. 

.  C
n
J ez − 1 . 

 

If  σ < 0, the integral over  Cn
J
 

over  Cn
JJ. 

will tends to 0 as n → ∞ and the same is true of the integral 

∴ 

∫ 

= 

∫ 

J

 

JJ 
→ 0. 

  1 
∫
 

 

 

Cn 

 

(−z)
s−1

 
dz
 

Cn+Cn 

 

  1  
∫
 

 

 

 
(−z)

s−1
 
dz

 

  1 
∫
 
 

(−z)
s−1

 
dz
 

 
 

= 
1 2πi

 C 
   ζ(s)  

(−z)
s−1

 
dz 

ez − 1 

2πi 
Cn−
C 

ez − 1 
= 

Γ(1 − s) 

n 
 

 
Taking limit as n → ∞, we get 

Γ(1 − s) 

 
∞ 

m=1 
2 

   ζ(s)  =   2 
X

(2mπ)
s−1

 sin 
. πs  

 

Γ(1 − s) m=1 
2 

∞ 

=  2sπs−1
 sin 

. πs  X 
m

s−1. 

2πi 2πi 

n 

The length of  Cn
J
 is of the order n and we find that 

Cn−

C 

= 

m=1 
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. −(1−s)m = 

ζ(1 − s) 

− 

2 

=   2 π ζ(1 − ) 

. 1 s s 

2 

2 

.    

(1−s) .   
−
 

s 

For σ ≥ 0, the series 
∞ 

m=1 
 πs 

∴ ζ(s) = 2s
 πs−1

 sin 
. 

2

 
Γ(1 − s)ζ(1 − s). 

■ 
 

Note. Using the identity Γ(s) Γ(1 s) = 
π 

, 
sin πs 

πs 1 π 

ζ(s) =   2
s
 πs−1

 sin 
. 

2 

 
 
 

Γ(s) sin πs 
ζ(1 − s) 

s−1    s      1 1 
s 

cos 
πs

 Γ(s) 
 

πs 
ζ(1 − s) = 2 − π− cos 

2 
Γ(s) ζ(s).

 (10.4.2) 

The content of Theorem 3.3.1 can also be expressed in the following form: 
 

Corollary 10.4.1. The function 
 

1 s s 
 

ζ(s) = 
2 

s (1 − s) e−2 Γ
. 

2

 
ζ(s) 

is entire and satisfies ζ(s) = ζ(1 − s). 
 

Proof. Given  
ζ(s) = s (1 − s) e− 

s  

Γ
.
 2

 
ζ(s). 

 
Since the factor 1 − s cancels with the poles of ζ(s). Also the poles of Γ s

 cancel against 
the trivial zeros of ζ(s). Hence ζ(s) is an entire function.   By use of (17.4.2) the assertion 

ζ(s) = ζ(1 − s) translates to 
1 − s s 1 − 1 − s 

 
 

  

2 
s (1 − s) e 

2 Γ
. 
2

 
ζ(s)   = 2 

(1 − s) (1 − (1 − s)) e    2   Γ ζ(1 s) 
2 

 
– s s 

 
 

 
 

1 − s 
 

 

s−1
 

 
 

1−s    −s πs 
 

    π 2 Γ
. 

2

 
ζ(s) = Γ

. 

2 
π 2 2 

 
 

 
  

π cos 
. 

2 

  
ζ(s) 

1 − s πs s−1   1 s 
∴ Γ

.
 

2 
Γ(s) cos 

. 

2

   
=   2 π 2 Γ

. 

2 
)
 
. 

1 

2 
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2 

2 

s 

2 

∫ 

X .   1

  s 1

 s 1− ∞ 

N 

≥ 

2 

2 

− 

 

Because of the relation 1 − s  1 + s π  
 

 
the last equation is equivalent to 

Γ
. 

2 
Γ
. 

2 
= 

cos
 πs

 
,
 

 

1 s 1 + s 
 

π 2 Γ(s) = 2s−1
 Γ

. 

2

 
Γ
. 

2 

 
 

and this equation is called Legendre’s duplication formula. The corollary is proved. ■ 

 
Result. Prove that the order of ζ(s) is one. 

 

Proof.  Since  ζ(s) =  ζ(1 − s), it is sufficient to estimate  |ζ(s| for  σ ≥ 1 . As a consequence of 
Stirling’s formula, we have 

log 
.
Γ
. . 

≤ A |s| log |s| 
. 2 . 

for some constant A and large |s| , and this estimate precise for real values of s. So to prove that 

the order is equal to one, we can show that ζ(s) relatively small when σ ≥ 1 . 

Let [x] denote the largest integer ≤ x. Assume first that σ > 1. Then we have 
 

∞

[x] x 
N 

−s

−1 

 
dx   = 

 
n 

n=N 

n+1 

 
n 

x−s−1dx 

∞ 

= s− n− + n(n + 1)− + 
n=N 

= s−1.N−s+1 + 
n=

X

N+1 
n−s. 

 

It follows that  

ζ(s) = 
X

n=1 

 

n−s + 
   1  

s − 1 

 
N1−s  −s 

 
∞ 

(x [x])x−s−1
dx (10.4.3) 

N 

For σ > 1 where the integral on the right hand side converges and the equality will therefore 

remain valid for σ > 0. Incidently, (17.4.3) exhibits the pole at s = 1 with residue 1. 

For σ 
1 

, (17.4.3) yields an estimate of the form 
2 

 

|ζ(s)| ≤ N + A |N |− 1
 |s| 

 

valid for large |s| with A independent of s and N. By choosing N as the integer closest to |s| 3 , 

∫ ∞ 

∫ 

X 
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we find that  |ζ(s)| is bounded by a constant times  |s| 3  . Therefore this factor does not influence 

the order. ■ 

 
10.5 The Zeros of the Zeta Function 

 

We know that the product development of ζ(s) is 

ζ(s) = 
1
 

 

∞
n=1(1 − p−

n 
s) 

for σ = Res > 1. It follows from this product development that ζ(s) has no zeros in the half 

plane σ > 1. With this information the functional equation implies that the only zeros in the half 

plane σ < 0 are the trivial ones. 

In other words, all nontrivial zeros lie in the so-called critical strip 0 ≤ σ ≤ 1. The famous 

Riemann conjecture asserts that all nontrivial zeros lie on the critical line σ = 
1 

. There are no 
2 

zeros on σ = 1 and σ = 0. Let N(T ) be the number of zeros with 0 ≤ t ≤ T. For the information 

of the reader we state without proof that 
 

T T T 

N(T ) = 
2π 

log 
. 

2π

 
− 

2π 
+ O(log T ) 



 

 

Objectives 

Upon completion of this Unit, students will be able to 

x understand the concept of normality. 

x prove Arzela’s theorem. 

x identify the families of analytic functions. 

 

 

BLOCK-III 

UNIT 11 

Normal Families 
 

 

11.1 Introduction 

 
A function can be regarded as a point in a space and as such there is no difference between a set of 

points and of functions. In order to make a clear distinction we shall nevertheless prefer to speak 

of families of functions, and usually we assume that all functions in a family are defined on the 

same set. We are primarily interested in families of analytic functions, defined in a fixed region. 

The aim is to study the convergence properties of within such families. 

 
11.2 Equicontinuity 

 
Let F denote a family of functions defined in a fixed region Ω of the complex plane and with 

values in a metric space (S , d) where d is the distance function in S . Let us review the definition 

of continuous function f with values in a metric space. 

Definition 11.2.1. A function f is continuous at z0 if for every s > 0 there exists a δ > 0 such 

that 

d( f (z), f (z0)) < s, whenever |z − z0| < δ. 
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≥ 

 

f is said to be uniformly continuous if we can choose δ independent of z0. 

Definition 11.2.2. The function in a family F are said to be equicontinuous on a set E ⊂ Ω if 

and only if, if for each s > 0, there exists a δ > 0 such that 

 

d( f (z), f (z0)) < s, whenever |z − z0| < δ, 

and z0, z ∈ E, simultaneously for all functions f ∈ F. 

 
Note. In the above definition, we observe that each f is an equicontinuous family is itself 

uniformly continuous on E. 

Definition 11.2.3. A family F is said to be normal in Ω if every sequence { fn} of functions 

fn ∈ F contains a subsequence which converges uniformly on every compact subset of Ω. 

 
Note. This definition does not require the limit functions of the convergent subsequences to be 

members of F. 

 
11.3 Normality and Compactness 

 
We shall prove that in the family of functions there exists the convergence with respect to the 

distance ρ is equivalent to the uniform convergence on compact sets. 

i.e., convergence with respect to ρ if and only if uniform convergence on compact set. 

 
Proof. To prove this, we need the following observations; 

 
(i) An exhaustion of Ω by an increasing sequence of compact sets Ek ⊂ ω. This means that 

every compact subset E of Ω shall be contained in an Ek. The construction is possible in many 

ways: To be specific, let Ek consist of all points in Ω at distance ≤ k rom the origin, and at 

distance 
1
 

k from the boundary ∂Ω. It is clear that each Ek is bounded and closed, and hence 

compact. Any compact set E ⊂ Ω is bounded and at positive distance from ∂Ω; therefore it is 

contained in an Ek. 
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X 

X k

⇒
 

{ } 

 

(ii) Let f and g be any two functions on Ω with values in S .  We shall define a distance 

ρ( f , g) between these functions, not to be confused with the distances d( f (z) g(s)) between their 

values. To do this, we first replace d by the distance function 

d(a, b) 
δ(a, b) = 

1 + d(a, b) 

which also satisfies the triangle inequality and all distances lie under a fixed bound and is bounded 

and so S is bounded. 

 

(iii) Next, we set 

δk( f , g) = sup δ( f (z), g(z)) 
z ∈ Ek 

which describes the distance between f and g on Ek. 

(iv) Finally we define 
n 

ρ( f , g) = δk( f , g) 2−k
 (11.3.1) 

k=1 

ρ( f , g) is finite and satisfies all the conditions for a distance function. 

 

Now, we prove the result. Suppose that fn → f in the sense of ρ distance. 

ρ( fn, f ) < s, f or su f f iciently large n 
∞ 

(11.3.1) δk( fn, f )2− < s 
k=1 

δk( fn, f ) < 2
ks 

sup δ( fn(z), f (z)) < 2
k
 s 

z ∈ Ek 

δ( fn(z), f (z)) < 2
k
 s 

   d( fn(z), f (z))  

1 + d( fn(z), f (z)) 
< 2

ks 

d( f (z) f (z)) 2
k
 s 

 
 

n , < 
1 − 2k s 

This implies that fn(z) → f (z) uniformly on Ek with respect to δ metric, but hence also with 

respect to the d− metric. Since every compact E is contained in an Ek it follows that the 

convergence is uniform on E. 
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X k 
→

 

 

Conversely, suppose that fn converges uniformly to every compact set. 

 

d( fn(z), f (z)) < s ∀z ∈ E ⊂ Ω. 

Since Ω = ∪En there exists an n0 such that E ⊂ En for every n ≥ n0. 

i.e, d( fn(z), f (z)) → 0 ∀z ∈ Ek, n ≥ n0 

δ( fn(z), f (z)) → 0 ∀z ∈ Ek, n ≥ n0 

δk( fn, f ) → 0 ∀k 
∞ 

δk( fn, f )2− 0. 
k=1 

 

Hence ρ( fn, f ) → 0. That is the convergence with respect to the distance ρ. Hence we proved 

that the convergence with respect to the distance ρ is equivalent to the uniform convergence on 

compact sets. ■ 

 
Recall: Bolzano - Weierstrass Theorem A metric space is compact if and only if every sequence 

has a convergent subsequence. 

Theorem 11.3.1. A family F is compact if and only if its closure F with respect to the distance 

function (11.3.1) is compact. 

 

Proof. Let F be normal. We have to prove that F is compact. 

 
Let { fn} be a sequence of functions in F then fn ∈ F for every n. This implies that fn is a 

sequence of function in F. Since F is normal, every sequence { fn} of functions in F will have 

a subsequence { fnk } which converges uniformly on every compact subset of ω. 
 

Therefore by Bolzano - Weierstrass theorem, F s compact. 

Conversely, assume that F is compact. 

Consider a sequence { fn} of function in F. Then { fn} is a sequence of functions in F. Since 

F is compact, by Bolzano - Weierstrass theorem, { fn} has a convergent subsequence { fnk } with 

respect to the distance function ρ. 
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∴ the convergence is uniform, since the convergence with respect to ρ if and only if uniform 

convergence on compact set. 

 
Hence F is normal. ■ 

 

Definition 11.3.1. F is relatively compact if F is compact. 

 
Note. Normal and relatively compact are same. 

Remark. If S is complete then F is normal if and only if it is totally bounded. 

 

 
Definition 11.3.2. A set E is totally bounded if for every s > 0 E can be covered by finitely 

many balls of radius s 

 
The following theorem serves to state the condition of total boundedness in terms of the original 

metric on S rather than in terms of the auxiliary metric ρ. 

Theorem 11.3.2. The family F is totally bounded if and only if to every compact set E ⊂ Ω and 

every s > 0 it is possible to find f1, f2, · · · fn ∈ F such that f ∈ F satisfies d( f , f j) < s on E for 

some f j. 

 

Proof. Assume that F is totally bounded, then for any s > 0 there exists f1, f2, · · · , fn such that 

for any f ∈ F, 

ρ( f , f j) < s f or some f j 
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X k 

X 

0 

 

But, we have  

 
ρ( f , f j) = 

∞ 

 
∞ 

δk( f , f j)2− 
k=1 

∴ δk( f , f j)2−k
 < s 

k=1 

δk( f , f j)2−k
 < s f or each k 

sup δ( f (z), f j(z)) < 2
ks 

δ( f (z), f j(z)) < 2
ks 

   d( f (z), f j(z))  

1 + d( f (z), f j(z)) 
< 2

ks 

d( f (z), f j(z)) < 
2

ks 

1 − 2ks 
= s

 

d( f (z), f j(z)) < s, ∀z ∈ E and f or some f j 

d( f , f j) < s on f or some f j. 

 

Assume that to every compact set E and every s > 0 it is possible to find f1, f2, · · · , fn ∈ F such 

that every f ∈ F satisfies 

d( f , f j) < s on E f or some f j. 

To prove that F is totally bounded. That is to prove that ρ( f , f j) < s for some f j. We choose k0 

such that 

2−k0 
s 

< 
2 
. 

By assumption, we can find f1, f2, · · · , fn ∈ F such that any f ∈ F satisfies one of the inequalities 

d( f , f j) s 
δ( f , f j) = 

1 + d( f , f ) 
≤ d( f , f j) < 

2k
 on Ek0 

j 0 

 
Hence it follows that 

s 
δk( f , f j) < 

2k 
f or k ≥ k0. 
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X 

X ∞ 

X s X 

 

But we also know, for k > k0, δk( f , f j) < 1 

 
k0 ∞ 

∴ ρ( f , f j) = δk( f , f j)2−k
 + 

k=1 
k=

X

k0+1 
δk( f , f j)2−k

 

k0 

< δk( f , f j) + 
k=1 k=

X

k0+1 

δk( f , f j)2−k
 

k0 

< 

k=1 
2k0 

 
+ 

k=k0+1 

2−k 

s 1 
= 

2 
+ 

2k0
 

Hence ρ( f , f j) < s f or some f j . 
 

■ 

 

11.4 Arzela’s Theorem 

 
We shall now study the relationship between Definition 4.1.2 and Definition 4.1.3. The connection 

is established by a famous and extremely useful theorem known as Arzela’s theorem(or the Arzela 

- Ascoli theorem) 
 

Theorem 11.4.1. A family F of continuous functions with values in a metric space S is normal 

in the region Ω of the complex plane if and only if 

(i) F is equicontinuous on every compact set E ⊂ Ω; 

(ii) for any z ∈ Ω the values f (z), f ∈ F, lie in a compact subset of S . 

Proof. Necessary part: 

Assume that F is normal. 

To prove (i): 

Since F is normal, its closure F is compact. Therefore F is totally bounded. This implies 

that F is totally bounded. To every compact subset E ⊂ Ω and every s > 0 it is possible to find 

∞ 
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f1, f2, · · · , fn ∈ F such that every f ∈ F satisfies 

d( f , f j) < s on E f or some f j. 

 
Since each f j is continuous on a compact set E and hence each f j is uniformly continuous on 

E. Hence we can find δ > 0 such that 

 

d( f j(z), f j(z0)) < s f or z, z0 ∈ E and |z − z0| < δ, 

j = 1, 2, · · · , n. Therefore for any given f ∈ F and corresponding f j, we obtain 

d( f (z), f (z0)) ≤ d( f (z), f j(z)) + d( f j(z), f j(z0)) + d( f j(z0), f (z0)) 

< s + s + s 

d( f (z), f (z0)) < 3s, whenever |z − z0| < δ. 

Therefore F is equicontinuous on E ⊂ Ω. 

 
To prove (ii): 

To prove { f (z) : f ∈ F} ∀z ∈ Ω lies in a compact set. 

i.e., we have to show that the closure of the set formed by the values f (z), f ∈ F is compact. 

Let {wn} be a sequence in this closure. To each wn we can find fn ∈ F so that 

d( fn(z), wn) < 
1
 

n 

for positive integer n. Since { fn} ∈ F, by the definition of normality, { fn(z)} has a subsequence 

{ fnk } which converges uniformly on every compact subset of Ω. 

∴ the corresponding subsequence {wnk } converges to the same value. Hence an infinite sequence 

wn converges. The closure of the image set is compact. Therefore the image set is lies in a 

compact set. 

 
Sufficiency part: 

 

The sufficiency of (i) together with (ii) is proved by Cantor’s famous diagonal process. Let 

condition (i) and (ii) be true simultaneously. To prove that F is normal. We shall prove that every 

sequence { fn} of functions fn ∈ F contains a subsequence { fnk } ∈ F which converges uniformly 
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∀ 

 

on every compact subset of Ω. 

 

By condition (ii), { fn(ζk)} lies in a compact set. By the definition of compactness, this infinite 

sequence { fn(ζk)} has a convergent subsequence { fnk (ζ(k))} lies in a compact set. 

 
By the repeated application of this process for all points of ζk we can obtain an array of 

subscripts 

 

n11 < n12 < · · · < n1 j < · · · 

n21 < n22 < · · · < n2 j < · · · 

. 

. 

nk1 < nk2 < · · · < nk j < · · · 

... . .... 

 
such that each row is contained in the preceding one, and such that the diagonal sequence nj j is 

a strictly increasing sequence and thus it forms a subsequence of each row of the above. In other 

words, the sequence of functions 

 

 

 

 

 

 

 
 

Hence 

fn11 , fn12 · · · converges at ζ1 

fn21, fn22 · · · converges at ζ2 

............................................. 

fnk1, fnk2 · · · converges at ζk 

 
lim fnk j exists k. 
j→∞ 

The diagonal sequence { fnk j} = { fn11, fn22 · · ·} converges at all points of ζk. That is the 

subsequence { fn j j} of { fn} converges at all points ζk. For convenience, we can replace nj j by 

nj. Therefore the subsequence { fn j} of { fn} converges at all points of ζk. It remains to show that 

{ fn j} is uniformly converges on E. 

 
By hypothesis (i), the sequence { fn j} is equicontinuous on E as { fn j} ∈ F is equicontinuous. 
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3 

 

Therefore for any given s > 0 we can find δ > 0 such that for every z1, z ∈ E and fn j ∈ F we 

have 

d( fn j(z), fn j(z1)) < 
s
 

3 
whenever |z − z0| < δ. 

Since E is compact it can be covered by a finite number of 
δ
 

2 
neighborhoods. We select a point 

ζk from each of these 

that 

δ 
neighborhood so that we can find an i0 such that i, j > i0. This implies 

2 

d( fni(ζk), fn j(ζk)) < 
s
 

3 
∀ ζk 

For each z ∈ E one of the ζk is within the distance δ from z. Hence 

d( fni(z), fni(ζk)) < 
s
 

3 

d( fn j(z), fn j(ζk)) < 
s 

, ∀ i, j > i0 

d( fni(z), fn j(z)) < d( fni(z), fni(ζk)) + d( fni(ζk), fn j(ζk)) + d( fn j(ζk), fn j(z)) 
s s s 

< 
3 

+ 
3 

+ 
3
 

d( fni(z), fn j(z)) < s. 

 
Therefore all values f (z) belong to a compact set and consequently a complete subset of S , it 

follows that the sequence { fn j} is uniformly convergent on E. This implies that F is normal. ■ 

 
11.5 Families of Analytic Functions 

 
Analytic functions have their values in C the finite complex plane. In order to apply the preceding 

considerations to families of analytic functions it is therefore natural to choose S = C with the 

euclidean distance. 

