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COURSE OBJECTIVES

While studying the LINEARALGEBRA, the Learner shall be able to:
CO 1: Discuss the concept of null space and range of a linear transformation.
CO 2: Review the concept of a algebra over a field.
CO 3: Represent linear transformation on a vector space by matrices.
CO 4: Describe the concept of direct sum and interior direct sum.

CO 5:Review the concept of companion matrix.

COURSE LEARNING OUTCOMES
After completion of the LINEARALGEBRA, the Learner will be able to:

CLO 1: Interpret the idea of linear transformation, identify them to represent the linear
transformation by matrices.
CLO 2: Describe the prime factorization of a polynomial and write each polynomial as the product
of prime polynomials.
CLO 3: Enable to find the characteristic value and characteristic vectors of a linear transformation.
CLO 4: Interpret the idea of linear transformation; identify them to represent the ordered basis by
triangular matrix.

CLO 5: Interpret the ideas of Jordan forms and rational forms of real matrices.

BLOCK I: LINEAR TRANSFORMATIONS
Linear transformations - Isomorphism of vector spaces - Representations of linear transformations

by matrices - Linear functionals.

BLOCK II: ALGEBRA OF POLYNOMIALS
The algebra of polynomials -Polynomial ideals - The prime factorization of a polynomial -

Determinant functions.



BLOCK III: DETERMINANTS
Permutations and the uniqueness of determinants - Classical adjoint of a (square) matrix - Inverse

of an invertible matrix using determinants - Characteristic values - Annihilating polynomials.

BLOCK IV: DIAGONALIZATION
Invariant subspaces - Simultaneous triangulations - Simultaneous diagonalization - Direct-sum

decompositions - Invariant direct sums - Primary decomposition theorem.

BLOCK V: THE RATIONAL AND JORDAN FORMS
Cyclic subspaces - Cyclic decompositions theorem (Statement only) - Generalized Cayley -
Hamilton theorem - Rational forms - Jordan forms.
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Block-I

UNIT-1

LINEAR TRANSFORMATIONS-I

Structure
Objective
Overview
1.1 Linear Transformations
1.2 The Algebra of Linear Transformations
Let us Sum Up
Check Your Progress
Answers to Check Your Progress

Suggested Readings

Overview

In this unit, we will illustrate the basic concepts of linear

transformations.
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2 1.1. Linear T ransformations

Objectives

After successful completion of this lesson, students will be able to
understand the concept of linear transformation.

explain the concept of null space and range of linear
transformation.

explain the concept of linear operator.

1.1. Linear Transformations

In this section, we shall study the concept of linear transformations.

De nition 1.1 (Linear Transformation). Let V and W be vector spaces over the
eld F. A linear transformation from V into W is a function T from V into

W such that
T + ) = c(T)+T()

for all and in V and all scalars ¢ in F.

Example 1.1. If V is any vector space, the identity transformation I; de ned by

I = ; isalinear transformation from V into V.

Example 1.2. If V is any vector space, the zero transformation O; de ned by

O = O; is alinear transformation from V into V.
Example 1.3. Let F be a eld and let VV be the space of polynomial functions
f from Finto F; given by

f(X) = Cco+CiX+ + CX® (1.1

Let (Df)x = c;+2C,x+  +keex*? (1.2)

Then D is a linear transformation from V into V and it is also called the

di erentiation transformation.

If f(x) is a polynomial over the eld F, then Df(x) is also a polynomial

over the eld F.

Thus, if f(x) 2 V , then Df(x) 2 V . Therefore D is a function from V into
V.

Linear Algebra M.Sc.(Mathematics)-I Year-11 Sem



1.1. Linear T ransformations

Also, if £(x):g(x) V and a:b 2 F then
D af(x) +g(x) = aDf(x)+ Dg(x) (1.3)

) D isalinear transformation from V into V.
Example 1.4. Let A be a xed m n with entires in the eld F. De ne a
function T : F"* | e by T(X) = AX:

Then T is a linear transformation from F" * into F™ *.

The function U de ned by U() = A is a linear transformation from F"
into F".
Example 1.5. Let P bea xed m m matrix with entries in the eld F and let
Q bea xed n n matrix over F. De ne afunction T : F™ " ' F™" by

T(A) - PAQ (1.4)

Then T is a linear transformation.

Proof.
T(cA+B) = P(cA+B)Q

- (cPA+PB)Q
- CcPAQ + PBQ

- CcT(A)+T(B)

Thus, T is a linear transformation from F™ " into F™ ",

Example 1.6. Let R be the eld of real numbers and let V be the space of all

functions from R into R which are continuous. Dene T : V | V by

L X
(TH)x = f (t)dt
0
Then,
L X
T@f +9)(X) = af +g (t)dx
0
X X
= af(t)dx + g(t)dt
0 0
L x X
= a f(t)dt + g(t)dt
0 0

aT (f)x + T(g)x

) T is a linear transformation from V into V. Itis also called integral

transformation.

M.Sc.(Mathematics)-1 Year-11 Sem Linear Algebra



4 1.1. Linear T ransformations

Note 1.1. If T is a linear transform V into W , then T(0) = 0, because

TO) = T@O+0)

T(0) + T(0)

0

) 10

Note 1.2. If T is a linear transformation from V into W . If ; ,; + , are

vectors in V and c;;c,; ;c, are scalars, then

T(Cp 1+C 2+ +Ch ) = CT( )+CT( )+ +cT( n)

Theorem 1.1. Let V be a nite-dimensional vector space over the eld F and

let f 1, 2, ; ng be an ordered basis for V. Let W be a vector space over
the same eld F and let f 1, 2, ; ng be any vectors in W . Then there is a

precisely one linear transformation T from V into W such that

T ; = I j=1,2;:::;n (1.5)

Proof. First we shall prove that there is a linear transformation T with

TC ) =
Let 2 V , then there is a unique n-tuples (xi; X,; :::; X,) such that
= X11+X2 2+:::+Xnn
For this vector , we de ne
T() = Xg1+Xp 24111+ Xn 1

Obviously T () as de ned above is a unique element of VV . Therefore T is well
de ned rule for associating with each vector in V aunique vector T( ) in
W . Thus, T is a function V into W .

The unique representation of 2 V as a linear combination of the vectors is

i = 0,+0 5 +:::+1 j+:::40

Therefore, according to de nition of T , we have
T() = 0,40 ,+:::+1 j+:::40

e T(q) = & i=12Z:in

Now, our aim is to prove that T is a linear transformation.

Linear Algebra M.Sc.(Mathematics)-I Year-11 Sem



1.1. Linear T ransformations 5

Let =y, 1+Y, 2+:11+Y, n2v and c be any scalar.
Then
T + ) = (cXg+y1) 1+(CX2+Y2) 2+:::+(CXp+VYn) n
= C(Xy 1+Xp o+111+Xy n)+Y1 1+Y2 2+ +Yn 0

= cT()+T()

) T s a linear transformation from V into W such that. Thus, there exists a

linear transformation from V into W such that

T() = & i=1:2;::::n

It remains to prove that the uniqueness of T .

Let U be a linear transformation fromV into W such that

U(d= & i=L2::n

For the vector = X; 1+ X, o+ 111+ X, n2V,wehave
U() = UKL 1+Xop+117+ Xy 1)
= XU( 1)+ xU( o)+ 0+ xU(C )
= X 1+Xp 24111+ Xy n

= T()

Thus, T is a unique linear transformation from V into W such that

T( ) = i i=1;2;::::n

Example 1.7. Find the linear transformation T : R? ! R? such that

T(2;3) = (4;5) and T(1;0) = (0;0):
Solution. First we shall show that the set f(2; 3); (1;0){ is a basis of R”.

First we shall prove that the linear independence of this set.

Let

a(2:3) +b(1;0) = (0:0) whereab 2 R
) (2a+b;3a) = (0;0)
) 2a+b = 0; 3a=0

) a=0; b=0

Hence, the set f(z; 3); (1;0){ is a linearly independent.

M.Sc.(Mathematics)-1 Year-11 Sem Linear Algebra



6 1.1. Linear T ransformations

Next, we shall prove that the set f(2; 3); (1;0){ spans R”.
Let (X¢; X,) 2 R? and let

(X1; %) = a(2;3) +b(1;0) = (2a + b; 3a)

Then 2a+b =x;; 3a=X,

X 3x; 2%
) a-= _2; b= ! 2:
3 3
X2 3Xl 2X2
Thus, we have (xl; x2) = _(23)+ (1;0):
3 3

From the above relation, we see that the set f(2; 3); (1;0){ spans R?. Hence
this is a basis for R%:

Now, let (xi;x,) be any member of R?, then we can nd a formula for
T (x41; X2) with the conditions that T(2;3) = (4;5) and T(1;0) = (0; 0):

We have I #
X2 3X1  2X»
T(xl; xz) = T —(2,3)+ — (1,0
3 3
Xo 3Xl 2X2
= _T(Z;3)+____ "T(1;,0
3 3
Xo 33X, 2%,
= _~&5+___ "(0;0)
3 I 3
-

If T is a linear transformation from VvV into W, then the range of T is
not only a subset of W and also it is a subspace of W . Let Ry be the range
of T then

Ry = 2W:T( )= for some vector inw

Our wish is to prove that R+ is a subspace of W .

For this, let ;; , 2 R: and let ¢ be a scalar. Then there exists a vectors

; and , in V such that

T(d = 1
T(2 = =2
Consider
T 1+ 2) = cT( D+T( 2)
= CT( )+T( »)
_ c.r L 2Ry

Linear Algebra M.Sc.(Mathematics)-I Year-11 Sem



1.1. Linear T ransformations 7

Thus, Ry is a subspace of W .
If T isalinear transformation from V into W.
Let N=f 2V:T( ) =0§:
Clearly, N is non -empty, since T(0) =0 and 0 2 N .
Now, our claim is to prove that N is a subspace of V.

Let ;; , 2 V and c be a scalar, then
T(1) = O

T( 2)

Il
o

Consider
T 1+ 2 = cT()+T( 2)

= ¢c(0)+0
= 0

) C1+22N

Thus, N is asubspace of V.

De nition 1.2. Let V and W be vector spaces over the eld F and let T be
a linear transformation from V into W . The null space of T is the set of all

vectors in V suchthat T()=0.
If V is nite-dimensional, the rank of T is the dimension of the range of T

and the nullity of T is the dimension of the null space of T .

Theorem 1.2. Let V and W be vector spaces over the eld F and let T be
a linear transformation from V into W . Suppose that VV is nite-dimensional.

Then
rank(T) + nullity(T) = dimV

Proof. Let V and W be a vector space over the eld F and given that V is

nite-dimensional.
Let us assume that dim V = n:
We know that N is the null space of T, is a subspace of V.
) dimN n: Hence, we assume that dimN =k ( n).

It remains to prove that dim R(T) = n k:

Let f 1) 2;iii1  be a basis for N. Then the set f il can be extended to

)

M.Sc.(Mathematics)-1 Year-11 Sem Linear Algebra



8 1.1. Linear T ransformations

of V.
Claim: The set fT( k1) T( we2); 2203 T( n)d for the range of T:

i;e;; We can prove that the set fT( 1); TC ke2); 5T( o) are linearly
independent and that they span the range of T .

Let 2 R(T) (Range of T).

Thus, by de nition of range of T , there exists a vector 2 V such that
T() = (1.6)

Therefore, =c¢; ;+C, ,+::1:+Cq n:

From equation (1.6), we have

= T(C11+C2 2+:::+Cn n)
= CT( D+cT( »)+::i+¢,T( )

= alinear combination of T( 1); T( 2);:::;T( »)

ice:; Every element of range of T is a linear combination of

) 1 2;:::;kj2N

Ct T( we1) + Ce2T( w2) +:ii+c,T( ) = O @7

Linear Algebra M.Sc.(Mathematics)-I Year-11 Sem



1.1. Linear T ransformations

Now, our wish is to prove that ¢,1 = .2 =::: =c¢c, = O:

From equation (1.7), we have

TC
) i>”<cii 0

[
o

i=k+1

7\
) "o 2 N
i-k+1
"\
) 2 N where = Ci i (1.8)
i—=k+1
Hence there exists a scalars by; b,; :::; b, such that
k
- Vb,
i=1
/\ 7\
Ci i = bi i
i=k+1 i=1
) Ci i bii = 0
) (bl 1 +iB<2+12 + ... _L::bk k) (Ck+l k+1 + Ck+2 k+2 + L+ Cn n) = O
Since, the set f 1, 2;::5; o) are linearly independent, thus we have
b, =by,:i:=by = Cui1= Cu2=:1:= ¢c,=0
) b, =by:i:=by = cui=Cu2=:1:=¢c,=0
Thus, the set fT( 1, 2.1 n){ are linearly independent.
Hence, the set fT( 1, 2:::0; n)d isabasis of range of T .

ie:; dimR(T)=nk
Letr=dimR(T)

r=nk

) n=r+k:

Hence dim V = rank of T + nullity of T:

This completes the proof of the theorem.

Theorem 1.3. Uf A isan m n matrix with entries in the eld F, then
row rank(A) = columnrank(A)

M.Sc.(Mathematics)-1 Year-11 Sem Linear Algebra



10 1.1. Linear T ransformations

Proof. Let T be the linear transformation from F" ' into F™ ' de ned by

T(X) = AX:
Suppose AX =0
i:e;; X is the solution space of the system AX = 0.
i:e:; The set of all column matrices X such that AX = O:
(The null space of T = f 2 V=T( ) =0).
) T(X)=AX and AX =0 which implies that T(X) = 0.
Thus, the null space of T is the solution space for the system AX = 0.
Suppose AX = Y:
ize;; The set of all column matrices X such that AX =Y:

Thus, the range of T is the set of all m1 column matrices Y such that

AX =Y has a solution X = A *Y:

Let g
6 X
R

b

Then
AX = A1X1 + AzXz + 10+ Aan
Y = A X+ AXs + 00+ AX,
Y is an arbitrary elements of range of T and Y is spanned by Aj; Ay 115 A,

i;e:;; Range of T is the subspace spanned by the columns of A.
In otherwords, the range of T is the column space of A.
Therefore rank (T) = column rank(A) .

But, if S is the solution space for the system AX = 0, then

dim S + columnrank(A) = n

If r is the dimension of the row space of A, then the solution space S has a

basis consisting of n r vectors.
dimS = n rowrank(A)

Linear Algebra M.Sc.(Mathematics)-I Year-11 Sem
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1.1. Linear T ransformations

); we have row rank(a) = column rank(A):

This completes the proof of the theorem.

1.1.1. Examples

Example 1.8. Find a linear map F : R® ! R* whose image is generated by
(1; 1;2;3) and (2;3; 1;0)
Solution. Consider the usual basis of R as given below:

fel =(1;0;0);e, = (0;1;0);e5 = (0; 0; 1){

Write F(e)) = (1; 1;2;3)), F(er) = (2;3; 1;0)) and

F(es) = (0;0;0;0)

Clearly,
(X;y;2) = Xei+Yye,+ze;
F(x;y;z) = F(xe;+yes+zes)

= XxF(ep) + YF(ep) + zF(e3)
= (% x;2%3x) + (2y; 3y; y;0)+(0;0;0;0)

= (x+2y; x+3y;2x y;3%)

Example 1.9. Show that the mappint T : V,(R) ' V3(R) de ned as
T(a;b) = (a+bja b;b)

is a linear transformation from V,(R) into V3(R). Find the range, rank,

null-space and nullity of T .

Solution. Let = (aj; by); = (axby) 2 V3(R):
Then T() = T(a;;by) = (a; + by; a; by; by)
and T () =T (az; by) = (az + by; a, by; by).

Also let a;b 2 R.Then a +b 2 V;(R) and
T(a +b ) = T [a(as by) + b(ay; by)]
= T (aa; + bay; ab; + bb,)

= (aa, + ba, + ab; + bb,;aa; + ba, ab; bb,;ab; + b,)

aT( )+bT() = a(a; +by;a; by;by) + b(ay + by;a, by by)

M.Sc.(Mathematics)-1 Year-11 Sem Linear Algebra
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12 1.2. The Algebra of Linear T ransformations

Therefore, T is a linear transformation from V;(R) into V3(R).
Now [(1;0); (0: 1){ is a basis for Vs(R) .

Thus, we have

T(1;0) (1+0;1 0;0)=(1;1;0)

T@O;1) = (0+1;0 1;0)=(1; 1;0)

The vectors T(0;1) and T(1;0) span the range of T .

Thus, the range of T is the subspace of V;(R) spanned by the vectors
(1;1;0);(1; 1;1).

Now the vectors (1;1; 0); (1; 1;1) 2 V3(R) are linearly independent because
if x;y 2 R, then

x(1;1;0) + y(1; 1;0) (0; 0; 0)
) (x+y;x y;0) = (0;0;0)

) x+y-0; x y=0 ) x=0;y=0

) The vectors (1;1;0);(1; 1;0) form a basis for range of T .
Hencerank T = dim of range of T = 2:
Nullity of T = dimof Vy(R)-rank T=2 2=0.

) null space of T must be the zero subspace of V,(R).

The Algebra of Linear Transformations

In the study of linear transformations from V into W , it is of
fundamental importance that the set of these transformations inherits
a natural vector space structure. The set of linear transformations
froma space V into itself has even more algebraic structure, because
ordinary composition of functions provides a multiplication of such
transformations. Now, we shall see these ideas in this section.

Theorem 1.4. Let V and W be vector spaces over the eld F.LetT and U

be linear transformations from V into W . The function (T + U) de ned by

T+U)() = T()+U()

is a linear transformation from V into W . If ¢ is any element of F, the function

Linear Algebra M.Sc.(Mathematics)-I Year-11 Sem
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CT is de ned by
€T)() = cT()

is a linear transformation from V into W . The set of all linear transformations
from V into W , together with the addition and scalar multiplication de ned

above, is a vector space over the eld F .

Proof. Given that T : V ' Wand U :V ' W are linear transformations such

that
(T+U)(C + ) = T()+U()

Consider

T(c + )+U(c + )

- e(T()+T() +c(U( )+U()
= c[T()+u()I+T(C)+u()
= c(T+U)()+(T+U)()

(T+U)(c + )

) T + U is a linear transformation.

Similarly
c T + )

(cT)(d + )

c dT( )+T()
dcT( ) +c(T( )
= d[(cT)( )]+ (CT)

) cT is a linear transformation.

Next our wish to prove that the set of all linear transformation from V into

W is a vector space over F with respect to the vector addition and scalar

multiplication.

T+U)() = T()+u(): 8 2v (1.9)
€T ) = oT(): 8c2r 2v (1.10)

Addition is Cummutative:

Consider (T+U)( ) = T()+U()
= U()+T()
= (U+T)()

M.Sc.(Mathematics)-1 Year-11 Sem Linear Algebra



14 1.2. The Algebra of Linear T ransformations

Addition is Associative: Let S : V ' W be any linear transformation.
Consider (T+U+S)() = TO)+U+S)()
= T()+U()+S()
= (T+U)()+S()

= ((T+V)+s)()

Identity transformation under addition:

De ne Zero transformation 0 : V ' Wby 0( )=0.

For this unique linear transformation, 0 : V ' W ,wehave T +0=T, forall

T.
Inverse transformation under addition:

For each linear transformation T : V ' W; there exists a unique linear
transformation T such that T + ( T) = 0 where T is the inverse linear

transformation.
Identity transformation under multiplication:

(T)=T 8T 'V ' W is a linear transformation.
!

Cummutative under addition: Let c;;c, 2 Fand T: V . W be a linear

transformation.
Consider [(cic)T1( ) = (cico)(T( )

= ¢ [T ()]
= [cu(cT)I( )

cy(coT)

) (cie))T

Distribution Law:

(i) Let c 2 Fandlet T : V ' W and U :V ' W Dbe linear transformations.

c[(T+U)( )]

= c[(T+U)()]

= c[T()+U()]

= c[T()]+c[u()]
= (cT+cU)()

Consider [c(T + U)( )]

cT +cU

Thus, c(T +U)

Linear Algebra M.Sc.(Mathematics)-I Year-11 Sem
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(i) Letcy;c, 2 Fand T :V ' W be a linear transformation.
Consider [(c; +¢c)T]( ) (ci +c)T()

= &aT()+cT()
= (@T)( )+ (T)()
= (T +c.T)( )

D (Cl + C2)T C]_T + C2T

Thus, the set of all linear transformations from V into W is a vector space.

This completes the proof of the theorem.

De nition 1.3. Let V; W are vector spaces over the same eld F. Then the set

of all linear transformations from V into W is denoted by L(V; W):
Note 1.3. L(V;W) is a vector space over F.

Theorem 1.5. Let V be an n -dimensional vector space over the eld F and let
W be an m -dimensional vector space over F , then prove that the space L(V; W)

is nite dimensional vector space and has dimension mn.

Proof. Given that V is an n -dimensional vector space over F .
i;e;; dimgV =n ) every basis of V has n elements.
Let B = f 1, 2;:::: o8 be an ordered basis for V .
Also, Given that W is an m -dimensional vector space over F .
ie;; dimgW =m ) every basis of W has m elements.

Let B’ = f 1, 2;:::: o) be an ordered basis for W .

Now, our wish is to prove that L(V; W) is nite-dimensional and has dimension

mn:
i-e:; to prove that every basis of L(V; W) has mn elements.

For each pair of integers (p;q) with 1 p mand 1 g n; wedenea

linear transformation E™® from V intg, W by

EPY - Ay ifx0-1
oy ifx=1

According to Theorem 1:1, there is a unique linear transformation from V into

W.
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16 1.2. The Algebra of Linear T ransformations

ile;; BP9V ' W such that E?I( ) = 4 .
Since p varies from 1 to m and q varies from 1 to n and hence linear

transformations E™ are totally mn in number.
Claim: These mn linear transformations E™ form a basis for L(V;W):

i-e:; to prove that
(i) These mn linear transformations are linearly independent over F .

(ii) These mn linear transformations spans L(V; W) over F.

First, we shall prove that mn linear transformations span L(V; W) over F .Sub-

Claim:1 These mn linear transformations E®* span L(V;W) over F .

LetT 2 L(v;W)

i;e;; let T be a linear transformation from V into W .

Foreach j, 1 j n:letA;j; Axj; i Ay be the coordinates of the vector
T( ;) inthe order basis B’ _f 5ottt md
m
/\
icer; T( ) = ApiBp (1.11)
p=1

Now, we shall prove that every element of L(V; W) is some linear combination

of the mn linear transformations E®9 .

ie;; to prove that
m n
T - MY AE™ (1.12)
p=1g-=1

Let U be the linear transformation in the right hand member of (1.12).

Then for each j

m n
/\/\
U( j) ququ( j)

p=1 g-1

m n
/\/\

O jﬁ

7 -1
m

= Apj p
p-1
= T( )

) U =T
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1.2. The Algebra of Linear T ransformations 17

Sub-Claim:2 The mn linear transformation E®™ are linearly independent over
F.

i:e:; to prove that any linear combination of E™ = 0:

m

. 7\ ,
ice;; toprovethat A, =0 then A, =0; 8p&]

p=1
m n
VAVAN . .
Let U = AEP be the zero transformation, then by de nition
p-1g=1
U( ) =0 O]
ice:; T 1A p=0

The independence of , implies that A,; =0 8 P& j.
This completes the proof of the theorem.
Theorem 1.6. Let V; W, and Z be vector spaces over the eld F . Let T be a
linear transformation from V into W and U a linear transformation from W

into Z . Then the composed function UT de ned by (UT)( )= U(T( )) isa

linear transformation from V into Z.

Proof. Our wish is to prove that UT is a linear transformation from V into Z.

i:e:; to prove that (UT)(c + ) =c(UT)( )+ UT) ) 8c2F:2v
(UT)c + ) = U T( + )

= UET()+T()
= c[U@(NI+T()
= o(UT)( )+ (UT)()

This completes the proof of the theorem.

De nition 1.4. If V is a vector space over the eld F; a linear operator on V

is a linear transformation from V into V.

Note 1.4. If V = W = Z , then by theorem (1.6) we see that both U and T are

linear operators on the space V .
Also, we see that the composition UT is a linear transformation on V .

In other words, the space L(V; V) has a multiplication de ned on it by the

composition.

Note that, in general, TU 6= UT (or) TU UT 6: 0.
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18 1.2. The Algebra of Linear T ransformations

Also, we take a special note that if T is a linear operator on V , then we can

compose T with T:

We shall use the notation that T> = TT andingeneral T" =T T (n times)
forn=1;2;3;:::.

Wedene T = | ifT6=0:

Lemma 1.1. Let V be a vector space over the eld F; let U; T, and T, be

linear operators on V ; let ¢ be an element of F.

(@ IU = Ul = U;
(b) U (Tl + T2) = UT]_ + UT2 = (Tl + T2) U = T1U + T2U,

() c(UTy) = (cU)T; = U(cTy):

Proof. (a) Since I :V ' V isdenedby I( )= ; 8 vectors V.
Iu(C) = 1U()
= U()
) Iu = U

Similarly, we can prove that Ul = U . Thus the proof of (a) is complete.

(©) Let 2V

Consider
[U(T+T)I() = UNT+T)I()

= U (M) +To( )
= (UT)( )+ UT)( )
= (UT.+UT,) ()

U(Tl + Tz) UT]_ + UT2

Similarly,

[(Ty + THUI( ) (Te+T)U( )

= (T1+THU()

= Tu(U( )+ T(U( )
= (TWU +TU)( )

) (T,+THU = TWU+TU

This proves (b).
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(c) Consider

UTII() = [CUTI()
- (CUYTH()
- [euyTd ()
) oUT) - EUT,

In a similar way, we can prove that (cU)T; = U(cT,):
Thus, the proof of (c) is complete.

Hence the lemma is proved.

Example 1.10. If A is an m n matrix with entries in F . Then, we have the

linear transformation T from F"'into F™!and is de ned by T(X) = AX:
If B isa p m matrix, then we have have the linear transformation U from
F™ ' into F” ! and de ned by U(Y) = BY:

The composition of UT can be easily described as follows:
(UT)(X) = U (X))
= U(AX)

B(AX)

(BA)X

Thus, UT is left multiplication by the product matrix BA®:

Example 1.11. Let F be a eld and V the vector space of all polynomial
function from F into F . Let D be the di erentiation operator de ned in

example (1.3), and let T be the linear operator multiplication by x :
(Tf)x = xfx)

We can easily seen that DT 6: TD.

In fact, we can easily verify that DT TD = I; the identity operator.

Consider the linear operators E™®which arose in the proof of the Theorem 1.5.
ite;; EP D)= i »

These n? linear operators form a basis for the space of linear operators on V .

What is EPIE™S?
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20 1.2. The Algebra of Linear T ransformations

EPE™ () - E™ (s )
- iSEp;q( r)
= is ig p
Therefore, we have g
o 0; ifr q
EpiaE™ = jgrs; jf gq=r
(1
Let T be alinear operator on V . h
if Aj = T( J)
A = %,X;:::;An]
then T = ApgEP
p q

XX

If U= B.E"° is another linear operator on V , then by the above lemma

wetme XX XX

TU = B A, EP BrSE”s
xxXx @ A

= ApgBrsEPIE"S

When g =r; and since EP'E™ = E™®, then we have

. R

= (AB)psE”®

Thus, the e ect of composing T and U is to multiply the matrices A and B.

De nition 1.5. The function T from V into W is called invertible, if there
exists a function U from W into V such that UT is the identity function on
V and T U is the identity function on W . If T is invertible, the function U is

unique and is denoted by T *:
Further, T is invertible if and only if
1. Tis1:1,thatis T( )=T( ) implies = ;
2. T isonto, that is the range of T is (all of) W .

Theorem 1.7. Let V and W be vector spaces over the eld F and let T be
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a linear transformation from V into W . If T is invertible, then the inverse

function T ! is a linear transformation from W onto V .

Proof. Giventhat T : V ' W is a linear transformation.
Forall ;; ,2 Vandc2 F,T(c1+2)=cT(1)+T(2)
Let ;; , be the unique vectors in V suchthat T( ;) =;.

Also given that T is invertible which implies that T * exists.
1 T ()

2 = T2

Now, our wish is to prove that T* is linear transformation from W onto V .

Since T islinearand T(;) = ;, thus we have

T 1+ 20 = cT()+T(2)=C1+ >

Since ; and , are the unique vectors in V which implies that ¢ ; + , is the
unique vector in V whichissentby T into c ; +, and so
Tl(Cl+ 2) = C 1+ >

= cTH)+T

Therefore T is linear transformation.
Since, T is invertible which implies that T is onto.
Thus, T is onto linear transformation.

Note 1.5. Suppose that T is an invertible transformation from V onto W and an
invertible transformation U from W onto Z . Then UT is also an invertible

transformation.
Moreover, (UT) ' =T*Uu

This conclusion does not require the linearity nor does it involve checking
separately that UT is 1:1 and onto. But it requires that T *U " is both a left

and right inverse for UT:
Note 1.6. If T is linearthen T ( )=TOT():
Hence T( )=T( ) ifand only if T( )=0:
Thus, T is one-to-one then = impliesthat T( )=T( ):

i.e., T isone-to-oneifandonly if T( ) =0.
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De nition 1.6. A linear transformation T is non-singular if T( ) = 0 implies
=0:

i:e:; if the null space of linear transformation T is fog:
Clearly Tis 1:1 if and only if T is non-singular.

Theorem 1.8. Let T be a linear transformation from V into W . Then T is non-
singular if and only if T carries each linearly independent subset of V onto a

linearly independent subset of W .

Proof. Assume that T is non-singular.

Let S be a linearly independent subset of V .

If ;5 :::; carevectorsin S .
ice;; If ¢ 1+C o+:1:+Cc k = O
) Ci=C=:::=¢, = 0 (1.13)
Now, we shall prove that T (,); T (2); :::; T () are linearly independent
vectors.

Let ¢ T( D+CT( D)+:ii+T( W) =
) TE )T )T ) =
) T(C1+C o+:11+C ) =

) i 4Gy priiieC k= (* T is non-singular)

|
o o o o o

) Ci=C=:1=C =

Thus, the image of S under T is independent.

Conversely, Assume that T carries a linearly independent subset of V onto

linearly independent subsets of W .
Now, we shall prove that T is non-singular.

Let be anon-zero vector in V:

If S-= f g, then the set S s linearly independent. (Since the set consisting of
single vector is linearly independent)

By assumption, the set fT( ){ is linearly independent.
Therefore T( ) 6: 0:

Thus, T is non-singular.
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Example 1.13. Let F be a eld and let T be the linear operator on F?> de ned

by
T(Xs X)) = (Xg + Xg; Xy1)
If T(xy; x,) = 0, then we have
X1+ Xy = O
x; = 0O

Thus, we have x; =0; x, = 0.
Therefore T is non-singular.
Let T:F | F2andlet (z1; z,) be any vector in F?.
Now, our wish is to prove that T is onto.

ie;; to prove that (zy;z,) isinthe range of T .

ie;; we must nd scalars x; and x, such that T (xy; X,) = (z1; 22):

(X1 + X3 X1) = (213 22)
) X1 +X2=21 and X1 = z»
Xy = Z; Zy:

Upon solving these equations, we get x; = z3;

Thus T is onto.

Therefore, the explicit formula for computing T * is
T 212 = (221 22)

Theorem 1.9. Let V and W be nite-dimensional vector spaces over the eld
F such that dim V =dim W: If T is a linear transformation from V into W ,

the following conditions are equivalent:

(i) Tisinvertible.

(ii) T is non-singular.

(iii) T isonto, that is, the range of T is W .

Proof. Let dimV =dimW =n:

By Theorem 1.2, we have
rank(T) + nullity(T) = n (1.14)

Assume that T is non-singular. Now, we shall prove that T is onto.

Linear Algebra
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Given that T is non-singular which implies that nullity(T) = 0, then from

equation (1.14), we have

rank(T) = n
) Rangeof T = W
) T is onto.

Thus the condition (iii) is proved.
Now, we shall assume that T is onto, i:e:; the range of T is W:
Given that T is onto, which implies that range of T = dim W = n:

Thus, from equation (1.14), we have
nullity(T) = O

) T is non-singular

Thus, the condition (ii) is proved.
Next, we shall prove that the conditions (ii) and (iii) ) (:
Assume that T is non-singular and T is onto.
We know that T is non-singular if and only if T is1:1.
By condition (iii) we have T is onto.
Thus, Tis 1:1 and onto.
Also, we know that T is invertible if and only if T is 1: 1 and onto.
Therefore T is invertible.

This completes the proof of the theorem.

Note 1.7. The above theorem cannot be applied except in the case of

nite-dimensionality and dim V = dim W:

Remark 1.1. Under the hypothesis of Theorem 1.9, the conditions (i); (ii) and

(iii) are also equivalent to the following conditions.

Gv) 1F {1 oiii WLisbasisfor V, then IT( 1) T( 2)i::::T( )0 isabasis
for W:
(v) There is some basis fl; 2t o) for VvV such that
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Now, we shall give the proof of the equivalance of ve conditions which contains

a di erent proof that (i); (i) and (iiiy are equivalent.

Proof. (i) ) (ii) : If T isinvertible, then obviously T is non-singular.
(i) ) (iii) : Assume that T is non-singular.

Letf 1 2, nf beabasisfor V.

vectors set of vectors in W and since the dimension of W is also n, this set

of vectors is a basis for W .

= C]_T( 1)+C2T( 2)+:::+CnT( n)
= T(cy 1+Cy 2+:111+Cyh 1)

) 2 range of T

Thus, T is onto.

(i) ) (iv) : Assume that T is onto.

span the range of T , which is all of W, since T is onto.

Since the dimension of W is n and hence these set of n vectors must be

linearly independent.

(iv) ) (v) : This is quite obvious.

V) ) (i) : Assume that there is some basis f 1, 2:ldots; ,§ for V such that

Since T ( ;) spans W and moreover, range of T isall of W .

If=cy,+Cyo+:::+¢C,, isinthe null space of T , then
T(L1+C +:::+¢C, ) = 0
) eT(DreT( e +eT(n) =

) Ci=Cy= -c, = (* T( ;) are independent)

|
o o o

Therefore nullity of T is fog:

Thus, the range of T is W and also T is non-singular.
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Hence T is invertible.

This completes the proof of the theorem.

De nition 1.7. A group consists of the following:

1. Aset G;

2. A rule (or operation) which associates with each pair of elements x;y in
G isanelement xy in G such a way that
(@) x(yz) = (xy)z forall x;y; and z in G (associativity)

(b) there is an element e in G such that ex = xe = x; for every x in

G;

(c) to each element x in G there corresponds an element x 'in G

suchthat xx * = x 'x =e:

Note 1.8. A set of all invertible operators on V together the operation (U; T) '
UT where U; T are invertible linear operators and the composition UT is an

invertible linear operator on V .

1. Composition is an associative operation;
The identity operator | satises IT =TIl =1 foreach T ;

3. For an invertible operator T, then by theorem there is an invertible linear
operator T * suchthat TT ' =TT = 1I:

Thus, the set of invertible linear operators on V together with this operation is a
group.
Another example for a group is the set of n n matrices with matrix

multiplication.

De nition 1.8. A group is called commutative if it satis es the condition xy = yx

foreach x and y.

Remark 1.2. The above two examples are not commutative groups.

Let us Sum Up:

In this unit, the students acquired knowledge to
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the concepts of linear transformation.

the concepts of existence of inverse linear transformation.

Check Your Progress:

1. Find the linear transformation T : R? | R? such that T(1,0) = (1;1)
and T(0; 1) = ( 1;2): Prove that T maps the square with vertices
(0;0);(1;0);(12;1) and (0;1) into a parallelogram.

2. Let T be a linear transformation on R® de ned by T (a; b;c) =

(3a;a b;2a+b+c). Is T invertible? Ifso, ndarulefor T *

like the one which de nes T.

Suggested Readings:

1. M. Artin, Algebra, Prentice Hall of India Pvt. Ltd., 2005.

2. S.H. Friedberg, A.J. Insel and L.E Spence, Linear Algebra, 4"
Edition, Prentice-Hall of India Pvt. Ltd., 2009.

3. I.N. Herstein, Topics in Algebra , 2" Edition, Wiley Eastern Ltd,
New Delhi, 2013.

4. J.J. Rotman, Advanced Modern Algebra , 2" Edition, Graduate
Studies in Mathematics, VVol. 114, AMS, Providence, Rhode Island,
2010.

5. G. Strang, Introduction to Linear Algebra , 2" Edition, Prentice
Hall of India Pvt. Ltd, 2013.
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Check Your Progress

Answers to Check Your Progress

Suggested Readings

Overview

In this unit, we will illustrate the basic concepts of isomorphsm

and linear functionals.
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Objectives

After successful completion of this lesson, students will be able to
understand the concept of linear functionals.

understand the concept of representation of transformation by

matrices.

explain the concept of isomorphism.

2.1. Isomorphism

De nition 2.1. If V and W are vector spcaes over the eld F, any one-one
linear transformation T of V onto W is called an isomorphism of V onto W .

If there exists an isomorphism of V onto W , we say that V is isomorphicto W .

Note 2.1.

1. The identity operator being an isomorphism of V onto V.

2. If V is isomorphic to W via an isomorphism T; then W is isomorphic

to V , because T * is an isomorphism of W onto V .

3. If Visisomorphicto W and W is isomorphicto Z , then V isisomorphic

to Z.

Theorem 2.1. Every n -dimensional vector space over the eld F is isomorphic

to the space F":

Proof. Let V be a vector space over F and let dimV =n.
To prove that V = F"
Let ful; Uz; ;usd be an ordered basis for V .

Every element of u 2 V is uniquely expressible as a linear combination of

vectors ful; Uz, Und

X X

Let u = aju;; V= b;u;

Let a;b %IR be arbitrari/:.1
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Dene T:V D e as follows: X

fuy = " aiuiu =(ai;a,; ;an)
i=1
f is linear:
g n
fau+bv) = f ! aau; + bbu,
n
= 7N [aai + bb,] U;
i-1
= (aa, + bb;; ;aa, +bb,)
= (aay; aap; ; aan) + (bby; bby; ; bby)
= af(apax; ;a,) +b(biby; by
= af(u) +bf(v)
f is one-one:
X - X
n n
f a;U; = f b;u;
(as; azii:l jan) = (bl,I 2 ; br)
) a = bi 8|
n n
) /\ailJI _ l\blul
i<l i-1
) u - v
f is onto:
n
. VAN
For any given (a;; ay; ;an) 2 F", there exist aju; 2 V such that

i-1

IX
f @ aang = (aa;  ;an)
i=1
Thus, f is one-one and linear map of V onto F", which implies that f is an

isomorphism of V onto F".
) V isisomorphicto F".

This completes the proof of the theorem.
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Representation of Transformations by Matrices

Let V be an n -dimensional vector space over the eld F and let W
. o be

an ordered basis for vV and B° = f 1, 2 my an ordered basis for w.

be an m-dimensional vector space over F. Let B = f 1, 2

If T is any linear transformation from V into W, then T is determined
by its action on the vectors ;: Each of the n vectors T ( ;) is uniquely
expressible as a linear combination of the ;

irer; T( ) = Aij i (2.1)

The scalars A; j; ; A, ; being the coordinates of T ( ;) in the ordered basis
BY: Accordingly, the transformation T is determined by the mn scalars A, ;
by using the formula ((2.1)). The m n matrix A de ned by A(; j) = Aj

is called the the matrix of T relative to the pair of ordered basis B and B°

Theorem 2.2. Let V be an n -dimensional vector space over the eld F and W
an m -dimensional vector space over F . Let B be an ordered basis for V and
B° an ordered basis for W . For each linear transformation T from V into W ,

there isan m n matrix A with entries in F such that

[T()]le: = Al le

!

for every vector in V . Furthermore, T . A is a one-one correspondence
between the set of all linear transformation from V into W and the set of all

m n matrices over the eld F.

Proof. Let T be a linear transfromation from V into W such that dim V =n

and dimw =m.

Let B =f 1, 2, ) and B’ =f 1, 2, ; md bean ordered basis for V
and W respectively.

If 2Vthen =X1 1+X2 2 + +Xnn
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O
T() = TVE x5

VAR
= X; T( )

X X
Y S Aijli
X (0

If X is the coordinate matrix of in the ordered basis B ,then X isan n 1

4 H

matrix. The product AX is the coordinate matrix of the vector T ( ) in the

ordered basis B®, AX will be an m 1 matrix.
The j™ entry of this column matrix AX will be

Ainj
j-1

If Aisany m n matrig)(r th&;ld F)gx
B Xj (Y = B Aij in
i i it

de nes a linear transformation T from V into W , the matrix A is relative to the

ordered basis B; B

Theorem 2.3. Let V be an n -dimensional vector space over the eld F and
let W be an m -dimensional vector space over F . For each pair of ordered
bases B; B for V and W respectively, the function which assigns to a linear
transformation T its matrix relative to B; B® is an isomorphism between the

space L(V;W) and the space of all m n matrices over the eld F.

Proof. Let B =f 1 2 : 8 and B’ — f n o2 ; mb be an ordered basis
for VV and W respectively.

Let M be the vector space of all m n matrices over the eld F:
De ne : L(V; W) ' M by

(T) = A

Let T;; T, 2 L(V; W), and let
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m
/\ .
T.( ) = aj i 1=1,2; ;n
i-1
Im\
and Tz( j) = bij is i= 1, 2, on
i-1

Now, our claim is to prove that  is an isomorphism from L(V; W) onto M.

is One-One:
INOREENCS
., 11
aij mn bij mn
) aj = by fori=12 ;mand j=1;2; ;n
m m
7\ /\ .
) aij i = bij i for J=1121 ,n
i=1 i=1
) T ) = T ) for j=12; ;n
) T, = T2
) is one-one.
is onto:

Let éi'j n'm 2 M , then there exists a linear transformation T from V into W

such that
T( j) = I\Cij i j=1;2; N
i=1
T = '&
) is onto.

Obviously is alinear transformation.

Hence s an isomorphism of L(V; W) onto M:
Example 2.1. Let Fbea eld and let T be the operator on F? de ned by
T(X3; %) = (%g;0)
show that T is a linear operator on F*:

Solution. If | = (X3;X2); 2 = (Y1;¥2) and c is any scalar.
Given that T (X3 X2) = (X1; 0) ) T( 1) = (X;;0).

Similarly, T(ysiys) - 450) ) T( 2) - (75;0).
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CT( )+T( 2 = c(X5;0)+ (v 0)
= (x4 0) + (y1; 0)
= (cxy +y1;0) (2.2)

Now,
C 1+ 2 = C(XiiX) + (Y1 Y2)

= (CXq; CX2) + (Y1 Y2)
= (CXy + Y1;CXo + Y»)

) T(C 1+ 2) (cx1 +y1; 0) (2.3)

From (2.2) and (2.3), we have

T 1+ 2) = cT()+T( 2)

) Tis a linear transformation from F? into F?:
Let B be the standard ordered basis for F?.

ice;; B _f 1, 28, where ; =(1;0) and , = (0;1).
T(4) T(1,0)

= (1;0) = 1(1;0) + 0(0; 1)
= 1()+(0)(2)

Similarly, T(,) = T(0;1)
= (0;0) = 0(1;0) + 0(0; 1)
= (0) 1 +(0) -

1,+0,

ire; T(o)

T(z) 01+02

2 3

) The matrix of T in the ordered 5 is

Example 2.2. Let V be the space of all polynomial functions from R into R of

00

the form

f(X) = Co+CiX+CpX° +CyX> (2.4)

that is, the space of polynomial functions of degree three or less.

M.Sc.(Mathematics)-1 Year-11 Sem Linear Algebra



36 2.2. Representation of T ransformations by Mlatrices

Let D be the di erentiation operator, then D maps V into V.

Let B be the ordered basis for VV containing four functions f;; f,; f; and f,
de ned by f;(x) = x % for j = 1;2;3; 4:

ice;; fi(x) = x*t=x° 1) Dfy(x)=0
fo(x) = x*t=x x) Df,(x) =1

fa(x) = x*'=x° ) D f5(x) = 2x

fax) = x*'=x° ) D f4(x) = 3x?

Then using (2.4), we have

Dfi = 0fi+0f;+0fz+0fs
Df, = 1f1+0f2+0f3+0f,
Df; = 0fi+2f2+0f3+0f,
Df, = 0fi+0f,+3f3+0f

) The matrix of the operator D in the ordered basis B is

0 00

[D]B =

o
o © o

20
0 3
0 0

o

Theorem 2.4. Let V;W and Z be nite-dimensional vector spaces over the
eld F . Let T be a linear transformation from V into W and U a linear
transformation from W into Z . If B , B® and B® are ordered bases for the
vector spaces V; W and Z respectively, if A is the matrix of T relative to the
pair B , B® and B is the matrix of U relative to the pair B% B%; then the
matrix of the composition UT relative to the pair B; B% is the product matrix
C = BA:

Proof. Given that V; W and Z are nite-dimensional vector spaces.

Let dimgV =n; dimgW = p; dimgZ = p:

Also, given that T is a linear transformation from V into W and U is a linear

transformation from W into Z.

Let B; B% B are ordered bases for the vector spaces V; W and Z

respectively.
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Let B = f 15 2y 3 ; ng
B' - f 1, 27 3 ; ng
BY - f 1, 2y 3 ; ng

Since, A is the matrix of T relative to the pair B; B%:
and B is the matrix of U relative to the pair B% B%:

Using our usual convention, that if 2 V , we get

[T()le: = All (2.5)
[UT( N~ = BIT( e (2.6)
Consider [(UT)( )]e~ = [U(T( Nls~
= B[T( el
= BAI[l
ice;; [(UT)( )]le» = BA[ s

If C is the matrix of the composition UT relative to the pair B; B%, then

C = BA

For if,

uT) ) (=12, ;n)

U ( )

X, |

= U Agj k
m

m m

= Aj Bi i)

>
>

uT)( ) .
Cij v (=212 ;n) whereCj = BikAx;j

If C isthe matrix of UT ,then C = BA.
i:e;; The matrix of the composition UT is the product matrix C = BA:

This completes the proof of the theorem.

M.Sc.(Mathematics)-1 Year-11 Sem Linear Algebra



38 2.2. Representation of T ransformations by Mlatrices

Note 2.2.

1. If T and U are linear operators on V and we are representing by a single

ordered basis B, then above theorem assumes the simple form

[UTe = [ULITI

2. The linear operator T is invertible if and only if [T]s isan invertible

matrix.

3. The identity operator 1 is represented by the identity matrix in any order

basis, and thus

is equivalent to

[UL[T]: = [Tl[Uls=1I

4. When T isinvertible

e
-

T 1 = [T]Bl

Theorem 2.5. Suppose P isan n n invertible matrix over V. Let V be an
n -dimensional vector space over F and let B be an ordered basis of VV . Then

there is a unique ordered basis B® of V such that

() [Is =Pl le

(i) [ Je- =P Y[ ]e forevery vector in V.

The proof of theorem is not included in the syllabus.

Theorem 2.6. Let V be a nite-dimensional vector space over the eld F , and

let

be ordered basis for V.

Suppose T is ah‘ueaf operatoron V . If P=[Py; ;P,] isthe n n matrix

0

which columns P; = ; then

J B
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[Tlee = P[T]aP

Alternatively, if U is the invertible operator on V de ned by

U j = OJ-; j=1;2; ;n,then

[Tlee = [Ula'[Tls [V]s
Proof. Let T be a linear operator on the nite dimensional space V , and let
B - [ ool and B =19 8 oY

be two ordered bases for V .
Now, the question is, how are the matrices [T]s and [T]°B are related?

By above theorem, there is a unique (invertible) n n matrix P such that

[le = P[ ey § 2v 2.7)

Here P is the matrix P = [Py; Py; ; Pn] where P = [ OJ.]B
By de nition

[T = [Tl Ie (2.8)

Applying (2.7) to the Vector T( ), we have
[T()le = PIT( )le (2.9)

Combining (2.7), (2.8) and (2.9), we obtain

[TleP[ Is- = PIT( )le:

Premultiplying P ', we get
PTIeP[ loo = P! PT( )l
) PTIPLIs = [T( e
) PPl 1a = [Tl To

) [Tle - P '[T]aP

This proves the rst part of the theorem.
If U is a linear operator, which carries B onto B° is de ned by

uty = 5 G=L2 ;n) (2.10)
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i-e:: U carries a basis B onto another basis B® of V .
i;e;; U isinvertible.

The matrix P (above) is precisely the matrix of the operator U in the ordered
basis B.

For if, P is de ned by

n

] o= I\Piji
i-1
) uey - K :
i1 Pij i [*U( )= i]
) P - UL
By rst part, we have
[Ul'[TlelV]lse = [Tle (2.11)

Hence the theorem.

Example 2.3. Let T be the linear operator on R? de ned by T (Xi; X) = (Xq; 0)
with respect to the ordered basis B = ( 4; ,) . What is the matrix T with respect

to the ordered basis B® = { ¢ — (1;1); 3 =(2;1)0

Solution. From Example 2.1, we showed tht the matrix of T in the standard
basis B = | 1 28 is

n 44

. 6l O7
L)

Suppose B° is the ordered basis for R? consisting of the vectors

- (1;1); °=(2;1): Then

o
Ro
+
D

b °7

o)
|

so that the matrix P is
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We can easily compute that
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Thus, we have

[Tle: i ?61[:]29? 3% 30
- 51 05 1 25

Example 2.4. Let V be the space of polynomial functions from R into R which
have degree less than or equal to three. Let D be the di erentiation operator on
V , and let

B =ttt 4

be the ordered basis for V de ned by fi(x) = x' *.
Let t be a real number and de ne gi(x) = (x + t)' !, that is

g = f
g2 = tf]_ + f2

g3 = t2 fl + 2tf2 + f3

g4 = t3 fl + 3t2 f2 + 3tf3 + f4
The matrix P is
t t2 £
P = & 1 2 %5

0 0 0 1

t t? t3
1 2
0 0 O 1

Thus, B® = fgl; 02: 03; 94 is an ordered basis for V .

We can easily found that the matrix D in the ordered basis B is
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) 43

]

% 10 o
[D] =6)0207

0003
0k

0 0 0O

The matrix of D in the ordered basis B° i

g1 t t? t3;0 1 0 0o'V1 t ¢ t33

w ? 7
2 00 2t 3t
0’ 0% 3l 1 ¥]

0 00O0OO0O0CO0O 1

]
3
1
o? 13
00

_poes
f o o d

t

P ocoowr

Thus D represented by the same matrix in the ordered basis B and B°.

De nition 2.2. Let A and B be n n (square) matrices over the eld F. We
say that B is similar to A over F if there is an invertible n n matrix P over F

such that B = P *AP:
Note 2.3. According to Theorem 2.6, we have the following observations:

If V is an n -dimensional vector space over F and if B and B° are two
ordered bases for V , then for each linear operator T on V the matrix B = [T ]e.

is similar to the matrix A = [T]s.

Thus the matrix B is similar to A means that on each n -dimensional vector
space over F , the matrices A and B represent the same linear transformation in

two (possibly) di erent ordered bases.

Note 2.4.

(i) Note thateach n n matrix A issimilar to itself, by using P = 1.
(i) If B issimilarto A, then A issimilarto B.

(iii) If A issimilarto B and B issimilarto C,then A issimilarto C. Thus,
similarity is an equivalance relation on the set of n n matrices over the

eld F.

(iv) The only matrix similar to the identity matrix I is I itself.

M.Sc.(Mathematics)-1 Year-11 Sem Linear Algebra






2.3.

2.3. Linear Functionals 43

(v) The only matrix similar to the zero matrix is the zero matrix itself.

Linear Functionals

The concept of linear functional is important in the study of
nite-dimensional spaces because it helps to organize and clarifty the
discussion of subspaces, linear equations, and coordinates.

De nition 2.3. If V is a vector space over the eld F, a linear transformation
from V into the scalar eld F isalso called a linear functional on V such that
f(c + ) = cf()+f()

forall vectors and in V and all scalars ¢ in F:

Example 2.5. Let F be a eld and let a;;a,; ;a,bescalarsin F. De ne a

function f on F" by

f (X X5 Xn) = apXy +axXp + + apXn

Then f is a linear functional on F":

Example 2.6. If A is an n n matrix with entries in F, the trace of A is the

scalar

tr(A) = Ann+Ax+ + Ann

The trace function is a linear functional on the matrix space F"".

De nition 2.4. If V is a vector space, the collection of all linear functionals on
V forms a vector space in a natural way. It is the space L(V; F) . We denote this

space by V and call it the dual space of V.

V = L(V;F)
Note 2.5.

1. If V is nite-dimensional, then dimV =dimV .

2. Let B = f 1, 20 nf be abasis for V, then there is (for each i) a

unique linear functional f; on V such that

fiC ) =
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In this way, we obtain from B a set of n distinct linear functionals

fi; f;  ; f, on V. These functionals are also linearly independent.

3. If V has a nite-dimensional and f;; f,; ;f, are linearly independent
functionals, and we know that V has dimension n; it must be that
B = ffl; fo; 5 f.d is a basis for V : This basis is called the dual basis
of B:

Theorem 2.7. Let V be a nite-dimensional vector space over the eld F , and
let B = f 1, 25 ; ng be a basis for V: Then there is a unique dual basis

B = ffl; fy; 5 f.§ for V. suchthat fi( ;) = ;. For each linear functional f

on V we have

n
/ \

A TOL
i=1

and for each vector in V we have

AN

i-1

Proof. We have seen above from the note, that there is a unique basis which is
dual to B.

If fis a linear functional on V , then f is equal to some linear combination

of f;; f; ; f, where the scalars c; are given by c¢; =f( j).
VAN
If = X; i iISavectorin V, then
i-1
VAN
fi() = x; Fi( )
i-1
n
7\
= Xj ij
i-1
= Xjj
Therefore, the unique expression for is a linear combination of the
o2 3 oals
n
7\
= Xi i
i-1
7\
S O
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Remark 2.1.

1. The equation = 7N f,( ) i provides us with a nice way of describing
i-1
what the dual basis.

If B = f 12 ; o is an ordered basis for V and if
B = ffl; fo; ; f.§ is the dual basis, then f; is precisely the function
which to each vector in V the i" coordinate of relative to the
ordered basis B: Thus, we may also call the f;; the coordinate functions

for B.

The formula tells us the following:
Let f( ) = a;then

= X1 1+ X2 2+ + Xn n

f() = (X 1+%X 2+ + Xn n)
= X F( 1)+ xf( 2)+ + X, ()
f() = aixi+aX2+  +anXn (2.12)

Therefore, we conclude that if we have choosen an ordered basis B for vV
and describe each vector in V by its n -tuple of coordinates (Xi; X»; ; X,)

relative to B, then every linear functional on V has the form (2.12).