 

Theorem 11.5.1. A family F of analytic functions is normal with respect to C if and only if the 

functions in F are uniformly bounded on every compact set. 

 
Proof. Necessary Part: 

Assume that the family F of analytic functions is normal with respect to C. 
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To prove that the functions in F are uniformly bounded on every compact set. 

That is to prove that if E is any compact subset of Ω then | f (z)| ≤ M for every z ∈ E and for 

every f ∈ F. Therefore the family F satisfies the following conditions: 

(i) F is equicontinuous on every compact subset E of Ω. 

 
(ii) For any z ∈ Ω the values f (z), f ∈ F lies in a compact subset of C. 

 
The condition (ii) implies that these values are bounded for each z ∈ Ω and these bounds may 

depend upon z. 

 

Let E be any compact subset of Ω. In C, closed bounded set is a compact set. Therefore for 

given z0 ∈ Ω, we can determine ρ so that the closed disk |z − z0| ≤ ρ is contained in Ω. Since 

this disk is compact, by condition (i), F is equicontinuous on this disk, therefore for a given s > 0 

there exists δ > 0 such that 
 

| f (z) − f (z0)| < s f or |z − z0| < δ < ρ, 

z, z0 ∈ |z − z0| ≤ ρ ∀ f ∈ F. 

Consider the δ− neighborhood for all points in E. These form an open covering of E. Since E 

is compact, it has finite subcover. Therefore finite number of these δ− neighborhood cover E. 

 
Let z1, z2 · · · , zn be the centre of this finite collections of these neighborhoods. 

Consider the set {| f (z)| : f ∈ F} i = 1, 2, · · · , n By condition (i) they belong to compact subset E 

and hence bounded. 

That is there exists constant M1, M2, · · · , Mn such that 

| f (zi)| ≤ Mi (i = 1, 2, · · · , n) 

Let M = max{M1, M2, · · · , Mn}. Then 

| f (zi)| ≤ M ∀i = 1, 2, · · · n ∀ f ∈ F. 
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. . 
2πi ζ − z0 

 

Consider any z ∈ E then z lies in some δ− neighborhood of some zi. 

∴ | f (z) − f (z0)| < s ∀ f ∈ F. 
 

Now consider, 

 

| f (z)| = | f (z) − f (zi) + f (zi)| 

≤ | f (z) − f (zi)| + | f (zi)| 

< s + M 

| f (z)| ≤ MJ ∀ f ∈ F, ∀z ∈ E 
 

Hence F is uniformly bounded. Sufficient Part: 

 

Assume that F is uniformly bounded on every compact set. 

 

To prove that F is normal with respect to C, it is enough to prove that the two conditions of 

Arzela - Ascolis theorem is satisfied. 

That is we have to prove that 

(i) F is equicontinuous on every compact subset of Ω. 

(ii) For any z ∈ Ω, the values f (z), f ∈ F lies in a compact subset of C. 

 
To prove F is equicontinuous. 

Let C be the boundary of the closed disk in Ω of radius r. Since f is analytic, if z, z0 are points 

inside C, by Cauchy’s integral formula, we have 

f (z) = 
1 

∫

  f (ζ) 
dζ and

 
2πi C ζ − z 

f (z0) = 
1 

∫

   f (ζ) 
dζ

 
2πi C ζ − z0 

f (z) − f (z0)   = 
1  

∫

 

   1 1  
– f (ζ)dζ. 

 

Since F is uniformly bounded on C, we have | f (z| ≤ M on C and if we restrict z, z0 to the 

C 
ζ −z 



141 11.5. FaMIlIes of ANalYTIc FUNcTIoNs 

M.Sc.(Mathematics)-TNOU-I Year- II Sem Complex Analysis 

 

 

4M 

4 

4 

2 2 

r   

smaller circular disk of radius 
r 
, it follows that 

2 

| f (z) − f (z0)| ≤ 
|z − z0| 

∫

 
 

 
  | f (ζ)|  

dζ
 

2π 
M 2πr 

C |ζ − z| |ζ − z0| 

≤ 
2π r r |z − z0| 

 
 

Thus, 

| f (z) − f (z0)| ≤ s i f |z − z0| < δ and δ < 
sr 

 ∀ f ∈ F. 

| f (z) − f (z0)| < s i f |z − z0| < δ 

and this proves equicontinuity on the smaller disk. The open disk of radius 
r
 

 

form an open 

covering of E. Since E 
4 

is compact, there exists a finite subcover. We select a finite subcovering 

and denote the corresponding centres, radii and bounded by ζk rk and Mk respectively. 

 
Let  r  be the smallest of  rk

J s  and  M  be the largest of the  Mk
J s. 

i.e., r = min{r1, r2, · · · , rk, · · ·} 
 

and  

M = max{M1, M2, · · · , Mk, · · ·} 

For a given s > 0, Let 

δ = min 
. 

4 
, 

 
sr  

4M 
.
 

Let z, z0 ∈ E with |z − z0| < δ. We have to show that 

| f (z) − f (z0)| < s, ∀ f ∈ F. 

Since z0 ∈ E, z0 will belong to one of the balls B
.
ζk, 

rk
  

for some k = 1, 2, · · · , n. Then 

 

 

 
Also 

|z − ζk| < 
rk 

. 

rk rk 
|z − ζk| ≤ |z − z0| + |z0 − ζk | < δ +  

4  
≤  

4
 

Hence  
4M 

| f (z) − f (z0)| ≤ |z − z0| 
r
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r 

rk 

4 

| − | 

 

is applicable. We find 

 

 

 

 

 
Thus we have, 

 
| f (z) − f (z0)| ≤ 

4Mk 
|z − z0| 

| f (z) − f (z0)| ≤ 
4Mδ 

< s 

 
| f (z) − f (z0)| < s, ∀z, z0 ∈ E ∀ f ∈ F. 

Therefore F is continuous on every compact subset of E. 

Condition (ii): follows immediately, since F is uniformly bounded on every compact set for any 

z ∈ Ω, the values f (z), f ∈ F lies in a compact subset of C. Hence the family F is normal. 

 
Remark. If a family has the property of the above theorem, we say that it is locally bounded. 

Indeed, if the family is bounded in a neighborhood of each point, then it is obviously bounded on 

every compact set. 

Therefore the above theorem can be stated as ” every sequence has a subsequence which converges 

uniformly on compact sets if and only if it is locally bounded.” ■ 

Theorem 11.5.2. A locally bounded family of analytic functions has locally bounded derivatives. 

 

Proof. Let F be a family of locally bounded analytic functions. Take any f ∈ F and a point 

z0 ∈ ω. By the property of local boundedness, there exists a neighborhood |z − z0| < r in which 

| f (z)| ≤ M, ∀z ∈ B(z, r) and f ∈ F. 

By the Cauchy’s representation of the derivative, we have if C is the boundary of a closed disk in 

Ω of radius r, then 

f J(z)   = 
1  

∫

    f (ζ)   
dζ

 
2πi 

| f J(z)|   ≤ 
 1  

∫

 
C (ζ − z)2 

| f (ζ)| 
dζ

 

2π 
1 

≤ 
2π 

C   ζ z 
2
 

M2πr 

( 
r2 

) 
r 

< M ∀ z ∈ |z − z0| < 
2 

and ∀ f ∈ F 
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2 

 

Hence 

f J(z) < M, ∀ z ∈ |z − z0| < 
r 

∀ f ∈ F 

This implies that f J is locally bounded. We know that what is true for first derivative is also true 

for higher derivatives. 

 

∴ f JJ, f JJJ · · · 

are locally bounded. Thus a locally bounded family of analytic function has locally bounded 

derivatives. ■ 

 
11.6 The Classical Definition 

If a sequence tends to ∞ there is no great scattering of values, and it may well be argued that for 

the purposes of normal families such a sequence should be regarded as convergent. This is the 

classical point of view, and we shall restyle our definition to conform with traditional usage. 

Definition 11.6.1. A family of analytic functions in a region Ω is said to be normal if every 

sequence contains either a subsequence that converges uniformly on every compact set E ⊂ Ω, 

or a subsequence that tends uniformly to ∞ on every compact set. 

Lemma 11.6.1. If a sequence of meromorphic functions converges in the sense of spherical 

distance, uniformly on every compact set, then the limit function is meromorphic or identically 

equal to ∞. 

If a sequence of analytic functions converges in the same sense, then the limit function is either 

analytic or identically equal to ∞. 

Proof. Let { fn(z)} be a sequence of analytic functions which converges to a limit function f (z) 

in the sense of spherical distance, uniformly on every compact set. Since the limit function of a 

uniformly convergent sequence of continuous functions in continuous, f (z) is continuous in the 

spherical metric. 

 

Case. (i If f (z0) /= ∞ then f (z) is bounded in a neighborhood of z0 and for large n, the functions 

fn are not equal to ∞ in the same neighborhood. Therefore by ordinary form of Weierstrass 

theorem, f (z) is analytic in a neighborhood of z0. 
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∞0 

, 
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Case. (ii) If f (z ) = , we consider the reciprocal  
  1  

 
f (z) 

which is the limit of  
   1 

 
fn(z) 

 
in the 

spherical sense. Therefore by Weierstrass theorem, 
  1  

 
f (z) 

is analytic near z0. Also  
   1 

 
f (z0) 

= 0. 

Thus by Hurwitz’s theorem, 
1
 

f 
must be identically zero. Therefore f is identically equal to 

∞. ■ 

Theorem 11.6.1. F. Marty Theorem A family of analytic functions or meromorphic functions f 

is normal in the classical sense if and only if the expressions 

 

 

 
are locally bounded. 

ρ( f ) = 
2 | f J(z)| 

1 + | f (z)|2
 

 
(11.6.1) 

 

Proof. Sufficient Part: 

Suppose the expression (11.6.1) are locally bounded. 

By using formula, 

 

 
 

we write 

d(z, zJ) = 
2 |z − zJ|

 

(1 + |z|2)(1 + |zJ|2) 

  2 | f (z ) − f (z )|  
 

d( f (z ), f (z )) = 1 
2

 
1 2 , 

2 2
 

(1 + | f (z1)| )(1 + | f (z2)| ) 

Thus f followed by the stereographic projection maps an arc γ on an image with length 

∫ 

ρ( f (z)) |dz| . 

If ρ( f ) ≤ M on the line segment between z1 and z2 we conclude that 

d( f (z1), f (z2)) ≤ M |z − z1| 

. This immediately proves the equicontinuity when ρ( f ) is locally bounded. Therefore the family 

F is normal in the classical sense. 
 
 

Necessity Part: 1 

First let us prove that ρ( f ) = ρ
. 

f

 
. 

γ 
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. .f 

. .1
1 +

 

1 

nk 

1 

 

Consider, 

ρ
. 

f

 

 
 

2 ( 
1
 )J(z) 

= 
2
 

   

. f (z) . 

 

= 
2 | f J(z)| 

1 + | f J(z)|2 

 

∴ ρ
. 

f

   
= ρ( f ). 

Assume that the family F of meromorphic functions is normal but ρ( f ) fails to be bounded on a 

compact set E. Consider the sequence { fn} in F such that the maximum of ρ( fn) on E tends to 

∞. Let f denote the limit function of a convergent subsequence { fnk }. Around each point of E 

we can find a small closed disk, contained in Ω on which either f or 
1

 
f 

is analytic. 

 

If f is analytic, it is bounded on the closed disk and by the spherical convergence it follows 

that { fnk } has no poles in the disk as soon as k is sufficiently large, then by Weierstrass theorem, 

ρ( fnk ) → ρ( f ) 

uniformly on a slightly smaller disk. Since ρ( f ) is continuous, ρ( fnk ) is bounded on the smaller 

disk. 

 
1 1 

If 
f 

is analytic the same proof applies to ρ
. 

f   

  
which is same as ρ( fnk ). Since E is compact, 

it can be covered by a finite number of the smaller disk. Therefore ρ( fnk ) are bounded on E. This 

contradicts the hypothesis. Hence ρ( f ) is locally bounded. ■ 
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Objectives 

After completion of this Unit, students will be able to 

x identify that the unit disk can be mapped conformally onto any simply connected region 

in the plane, other than the plane itself. 

x understand the concept of boundary behavior and the use of reflection principle. 

 

 

BLOCK-IV 

UNIT 12 

The Riemann Mapping Theorem 
 

 

12.1 Introduction 

 
We shall prove that the unit disk can be mapped conformally onto any simply connected region 

in the plane, other than the plane itself. This will imply that any two such regions can be mapped 

conformally onto each other, for we can use the unit disk as an intermediary step. The theorem is 

applied to polygon regions, and in this case an explicit form for the mapping function is derived. 

 
12.2 Statement and Proof 

 
Definition 12.2.1. Univalent Function. An analytic function g is defined on a region Ω is 

univalent if g(z1) = g(z2) only for z1 = z2. In other words, if the mapping by g is one - one. 

Theorem 12.2.1. Riemann Mapping Theorem. Given any simply connected region Ω which 

is not the whole plane, and a point z0 ∈ Ω, there exists a unique analytic function f (z) in Ω, 

normalized by the conditions f (z0) = 0, f J(z0) > 0, such that f (z) defines a one - to - one 

mapping of Ω onto the disk |ω| < 1. 

Proof. Suppose that Ω is any simply connected region which is not the whole plane and z0 ∈ Ω. 

147 
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√ 

 

Existence of f (z) : 

Let us consider the family F formed by all functions g with the following properties: 

(i) g is analytic and univalent in Ω. 

(ii) |g(z)| ≤ 1 in Ω. 

(iii) g(z0) = 0 and gJ(z0) > 0 

 
The proof will consists of three parts: That is, we have to show that 

(i) F is non - empty; 

(ii) f ∈ F with maximal derivative; 

(iii) f has the desired properties. 

 

To prove that F is non - empty: 

Since by hypothesis Ω is not the whole plane, there exists at least one point a /= ∞ which is 

not in Ω, then z − a has no zero in Ω. Also z − a is analytic in Ω. Since Ω is simply connected, 

it is possible to define a single-valued analytic branch of  z − a in Ω, we denote it by h(z). That 

is 

h(z) = 
√

z − a. 

This function does not take the same value twice, nor does it take opposite values. 

For, if 

 
h(z1) =   h(z2) 

√
z1 − a   = 

√
z2 − a 

z1 = z2 

 
This implies that h is univalent in Ω. 

 
Also if h(z1) = b and h(z2) = −b, z1 /= z2 

h
2
(z1) = h2

(z2) ⇒ z1 = z2, 

which is a contradiction. Therefore h will not take opposite values. This implies that h is a 

constant analytic function. But by open mapping theorem, we have that ”A non - constant analytic 

function maps open sets onto open sets”. Therefore the image of Ω under h is an open set. That 

is h(Ω) is open. Since h(Ω) is open there exists a real number ρ > 0 such that the neighborhood 
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|ω − h(z0)| < ρ is contained in h(Ω). 

 
Since opposite values are not taken by h in Ω. There is no point z0 ∈ Ω, for which h(z) 

takes opposite values h(z0), −h(z0). Therefore h(Ω) does not meet the disk |ω + h(z0)| < ρ. The 

distance between all points of h(Ω) and h(z0) must be ≥ ρ. That is to say for every h(z) ∈ h(Ω), 
we have 

 
 

In other words, 

 

When z = z0, 

|h(z) − (−h(z0))| ≥ ρ 

 
|h(z) + h(z0)| ≥ ρ. 

2 |h(z0)| ≥ ρ ⇒ |h(z0)| ≥ 
ρ 

⇒
  1 

≤ 
2
 

 
Now consider the function g0(z) defined as 

 

g0(z) =  
ρ |hJ(z0)| 

  

2 

 
 
h(z0) 

 
 

|h(z0)| ρ 

 
(h(z) − h(z0)) 

 

 

 

 
(12.2.1) 

4 |h(z0)|
2 hJ(z0) (h(z) + h(z0)) 

Since h(z) is analytic and univalent in Ω, and g0(z) is linear transformation in h(z), g0(z) is also 

analytic and univalent in Ω. Also g0(z0) = 0 Differentiating with respect to z, we get 

gJ (z) =  
ρ |hJ(z0)|  h(z0) h(z0)hJ(z) 

.
 

    

 

Now 

0 2 |h(z0)|
2 hJ(z0) [h(z) + h(z0)]2 

ρ |hJ(z )| 
 

gJ
0(z0) = 

0
 > 0 

8 |h(z0)|
2
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1 

. . 

k→0 

4 

ρ 
h(z0) 

1 

h(z) + h(z0) 

2 

 

Finally for all z ∈ Ω, we have 

|g0(z)|   = 
ρ |hJ(z0)| 

 

 
|h(z0)| |h(z) − h(z0)| 

 

4 |h(z0)| 

= 
  

|hJ(z0)| |h(z) + h(z0)| 

|h(z) + h(z0) − 2h(z0)| 
 

4 |h(z0)| |h(z) + h(z0)| 
ρ  1      2  

= . − . 

 

≤ 
4 

. 

|h(z0)| 
+ 

|h(z) + h(z0)| 

 

 
   

ρ 2 2 ≤ 
4 

. 

ρ 
+ 

ρ

 

 ∴ |g0(z)| ≤ 1 in Ω 

∴ g0(z) ∈ F. 

This implies that F is non - empty. 

 

(2) To prove that f ∈ F with a maximal derivative: 

Let 

B = sup{g(z) : g ∈ F} 

which may be finite or infinite. There is a sequence of functions gn ∈ F such that gJ
n(z0) → B. 

Since |g(z)| < 1, ∀g ∈ F and ∀z ∈ Ω. The family F is normal.(since F is totally bounded) 

 
Since F is normal, there exists a subsequence {gnk } which is uniformly convergent to an 

analytic function f (z) on a compact set. 

 

∴ lim gJ
nk 

(z0) =  f J(z0) 
k→∞ 

Since |gn(z)| < 1 in Ω, | f (z)| ≤ 1 in Ω. Also 

lim gn(z0) = f (z0) 
n→∞ 

Therefore f (z0) = 0, since g(z0) = 0, g ∈ F 

lim gJ
nk 

(z0) = B ⇒ f J(z0) = B ⇒ B  is   f inite. 

Next, we prove that f is univalent. Since f J(z0) = B > 0, f is not a constant. Choose a point 

ρ 
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, 

, 

 

z ∈ Ω and consider the function 

g1(z) = g(z) − g(z1), g ∈ F. 
 

They are all not equal to zero in the region ΩJ = Ω − {z1}. By Hurwitz’s theorem, every limit 

function is either identically zero or never zero. But f (z) − f (z1) is a limit function and it is not 

identically zero. Hence 

f (z) /= − f (z1), ∀z /= z1. 

Since z1 is arbitrary, f is univalent in Ω. Therefore f ∈ F and f has maximal derivative B at 

z0. 

 
(3) To show that f takes every value ω with |ω| < 1. 

 

Suppose it were true that f (z) ω0, for some ω0, |ω0| < 1. Since Ω is simply connected, it 

is possible to define a single valued branch of 

 

F(z) = 
f (z) − ω0  

1 − ω0 f (z) 

It is clear that F is univalent and that |F| ≤ 1. To normalize it we form 

G(z) =  
|FJ(z0)|  F(z) − F(z0)  

 

 

 

(12.2.2) 

 

Clearly G is univalent and G(z0) = 0. 

FJ(z0) 1 − F(z0)F(z) 

 
 

 

GJ(z) =  
|FJ(z0)| FJ(z) − F(z0)F(z0)FJ(z)

.
 

 
 

 
Now 

FJ(z0) [1 − F(z0)F(z)]2 

 
 

 

GJ(z0)   = 
|FJ(z0)| 

FJ(z0) 
  1 − F(z0)F(z0)   

 

 
 

FJ(z0) 

= 
|FJ(z0)| 

(1 − |F(z0)|
2) 

 

 

Also F(z)   = 
f (z0) − ω0  

 

1 − ω0 f (z0) 

(1 − F(z0)F(z0))2 
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.   

. 