Now, we shall discuss the relationship between linear functionals and
subspaces.

Let f be a non-zero linear functionals.

Note that the co-domain of f is ascalar eld F:

Now, f is non-zero, the range of f is non-zero.

) The range of f is non-zero subspace of f; which is a scalar eld.

i;e;; Therange of f = 1:

i:e;; dimension of range of f = 1:

i;e;; rank of f = 1:

Let Vv be a nite-dimensional. Then we know that
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rank of f + nullityof f = dimvVv
) rankof f+dimN, = dimV
) dimnN, = dimv 1

Note 2.6.

1. Every hyperspace is an null space of some linear functionals.

2. Each d-dimensional subspace of an n-dimensional space is the

intersection of the null spaces of (n d) linear functionals.

De nition 2.5. If V is a vector space over the eld F and S is a subset of V; the

annihilator of S is the set S° of linear functionals f on V suchthat f( ) =0
for every in S:

e S°=ff2V:f( )=0; 8 ng

Note 2.7.

1. S%is asubspace of V ; whether S is a subspace of V or not.
2. 1f s — {0 then s° — v
3. If S=V; then S° the zero subspace of V :

Theorem 2.8. Let VV be a nite-dimensional vector space over the eld F, and

let W be a subspace of V. Then
dimW +dimwW° = dimV
Proof. Let dimW =k and dimV =n.
b)) Let | 1 20 «} be abasis for W:
Thus, the set f 1, 20 «} isaset of linearly independent vectors in W .

Since W is a subspace of V, and hence this linearly independent set in W

can be extended to form a basis of V.

) we can choose vectors .1; .2; ; n§ in V such that f 120 5 ond
is a basis for V.

Let ffl; f; ; f.l be the basis for V , which is dual to the basis
f 1 2, ; ng of v:

Now, our wish is to prove that dimW + dim W° = dim V:
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i-e:; to prove that k + dim W° = n:
i-e: to prove that dimW° = n k:

i:e:; to prove that there exists a basis of the annihilator W° consisting of (n k)

elements.
i:e:; to prove that ffk+1; fi2;  :f.] is a basis for the annihilator W° .
Certainly f; belongsto W° for i k+ 1:
Since fi( )= ;jand ;;=01ifi k+1and j k.
ice;; fi( ) =0; 8 = alinear combinationof ,; ,; ;  forall i k+1
Let cx.1fkes + Cki2fko +  +cnfa =0
Since fi.1; f.2; ; f, are linearly independent.

) (Ceifer+  +cafa)( ) 0()
Ck.1fier( ) + +cnfa( ) = 0 fioa( )+ +0 f,.()

) Ci=Caz= =cn = O

Therefore, the functionals ffkd; ; f.§ are linearly independent.
Now, it remains to prove that ffkﬂ; ; f.8 span we .

Suppose f 2 V , then we have

A (Y (2.13)

Also, if £ 2 WP, then f( ) =0 for i K
Therefore from (2.13), we have
fo= f()f+f(2)f2+ + O+ F( k) fir + +f( n)fa

) f = 0+0+ +0+ f( ko) fer + F( ke2)fie2 + + f( n)fa

n

f o= Y f()f where f 2 W

i-k+1

D ffk+1; ; £.0 spans W° .
Thus, we have dimW° =n k
i:e;; we have dimwW + dimwW° =dim V.

This completes the proof of the theorem.

Example 2.7. Find the dual basis of the basis
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B-I 1,301 1):0:3 2)forV.
Solution. Let 5 —1(L 1;3) »=(0:1; 1); 5= (0;3 2
Then B=f 1, 20 ab.
If B = ffl; f,; f:0 is a dual basis for B, then
fi( ) = L,fi(2)=0,f(3)=0

f2( 1) = 0; fz( 2) =1; f2( 3) =0
fa( 1) 1, f3( 2)=0;f( 3)=0

Now to nd an explicit expression for f;; f, and f;.
Let a;b;c 2 V , then
Let (a;b;c) = x(1; 1;3)+y(0;1; 1)+2z(0;3; 2) (2.14)
= X 1+Y 242 3

fi(a;b;c) = x; fy(a;b;c)=y; fi(a;b;c) =1z

Now, to nd the values of x;y;z.

From (2.14), we have

X = a; X+y+3z=b; 3x y 2z=c

Solving these equations, we get x =a;y=7a 2b 3c; z=b+c 2a

Hence f,(a;b;c) = a
fi(a;b;c) = 7a 2b 3c
fa(a;b;c) = b+c 2a

Let us Sum Up:

In this unit, the students acquired knowledge to

the representation of transformation by matrices.

the concepts of linear functionals and dual space.

Check Your Progress:

1. Find the dual basis of the basis
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B-Iw 23 11:@ 47)forv.

2. Let W; and W, be subspaces of a nite-dimensional vector space
V.

(@) Prove that (W, + W,)° = W® + W°,
1 2

(b) Prove that (W, \ W) = W + W9

Suggested Readings:

1. M. Artin, Algebra, Prentice Hall of India Pvt. Ltd., 2005.

2. S.H. Friedberg, A.J. Insel and L.E Spence, Linear Algebra, 4"
Edition, Prentice-Hall of India Pvt. Ltd., 2009.

3. I.N. Herstein, Topics in Algebra , 2" Edition, Wiley Eastern Ltd,
New Delhi, 2013.

4. J.J. Rotman, Advanced Modern Algebra , 2" Edition, Graduate
Studies in Mathematics, VVol. 114, AMS, Providence, Rhode Island,
2010.

5. G. Strang, Introduction to Linear Algebra , 2" Edition, Prentice
Hall of India Pvt. Ltd, 2013.
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Block-l11

UNIT-3

POLYNOMIALS

Structure

Objective

Overview
3.1 Algebras
3.2 The Algebra of Polynomials
3.3 Polynomial Ideals

Let us Sum Up

Check Your Progress

Suggested Readings

Overview

In this unit, we will illustrate the basic properties of the algebra

of polynomials over the eld.
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Objectives

After successful completion of this lesson, students will be able to
understand the concepts of algebra over a eld F.

de ne a polynomial over the eld F.

3.1. Algebras

De nition 3.1. Let F be a eld. A linear algebra over the eld F is a vector
space A over F with an additional operation called multiplication of vectors
which associates with each pair of vectors ; in A a vector in A called

the product of and in such a way that

(8) multiplication is associative,
()= (0)
(b) multiplication is distributive with respect to addition,

(+)= + and(+)=+

(c) foreachscalarcin F,
c( ) = () +(c)

If there is an element 1 in A suchthatl = 1= for each in A; we
call A a linear algebra with identity over F , and call 1 the identity of A . The

algebra A is called commutative if = forall and in A .

Example 3.1. The set of n n matrices over a eld, with the usual operations,
is a linear algebra with identity. In particular, the eld itself is an algebra with

identity.
This algebra is not commutative if n 2.
Example 3.2. The space of all linear operators on a vector space, with

composition as the product, is a linear algebra with identity. It is commutative

if and only if the space is one-dimensional.

Example 3.3. Let F be any eld and let S be any non-empty set. Let V be the

set of all functions from set S into F.
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De ne addition in V as:

(F+a)s) = f(s)+g(); Ofiglvisls

De ne a scalar multiplication in V as:

Cf)s) = c(f(s): & scalarand f2 V:

with respect to these two operations, the set V becomes a vector spce over F ,
called the space of functions from a set into eld. We shall denote this vector

space by F*.

Thus, the vectors in F* are in nite sequences f = (fy; f;; f,; ) of scalars
fiin F.

Let a and b be scalarsin F.

Let f = (fo; fi; f; ) and g = (9o; 91; 92 )2 F.

TThen af + bg is an in nite sequence given by

af +bg = (afy+bgyaf, +bgy; )

De ne a product in F* by

n
I\figni (n=0;1;2; )
i-1

ThUS, fg = (ngO =+ ngl + flgO; f092 =+ flgl =+ fzgo; )

(fo

and as

X X

@n = i00ifni=,, figni=(fg)n; forn=1;2; ;
fg = gf

Thus, the multiplication is commutative.
Next, we shall prove that the product is associative.

Let f;g;h2 F*: then

n

/7 \
(fg)h n = fg)ihn i

XiX

=1 xigijAni

= figi jhn
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XX

jo fiiio Gifn i j

n

= "N egh)n = [F(GM)]n
j-0

(fg)h, [f(gh)], forn=0;1;2;

) (foh - (@)

Thus, the multiplication is commutative.

We can easily verify that this operation satis es

(+) =+
(+) = =+
()= @) - ) S2F

The vector 1 = (1;0;0; ) 2 E* serves as an identity for F*:
) F' with the operation de ned above is a commutative linear algebra with

identity over the eld F:

Remark 3.1. The vector (0; 1; 0; 0; ) plays a distinguished role in the
following discussions and we shall consistenly denote it by x . Throughout this
chapter x will never be used to denote an element of the eld F .
De ne
x = 1
ice; x = (01,0, ;0; ;)
x x=x = (0;0;1;0; ;0; )
x x x=x = (0;0;0;1;0; ;0; )

In general, for each integer k 0,

=1 and x,=o0

for all non-negative integers n 6: k.
The set 1; x; x5 is both linearly independent and in nite.

Thus the algebra F* is not nite-dimensional.
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Note 3.1.

1. The algebra F* is sometimes called the algebra of formal power series

over F.

2. The element f = (fy; fy; f5; ) is frequently written as
1
fo- Ve

n-0

3.2.The Algebra of Polynomials

In this section, we de ne a polynomial over the eld F.
De nition 3.2. Let F[x] be the subspace of F' spanned by the vectors
1; x; X% An element of F[x] is called a polynomial over F.

F[x] consists of all ( nite) linear combinations of x and its powers.

i:e;; A non-zero vector f in F* is a polynomial if and only if there is
an integer n 0 such that f, 6: 0 and such that f, = 0 for all integers

k> n:

If this integer exists, then it is obviously uique and is called the degree of
f and it is denoted by deg f .

Note that, we do not assign a degree to the 0-polynomial.

Note 3.2. If f is a non-zero polynomial of degree n, it follows that
f(x) = fox°+ fixt+ x5+ + X" (f, 6 0)
1. Thescalars fy; fi; f5; ; f,, are called coe cients of f and hence we may

say that f is a polyomial with coe cents in F:

2. Polynomial of the form cx° are called scalar polynomial and frequently

we use ¢ for cx°.

3. Anon-zero polynomial f of degree n suchthat f, =1 is called a monic

polynomial.

Theorem 3.1. Let f and g be non-zero polynomials over F: Then
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(i) fg is anon-zero polynomial,
(ii) deg (fg)=deg f +deg g;
(iii) fg is a monic polynomial if both f and g are monic polynomials;

(iv) fg isascalar polynomial if and only if both f and g are scalar

polynomials;

(v) if f+g 6= 0; deg (f +g) max(deg f;deg g):

Proof. Let deg f =m and deg g=n. If k is a non-negative integer,then

m-n+k

(fPmenk = X fiOm.n.k i (3.1)

If figmen.k) i 6: 0; then we have

i m and m+n+Ki n
i;e;; i m and m+kiO
ile;; m+k<i and i m
iile; m+k<i and m ) k=0 (* k isnon-negative)

) mM+0<i and i m ) i=m

If k=0 and i =m, then (3.1), becomes

7\
(fg)m+n+0 = fmgm+n+0 m
i-0
7\
(fg)m+n = fmgn
i-0
) (fQm.n = Tmgn ifk=0 (3.2)
and (f@)mun.k = O if k>0 (3.3)

(i) If f and g are non-zero polynomials, then from (3.2), we have

(f@men = fmOn

Therefore, fg is a non-zero polynomial.

(i) Ifdeg f = m and deg g = n, then from (3.2), we have
deg(fg) = m+n
= deg f +degg
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(iii) If f and g are monic polynomials, then (3.2), we have fg is monic

polynomial.

(iv) Clearly from (3.2) and (3.3) we have, f and g are scalar polynomials if

and only fg are scalar polynomial.

(v) We can easily verify that if f + g 6: 0; deg (f +g) max(deg f;deg g)

Hence the proof.

Corollary 3.1. The set of all polynomials over a given eld F equipped with the

operations de ned by

af +bg = (af,+bgyaf, +bgy; )

and (fg)y = ~ “fgn: (=012 )

i-0

is a commutative linear algebra with identity over F:

Proof. The set of all polynomials over a given eld F is denoted by F[x]:
We know that F* is a commutative linear algebra with identity over F .
Also, we know that F[x] is a subspace of F*.

Now, our aim is to prove that F[x] is a commutative linear algebra with

identity over F:
It is enough to prove that product of two polynomials is again a polynomial.
Let f and g be any two polynomials.

Case 1: Let either f =0 or g=0: Then

n

7\

(fg)n = fign i

i-0

) product fg is zero:

Case 2: Leteitherf 0 and g 6: 0: Then by part (i) of the above theorem, we
have fg 6= 0:

Corollary 3.2. Suppose f;g and h are polynomials over the eld F such that
f 6:0 and fg = fh: Then g = h:

Proof. Giventhat fg = gh and g 6= 0.
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fg = fh
)fgfh=0
) f@h =0

) gh =0 (xfb=0

X X

Note 3.3. Let f =, fix' and g = Y Jo)’; then
fg = R fgs of X° (3.4)
s=0 r=0
The above product fg is also given by X
fg = figjxi*j (3.5)
isj
where the sum is extended over all integers pairs i; j suchthat 0 i m; and

Ojn:
De nition 3.3. Let A be alinear algebra with identity over the eld F: We shall
denote the identity of A by 1 and make the convection that °® = 1 for each
n
in A . Then to each polynomial f = 7N f;x; over F and in A we associate

i-0
anelement f( )in A by the rule

f() = fii

Example 3.4. Let C be the eld of complex numbers and let f = x* + 2.

(@) If A =C and z belongsto C; f(z) = z°+2; in particular f(2) = 6 and

1+il
= 1.

1

(b) If A isthealgebraofall 2 2 matrices over C and if

b .

LU

e f(B) = 2€
ERE

51

0
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(c) If A isthe algebra of all linear operators on C* and T is the elements of A
given by

T(Cicucs) = 0 2c;ci 2c

then f(T) is the linear operator on C* de ned by
f(T)(ciiczics) = (03¢ 0)

(d) If A is the algebra of all polynomials over C and g =x" + 3i; then f(g) is
the polynomial in A given by

f(9) X4+3i2+2

= 7 + 6ix* + x8

Theorem 3.2. Let F be a eld and A be a linear algebra with identity over F:
Suppose f and g are polynomials over F,that is an element of A , and that

c belongsto F. Then
(i) (cf+g)( )=cf()+a()

(i) (fg)( ) =f( )a( )

X X

Proof. (i) Let f = fix' and g :XO g;x', then
1

fg = figjxi*j
X X
(cf+9g) = : )
i:O(cfi)x + 0 g;x’
(cf+o)() = X : X
(cfi) }-Fj g; '
x -H
- c 1=0 f. ic+ Ag] ;
= cf()+9()
This proves (i) .
(iiyLet f = fix and g = J_Og><',then
fg = )(figjxi+j
) fg() = fig; "= f()a( )
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This completes the proof of (ii)

Polynomial ldeals

In this section we are concerned with results which depend primarily on
the multiplicative structure of the algebra of polynomials over the eld.

Lemma 3.1. Suppose f and d are non-zero polynomials over a eld V such

that deg d deg f . Then there exists a polynomial g in F[x] such that either

f dg = O or deg(f dg)<deg f

Proof. suppose

fo— anx"+ tax: a,D o0 (3.6)

and d = byxX"+ bx: b,D 0 (3.7)

Given that deg d | deg f ) n m (oN'm narjd #

aifﬂ m

a
x" " = 0 or deg f — x™"d < degf
b, b,

am
We may take g = — X

n

m n

Using this lemma, we can show that the familar process of long
divison of polynomials with real or complex coe cients is possible over

any eld.

Theorem 3.3. If f; d are polynomials overaeld F and d isdi erent from O

then there exists a polynomial g;r in F[x] such that

(i) f=dg+r:

(ii) either r=0 ordeg r < degd:

The polynomials q;r satisfying (i) and (ii) are unique.

Proof. Case1: Let f =0 (or) deg f <degd:
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In this case, let us take g = 0 and r = f:
Then, both the conditions (i) and (ii) are true.
Case 2: Let f 6= 0 anddeg f degd:

Then by lemma (3.1), there exists a polynomial g such that

f dg = 0O or deg (f dg)<degf (3.8)

If f dg 6= 0 and deg (f dg) degf, thentaking f=f dg and g=

h n(3.8), then there exists a polynomial h such that

(f dg) dh = O or deg (f dg) dh < deg(f dg)

i;e:; there exists a polynomial h such that

(f dg) dh = 0 or deg (f d(g+h) < deg(f dg)

Continuing this process as long as necessary, we ultimately obtain polynomials q

and r such that either r = 0 (or) degr<degd and f =dqg+r.
Now our claim is such polynomials q and r are unique.
If poslsible, let f = dg, + r, where r, =0 (or) degr; <degd:
) dg+r = dgi+n

) dg qi) = r r

Ifg 9. O0thend(g qi) 6= 0 and

degd+deg(q q;) = deg(ry r)

But this is a contradiction, since degr, r < degd, this is impossible.
Hence q gq,=0andalsor; r=0:

This completes the proof of the theorem.

De nition 3.4. Let d be a non-zero polynomial over the eld F. If f isin
F[x] , the preceding theorem shows there is at most one polynomial q in F[x]
such that f = dq: If such a g exists we say that d divides f, that f is divisible
by d , that f is a multiple of d and call g the quotient of f and d. We also
write g = f=d:

Corollary 3.3. Let f be a polynomial over the eld F; and let c be an element

of F. Then f is divisible by x c if and only if f(c) = O:
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Proof. Given a polynomial f , then there exists a polynomial g and r such that

f(x) = (x c)g(x)+r(x); wherer isa scalar polynomial
f(c) = (¢ c)q(c) +r(c)
f(c) = 0q(c)+r(c)

) e - 1@

Hence r = 0 if and only if f(c) = O:
ice;; f=(X c)gifandonlyif f(c)=0.
ice;; f isdivisibleby (x c) ifandonlyif f(c)=0.
Hence the proof.

De nition 3.5. Let F be a eld. Anelement ¢ in F is said to be aroot or a zero

of a given polynomial f over F; if f(c) = O:

Corollary 3.4. A polynomial f of degree n over a eld F has at most n roots

in F:
Proof. If deg f = 0, which implies that f is a constant, then there is nothing to

prove.

If deg f =1, which implies that f is a monic polynomial, then obviously f

has atmost one root.
So, we assume that the theorem is true for polynomials of degree (n 1):
Let f be the polynomial of degree n.

Let a be aroot of f:
) f

)t = (© aa()
) f() = Oifandonlyifa=b or q(b)=0

(x a)g wheredegreeofq=n 1:

where q(x) is a polynomial of degree (n 1) and hence by assumption q(x) has

atmost (n 1) roots.
Thus, f(x) has atmost n roots.

Hence the proof of the theorem.

De nition 3.6. Let f = co+cyx + X2+  +c¢, x" Then the derivative of f is

the polynomial given by
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f%x) = cp+2cx+  +ncy,x"*t
Notation:
f© = Df
9 - D’f
f® - D°f andsoon

Remark 3.2. Di erentiation is linear, that is D is a linear operator on F[x]:

Theorem 3.4 (Taylor's Formulas).
Let F be a eld of characteristic zero, ¢ an element of F , and n a positive
integer. If f is a polynomial over F with deg f n; then
n (Dk f)
t- Y e o
k-0

Proof. Taylor's formula is a consequence of the binomial theorem and the

linearity of the operators D; D% ;D"

Using Binomial theore ,gve get

(50)37=: R

Ba'“ Kpk (3.9
where k

k=0
—mt—
6”‘5 kl(m  K)!
k 123 (m KM k+D)(m k+2) (m 1)m
K1 2 3 (m k)
(m k+1)(m k+2) (m 1)m

12 3 k
- (m _O0)(m 1) (m (k 1))
- 123 k
Consider
x" = ><30)]m
X KT
- b °tx ¢)°+ 5 ¢ Mx o)t+ o+ 6 7cm ™(x ¢c)"
| i
m
x" = ¢"+mc" (x c)+ +(x c)”

when f = x™; the requirement of the theorem is satis ed.
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Now, let

) D*f(c) = am(D*x™)(c)

) D*f(c) s\ DExm

o)«
1
Dk m
~—ox o CA

@ am k!

2( mﬁ)ﬂ( D*XTe)(x ¢) C/&
.0 @m k! y

_ AN o 0 -

m-=0

= f

De nition 3.7. If ¢ is aroot of the polynomial f; the multiplicity of ¢ as a root

of f; is the largest positive integer r such that (x c)" divides f:

Note 3.4.

1. Clearly, the multiplicity of a root is less than the degree of f:

2. If f is a polynomial over a eld of charcateristic zero, the multiplicity of

c; as a root of f; is related to the number of f which are zero at c.

Theorem 3.5. Let F be a eld of characteristic zero and f a polynomial over

F with deg f n: Then the scalar c¢ is a root of f multiplicity r if and only if
(O*f)c) = 0 0 k r 1

(D" f)(c) 0

Proof. Necessary Part: Let r be the multiplicity of c as a root of f which

implies that (x ¢)" divides f .
i:e:; there exists a polynomial g such that

f - (x ¢fg and gc)0=0 (3.10)
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Now applying Taylor's formula to the function “g' we get

_ (P9 ©x o) (3.11)
m!
m=0
Using (3.11) in (3.10), we get
r &X (Dmg)
f = (x © ——c)(x ¢)
m=0 m!
7\ (D"9)

©x o™

m!
m-=0

Di erentiating both sides n times, we get
" (DX "g)

DX(f) = X — ©x ™"

k 7R (D) mr
B kﬁ_') = - ©(x c©)
m-=0

Thus, we have
ifO kK r 1

0
DY(HE) = g (D" "9)(©)

>F1:0 (k 1! ifr k n

D*(f)(c
ie:; % = 0 for 0O kK r 1
ice; Df(c) = 0 for 0 k r 1 (3.12)

When k =r, we have

D (f)(c) D" '(9)(c)

Kl k !
D'(f)c) _ D '(@() _ 1g9(
Kkl ¢ n 1
) D' (He) = rge b0
y D(f)e) b= o (3.13)

Thus the conditions (3.12) and (3.13) proves the necessary part of the theorem.
Su cient Part: Assume that the conditions (3.12) and (3.13) are true.
Now, our aim is to prove that the scalar c is aroot of f of multiplicity r.

i-e:; to prove that there exists the largest positive integer r such that (x c)'

divides f .
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If possible, assume that, r is not the largest positive integer such that (x c)"

divides f .

) there exists a polynomial h such that

f = (x ¢)™'h (3.14)

Note that when the conditions (3.12) and (3.13) are true, then there exists a

polynomial g such that

f — (x o'g andg(c)0=0 (3.15)

From (3.14) and (3.15), we have
(x o"h = (x g
) g - ( on
)o@ - 0

which is a contradiction to the condition that g(c) 6= 0.
) There exists a largest positive integer r such that (x c) divides f.
Hence the proof of the theorem.

De nition 3.8. Let F be a eld. An ideal in F[x] is a subspace M of F[x]

such that fg belongsto M whenever f isin F[x] and g isin M:
Example 3.5. If F is a eld and d is a polynomial over F.

Let M = dF[x] = [df=f 2 F[x]¢

M is the set of all multiples d f of d by arbitrary f in F[x] .

Now, our wish is to prove that M is an ideal.

Since 12Fp; d 12M ) d 2w

Thus, M is non-empty.

Next, our claim is that M is a subspace.

For this, let f; g 2 F[x] so that df;dg 2 M.

Let ¢ be a scalar.
Consider c(df) dg = d(cf g) (3.16)
~ dh2 M Where h 2 Fx] (3.17)

Thus, M is a subspace.
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Let f 2 F[x] and g 2 F[x].
f2Fx )  Ydsuchthat fd Z F[x] (3.18)
Also g 2 F[x] ) Yd such that (fd)g 2 FIx] (3.19)

which implies fg 2 M:
Thus, M is an ideal.

Note 3.5. M = dF[x] = fdf:f 2 F[x]{ is called the principal ideal generated
by d .

Example 3.6. Let di; dy; ; d,, be a nite number of polynomials over F . Then
the sum M of the subspaces d;F[x] is a subspace.

ice;; M = d;F[x] + d,F[x] + +d,F[x] is also a subspace.

Also, M is an ideal.

For this, let p 2 M:

Then by de niton, there exists f;; f; : f, 2 F[x] such that

p = dl fl + d2 f2 + + dn fn (320)

Let g be any arbitrary polynomial over F: Then,

pg = di(f.0) + do(fo9) +  + do(fn0)

) pgzM 8p2M anngF

) M is an ideal:

This ideal M is called the principal ideal generated by the polynomial
d;; dy; ;dn

Theorem 3.6. If F is a eld, and M is any non-zero ideal in F[x] , there is a

unique monic polynomial d in F[x] such that M is the principal ideal generated
by d.
Proof. Given that M is a non-zero ideal in F[x] .

) M contains atleast one non-zero polynomial. Among all the non-zero

polynomials in M, let d be one polynomial with minimal degree.
Without loss of generality, we may assume that d is monic.

Even if not, we can multiply d by a scalar to make it monic.
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If f 2 M then f = dq+r where either r=0 (or) deg r < deg d.
Note that d is a monic polynomial in M.

ydg2 M (M isan ideal)

and

f 2 M; dq2 M ) f dq2 M (* M is a subspace)

Thus r2 M where deg r < deg d in M:

This contradiction to the assumption that d is the minimal polynomial.

) The only possibility is that r = 0

Thus f = dg = a multiple of d

[* f 2 M] is an arbitrary element of M; it follows that every element of M
is a multiple of d.

) M = dF[x] (or) M is the principle ideal generated by d .
It remains to prove that d is unique.

If possible, let g be another monic polynomial such that M = gF[x] where

d2M:

) there exists non-zero polynomials p;q 2 F[x] such that

d - gp (3.21)
and g = dq (3.22)
Now.
d = gp
) d = dap
degd = degd+degp+degq
) degp+degg = O
) degp = degq=0
) p = a-1
> d =g

Thus, d is unigue.

This completes the proof of the theorem.

Corollary 3.5. If py; p2;

; pn are polynomials over a eld F , not all of which

Linear Algebra
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are 0, there is a unique polynomial d in F[x] such that

(@) d isintheideal generated by pi; p2; i Pn-

(b) d divides each of the polynomials p;.

Any polynomials satisfying (a) and (b) necessarily satisifes

(c) d is divisible by every polynomial which divides each of the polynomials
P15 P2; 3 Pn -
Proof. Let d be the monic generator of the ideal

P1F[X] + p2F[X] +  + pnF[X] (3.23)

i;e:; Every member of this ideal is Dividible by d .
i-e:;; each of the polynomials p; is divisible by d.

Now, suppose f is a polynomial which divides each of the polynomials

P1; Po2; ; Pn

p=fi ) Y apolynomial g, suchthatp, = fg
p=1, ) Ya polynomial g, suchthatp, = fg,
p=Ts ) 9a polynomial g, suchthatp, = fg,

Also (3.23) ) d 2 the ideal p;F[x] + p.F[Xx] + + pnF[X]
) 9 polynomials qg;; 0,; ;0 2 F[x] such that
d = PG+ P20z +  + Pnln
= (fg)ar + (fg2)a2 +  + (fgn)an

= f 0:09:+902+  +0nOn
) d isdivisible by f

) d is divisible by every polynomial which dividies each of the polynomials py; p,;

Thus, so far we have shown that d is the monic polynomial satisfying the given
conditions (a); (b) and (c).