2ω0 

|  

|0 

1 

1 

| | 

Since f (z0) = 0, F(z0) = 
√

−ω0 
 

1 1 

∴ |F(z0)| = |(−ω0)| 2   = |ω0| 2   < 1 

log F(z) = 
1 

log( f (z) − ω0) − 
1 

log(1 − ω0 f (z)) 

 
On Differentiation, 

2 

 

FJ(z) 

2 

 

1 f
 J(z) 

 

 
ω0 f J(z) 

F(z) 
= 

2 ( f (z) − ω0) 
+ 

2(1 − ω0 f (z)) 

At z = z0, 
FJ(z0) 

= 
1
 

 

f J(z0) ω0 f J(z0) + 
 

F(z0) 2 ( f (z0) − ω0) 2(1 − ω0 f (z)) 

= 
1 −B 1 

B
 

2 ω0 1 
+ 

2 
ω0 
2 

=   −B 
   − |ω0| 

FJ(z ) = 
B

 
2 |ω0| 

(1 − |ω0|
2) |F(z0)| 

B 2 1
 

= 
2ω0 (1 − |ω0| ) |ω0| 2 

|FJ(z0)|   = 
    B  

(1 − |ω0|2) 

2 |ω0| 2 

 

 
∴ GJ(z0) = 

B(1 − |ω0|
2) 

 

2 |ω0| 2  (1 − |ω0|) 

GJ(z0)   = 
B 1 + |ω0| 

 

2 ω0 2 

> B 

GJ(z0)   ≥ f J(z0) 

Thus G(z) is analytic and univalent in Ω. |G(z)| < 1, G(z0) = 0 and GJ(z0) > 0. 

Therefore G(z) ∈ F and GJ(z0) > f −
1
(z0). This is a contradiction. (since f J(z0) = B and f J(z0) 

is the only maximum). Therefore assumes every value ω with |ω| < 1. 

 
To prove Uniqueness: 

 

Suppose that f1(z) and f2(z) are two functions which map Ω onto |ω| < 1. Then f1[ f2
−1(ω)] 

1 
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is a one - to - one mapping of |ω| < 1 onto itself. Also the mapping is conformal. We know that 

such a mapping is given by a linear transformation S. Also 

S(ω)
. 
f1 . f2

−1 
(0) = f1

. 
f2

−1(0)
. 

= f1(z0) = 0 
 

and 

S J(0) = 
.
( f1 . f2

−1)(0)
.J  

> 0, 

because both  f1
J(z0) and  f2

J(z0) are greater than 0. This conditions implies that S(ω) = ω. Hence 

S is the identity transformation I. 

 

i.e., f1 f2
−1 = I ⇒ f1 = f2. 

This completes the proof. ■ 

 
12.3 Boundary Behavior 

Definition 12.3.1. Let Ω be a simply connected region. Consider a sequence {zn} of points in Ω 

or consider an arc z(t), 0 ≤ t ≤ 1 such that all z(t) are in Ω. We say that the sequence or the 

arc tends to the boundary if the points zn or z(t) will ultimately stay away from any point in Ω. 

In other words, if z ∈ Ω, there shall exists an s > 0 and an n0 or a t0 such that |zn − z| ≥ s for 

n > n0 or such that |z(t) − z| ≥ s for all t > t0. 

 
Note. The disks of centre z and radius s (which may depend on z ) form an open covering of Ω. 

Hence any compact subset K ⊂ Ω is covered by the finite number of these disks. 

Result. A sequence of points or an arc in a simply connected region Ω tends to the boundary of 

Ω if and only if for every compact K ⊂ Ω there exists a tail end of the sequence or of the arc 

which does not meet K. 

Theorem 12.3.1. Let f be a topological mapping of a region Ω onto a region ΩJ. If {zn} or z(t) 

tends to the boundary of Ω, then { f (zn)} or { f (z(t))} tends to the boundary of ΩJ. 

Proof. Given that (i) f is a topological mapping of a region Ω onto the region ΩJ. Then f is 

one - to - one and onto, f and f −
1
 are continuous 
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(ii) {zn} or z(t) tends to the boundary of Ω. 

 
To prove that { f (zn)} or { f (z(t))} tends to the boundary of ΩJ. It is enough to prove that { f (zn)} 

or f (z(t)) stay away from every compact subset K in ΩJ. 

 
Let K be a compact subset of ΩJ. Since f is a topological mapping of Ω onto ΩJ, f −1

(k) 

is compact in Ω. Since {zn} or z(t) tends to the boundary of Ω. We have that the end of the 

sequence or of the arc does not meet f −
1
(K). That is there exists an integer n0 or a real number 

t0 such that for every n > n0, {zn} is not contained in f −
1
(K) or for every t > t0, z(t) is not in 

f −
1
(K). 

 
Since f is a topological mapping, f (zn) not in K if n > n0 or f (z(t)) not in K if t > t0. This 

implies that { f (zn)} or f (z(t)) does not meet K ultimately. That is { f (zn)} or f (z(t)) stay away 

from every compact subset K in ΩJ. Hence { f (zn)} or f (z(t)) tends to the boundary of ΩJ. ■ 

 
12.4 Use of Reflection Principle 

Definition 12.4.1. Free Boundary Arc. Let Ω be a simply connected region and let ∂Ω be 

its boundary containing a segment γ of a straight line which is the real axis, let it be the interval 

a < x < b. Then γ is said to be free boundary arc, if to each point of γ there exists a neighborhood 

whose intersection with the boundary ∂Ω is the same as its intersection with γ. In other words, 

γ is a free boundary arc if to each point x0 ∈ γ there exists a neighborhood ∆ of x0 such that 

∆ ∩ ∂Ω = ∆ ∩ γ = the real diameter of the disk ∆ along the real axis. 

Definition 12.4.2. Let γ be a free boundary arc of the region Ω then ∆ ∩ ∂Ω = ∆ ∩ γ = the real 

diameter of the disk ∆ where ∆ is the neighborhood of a point in γ. Then it is clear that each 

of the half disks determined by this diameter are entirely in or entirely outside of Ω and at least 

one must be inside. If any one is inside, we call the point a one sided boundary point. If both are 

inside, it is a two sided boundary point. 

Theorem 12.4.1. Suppose that the boundary of a simply connected region Ω contains a line 

segment γ as a one - sided free boundary arc. Then the function f (z) which maps Ω onto the 

unit disk can be extended to a function which is analytic and one to one on Ω ∪ γ. The image of 

γ is an arc γJ on the unit circle. 
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Proof. Suppose that the boundary of a simply connected region Ω contains a line segment γ as 

a one - sided free boundary arc. To prove that the function f (z) which maps Ω onto the unit disk 

can be extended to a function which is analytic and one - to - one on Ω ∪ γ and the image of 

γ is an arc γ on the unit circle. Since Ω is a simply connected region which is not the whole 

plane by Riemann mapping theorem, we can find a unique univalent function and analytic function 

f : Ω → |ω| < 1 such that 
 

f (z0) = 0 and f J(z0) > 0 f or some z0 ∈ Ω. 

Since γ is a free boundary arc, every point of γ has a neighborhood ∆ whose intersection with 

the boundary ∂Ω containing a segment of a straight line is same as the intersection with γ, which 

is also equal to the real diameter of the disk ∆. Since γ is a one sided free boundary arc, one of 

the half disks determined by this diameter is entirely inside Ω. 

 
Consider the disk ∆ around x0 ∈ γ which is so small that the half disk in the region Ω will not 

contain a point  z0  with  f (z0) = 0. That is for every  z  in this half disk,  f (z0) =/   0. This implies 

that log f (z) has a single valued branch in the half disk ∆ and the real part by log f (z) → 0 as 

z approaches the diameter. Because as z → the boundary of γ in Ω ∪ γ, f (z) approaches the 

boundary |ω| < 1. So that | f (z)| → 1. 

 
Therefore log | f (z)| → 0 as z → γ. Hence by the reflection principle, log f (z) has an analytic 

extension to the whole disk. Therefore log f (z) and consequently f (z) is analytic at z0. The 

extension to overlapping disks must coincide and define a function which is analytic on Ω ∪ γ. 

Since f (z) is analytic at x0, f J(z) /= 0 on γ. 

 
For, suppose f J(z) = 0 for z = x0. That is f J(x0) = 0. This implies that f (x0) where a multiple 

value so that the two subarcs of γ meeting at x0 would be mapped on arcs forming an angle 
π 

with n ≥ 2; this is clearly impossible. This is a contradiction. Therefore f J(x0) /= 0. 

 
Hence considering the upper half disks lying in Ω, 

 

∂ 
log | f (z)| = − 

∂
 arg( f (z)) < 0 on γ. 

 

Hence by the reflection principle, arg( f (z)) moves constantly in the same direction. ■ 
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Objectives 

After completion of this Unit, students will be able to 

x find the mapping function. 

x identify the Schwarz - Christoffel formula. 

x understand the concept of mapping on rectangle 

 

 

BLOCK-IV 

UNIT 13 

Conformal Mapping of Polygons 
 

 

13.1 Introduction 

 
When Ω is a polygon, the mapping problem has an almost explicit solution. Indeed, we shall find 

that the mapping function can be expressed through a formula in which only certain parameters 

have values that depend on the specific shape of the polygon. 

 
13.2 The Behavior at an Angle. 

 
Assume that Ω is bounded simply connected region whose boundary is closed polygon line 

without self-intersections. Let the consecutive vertices be z1, z2, · · · , zn in positive cyclic order. 

We set zn+1 = z1. Let the angle at zk be αkπ. 

zk−1 − zk 

∴ αkπ = arg 
. 

z
 

When θ = 0, αkπ = 0 ⇒ αk = 0. 

 
 

k+1 – zk 

  
= θ, where 0 < θ < 2π. 
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X 
−
 

. 

X 
−
 

X 
− − 

X
− 

 − X 

0 k=1 

 

When θ = 2π, αkπ = 2π ⇒ αk = 2. Therefore 0 < αk < 2. 

 
Also the outer angle at  zk  =  π − θ =  π − αkπ =  βkπ, where  βk  =  1 − αk. Then 

as 0 < αk < 2, −1 < βk < 1. Also we have   βk = 2. Since the sum of the interior angles 

of a polygon of n− sides is (n − 2)π and hence 

n 

αkπ =   (n 2)π 
k=1 

 
 

n 

αk =   n 2 
k=1 

n 

(1 βk)   =   n 2 
k=1 n n 

X 
1 − 

X 
βk =  n − 2 

k=1 k=1 
n 

n βk =   n 2 
k=1 

n 

βk = 2. 
k=1 

 

The polygon is convex if and only if all βk > 0. 

 

13.3 The Schwarz- Christoffel Formula 

 
The formula we are looking for refers not to the function f , but to its inverse function, which we 

shall denote by F. 

Theorem 13.3.1. The functions z = F(ω) which map |ω| < 1 conformally onto polygons with 

angles αkπ (k = 1, 2, · · · , n) are of the form 

∫ ∞ .n 

 F(ω) = C (ω − ωk)−βk dω + CJ (13.3.1) 
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X
α  m 

1! 

 

where βk = 1 − αk, the ωk are points on the unit circle, and C, CJ are complex constants. 

Proof. Let Ω is bounded simply connected region whose boundary is closed polygon line without 

self-intersections. Let the consecutive vertices be z1, z2, · · · , zn in positive cyclic order. We set 

zn+1 = z1. Let the angle at zk be αkπ. 
zk−1 − zk 

∴ αkπ = arg 
. 

z
 

When θ = 0, αkπ = 0 ⇒ αk = 0. 

 
 

k+1 – zk 

  
= θ, where 0 < θ < 2π. 

 

When θ = 2π, αkπ = 2π ⇒ αk = 2. Therefore 0 < αk < 2. 

 
Also the outer angle at  zk  =  π − θ =  π − αkπ =  βkπ, where  βk  =  1 − αk. Then 

as 0 < αk < 2, −1 < βk < 1. Also we have 
. 
βk = 2. 

The mapping function f (z) can be extended by continuity to any side of the polygon and that 

each side is mapped in one - one way onto an arc of the unit circle. Consider a circular sector S k 

which is the intersection of Ω with a sufficiently small disk about zk. A single valued branch of 
 1  

ζ = (z − zk) αk    maps S k onto a half disk S k. 

 
A suitable branch of zk + ζαk has its values in Ω and we may consider the function 

 
g(ζ) = f (zk + ζαk ) 

 

in  S k
J .  Then  as  ζ  approaches  the  diameter  |g(ζ)| .  Therefore  by  the  reflection  principle,  we 

conclude, g(ζ) has an analytic continuation to the whole disk. 

 

Since g(ζ) = f (zk + ζαk ) is analytic at the origin, it has the Taylor’s series development, 

g(ζ) = f (zk + ζα−k
) = f (zk) + 

f J(zk)
(zk + ζαk )

2
 + · · · 

∞ 

f (zk + ζ k ) = ωk + amζ (13.3.2) 
m=1 

where a1 0 for otherwise the image of the half disk S k
J
 could not be contained in the unit disk. 
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X 
− / 

. 
−
 

 

Therefore the series can be innverted. 
 
 

Set  
ω = f (zk + ζαk ) (13.3.3) 

∞ ∞ 

ω = ωk + 
X 

amζm
 ⇒ ω − ωk = 

X 
am ζm. 

After inversion we have 

m=1 

 
∞ 

m=1 

ζ = bm (ω ωk)
m
 with b1 = 0, 

m=1 

the development being valid in a neighborhood of ωk. 

∞ 

∴ ζ k = bm (ω ωk) 
k
 

m=1 

 

ζαk   = (ω − ωk)
αk Gk(ω) (13.3.4) 

where Gk(ω) is analytic and /= 0 near ωk. 

(16.3.3) ⇒ f −
1
(ω) = zk + ζαk = F(ω) ⇒ ζαk = F(ω) − zk. 

(16.3.4) ⇒ F(ω) − zk = (ω − ωk)
αk Gk(ω). 

Differentiating with respect to ω, we get 

 

FJ(ω)   =   αk(ω − ωk)
αk −1Gk(ω) + (ω − ωk)

αk GJ
k(ω) 

FJ(ω) 

(ω − ωk)αk −1 
=   αk Gk(ω) + (ω − ωk) Gk

J (ω) 

FJ(ω) (ω − ωk)
βk = αk Gk(ω) + (ω − ωk) GJ

k(ω). 

Since Gk(ω) is analytic and not equal to zero in the neighborhood of ωk, (ω − ωk)
βk , FJ(ω) is 

analytic and not equal to zero at ωk. Consider the product, 
 

n 

H(ω) = FJ(ω) (ω ωk)
βk

 

k=1 

 

which is analytic and not equal to zero in the closed unit disk |ω| < 1. We shall complete the 

proof by showing that H(ω) is constant. 
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2 

.     

θ + θ θ + θ 

. 

. 

 

 

For this purpose, we examine its argument when ω = e
iθ lies on the unit circle between 

ωk = eiθk and ωk+1 = eiθk+1 . Consider F(ω) = F(e
iθ

) 
 

FJ(ω) = 
dF

 
dω 

= FJ(e
iθ

) 

arg FJ = arg dF − arg dω 

where arg dF denotes the angle of the tangent to the unit circle at ω = e
iθ and arg dω denotes 

the angle of tangent to its image F(ω) = F(e
iθ

). 

 
Since F describes a straight line, arg dF is a constant and we have 

 

 

 

Hence 

arg d 
π 

ω = θ + 
2 

. 

 
 

Also 

arg FJ = −θ − 
π 

+ constant 

 

ω − ωk = e
iθ − eiθk

 

= 2 sin 
θ + θk 

θ 
2 

θ 
sin 

θk − k 
2 

+ i
.
2 cos 

θ + θk 

2 
 

 

sin 
θ − θk 

2 

  

=   2i sin 
. − k   . 

cos 
. k    

+ i sin 
. k   

 

 
ω − ωk = 2i sin 

θ 
 

 

2 θ − θk 
2 

2 2 
θ+θk 

2 

⇒ arg(ω − ωk)   = 
2 

+ constant. 

     . . 

ei 
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−
 

 

Also 
 

 

n 

arg(H(ω))  =  arg FJ(ω) + arg (ω ωk)
βk

 

k=1 

n 

=   arg FJ(ω) + βk arg(ω ωk) 
k=1 

= arg FJ(ω) + β1 arg(ω − ω1) + · · · + βn arg(ω − ωn) π θ θ 

= −θ − 
2 

+ constant + β1

. 

2 
+ constant

 
+ · · · + βn

. 

2 
+ constant

 
 

 

= −θ − 
2 

+ 
2 

(β1 + β2 + · · · + βn) + constant 
π θ 

= −θ − 
2 

+ 
2 

(2) + constant 

arg(H(ω))   = 
π 

+ constant 
2 

Thus we conclude that, H(ω) is a constant between ωk and ωk+1  and since it is continuous, it 

must be constant on the whole unit circle. Therefore by the maximum principle, 

 

arg(H(ω) = Img(log(H(ω)) = constant inside the unit disk 
 

This implies that 

 

Also 

 
H(ω) = constant = c(say) 

 

 
n 

H(ω)   = FJ(ω) (ω ωk)
βk

 

k=1 

n 

FJ(ω)   = H(ω) (ω ωk)−βk
 

k=1 

 
 

n 

FJ(ω)   =   c (ω ωk)−βk
 

k=1 

π θ 
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∫ 
J

 

∫ . 

X 

 

On integrating from 0 to ω, we get 
 

ω 

F (ω)dω =   c 
∫ ω .n 

 

(ω − ωk)−β k dω + constant 
0 0 k=1 

 

F(ω) =   c 
∫ ω .n 

(ω − ωk)−β k dω + constant + F(0) 
0 k=1 

 

F(ω) =   c 
∫ ω .n 

(ω − ωk)−β k dω + cJ 
0 k=1 

■ 

 

13.4 Mapping on a Rectangle 

 
ω n 

F(ω) = c 

 

 
 
(ω − ωk)−β k dω + cJ 

0 k=1 

F(ω) maps the unit disk |ω| < 1 conformally onto polygons with angles αkπ (interior) and 

βkπ = (1−αk)π (exterior) and ωk are the points on the unit circle and c, cJ are complex constants 

and Ω is a bounded simply connected region whose boundary is the above said closed polygonal 

lines. 

 

 
If Ω becomes a rectangle then 

 

 

 

 

 

 

 

in a rectangle. We have 

4 

βkπ = 2π 
k=1 

β1 + · · · + β4 = 2 

∴ β1π = β2π = β3π = β4π = 
π
 

2 

1 
β1 = β2 = β3 = β4 = 

2
 

Choosing the three vertices as x1 = 0, x2 = 1, x3 = ρ < 1 and for c = 1, cJ = 0 the above 
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∫ 

∫ 

(ω − 0) 2 (ω − 1) 2 (ω − ρ) 2 dω 

∫ ω
 dω  

∫ ρ
 dt  

t(t − 1)(t − 

ρ) 

0 

Let 
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mapping function will be given by 

∫ ω 
− 1 − 1 − 1 

ω
 dω  F(ω) =    

0 

,
ω(ω − 1)(ω − ρ)            

This equation is called an elliptic integral. To avoid ambiguity, let 
√

ω, 
√

ω − 1, 
√

ω − ρ lies in 

the first quadrant. Consider the mapping F(ω) as ω traces the real axis. When ω is real each of 

the square root is either positive or purely imaginary with a positive imaginary part. 

 

As 0 < ω < 1 and ρ > 1, there are one real and two imaginary square roots, this means F(ω) 

decrease from 0 to a value −K where 

1
 dt  K =    (13.4.1) 

0 

,
t(1 − t)(ρ − t) 

For 1 < ω < ρ there is only one imaginary square root and the integral 
 

1 

,
ω(ω − 1)(ω − ρ) 

 

is purely imaginary with a positive imaginary part. Thus F(ω) follows a vertical segment from 

−K to −K − iKJ where KJ is given by 
 

1 

,
t(1 − t)(ρ − t) 

 

Therefore for ω > ρ, the integral is positive and F(ω) will trace a horizontal segment in the 

positive direction. Since the image is to be a rectangle, it terminates at −iKJ and the lengths of 

the segment is given by 

∫ ∞  

, 
dt 

 

t = 
ρ − u 

⇒ u = 
ρ − t 

1 − u 1 − t 

F(ω)   = 

ρ 
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, 

± 

∫ 

     =   du 

1 − u 1 − u 

     =    = K 

t(t − 1)(t − 

ρ) 

t(t − 1)(t − 

ρ) 

=    =    

 
∫ ∞

 dt  

dt = 
 ρ − 1 

du 

(1 − u)2 

 
∫ 1 

 

 
  ρ − 1   
(1 − u)2 

ρ 

,
t(t − 1)(t − ρ) 0 

,
. ρ − u  . ρ − 1  . u(ρ − 1)   

∫ ∞
 dt  

∫ 1
 du  

ρ 

,
t(t − 1)(t − ρ) 0 

,
(1 − u)(ρ − u)u 

By Cauchy’s theorem,
 1 

is analytic within a semicircle with radius R and as 
 

R → ∞, 
t(t − 1)(t − ρ) 

R
 dt  

, 

 
∞ dt  
, → 

 

This implies that K → 0. That is the real part, become zero. Therefore we can claim that the 

horizontal segment are equal. 