It remains to prove that the uniqueness of d .

If possible, assume that d° be any other monic polynomial satisfying

conditions (a) and (b) .

ire;; d° isthe ideal generated by p:; ps;  ; Pn
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and

d° divides each of the polynomial p; .

) d’= a scalar multiple of d.

Also, here d° is monic which implies that d° = d:

Hence the proof.

De nition 3.9. Let p;; p2; ; p» be polynomials over a eld F, not all of which

are 0, the monic operator d of the ideal

p:FIX] +  + paFIX]

is called the greatest common divisor (g.c.d) of pi; ps; ; Pn - This terminology
is justi ed by the preceding corollary. We say that the polynomials p;; po;  ; pa
are relatively prime if their greatest common divisor is 1 , or equivalently if the

ideal they generate is all of F[x]:
Example 3.7. Let F be a sub eld of the complex numbers and consider the ideal

M = (x+2)F[x]+ (x* + 8x + 16)F[x] (3.24)

We assert that M = F[x]. For M contains

x*+8x+16 x(x+2) = 6x+16

and hence M contains 6x + 16 6(x + 2) = 4:

Thus the scalar polynomial 1 belongs to M as well as its multiplies.

Example 3.8. Let C kbe the eld of complex numbers. Then
(@) g.c.d. (x +2; x* + 8x + 16) = 1 (See above example)

(b) g.c.d. ((x 2)%(x +i); (x 2)(% + 1)) = (x 2)(X + i):

For the ideal

(x 2%(x+)F[x]+(x 2)(¢+i) (x 2)0E + 1)F[X]

contains

(x 2%(x+i) (x 2)(¢+1) = (x 2)(x+i(i 2)

Hence it contains (x 2)(x + i), which is monic and dividies both (x 2)%(x + i)
and (x 2)(x* +1).
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Example 3.9. Let F be the eld of rational numbers and in F[x] let M be the
ideal generated by (x 1)(x +2)%); (x+2)*(x 3); and (x 3):
Then M contains \
: |
2 (x+22(x 1) (x 2) = (x+2)?
and since

(x+2)? = (x 3)(x+7)+25

M contains the scalar polynomial 1. Thus M = F[x] and the polynomials

(x 1(x+2)); (x+2)%(x 3); and (x 3) are relatively prime.

Let us Sum Up:

In this unit, the students acquired knowledge to

the principal ideal generated by d.

the concepts of algebra of polynomials.

Check Your Progress:

1. Let F be a subeld of the complex numbers and let A be the

following 2 2 matrix over F
3 15
1 3
For each of the following polynomials f over F, compute f(A):
(@ f=x> x+2;
by f=x* 1;
(©) x* 5x+7
2. Find the g.c.d of each of the following pairs of polynomials

(@ 2x° x* 3 6x+4; x'+x* 2x 2.

(b) 3X4+8X2 3;X3+2X2+3X+6.

M.Sc.(Mathematics)-1 Year-11 Sem Linear Algebra



72 3.3. Polynomial ldeals
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UNIT-4

POLYNOMIALS AND COMMUTATIVE

RINGS

Structure

Objective

Overview
4.1  The Prime Factorization of a polynomial
4.2 Commutative Rings
4.3  Determinant Functions

Let us Sum Up

Check Your Progress

Suggested Readings

Overview

In this unit, we shall prove that each polynomial over the eld F

can be written as a product of “prime’ polynomials.

M.Sc.(Mathematics)-I Year-ll Sem 73 Linear Algebra



74 4.1. The Prime Factorization of a polynomial

Objectives
After successful completion of this lesson, students will be able to
understand the concept of monic polynomial in F[x].

understand the concept of Determinant functions.

4.1. The Prime Factorization of a polynomial

De nition 4.1. Let F be a eld. A polynomial f in F[x] is said to be
reducible over F if there exist polynomials g; h in F[x] of degree 1 such that
f gh and if not, f is said to be irreducible over F . A non-scalar irreducible
polynomial over F is called a prime polynomial over F, and we sometimes say

itisaprimein F[x].

Example 4.1. The polynomial x* + 1 is reducible over the eld C of complex

numbers.

For if,

X2+l = (x+i)(x i)

and the polynomials x +i;x i belongsto C[x].
On the otherhand, x? + 1 is irreducible over the eld R of real numbers.

For if,

x*+1 = (ax+b)@x +b%

with a;a%b:b%in R, then

aa® = 1; ab®+ba’=0; bb®=1 (4.1)

On simpli cation, we get a® + b” = 1, which is impossible with real numbers a

and b, unless a=b =0:

Theorem 4.1. Let p; f; and g be polynomials over the eld F . Suppose that p
is a prime polynomial and that p divides the product fg: then either p divides

f or p divides g.

Proof. Given that p is a prime polynomial and p divides fg:
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4.1. The Prime Factorization of a polynomial 75

Without loss of generality, we may assume that p is a monic prime

polynomial.
Thus, the only divisors of p are 1 and p.
Let d = The g.c.d. of f and p implies that d=f and d=p.
) d=1 (or) d=p: (* Theonly divisorof p are 1 andp)
Ifd=p,then p divides f also. Then the theorem is obviously true.
If d=1,then 1=g.c.d(f;p).
Thus, f and p are relatively prime.
Claim: p=g.
gcd (f;p) =1 ) 1 = a linear combination of f and p

ie:; 9 polynomials f, and p, such that

1 = fof + pop (42)
) g = fofg+ popgy (4.3)
= (fg)po + p(pPo9) (4.4)

) p dividies both (fg)p, and p(p.g) -
) p dividies (fg)po + p(po0)
i;e:; p dividies g.

Hence the theorem.

Corollary 4.1. If p is a prime and divides a product fy; f,; ; T, then p divides

one of the polynomials fy; f5; N

Proof. Here n denotes the number of polynomials in the product.
Now, we shall prove the result by induction on n.
If n = 2; then by hypothesis p isaprimeand p=f,f,.
Then by above theorem, either p divides f;, or f,.
Hence the result is true for n = 2:
Now, we shall assume that the result is true for n = k..
ice;; p=(f.f, f) ) p=f, or p=f, p=f

Now, we shall prove the theorem for n = k + 1:
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Assume that p isaprimeand p=(f.f, f.1).

Letg=f,f, f,

Then p divides gfi.1 .

) p divides g or p divides f,.1 (by assumption).

i;e;; p divides f,f, f, or p divides f.1:

Then by assumption p divides f; or p divides f, or p divides f..1.
By induction, the theorem is true for all n

Hence the proof.

Theorem 4.2. If F is a eld , a non-scalar monic polynomial in F[x] can be
factored as a product of monic primes in F[x] in one and except for order, only

one way.

Proof. Suppose f is a non-scalar monic polynomial in F[x]: i:e:; over a eld
F.

Let deg f =n.

Now, we shall prove the result by induction on n.
If deg f = 1 then f is irreducible.

Then there is nothing to prove.

) The theorem is true for n = 1:

Let us assume that the theorem is true for all non-scalar monic polynomial f

in F[x] of degree < n:

Now we shall prove that the theorem is true for any polynomial of degree n:
Case (i): If f is irreducible.

Then f is factored as a product of monic primes and the theorem is complete.

Case (ii): If f is reducible, then by de nition f = gh , where both f and g are non-

scalar monic polynomials of degree < n:
Now, g and h are polynomials of degree < n:

By using induction hypothesis both g and h can be factored as a product of

monic primes in F[x]:

) The product gh can be monic primes in F[x]
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) f can be factored as a product of monic primes in F[x].

) It remains to prove that such a product is unique.

If possible assume that f has two such products pi;ps; ;pm and
A1, Q2 3 Ont

ite;; f=pip2  Pm =002 O

where pi; p2; 5 Pm; O1; 02 On @re monic primes in F[x]:

) Pm=0192  On

By the above corollary,

) pm= either g, (or) g, (or) (or) gn:

) Pm = 0 8i=l;2; ;n

X X

Now deg f = deg p; = deg q;

If m=1and nt 1, then theére is nothing to prove.
) Letusassumethat m>1;n>1:
By rearranging the numbers qi; g»; ;. , We can have p, =Qn.

) P1p2 Pm 1Pm = (102 On 1Pm

) P1p2 Pm 1 0102 On 1

Here the polynomial p.p, pm 1 is0Of degree less than n:

By using inductive hypothesis p.p,  pm1 Can be factored as a product of

monic primes in F[x]:
) The product g.q, g, 1 can only be a rearrangement of the product
P1pP2 Pma1.

This along with the fact that q; = p,, implies that the factorisaton of f as a

product of monic primes is unique, upto the order of the factors.

This completes the proof of the theorem.

Note 4.1. Let py; pa; ; pr be distinct monic primes and ny; ny; : n, denote

positive integers such that

f _ p21 pr2'|2 p?r

Then this decomposition is also unique and is called the primary decomposition

of f.
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It is easily veri ed that every monic divisor of f has the form

e

Example 4.2. Suppose F isa eld, and let a; b; ¢ be distinct elements of F .
Then the polynomials x a;x b;x ¢ are distinct monic primes in F[x] . If

m;n; and s are positive integers, (x c)® is the g.c.d. of the polynomials

x b)"'x ¢° and (x a)"(x c¢)°

whereas the three polynomials

x b)'(x c©)% (x a)"(x c)and (x a"(x b)"
are relatively prime.
Theorem 4.3. Let f be a non-scalar monic polynomial over the eld F and let
f = pipy  p

be the prime factorization of f . For each j, Y j  k.let

nj ni

f, = f=p; = P,

Then fy; f5; ; fe are relatively prime.

Proof. We leave the proof of this theorem to the reader.

Theorem 4.4. Let f be a polynomial over the eld F with derivative f°. Then
f is a product of distinct irreducible polynomials over F if and only if f and f°

are relatively prime.

Proof. Assume that in the prime factorisation of f over the eld F; some (hon-

scalar) prime polynomial p is repeated.

i:e;; Assume f = p’h  whereh 2 Fx]
) f = 2pph
= p(2p°h)

) P is a divisor of f °
) p divides both f and f° when p is non-scalar.

Hence f and f° are not relatively prime.
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Thus, f is not a product of distinct irreducible polynomial over F which

implies that f and f° are not relatively prime.
Hence the necessary part.

Su cient Part: Now let

f = pip: P (4.5)
where pg; p,;  ; px are distinct, non-scalar irreducible polynomials over F .
) each p; is a divisor of f .
f
Let — - f (4.6)
Pj
Then f° = pifi+pyf+  +plf (4.7)

Let p be a prime polynomial which divides both f and f°
Then (4.5) implies that p = p; forsome i=1;2; ;k
Also p; divides f; for j .

Thus, p divides f° and we have p = p;.
) p; divides f °
i:e;; p; divides p;’ fi+ =+ pokfk

X

- i
) p divides  , p°f;
) p mustdivide each pif; (j=1;2; k)

(or) p; must divide p°f;

) p; divides either f; (or) p; divides p,’

But, p; cannot divide f; and also p; cannot divide p°i.
Since degree of p‘i’ is one less than the degree of p;.

Also these imply that no prime polynomial can divide both f and f° and hence

our assumption is wrong.
Hence f and f° are relatively prime.

This completes the proof of the theorem.

De nition 4.2. The eld F is called algebrically closed if every prime

polynomial over F has degree 1.
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Commutative Rings

In this section we shall prove the essential facts about determinants of
square matrices.

De nition 4.3. A ring is a set K, together with two operations (Xx; y) ' X +y

and (x;y) ' xy satisfying

(@) K is a commutative group under the operation (x;y) ' x+y(Kisa

commutative group under addition);
(b) (xy)z = x(yz) (multipllication is associative);

(€) x(y+2z)=xy+xz; (y+2z)x =yx+zx (thetwo distributive laws hold)

If xy =yx forall x andy in K, we say that the ring is commutative. If there is
an element 1 in K such that 1x = x1 = x for each x; K is said to be a ring with

identity, and 1 is called the identity for K.

Note 4.2. A eld is a commutative ring with non-zero identity such that to each

non-zero x there corresponds an element x * with xx * = 1:

For example, the set of integers, with the usual addition and multiplication is a
commutative ring with identity, but it is not a eld (since the multiplicative inverse

of any integer is the reciprocal of the integer, which is not in the set of integers).

Determinant Functions

Let K be a commutative ring with identity. We de ne an m n matrix

over K, as a function A : set of integers (i; j) [1 im; 1 jn] ) K.

As usual, we represent such a matrix by a rectangular array having m

row and n columns.

The sum and product of matrices are de ned as

(A+B)ij = Aij+Bij

VAN
(AB)ij = Aik B

k
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Sum of two matrices A and B is de ned when A and B have same

number of rows and columns.

Product of two matrices A and B when the number of columns of A is
equal to the number of rows of B.

We wish to aassign to each n n (square matrix) over K , a scalar (an
element of K ) known as the determinant of the matrix. It is possible, to
de ne the determinant of a square matrix A by simply writing down a
formula for this determinant in terms of entries of A . However such a

formula is rather complicated.

We shall de ne a determinant function on K"" as a function which
assigns to each n n matrix over K -a scalar, where these functions satisfy

some special properties.

() Itis linear as a function of each of rows of the matrix.
(ii) Its value is 0 on any matrix having two equal rows.

(iii) Its value on the n n identity matrix is 1.

De nition 4.4. Let K be a commutative ring with identity, a positive integer, and
let D be a function which assigns to each n n matrix A over K a scalar D(A)
in K.We say that D is n-linear if foreach i; 1 i n; D isa linear function

of the ith row when either the other (n 1) rows are held xed.

This de nition requires some explaination.

Explanation: If D : K"" ' K is an into function and if ; ,; ;.
denote the n rows of the matrix A 2 K" ": we also

D(A) = D( 15 25 ; n)

i;e:;; we think of D, as the function of the rows of A .
The statement that D is n -linear means
D( s 2 5 iuCi+ 5 5 n) = ¢D(5 2 5 6 5n)
+D( 5 o2 i 55 n(48)

Note 4.3. If we x all rows, except the ith row, and then regard D as a function

of the i" row, it is often convenient to write D( ;) instead of D(A).

) (4.8) can be written conveninently as
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D(c i+ :)) = ¢D( i)+ D( ?)

Example 4.3. Let ki; k,;  ;k, be positive integers, 1 k; n; and let a be an

element of K. For each n n matrix A over K, de ne

D(A) = aA(l; k)A(Z k) A(n; ko)

Then the function D de ned above is n -linear.

For if, let us regard D as a function of ith row of A, while the other rows of

A are xed.

Let D( ;) = A(i; k)b where b is some xed element of K .

Let %= A%:A%:

. A0
i i1 " 2’ ! Aﬁn '

D(c i+ ;) - CA(i:k)+A (i;k) b
= cA(i; k)b + A%i; k)b

= cD( )+D( 9 Si-1,2, :n:

Thus D is a linear function of each of the rows of A.

Note 4.4. A partciular n -linear function of this type is

D(A) = AunAz Am

In otherwords, the product of the diagonal entries is an n-linear function on

KM,
Example 4.4. Letus ndall 2 -linear functionson 2 2 matrices over K. Let
D be such a function. If we denote the rows of the 2 2 identity matrix by ;; , .
ice;; 1=(1;0) and ,=(0;1).

Then we have

D(A) D (A1 1+ A2 2, A2 1+ A2 2)
= D(A11 1;A2 1+ A2 2)+ D(A12 2; Ao1 1+ A2 2)
= AuD( 1;A2 1+ A2 2) + A2D( 2; A21 1+ A2 2)
= Au[D( 1A 1)+ D( 15 Az 1)]

+A1; [D( 25 Az 1) + D( 25 Agz 5)]
= A [AaD( 15 1) + AzD( 1; 2)]

Az [AxD( 25 1) + AxD( 2 2)]
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= AuAxnD( 1; 1) + A1nA»D( 1; 2)
A12A21D( 2; 1) + A12A2D( 2; 2)
= AuAza+ AurAxb + A Azxc + A Axd

where a = D(4; 1); b=D(q; 2); c=D(5 1); d=D(,,) areanyfourscalarsinK

Thus, D is a 2-linear function on 2 2 matrices over K.

Lemma 4.1. A linear combination of n -llinear functions is n -linear.

Proof. It su cies to prove that a linear combination of two n -linear functions is

also n-linear.

Let D and E be n-linear functions. If a;b 2 K, the linear combination of D
and E are de ned by

(aD + bE)(A) = aD(A) + bE(A)

Let us x all rows of A except its ith row. Then

@D +bE)(c i+ °) = aD(c i+ %) +bE(C ;+ 9

_ acD( )+D( ;) +b cE( )+E( )
= acD( ;) +aD( °) +bcE( ;) + bE( °)

_ [acD( ) +bcE( )]+ aD( ) +bE( )
= c[aD( ;) +bE( )]+ aD( }) +bE( %)
- c[aD+bE]( ;)+[aD +bE]( %)

) aD +bE is n-linear.

This completes the proof of the lemma.

Note 4.5. If K is a eld and V is the set of n n matrices over K , the above

lemma says that the set of all n -linear functions on V is a subspace of the space

all functions from V into K.

Example 4.5. Let D be the function de ned on 2 2 matrices over K by

D(A) = AuAx ApAx (4.9)

If Di(A) = ApnA,, and D,(A) = ApA,, then
D = Dl + D2 .

i;e;; D is alinear combination of two 2 -linear functions D; and D, .
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Thus, D isa 2 -linear function.

Note 4.6.

1. If listhe |6entit atrix of order 2.

ier; 1= then D(I) = 1(1) 0(0) = 1:
10
g 1"
ice;; If 1 =(1;0); ,=(0;1) then D( y; 2)= 1: 3
. A A
If the two rows of A are equal ie:; A =6 5
Ann A

then D(A) = A11A12  AuA = 0:

3. IfA%is th? matrix o?tained from 2 2 matrix A; by interchanging its

rows. A A 2 3
ie; A= g H 12
v Aoy Axp
. Al
Az Ay v A =6 3
A Agp

then D(A°) = AxuAn AuAp

[A11A22 Az A12]

D(A)

De nition 4.5. Let D be an n -linear function. We say D is alternating (or)

(alternate) if the following conditions are satisi ed:

(@ D(A) = 0 whenever two rows of A are equal.

(b) If A° isa matrix obtained from A by interchanging two rows of A then

D(A° = D(A).

De nition 4.6. Let K be a commutative ring with identity, and let n be a positive
integer. Suppose D is a function from n n matrices over K into K. We say

that D is a determinant function if D is n-linear, alternating and D(A) = 1:

Lemma 4.2. let D be a 2 -linear function with the property that D(A) = 0 for

all 2 2 matrices A over K having equal rows. Then D is alternating.
Proof. Our wish is to prove that if A is a 2 2 matrix and A° is obtained by
interchanging the rows of A, then D(A®) = D(A):

If the rows of A are and , itsu cies to show that

D(;)=D(; ).
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Given that D is 2 -linear.

D( +; +) = D(:)+D(;)+D(; )+D(; ) (4.10)

Also, giventhat D(A) =0; ice;; D(+;+)=0;D(;)=0; D(; )=0
Thus, the equation (4.10) reduces to
0 = D(; )+D(;)

ice;; D(; ) = D(; )

Lemma 4.3. Let D be an n -linear function on n n matrices over K . Suppose
D has the property that D(A) = 0 whenever two adjacent rows of A are equal.

Then D is alternating.

Proof. Now, our aim is to prove that D is alternating.

i:e:; itis enough to prove that

(i) D(A) =0 ifany two rows of A are equal.

(i) D(A% = D(A),if A° isobtained from A by interchanging any two rows
of A.

First, let us assume that, A° is obtained from A by interchanging two adjacent

rows of A.

Thus, by above lemma, we have ) D(A% = D(A):

This proves (ii).

Let B be obtained from A , by interchanging the i and j" rows of A , where
i<j:

This process can be done as follows:

We begin by interchanging i" row with the (i + 1)th rows. We continue, this

process, until the rows are in the following order:

EPER T B N T PR P P S P (4.11)

The above requires k = j 1 successive interchange of adjacent rows.

In the above order (4.3), let us move ; to the ith position by using (k 1)

interchange of adjacent rows.
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At the end of this, we obtained B from A by performing K+ (k 1) =2k 1

successive interchanges of adjacent rows.

Thus, D(B) = ( 1)*'D(A)=( 1)D(A) = D(A) (4.12)
Suppose A isany n n matrix with two equal rows says ;= ; wherei< j:
If j=i+1; then ; =; implies the matrix A has two equal adjacent rows.

Then by (4.12), we have D(A) = 0:

If i > j+ 1, then we interchange ;.1 and ; which implies the resulting
matrix B has two equal adjacent rows.

Thus from (4.12), we have D(B) = 0.
) D(A) = 0:
ice;; D(A)=0.

This proves (i) .

De nition 4.7. If n>1 and A isan n n matrix over K, we let A(i]j) denote
the (n 1) (n 1) matrix obtained by deleting the i row and j™ column

of A. If D isan (n 1) linear function and A isan n n matrix, we put

Dij(A) = D A(ilj) :
Theorem 4.5. Let n> 1 and let D be an alternating (n 1) -linear function on
(n 1) (n 1) matricesover K.Foreach j;1 j n,thefunction E; de ned

by
Ei(A) = i/}( 1)i+injDij(A)

is an alternating n -linear function on n n matrices A. If D is a determinant

function, so is each E;j:

Proof. Let A bean n n matrix.

Then by above de nition, we have
Dij(A) = D A(ilj)
) Dj;(A) is independent of the ith row of A. Since D is (n 1) linear.

Thus, Dj;is a linear as a function of any row of A, except its ith row.

) AiD;ij is an n-linear function of A.
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We know that a linear combination of n-linear functions is also n-linear.
Given that
n

E(A) - /\( 1)i+iAi,.Di,-(A) (4.13)
i-1

Thus, E;(A) is a linear combination of n-linear functions.
ice;; Ej(A) is n-linear.
Now, we shall prove that E; is alternating.

It is enough to show that E;(A) = 0 whenever A has two equal and adjacent

rows.
For this purpose, let the two adjacent rows  and .1 be equal.
(ie) k= ket

If i 6: k and i 6= k + 1, the matrix (A(ijj) has two equal rows and thus

Dij(A) = D A(i]j) =0
(or) D;j(A) =0 for i 6= k and i 6: k+1.

In the summation for E;(A), the only surviving terms are when i = k and
i=k+1:

) Equation (4.13) we have

Ei(A) = ( D"IAGDGA) + ( )" IAgy jDyj (A) (4.14)

Here = .1 (or) The kth and (k + 1)th rows are equal.

) A = Akej (4.15)
and AK) = Ak=+1]j) (4.16)
) Di(A) = D AK) (A)

= D Ak+1)]j) (A
= Dg.nj(A)

Dk, 1)j(A) (4.17)

(or) Dj(A)

Using (4.15) and (4.17) in (4.14), we get

EA) = O (4.18)

Thus, E;j is alternating.

Hence proof of part (i) is completed.
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Next, we shall prove that E ; is a determinant function, if D is a determinant

function.

i-e:; to show that E;is n-linear, alternating and E;(I) = 1:

From part (i), we have E;is n-linear and alternating.

Hence, it remains to prove that E;(l) = 1:

Let 1™ denote the n n identity matrix.

) I"(j]j) is the matrix obtained from 1™ by deleting its jth row and jth

column.

) 10 = The( 1) (0 1) identity matrix 16 D

Also, note that 1™ = |
ij

Now Putting A = IV in (4.13), we

E]- 1M

) E; 1™

But D" Y) =1

) Ei(1™ =1

Thus, E;is a determinant function.

t

n P
( DD
ij i

i-1

X

i1 (Zil)“" D 17(iH)

(D @D 1

D I(n 1)

This completes the proof of the theorem.

)

Corollary 4.2. Let K be a commutative ring with identity and let n be a positive

integer. Then there exists at least one determinant function on K" ",

Proof. Let us prove the result by the principle of induction on n.

We know that there exists determinant funciton on 1 1 matrices over K and

on 2 2 matrices over K.

Thus D is a determinant function.

Hence the result is true for n=1 (or) n=2:

By the principle of induction, let us assume that the result is true for all

(n 1) (n 1) matrices over K.

Linear Algebra
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4.3. Determinant Functions 89

i-e;; Assume that, there exists determinant function on K" @D

Theorem 4.5 tells us explicitly how to construct a determinant functionon n n

matrices.

) 9 a determinant function on K" ".

Thus, the result is true for all n:

This completes the proof of the corollary.
Example 4.6. If B isa 2 2 matrix over K ,we let

|B] = B1Ba2 Bi12B2

Then |B]= D(B), where D is the determinant function on 2 2 matrices.

Now, we show that this function is unique on K* 2. Let

A 611 A Az (4.19)
A£31 Az'g\sz Az’;\xs

bea 3 3 matrix over K.

If we de ne E;; E, and E; as in Theorem 4.5, then

E(A) = A Az As Az A Az Asg
1 N A Az A A + Az A A
32 33 32 33 22 23
_ A1 Az 11 13 11 13
Ez(A) A12 A A +Ap ﬁ A Az ﬁ ﬁ
31 33 31 33 21 23
A A A A A A
E(A) = A 21 22 11 12 11 P12
3( ) 13 A A A23 A A + A33 A A
31 32 31 32 21 22

From Theorem 4.5, we conclude that E;; E, and E; are determinant functions.
Actually, we have to show that E; = E, = E;

By expanding the each of the above expressions, we can easily veri ed. Instead

of doing this, we give some speci ¢ examples.

(a) Let K = R[x] and g
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Then,
E A = X2 1o D 2k 3
0 x 3
E.(A) = x20 ! + (x 2)x tox -(x KX 2)(x 3)
0 x 3 0 x 3
0 x 2 x 1 % x 1 x°
and ES(A) = x30 0 )

= (x D&x 2k 3)

(b) Let K =R and 2 3
1 o7

A=W 01

1 0 0

Then

E,(A) = 0 _1

0 1
E (A) = =1

A) o 1

1 0

0 1
E(A) - -1

10

Let us Sum Up:

In this unit, the students acquired knowledge to

the prime polynomials.

the properties of determinant functions.

Check Your Progress:

1. Each of the following expression de ne a function D on the set 3 3
matrices over the eld of real numbers. In which of these cases is D
a 3-linear functions?
(@) D(A) = A1 + Az + Aszg;
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(b) D(A) = (A11)* + 3A11A;
(c) D(A) = AuApRAS;

(d) D(A)=0;

(e) D(A)=1.

2. Let K be a commutative ring with identity. If Ais a 2 2 matrix

over K , the classical adjoint of A jsthe 2 2 matrix adj A de ned

by
22
adj(A) = 52 A A:TS

If det denotes the unique determinant function on 2 2 matrices over
K, show that

Yl

(@) (adj A)A = A(adj A) = (det A) = I;
(b) det(adj A) = det(A);
(c) adj(A) = (adj A)'

( A" denotes the transpose of A)

Suggested Readings:

1. M. Artin, Algebra, Prentice Hall of India Pvt. Ltd., 2005.

2. S.H. Friedberg, A.J. Insel and L.E Spence, Linear Algebra, 4"
Edition, Prentice-Hall of India Pvt. Ltd., 2009.

3. I.N. Herstein, Topics in Algebra , 2" Edition, Wiley Eastern Ltd,
New Delhi, 2013.

4. J.J. Rotman, Advanced Modern Algebra , 2" Edition, Graduate
Studies in Mathematics, VVol. 114, AMS, Providence, Rhode Island,
2010.

5. G. Strang, Introduction to Linear Algebra , 2" Edition, Prentice
Hall of India Pvt. Ltd, 2013.
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UNIT-5

DETERMINANTS

Structure

Objective

Overview
5. 1 Permutations and the Uniqueness of Determinants
5. 2 Additional Properties of Determinants

Let us Sum Up

Check Your Progress

Suggested Readings

Overview

In this unit, we shall discuss the uniqueness of the determinant
function

Objectives
After successful completion of this lesson, students will be able to
understand the concept of permutation of determinant.

understand the additional properties of determinants.
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Permutations and the Uniqueness of Determinants

In this section, we prove the uniqueness of the determinant function on
n n matrices over K . The proof will lead us quite naturally to consider

permutations and some of their basic properties.

De nition 5.1. A sequence (ki; ky; ; k,) of positive integers not exceeding n
with the property that no two of the k; are equal is called a permutation of degree

n.

Note 5.1. If  is a permutation of degree n, one can pass from (1;2; ;n) to
( 1; 2; ; n) by a succession of interchanges of pairs, which can be done in

several ways.

No matter how it is done, the number of such interchange of pairs, will be

always either even or odd. The permutation is then called even or odd respectively.

Theorem 5.1. Let K be a commutative ring with identity and let n be a positive
integer. There is precisely one determinant function on the set of n n matrices

over K, and it is the function det de ned by

det(A) = “Msgn YA@ 1) A n) (5.1)

where sgn is the sign of the permutation

If D isany alternating n -linear function on K"", then for each n n matrix

A,

D(A) - (det A)D(1) (5.2)

Proof. Suppose D is an alternating n-linear function on n n matrices over
K.

Let A bean n n matrix over K whose rowsare ; 5, : .
Let &5 ; n denote the rows of Identity matrix of order n n; over K.

In this case, we know that

Linear Algebra M.Sc.(Mathematics)-I Year-11 Sem
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= "YAGh, @ i (5.3)
Now D(A) - bﬂx 2 0w é
= ;@B AL D) J} G nCA(takingi=1in(5.3))
= AL ))D i 25 n (*Dislinear)
i
I O
= A(L; j) C Ak
= AL J)  AEZKD(j k5 on)
j k

Continuing the process in the same way after a nite number of steps say n, then

we have
7\
D(A) = AL kA k) AMK)D( ks ki 5 k) (5.4)
k1;k2; ;kn
In (5.4), the sum is extended over all sequences (ki k,; ;k,) of positive

integers, whose number does not excee n.

Thus, D is a nite sum  of  functions, given by
D(A) = aA(1; k)A(2: kz) AN kn)

Since D is alternating,

) D(k; ks k) = 0

whenever two of the indices k; are equal.
ice;; D(k,; i & k) = 0; if the sequence is not a permutation.

In (5.4), it is enough, if we perform the summation only over those sequences

which are permutation of degree n.

Note that a nite sequence (or) an n -tuple, is a function de ned on the rst n

positive integers.

) A permutation of degree n may be de ned asa 1-1 function  from
fl;2; ;n{ onto f1;2; ;nf:
Such afunction correspondstothe n-tuple ( 1; 2; ; n) and hence this

functions is simply a rule for ordering 1;2; ;nin some well-de ned manner.

) if D is an alternating n-linear function and A isan n n matrix over K,

we then have
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pAa) - ‘MA@ 1) AM MD( 1 W) (5.5)

where the sum is extended over distinct permutations of degree n.

Next, we shall prove that

D( 15 ; n) = D(u ) (5.6)

where the sign depends only on the permutation
The reason for this as follows:

The sequence ( 1; 2; ; n) can be obtained from the sequence

(1;2; ;n) by a nite number of interchanges of pairs of elements.

For example, if 1 6 1,wecantranspose 1 and 1,obtaing ( 1; ;1; ).
Proceeding in this way we shall arrive at the sequence ( 1; ; n) after nor

less such interchanges of pairs.

Since D is alternating, the sign of its value changes each time that we

interchange two of the rows ; and ;.

Thus, if we pass from (1;2; ;n) to ( 1; 2; ; n) through m

interchange of pairs (i; j) we then have

D( s :n) = (D™D(s 50 (5.7)

In particular, if D is a determinant function, then we have

D( & ;a) = (D7 (5.8)

where m depends only upon  not upon D.

Thus all determinant functions assign the same value to the matrix with rows

epsilon 1; ; n and this value is either +1 or 1:
We de ne the sign of a permutation by
sgn - Q+1 if iseven

5. 1 if is odd

This basic property of permutations canbe deduced from what we understand by
determinant function. The integer m occuring in (5.7) is even, if is an even

permutation and m is odd, if is an odd permutation.

) (5.7) becomes
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D( 15 5 n) = (sgn )D( 1 :n)

Thus, equation (5.5) becomes
7\

D(A) = A 1) A(n; n)(sgn )D( 15 2n 5n)
X |

= (sgn HA(L 1)  A(n; n)(sgn ) D(I)

where | is the identity matrix of order n  n whose rows are i; »; ;..

This implies that, there is precisely one determinant function on n n matrices

over K.

We call this function by det A and it follows that

det(A) - “Vsgn )AL 1) A®M; n) (5.9)

Thus, we have

D(A) - det (A)D(I)

Hence the theorem.

Important Observations:

Now, we have an explicit formula for determinant of an n n matrix (5.9)
and since this formula involves permuations of degree n, let us conclude

this section, by making the following observations about permuations:

1. There are exactly n'=1 2 n permutation of degree n.
If  is such a permutation, there are n possible choices for 1.

Once this choice is completed, there are (n 1) choices for 2; (n 2)

choices for 3;

) Thereare n(n 1)(n 2) 2 1-=n! permuations

2. Since there are n! such permutation ; (5.9) gives det(A) as a sum
of n! terms, one for each permutation of degree n.

3. A given term is a product A(1; 1) A(n; n) of n entries of A, one
entry from each row and one from each column, and is pre xed by
either + or sign according as the permutations is even (or)
odd.
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4. When permutations are regarded as 1-1 function from the set

fl; 2; ;n{ onto itself, we can de ne a product of permutations.

The product of two permutations and will simply be the
composed function de ned by

¢ H)o» = M

5. If  denotes the identity permutation, then

(i) = i

6. If is the identity permutation, then each has an inverse *

such that

From these observations, we can say that the operation of composition, the
set of permutations of degree n is a group. This group is usually called the

symmetric group of degree n.

Remark 5.1.

sgn () = (sgn )(sgn )
In other words is even if both and  are either both are even (or) when
both are odd and is odd if one of the permutations is even and the other is
odd.

Theorem 5.2. Let K be a commutative ring with identity, and let A and B be

an n n matrices over K. Then

det (AB) = (det A)(det B)

Proof. Let B be a xed n n matrix K.

For each n n matrix A, de ne

D(A) = det (AB)

Denote the rows of A by 4 5 ;

D( 1 2+ o) = det(.B; ;.B)
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Here ;B denotes 1 n matrix which is the product of the 1 n matrix ; and

the n n matrix B . So that ;B is a matrix of order 1 n (or)

matrix.

Also, ¢ {+ ° B=c B+ °Band detisn -linear.

i
Thus D is linear.

Next, we shall prove that D is alternating.

iB is a row

i;e:; top[rovethat D( ;; »; ; ) =0 if any two rows are equal.

) If = ; whichimplies B= B.

Thus, two rows of det ( ,B; ,B; ; ,B) are equal.
Hence det ( 1B; ,B; ; ,B) is alternating.

) D is alternating.

Thus, D is n-linear and alternating and by Theorem 5.1,

D(A) = (det A)D(I)
But D(I) = det (IB)
) D(1) = detB

Substitute (5.11) in (5.10), we get

D(A) = (detA)(det B)

This completes the proof of the theorem.

(5.10)

(5.11)

5.2. Additional Properties of Determinants

In this section, we shall relate some of the useful properties of the

determinant function on n n matrices.
Result 1: If A' denotes the Transpose of A, then prove that

det (A") = det (A):

Proof. Let be a permutation of degree n, then

M.Sc.(Mathematics)-1 Year-11 Sem
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AlG; i) = A(i)

det(d) - “Msgn HA( L1 A( nin)
wheni = 6

CAC KD = AGE TI)

) A( L1 - AQL 1)

A( n;n) = A(m; 'n)
) AC LDA( 22) A( mn) = A(L; 'DAR '2)  A(n; 'n)
Also oo

) (sgn ) sgn * 1

(or) both sgn  and sgn ' are either +1 (or) they both are either 1:

) ineithercase, sgn( )=sgn *

Further,as  varies over all permutations of degree n.

! also varies over all pXUtations of degree n.
det(AY) = sgn ' A( 1;1) A( n;n)

= delt(A)

Result 2: If B is obtained from A, b y adding a multiple of one row of A

to another (or by adding a multiple of one column of A to another), then

det B = detA

Proof. Let us prove the result for the case of rows. (A similar proof will hold for

the case of columns).

Let us assume that B is obtained from A by adding a multiple of row ; to

the row ; where i< j.
i-e:; B is obtained from A , by adding c ; + ; (where i< j).

Since the function det is linear, as a function of ith row, we have
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detB = det( 1 25 5 iuC j+ & 5 5 o) (xi<j))
= det( s 22 5 iu o6 5B 5 on)
N (T I S O H M |
= det( 1 25 5 iuow o5 3on)
+( 1 o2 5 oinon B 5 o)
= detA+0
= detA

Hence the result.

Result 3: Suppose we have an n2 n mgitrix of the Block Form
N
0 C

where A isan r r matrix,2c is 3n s s matrix, B is r s,and 0 denote

the s r zero matrix. Then

dEt& 5 = (det A)(det C)

]

D(A;B;C) = det AB
i

A B
0 C

Proof. Letusde ne

(5.12)
0 C

Now our claim is to prove that D(A; B; C) = (det A)(det C) .
Letus x A and B, and allow C to vary.
(We know that D is alternating and C isan s s matrix).
D is alternating and s -linear function of the rows of C.

Hence by theorem we have

D(A;B;C) = (detC)D(A;B;I) (5.13)

where | is the identity matrix of order s s.
Now, consider D(A; B; I):
D(A;B;1) = D(A;0;1) (5.14)

) D(A;0;1) = (det A)D(I;0;1) (5.15)
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¥

D(;0;1) = det 6 7 =1 (5.16)

0 v
) D(A;0;1) = detA (5.17)
) D(A;B;1) = detA (5.18)

Thus, from (5.13), we have

D(A;B;C) = (detC)(detA)
Hence the problem.

Example 5.1. Suppose K is the eld of rational numbers and we wish to compute
the determinant of the 4 4 matrix é 3

Azﬁgzoz
ﬂlle,lﬂ%

3

7

7

Solution. Given that
1 3

-
PR, 0
ﬂlslﬂ%

By subtracting suitable multiples of row 1 from rows 2, 3 and 4, we obtain the

1

matrix 3
1 1 2 3 77
P 4 44
&0 5 9 1L 76
0 3 1 3

5
If we subtract 7 of row 2 fromrow 3 and then subtract 7 of row 2 from row

4, we obtain g
1 1 2 3
0 4 4 4
B =
0 4 05
Linear Algebra
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and again det B = det A. The block form of B tells us that

1 1 4 8
det A = detB - - 4(32) - 128

0 4 4 O

De nition 5.2. The n n matrix ad j A; which is the transpose of the matrix of

cofactors of A, is called the classical adjoijnt of A .

De nition 5.3. An n n matrix A over K is said to be invertible over K if

there isan n n matrix A * with entries in K, such that

AAL AlA- (5.19)

Theorem 5.3. Let A bean n n matrix over K. Then A is invertible over K
if and only if det A is invertible in K. When A is invertible, the unique inverse

for A is

Al - (detA) 'adjA

In particular, an n n matrix over a eld is invertible if and only if its determinant

is di erent from zero.

Proof. Now, letn>1and let A beann n matrix over K . We have already
seen that we can construct a determinant function on n n matrices, if we are
given a (n 1) (n 1) matrix. We also know that a determinant function is

unique.

Then

Ei(A) = A( )i;-injDij(A)
i1

is an alternating n -linear function on n n matrices.

If we x any jth column,
n

X

detA - . ( 1" det Ailj) (5.20)

Here the scalars ( 1)'+idet A(i]j) is usually called the i; j cofactor of A (or) the

cofactor of the (i; j)th entry of A.

Let Cij = ( 1)"*idet A(i]j) then we have
n
det A = 7N AijCij (521)

i-1
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where the cofactor C;; is ( 1)1 times the determinant of the (n 1) (n 1)

matrix obtained by deleting the ith row and jth column of A.
JAN
Next, out claim is to prove that AyCij=0 if j k
i-1

For, replace the jth column of A by the kth column of A and call the

resulting matrix B.
i;e;; The matrix B has two identical column in jth and kth columns.

) detB=0

Since B(i]j) = A(ij) ,we have

0O = detB

X iidet B(ilj)

( 1)"'B

= ( 1)IA, det Ai]j)
i-1
In\
= AiCij
i-1
n

) ey, = o0ifjbok

i-1

These properties of the cofactors can be summarized by

n
"NAC; = pdetA (5.22)

i-1

By the de nition of classical adjoint of A, we have
(adj A)ij = Cji (523)

= ( 1)"idet A(jli) (5.24)

The formulas (5.22) can be summarised in matrix equation

(adj A)A = (det A)l (5.25)

It can also be proved that A(adj A) = (det A)l .
Since A‘(ijj) = A(ijj)t , we have

( D™idet A'(ilj) = ( 1)"'det A'(jli) (5.26)

which simply says that the i; j cofactor of A' isthe j;i cofactor of A.
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Thus, we have

adj (A) = (adj A)" (5.27)

By applying (5.25) to A", we have

(adj AYA" = (det A"l = (det A)I

Taking tranpose on both sides, we get

A(adj A)' = (det A)I

Using (5.27), we have

A(adj A) = (det A)l

The facts (ad j A)A = (det A) =1 and A(ad j A) = (det A)l tells us the following

fact about the invertibility of matrices over K .

If the element det A has a multiplicative inverse in K, then A is invertible

and

Al - (detA) 'adjA (5.28)

is the unique inverse of A .

Conversely, if A is invertible over K, the element det A is invertible in
K.

Note 5.2. Similar matrices have the same determinant, that is if P is invertible
over K and B = P AP, then det B = det A:
Cramers Rule:

Now, we shall discuss for solving systems of linear equations.

Suppose A isan n n matrix over the eld F and we wish to solve the

system of linear equations AX =Y for some given n-tuple (y:;vs  ;Va) -

If AX =Y, then we have

(adj A)AX = (adjA)Y
) (@etA)X = (adjA)Y
) (det A)x; = " Yadj A)jiYi

i-1

X |

i1 ( 1) lydet Ailj)
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This last expression is the determinant of the n n matrix obtained by
replacing the jth column of A by Y.

If det A = 0, then there is nothing to discuss.

So, det A 6= 0. Let A bean n n matrix over the eld F such that

det A 6= 0.1f yi;y,; ;y, are any scalars in F, the unique solution

X = A'Y of the system of equation AX =Y is given by
det B;
Xj = ;

det A

i=L2; ;n

where B; isthe n n matrix obtained from A by replacing the jth column
of A by Y.

Let us Sum Up:

In this unit, the students acquired knowledge to

nd the value of the determinant.

the inverse of the matrices.

Check Your Progress:

1. If K isacommutative ring with identity and A is the matrix over K

260ab

A=$a 0c5

b ¢ O

given by

Show thatdet A=0.

2. Prove that the determinant pf the VaRdermonde matrix

1 a a°

i e

is (b a)(c a)a b):

3. Use the classical adjoint formula to compute the inverse of each of

the following 3 3 real matrices.

Linear Algebra M.Sc.(Mathematics)-I Year-11 Sem



5.2. Additional Proper‘ties of Determinants 107

2623 237
be 0 2]

@

(b)

605 0 3837

i,

sin 0 cos

4. Use Cramer's rule to solve each of the following systems of linear

equations over the eld of rational numbers.

(@)
X+y+z = 11
2x 6y z = O
3Xx+4y+2z = 0
(b)
3x 2y = 7
3y 2z = 6
3z 2x = 1

Suggested Readings:

1. M. Artin, Algebra, Prentice Hall of India Pvt. Ltd., 2005.

2. S.H. Friedberg, A.J. Insel and L.E Spence, Linear Algebra, 4t
Edition, Prentice-Hall of India Pvt. Ltd., 2009.

3. L.N. Herstein, Topics in Algebra, 2" Edition, Wiley Eastern Ltd,
New Delhi, 2013.

4. J.J. Rotman, Advanced Modern Algebra, 2" Edition, Graduate
Studies in Mathematics, VVol. 114, AMS, Providence, Rhode Island,
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2010.

5. G. Strang, Introduction to Linear Algebra , 2" Edition, Prentice
Hall of India Pvt. Ltd, 2013.
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UNIT-6

ELEMENTARY CANONICAL
FORMS-I

Structure
Objective
Overview
6. 1 Introduction
6. 2 Characteristic Values
6. 3 Annihilating Polynomials
Let us Sum Up
Check Your Progress

Suggested Readings

Overview

In this unit, we shall discuss the characteristic value and
characteristic vector of a linear transformation.
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Objectives
After successful completion of this lesson, students will be able to
understand the concept of minimal polynomial.

explain the concept of diagonalization.

6.1. Introduction

Our principal aim is to study linear transformation on nite-dimensional
vector spaces. On this front, we have seen many speci ¢ examples of linear
transformation and proved some few theorem about the general linear
transformations.

In the nite-dimensional case,we have used ordered bases to represent
Linear transformation by matrices. We have explored the vector space
L(V; W) consisiting of linear transformation from Vv to w and then we
studied L(V;V), consisiting of linear transformations of Vv into itself.

Given the linear operator on an n -dimensional space V . If we could nd

an ordered basis B _f 1, 2, o) of V inwhich T can be represented
by a diagonal matrix DS of thezform. 3
Cq 0 0
|
%O c, O 01
D = YO 0 c3 0
ﬁ0 0 O cni

We can gain considerable information about T . For example, the numbers
like rank of T and determinantn of T can be determined by simply looking
at D:

Now, few questions are raised now?

1. Can each linear operator T be represented by a diagonal matrix in
some ordered basis? If not, for which operators T does such a basis
exists?

Linear Algebra M.Sc.(Mathematics)-I Year-11 Sem



6.2. Characteristic \VValues lll

2. If there is such a basis, how to nd it?

3. If there is no such basis, what is the simplest type of matrix, by which
we can represent T ?

6.2. Characteristic VValues

Note that we can explicitly describe the range space and null space of T
by using D. Since [T]e = D ifand only if T( ) = ¢« « 8k =12, ;n
the range will be nothing but the subspace spanned by those is whose
coe cient ¢, = neq0 and the null space will be the subspace spanned by
those OE whose coe cient ¢, =0.

In otherwords, we can study vectors which are sent by T into scalar
multiplies of themselves.

De nition 6.1. Let V be a vector space over the eld F and let T be a linear
operator on V . A characteristic value of T is a scalar ¢ in F such that there is
a non-zero vector inV with T ( )=c: Ifc isa characteristic value of T ,
then

1. any such that T ( ) = c is called a characteristic vector of T

associated with the characteristic value c;

2. the collection of all suchthat T ( )= ¢ is called the characteristic

space associated with c.

Note 6.1. Characteristic values are often called characteristic roots, latent roots,
eigen values, proper values or spectral values. In this book we shall use only the

name characteristic value .

Remark 6.1. If T is any linear operator and c is any scalar, the set of vectors

such that T( )c is a subspace of V.

1. Itis the null space of the linear transformation (T cl).

2. Letthesubspace [ T()=c {bO @
e (T c)() O 0( ) where O-¢
ice:;; (T c)()
) (T clisnotl-1

0 where 6: 0:
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3. If the underlying space V be nite dimensional, (T cl) failstobe 1-1
if det(T c)B o

Theorem 6.1. Let T be a linear operator on a nite-dimensional space VV and

let ¢ be a scalar. The following are equivalent.

1. c isacharacteristic value of T .
2. The operator (T cl) is singular (not invertible).

3. det(T cl)=0:

Proof. (i) ) (i) :
Assume that c is a characteristic value of T .
) The ooperator T cl isnot 1-1.
) T cl issingular (or not invertible).
y @) G,
(ii)) (iii) :
Assume that the operator T cl is singular or invertible.
) The null spaceof T ¢l = fog:
) fir —cp=for
) f j(T cl) = fog:
) det(T cl) =0:
(i) ) (:
Assume that det (T cl)=0.

Note that the expansion of det(T cl) will be a polynomial of degree n in the

variable c.
The characteristic values are nothing but the roots of this polynomial.
) *¢? is a characteristic value of T .
) i) ).
This completes the proof of the theorem.

Note 6.2. If B is any ordered basis for V and if [T ]z = A; then T cl is
invertible if and only if the matrix A cl is invertible. Accordinly we make the

following de nition.
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De nition 6.2. If A isan n n matix over the eld F, a characteristic value
of A in F is a scalar c in F such that the matrix (A cl) is singular (not

invertible).
Remark 6.2. Let ¢ be a characteristic value of A.
) det(A cl) =0
) det(cl A)=0.
Note that, if f = det(xl A)
Then det(cl A) =0 ) f(c)=0

) The characteristic value of A in F are nothing but the scalars ¢ in F for

which f(c) = 0.

Hence f = det(xl A) is called the characteristic polynomial of the matrix

A.

Note that f = det (xI A) is a monic polynomial of degree n.

Lemma 6.1. Similar matrices have the same characteristic polynomial.

Proof. Assume that the two matrices A and B are similar.
Then by de nition, B = P'AP.

Now our aim is to prove that the characteristic polynomial of A and B are

same.
ie:; to prove that det (xI A) =det(xI B) .

Consider

det(xl B) = det(xl P 'AP)
= det(P 'xIP P 'AP)
= det[(P'xl P 'A)P]
= det[P'(xI A)P]
= det p* det(xl A)det(P)

= det(xl A)

Note 6.3. This lemma enables us to de ne the characteristic polynomial of the
operator T as the characteristic polynomial of any n n matrix, which represent

T is same ordered basis of V .
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Just in the case of matrices, the characteristic values of T will be the roots of

the characteristic polynomial for T .
) T cannot have more than n distinct characteristic values.

It is important to point out that T may not have any characteristic values.

Example 6.1. Let T be a linear operator on R? which is represented in the

standard ordered basis by the matrix

The characteristic polynomial for T (or for A) ig
det(xI A) = 6 1 =+ 1
]

1 x

) det(xl A) =0 ) x2+1=0 ) X = i which are not real.
Thus, the operator T has no characteristic values.

However, if U is any linear operator on C? which is represented by

;

1 0

A =

then U has two characteristic value i and i.

) In discussing the characteristic values of a matrix A, we must specify the
eld involved. The matrix A above has no characteristic value in R, but has the

two characteristic value i andi in C.

Example 6.2. Let A be the real 3 3%.

31 1
A = @2 2
1

2 2 0

Find the characteristic values and characteristic roots associated with the

characteristic values.

Solution. The characteristic polynomial for A is
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det(xI A) = 2 x 2 1

= x® 5x°+8x 4

- (x I(x 2)?

Thus, the characteristic values of A are 1 and 2.
Let T be a linear operator on R® which is represented by the above matrix A,
in the ordered basis.

Next, we shall nd the characteristic vectors associated with the characteristic

values 1 and 2.
If the characteristic value is 1

A.%“ﬁ%%
$21
55

2 1
gz 1 1?
~ ko2
Here det (A 1) = 0 which implies that rank of (A 1) 6: 3:

Consider any 2 2 minor of A | and nd its determinent.

] 2 1 ] 2 1
For instance, = 0 but For instance, =2
2 1 2 2

) rankof (A 1)=2 andhence T | ha s nullity equal to 1.

So the space of characteristic vectors associated with the characteristic value

is 1 -dimensional.

The vector ; = (1;0;2) span the null spaceof T 1.

) T( )= ifandonlyif isascalar multiple of ;.
If the characteristic value is 2 : 2 3
fro o7
Consider A 21 = ? 0 %
2 2 2

Clearly A 21 hasrank 2.
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) T 21 hasnullity =1.

Thus, the space of characteristic vectors associated with the characteristic value

2 has dimension = 1:

) T( +2 ) ifandonlyif isascalar multiple of , = (1;1;2):

De nition 6.3. Let T be a linear operator on a nite-dimensional space V . We
say that T is diagonalizable if there is a basis for V each vector of which is a

characteristic vector of T .

Note 6.4. The reason for the name Diagonalizable .

If there is an ordered basis B = f 1, 2, nf for V,in which each ; is
a charcteristic vector of T , then the matrix of T , in the ordered basis B is a

Diagonal matrix.

ize;; If T( ) =c; ;; then the matrix of T in the ordered basis B is

L,

m, _ Y@
6O 0 cr,K
Note 6.5. 1. The scalars c;;c,;  ;c, need not be distinct.

2. Infact, they all will be same, if T is a scalar multiple of the identity

operator (or) T =cl:
3. T is also diagonalizable, when the characteristic vectors of T span V.
4. In Example 6.1, we have a lienar operator on R? whhich is not

diagonlizable, because it has no charcteristic value.

In Example 6.2, the operator T has characteristic values. In fact the
characteristic polynomial is f = (x 1)(x 2)?. Butstill T fails to

be diagonalizable.

5. Suppose that T is diagonlizable linear operator. Let c;;c,; ;¢ be the
distinct characteristic values of T .

Assume that c, is repeated d; times.

c, isrepeated d, times.

c, isrepeated d, times.
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Then there exists an ordered basis B in which the matrix of T is
represented by a diagonal matrix, whose diagonal entries are the scalars
c;; which are each repeated d; times. In fact, in this way the matrix of T

has the Block form

di 0 0
[T1, 0 ol 07 _

0 0 Cnln

where |; os the d; d; identity matrix.

6. The number d; is equal to the number of times the scalar c; is repeated, as
a root of f is equal to the dimension of the space of characteristic vectors
associated with the characteristic value c;: This is because the nullity of
the diagonal matrix is equal to the number of zeros which it has on its main

diagonal.

Lemma 6.2. Suppose that T = c . If f is any polynomial, then f(T) =
f(c)

Lemma 6.3. Let T be a linear operator on the nite-dimensional space V .
Let c;; Cy; ; Cx be the distinct characterist values of T and let W, be the
space of characteristic vectors associated with the characteristic values c; . If

W =W; + W, + + W, , then

dimwW = dimW;+dimW, + +dim W,

In fact, if B; is an ordered basis for W;, then B fBl; ;B\ is an ordered
basis for W .

Proof. Given that W, is the space of characteristic vectors associated with the

characteristic value ¢, etc.,

Similarly, W, is the space of characteristic vectors associated with the

characteristic value c, .

) The space W = W; + W, + cdots + W, is the subspace spanned by all the

characteristic vectors of T .

Note that when W = W, + W, + cdots + W,; then we expect that

dmWwW < dimW; + +dim W;
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because of linear relations which may exist between vectors in the various spaces.