 

 

Similarly, when the imaginary part is zero, −∞ < ω < 0 is mapped onto the segment −iKJ to 

0. Therefore −K means (−K, 0). −K −iKJ implies (−K, −KJ) and 1 −iKJ implies that (0, 

−KJ).  These points form a rectangle. 

 
Note. If we consider the vertices as 

1 
, 0 < K < 1, 

K 

ω
 dω  F(ω) =    

      0 

,
(1 − ω2)(1 − K2ω2) 

as ω2, K
2ω2

 are positive 
√

1 − ω2, 
√

1 − K2ω2 have the positive real part so that the vertices of 

the rectangle become − 
K 

, 
K 

, 
K 

+ iKJ, − 
K 

+ iKJ, where 

2 2 2 2 

1 
K 

∫ 1
 dt  

and KJ 
∫ 

K dt  

−1   

,
(1 − t)2(1 − K2t2) 1 

,
(t2  − 1)(1 − K2t2) 

and the corresponding rectangle is given by ABCD. 

−

∞ 

∫ ∫ 

1 − u 

−

R 

= 0 
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Objectives 

Upon completion of this Unit, students will be able to 

x understand the concept of Mean Value Property. 

x identify the Harnack’s Principle. 

 

 

BLOCK-IV 

UNIT 14 

A Closer Look at Harmonic Functions 
 

 

14.1 Introduction 

 
We have already discussed the basic properties of harmonic functions. At that time it was 

expedient to use a rather crude definition, namely one that requires all second-order derivatives 

to be continuous. This was sufficient to prove the mean-value property from which we could 

in turn derive the Poisson representation and the reflection principle. We shall now show that a 

more satisfactory theory is obtained if we make the mean-value property rather than the Laplace 

equation our starting point. 

 

In this connection we shall also derive an important theorem on monotone sequence of harmonic 

functions, usually referred to as Harnack’s Principle. 
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14.2 Functions with the Mean-Value Property 

Let u(z) be a real valued continuous function in a region Ω. We say that u satisfies the mean 

value property if 

u(z0) =  1 
∫ 2π u(z0 + re

iθ
)dθ (14.2.1) 

2π 0 

when the disk |z − z0| ≤ r is contained in Ω. 

Theorem 14.2.1. A continuous function u(z) which satisfies condition (14.2.1) is necessarily 

harmonic. 

Proof. Let u(z) be a real valued continuous function in a region Ω. Suppose that the disk 

|z − z0| ≤ ρ is contained in Ω and let u(z) satisfies the mean-value property. 

 
i.e., u(z0) =  1 

∫ 2π  
u(z0 + re

iθ
)dθ 

2π 0 
 

By the use of Poisson’s formula, we can construct a function v(z) which is harmonic for 

|z − z0| ≤ ρ continuous and equal to u(z) on |z − z0| = ρ. Since v(z) is harmonic, it satisfies 

both maximum and minimum principle. This implies that u(z) − v(z) satisfies maximum principle 

on the boundary of the disk |z − z0| ≤ ρ contained in Ω. Therefore u ≤ v. 

 
Similarly, it can be proved using minimum principle that u ≥ v. Thus, we have u = v in the 

whole disk. Since v(z) is already harmonic, u(z) is harmonic. Thus the function u(z satisfies the 

mean-value property is necessarily harmonic. ■ 

 

The implication of Theorem 3.1.1 is that we may, if we choose, define a harmonic function to be 

a continuous function with the mean-value property. Such a function has automatically continuous 

derivatives of all orders, and it satisfies Laplace’s equation. 

 

Result. Suppose that u(z) is continuous and that the derivatives 
∂2u

 
∂x 

∂2
u 

 
 

∂y2 

 

exists and satisfy 

∆u = 0 then u is harmonic. 

 
Proof. By use of Poisson’s formula, we can construct a function v(z) which is harmonic for 

|z − z0| < ρ. Also u = v on the boundary |z − z0| = ρ. 
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Let 

V = u − v + s(x − x0)
2, s > 0 

If V had a maximum the rules of the calculus would yield 
∂2V

 
∂x2 

≤ 0, 
∂2

V 
 

 

∂y2 
≤ 0, and hence 

∆V ≤ 0 at that point. On the other hand, 

∆V = ∆u − ∆v + 2s = 2s > 0. 

The contradiction shows that V has a maximum on the boundary. That is V ≤ sρ2
 in the disk 

|z − z0| ≤ ρ. Since on the boundary u = v and 

x − x0 = Re(z − z0) ≤ |z − z0| ≤ ρ. 

Again by minimum principle V ≥ sρ2. Therefore V reduce to a constant. Hence 

sρ2
 = u − v + s(x − x0)

2. 

Let s → 0, we find that u = v. Therefore u is harmonic. ■ 

 
14.3 Harnack’s Principle 

 
Theorem 14.3.1. Harnack’s inequality. Let u(z) be a positive harmonic function defined in the 

disk |z − 0| = |z| ≤ ρ contained in Ω. Then for any z such that |z − 0| = rρ, we have 
ρ − r ρ + r 

 

. 

ρ + r

 
u(0) ≤ u(z) ≤ 

. 

ρ − r

 
u(0) (14.3.1) 

Proof. Let us consider a circle |z| = r < ρ. By Poisson’s formula, the harmonic function u(z) 

can be expressed throughout its value on the circle and it is given by 

 
u(z) =  1 

∫ 2π 
ρ2

 − r2 
 
u(ρe

iθ
)dθ (14.3.2) 

2π 0 |ρeiθ − z|2
 

where u is assumed to be harmonic in |z| ≤ ρ. (on harmonic for |z| < ρ, continuous for |z| ≤ ρ ) 
We know that 

.ρe
iθ − z. ≤ .ρe

iθ. + |z| = ρ + r. 
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ρ − .
 .≤ ρ 

.ρ − . .    

.ρ 

2 r2 

u(ρe 
θ
) dθ 

 

and 

 

Therefore 

e
iθ z ≥ e

iθ − |z| = ρ − r. 

 
r e

iθ − z ≤ ρ + r 

 

1 1 1 

ρ − r 
≥ 

|ρeiθ − z| 
≥ 

ρ + r 

ρ2
 − r2

 

(ρ + r)2 

∴ 
ρ − r 
ρ + r 

ρ2
 − r2

 

|ρeiθ − z|2
 

ρ2
 − r2

 

|ρeiθ − z|2
 

ρ2
 − r2

 

(ρ − r)2 

ρ + r 

≤ 
ρ − r 

 1 
∫ 2π .ρ − . . i   . 

 
 

2π 0 

|ρeiθ − z|2 
. .

 
 

 1  
∫ 2π ρ − r u(ρe

iθ
)dθ ≤  1 

∫ 2π 
ρ2

 − r2 u(ρe
iθ

)dθ ≤  1 
∫ 2π ρ + r 

 
u(ρe

iθ
)dθ 

2π 0 ρ + r 

 1 ρ − r 
∫ 2π

 

2π 0 |ρeiθ − z|2
 

 1 ρ + r 
∫ 2π

 

2π 0 ρ − r 

 
i 

2π ρ + r 0 
udθ ≤ u(z) ≤ 

2π ρ − r 0 
udθ, u(ρe 

θ
) = u 

But the arithmetic mean of u(ρe
iθ

) equals u(0). Therefore, we have 

ρ − r ρ + r 
 

. 

ρ + r

 
u(0) ≤ u(z) ≤ 

. 

ρ − r

 
u(0) 

■ 

 

The main application of (14.3.1) is to series with positive terms or, equivalently, increasing 

sequence of harmonic functions. It leads to a powerful and simple theorem known as Harnack’s 

principle. 

Theorem 14.3.2. Harnack’s Principle.Consider a sequence of functions un(z), each defined 

and harmonic in a certain region Ωn. Let Ω be a region such that every point in Ω has a 

neighborhood contained in all but a finite number of the Ωn, and assume moreover that in 

this neighborhood un(z) ≤ un+1(z) as soon as n is suflciently large. Then there are only two 

possibilities: either un(z) tends uniformly to +∞ on every compact subset of Ω, or un(z) tends 

≤ 

≤ 

≤ 

(14.3.2) ⇒ |u(z)| = 

Since u(z) is a positive harmonic function, we have 
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∞ 

2 

− 

3 

r

 
r

+ 

 

to a harmonic limit function u(z) in Ω, uniformly on compact sets. 

 
Proof. Given that, 

(i) the sequence of functions un(z) is defined and harmonic in a certain region Ωn. 

(ii) Ω is a region such that every point in Ω has a neighborhood contained in all but finite number 

of Ωn. 

(iii) In the above neighborhood, un(z) ≤ un+1(z) as soon as n is sufficiently large. 

To prove that, either un(z) tends uniformly to ∞ on every compact subset of Ω or un(z) tends to 

a harmonic limit function u(z) in Ω uniformly on compact sets. 
 
 

Suppose that 

lim un(z) = u(z). 
n→∞ 

It is enough if we prove that, either u(z) tends to ∞ or u(z) is harmonic, and in both the cases 

the convergence is uniform in all compact subset of Ω. 

 
Case.(i) Let z0 ∈ Ω be such that u(z0) = ∞. 

i.e., lim un(z0) = , 
n→∞ 

then by hypothesis of the theorem (i), (ii), (iii) there exists r and m such that the function un(z) 

are harmonic and form a non-decreasing sequence for |z − z0| < r and n ≥ m. 

un(z) ≥ um(z) f or n ≥ m. 

∴ un(z) − um(z) 

is a positive harmonic function. Hence from the left hand Harnack’s inequality applied to 

|z − z0| 

≤ 
r
 

< r, we have 

 

r 
r 

2 
(un(z0) − um(z0))  ≤ un(z) − um(z), ∀n ≥ m 

 

2 
1 

(un(z0) − um(z0))  ≤ un(z) − um(z), ∀n ≥ m 

lim un(z) = 
n→∞ 

∞ 
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2 

∞ 

r − 
r
 

2 

 

in the disk |z − z0| ≤ r . Since  
lim un(z) = at  z0. 
n→∞ 

That is un(z0) = ∞. Therefore un(z) → ∞ on every compact subset of Ω. 

 
Case.(ii) Suppose that lim un(z0) < ∞. Then by the same argument, from right handed Harnack’s 

n→∞ 
r
 

inequality applied to |z − z0| ≤ 
2 

< r. 

 
un(z) − um(z)   ≤ 

 
r + 

r
 

  2 
(un(z0) − um(z0)) 

2 

un(z) − um(z) ≤   3(un(z0) − um(z0)) 

It shows that un(z) is bounded on the disk |z − z0| ≤ 
r 
. As {un} is monotonic and bounded it 

converges to the function u(z). 
2 

Therefore the sets on which lim un(z) is respectively finite or 

infinite are both open, and since Ω is connected, one of the sets must be empty. Suppose that the 

limit is infinite at a single point say z0, it is hence identically infinite.The uniformity follows by 

the usual compactness argument. 

 
Suppose that the limit function u(z) is finite everywhere with the same notations as above. By 

using Harnack’s inequality 

 

un+p(z) − un(z) ≤ 3(un+p(z) − un(z0)) 

for |z − z0| < 
r 

and n + p ≥ n ≥ m. Hence convergence at z0 implies uniform convergence in the 

neighborhood of z0 and use of the Heine Borel property shows that the convergence is uniform 

on every compact set. The harmonicity of the limit function can be inferred from the fact that u(z) 

can be represented by Poisson’s formula. 

■ 



 

 

Objectives 

Upon completion of this Unit, students will be able to 

x know the concept of simply periodic function. 

x understand the concept of Fourier development and functions of finite order. 

 

BLOCK-V 

UNIT 15 

Simply Periodic Functions 
 

 

15.1 Introduction 

Definition 15.1.1. A function f (z) is said to be periodic with period ω(/= 0) if f (z + ω) = f (z), 

∀z. 

Example 15.1.1. Let f (z) = ez. 

 
 

f (z + 2πi) = e
z+2πi

 

= e
z
(cos 2π + i sin 2π) 

= e
z
 

f (z + 2πi) = f (z). 

 
Hence e

z
 is a periodic function with period 2πi. 

Example 15.1.2. sin z and cos z have the period 2π, since sin(2π + z) = sin z and cos(2π + z) = 

cos z. 

 
Note.(i) If ω is a period, so are all integrals multiples nω. That is, if ω is a period then the 

integrals multiples nω are also the periods. 
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Note.(ii) If ω1 and ω2 are the periods of f (z) then a linear combination of ω1 and ω2, 

n1ω1 + n2ω2 is a period. 

 
 

15.2 Representation by Exponentials 
 

 
(i) The simplest function with period ω is the exponential e 

2πiz 
 

 

ω . It is a fundamental fact that 

any function with period ω can be expressed in terms of this particular function. 

 

 
(ii) Let Ω be a region with the property that z Ω implies z + ω Ω and z ω Ω. We define 

2πiz 

ΩJ in the ζ− plane to be the image of Ω under the mapping ζ = e 

 
 

ω ; it is obviously a region. 

For instance, if Ω is the whole plane then ΩJ is the plane punctured at 0. If Ω is a parallel strip 

defined by  a < Im
. 2πz   < b, then  ΩJ is the annulus  e−b

 < |ζ | < e−a. 

 

i2πz 

For proving this, let ζ = e ω , z = x + iy and ω = a + ib. Then 
 

2πz 2π 
 

 
Now 

Im
. 

ω 

  
= 

a2 + b2 
(ay − bx). 

2πiz 2π 

e ω = ea2 + b2 
((bx−ay)+i(ax+by)) 

= e 

Hence, |ζ |   =   e 

2π(bx − ay) 

a2 + b2 e 

2π(bx − ay) 

a2 + b2 

i2π(ax + by) 

a2 + b2 

–
 2π(ay − bx) 

|ζ |   =   e a2 + b2 
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X n 

n ω 

15.3. The FoURIeR DevelopMeNT 

 

Now consider,  
a   < Im

.
 

 

 

 
2πz 

ω 
< b 

175 

a   < 
2π 

a2 + b2 

a   > 
−2π 

a2 + b2 

(ay − bx) < b 

(ay − bx) > −b 

 
 

e−a
 >   |ζ| > e−b

 

∴ e−b
 <   |ζ| < e−a. 

(iii) Suppose that f (z) is meromorphic in Ω and has a period ω then there exists a unique 

function F in ΩJ such that 

f (z) = F 

2πiz 

2πiz 

ω 
. (15.2.1) 

Indeed, to determine F(ζ) we write ζ = e ω ; z is unique upto an additive multiple of ω, 

and this multiple does not influence the value f (z). Since f (z) is meromorphic, F is also 

meromorphic. Conversely, if F is meromorphic in ΩJ then there exists a function f in Ω with 

period ω which is also meromorphic in Ω given by (15.2.1). 

 

15.3 The Fourier Development 

 
Assume that  ΩJ  contains an annulus  r1  < |ζ | < r2  in which  F  has no poles.  In this annulus  F 

has a Laurent development 

 

 

and we obtain 

F(ζ) = 
∞ 

Cn ζ , 

n=−∞ 

∞        ∞    

f (z) = 
X 

C 
.
e 

2πiz   n 
= 
X 

C 
 

  

 
2nπiz 

, 
−

∞ 

−

∞ 

− 

. 

e n 
ω 
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Cn = 
ω
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since 

f (z) = F
.
 
2πiz 

ω 
. 

This is the complex Fourier development of f (z) valid in the parallel strip that corresponds to the 

given annulus. The Fourier coefficients are given by 

Cn =
 1 

∫
 F(ζ)ζ−n−1

dζ, (r1 < r < r2). 

 
 

Substitute ζ = e 

 

2πiz 
 

 

ω , we get 

2πi |ζ |=r 

 

 

 

1 
∫ a+ω 

 

 

 
 
 

 
2πinz 

− 

 

Here a is an arbitrary point in the parallel strip and integration is along any path a to a+ω which 

remains within the strip. If f (z) is analytic in the whole plane, the same Fourier development is 

valid everywhere. 

 

15.4 Functions of Finite Order 

When Ω is the whole plane, F(ζ) has isolated singularities at ζ = 0 and ζ = ∞. If both these 

singularities are in essential that is either removable singularities or poles, then F is a rational 

function. We say in this case that f has finite order, equal to the order of F. 

 

A rational function assumes every complex value including ∞, the same number of times, 

provided that we observe the usual multiplicity convention. If ω is a period of a simply periodic 

function and if there is no distinction between z and z + ω, we obtain a same result for simply 

periodic functions. 

For convenient terminology, we say that z + nω is equivalent to z. If f is of order m, we find that 

every complex value c /= F(0) and F(∞) is assumed at m inequivalent points with due count of 

multiplicities. We observe further that, 

a 

f (z) e ω dz 
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.  
→  → −∞

ω
 

.   

.   

15.4. FUNcTIoNs of FINITe ORDeR 

z 
f (z) F(0) when Im and 

z 

177 

f (z) → F(∞) when Im 
ω 

→ ∞. If we are willing to agree that these values are also assumed, 

we can maintain that all complex values are exactly m times. 
 
 

z 
For another interpretation we may consider the period strip, defined by 0 ≤ Im 

ω 
≤ 2π. Since 

this strip contains only one representation from each equivalence class we find that f (z) assumes 

each complex value m− times in the period strip, except that the values F(0) and F(∞) require 

a special convention. 
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Objectives 

Upon completion of this Unit, students will be able to 

x know the concept of doubly periodic function. 

x identify periodic modules. 

x understand the concept of canonical basis. 

x prove the properties of elliptic functions. 

 

 

BLOCK-V 

UNIT 16 

Doubly Periodic Functions 
 

 

16.1 Introduction 

 
The terms elliptic function and doubly periodic function are interchangeable; we have already met 

examples of such functions in connection with the conformal mapping of rectangles and certain 

triangles. Elliptic functions have been the object of very extensive study, partly because of their 

function theoretic properties and partly because of their importance in algebra and number theory. 

Our introduction to the topic covers only the most elementary aspects. 

Definition 16.1.1. An analytic function f (z) is said to be doubly periodic function with period 

ω1 and ω2 if 

(i) f (z + ω1) = f (z) 

(ii) f (z + ω2) = f (z) 

(iii) 
ω2

 

ω1 
is non-real. 

Definition 16.1.2. A doubly periodic meromorphic function defined in the whole complex plane 

is called an elliptic function. 
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∞ ∞ 

∞ ∞ 

∞ ∞ 

∞ ∞ 

∞ ∞ 

∞ ∞ 

∞ ∞ 

−∞ 
[z − (m − 1) − in)]3 

−∞ 
[z − (m + n − 1)i]3 

m=−∞ n= 

m=−∞ n= 

m=−∞ n= 

m=−∞ n= 

 

Example 16.1.1. Consider 

f (z) =  
X X 1 

 

 
(i) 

m=−∞ n= −∞ 
[z − (m + in)]3 

 

 
f (z + 1) = 

X X 1  
 

 

= 
X X 1  

 

= 
X X 1  

 

f (z + 1) = f (z). 

 
Hence f (z) is a periodic function with period 1. 

(ii) 

 
f (z + i) = 

X X 1  
 

 

= 
X X 1  

 

= 
X X 1  

 

f (z + i) = f (z). 

 
Therefore f (z) is a periodic function with period i. Hence f (z) is doubly periodic function with 

period 1 and i. Also f (z) has got a pole at z = m + in of order 3. Therefore f (z) is an elliptic 

function. 

 
 

16.2 The period Module 

 
Definition 16.2.1. Periodic Module. Let f (z) be meromorphic in the whole plane. Let M be the 

set of all its periods. If ω is a period, so are all integral multiples nω, and if ω1 and ω2 belong 

to M so does ω1 + ω2, as a consequence all linear combinations n1ω1 + n2ω2 are in M. A set 

with these properties is called a module and we shall call M the period module.(This module can 

−∞ 
[z + i − (m + in)]3 

m=−∞ n= 

−∞ 
[z + 1 − (m + in)]3 

m=−∞ n= 

−∞ 
[z − (m + in)]3 

−∞ 
[z − (m + in)]3 
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be called more precisely as module over the integers.) 

 
Result. The points of a period module M are isolated. 

181 

 

 

 

Proof. Let f be a meromorphic function. If ω is a period of f , we have 

 

f (ω) = f (0), ∀ω ∈ M, since f (ω) = f (0 + ω) = f (0). 

i.e., f (ω) − f (0) = 0. 

Therefore ω is a zero of f (z) − f (0). Since the zeros of a meromorphic function are isolated, it 

follows that the periods are isolated. ■ 

Definition 16.2.2. A module with isolated points is said to be discrete. 

 
Our first step is to determine all discrete modules. 

Theorem 16.2.1. A discrete module consists either of zero alone, of the integral multiples nω 

of a single complex number ω = 0, or of all linear combinations n1ω1 + n2ω2 with integral 

coeflcients of two numbers ω1, ω2 with non-real ratio 
ω2 

. 
ω1 

 

Proof. Let M be a discrete module. Then M is a module with isolated points. If M consists of 

a number ω 0 then nω ∈ M ∀n ∈ Z. Also it contains one number call it ω1, whose absolute 

value is a minimum. That is ω1 ∈ M such that |ω1| < |ω| , ∀ω ∈ M. 

 
Consider a disk |z| ≤ r for sufficiently large r so that the disk contains at least one non - zero 

integral multiple of ω. That is for large r, the disk |z| ≤ r contains a point from M, other than 

zero. Since M is a discrete module, its points are isolated. Because the points are isolated there 

are only a finite number of such points, and we choose ω1 to be one closest the origin. Since 

ω1 ∈ M, the multiples nω1 are in M, ∀n ∈ Z. Thus M may be just the set of all integral 

multiples nω1, ω1 /= 0. 

 
Suppose now there exists an ω ∈ M which is not an integral multiple of ω1. Among all such 

there is one ω2 whose absolute value is smallest. 
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0 < − n < 1 ⇒ 0 < 
. 

− n
. 

< 1 ⇒ 0 < |ω2 − nω1| < |ω1|. 

Now, let us claim that 
ω2

 is not real. If 
ω2

 is real then we can find an integer n, such that 

n < 
ω2

 

ω1 

ω1 ω1 

< n + 1. This implies that 

 

 

ω1 
. ω1 

. 
 

Hence nω1 − ω2 ∈ M and |nω1 − ω2| < |ω1| . This is a contradiction to our choice of ω1. Hence 

our assumption that 
ω2

 

ω1 
is real is wrong. Therefore 

ω2
 

ω1 
is non-real. 

 

Now let us assume that any complex number ω can be written in the form ω = λ1ω1 + λ2ω2 

with real λ1 and λ2. Consider the equations 

 
ω = λ1ω1 + λ2ω2 

ω = λ1ω1 + λ2ω2 

 

Since the determinant ω1ω2 − ω2ω1 is 0 the system has a unique solution (λ1, λ2). Now, 

 

ω = λ1ω1 + λ2ω2 

ω = λ1ω1 + λ2ω2 

These two equations also have unique solution (λ1, λ2). Therefore the equations 

 
xω1 + yω2 = ω and xω1 + yω2 = ω 

 
are both satisfied by (λ1, λ2), and (λ1, λ2). Since the solutions are unique, we must have 

 

λ1 = λ1 and λ2 = λ2. 

 
Hence λ1 and λ2 are real. Hence any complex number ω can be written in the form ω = 

λ1ω1 + λ2ω2 uniquely, where λ1, λ2 are real. 

 
Now, let us show that any ω ∈ M can be written uniquely in the form n1ω1 + n2ω2 where n1 

and n2 are integers. Suppose ω = λ1ω1 + λ2ω2. Let m1 and m2 be integers such that 
 

1 1 
|λ1 − m1| ≤ 

2 
and |λ2 − m2| ≤ 

2 
. 

ω2 ω2 



183 16.3. UNIModUlaR TRaNsfoRMaTIoNs 

M.Sc.(Mathematics)-TNOU-I Year- II Sem Complex Analysis 

 

 

ω2 

+       
.
.ω1

 

. 

 22 

 .   .   

 

Let ωJ = ω − m1ω1 − m2ω2. If ω ∈ M, then ωJ ∈ M. 
 

Now  

|ωJ|   =   |ω − m1ω1 − m2ω2| 

= |λ1ω1 + λ2ω2 − m1ω1 − m2ω2| 

≤ |λ1 − m1| |ω1| + |λ2 − m2| |ω2| 
1 1 

< 
2 

|ω1| + 
2 

|ω2| 

|ωJ|   ≤   |ω2| 

where the first inequality is strict because ω2 is not a real multiple of ω1. (Since 
ω2

 

ω1 

 
 
is not real) 

Equality holds if 

 

and 

|λ1 − m1| = |λ2 − m2| 

 
|ω1| + |ω2| = |ω1| + |ω2| 

.
1 + . = 1 + 

|ω2|
 

  
.1

. 

 

 

ω1 

ω2 
2 

 ω 
 

 

=   
.
1 

|ω1| 

+ 
|ω | 

|ω1| |ω | 
.
1 + 2

 1 + 
ω1 

2
 = 1 + 

ω1 
 

2    2 

|ω1| 
ω2 

+ 
ω2 

= 2 
|ω2| 

ω1 ω1 ω2 
|ω1| |ω2| 

 
This implies that 

ω2
 

ω1 

2 Re
. 

ω1

    
= 2 

|ω1|
 

is real, which is a contradiction. Therefore, by the way ω2 was chosen, it 

follows that ωJ is an integral multiple of ω1 and hence ω has the asserted form. ■ 

 
16.3 Unimodular Transformations 

Definition 16.3.1. Any pair (ω1, ω2) is called a basis of M, if any ω ∈ M has a unique 

representation of the form ω = n1ω1 + n2ω2 where n1, n2 are integers. 

ω 
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a b 

ωJ
1
 

   =
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Definition 16.3.2. A linear transformation of the form 

 

ωJ
2 = aω2 + bω1 and ωJ

1 = cω2 + dω1 

where  (ω1, ω2)  and  (ω1
J , ω2

J )  are  two  bases  and  a, b, c, d   are  all  integers  is  such  that  the 

determinant 

.c d. 
=

 
ad − bc = ±1 

 

 
 

Result. Any two bases of the same module are connected by a unimodular transformation. 

 

Proof.  Let  (ω1, ω2)  and  (ω1
J , ω2

J )  be two bases for the period module  M. Since  (ω1, ω2)  is a 

basis, there exists an integers a, b, c, d such that 
 

 

 

 
This can be put in matrix form 

ωJ
2 = aω2 + bω1 

ωJ
1 = cω2 + dω1 

ωJ

2  = 
a b  ω2  

 

(16.3.1) 

 

 

 (16.3.2) 
 

 
Taking conjugate of (16.3.1) we get 

ωJ

1

 
c d

 
ω1

 

 

ω2
J =   aω2 + bω1 

ω1
J =   cω2 + dω1 

 

The matrix form of the equation is 

ω2
J

 = 
a b

 

 
 

ω2

 

 
 

 

 (16.3.3) 

 
Thus we have 

ωJ

2 

ω1
J 

ω2
J 

ω1
J  

c d
 
ω1

 

a b ω2 ω2 

c d
 
ω1 ω1

 

 

 
(16.3.4) 

then this transformation is called an unimodular transformation. 
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. . 

. ω 
− 

  ,

 

 
 

 
 

. . . . 1   0 
= = 

= ω2ω1 ω1ω2 

1. 

.cJ dJ. .c d. .0 1. 

 

Since  (ω1
J , ω2

J )  is also a basis, we have 

ω2 =   aJωJ
2  + bJωJ

1 

ω1 =   cJωJ
2  + dJωJ

1 

ω2 ω2  = 
aJ bJ  ωJ

2 

 
 

 
ω2

J
 

 
 

 
 
 
 
 
 (16.3.5) 

ω1 ω1
 

cJ dJ  ωJ

1

 

ω1
J 

where aJ, bJ, cJ, dJ are integers. From (16.3.4) and (16.3.5), we have 

ω2 ω2  = 
aJ bJ  a b

 
ω2 ω2 

 
  

 

 (16.3.6) 

 

Hence 

ω1 ω1

 

ω2 ω2 
 

 

cJ dJ 

c d
 
ω1 ω1 

0. 
 

A matrix with determinant /= 0 has an inverse matrix and if we multiply (16.3.6) by the inverse 

of the matrix 

 

 
we obtain 

ω2 ω2 

ω1 ω1

 

aJ bJ
 
a b  1   0

 

= 
1   0  

cJ dJ
 
c d 

0   1
 

0   1
 

⇒ 
aJ bJ  a b   

= 
1   0  .

 
 

This implies that the matrices 

 

 

and 

cJ dJ  c d  

aJ bJ 

cJ dJ
 

a b 

c d
 

0   1
 

 

 
 

aJ bJ a b . . 
1. 
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and are inverse to each other. In particular, their determinant must satisfy 

ω1 
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. . a b 

  

.cJ dJ. = .c d. = ± 
. . 

 

Since both the determinant are integer valued, we have 
 

aJ bJ 

1.
 

Hence  the  transformation  is  an  unim

. 

odular

.  

tra

. 

nsfor

. 

mation.   Thus  any  two  bases  of  the  same 

module are connected by a unimodular transformation. ■ 
 

Note. (i) The set of all matrices 

a b
 

c d
 

with integral entries and with determinant ±1 form a group under multiplication. This group is 

called as modular group. 

(i.e.,) the unimodular matrices, or the corresponding linear transformation, forms a group, the 

modular group 

 

 
(ii) We divide the complex plane geometrically into parallelogram spanned by the period module 

M, with (ω1, ω2) as a basis. Also 
ω2

 

ω1 
is non-real. Therefore the whole complex plane is divided 

into network of congruent parallelogram. The vertices of the parallelogram n1ω1 + n2ω2. If f (z) 

is ω− periodic with periods (ω1, ω2) then we see that the values of f (z) are identical in each 

and every one of the congruent parallelogram. So it is enough to study the properties of f (z) in 

one parallelogram. 

 

 
(iii) The following figure shows two bases of the same module. Observe that the parallelogram 

have equal area. 

 
16.4 The Canonical basis 

 
Among all bases of M it is possible to single out one, almost uniquely, to be called the canonical 

basis. If we call the ratio 
ω2 

, the following theorem shows that there exists a basis (ω1, ω2) with 
ω1 
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|ω 

|1 

. . 

 

special requirement on τ, such a basis is called a canonical basis. 

Theorem 16.4.1. There exists a basis (ω1, ω2) such that the ratio τ = 
ω2

 

ω1 

 

 
satisfies the following 

conditions: (i) Im τ > 0, (ii) −
1 

< Re τ ≤ 
1 
, (iii) |τ| ≥ 1, (iv) Re τ ≥ 0 if |τ| = 1. The ratio τ 

2 2 
is uniquely determined by these conditions, and there is a choice of two, four, or six corresponding 

bases. 

Proof. Let M be the period module. We choose ω1 ∈ M to be the one closer to the origin. There 

are always possible two, four, or six closest points. Next, we select ω1 and ω2 such that ω1 is 

having smallest absolute value. Also 
 

 

 
 

Let τ = 
ω2 

. Since 
ω1 

 

 
This proves (iii). 

|ω1| ≤ |ω2| 

|ω2| ≤ |ω1| + |ω2| 

|ω2| ≤ |ω1 − ω2| 

 

|ω1| ≤ |ω2| ⇒ 1 ≤ 
|ω2| 

⇒ |τ| ≥ 1 

 

 

S ince |ω2| ≤ |ω1 + ω2| 
|ω2| ω1 + ω2 

|ω1| 
≤ . ω1 

. 

 

 
 

Again 

|τ| ≤ |1 + τ| 

|τ|2 ≤ |1 + τ|2 (16.4.1) 

 
ω2 ≤ |ω1 − ω2| 

⇒ |τ|2 ≤ |1 − τ|2 (16.4.2) 
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2 

≤ 

1 2 2 1 

2 = τJ = 
2 =

  ω1  

c
. ω2 

  

+ d 
ω1 

 

From (16.4.1), we have 

 

 

 

 

 

 

 

 
From (16.4.2), we have 

 
τ τ ≤ (1 + τ)(1 + τ) 

0 ≤ 1 + τ + τ 

−1 ≤ τ + τ 

−1 ≤ 2 Re τ 

Re τ ≥ −
1

 

 
τ τ ≤ (1 − τ)(1 − τ) 

0 ≤ 1 − τ − τ 

1 ≥ 2Re τ 

Re τ 
1
 

2 

∴ 
1 1 

This proves (ii). 

−
2 

≤ Re τ ≤ 
2 
. 

Next we prove that Im τ > 0. If Im τ < 0, we replace the basis (ω1, ω2) by (−ω1, ω2). This 

makes Im > 0 without changing the condition on Re τ. If Re τ = −
1 

, we replace (ω1, ω2) by 

(ω , ω 
2 

+ ω ), and if |τ| = 1, Re τ < 0 we replace it by (−ω , ω ). 

all the conditions are satisfied. 

 

Now, we prove that the four conditions fix τ uniquely. Suppose there exists another 

basis  (ω1
J , ω2

J )  satisfying  four  conditions.   Then  these  two  bases  are  connected  by  a  modular 

transformation. 

 

 

ωJ
2 =   aω2 + bω1 

ωJ
1 =   cω2 + dω1 

ωJ aω + bω 

 

a
. ω2 

  

+ b 

 

τJ = 
aτ + b 

cτ + d with ad − bc = ±1 

ωJ
1
 

⇒ 

1 After these minor changes 

1 

cω2 + dω1 
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| | 

τ 

3 

Now, τJ = 
(aτ + b)(cτ + d) 

|cτ + d|2
 

 

 
Hence 

τJ = 
ac τ 2 + bd + (adτ + bcτ) 

|cτ + d|2 
.
 

   Im τ   

Im τJ = (ad − bc) 
|cτ + d|2

 

First as Im τ and Im τJ are both > 0 and ad − bc = 1. 

Im τJ = 
   Im τ   

|cτ + d|2
 

 

 

 
 

(16.4.3) 

Without loss of generality we may assume that Im τJ ≥ Im τ then |cτ + d| ≤ 1. As c and d are 

integers there are very few possibilities for this inequality to hold. 

 

Case.(i) c = 0, d = ±1, the relation ad − bc = 1 reduces to either a = d = 1 or a = d = −1. 

Hence τJ = τ ± b. That is τJ − τ is real. Since −
1 

< Re τ, Re τJ < 
1 
. |b| = |Re τJ − Re τ| < 1. 

As b is an integer, b = 0. Hence τJ = τ. 
2 2

 

 
Case.(ii) d = 0, then ad − bc = 1 ⇒ bc = −1. Therefore b = 1, c = −1 or b = −1, c = 1. 

Further |cτ + d| ≤ 1 becomes τ ≤ 1. Since τ ≥ 1 by assumption. τ = 1. Then 

τJ = ±a − 
1 

= ±a − τ. 

Thus ±a = τJ + τ and hence  
|a| = Re (τJ + τ) 

= Re τJ + Re τ 

|a| ≤ 
1 

+ 
1 

= 1 

2 2 

If Re τJ + Re τ = 1 then Re τJ = Re τ = 
1
 

2 
as |τ| = 1. It follows that 

τ = τJ = e 
iπ 

, 
 

Re τJ + Re τ < 1 ⇒ |a| < 1 ⇒ a = 0. 
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τ 

− 

1 

 

Therefore 

 

But since |τ| = 1, Re τ > 0. 

τJ = −
1 

= −τ. 

∴ Re τJ = −Re τ = −Re τ < 0. 

But  ReτJ ≥ 0, so  Re τ = 0 = Re τJ. As  |τ| = 1 = |τJ| . This implies that  τ = τJ = 1. 

 
Case.(iii)  c /= 0,  d =/ 0  then  |cd| ≥ 1  as  c  and  d  are integers. Now, 

|cτ + d|2 = c
2
 |τ|2 + d2

 + 2cd Re τ 

> c
2
 + d2

 + 2cd( 
1 

) 
2 

Add and subtract |cd| , wehave 

|cτ + d|2 = (|c| − |d|)2
 + |cd| ≥ 1. 

 

Therefore |cτ + d| > 1, a contradiction. Hence this case cannot arise. Thus τ = τJ and the 

uniqueness of τ satisfying conditions (i) to (iv) above is established. 

 

Geometrically, the conditions (i) to (iv) means that the point τ lies in the part of the complex 

plane shown in the diagram below. It is bounded by the circle |τ| = 1 and the vertical lines 
Re τ = ± , but only part of the boundary is included. Although the set is not open, it is referred 

2 
fundamental region of the unimodular group. ■ 

 

16.5 General Properties of Elliptic Functions 

 
Let f (z) be a meromorphic function which admits all numbers in the module M with basis 

(ω1, ω2) as periods. We shall not assume that the basis is canonical, and it will not be required 

that M comprise all the periods. 

 

We say that z1 is congruent to z2, z1 = z2( (mod M)), if the difference z1 − z2 ∈ M, i.e., 

z1 − z2 = n1ω1 + n2ω2. 

to as the 
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The function f takes the same values at the congruent points, and may thus be regarded 

as a function on the congruent classes. Let Pa denote the parallelogram with vertices at 

a, a + ω1, a + ω2, a + ω1 + ω2 where a is any complex number. By including part of the boundary 

we may represent each congruence class by exactly one point in Pa, and then f is completely 

determined by its values on Pa. The choice of a is irrelevant, and we leave it free in order to 

attain, for instance, that f has no poles on the boundary of Pa. 

Theorem 16.5.1. An elliptic function without poles is a constant. 

 
Proof. Let f (z) be an elliptic function without poles. Let Pa denote the parallelogram vertices 

at a, a + ω1, a + ω2, a + ω1 + ω2 where a is any complex number. Since f (z) has no poles, f (z) 

is either within and on Pa. It follows that f (z) is continuous. Therefore f (z) is bounded on the 

closure of Pa. By double periodicity, f (z) is analytic. Thus, f (z) is analytic and bounded in the 

whole complex plane. Therefore by Liouville’s theorem, f (z) must reduce to a constant. Hence 

an elliptic function without poles is a constant. ■ 

Theorem 16.5.2. The sum of the residues of an elliptic function is zero. 

 
Proof. Let Pa denote the parallelogram vertices at a, a + ω1, a + ω2, a + ω1 + ω2. Let us choose 

the complex number a, so that none of the poles fall on the boundary of Pa. If the boundary ∂Pa 

is traced in the positive sense, the sum of the residues at the poles in Pa is given by 

  1 
∫
 

 

 

 

f (z)dz. 

i.e., the sum o f the residues =
 1 

∫

 
 

f (z)dz. 

 
Consider 

∫ 
 

 

2πi 

 
∫ a+ω1 

∫ a+ω1+ω2 

 
 

 

∂Pa 

∫ a+ω2 

  

∫

∂Pa 

f (z)dz = I1 + I2 + I3 + I4 

f (z)dz 
a+ω1+ω2 a+ω1 

f (z)dz + 
a ∂Pa 

2πi ∂Pa 

f (z)dz = f (z)dz + 
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f (z) 

2πi f (z) f (z) 

 

In I3, Put z = u + ω2. Then dz = du and u = z − ω2 

∫ a+ω1 
∫ a 

 
 

 
  

I1 + I3 = 0. 
 

Similarly, in I2, put z = u + ω1, we get 

a+ω2 

I2 + I4 = 
a 

 

 
f (u + ω1) + 

 
 

a 

a+ω2 

 

 
f (z)dz = 0. 

Hence ∫

∂Pa 

 

f (z)dz = 0. 

That is the sum of the residues of f (z) at its poles in Pa is zero. ■ 

 
Note. From the above theorem, it is clear that every elliptic function should have at least two 

simple poles or a simple of order two. That is there does not exists an elliptic function with a 

single simple pole. 

Theorem 16.5.3. A non-constant elliptic function has equally many poles as it has zeros. 

 
Proof. Let Pa denote the parallelogram vertices at a, a + ω1, a + ω2, a + ω1 + ω2. Let N and 

P denote the number of zeros and poles of an elliptic function f (z) with Pa, each zero and pole 

being counted according to its multiplicity. From the calculus of residues, we have 

  1 
∫
 

 

 

f J(z) 
dz = N − P. 

 

Since f (z) is an analytic function, f J(z) is also an elliptic function. Hence 
f J(z)

 
f (z) 

 

is also an elliptic 

function. 

∴
 1 

∫
 f J(z) 

dz = sum o f residues o f 
f J(z) 

= 0. 
 

N = P ⇒ Number o f zeros o f f (z) = Number o f poles o f f (z). 