This lemma states that the characteristic space associated with di erent

characteristic values are independent of one another.
Let ; 2w, = The space of characteristic vectors associated with the characteristic
valuec; (i=1;2; ;k)

)) 12W1 ) Ti=Ciq

k2Wk ) Tk=C1k

Suppose that (for each i) we have a vector ; in W;, and assume that ; + , +

+ , = 0. Now, we shall prove that ; =0 for each i.

Let f be any polynomial.

Ti = Ci;
) f(T); = fc);
e, f(T) 1+ +F(T)« = T(c) 1+  +f(c) «

Since T ; =¢; ;, then by above lemma we have

f(c)O

f(T)0

0 f£(T)0

= f(T)(1+ 2+ + k)
= f(T) 1+ f(T) »+ + f(T) «

= f(c) 1+ +T(c) «

Choose polynomials f;; f,; ; fsuch t)’gt

<1 ifi=j

fic) = - (6.1)
J | >.0; if i O=
Then
0 = f(T)0

fi(c1) 1 +ci(c2) 2 + + fi(cw) «

= i1 1+ 2 2+ + ik k

/7 \
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Now, let ; be an ordered basis for W; and B = (By; B,;  ; By):
i;e;; B spans the subspace W = W; + W, + + W, .
Now, we shall prove that B is a linearly independent sequence of vectors.

Note that any linear relation between the vectors in B has the form

where every ; is some linear combinations of the vectors in the respective

ordered basis B;.
Since ;=0 foreach i.
icer; 1+ o+ +k=0) each ;=0.
Thus, each ; is linearly independent.
Therefore, there exists only the trivial relation between the vectors in B .
Thus, B = (By;By;  ;By) is an ordered basis for V .

This completes the proof of the lemma.

Theorem 6.2. Let T be a linear operator on a nite-dimensional space V . Let
Ci; Co; ; Cx be the distinct characteristic values of T and let W; be the null

space of (T c;l). The following are equivalent.

(i) T is diagonalizable.

(if) The characteristic polynomial for T is

fo= (x c)™ (x c)*

and dimW; =d;; i=q;w; k.

(iii) dimW, +dimW,+  +dim W, = dim V:

Proof. (i) ) (i) :
Given that T is diagonlizable.
Let ci;c,; ¢k be the distinct characteristic value of T .

Then we know that there exists an ordered basis B in which T is represetned
by a diagonal matrix whose diagonal entries are the scalars c; which are

respectively repeated d; times. Then the matrix has the Block form
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[T] (6.2)

iy 0 7 O%
Calz 0 _

B _ @ .0 i
0 0 calhn

where | ; is an identity matrix of order d; d; . This implies that the characteristic

polynomial is as follows:

If the above [T ]z is matrix A , then the characteristic polynomial of A isdet

(xI A).
e E% Q 83 6'601(.)'1 C? 07C 0 371C (6.3)
B, :

0 0 caln

where c; is repeated d; times each c;l; is a Block.
This impliesthat f = (x c¢))® (x c)%.

Also, (6.2) ) d; is equal to the number of times which c; is repeated as a

root of f .

i;e:; d; is equal to the dimension of the space W, of characteristic vectors

associated with the characteristic values ¢;: (i =1;2; ;Kk)
Hence (i) ) (i) .

(ii)) (iii) :
Given that the characteristic polynomial for T is

f= (x )™ (x c)* (6.4)

and dim W; =d;.
Note that the degree of the characteristic polynomial f isd; +d, +  +d.
and also dim W; + dim W, + +dim Wy =dimV.
Hence (ii) ) (iii)
(i) ) (:
Given that dim W, + dim W, + +dim W, =dimV.

This is possible only when V = W; + W, + + W,
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i:e:;; The charcteristic vectors T span V .
i:e;; T is diagonalizable.

Hence (iii)) OF

This completes the proof of the theorem.

Example 6.3. Let T be the linear operator on R® which is represented in the

standard ordered basis by the matrix

Solution. Let us rst nd the characteristic polynomial for A.

The characteristic polynomial of

A det (xI A)

Il
[EN
x
SN

= (x 2)’(x 1) (onexpanding the determinant)

is the characteristic polynomial of A.

Therefore, the characteristic value of Aare 1 and 2.

Now, let us nd the dimensions of the spaces of characteristic vectors

associated with the characteristic values 1 and 2.

When c¢; =1:
A cl = A 1l
= A 1
é4 6
31 8 1
b,
Now,

det(A 1) = 0 ) rank of A I6=3:

Consider any 2 2 matrix of A | and nd its determinant.

(6.5)
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4 I

For instance, ‘a 47:56 0:

r3

) rankof A | =2:
If W, is the space of characteristic vector associated with the characteristic

value 1, then we know that dimW,; =1 (* c, = 1 is repeated only once).

If W, is the space of characteristic vector associated with the characteristic

value 2, then we know that dim W, = 2 (* c, = 2 is repeated twice).

When c, = 2; 3
A ol = 21
2 233 6 ]

6
= $l 2 25
3 6 6

Note that det (A 21) =0 ) rank of (A 21) 6: 3:

Also, note that the determinant of all 2 2 minors are zero.

) rankof (A 21)=1:

Here dimw; = 1; dim W, =2 and dimV = 3:
) dimV =dim W; + dim W,:

Hence by theorem, T is diagonalizable.
The null space of (T 1) is spanned by the vecotrs ; = (3; 1;3) and so
f 1§ is a basis for W;:
The null space of (T 21) (i:e:; the space W,) consists of the vectors
(X1; Xo; X3) With X3 = 2X, + 2X3!
Thus, one example of a basis for W, is
2 = (2.1,0)
3 = (20;1)

1FB | 1, 2; 3} then [T]e is the diagonal matrix.

D=0@bp» 0

0 0 2

The fact that T is diagonalizable means that the original matrix A is similar to
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the diagonal matrix D.

The matrix P which enables us to change coordinate from the basis B to the

standard basis is the matrix which has the transpose of j; ,; ; as its column

: 63 227
631105

01

vectors;

P

Furthermore, AP = PD; so that

P'AP - D:

Annihilating Polynmials

Suppose T is a linear operator on a vector space V,overa eld F. Let

p be a polynomial over F. Then p(T) is again a linear operator on V .
Let g be any other polynomial over F. Then
(p+a)(T) p(T) +a(T)
(pa)(T) p(T)a(T)

We say that the polynomial p annihilates the operator T if p(T) = O:

Thus, the collection of polynomials p which anniilate T is an ideal in
the polynomial algebra F[x].

It may be that T is not annihilated by any non-zero polynomial. But,
that cannot happen, if the space V is nite-dimensional.

Let dim V = n. Suppose T is a linear operator on V. Note that
;T T? :T™ is a sequence of n? + 1 operators in L(V; V) - the space of
linear operators on V .

We know that dim L(V;V) = dimgV dimgV =n n=n%

) The maximal linearly independent set in L(V;V) contains n’

elements.

) The above n® + 1 elements must be linearly dependent.
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ie:; 9 scalars cq;cy;  ;cn. notall zero such that

Col +¢C1T + +an'|—n = 0

for some scalars c¢; not all zero. So the ideal of polynomials which
annihilate T contains a non-zero polynomial of degree n® or less.

According to Taylor formula, every polynomial ideal consists of all
multiples of some xed monic polynomial, the generator of the ideal.

Thus, there corresponds to the operator T a monic polynomial p with
this property:

If f is a polynomial over F, then f(T) = O if and only if f = pg, where g

is some polynomial over F.

De nition 6.4. Let T be a linear operator on a nite-dimensional vector space V
over a eld F. The minimal polynomial for T is the (unique) monic generator

of the ideal of polynomials over F which annihilates T .

Note 6.6. The hame minimal polynomial stems from the fact that the generator of
a polynomial ideal is characterized by being the monic polynomial of minimum
degree in the ideal. That means that the minimal polynomial p for the linear

operator T is uniquely determined by these three properties:

1. p isamonic polynomial over the scalar eld F.
2. p(T)=0:

3. No polynomial over F which annihilates T has smaller degree than p.
Facts About Minimal Polynomials:

1. If A isan n n matrix over F, we de ne the minimal polynomial of
A, in an analogous way, as the unique monic generator of the ideal of all
polynomials over F, which annihilate A.

If the operator T is represented, in some ordered basis, by the matrix A,
then both T and A have the same minimal polynomial. That is because
f(T) is represented in the basis by the matrix f(A) ) f(T) =0 ifand
only if f(A) =0.

2. Since f P 'AP = P ' f (A)P; it follows that any two similar matrices

have the same minimal polynomial.
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3. Suppose A isan n n matrix with entries inthe eld F. Let F; be a

eld which contains F as a sub led.

For example:

(1) F isa eld of rational numbers and F, isa eld of real numbers and
(2) F aeldof real numbers and F; a eld fof complex numbers.

) We may regard A asan n n matrix over either F or F,.

) It may appear that, there will be two di erent minimal polynomial for

A . But the fact is both the minimal polynomials must be the same.

4. We have observed that, if dim V =n and T is any linear operator on V ,
then the degree of the minimal polynomial of T does not exceed n2 . The

fact, however, is that it cannot exceed n.

5. We shall see shortly, that every operator is annihilated by its own

characteristic polynomial.

Theorem 6.3. Let T be a linear operator on an n -dimensional vector space (or
let A bean n n matrix). The characteristic and minimal polynomials for T

[for A] have the same roots, except for multiplicities.

Proof. Let p be the minimal polynomial for T .
) p isamonic polynomial over F.

p(T) = 0 and no polynomial over F, which annihilates T , has smaller degree
than that of p.

Let c be a scalar. Now, our aim is to prove that p(c) =0 ifand only ifcisa

characteristic value of T .

First assume that p(c) = 0. i:e:; if c is a root of the minimal polynomial for

T , then c is also the root of the characteristic polynomial of T and vice versea.
ie;; to prove that f(c) = 0 if and only if c is a characteristic value of T .
Necessary Part: Let p(c) = O:
) c is a root of the polynomial p.
) x ¢ is a factor of the polynomial p.
) 9 some polynomial say q such that p = (x ¢)q

Thus deg p = deg of (x c¢) + deg of q
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) degg<degp.
) o) 6-0:
) 9 avector such that q(T) 6: 0:

) if  =q(T) then 0:

Also, p(T) = 0:
) p(m) =0
0 = (T cha(T)
= (T «cl)
= T c

¢ where 6=(

) T

) ¢ is a characteristic value of T .

Su cient Part: Assume that c is a characteristic value of T .
) 9 6=O suchthat T =c
Hence by theorem, we have p(T) = p(c)
) p(T)-pO.
But, p(T) = O:
Hence p(c) = 0.
Thus, c is a root of the minimal polynomimal p.

This completes the proof of the theorem.

Example 6.4. If T is a diagonalizable linear operator, then the minimal

polynomial for T is a product of distinct linear factors.

Solution. Let T be a diagonisable operator.
Let ci;c,; ;¢ be the distinct characteristic value of T .
Then the minimal polynomial for T is the polynomial

p = (X c)(x ¢c) (X ¢

If isa characteristic vector of T , then one of the operators
T c¢I;T cl; ;T cd sends into O.

) (T DT cil) (T «cd)=0,forevery characteristic vector
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) p(M)=(T )T cl) (T cl)=0

Example 6.5. Let us try to nd the minimal polynomials for the operators in

Examples 6:1;6:2 and 6:3. We shall discuss them in reverse order.

The operator in Example 6:3 was found to be diagaonlizable with

characteristic polynomial

f = (x 1D(x 2)°

) By the previous example, we see that minimal polynomial for T is
p=(Xx1)(x2).

Compute (A DA 21) = &41 63 253 62 26{

0 0O

ice; (A DA 2D)=0.
In Example 6:2, the operator T also had the characteristic polynomial

f = (x L(x 2)3

But, this T is not diagonalizable.
) We cannot conclude that the minimal polynomial of T is (x 1)(x 2):
Then, what do we know about the minimal polynomial?

Here x = 1 (with multiplicity 1) and x =2 (with multiplicity 2) are the

roots of characteristic polynomial of A.

) The minimal polynomial for T will be of the form

x Dx 2) k 1; 1 1) (6.6)

Now, our aim is to nd integers k and I in such a way that (6.6) becomes a

minimal polynomial for T .

(@) Letustry (x 1(x 2):
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1 1
%ﬁg o
13 2 2 2
o 1]

]

) We can conclude that the degree of the minimal polynomial for T is greater

Consider (A DA 21) =

Il
-g*l.\) ijm
o o [l

than or equal to 3.
(b) Letustry for (x 1)%(x 2) or (x 1)(x 2)°.

Note that (x 1)(x 2)?is the characteristic polynomial, would seem a less

random choice.
A DA 21) = (A DA 322)(A 2|)3

Fr g

LTI
0 2 1

- 072 2 2&

0 0

b

0 0O

) The minimal polynomial for T is the characteristic polynomial.

In Example 6:1, we discussed the linear operator T on R* which is

represented in the standard basis by the matrix

s

1 0

Here the characteristic polynomial is x* + 1, which has no real roots (i and i).

However, to determine the minimal polynomial, we can forget about T and

can concentrate on A.

When considered as 2 2 complex matrix, A has characteristic values +i and

i . Both the roots must appear in the minimal polynomial.
i:e:;; The minimal polynomial is divisible by x* + 1:

Let us compute A® + I:
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By

ile; A2+1 = O

Thus, the minimal polynomial is x* + 1.

Theorem 6.4. (Cayley-Hamilton). Let T be a linear operator on a nite
dimensional vector space V . If f is the characteristic polynomial for T , then
f (T ) = 0; in other words, the minimal polynomial divides the characteristic

polynomial for T .

Proof. Let K be the commutative ring with identity, consisting of all
polynomials in T . In fact, K is actually a commutative algebra with identity

over the scalar eld.

Let f 1 20 nl bean ordered basis for V .

Let A be the matrix which represents T in this basis. Then

n

T( ) = I\Aji i (=12, ;n)
j-1
/\ 7\
) iT( §) = Aji; (L i n)

j-1 j-1
n
7 \

) it Al = 0

j-1

Let B denote the elements of K" " with entries are

Bij = it Ajil (6.7)

]

When n=2: Then

&Bll Bi,

BZZ

T Al 22T Al
= 1T Al 22T ) Annl
)y B = QT Al Aoyl

Al T Anl

M.Sc.(Mathematics)-1 Year-11 Sem Linear Algebra



130 6.3. Annihilating Polynmials

) detB = (T AuD(T Aul) ApAsl

T2 (A +A2)T + (AunAn  ApAx)l

) detB £(T)

where f(T) is the characteristic polynomial:

f = x° (trace A)x +det A

For the case n > 2; it is also clear that

detB = f(T)

since f is the determinant of the matrix xI A whose entries are the polynomials

xI A)j = ij X Aji

Now, our wish is to prove that f(T) = 0.
i-e:; to prove that f(T) is a zero operator.

ie:; to provethat (detB , =0; k=1;2; n.

By the de nition of B, the vectors f 1, 20 nf satisfy the equations.
n
B, = 0@ i n) (6.8)
j-1

When n = 2, it is suggestive to write the %watifgn (6.8) in the form
T Aul A1l
IR
Al T Ayl 0 |
2

In this case, the classical adjoint, ad j B is the matrix

B = T Asl Ayl
Aszl A11|
and
BB = det
- detB 0  -CetB I
> BB (detB)
2 2
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ice;; (ktB) _ BB

TR

? ® (*(6.9)) °
26 L = B%Ek
) (det B) 0
{i

) (det Ig) J

In the general case, let B = adj B. Then by (6.8), we have

n
7\

BwBij j = O
j-1

For each pair k;i, and summing on i, we have

Thus,we proved the theorem for all the cases.

Hence the theorem.

Note 6.7. The Cayley-Hamilton theorem is useful to us at this point primarily
because it narrows down the search for the minimial polynomials of various
operators. If we know the matrix A which represents T in some ordered basis,

then we can compute the characteristic polynomial f .

Let us Sum Up:

In this unit, the students acquired knowledge to

nd the value of the characteristic values and characteristic vectors.

nd the diagonalizaton of the matrices.
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Check Your Progress:

1. Let A bean n n triangular matrix over the eld F. Prove that
the characteristic values of A are the diagonal entries of A , i:e; the
scalars A; .

2. Let T be the linear operator on R® which is represented in the

standard ordered basis by the mztrix 7
9 4 4
3 4
A = P 8
16 8 7

Prove that T is diagonalizable by exhibiting a basis for R3, each
vector of which is a characteristic vector of T .

Let 265 3 377

A = 4 1
v

.

10 5 3
Is A similar over the eld R to a diagonal matrix? Is A similar over

the eld C to a diagonal matrix?

4. Let a;b and c be elements of a eld F, and let A be the following
3 3 matrix over F;
660 0

A =
C
610b5
0 1 a

Prove that the characteristic polynomial for A is x® ax* bx ¢ and

that this is also the minimal polynomial for A .

5. Let A bethe 4 4 real matrix.
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Suggested Readings:

1. M. Artin, Algebra, Prentice Hall of India Pvt. Ltd., 2005.

2. S.H. Friedberg, A.J. Insel and L.E Spence, Linear Algebra, 4t
Edition, Prentice-Hall of India Pvt. Ltd., 2009.

3. L.N. Herstein, Topics in Algebra , 2" Edition, Wiley Eastern Ltd,
New Delhi, 2013.

4. J.J. Rotman, Advanced Modern Algebra , 2" Edition, Graduate
Studies in Mathematics, VVol. 114, AMS, Providence, Rhode Island,
2010.

5. G. Strang, Introduction to Linear Algebra , 2" Edition, Prentice
Hall of India Pvt. Ltd, 2013.
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Block-1V

UNIT-7

ELEMENTARY CANONICAL
FORMS-II

Structure
Objective
Overview
7. 1 Invariant Subspaces
7. 2 Simultaneous Triangulation;
Simultaneous Diagonalization
Let us Sum Up
Check Your Progress

Suggested Readings

Overview

In this unit, we shall introduce a few concepts which are useful
in attempting to analyze a linear operator.

M.Sc.(Mathematics)-I Year-ll Sem 135 Linear Algebra



136 7.1. Invariant Subspaces

Objectives

After successful completion of this lesson, students will be able to
understand the concept of invariant subspaces.

understand the concept of simultaneous triangulation.

7.1. Invariant Subspaces

De nition 7.1. Let V be a vector space and T a linear operatoron V. If W is
a subspace of V , we say that W is invariant under T if for each vector in W

the vector T() isin W; i:e:; if T(W) is contained in W .

Example 7.1. Let T be any linear operator on V , then

1. V isinvariantunder T.

2. The zero subspace of V , fog is invariant under T .

w

The range of T is invariant under T .
4. The nulls space of T is invariant under T .

Example 7.2. Let F be a eld and let D be the di erentiation operator on the
space F[x] of polynomials over F. Let n be a positive integer and let W be
the subspace of polynomials of degree not greater than n . Then W is invariant

under D.
Note 7.1. Simply we can say that D is “degree decreasing'.

Example 7.3. A very useful generalization of Example 7.1.

Let T be a linear operator on VV Let U be any other linear operator on V ,

which commutes with T (i:e;;) TU = UT .
Let W be the range of the linear operator U .
Let N be the null space of the linear operator U .
Now, we shall prove that both W and N are invariant under T .

For if, let 2 The range of U .
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)~ U
) T() - T - TU))-u )
©) T() = U(T)where T2 V(or)

T() 2 Range of U

) Range of U = W isinvariantunder T .
Let 2 N ) 2 The null space of U which implies that U = 0:
) U(m())=(@T) =(TU) =T(U())=T(0)=0:
ire;; U(T()) =0
ice;; T( ) 2 The null space of U .
irer; T( )2 N
) The null space of U = N isinvariant under T .

Note 7.2. When the subspace W is invariant under the operator T , then T
induces a linear operator T,y on the space W . The linear operator Ty, is de ned
byw ()=T¢() for in W, but Ty, is quite di erent object from T since its

domainis W not V.

Note 7.3. Let V be a nite-dimensional. Then the invariance of W under T has

the following matrix representation:

Let B =f 1, 2, n bean ordered basis for V and B’ =f 1 20 o
is an ordered basis for W (r = dim W) . Let A be the matrix, whhich represents

the transformation T in the basis B.
icel; A=[T]s.

In this case, we know that,

n
I\

T( ) = Aij i
i1

Oifjrandi>r

) TC p
Schematically, if A has the block form

.

Where B isan r r matrix, C isan r (nr) matrix,and D isan (nr) (nr)

matrix.
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The matrix B is the matrix of the induced operator T,y in the ordered basis
B°.

Lemma 7.1. Let W be an invariant subspace for T . The characateristic
polynomial for the restriction operator T,y divides the characteristic polynomial

for T . The minimal polynomial for T\, divides the minimal polynomial for T .

Proof. Let B = f 12 : ) be an ordered basis for V and B’ =
f 1, 25 § is an ordered basis for W (r = dim W). Let A be the matrix,

whhich represents the transformation T in the basis B .
ice; A=[T]s.

In this case, we know that,

n
7\

Aij i
i1

Oif jrandi>r

T(C )

) T( )
Thus, A has the block form 2
C
N
0 D
where A =[T]e and B = [Ty ]e- .

Because of the block form of the matrix

det(xI A) = det(xlI B)det(xI D)

i;e:; The characteristic polynomial for T = (The characteristic polynomial for

Tw )det (xI D).
) The characteristic polynomial for T
The characteristic polynomial forT,y

=det (xI D).

Thus, the characteristic polynomial for T, divides the characteristic

polynomial for T .
Hence, we proved theorem about characteristic polynomial.

The kth power of the matrix A has t&z block,form

VB! ng

Ak — I
k

where C¥ issome r (n r) matrix.

Thus any polynomial which is satisifed by A, will also be satis ed by B (as
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well as D)
(or) Any polynomial which annihilates A, also annihilates B as well as D .
Thus the minimial polynomial for B divides the minimal polynomial for A .

i:e;; The minimal polynomial for Ty, divides the minimal polynomial for
T.

Example 7.4. Let T be any linear operator on a nite-dimensional space V .
Let W be the subspace spanned by all the characteristic vectors of T . Let

C1; G, ; €y be the distinct characteristic values of T .

For each i, let W; be the space of characteristic vector associated with the

characteristic value c;.
Let B; be an ordered basis for W; .

Then B® = (B1;B,;  ;By) is an ordered basis for W and

dimwW = dimW;+ +dim Wy

Let us take B® = f 1 2 :¢J in which the rst few elements ’s from the

basis B, , the next few elements °s from the basis B, and so on.
Here T isan linear operatoron V (i:e;) T :V ' V.
Then T( )=t ; (i=212; ;r)

where (t;;t;;  ;t) = (ciiCiy  ;CuCxuCy 5Cx ;GGG C) where

each c; is repeated dim W; times.

Now, W isinvariant under T (ie;; T(W) W):

Let / W
) = X1 1+ + Xr r
T() = T(xg 1+ + Xr 1)

= X T( 1)+ +%5T( )

= Xl(tl l)+ +Xrt(tr r)

) T() = thl( )+ + 4%,
) T() = txa( 1)+ +texe( )
Here | 1, 2, .} isabasisfor W.
h) f 1, 2, b isalinearly independent setin V .

If dim V = n; this linearly independent set in VV can be extended to form a
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basis of V.

Choose any other vectors ,.,1; r.2; ; rINV suchthatf 1 o2 5 ondis

a basis for V .
Then we know that, the matrix of T , rejative ;o B has the block form

[T] B C
- 70
0 D
and that the matrix of the restriction operator Ty relative to the basis B° is

) o?
Vio t, 0 1

P

0 0 te

B

The characteristic polynomial of B (i:e:; of Ty) is given by

g = (x c)*(x ) (x c)*

where e; = dim W;.
) If f isthe characteristic polynomial for T , then g divides f.

) The multiplicity of c¢; as aroot of fisatleast dim W;.

De nition 7.2. Let W be an invariant subspace for T and let  be a vector
in V . The T-conductor of into W is the set S + ( ; W) , which consists of all

polynomials g (over the scalar eld) such that g(T) isin W .

Remark 7.1.
1. Unless speci ed, the T in the su x can be dropped, and we can denote
by S(;W).

2. In the special case, when the subspace W = fog, S+( ;W) is called the

T-annihilator of :

Lemma 7.2. If W is an invariant subspace for T , then W is invariant under
every polynomial in T . Thus, for each in V, the conductor S ( ; W) isan

ideal in the polynomial algebra F[x]:

Proof. Given that W is invariant for T .

)y T(W) W.
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If 2W, then T()2W.

T( )2W ) T(T( ))2w ) T2 2W
Proceeding like this, we get T( ) 2 W: Ok:
y  f(T) 2 W: for every polynomial f .

Note that, the de nition of S (; W) makes sense if W is any arbitrary subset
of V.

In fact, if W further happends to be a subspace of V , then S( ;W) becomes

a subspace of F[x]; because

(cf+o)(T) = cf(T)+g(T)

Now, if W is invariant under T, let g be any polynomial in S( ;W).
92s(;w) ) om 2w
Take =g(T)
If 2 W, then for every polynomial f, f(T) 2 w.

) If f is any polynomial, then
fMy oM 2w
) tmem 2w
) (tom 2 w
) f92 s(iw)

Hence the lemma.

Remark 7.2.

1. The unique monic generator of the ideal S( ;W) is also called the

T -conductor of  into W (the T -annihilator in case W = fog).

2. The T -conductor of into W is the monic polynomial g of least degree

such that g(T) 2 W:

3. If g is the T -conductor of into W, then an arbitrary polynomial

f 2 S(:W) ifand only if g divides f .

4. The conductor S (; W) always contains the minimal polynomial for T ;

hence every T -conductor divides the minimal polynomial for T .
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De nition 7.3. A linear operator T is said to be triangulable if there is an

ordered basis in which T is represented by a triangular matrix.

Lemma 7.3. Let V be a nite-dimensional vector space over the eld F. Let T
be a linear operator on V such that the minimal polynomial for T is a product

of linear factors

p = (x c)  (x )™

Let W be a proper (W 6 V) subspace of V which is invariant under T . Thee

exists a vector in V such that

(a) isnotin W ;

(b) (T cl) isin W, for some characteristic value c of the operator T .

Proof. The condition (a) and (b) say is that T -conductor of into W is a

linear polynomial.

Let 2V such that 2W.

Let g be a T -conductor of into W and let p denote the minimal

polynomial for T .
Then g divides p , the minimal polynomial for T .

Suppose g is a constant polynomial.

Letg = co (7.2)
) o) - o (7.2)
) o(T) = c W (7.3)
Hence g is not a constant.
g = (x c)* (x c)™

where atleast one of the e; is positive.
Let one such factor be (x c;)®
) (x c;)® divides g.

% (x c;) dividies g.

x® .
) g-(x o
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Since 2W ) h(T) 2W:
If —h(T) then 2ZW.
i:e:;9 avector in V such that 2W.
This proves (a) .
consider (T ¢;l) (T ¢Dh(T) -g(T) 2 W:
This proves (b):
Theorem 7.1. Let V be a nit-dimensional vector space over the eld F and let

T be a linear operator on VV . Then T is triangulable if and only if the minimal

polynomial for T is a product of linear polynomials over F .

Proof. Necessary Part: Assume that the minimal polynomial for T is a product

of linear polynomials over F.
ice;; letp=(x c)"(x c)? (x ¢
Thus, the hypothesis lemma 7.3 are satisifed.

ie;; If W 6= V is a subspace of V is invariant under T , then there exists an

2V such that 2W and (T cl) 2 W, for some characteristic value ¢ of
the operator T .

By the repeated application of lemma 7.3, we shall arrive at an ordered basis

B =f 1, 2, nY inwhich the matrix representing T is upper triangular.
6 ‘
a;, a a
o 8 88 agnl
[T, = y 0 0 ass aSrJ (7.4)

R

0

Now (7.4) merely says that

TC) = a5 1+ +a; 53 (1 j n) (7.5)

ice; T( ) 2 subspace spanned by ;. ;.
ToFind 1; » ; n:
Apply the lemma 7.3to W = fog and obtain a vector ;.

Let W, is the space spanned by ;.
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Apply the lemma 7.3 to W, and obtain .
Let W, is the space spanned by both ; and , .
Apply the above lemmato W, and obtain ;.
Continue inthisway, we nd i; 5 ;..

In fact, it is the triangular type relations (7.5), which ensure that
(for j = 1;2; ;i) the subspace spanned by ; ,; ; ; isinvariant under
T.

Thus T is triangularable.
Su cient Part: Let T be triangulable.

) The Characteristic polynomial for T has the form

foo o (x )™ (x c)* wherec JF (7.6)

Just look at the triangular matrix (7.4).

The diagonal entries aj;; as; ;a,, are the characteristic values, where each

c; isrepeated d; times.

If f can be factorised as in (7.6), this means that the minimal polynomial p

can be factorised in the same manner. (* p=f).

Thus, the minimal polynomial for T can be factored as a product of linear

polynomials over F.

This proves the su cient part.

Theorem 7.2. Let V be a nite dimensional vector space over the eld F and
let T be a linear operator on V . Then T is diagonlisable if and only if the

minimal polynomial for T has the form

p = (X c) (X ¢
where c4;C,; ;C, are distinct elements of F .

Proof. Necessary Part: As we already discussed that, if T is diagonalizable, its

minimal polynomial is a product of distinct linear factors.

Su cient Part:Assume that the minimal polynomial for T is a product of

distinct linear factors.

Now, we shall prove that T is diagonalizable.
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i;e;; To prove that there exists a basis of V, in which each vector is a

characteristic vector of T .

Let W be the subspace spanned by all the characteristic vectors of T in such
a way that W 6= V.

i:e:; There exists a vector 2 V( 2 W) and a characteristic vector c; of T

such that the vector

= (T le)

liesin W .
Now 2 W
) = 1+ o2+ o+
WhereT( ;) = ¢ (1 i k)
and f(T); = f(c);

) h(T) = h(c) 1+ +he) « 2 W

for every polynomial h.
From the hypothesis, we can write p = (x c¢;)q, for some polynomial q.
Also, g q(c)
) am ae)
) am ac)
) am) Qe LW

(X CJ)h

h(M)(T ¢

h(M)(T ) =h(T) .

Since
p = (x ¢
) p(T) = (T ¢ha(T)
p(m) = (T ¢ha(T)
o = (T ¢ha(T) (* p is a minimal polynomial for T)
) o = ThlMm 1 gla(m) ]
) Tlgm)1 = clam ]

) g(T) is a characteristic vector of T .
) q(T) 2 W:

Here W is spanned by all characteristic vectors of T (or) any linear
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combinations of characteristic vectors of T 2 W:
) q(c;) 2 W where 2 W
) The only possibility is that q(c;) = O:

Thus, we have g 0= (x ¢p)h

) a-(x ch.
) po(x x cal
) p-(xcpé

Thus, the characteristic roots c; is repeated twice, which is a contradiction to

the hypothesis.

This completes the proof of the theorem.

7.2. Simultaneous Triangulation;

Simultaneous Diagonalization

De nition 7.4. The subspace W is invariant under (the family of operators) F

if W is invariant under each operator in F .

Lemma 7.4. Let F be a commuting family of triangulable linear operators on
V . Let W be a proper subspace of V which is invariant under F . There exists

a vector in V such that

(@) isnotin W ;

(b) foreach T in F, the vector T s in the subspace spanned by and
W.

Proof. Without loss of generality, assume that the family F contains only a

nite number of operators.

) we can nd a vector 2 W and a scalar ¢, such that
(T: cl) s 2 W (7.7)

Let V, be the collection of all vectors in V such that (T; cl) 2 W
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Simultaneous Diagonalization

) V, is a subspace of V , which is properly larger than W .

Next we shall prove that V; isinvariant under F .

Here F is commutting family of triangulable linear operators on V .
) If T commutes with T,

ie; TT, =TT =1

Consider (T;  ciI)(T ) (T.T)  ol(T)

= (TTy Tcyl
= T(Ty) T(cl)

= T(Ty cl)

If 2V, then T(T, cl) 2w
) T o) 2w ) (T T 2w.
) T 2vl 8 2V1and T2F.
) Ty vy St2¢
Thus, V; is invariant under mathscrF .
Now, W is a proper subspace of V. Let T, 2 F.

Let U, be the linear operator on V;; which is obtained by restricting T, to

the subspace V; .

Thus, the minimal polynomial for U, divides the minimal polynomial for T, .

i;e;; We can nd a vector , in V; (not in W) and a scalar c, such that

(T col) , 2 W.
Thus, we have
(i) ,isnotin W.

(i) (T, cl) 2 2 W.

Gii) (T, cl) , 2 W.

Let V, be the collection of all vectors in V,; such that (T, c,l) 2 W:
) V, isinvariant under F .

Let T, 2 F .

Let U be the restriction of T; to V,.
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) 9 avector ; in V, (notin W) and a scalar c; such that (T3 cs3l) 3 2
W:

If we continuing in this way, we get

) 9 avector . in V,; (notin W) and a scalar c, suchthat (T, cl) , 2
W:

In otherwords, 9 = ; (notin W) such that (T; c;l)
alpha 2 w: (=12, ;0
) T, ¢ 2w ( 2w
) T; 2 The subspace spanned by and W.
ie;; T 2 The subspace spanned by  and W 8T 2 F where 2W.

(T; 2 F s arbitarary).

Theorem 7.3. Let VV be a nite-dimensional vector space over the eld F . Let
F be the commutting family of triangulable linear operator on V . Then there
exists an ordered basis for V such that every operator in F is represted by a

triangular matrix in that basis.

Proof. Prove the above lemma and prove theorem 7.1 (by replacing T by

F)

Theorem 7.4. Let F be a commuting family of diagonalizable linear operators
on the nite-dimensional vector space V . There exists an ordered basis for V

such that every operator in F is represented in that basis by a diagonal matrix.

Proof. The proof is by induction on dimV = n:
If n =1, the result is quite obvious.

As part of induction, assume that the theorem is true for all vector spaces of

dimension less than n.
Now let dimV =n:
Choose any T 2 F , which is not a scalar multiple of the identity operator.

Let c;;cy; ; ¢, be the distinct characteristic values of T . For every i, let

W; be the null space of T c¢l.

If we x any i, then W; is invariant under every operator that commutes with
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Let F; denote the family of linear operators on W; wkhich are obtained by

restricting the operators F to the invariant subspace W;.

Then the minimal polynomial for any operator in F; divides the minimal

polynomial of the corresponding operator in F .
i;e; Each operator in Fjis diagonalizable.
Here dim W; <dim V.
) The operators in F; can be simultaneously diagonalised.

i;e;; W; has a basis B;, which consists of vectors and are simulatenously

characteristic vectors for every operator in F;.

Here T 2 F, which is a commuting family of diagonalisable linear opoerators
on V.

) T is diagonalizable.
) B-{Bi:By B isabasisfor V.

This basis is the requirement of the theorem.

Let us Sum Up:

In this unit, the students acquired knowledge to

explain the concept of annhiltor.

understand the concept of simulaneous triangulation and

diagonalization.

Check Your Progress:

1. Let T be the linear operator on R?, the matrix of which in the
gﬁ 1
A =
2 2

Prove that the only subspaces of R? invariant under T are R? and

standard basis IS

the zero subspace.

2. Prove that every matrix A such that A% = A is similar to a diagonal

matrix.

M.Sc.(Mathematics)-1 Year-11 Sem Linear Algebra



7.2. Simultaneous Triangulation;

150 Simultaneous Diagonalization

3. Find an invertible real matrix P such that P *AP and P 'BP are

both diagonal, where A and B are the real matrices

o

A = ;225, B=§3 8;
RN
SIS

Suggested Readings:

1. M. Artin, Algebra, Prentice Hall of India Pvt. Ltd., 2005.

2. S.H. Friedberg, A.J. Insel and L.E Spence, Linear Algebra, 4"
Edition, Prentice-Hall of India Pvt. Ltd., 2009.

3. L.N. Herstein, Topics in Algebra , 2" Edition, Wiley Eastern Ltd,
New Delhi, 2013.

4. J.J. Rotman, Advanced Modern Algebra , 2" Edition, Graduate
Studies in Mathematics, VVol. 114, AMS, Providence, Rhode Island,
2010.

5. G. Strang, Introduction to Linear Algebra , 2" Edition, Prentice
Hall of India Pvt. Ltd, 2013.
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UNIT-8

DECOMPOSITIONS

Structure
Objective
Overview
8. 1 Direct-Sum Decompositions
8. 2 Invariant Direct Sums
8. 3 The Primary Decomposition Theorem
Let us Sum Up
Check Your Progress

Suggested Readings

Overview

In this unit, we shall describe how to decompose the underlying
space V into a sum of invariant subspaces for T such that the restriction

operators on those subspaces are simple.
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Objectives
After successful completion of this lesson, students will be able to
understand the concept of direct sum and interior direct sum.

understand the concept of invariant direct sum.

8.1. Direct-Sum Decomposition

De nition 8.1. Let W4; W,; ; W, be subspaces of the vector space V . We say
that Wy, Wy, ; W, are independent if

1+ 2+ + k = 0

) each ;

Il
o

where 2 W, (i=1:2. K
Note 8.1.
Let k = 2: ice;; W, and W, are subspaces where 2 W, and , 2 W, .
Now, W, and W, are independent, if
1+ 2 = 0

) L2 0,20 (2w, and,2w

) w\w,

Il

—t>

o
a=

Let k > 2: Then the independence of W,; W,  ; W,.

) Wl\Wz\ \W+k=fog.

In fact, it says that each subspace W; intersects the sum of all other subspaces
W, only in the zero vector.

The following is the signi cane of the independence of subspaces:

Let W =W;1+W>+ + Wk .

(i:e;; W is the subspace spanned by Wy, W, W, )

) Eachvector in W can be expressed as a sum

S e e o+ (2w (8.1)
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If Wy W, ;W are independent, then the representation of  in (8.1) is
unique.

If possible, let

= 14+ 2+ +  Where i2Wi (8.2)

From (8.1) and (8.2), we have

1+ 2+ + k = 1+ 2+ + k
) ( 1 1) + ( 2 2) + + ( k k) =0
where ; ; 2 Wi o« ok 2 W, and Wy W, ; W, are independent.

) 11=0; 2 2=0; sk k=0.
) .-, 8
Hence the representation of  in (8.1) is unique.

Thus, when W,; W,;, ; W, are independent, we can operate with the
vectors in W as k -tuples ( 1; 25 ; w; i InW;, in the same way as we
operate with vectors in R* as k -tupples of numbers.

Theorem 8.1. Let V be a nite-dimensional vector space. Let Wy; Wom ;W
be subspaces of V andlet W = W,;+W,+ +W, . The following are equivalent.
(a Wiy ; Wy are independent.

(b) Foreach j, 2 j k,wehave

W,—\(W1+ +W; l)=f0g

(c) If B; is an ordered basis for W;, g i k, then the sequence

B = (By); B,; ;By) is an ordered basis for W .
Proof. (a) ) (b):
Assume that W,; W, ; W, are independent.

Now, our aim is to prove that W; \ Wy +  +W; )= fog.

i-e:; to prove that 2 W; \(Wl +  +Wj ) then =0.
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let  Zw, \ Z (Wi + W, +
) Zw, and 2 (W1 + W, +
) 2w, oand - L.

) 1+ 2+ +j51+(1) - 0

) i+ o+ + 51+ (1) = 0

Hence (a)) (b).

®) ©:

Assume that foreach j, 2 j k,we have

WJ\(W1+W2+

Claim: Wy; W,; ;W are independent.

cwy ) = log

+W;j 1)
+W;j 1)

where each 2 W,

+ j1

ice;; toprovethat + ,+ =0 ) each i=0(i2Wi).

Leto = 1 + 2 +

If possible, let some of the ?s are non-zero.

Let j be the largest interger i such that ; 6: 0
e = j2= = k=0

> (83) )
) oD (D)

v+ 5= (,6 0
+(1) j1
Here ,—2W,— and ; O.
Also, (1) +(1) .+ +(1) ;. 0.
) Both Wj and W, + W, +

) Wj\(W1+

This contradicts the hypothesis (b).

+Wj 1) O

Thus, each ; = 0:
Hence (b)) (a):
Thus (a)) (b) and (b)) (a):

Now. we shall prove that (a) ) (c) and (c) ) (a).

+ ok (i2Wi

(8.3)

+W;j ; contains a non-zero element.

Linear Algebra
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@) ©:

Assume that Wy; Wy,  ; W, are independent.

Given that B; (i = 1;2; ;Kk) is an ordered basis for W;and B =
(B1; Bz; » Bi:

We know that any linear relation between the vectors in B will be of the form

1+ 2+ + Kk = O (8'4)

where ; is some linear combination of elements of B;.
Since W;; Wy; ; W, are independent and hence each ; = 0.

Since each B; is independent, which implies that the linear combination of
elementsof B;=0 (i=1;2; ;k)

Thus, the associated scalars are all zero.
Hence, the relation (8.4) is a trivial relation.
This proves (a) ) (c):

Similarly, we can prove that (c) ) (a).

This completes the proof of the theorem.

De nition 8.2. If any ( and hence all) of the conditions of the previous lemma
hold, we say that W is the direct sum of W;; W,; W, and denote it by
W = W; W, W,

Note 8.2. W is also called the independent sum of W;; W,; ; W, (or) the

interior direct sum of Wy; W,; ; W,.

Example 8.1. Let V be a nite-dimensional vector space over the eld F and
let f 1, 20 n§ beany basis for V. If W; is the one-dimensional subspace

spanned by ;; then V =W; W, W,:

Example 8.2. Let n be a positive integer and F a sub eld of the complex
numbers, and let v be the space of all n n matrices over F. Let W, be
the subspace of all symmetric matrices, i:e:; matrices A such that A'= A . Let
W, be the subspace of allskew-symmetric matrices, i:e:; matrices A such that
A'= A.Then V=W,; W,.If A isany matrix in V , the unique expression

for A as asum of matrices, one in W, and the other in W, .
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ice; A = A+A,
1
where A; = > (A+AH
1 t
A, = E(A A)

De nition 8.3. Let V be a vector space. A linear operator E on V is called a

projection of V if E? = E:

Remark 8.1. Suppose that E is a porojection. Let R be the range of E and let
N be the null space of E.

1. Thevector isintherangeof R ifandonlyif E = .If = E ,thenE
=E®> =E = .Conversely,if =E ,then isintherangeof E.
2. V=R N:

3. The unique expression for as a sum of vectors in R and N is
=E +( E )
From (1), (2) and (3) it is easy to see the following:

De nition 8.4. If R and N are sub-spaces of V such that V =R N, there is
one and only one projection operator E which has range R and null space N .

That operator is called the projection on R along N.

Theorem 8.2. If V=W; W, W , then there exists k linear operators
E.; E,; ; Ek on V such that

(i) each E; is a projection (E* = E});
(i) EE;-0,ifi0=j;
(“l) | = E1+ +Ek;

(iv) therange of E; is W;.

Conversely, if E;; E,; ; Ex are k linear operators on V which satisfy
conditions (i); (ii) and (iii) , and if we let W; be the range of E;, then V =
W; W,

Proof. Assume that V =W, W, .

For each j de ne an operator E; on V as follows: E; iswell de ned:
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Let E; = E;; 8]

) ;= ; 8ji=-12 .k

) = 2= 2 iok=«
) 1+ 2+ + = 1+ 2+ + K

E; is linear:
Let = 1+ 2+ + & = 1+ 2+ +k(i;i2Wi)andc2F.
Considerc + = c¢c( 1+ + WQ+(1+ +4)
= (cC1+C 2+ +Cc D+(1+ + 1)

= (C 1+ 15C 2+ 27 € k+ ¥

) Ej(c + ) = Chj+ii

- cE; +E;
Thus, E;is linear.
Range of E;:
Let ; 2 Range of E;.
ice:; there exists an element 2V such thatE; = ; where j2 W .
ice;; Forall 2 w;j , there exists an element  in V such that E;j = ;.
Thus, the range of E;is W;.
E; is a projection:
Consider Ef = Ej(E; )
= E;
) EJ? = Ej

Null space of E;:
We know that if 2 null space of E;then E; = 0 which implies ;=0.
Thus, = 1+ + j1+ j1+ +k.
Hence, the null space of E; is the subspace

W1 + +Wj 1+ Wj1+ + Wy (8.5)
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Now E; = §j
) & - .
E- = o
Ex = Kk
D) = 1+ 2+ + k
) = E. + +EO
) 1 = (B2 + +EO)

I = E;, + + EO0

Thus, the null space of E; is Wy +  +W; 1 + W1+ +W,.

(Note that when (i 6= j). the subspace Wj is part of the sum in the right had
side)

1fi0=j EE,() —E(E,())

= E( p
= 0
This proves the necessary part.
Su cient Part: Assume that E;; E,; ;Ey are linear operators on V which

satisfy the conditions (i); (ii) and (iii) and range of E;is W;:
Now, = 1+ 2+ + Kk

= El + E2 + + Ek

where 2V and E; 2 Wi(j=1;2; ;K
) V =Wi1+W> + + Wk .
It remains to prove that the expression for is unique.

Now = ;+ L+ + ¢ Where i2Wi,say = Ei
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consider E; =

Thus, the expression for  is unique.
) V=W, W

Hence the theorem.

8.2. Invariant Direct Sums

Our aim is to study the direct sum decompositions V = W, Wy,
where each of the subspaces Wi, is invariant under some given linear

operator T .

Given such a decomposition, the linear operator T induces a linear
operator T; on each W;, by means of restricting T to the subspace Ww;.

In this context, we have the following:

T Zv Y i Z W; such that

= 1 + + k

Ty 1+T2 2+ + Tk k

Then T( )

We describe this situation by saying that T is the Direct sum of the

operators Ty, T, ;T .

However, here

1. T; are not linear operators on V but on the respective subspace Ww;

only.

2. V=W, W, enables us to associate with each  in Vv, aunique
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k -tuple ( of vectgors i2 wi)say, (1 2 5 W-
ice; by = 1+ .+  +y insuch away that we can carry linear

operation in V by working in the individual subspaces W;.

3. The fact that, each W; is invariant under T, enables us to view the

action of T as the independent action of T°§ on WOTQ,.

4. Our purpose is to study T by nding :invariant direct sum
decomposition, in which T; are opoerators of elementary nature.

5. Let us note the matrix analogue of this situation. Let B; denote an
ordered basis for each w; and let B be the ordered basis for Vv ,
consisiting of the union of B; arranged in the order By; By; ; By .

If A=[T]e and A; = [T]e, then A has the block form

IR
b

where each A; is a (d; d)) matrix where d; = dim W; and 0° s are
rectangular matrices of zeros of various order. In this case, we say

that A is the direct sum of the matrices A;; A,; ; A, .

6. More often, we shall describe the subspace W; by means of the
associated projections E;.

7. Hence, we need to phrase the invariance of the subspace W; in terms
of the E;.

Theorem 8.3. Let T be a linear operator on the space VvV, and let
Wy, W, W, and Eg; E,; :Ex be as in Theorem 8.2. Then a necessary
and su cient condition that each subspace W; be invariant under T is that T

commute with each of the projections E; i:e:;

TE;, = ET; i=1;2; 1k

Proof. Assume that T coomutes with each E;. Let bein W;. Then

ice;; TE; = ET (i=1;2; i K)

Now, our claim is W i isinvariantunder T .
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ice;; to prove that T(W; W)):
But, we know that range of E; W;.
Hence, it is enough to prove that T (W)) 2 Range of E ;.

For if, let 2W,— ) E; =:

Consider T = T(E; )
= E(T )
2 Range of E;
e, T 2 Range of Ej; whenever 2W,—

) T(W) Range of E;:

This proves necessary part.

Su cient Part:
Assume that each W; is invariant under T .
i-e:; to prove that T commutes with each of the projection E ;.
ice;; to prove that TE; = E;T:

Let beany vector in V. Then we know that

= E; + +Eg
T = TE;, + +TE,
Here E; J W, (=12, ;K
) TE) L W
) T( ) = Ei ;i forsome vector
Now, consider E;TE; = EjE; ;
= Ejj
0 if i j
= “E; ; ifi=j
) EsT = ET
= E(TE:, + +TE\)
- E;TE; + +ETE; +
- 0+0+ +EJTE; +0+0+
= E;j j=T(;)
ice:; 8;EjT = TE;
) ET = TE

+EJTEk
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This proves the su cient part.
Theorem 8.4. Let T be a linear operator on a nite-dimensional space V. If
T is diagonalizable and if c4; c,; ; Ck are the distinct characateristic values of
T , then there exist linear operator Ej; ; Ex on V such that

(l) T = ClEl -+ =+ CkEk ,

(”) I = El -+ -+ Ek ,

Giiy EE; -0 iD j;

(iv) E? = E; (E; is a projection);

(v) the range of E;, is the characteristic space for T associated with c; .
Conversely, if there exists k distinct scalars c;; ¢,; ; ¢ and k non-zero linear
operators E;; E,; ; Ex which satisfy conditions (i); (ii) and (iii) , then T is

diagonalizable, ci; c,; ; cx are the distinct characteristic values of T and

conditions (iv) and (v) are satisifed also.

Proof. Suppose that T is diagonalizable, with distinct characteristic values

C1; +Ck.

Let W; be the space of characteristic vectors associated with the characteristic

value c;. In this case, we know that,

V - W, W, Wy

Let E;; Ey; ; Ex be the projections associated with this decomposition as in
Theorem 8.2.

) conditons (ii) to (iv) are satisifed.

To verify (i) we proceed as follows:

now !l = E;+ +Eg
) 1| = Ei + +E
) = Ei + +E
) T = T(Ey + +Ex)
= E;T + + ExT
= Ei(c; )+ +Ew(ck )
= (ciEq) + ckEy)
T = ci1Eyp) + CkEk
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This proves necessary part.

Su cient Part:Assume that we are given a linear operator T along with distinct
scalars c;; c,; ;¢ and non-zero operators E;; E;;  ; B, which satisfy (i); (ii)
and (iii).

Now (iii) ) EE, =0 3i0=j

(i) ) | =E; + + Ej + + Ey .

) Ei = E1Ei + + Eij 1Ei + Ei2+ Ei.1Ei + + EkE;

) E-E
(i) ) T = cE + +CEx
) TE, = CGEE + +CEE + +cEE
) TE, = cE?
) TE = cE
) (T chE; = O (8.6)

Therefore, any vector in the range of E; is in the null space of T ¢l .
Also given that operator E; 6= 0:
) (8.4), there exists 6= 0 in E; suchthat (T ¢l) =0:
) T -
ie:;c; is a characteristicvalueof T (i=1;2; ;Kk).
Claim: These c; are the only characteristic value of T .
i;e:; to prove that, if c is any other characteristic value of T , then ¢; = c:
If possible, let ¢ be any other characteristic value of T .

Then, by de nition,

T = ¢
) (Tc =0
Now, by part(i); T = ciE1+  +ckEk
part(ii) ) 1 = Ei+ +E«
¢l = cE; + + CEy
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) T cl = (c; C©)E;+ + (¢ Cc)Ex

) (T o)
0 = (Cl C)El + + (Ck C)Ek

(c. ©E: + +(ck C)Eg

) @ oF = 0 8i-12 -k
) (ci ©) 0
) c = ¢

This proves our claim.

We have shown that, every non-zero vector in the range of E; is a characteristic

vector of T .
Also, | = E; + E, + + E, show that these characteristic vectors span V .
Thus, T is diagonalizable.

In order to complete the proof, it remains to show that the null space of (T ¢;l)

is the range of E; .
Let 2 the null space of T ¢l ) t =g
We have T =c¢,E; + +GE; + + CEy :
Also, =E; + + Ey .
) Ci =CE; + +GE; + + CiEk
), T ¢ =(c; c)E; + +(c; cDE; + +(ck Ci)Ek

O0=" (¢ G)E;

) (c; c)E; =0 8j=1;2; ik
) E, -0 8i6 i (*¢; ¢ 08 ix
We know that =E; + +€ 1 + +E +Ey.1 + +Ey :

=0+ +0+E +0+ +0:

alpha.
Thus 2 The range of E;.
Hence the null space of T c¢;l is the range of E;.

This completes the proof.
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The Primary Decomposition Theorem

In this section, we are trying to study a linear operator T on the
nite-dimensional space V by decomposing T into a direct sum of
operators whhich are in some sense elementary.

Theorem 8.5. (Primary Decomposition Theorem) Let T be a linear operator on
the nite-dimensional vector space V over the eld F . Let p be the minimal

polynomial for T,
P = p P

where the p; are distinct irreducible monic polynomials over F and the r; are

positive integers. Let W; be the null space of p;i(T)"; i=1;2; ;k. Then

H Vv=w, Wi
(ii) each W; isinvariantunder T ;

(iii) if T;is the operator induced on W; by T, the minimal polynomial for ;
is p}
Proof. The idea of the proof is as follows:

If we assume that the direct sum decomposition in part (i) is valid, what would

we think of the projections Eg; E; ; Ex associated with this decomposition.

The fact is that such a projection E; will be the identity on W; and zero on the
other W; .

We have to nd a polynomial say h; such that h;(T ) is the identity on W; and
on the other W; , which will imply that

h.(T) + +hi (T)+hi(T) + hi,1(T) + +h(T) = 0+0+ +0+ +0

Given that p = p™ p"™ where p are irreducible, monic polynomial over F
1 k !

and r; are integers.

Forevery i=1;2; ;k,dene
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P
ri
P;
_ Py PUiRRI R
pi
— pl’l prl 1 pTI‘l pl’k
1 il i+l k
1 r
= pj
j=i
Since p1; P2; ) Px are distinct prime polynomials,
the polynomials fy; f;; ; fi are relatively prime, so we can nd polynomials
01, 02 ; Ok SUch that
f101 + 202 + +fuigk = 1
n
i.e:; 7N\ fg = 1
i-1

Note also that, if i 6= j, then f;f; is divisible by the polynomial p, because f;f;
contains each p;" as a factor.

Now, we shall prove that the polynomials h; = fig; satisfy in the rst paragraph

of this theorem.

For this purpose,

Let E; = hi(T)

= fi(T)ai(T)

Then hy + +hg = f101 + +fgk = 1.
and p=f;f; 8i 6= J; implies that E;E; =0 if i 6= J:

Thus, E; are the projections which correspond to some direct-sum

decomposition of V.
We wish to show that the range of E; is exactly the subspace of W; .
Let 2 the range of E; which implies that E; = :

Given that W; is the null space of (pi(T)" (i=1;2; ;k)

(M) = (M) E,
= ((T) " f(M)g(T) =0
ie:; (pi(T)ri = 0; if 2 range of E;
) 2 The null space of (pi(T))ri

) 2w,

) Rangeof E; W;
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Now, let 2 Null space of (pi(T) '
We know that, if i 6= i then f;G; is divisible by iPr'
) f(T)g(T)0  (* p; is prime)
(or) fi(T)g(T) =0
) E; =0 for j 6-
i Since
Ei1+E2+ +Exk =

) Ei o+ +Ei 1 +E +E.1 + +Ex =

)Ei=

)/ TheRange of E;

Thus W,

) Range of W; =W;.
Thus, we have V =W, W, .