Hence a non - constant elliptic function has same number of poles and zeros. ■ 

 

Note. If c is any constant, f (z) − c has the same poles as f (z). Therefore all values are assumed 

2πi 

f (u + ω2)du 
a+ω1 

f (z)dz + 
a 

I1 + I3 = 

∫ ∫ 

∂Pa 

∂Pa 
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∫ 

f (z) 

∫ 

a 

∫
2 

 

2πi f (z) 

f (z) 
dz =

 a f (z) 
dz + 

2πi f (z) 
dz

 

f (z) 
dz + 

2πi f (z) 
dz

 

f (z) 
dz + 

2πi 
(u + ω2) 

f (u + ω ) 
du 

 

equally many times. The number of incongruent roots of the equations f (z) = c is called the 

order of the elliptic function. 

Theorem 16.5.4. The zeros a1, · · · , an and poles b1, · · · , bn of an elliptic function satisfy 

a1 + · · · + an ≡ b1 + · · · + bn (mod M) . 

Proof. Let f (z) be an elliptic function defined in a period parallelogram Pa. Let a1, · · · , an and 

b1 · · · , bn be the zeros and poles of f (z) respectively. Choose a such that none of the zeros and 

poles lie on the boundary of Pa. 
 

  1 

2πi 

 

 
∂Pa 

z f J(z) 
dz = (a1 + a2 + · · · + an) − (b1 + b2 + · · · + bn) (16.5.1) 

∴
 1 

∫
 g(z) f J(z) 

dz = 
X 

n(γ, aj)g(aj) − 
X 

n(γ, bk)g(bk), 
  

from the argument principle. Hence from (16.5.1), g(z) = z, g(aj) = aj and g(bk) = bk. Now 

consider, 

  1 
∫
 

 

 

z f J(z) 
 

  1 
∫ a+ω1 z f J(z) 

  

  1 
∫ a+ω1+ω2 z f J(z) 

 

 

 

  1 
∫ a+ω2 

 

 

z f J(z) 
   1 

∫ a
 

z f J(z) 
 

 

  1 

2πi 

 

 
∂Pa 

z f J(z) 
dz = I1 + I2 + I3 + I4 (16.5.2) 

f (z) 

Consider I3, put z = u + ω2, we have 

  1 
∫ a+ω1 z f J(z) 

  

  1 
∫ a

 

 

 

 

f J(u + ω2) 
 

 

 

ω a+ω1 

=   −
2πi 

I1 + I3 =    −ω2(−n2), 

f J(u) 
du 

f (u) 

 

where n2 represents the winding number around the origin of the closed curve denoted by f (z) 

where z varies from a to a + ω1 and consequently it is an integer. Thus 

 

I1 + I3 = n2ω2 

2 a+ω1 2πi 

2πi 

a+ω1 2πi 2πi 

k j γ 

∂Pa 

+ 
a+ω1+ω2 

a+ω2 

I1 + I3 = 
a 
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Similarly, 

I2 + I4 = n1ω1. 

∴ (16.5.2) ⇒
 1 

∫ 
z f J(z) 

dz = n1ω1 + n2ω2 (16.5.3) 
 

 
From (16.5.1) and (16.5.3), we have 

2πi ∂Pa f (z) 

 

(a1 + a2 + · · · + an) − (b1 + b2 + · · · + bn) = n1ω1 + n2ω2 

⇒ (a1 + a2 + · · · + an) − (b1 + b2 + · · · + bn) ∈ M 

⇒ (a1 + a2 + · · · + an) ≡ (b1 + b2 + · · · + bn) (mod M) . 

Hence the theorem is proved. ■ 



 

 

  

f 
. 1    

− f 
. 
− ω1 +    1

  
= k. 

Objectives 

After completion of this Unit, students will be able to 

x identify the Weierstrass ℘ function. 

x prove the differential equation satisfied by ℘(z) . 

x solve problems in Weierstrass function. 

 

BLOCK-V 

UNIT 17 

The Weierstrass Theory 
 

 

17.1 Introduction 

 
The simplest elliptic functions are of order 2, and such functions have either a double pole with 

residue zero, or two simple poles with opposite residues. We shall follow the classical example of 

Weierstrass, who chose a function with a double pole as the starting point of a systematic theory. 

 
17.2 The Weierstrass ℘ Function 

 
Weierstrass considered an elliptic function f (z) with double pole at the origin. 

 

∴ f (z) =
 1

 

z2 

 1 
+ regular part ⇒ f (−z) = 

z2
 

∴ f (z) − f (−z) = k. 

 

+ regular part 

ω1 ω1 −ω1 

Put z = 
2   

then  f 
. 

2 

  
− f

.
 2 

= k 

ω ω 

2 2 

195 
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z2 

2 2 

(z − ω)2 ω2 

 

Since ω1 is a period of f (z), −ω1 is also a period. Therefore 
 

ω ω 

f 
. 
− ω1 +    1

 
  

= f 
. 1  

⇒ k = 0 
 

∴ f (z) = f (−z) 

This implies that f (z) is an even function. Hence 

f (z) =
 1

 

z2 
+ a1z

2
 + a2z

4
 + · · · . 

 

Thus f (z) is uniquely determined and it is denoted by a special typographical symbol ℘(z). 
 

 1 
℘(z) = 

z2
 + a1z

2
 + a2z

4
 + · · · 

 

is an elliptic function which is even and has a double pole at the origin and points of the form 

n1ω1 + n2ω2. Our next result shows that, 
 

 1 
℘(z) = + 

X . 1 
−

 1 . 

  
 

where the sum ranges over all ω = n1ω1 + n2ω2 except 0. 

Result. The Weierstrass ℘ function has the following properties, 

(i) ℘(z) is an even function. 1 1 1 

(ii) ℘(z) = z2   
+ 
.

ω/=0 

.

(z − ω)2   
−
 
ω2 

. 
is well defined, where the sum ranges over all ω = 

n1ω1 + n2ω2 except 0. 

(iii) ℘(z) is meromorphic with double poles at the origin and all the points ω = n1ω1 + n2ω2 

(iv) ℘(z) is doubly periodic with periods ω1 and ω2. 
 

Proof. To prove (i): 

From the definition 
 
℘(z) =

 1 
+ a1z

2
 + a2z

4
 + · · · ⇒ ℘(−z) = ℘(z) 

∴ ℘(z) is an even function. To 

prove (ii): 

0 ω z2 
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| | | | 

z 

z 

.   

   ω  

 

.  2
−|  | 

.   1z   

2 +| |    

X 
∞

 

ω1 

(z − ω)2 ω2 

|ω|3
 |n1ω1 + n2ω2|

3
 

  

  

2 

17.2. The WeIeRsTRass ℘ FUNcTIoN 

 

To prove that the series 
X . 1 

−
 1 . 

 

197 

converges. Consider the singular part
 1 

. Choose z, such that ω > 2 z . 

(z − ω)2 
 

  1  1  − 2zω − z2
 

 
 

(z − ω)2 ω2 
= 

 
= 

ω2(z − ω)2 

z
.
2 − 

ω

 
 

 

ω3
.
1 − 

2
 

 
 

. 1  1 . |z| 2 + 
|z|

 

. (z − ω)2 
− 

ω2 . ≤ 

= 

ω 3 1 
|z| 

|ω| 
 

2  1 

      |ω|3 .1 − 
2
 

1 1 . − . ≤ 
10 |z| 

. (z − ω)2 ω2 . |ω|3
 

Hence the series is uniformly convergent on every compact set, if the series 
 

  1   
< .

 
|ω|3

 

 
Now, 

ω/=0 

 

X 1   
= 
X 1 

.
 

 

    

n1ω1 + n2ω2 

|n1| + |n2| 
is the arithmetic mean of (|n1|+|n2|) quantities. Since 

ω2
 is nonreal, the arithmetic 

0 ω 0 ω 

ω/

=0 

ω 
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1 

X X
≤
 

X 

X 
∞

 

X . 1 
−

 1 . 

z2 (z − ω)2 ω2 

ω 0 

 

mean is zero. Hence there exists k such that 

|n1ω1 + n2ω2| 

|n1| + |n2| 

 

≥ k, f or real pairs (n1, n2) 

1 

|n1ω1 + n2ω2| 
≤
 

 
 

k(|n1| + |n2|) 

∴ 
  1  

|n1ω1 + n2ω2|
3
 

  1  

k3(|n1| + |n2|)3 

If we consider only integers there are 4n pairs (n1, n2) with |n1| + |n2| = n, n = 1, 2, · · · 
∞ 

X 1  
= 

1 X 4n 

 

 

 

 

 

Hence the series 

k3(|n1| + |n2|)3 

  1  

k3(|n1| + |n2|)3 

∴ 
1 

< . 

|ω|3
 

k3  
1  

n3 

< ∞ 

 

 
is convergent. 

(z − ω)2 ω2 

∴ ℘(z) =
 1

 

 
+ 
X . 1 

−
 1 . 

 

is well defined. 
2 (z − ω)2 ω2 

 
 

To prove (iii): 

Since ℘(z) is a meromorphic function with double pole at z = 0, and at all convergent points 

z = ω = n1ω1 + n2ω2. 

 
To prove (iv): 

First to prove that, ℘(z + ω1) = ℘(z), ∀z. 
Consider 

∴ ℘(z) =
 1

 + 
X . 1 

−
 1 . 

z 

ω 0 

ω 0 
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∞ 

∞ 

− 

  

2 2 2 

ω ω 

 

Since it is convergent, it is differentiable term by term. 

∞ 

 

 
Putting z = z + ω1, we get 

∴ ℘J(z) = 

 
 

 
℘J(z + ω1) = 

 
= 

ω

X

=−

∞ 

ω

X

=−

∞ 

ω

X

=−

∞ 

    −2  

(z − ω)3 

 

  −2  

[z − (ω − ω1)]3 

    −2  

(z − ω)3 

Hence ℘J(z + ω1) = ℘J(z) . On integrating, we get 
 

 
Take z = 

ω1 
. Then 

2 

℘(z + ω1) = ℘(z) + c. 

 

ω ω ω 

℘
. 
−

   1 
+ ω1

 
= ℘

. 
−

   1   
+ c = ℘

. 1 
+ c. 

 

  

c = ℘
.
 1  

− ℘
. 

 

1
 = 0. 

2 

Hence ℘(z + ω1) = ℘(z). Similarly, we can prove that ℘(z + ω2) = ℘(z). Therefore ℘(z) is doubly 

periodic with periods ω1 and ω2. ■ 

 
Note. For convenient reference we display the important formula 

∞ 

℘J(z) = −2 
ω

X

=−

∞ 

  1  

(z − ω)3
.
 

 

17.3 The Functions ζ(z) and σ(z) 

 
Because ℘(z) has zero residues, it is the derivative of a single - valued function. It is traditional 

2 
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to denote the antiderivative of ℘(z) by −ζ(z), and to normalize it so that it is odd. 

Weierstrass zeta function: 
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. 
−
 

  

1 

. 
−
 

ζ(z) = 
1 

+ 
X .  1    

+ 
1 

+
  z .

 

−
z2  

− 
(z − ω)2 ω2 

ζ (z) + 
z2

 

(z − ω)2  
− 

ω2 

z − ω ω2 ω 

z z − ω ω2 ω 

1 

ω 0 

ω/

=0 

 

We obtain Weierstrass zeta function ζ(z) using the relation, 

 
℘(z) = −ζJ(z), 

 

provided that 

 

 
To prove that 

 

lim ζ(z) 
z→0 z

 
= 0. 

 

 
Consider, ζJ(z) = −℘(z). 

ω 0   
z − ω ω ω2 

 

ζJ(z)  = 
1 X . 1 

−
 1    

  

ζJ(z) +
 1

 
=   − 

X . 1 
−

 1    
 

z2 

Integrating along the path 0 to z, we have 

∫ z . J 1 
 

 

(z − ω)2 ω2 

 
∫ z X . 1  1  

 

   .
ζ(z) − 

z
 

 

 

=   
X .  1    

+
  z    

 

 

Since 

0
 ω ω2 

ω 0 
1 

 

 
we get 

lim ζ(z) 
z→0 z

 
= 0, 

 

1 

ζ(z) − =  
X ..  1   

+
  z   

− 
. 
− 

1 
+ 0

 . 

  

ζ(z)  = 
1 

+ 
X .  1   

+
  z  

+ 
1 .

 

where ζ(z) is an odd function and also it has a simple pole at the origin with residue 1. 
 

Legendre’s Relation. 

0 ω 

z − z 

0 ω 0 

0 

0 ω 

  dz   =   − 
dz 

z 

z 



201 17.3. The FUNcTIoNs ζ(z) aND σ(z) 

M.Sc.(Mathematics)-TNOU-I Year- II Sem Complex Analysis 

 

 

∫ 

∫ 

 

The constants η1 and η2 are connected with ω1 and ω2 by the relation, η1ω2 − η2ω1 = 2πi. 

Proof. Consider Weierstrass zeta function ζ(z). Let us choose a periodic parallelogram Pa 

having vertices at a, a + ω1, a + ω1 + ω2, a + ω2. Let a, be chosen, so that the origin is 

the only pole of ζ(z) lying inside Pa. 

By Cauchy’s residue theorem, 

 
ζ(z)dz = 2πi[Residue o f ζ(z) at z = 0]. 

∂Pa 

 

But, ζ(z) has a simple pole at z = 0 with residue 1. Hence, we have 

 
ζ(z)dz = 2πi(1) = 2πi. 

∂Pa 
 

Consider, 

∫

∂Pa 

 

 

a+ω1 

ζ(z)dz   = ζ(z)dz + 
a 

 

a+ω1+ω2 

a+ω1 

 

 
ζ(z)dz + 

 

a+ω2 

a+ω1+ω2 

 

 
ζ(z)dz + 

 

a 

a+ω2 

 

 
ζ(z)dz 

= I1 + I2 + I3 + I4 
 

Consider,  
I3 = 

a+ω2 

a+ω1+ω2 

 
ζ(z)dz 

Put z = u + ω2 ⇒ u = z − ω2 ⇒ du = dz. 

∫ a ∫ a 

∴ I3 = [ζ(u) + ζ(ω2)]du = 
a+ω1 a+ω1 

 

where η2 = ζ(ω2). Now 

(ζ(u) + η2)du, 

 

a+ω1 

I1 + I3 = 
a 

ζ(z)dz − 

a+ω1 

 
a 

 

(ζ(u) + η2)du 

= −η2 

a+ω1 

du 
a 

 
 

Now consider, 

I1 + I3 =   −η2ω1 

 
a+ω1+ω2 

I2 = 
a+ω1 

 

 

 
ζ(z)dz 

∫ 

∫ 

∫ ∫ ∫ 

∫ 

∫ ∫ 

∫ 
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1 − 
ω
 

z z − ω ω2 ω 

z − ω ω2 ω 

∫ 

a 

ω 0 

ω/

=0 

 

Put z = u + ω1 ⇒ u = z − ω1 ⇒ dz = du. 

∫ a+ω2 
∫ a+ω2 

∴ I2 = 
a 

ζ(u + ω1)du = 
a 

 

∫ a+ω2 

 
 

(ζ(u) + η1)du 

 
∫ a+ω2 

 

I2 + I4 = (ζ(u) + η1)du − ∫ a+ω2 
 

 

ζ(z)dz 

I2 + I4 = η1ω2 

 

∴ 
∂Pa 

ζ(z)dz = η1ω2 − η2ω1 

Hence η1ω2 − η2ω1 = 2πi. ■ 

Weierstrass σ Function. The canonical product representation of Weierstrass sigma function 

σ(z) is given by 

. . z 
 

  

z   1 z 2 

+ 

where the product ranges over ω = η1ω1 + η2ω2 except 0. 

 
Proof. Consider the Weierstrass zeta function 

ζ(z) = 
1 

+ 
X .  1   

+
  z  

+ 
1  

. 

 

This is analytic at the origin. Hence the series, 

X .  1   
+

  z  
+ 

1   

converges absolutely and uniformly about the origin. Hence we can integrate the series termwise 

0 ω 

a 

a 

= η1 dω 

σ(z) = z e ω z ω 
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1 

.   . 

ω 

  
    

  
    

  

    

ω1 

z − ω 
+ 

ω2 
+ 

ω 

log 1 − 
ω
 

1 − 
ω
 

2 

0 

 

along any path starting from the origin and not passing through the point z = ω. 

Consider 

∫ z .
 

 

 
(z) 

 
dz 

∫ z X .  1 z  
 

   

 
dz 

X . z − ω z
2
 z 

 = log 

ω 0 
−ω + 

2ω2 
+ 

ω 
z

2
 z 

=  
X . 

log 
.
1 −

 z   
+ log e 2ω2  + log e ω 

.
 

ω 0 

X . z 
 

 

z   1 z 2 

+ 

∫ z
 

ζ(z)− 
1 

dz 
. . z 

 

 

z   1 z 2 
+ 

e 
0 

 
The σ function is defined by 

z = 1 e ω 2 ω 
ω 0 

ω 

∫ z
 

ζ(z)− 
1 

dz 

 
This implies that 

σ(z) = ze 

 

. . z 
 

 

z 

 

z 1 z 2 

+ 

where the product converges and represents an entire function. This is the canonical product 

representation of σ(z). ■ 

 
Properties of σ function. 

(i) 
σJ(z) 

= ζ(z). 
σ(z) 

(ii) σ(z) is an odd function. 

(iii) When z is changed to z + ω1, σ(z) is multiplied by an exponential function. 
 

 

σ(z + ω ) = −σ(z) η1

 

z+ 
2  

 
 

1 e ω2 

σ(z + ω ) = −σ(z) 
η2

 

z+ 
2  

 
 

ω/

=0 

− 

ω/

=0 

0 ω 0 0 

1 
ζ – 

z
 = 

= e ω 2 ω 

σ(z) = z 
e ω 2 ω . 

e 
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1 z 

1 

1 
1 

1 

1 

σ(z) z z − ω ω ω2 

– ζ(z) − 
z
 

0 z σ 

2 

ω 0 

 

Proof. To prove (i): 

Consider 
. . z 

 
 

z 1 z 2 
+ 

σ(z) = z 

ω 0 

Taking logarithms on both sides, we get 

1 − 
ω 

e ω 2 ω . 

 

log(σ(z)) = log z + 
X . 

log 
.
1 −

 z   
+ 

 z
 + 

. 2. 

 
On differentiating, we get 

ω ω ω 
ω 0 

 

σJ(z) 
= 

1 
+ 

X .  1   
+ 

1 
+

  z . 
= ζ(z).

 

 

Hence 
σJ(z)

 
 

 

σ(z) 

To prove (ii): 

Consider 

 
= ζ(z). 

 

 
∫ −z

 

ζ(−z)+ 
1 

d(−z) 
 

 
Consider ∫ −z . 

 

 

σ(−z) = −ze 

  

z 
 

∫ −z .   
 

 

Since ζ is an odd function, ζ(−z) = −ζ(z). Therefore 

∫ −z . 

 

 

  
∫ −z .   

 

Put −z = t, we have 

ζ(−z) + 
z
 d( z) = 0 ζ(z) − 

z  
dz 

∫ −z . 

 

 

  
∫ t .   

∫ z .   

 

Therefore 
ζ(z) − 

z
 dz = ζ(t) 

0 t 
dt = 0 ζ(z) − 

z  
dz 

(−z) −ze
∫ z

 

ζ(z)− 1
 

dz 
– (z) 

This implies that σ(z) is an odd function. 

To prove (iii): 

− 
0 

− 
0 

0 0 

0 

1 

1 

ζ(−z) + 
z
 d(−z) = (−d

z) 

σ = = 
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− 

. ω1σ  
−
 

. 
σ

 

  2  
.  
ω1−σ

 

2 

e 

ω2 

1 

2 

− 

We know that 
σJ(z) 

= ζ(z). When z = z + ω1, we have 
σ(z) 

 

σJ(z + ω1) 

σ(z + ω1) 

σJ(z + ω1) 

=   ζ(z + ω1) 

= ζ(z) + η1 
σJ(z) 

η1 
σ(z + ω1) 

= 
σ(z) 

+
 

 

Integrating with respect to z, we get 

 
log σ(z + ω1)   =   log(σ(z)) + η1z + C1 

=   log σ(z) + log e
η1z+C1

 

log σ(z + ω1) − log σ(z) =   log e
η1z+C1

 

 

 
To find C1 : 

Put z = 
ω1

 

z 

σ(z + ω1) 

σ(z) 

 
 

in the above equation, we have 

=   eη1z+C1 

 

 

 
 

ω1 
ω1 

 

  2  
 

2 

σ
. ω1 

  

= e
−η1 

 
= e

−η1 

2 
+C1 

ω1 

2 
+C1 

   
2 

−1  =   e
−η1

 

ω1 

2 
+C1 

C1 = log(−1) + 
η1ω1

 

∴ 
σ(z + ω1) 

σ(z) 

 
η1z+ 

= e 

η1ω1 

2 
+log(−1) 

ω1 

= 
η1

 

z+ 
2  

 
 

ω1 

σ(z + ω ) = −σ(z) 
η1

 

z+ 
2  

 
 

 

Similarly, we can prove  
σ(z + ω ) = −σ(z) 

η2

 

z+ 
2  

 
 

e 

e 
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1 

z z − ω ω2 ω 

z ω 
.
1 − z   ω ω2 

z 
+ – 

ω
 1 + 

ω 
+ 

ω2 
+ · · · + 

ω 
+ 

ω2
 

ζ(z) − 
z 

= – 
ω3 

− 
ω4 

− ·· 

· z ω3 ω4 

ζ(z) − 
1 

= −z
3
 
X 1  

− z5
 
X 1  

· · · (17.4.1) 

ω4 ω6 

. 

4 

ω 0 

ω 0 ω 

ω/

=0 ω 0 ω 0 

ω/

=0 

ω 0 

 

■ 

 
Note. (i) σ(z) is not an elliptic function and it has a single simple pole at the origin with residue 

1 and ω1, ω2 are not periods. 

Note. (ii) The functions ζ(z) and σ(z) are called pseudo periodic functions of Weierstrass. 

 

17.4 The Differential Equations 

 
Prove that the differential equation satisfied by ℘(z) is 

 
(℘J(z))

2
 = 4℘3

(z) − g2℘(z) − g3. 

Proof. Consider the function ζ(z), 

ζ(z) = 
1 

+ 
X .  1   

+
  z  

+ 
1 .

 

 

The Laurent’s expansion of ζ(z) around the origin can be obtained. Consider 

ζ(z)  = 
1 

+ 
X .. 

− 
1 1 

+ 
1 

+
 z . 

1 X . z z
2
 1 z  

  

1 X . z
2
 z

3
 . 

1 X 1 X 1  

ζ(z) − =   −z
2
 − z3

 − · · · 
 

Since ζ(z) is an odd function only odd powers of z occurs in its expression (regular part). 

Therefore 

 

 
Let 

z 
ω/=0 

ω 
ω 0 

ω 

G2 = 
X 1 

, G3 = 
X 1 

, ect 

0 ω 

. 
= 

6 
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X
k

 

X
 

2k 2

− 
X
 

2k 2

− 

− 

z2 

(17.4.1) ⇒ ζ(z) − 
1 

= −G2z
3
 − G3z

5
 − · · · = − 

X 
Gkz

2k−1 

ζ(z) = 
1 

− 
X 

Gkz
2k−1

 

 

In general, 

G = 
1   

ω2k 

ω/=0 

∞ 

z 
k=2 

∞ 

 
Differentiating with respect to z, we get 

 
ζJ(z)   = 

 
−℘J(z)   = 

z 

 

 
 1 

−
z2  

− 

 1 
−

z2  
− 

 
k=2 

 

 
 

∞ 

Gk(2k 1)z − 
k=2 

∞ 

(2k 1)Gkz − 
k=2 

 1 
℘(z)   = 

z2
 + 3G2z

2
 + 5G4z

4
 + · · · 

℘J(z)   = 
2
 

z3 
+ 6G2z + 20G3z

3
 + · · · 

(  J 2 4 G2z G3z
3
 

 

 
Now 

℘ (z)) = 
z6  

− 24 
z3    

− 80 
z3 

+ · · · 

 

℘3
(z) = 

1 

z6 
+ 

9G2z
2
 

z4 
+ 

15G3z
4
 

z4 
+ · · · 

4℘3
(z)   = 

4
 

z6 

36G2 
+ 

z2 
+ 60G3 + · · · 

 

60G2℘(z) = 
60G2 

+ 180G2z
2
 + · · · 

Consider (℘J(z))
2
 − 4℘3

(z) + 60G2℘(z)  = 
4
 24G2 4 – − 80G3 36G2 60G2 – 60G3 + + · · · 

z6 z2 
– 

z6  
− 

z2 z2 

= −140G3 + · · · 

Here left hand side is doubly periodic function and right hand side has no poles. Also right hand 

side is an analytic function in the whole complex plane. Therefore right hand side is an elliptic 

function without poles. Hence it must reduce to a constant. Let the constant be k = −140G3. 
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.  2 3 
− −2 

 3

 

– − 

z   =   dω 

∫ ℘(z)
 dω  

dz 

 

Hence we have 

 

(℘J(z))
2
 − 4℘3

(z) + 60G2℘(z) =   −140G3 

(℘J(z))
2
 = 4℘3

(z) − 60G2℘(z) − 140G3 
 

Take g2 = 60G2 and g3 = 140G3 then we have 

 

(℘J(z))
2
 = 4℘3

(z) − g2℘(z) − g3. 

■ 

Note. (℘J(z))
2
 = 4℘3

(z) − g2℘(z) − g3 is a first order differential equation for ω = ℘(z). ω(z) 

= ℘(z) 

dω(z) 

dz 
dω 

=   ℘J(z) 

   
we have  =   4ω g ω g 

dz 
dω 

= 
,

4ω3  − g2ω − g3 
∫ ω

 1  

0 

,
4ω3  − g2ω − g3 

which shows that ℘(z) is the inverse of an elliptic integral. Moreover, 
 

z − z0 = 

 

 
℘(z0) 

,
4ω3 

 
– g2ω − g3 

where the path of integration is the image under ℘ of a path from z0 to z that avoids the zeros 

and poles of ℘J(z) and where the sign of the square root must be chosen so that it actually equals 

℘J(z). 

 
 

Problems. 

Problem 17.4.1. Show that ℘(z) ℘(u) = 
σ(z − u)σ(z + u)

 
σ(z)2 σ(u)2 

Solution. Let f (z) = ℘(z) − ℘(u). Then f (z) is an elliptic function with zeros at z = u and 
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− 

. 

σ(  
2z) 

  
    

  
    

− 

– − 

– − 

1 − 
ω
 e ω 

 1 
2 

 z 

 

z = −u double pole at the origin. Therefore f (z) can be written as 

f (z)   =   c 
σ(z − u)σ(z + u) 

σ(z − 0)σ(z − 0) 

f (z)   =   c 
σ(z − u)σ(z + u) 

σ(z)2 

℘(z) ℘(u) =   c 
σ(z − u)σ(z + u) 

σ(z)2 

 

 
c = constant 

z 
+ a1z

2
 + a2z

4
 + · · · ℘(u)   =   c 

σ(z − u)σ(z + u) 

σ(z)2 

(1 + a1z
4
 + a2z

6
 + · · ·) − z2℘(u)   =   cz

2
 
σ(z − u)σ(z + u)

 

=   cz2 σ(z − u)σ(z + u)  

. . . 
z   1 z 2 

+ . 

 
Taking lim z → 0 we get 

σ(z)2 ω 0 1 − 
ω 

e ω 2 ω 

1  =   lim
 cσ(z − u)σ(z + u)  

z→0 

. . 
 

z   1 z 2 

 z + 

 
 
 

Hence 

1 =   cσ(−u)σ(u) 

c   = 
1  

σ(u)2 

 

℘(z) ℘(u) = 
σ(z − u)σ(z + u) 

σ(z)2σ(u)2 

Problem 17.4.2. Prove that 
℘J(z)

 

℘(z) − ℘(u) 
= ζ(z − u) + ζ(z + u) − 2ζ(z). 

Solution.  
S ince ℘(z) ℘(u)  = 

σ(z − u)σ(z + u)
 

σ(z)2σ(u)2 

 

 

Taking logarithmic derivatives, we get 

℘J(z) 
− 

 

 
= 

σJ(z − u) 
+ 

σJ(z + u) 
− 2 

σJ(z) 
   

℘(u) − ℘(z) σ(z − u) σ(z + u) σ(z) 

ω 

− 

0 
2 ω 
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− 

1 

. 

1 . 

℘J(z) 
−
℘(u) ℘(z) 

=  ζ(z − u) + ζ(z + u) − 2ζ(z) 

℘J(z) 

℘(z) − ℘(u) 
=  ζ(z − u) + ζ(z + u) − 2ζ(z) 

Problem 17.4.3. Prove that ζ(z + u) = ζ(z) + ζ(u) + 
1 ℘J(z) − ℘J(u)

 
 

 
Solution. We have 

℘J(z)
 

2 ℘(z) − ℘(u) 

 

Also, 

℘(z) − ℘(u) 
= ζ(z − u) + ζ(z + u) − 2ζ(z) 

℘J(u) 

℘(u) − ℘(z) 
= ζ(u − z) + ζ(u + z) − 2ζ(u) 

℘(u) 

−
℘(z) − ℘(u) 

= −ζ(z − u) + ζ(z + u) − 2ζ(u) 

 

℘J(z) − ℘J(u) 
 

℘(z) − ℘(u) 
=   2ζ(z + u) + ζ(z − u) − ζ(z − u) − 2ζ(z) − 2ζ(u) 

⇒ ζ(z + u) =   ζ(z) + ζ(u) + 
1 ℘J(z) − ℘J(u)

 
 

2 ℘(z) − ℘(u) 

Problem 17.4.4. The addition theorem  for the ℘− function ℘(z + u) = −℘(z) − ℘(u) + 

℘J(z) − ℘J(u) 

4 ℘(z) − ℘(u) 

.2
.
 

Solution. We have 1 ℘J(z) − ℘J(u) 
 

ζ(z + u) = ζ(z) + ζ(u) + 
2

 

Differentiating with respect to z, we have 

1 

℘(z) − ℘(u) 

ζJ(z + u) = ζJ(z) + 
2(℘(z) − ℘(u))2 

.
(−℘(u) + ℘(z))℘JJ(z) − (℘J(z) − ℘J(u))℘J(z)

. 
(17.4.2) 

Differentiating with respect to u 

ζJ(z + u) = ζJ(u) + 
2(℘(z) − ℘(u))2 

.
(℘(z) − ℘(u))℘JJ(u) − (℘J(z) − ℘J(u))℘J(u)

. 
(17.4.3) 

Adding (17.4.2) and (17.4.3), we get 

−2℘(z + u) = −℘(z) − ℘(u) + 
℘JJ(z) − ℘JJ(u) 

2(℘(z) − ℘(u)) 
– 

2 

. ℘J(z) − ℘J(u) 2 
 

℘(z) − ℘(u) 

1 
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2 

2 

   

− 

– − 

4 ℘J(z) 

− . . 

1 . 

 

Consider the differential equation 

 

(℘J(z))
2
 = 4℘3

(z) − g2℘(z) − g3. 
 

Differentiating we get  
2℘J(z)℘JJ(z)  =  12℘2

(z)℘J(z) − g2℘J(z) 

℘JJ(z)   =   6℘2
(z) − 

1 
g2 

S imilarly, ℘JJ(u)   =   6℘2
(u) − 

1 
g2 

℘JJ(z) − ℘JJ(u) =   6(℘2
(z) − ℘2

(u)) 
 

 

∴ −2℘(z + u)   =   −(℘(z) + ℘(u)) + 

1 
℘(z + u)   =   −℘(z) − ℘(u) + 

6(℘2
(z) ℘2

(u)) 

2(℘(z) − ℘(u))   
−
 ℘J(z) − ℘J(u) 

 

 
 

℘J(z) − ℘J(u) 2 
 

2 ℘(z) − ℘(u) 

 
℘JJ(z) 4 

. 

℘(z) − ℘(u) 

.

 

Problem 17.4.5.  Prove that  ℘(2z) = 1
 
. . 

− 2℘(z) 

Solution. In addition theorem, put u = z + h, then we get 
 

℘(2z + h) = −℘(z) − ℘(z + h) + 
4  

.
 
℘J(z) − ℘J(z + h) 2 

 

℘(z) − ℘(z + h) 

Taking limit h → 0, we get 
 

1 ℘JJ(z) 
℘(2z) = 

4 ℘J(z) 
− 2℘(z). 

Problem 17.4.6. Prove ℘J(z) = 
σ(2z)

 
σ(z)4 

Solution. Consider 

℘(z) ℘(u) = 
σ(z − u)σ(z + u) 

σ(z)2σ(u)2 

2 

1 
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– − 

h 

− 

. 

z3 

−

h 

0 
1 + 

ω e ω 2 ω σ(2z + h) 

℘(z) − ℘(z + h) 
1 + 

ω 
e ω 2 ω σ(2z + h) 

℘(z) − ℘(z + h) ω/

=0 

1 + 
ω 

e 

2 

ω 2 ω σ(2z + h) 

lim =   lim 
2 

 

Put u = z + h  
∴ ℘(z) ℘(z + h)   = 

σ(−h)σ(2z + h) 

σ(z)2σ(z + h)2 

. .   
 

– 
h 

+ 
1 h 2 

=   −
. 

σ(z)2σ(z + h)2 

.

 

   . . h   − 
h 

+ 
1 h 2 

 

h 
= 

σ(z)2σ(z + h)2 

   . . h   − 
h 

+ 
1 h 2 

 
h→0 h h→0 

℘J(z)   = 
σ(2z)  

σ(z)2σ(z)2 

℘J(z)   = 
σ(2z) 

σ(z)4 

σ(z) σ(z + h) 

 

Problem 17.4.7. Prove that  

℘(z) ℘J(z) 1 

℘(u) ℘J(u) 1 = 0 . 
(u + z) −℘J(u + z)   1

.
 

.℘ . 

Solution. Since ℘(z) and ℘(z + u) are both elliptic function of same periods there exists an 

algebraic relation between the two functions. To determine this relation we proceed as follows: 

Let 

f (z) = ℘J(z)A℘(z) + B (17.4.4) 

where A and B are constant. Since ℘(z) is an elliptic function of order 2 with a double pole at 

the origin and its congruent points. ℘J(z) is a pole of order 3 at z = 0 and its congruent points. 

Since ℘(z) =
 1

 

z2 + · · · ⇒ ℘J(z) = −
 2
 + · · · 

 

The incongruent points of f (z)  are  0, 0  and  0. Hence f (z)  has  3  zeros and their sum is zero 

in the fundamental parallelogram. Let α, z and u be the zeros of f (z). We have 

ω 

− 

ω 0 
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. . 

. . . 
.−        
.℘ 

. .℘ 

 

 

 

sum o f zeros = sum o f poles 

z + u + α = 0 + 0 + 0 

α = −(z + u) 

∴ the incongruent zeros of f (z)  are z, u, −(z + u). 

f (z) = 0 ⇒ ℘J(z) + A℘(z) + B = 0 (17.4.5) 

f (u) = 0 ⇒ ℘J(u) + A℘(u) + B = 0 (17.4.6) 

f (−(z + u)) = 0 ⇒ ℘J(−(z + u)) + A℘(−(z + u)) + B = 0 

−℘J(z + u) + A℘(z + u) + B = 0 (17.4.7) 

Eliminating A and B from (17.4.5), (17.4.6) and (17.4.7) we get 
 

℘J(z) ℘(z) 1 

. 
℘J(u) ℘(u) 1 = 

℘(z) ℘J(z) 1 

℘(u) ℘J(u) 1 = 0 
J(z + u)   ℘(z + u)   1 (z + u)   −℘J(z + u)   1 

 
 

17.5 The Modular Function λ(τ) 

 
The Weierstrss ℘− function satisfies the differential equation 

(℘J(z))
2
 = 4(℘(z))

3
 − g2℘(z) − g3. 

Let e1, e2 and e3 be the roots of the polynomial 

 
4℘(z)

3
 − g2℘(z) − g3. 

 

Therefore  
℘J(z)

2
 = 4(℘(z) − e1)(℘(z) − e2)(℘(z) − e3) (17.5.1) 

. 
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ω 

2 2 2 

2 2 2 

2 ω2 (ω1 − 2ω)2 ω2 

∴ e1 =
 4 

+ 
X 4 

− 
 1 

.
 

t2ω2 (tω1 − 2ω)2 ω2 

 

To find the value of ek, we determine the zeros of ℘J(z). Since ℘(z) is periodic and even. 

 

℘(ω1 − z) = ℘(z − ω1) = ℘(z) 

Differentiating with respect to z, we get 

℘J(ω1 − z) = −℘J(z) 
 

Substitute z = 
ω1 

. 
2 

 

ω ω ω 

℘J
. 1    

= −℘J
.  1    

⇒ ℘J
. 1 

= 0. 

∴ 
ω1   

is a zero of ℘J(z). Similarly, we can show that 
ω2

 
 and 

ω1 + ω2 are also zeros of ℘J(z). 
2 

ω1 ω2 ω1 + ω2 
2 2

 

The numbers 
2 

, 
2 

, 
2 

are the incongruent roots. We note that all the zeros of ℘J(z) 

are simple and ℘J(z) is of order 3. Now, we can set, 

ω ω ω + ω 

e1 = ℘
. 1 

, e2 = ℘
. 2     

and e3 = ℘
. 1 2  

 

℘(z) takes each value ek with multiplicity 2. If any two roots are equal, then that value will be 

taken four times which is a contradiction to the fact that ℘(z) is of order 2. Therefore all the roots 

are distinct. 

Consider the function, 
 1 

℘(z) = 

 
+ 
X 1 

−
 1 

.
 

Substitute z = 
ω1 

. 
2 

2 
ω/=0 

(z − ω)2 ω2 

℘
. ω1  

= 
 4  

+ 
X 4 

−
 1 

.
 

 
 

 

Replace ω1 by tω1, we get 

2 
1 ω 0 (ω1 − 2ω)2 ω2 

 

∴ e1 = 
  4   

+ 
X 4 

−
 1 

= t−2.φ(ω1)
 
. 

    0 ω 1 1 

z 

ω 0 
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ω1 

a b 

.   

a b  
= 

1   0
 

(mod 2) 

 

If the period are multiplied by t, then ek are multiplied by t−
2
 (i.e., ek are homogeneous of order 

−2 in ω1, ω2 ). Now we consider the quantity, 
 

λ(τ) = 
e3 − e2

 

e1 − e2 

 

(17.5.2) 

where λ depends only on the ratio τ = 
ω2 

. Since e1 /= e2, λ is analytic rather than meromorphic. 

Again, since e3 e2, λ is never equal to zero. Also e3 e1, λ is never equal to one. Also λ(τ) 

is a quotient of two analytic function in the upper half plane Im(τ) > 0. Now, we shall study the 

dependence of τ. If the periods are subjected to unimodular transformation 

 

 

 

 

where 

ωJ
2 = aω2 + bω1 

ωJ
1 = cω2 + dω1 

 
 

.c d. 
= ±1

 

 
(17.5.3) 

Then the ℘ function does not change. Therefore by looking at (17.5.1) the roots ek can atmost be 

permuted. If a ≡ d ≡ 1 (mod 2) and b ≡ c ≡ 0 (mod 2) then ωJ
2 = ω2; ωJ

1 = ω1. This implies 

that 
 

c d  0   1
 

under this condition the ek do not change and we have shown that 

aτ + b 
λ 

cτ + d 
= λ(τ) 

 

for a b  
= 

1   0
 

(mod 2) 

c d  0   1
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.    

 
 

 
 

  

3 − e2 
−
 

a b  
= 

1   0
 

(mod 2) 

a b  = 
1   1  (mod 2) 

 

Congruence subgroup (mod 2) . The transformation which satisfy the congruence relation 
 

 

c d  0   1
 

 

form a subgroup of the modular group, known as the congruence subgroup (mod 2) 

 

Automorphic Function. An analytic function or meromorphic function which is invariant under 

a group of linear transformation is called automorphic function. A function which is automorphic 

with respect to a subgroup of the modular group is called a modular function or an elliptic modular 

function. 
λ(τ) 1 

Result. Show that λ(τ) satisfies the functional equation λ(τ+1) = 
λ(τ) − 1 

and λ 
τ 

= 1−λ(τ). 

Solution. Consider the matrices congruent (mod 2) 

 

 

 
 

In the first case, 

Let 

 
1 1 

0   1
 
 

and 

 
0 1 

1   0
 

c d
 

then 
ωJ

 

0   1
 

ω + ω ω 
    2 = 

   2 1 . 
= 

   3   
2 2 2 

and 
ωJ ω

 
    1 = 

   1 
. 

2 2 
This means that, e2 and e3 are interchanged while e1 remains fixed and hence λ goes over into 
e2 − e3 

.
 

e1 − e3 
 

Now  

   λ(τ)  

λ(τ) − 1 
=
 

e3 − e2 

e 
e1 − e2 

1 
e1 − e2 

 
= 

e3 − e2 

e3 − e1 
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1 

– − 

ω 
Jω 

ω 

 

 

In the second case, let 

∴ λ(τ + 1) =
  λ(τ)   

. 
λ(τ) − 1 

a b  = 
0   1  (mod 2) 

c d 

Then 
ωJ

 

1   0
 

 

    2 = 
   1 

2 2 
    1 = 

   2 
. 

2 2 

This means that e1 and e2 are interchanged and hence λ goes over into 
e3 − e1 

. Now consider, 

e2 − e1 

 
Thus λ

. 

τ

 
= 1 − λ(τ). 

1 λ(τ) = 1 
e3 − e2

 

e1 − e2 
= 

e1 − e3 

e1 − e2 
= 

e3 − e1 
.
 

e2 − e1 

 

17.6 The Conformal Mapping by λ(τ) 

Theorem 17.6.1. The modular function λ(τ) effects a one - one conformal mapping of the region 

ω onto the upper half plane. The mapping extends continuously to the boundary in such way that 

τ = 0, 1 ∞ correspond to λ = 1, ∞, 0. 

Proof. Consider the modular function, 

λ(τ) = 
e3 − e2

 

e1 − e2 

⇒ 
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ω 
2 

2 

2 

2 
1 

2 

(z − ω)2 ω2 

2 2 
1 ω 0 

. ω1  − ω
 2 

ω2 

1 
n n 0 

1 − n1 − n2τ 
2
 

(n1 + n2τ)2 

n 0 n1 − 1 + n2τ 2 (n1 + n2τ)2 

m − 1 + nτ)2 

τ2 
n 

0 
τ − n1 − n2τ 

2
 (n1 + n2τ 2

 

m + τ(n − 1 ) 
2
 (m + nτ)2 

(ω1 + ω2)2 
ω/

=0 

ω1+ω2  − ω 
2 

ω2 

1+τ − n1 − n2τ 
2
 

m n −

∞ 

m − 1 + τ(n − 1 
2 (m + nτ)2 

m n m − 1 + τ(n − 1 
m n m + τ(n − 1 ) 

2
 

1 

1 1 

1 1 

1 

n n 0 

where τ = 
ω2

 

ω1 
is non - real. τ is normalized by taking ω1 = 1 and ω2 = τ. 

 1 
℘(z) = + 

X . 1 
−

 1    

  

Consider, e1 =   ℘
. ω1    

= 
 4  

+ 
X . 1 

−
 1   

 

= 
4 

+ 
X .

. 
1 

 

– 
  

(ω = n1ω1 + n2ω2 ⇒ ω = n1 + n2τ) 
 

 
1+  2τ= 2 

=   4 + 
X .

. 
1 

− 
1

 

e1 = 
X

 1
+ 2τ= 2 

1 1 

. − 

Similarly, 

e2 =   ℘
. ω2  

= 
 4  

+ 
X . 1 

−
 1 . 

     2 ω2 . ω2  − ω
 2 ω2 

 
 

= 
4 

+ 
X

 
ω 0 2 

.
. − 

. 

 

e2 = 
X

 1+  2τ= 2 

.
. − 

. 

ω + ω 

e3 =   ℘
. 1 2   

= 
  4 

+ 
X .

. 
1 

− 
. 

 
  

= 
  4 

+ 
X .

. 
1 

− 
. 

  
 

  1+ 2τ= 2 

e3 = 
X .

. − 
.
 

Consider , = 2 

e3 − e2 =   
X 

. 
1

 
 

2 

– 
X 

. 
1

 
2 

1 1 

0 ω 

   

z2 

n 

m,n=−

∞ 

(m + nτ)2 

n 

m,n= −

∞ 

(1 + τ)2 (n1 + n2τ)2 

−

∞ 

2 

−

∞ 

, = 
2 , = 2 

. . 
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∞ ∞ 

m,n= m − 1 + nτ 2 m,n= m + τ(n − 1 ) 
2
 

m,n= −

∞ 

m − 1 + n(τ) 
2
 (m + n(τ))2 

m − 1 + nτ 2 

   π 
= 
X 1  

m n m − 1 + τ(n − 1 m n m + τ(n − 1 ) 
2
 

−∞ sin
2
 π 1 − τ(n − 1 

−∞ sin
2
 π

. 
− n + 1 

τ 

−∞ cos2 π
.
n − 1 

τ 
−∞ sin

2
 π

.
n − 1 

τ 

1 

   m,n= −

∞ 

2 

2 

 

and 

e1 − e2 =   
X 

. 
1

 
 

 

– 
X .

. 
1

 
 

Consider, when τ is purely imaginary (τ = −τ) 

e1 = 
X .

. 
1 

− 
.
 

 

 
  

= 
X .

. 
1 

− 
. 

e1 = e1 

 

e1 is purely real when τ lies on the imaginary axis. This implies that eJ
k s are real and τ is 

imaginary. Therefore λ(τ) is real when τ lies on the imaginary axis. 
 
 

Now, we consider a matrix 
1 2 

0   1
 

 

in the congruence subgroup (mod 2) , we have λ(τ + 2) = λ(τ). This implies that λ is periodic 

function of period 2. λ(τ) can be written in the form e
iπτ because 

 

 
To show that λ(τ) → 0 as Im(τ) → ∞. 

We know that 

eiπ(τ+2) = eiπτ 

 

 
2 ∞ 

 
But 

sin πz 
−∞  

(z − m)2 

e3 − e2 =   
X 

. 
1

 – 
X 

. 
1

 

e3 − e2 = 
X 

. 
π
 

  

 

  − 
X 

 

 

 

 
 

  π2
 

 

 

 
 

 

=  π2. 
X

 
1 

− 
X . 

 

   2 n= 2 

1 

= 

∞ 

2 

∞ 

2 = 

1 
2 

2 2 
−

∞ 

−

∞ 

(m + nτ)2 

−

∞ 

2 

−

∞ 
, = 2 

2 , = 2 

Keeping n fixed and letting m to vary, we get 

n n 

n= 

2 
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.  
sin π

 − nτ 

. 
sin π n 

−  τ 

− 

      

m,n= m − 1 + nτ 2 m,n= m + τ(n − 1 ) 
2
 

1 

cos2 nπτ sin
2
 
.
n − 1  πτ 

cos2 πτ eiπτ − 1 

2 2 
2 

1 

2 2 

 

Similarly, 

e1 − e2 =   
X 

. 
1

 
 

– 
X .

. 
1

 
 

 

 
 

∞ 2 2 

e − e 
= 

X . π 
−

 π . 
 3 2 2 1 2 1 

n=−∞ 2 2 ∞ 2 2 

e − e 
= 

X . π 
−

 π . 

  

Now the series are strongly convergent for both n → ∞ and n → −∞. Also, |cos nπτ| and 

sin nπτ are comparable to e|n|πIm(τ). The consequence is uniform for Im(τ) ≥ δ > 0. Now, once 

again consider the function 
λ = 

e3
 – e2 

.
 

e1 − e2 

Now we take term wise limits. When n = 0, e3 − e2 = 0 and e1 − e2 = π2. Therefore λ(τ) →0 

as Im(τ) → ∞ uniformly with respect to the real part of τ. When τ → 0 along the imaginary 

axis. 
 

i.e., lim 
τ→0 

=   lim 
e3 − e2

 

τ→0 e1 e2 
= 1, 

 

along the imaginary axis. Along the imaginary axis the series e3 − e2 and e1 − e2 are the terms 

corresponds to n = 0 and n = 1. Therefore the sum of the terms when n = 0, and n = 1 in 

e3 − e2, we have 

e3 − e2 =  π2. 
1 

cos2 
. πτ   

−
 

 
 

1 

sin
2
 
. πτ   

 

 

1 

cos2 
.
 πτ   

− 
 sin

2
 
. πτ 

.

 

= 2π2. 1 

cos2 
. πτ   

−
 

 
 

sin
2
 
. πτ 

.

 
 

 

= 2π2.

(e
 4eiπτ 

1) 

+ 
(e 

4eiπτ 

1) 
e 2 iπτ (1 + e2πiτ) 

 
Similarly, 

3 − e2 =  16π e 

(ei2πτ − 1)2 

 
1 

 

 
eiπτ + 1 

e1 − e2 = π2. + 
. 2.

 

2 

1 

2 n=−

∞ 

Keeping n fixed, we get 

2 2 

+ 

−

∞ 

−

∞ 

2 

iπτ + 2 iπτ + 2 

. 
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. . 

1 

− 
τ 

.   

2 

2 2 

The transformation τ + 1 maps the imaginary axis on Reτ = 1 and 1 − 1 

 

lim 
Im(τ)→∞ 

λ(τ)e−iπτ =   16. 

 

Consider the region Ω bounded by the imaginary axis, the line Re(τ) = 1 and circle τ − 1 = 1
 . 

. 1 . 
 

 

 

τ 1
  Since λ(τ) is real on the imaginary axis, it follows by virtue of the relations 

 
 

.τ − 2 . = 2 . 

 
and 

λ(τ) 
λ(τ + 1) = 

1 − λ(τ)
 

λ
.
1 − 

τ

 
= 1 − λ(τ) 

that it is real on the whole boundary of Ω. Furthermore, λ(τ) → 1 as τ tends to zero and 

λ(τ) → ∞ as τ tends to 1 inside Ω. 

 
We apply the argument principle to determine the number of times λ(τ) takes a nonreal value 

ω0 in Ω. Cut off the corners of Ω  by means of a horizontal line segment Im(τ) = t0 and its 

images under the transformations 
1
 

τ 
in the portions that have been cut off. 

and 1− 
1 
. For sufficiently large t0 it is clear that λ(τ) ω0 

 

1 1 
The circle near τ = 1 is mapped by λ(τ) on a curve λ = λ 1− 

τ 
= 1− 

λ(τ)
; where τ = s + it0, 

0 ≤ s ≤ 1. But λ(τ)e
iπτ → 16 as Im(τ) → ∞. This is approximately a large semicircle in the 

upper half plane. The image of the contour of the truncated region Ω has winding number about 

ω0, when Im(ω0) > 0 and winding number 0, when Im(ω0) < 0. Therefore λ(τ) takes every 

value in the upper half plane exactly once in Ω and no value in the lower half plane. ■ 

Theorem 17.6.2. Every point τ in the upper half plane is equivalent under the congruence 

subgroup (mod 2) to exactly one point in Ω ∪ ΩJ. 

Proof. Consider the linear transformation τ, −
1 

, τ−1, 
   1   

, 
τ − 1 

, 
   τ 

 
 
which are denoted 

by S 1, S 2, S 3, S 4, S 5, S 6 
τ 

respectively. 
1 − τ τ 1 − τ 

 

 
(i) Consider the region bounded by Re(τ) = 0, Re(τ) = 1

 τ ≥ 1. We denote it by ∆1. 

(ii) τJ = −
1 

⇒ τ = −
 1 

. 
τ τJ 

Re(τ) = 0 ⇒ τ + τJ = 0. 

maps Re(τ) = 1 on 
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⇒ 

1 

. . 

2 

 1 

 

 
1 1 

 
 

τJ + τJ J J J 
 

 

 

 −
τJ − 

τJ = 0 ⇒− 
τJτJ ⇒ τ + τ = 0 ⇒ Re(τ ) = 0. 

Re(τ) = 
1 

2 Re(τ) = 1. 
2 

τ + τJ = 1 1 1 = 1 
 ⇒ −

τJ − 
τJ 

1 + 
1 J  

= −
 1  

⇒ |τJ + 1| = 1. 

Also, 
τ τJ 

J . . 

|τ | = −
τ 

= 
|τ| 

. 

|τ| ≥ 1 ⇒ |τJ| ≤ 1. 

Clearly, τJ lies in the region bounded by Re(τ)J = 0. 
 

|τJ + 1| = 1   and |τJ| ≤ 1. 
 

Let it be ∆2. 

 
(iii) Consider the transformation τ − 1. Put τJ = τ − 1. 

Re(τ) = 0 ⇒ Re(τJ) = Re(τ) − 1 = −1 ⇒ Re(τJ) = −1. 

Re(τ) = 
1 

⇒ Re(τJ) = 
1 

− 1 = −
1 

. 
2 2 2 

τ ≥ 1 ⇒ τJ = τ − 1 ⇒ |τJ + 1| = |τ| ≥ 1. 

τJ lies in the circle centre at −1 and radius 1. τJ lies in the region bounded by Re(τJ) = −1. 

Re(τJ) = −
1 

,  |τJ + 1| ≥ 1. Let it be  ∆3. 

(iv) Put τJ = 
   1 

 

1 − τ 
1 

τ = 1 − 
τJ

 

J 1 1 
 

 

 
2τJ − 1 1 

 
Re(τ) = 0 ⇒ τ + τ = 0 ⇒ 

.
1 − 

τJ 

  
+ 

.
1 − 

τJ 

  
= 0 ⇒ 

τJ 
= 

τJ 
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 1 

1 

. 

 1 
= 

. 

≤ 

2 

1 

. 

This is a circle with centre at 
1
 and radius 

1
 . 

.τ − . 

1 

. 

1 

. 

J 1 = 1 

. 2τJ − 1 . . . 
 

 

 
 

|2τJ − 1| = 1 ⇒ 
.
τJ − 

.
 

 

 
. τJ 

. = . τJ . ⇒ 
2 

= 
2 
. 

 

  

Re(τ) = 
1 

⇒ τ + τJ = 1 ⇒ 1 −
 1 

+ 1 −
 

1
 

 
 

= 1 ⇒ 
τJ − 1 

=
 1 

 

2 τJ τJ 

. τ
J − 1 . . . 

 

 

 

 

 

τJ τJ 

. τJ . . τJ . 

τ ≥ 1 ⇒ .1  1 
– 

τJ . ≥ 1 ⇒ |τJ − 1| ≥ |τJ| 

 

|τJ − 1|2 ≥   |τJ|2 

(τJ − 1)(τJ − 1)   ≥  τJτJ 

τJ + τJ ≤ 1 

2 Re(τJ) ≤ 1 

Re(τJ) 
1

 
2 

Therefore τJ lies in the region bounded by Re(τJ) ≤ 1
 

| J 1| = 1 and 
.
τJ − 

.
 

τ − 
2 

= 
2 
. 

Let it be ∆4. 

 

(v) Put τJ =
 τ − 1 

= 1 −
 1

 
τ τ 

1 

τ = 
1 − τJ 

2 2 
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− 

    1  

 

Re(τ)   =   0 

τ + τJ =  0 
1 1 

1 − τJ + 
1 τJ 

=  0 

τJ + τJ =  2 

2 Re(τJ)   =   2 

Re(τJ)  =   1 
 

Re(τ)   = 
1
 

2 
τ + τJ =   1 

1 1 

1 − τJ + 
1 − τJ 

= 1 

1 − τJ + 1 − τJ =   1 − τJ + τJ + |τJ|2 

 
|τJ|2  = 1 ⇒ |τJ| = 1. 

|τ| ≥ 1 ⇒ . 1 − τJ . ≥ 1 

|1 − τJ| ≤ 1 ⇒ |τJ − 1| ≤ 1. 

Therefore τJ lies in the region enclosed by 
 

Re(τJ) = 1, |τJ| = 1, |τJ − 1| ≤ 1. 
 

(vi) Put τ = 
τ 

. 

1 − τ 
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 1  1 
. 

2 

. . 

. . 
2 

1   1 

Therefore  τJ  lies in the region bounded by  Re(τJ)  ≤ −
1 

,  |τJ| =  1, τJ + 1
   =  1 .  Let it be  ∆6. 

. 

1 

This implies that τ = 
τJ

 

1 + τJ 

 

 
Re(τ)   =   0 

 

τ + τJ =   0 
τJ τJ 

1 + τJ + 
1 + τJ 

=  0 

1 1 

τJ 
+ 

τJ =  −2 

.
2 + . =   .− . 

 .τJ 

τJ 
+ 

2 . 
= 

1 
τJ 

2 
 
 

Re(τ)   = 
1
 

2 
τ + τJ =   1 

τJ τJ 

1 + τJ + 
1 + τJ 

=  1 

τJ + τJτJ + τJ + τJτJ =  1 + τJ + τJ + τJτJ 

|τJ|2  = 1 ⇒ |τJ| = 1 

|τ| ≥ 1 

τJ 

1
 

1 + τJ 
≥   

 

|τJ|2 ≥   |1 + τJ|2 

|τJ|2 ≥   (1 + τJ)(1 + τJ) 

|τJ|2 ≥   1 + τJ + τJ + τJτJ 

2 Re(τJ) ≤ −1 

Re(τJ) ≤ −
1 

. 

 
 
 

  

Then τ is mapped on the region by means of the transformation τ, − τ
, τ − 1,  

1 − τ 
, 

τ −  
,
 

τ 

   1  

2 2 

. 

. . 

. 
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  ,

 
 −   ,

 

 
  

1
 0

 
−1   1 

 ,

 

τ 

1 − τ
. Let the transformation be S k, k = 1, 2, · · · 6. 

1   0  ,

  0 1 
,
 1   −1  ,   0 1  ,

 1   −1
 

,   1 0  

0   1
 

−1   0 0 1 
 

−1   1 1 0 
 

−1   1 
 

The matrices of the inverse transformation are 

 
1   0 

0   1
 

 
0 1 

1 0 

 
1 1 

0   1
 

1   −1  ,
 

 
0 1 

 
1 0 

1   1
 

 

The corresponding transformation S −
1, k = 1, 2, · · · 6 are τ, −

1 
, τ+1, 

τ − 1 
,
  1  

, 
   τ 

. 
k τ τ 1 − τ τ + 1 

 

We note that every unimodular matrix is congruent (mod 2) to exactly one of them. Therefore 

these matrices form a complete set of mutually incongruent matrices. Let ∆J
k  (k = 1, 2, · · · 6) 

denote the regions symmetric to the imaginary axis. Therefore the transformations S k
J
 (k = 

1, 2, · · · 6) corresponding to the regions ∆J
k (k = 1, 2, · · · 6) are obtained by replacing τ by −τ. 

 

The transformations are −τ, 1
 , −τ − 1, 

   1 
, 

τ + 1 
, 
−τ

 . The region ∆J is mapped on 
τJ 

τ + 1 τ τ + 1 

the unshaded region  ∆J
1,  ∆J

2, · · · ∆
J
k   by the means of the linear transformation  S k

J ,  k = 1, 2, · · · 6. 

The matrices obtained by  S k
J   k = 1, 2, · · · 6  are 

−1   0  ,  
0   1  

,
 −1   −1 

,  
0   1  ,

 1   1  ,
 −1   0  

0 1
 

1   0 
 

0 0 
 

1   0
 

1   0
  

1 1
 

 

The matrices of the inverse transformations are 

−1   0  ,  
0   1  ,

 −1   −1  ,  
−1   

1 ,
 

0 1  ,
 −1   0 

0 1 1   0 
 

0 1 
 

1 0  
1   −1 

 
1 1

 

 

The transformation (S J )−1
 (k = 1, 2, · · · 6) are −τ, 

1 
, 

−τ − 1 
, 

−τ + 1 
,
  1   

,

 
−τ

 

. These 

k τ 1 τ τ − 1 τ + 1     

matrices form a complete set of mutually incongruent matrices. Clearly the image of ∆, ∆J are 

∆1, ∆2, · · · ∆6  and  ∆1
J , ∆2

J  , · · · ∆J
6. They cover  Ω ∪ ΩJ. 

 

, 
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Let τ be any point in the upper half plane. The set ∆ ∪ ∆J can be identified with the closure of 



228 17.6. The CoNfoRMal MappINg BY λ(τ) 

Complex Analysis M.Sc.(Mathematics)-TNOU)-I Year- II Sem 

 

 

 
  

the shaded region.  There exists a modular transformations such that  S τ  lies in  ∆ ∪
J  

∆J. Suppose 

that S τ ⊂ ∆. The matrices of S is congruent (mod 2) to the matrix of an S k . The matrix 

of T = S kS is congruent to the identity matrix; in other words, T belongs to the congruence 

subgroup. Since S τ lies in ∆ we have Tτ = S k (S τ) lies in Ω ∪ ΩJ. 

 
Similarly, if we suppose that  S 2  ∈ ∆J. The matrix of  T J = S k

J S  is congruent   (mod 2)  to the 

matrix of an  (S k
J )−

1. Therefore the matrix of  T J = S k
J S  is congruent to the identity matrix. 

 
Therefore T belongs to the congruent subgroup. Since S τ lies in ∆J we have 

 

Tτ
J  = S k

J (S τ) 

lies in Ω ∪ ΩJ. Therefore there is always a map Tτ in Ω ∪ ΩJ. Trivially which can be choosen in 

Ω ∪ ΩJ. Since  S k  and  S k
J  are mutually incongruent.  Tτ is unique. ■ 
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