This completes the proof of statement (i) .

Obviously by their construction, the subspaces W; are invariant under T .

If T, isthe operator induced by T on the subspace W;.
W; is the null space of p;(T)".

) pi(T)'=0 on W;.

) BTy -0

) T; satisfy the polynomial p; "

Thus, the minimal polynomial for T; divides p? .
Conversely, let g be the minimal polynomial for T;.
i-e;; let g be any polynomial such that g(T;) =0.
ice;; g(T)=0 (*T;isinducedby T on W;).

ice;; g(M)f(T)=0

ie;; T satisfy the polynomial gf;.

ie;; fg; isdivisible by p.

i;e;; p divides gf;

Range ofE;
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ie:; pir' f; divides gf;

i:e;; p' divides g.

) piri divides the minimal polynomial for T;.
Thus, the minimal polynomial for T; is p? .

This completes the proof of the theorem.

De nition 8.5. Let N be a linear operator on the vector space V . We say that

N is nilpotent if there is some positive integer r such that N" = 0:

Theorem 8.6. Let T be a linear operator on the nite-dimensional vector space
over the eld F . Suppose that the minimal polynomial for T decomposes over
F into a product of linear polynomials. Then there is a diagonalizable operator

D on V and a nilpotent operator N on V such that

() T=D+N,

(i) DN = ND.

The diagonalizable operator D and the nilpotent operator N are uniquely

determined by (i) and (ii) and each of them is a polynomial in T .

Proof. Recall the proof of Primary Decomposition Theorem. Using this notation,
we may assume the special case that the minimal polynomial for T is a prdocut

of rst degree polynomials.
i;e;; p; isofthe form p; = x ¢
We know that the range of E; = W; = The null space of (T ¢;I)".

NOW, Iet D = ClEl + CZEZ + + CkEk (87)

i;e;; D is a diagonalizable operator.

Letusnowdene N =T D, where

T = TE,+ +TE,

D = ciE1 + + Ck Ex
> T D = (T ci)E;+ +(T  cDEk
iie; N = (T cDE;+  +(T c)Ex
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NZ = (T cD?E*+  +(T cl)’E?
1 k

2((T ci)(T  cll)E(E; +

+(T ¢ DT cEk 1EW)

) N = (T cl)’E;+  +(T cd)’Ex (*EE; =0 8i IB)
Nr = (T Cll)rEl + + (T Ckl)rEk (* EiEj = O j)
8i6

) N = 0

Thus, N is nilpotent.

Thus, we have T = D + N, where D is diagonalizable and N is nilpotent,

implies that D and N compute with each other and that they are polynomials in

T.

) DN = ND:

) It remains to show that the representation T = D + N is unique.

If possible, let T = D° + N° where D° is diagonalizable and N° is nilpotent,
satisfying

D°N® = N°D%

Then to prove that D = D° and N = N°.

Now, we shall prove that D commutes with T = D° + N°.

TD® = (D°+N%D°
02 0 0
+N D
- D
DT = DYD°+ N°
02 4 DONO
) TD® = D°T

Thus, D° commutes with T .
Similarly, N° commutes with T .
Thus, both D° and N° commute with T .
) both D° and N° commute with any polynomial in T .
) both D° and N° commute with D and N .

Thus, we have D+ N = D° + N°
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(or) D pPl-N N

The above discussion implies that all the four operators D; D% N; N° commute

with one another.
Now, D; D° are both diagonalizable and DD° = D°D..

Thus D and D° are simultaneously diagonalizable and hence D D° is

diagonalizable3.
Now, N and N° are nilpotentand NN°® = N°N and hence N N° is nilpotent.

Note that, using the fact that D and D° commute with each other, we see that

D D° is nilpotent.
Thus, D D° is a diagonalizable and nilpotent operator.

But we note that the only operator which is both diagonalizable and nilpotent

is zero operator.
y D D°=0 and N° N =0.
i;e;; D=D% and N°=N..
Hence the representation of T = D + N is unique.

This completes the proof of the theorem.

Corollary 8.1. Let V be a nite-dimensional vector space over an algebrically
closed eld F , e:g:; the eld of complex numbers. Then every linear operator T
on V can be written as the sum of a diagonalizable operator D and a nilpotent
operator N which commute. These operators D and N are unique and each is

a polynomial in T .

Proof. The eld F is said to be algebrically closed if every prime polynomial

over F has degree 1.

Also write the proof of the above theorem.

Let us Sum Up:

In this unit, the students acquired knowledge to

explain the concept of invariant subspaces.

understand the concept of primary decomposition theorem.
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Check Your Progress:

1. Let VvV be a nite-dimensional vector space and let W, be any
subspace of V. Prove that there is a subspace W, of Vv such that
V =W; W,.

2. Let Vv be a nite dimensional vector space and let Wy, W,; ; W, be
subspaces of V such that

V = W;+W,+ +W, and dimV =dim W, + +dim W,
3. Let T be the linear operator on R? , the matrix of which in the
L@? ?5

Let W, be the subspace of R* spanned by the vector , = (1;0).

standard basis is

(a) Provethat W, isinvariantunder T .

(b) Prove that there is no subspace W, which is invariant under T
and which is complimentary to W,

R? = W; W,

Suggested Readings:

1. M. Artin, Algebra, Prentice Hall of India Pvt. Ltd., 2005.

2. S.H. Friedberg, A.J. Insel and L.E Spence, Linear Algebra, 4"
Edition, Prentice-Hall of India Pvt. Ltd., 2009.

3. L.N. Herstein, Topics in Algebra , 2" Edition, Wiley Eastern Ltd,
New Delhi, 2013.

4. J.J. Rotman, Advanced Modern Algebra , 2" Edition, Graduate
Studies in Mathematics, VVol. 114, AMS, Providence, Rhode Island,
2010.

5. G. Strang, Introduction to Linear Algebra , 2" Edition, Prentice
Hall of India Pvt. Ltd, 2013.
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BLOCK -V

Unit—9: The Rational Forms

Unit — 10: The Jordan Forms






Block-V

UNIT-9

THE RATIONAL FORMS

Structure
Objective
Overview
9. 1 Cyclic subspaces and Annihilators
9. 2 Cyclic Decompositions and the Rational Form
Let us Sum Up
Check Your Progress

Suggested Readings

Overview

In this unit, we shall describe how to generate cyclic subspaces.

Objectives

After successful completion of this lesson, students will be able to
understand the concept of cyclic subspaces.

understand the concept of Rational Form.
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Cyclic subspaces and Annihilators

Let Vv be a nite dimensional vector space over the eld F and let T

be a xed (but arbitrary) linear operator on V.

Note that, if  is any vector in V , then there exist a smallest subspace
of Vv, which is invariant under T and contains . This subspace can be

de ned as The intersection of all T -invariant subspaces which contain

Remark 9.1. If W is any subspace of V, which is invariant under T and

contains , then W must also contain the vector T . Hence W must contain

T(T) = T2 T(T?)=T°%;

[) ltcontains T +T? +
(ire;) ifg(T) =T +T2+T3+
then g(T) is contained in W , where the polynomial g(x) 2 FIx] .]

) W must contain g(T) , for every polynomial g over F.

Note 9.1. The set of all vectors of the form g(T) , with g in F[x], is clearly

invariant under T , and is this the smallest T -invariant subspace which contains

De nition 9.1. If isany vectorin V ,the T -cyclic subspace generated by

is the subspace Z( ;T) =V, then iscalled acyclic vector for T .

Note 9.2. Another way of describing the subspace Z( ;T) is the subspace
spanned by the vectors T® ; T* ; ;T* (k0).

) is a cyclic vector for T if and only if these vectors T*( ) spanV .
Important Cautions: The general operator T has no cyclic vectors.

1. Forany T and , we are interested in linear relations of the form

coT +C T +C,T? + + o TX = 0 (9.1)

between the vectors T! .
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2. In otherwords, we are interested in the polynomials

g=0Co+CiX+  +CeX“

which satisfy (9.1), (or) g(T) =0.
3. Thesetofall g 2 F[x] such that g(T) =0, isanideal in F[x].

4. The minimal polynomial for T, say, p(T), satises p(T) =
0 ) p(T) = 0 ixe:; The minimal polynomial p(x) is in this
ideal.

) This ideal is non-zero.

De nition 9.2. Let  be any vector in V. The T -annihilator of is the ideal

M( ;T) in F[x], consisting of all polynomials g over F such that g(T) = O:

The unique monic polynomial p which generates this ideal will also be called

the T -annihilator of .

Note 9.3. The T -annihilator p divides the minimal polynomial of the operator
T.

Theorem 9.1. Let be any non-zero vector in V and let p be the

T -annihilator of .

(i) The degree of p is equal to the dimension of the cyclic subspace Z( ;T).

(ii) If the degree of p is k, then the vectors ;T ;T?; ;T*! forma
basis for Z( ;T).

(iii) If U is the linear operator on Z( ; T) induced by T , then the minimal

polynomial for U isp :

Proof. Let g be any polynomial over the eld F .

Giventhat p isthe T -annihilator of .

) The unigue monic polynomial p generates the ideal M( ;T) in F[x],
which consists of all polynomials g over F such that g(T) = 0:

Now, given g and p , using the division algorithm, we get

g =7pg+r (9.2)

where either r =0 (or) deg (r) <deg p = k:
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Since p is the generator of M( ; T)

i:e:;; Any multiple of p 2 M(;T)

) palM(;T)
) paq(T) =0.
Nowg(T) = p a(T) +r(T)
= 0+r(T)
e g(T) = r(T)

Here r =0 (or) degr <k:

Therefore, the vectors r(T) is a linear combination of the wvectors
T - .Tkl

Thus, g(T) s a linear combination of the vectors ;T ; ;T*! .
i:e; The k vectors ;T ; ;T*! span Z(;T).
Claim: The vectors ;T ; ;T*?! are linearly independent.If

possible assume that these vectors are linearly dependent.

) there exists a scalars cg; cy; ;¢ In F not all zero such that
Co +CT + +Ck1-|—k1 = 0
k 1
) Co +C T + +Ci 1T = 0
) om) - o
whereg(T) = co +C T +  +c TF?

) deg g(T)

) deg(g) < deg (p )

k 1<k=deg(p)

which contradicts the fact that p is the minimal polynomial for T .

Hence the vectors ;T ; ;T*' are linearly independent.

Therefore, the vectors f i Tk g form a basis for Z( ;T).

This also implies that the dimension of Z( ;T) =k =deg p:

Hence, we have proved parts (i) and (ii).

Let U be the linear operator on Z( ;T) induced by T. () p (V)=
p(T)).

Let g be any polynomial over F.
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Then; p (U)g(T) = p (T)g(T)
g(T) p (T)
= g(M+0

-0

e p (U)G(T) =0 where g(T) 22z( :T).
) p (U) sends every vector in Z( ; T) to zero.
) p (V) is the zero operatoron Z(; T) .

Claim: p isthe minimal polynomial for U .

i:e:; to prove that p (U) = 0 and no polynomial of degree less than deg p

satises U .

If possible, let h be any other polynomial of degree less than k = deg p :

Let h(U)

) hw)
) h(m) = 0 (*U isinduced byT)

) hT) 4 M(:T)

0
0

where deg h <deg p where p which is a contradiction.
) p isthe minimal polynomial for U .
Hence part (iii) .

This completes the proof of the theorem.

Companion matrix of the monic polynomial p :

Consider a linear operator U on a space W of dimension K which as a

cyclic vector :

[If z( ;T)=V,then iscalledacyclicvector for T where T is alinear

operator on V.
) is a cyclic vector of U, where U is a linear operator on
wW ) z( ;U)=W:]

Then by above theorem, (i) the vectors ;U ;U2 ; ;Uk 1 form
a basis for the space W and (ii) the annihilator p of is the minimal

polynomial for U (and hence p is also the characteristic polynomial for
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u).
For i = 1;2; :k, let; = U' ' ;then the action of U on the ordered
basis B=f PP S £
u,; = i1, =12, ;k 1
Uk = Co1 Ci12 Ck1 k

k

where p =co+cCix+ +¢ X'+ x% isaminimal polynomial for U .

> pU) =0
Co+01U+C2U2+ +Cr 1UN T LUK = 0
) k 1 k
) c, +cU +cU  + +c U +U = 0
) LT = Cop c,U czu2 Ck 1Lf<1
where T ;U ;u?; Ut g is a basis for W .

) The matrix of U in the ordered basis B is

0 0O 0 ¢
0 0 ¢

. ; (9.3)
|

0
1

>
o

0 oo 1 o
This is called the companion matrix of the monic polynomial p :

Theorem 9.2. If U is a linear operator on the nite-dimensional space W , then
U has a cyclic vector if and only if there is some ordered basis for W in which

U is represented by the companion matrix of the minimal polynomial for U .

Proof. Rewrite the above companion matrix.

Corollary 9.1. If A is the companion matrix of a monic polynomial p, then p

is both the minimal and the characteristic polynomial of A.

Proof. Rewrite the proof of Theorem 9.1.
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Cyclic Decompositions and the Rational Form

The primary purpose of this section is to prove that if T is any
linear operator on a nite-dimensional space V , then there exists vectors
1, 2, 5 ¢ In V suchthat Vv isadirect sum of T -cyclic subspaces.

V = Z( 4T) Z( 5T) Z(nT)

This, in turn will show that the linear operator T is the direct sum of a

nite number of linear operators, each of which has a cyclic vector.

De nition 9.3. If W isany subspace of a nite dimensional space V , then there
exists a subspace WO of V suchthat V = W W?°. In fact, there will be many
such subspaces W° satisfying V = W W?°. Each of this subspace is said to be

complementary to W .

Now, the question is: When a T -invariant subspace has a

complementary subspace, which is also invariant under T .

Remark 9.2. Assume that V = W W° where both W and W° are invariant

under T . We can now see what is special about W?

If 2V,then

where 2W; o2 W

Let f be any polynomial over the scalar eld. Then

f(T) = f(T) +f(T)°

Since W is invariant under T , which implies that TW W .
y 2w ) M 2w,
similarly, W° is invariant under T , which implies that TW° W .

) o2 W ) f(T)r°2w°.
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a sum of an element in W + an element in W°

) f(T)

an element of W if and only if this element of W° = O

) M)
) #T) 2 W ifandonlyif f(T) °-0

When f(T) 2 w then f(T) = f(T)

De nition 9.4. Let T be a linear operator on a vector space V and let W be a

subspace of V . We say that W is T -admissible if

(i) W isinvariantunder T ;
(i) if £(T) isin W, there exists a vector in W suchthat f(T) = f(T) :

Remark 9.3. If W is invariant and if W has a complementary invariant

subspace, then W is admissible.

the Admissibility characterizes those invariant subspaces which have

complementary invariant subspaces.

Discussion: Let W be a proper T -invariant subspace. Letustryto nda
non-zero vector  such that w \ Z(;T) = fog.

Choose some vector  whichisnotin V.
Consider the T -conductor S( ;W) = fpolynomials g=g(T) 2 wi.

[Recall: The monic polynomial f=S( ; W) which generates the ideal
S( ;W) is also called the T -generator of into W .]

Now, f=S(:W) ) f(T) 2w,

) If W is T -admissible, then by de nition, there exists a inw such
that

f(m)y = (M
Let = and let g be any polynomial.
) = where 2 W .

> 2W:
) g(T) will be in w if and only if g(T) isin wW.
) sGW)-s(w).

) The polynomial f is alsothe T -conductor of into W.
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But f(T) = 0 whichn implies that g(T) 2 W if and only if g(T) =
0 ) w-fog.

But, the subspace W is proper, ie:; W 0- fog.

Thus, the only possibility left outis Z( ;T) and W are independent and

f isthe T -annihilator of :

Theorem 9.3 (Cyclic Decomposition Theorem). let T be a liner ooperator
on a nite-dimensional vector space V and let W, be a proper T -admissible
subspace of V . There exist non-zero vectors ; »; ; ,in V with respective

T -annihilators p4; ; p, such that

(i) V=W, Z( ;T) Z( 5T);
(ii) px divides px 1; k=2;3; ;r

Furthermore, the inter r and the annihilators p;; p,; ; p- are uniquely

determined by (i); (ii) and the fact thatno  is O.

Proof. The proof is rather long; hence we shall divide into four steps.
Step I: Given that W, is a proper T -admissible subspace of V .

) By de nition, W, is invariant under T and if f 2 W, , then there exists

2W0 suchthat f = f :

Note that S( ;W) is the monic polynomial which generates the ideal

S(;W):

(Or) sS( ;w) isa T -conductor of into W and it is the monic polynomial of

least degree, which sends  into W .

) Even the maximum of degree of such T -conductors cannot exceed the

dimension of V.

i;e;; O<max degS( ;W) dimV

) We can choose a vector such that deg S( ;W) attains the maximum.

Thus the subspace W +Z( ; T) isthen T -invaraint and has a larger dimension

than that of W . i:e:; so far.

Apply this process to W = W, and end up with a subspace W; = Wy +Z(;T)

where ; is a vector such that deg S (;; W;) is maximum.

If W, is an improper subspace, there is nothing to move.
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) If W, is still proper: Apply the same process to W, and end up with
W, = W; + Z(1; T) where , is such that deg S ( ,; W,) is maximum.

Continuing in this process, we end up with W, = V:

) There exists non-zero vectors ;; ,; ;. in V suchthat

@ V=Wo+Z( ;T)+2Z( 5;T)+ +2Z(;T) and

b)ifl kr,and W, =Wy +Z( ;T)+2Z( 5, T)+ +Z(  T) then the
conductor px = S ( ; Wy) has maximum degree (among all T -conductros

into the subspace Wy ;.)

ice:; 4 deg py = m%deg S( ;W)

Hence the step I.
Step II: Given that 1; 2, ; r arethe non-zero vectors which satisfy step I.

Fix k, 1 k r.Let beanyvectorin Vandletf =S(;Wy,).

/ \
Let f = o+ gi i (i2Wi)-

1i k
Claim: f=each polynomial g; and ,=f o where 2 W, .
Let k =1: Then 2V and f=S( Wy and f = , ( 0ZWO).
f = S(;Wy)

) fis a T-conductor of into W,

) £ 2w,

Now, we prove Step-Il for k > 1:

Using the division algorithm, we get

g = fhi+r

where either r; =0 (or) degr; <deg f.

If we want to claim that f=g;, then the remainder r; = 0; 8i .

"
Letr = h;
i-1
k1
/7 \
) r = ) hll
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Furthermore,

Now, we shall show that r; = 0 8i.
If possible, let r; 6= 0:

Let j be the largest value of i such that r; 6= 0: Then

J
/ \
f = o+ ri i, rj 0

i-1

and degr; <degf:

Let p=S(r: W)

Since, W; ; W, ; where f=S( :Wx1); p=S(F:W;,)

) f must divide p.

) p="fg:
Multiplying both sides of (9.4) by g(T), we get
/j\
gf = go+ Ori;
i-1
) 7\
p = 9r; j+9 o+ ari i
1i<j

I\griiZle

1i<j

Since p 2 W 9o
) O 2 Wj 1.
Since gr; sends ; into W; ;.

) gri=S(;:Wji)

deg (gr; deg S( ;; W;j 1))

deg p;

deg S(;W; 1)
= degp
= deg (fg)

) degrj deg f

which contradicts the choice of j .

(9.4)
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) ri=0 where g; = fh;+r;.
) gi = fh.
) f divides each g; and also o= f :

) 0=fowhere02 W, .

Hence Step-I1.
Step-111: There exist non-zero vectors ,; ; , in V which satisfy conditions
(i) and (ii).

Start with the vectors ;; ,; ;. available in Step-I.

Fix k, 1kr.

We apply Step-II to the vector =  and f = p,, we obtain

7\
Pk k = Pk o+ pkhi i (9.5)
1 i<k
where 4 isin W, and h;; ; he, are polynomials. Let
/\
Kk = k 0 hi (9.6)
1 i<k
Since |, (isin W, ;.
) S W) - S( N - (9.7)
Now pk k = PkkPxo pchii=0

) Pk xk = O
) w\z(¢T) - 0 (9.8)

Note that each | satis es (9.7) and (9.8).

) It follows that

W, = W, Z( 4T) Z( ) (9.9)

where p, is the annihilator of .

Thus, the vectors ;; ,; ; . de ne the same sequence of subspace
Wy, Wy, as do the vectors ;; 5 ; . Also the T -conductors py =
S ( Wy 1) have the same maximality properties ( because of condition (b) of
Step-1). The vectors 3; ,; ; , have the additional property that the subspace
Wo; Z( 2, T); Z( 5 T); ;Z( 5 T) are independent.

Since pxk =0 8k.
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) Pk k=0+pP1 1+ +Pc1ka1.
) P=P1; P2; Pk 1-
This proves conditions (ii) of the theorem.

Step-1V: The number r and the polynomials p;; p,; ; prare uniquely

determined by the conditions of Theorem.

If possible, let there exists another set of non-zero vectors ry;r,;  ;rs with
respective T -annihilators g;;9,; ;s such that
V = W, Z(r;T) Z(rs; T) (9.10)

and g, divides g, ; for k = 2;3; :S
Claim: r =s and p; = g; 8i.
To prove this, rst we shall prove that p;, = g; .

First, we observe that the polynomial g, is determined from (9.10) as the

T -conductor of V into W, .
Let S(V;Wy) = fpolynomials f=f o 2 Wo; 8 2V.

i:e;; S (V; Wy) contains polynomial f such that the range of f(T) is contained
in W, .

i:e;; S (V; W) is a non-zero ideal in the polynomial algebra whose monic

generator is the polynomial g; .
Since 2 Y,
= o+ f 1+ + fs >
01 = Oi1o0+0if1 1+ +01fs s

S
7\

= 010+ g1fii
i1

Since each g; divides g;, we have g;;,=0 forall i and g; =g; o isin Wy.

Thus g, is in S (V; W,) . Since g, is the monic polynomial of least degree
which sends ; into W, . We see that g, is the monic polynomial of least degree
in the ideal S (V; W,) . By the same argument, p, is the generator of that ideal,

SO P1=0:.
Let W be a subspace of V and let f be a polynomial.

De ne fw - [f = 2wg
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Then, we have

1. fz( ;T)=2z(f ;T)

2. 1fv=Vv, V|, where each V; is invariant under T , then

fv = fV, fVy (9.11)

3. If and havethe same T -annihilator, then f and f have the same
T -annihilator and dim Z(f;T) = dim Z(f ;T).

Now, we proceed by induction to show thatr=s and p;=g; fori=2; ;r:

Since p; = g is already proved, Hence, it is enough to prove that r = s and

pi =g fori=2 i
Now, our claim is thatif r 2 then p, =g,.
Let r 2:

) dim Wy +dim Z( 4; T) <dim V

Since we know that p, = g; which implies that Z( ,;T) and Z(,; T) have

the same dimension.
) dim Wy +dim Z( ; T) <dim V
which shows that S > 2:
Now, we have two decompositions of V namely.
vV = W, zZ( 4T) Z( ;T) and (9.12)

\ Wo Z( ;T) Z(sT) (9-13)

Inturn, the subspace p,V will have two decompositions as follows,
p.vV = pW, Z({p, 1;T) and

povV o= pWo Z(p: ;T) Z(pars; T)

Now dim Z(p, 1;T) =dim Z(p, +;T).
) dim Z(px; T) =dim Z(pz 5;T) = =dimZ(p,s;T)=0.
ire;; dim Z(p, ;T) =0 8i 2.
We conclude that p, , = 0 and g, divides p,.

By interchanging the roles of p, and g, , we can prove that p,=g, .
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) We have p, = g5.

Proceeding like this, using the principle of induction, we get r = s and that

pi=g; fori=121;2; ;r.
Hence Step-1V.
This completes the proof of the theorem.
Corollary 9.2. If T is a linear operator on a nite-dimensional vector space,

then every T -admissible subspace has a complementary subspace, which is also

invariant under T .

Proof. Let W, be an admissible subspace of V .
Case (i): Let W, be an improper subspace of V .
ire:; let Wy = V:
In this complement Wg = fog which is invariant under T such that V =
W, WS,
Case (ii): Let W, V. Then by above theorem, the complement of W, namely

0

Wo

is given by

wWe = Z( T) Z( 5T)

Thenalso W9 is invariant under T such that V = W, Wj.

Hence the corollary.

Corollary 9.3. Let T be a linear operator on a nite-dimensional vector space

V.

(a) There exists a vector in V such that the T -annihilator of is the

minimal polynomial for T .

(b) T has a cyclic vector if and only if the characteristic and minimal

polynomials for T are identical.

Proof. If V = fog, the results are trivially true.

ﬁv6=b&mt

vV o= Z( 4T) zZ( T) (9.14)

where the T -annihilators pi; p,; ;pr aresuchtht pe.1i=px (1 k r 1):
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As we noted in the proof of the above theorem, p; is the minimal polynomial

for T.
(or) p; isthe T -conductor of V into fog.
Hence (a) proved.

We know that if T is a cyclic vector, then the minimal polynomial for T

coincides with the characteristic polynomial.
This proves (b).

Hence the corollary.

Theorem 9.4. (Generalized Cayley-Hamilton Theorem) Let T be a linear
operator on a nite-dimensional vector space V . Let p and f be the minimal

and characteristic polynomial for T respectively,

(i) p divides f .
(i) p and f have the same prime factors, except for multiplicities.

(iii) If

T1 T
p = f f

is the prime factorization of p, then

da d
fo= f f
where d; is the nullity of f(T)" divided by the degree of f; .

Proof. Case (i): If V = fog , then the theorem is trivially true.
Case (ii): Let v O= fof.
As in the previous corollary, there exists a decomposition of VV of the for,

Vo =Z( 4T) Z(nT)

where the T -annihilator pi; po; ; p, are such that p..1 divides p, (1 k
rl).

Also, we have the T -annihilator of is the minimal polynomial for
T. (ize;;)py = p:

let U; is the restriction of T to Z( ;;T).
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ie:; U; has a cyclic vector.

i:e:; p; is both the minimal polynomial and the characteristic polynomial for
U (=212, ;n.

Given that f is the characteristic polynomial for T .

f = pip Pr (9.15)

ie;; p; divides f .
i:e:; p divides f .
Hence part (i) .
Also, any prime divisor of p; is a prime divisor of f .

Since, p; = p, which implies that any prime divisior of p is a prime divisor
of f.

Conversely: Any prime divisor of f is a prime divisor of one of the factors
P1; P2 » Pr.

Thus, any prime divisor of f divides p; .

Since p = p;, any prime divisor of f divides p.

Hence p and f have the same prime factors, except for multipliciites.

Hence part (ii) .

Giventhat p= f*  f™ isthe prime factorization of p.

Let p be the minimal polynomial for T .

P = p P

Let W; is the null space of p;(T)" . Then

vV = W, Wy

If V; is the null space of f;(T)", then

VvV = V; Vi

where fi“ is the minimal polynomial of the operator T; (which is obtained by

restricting T to V;).

Consider the operator T; and apply part (ii) of this theorem. (i:e:; if p and

f are the minimal and characteristic polynomial of T then p and f have the
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same prime factors, except for multiplicities.)
Since, the minimal polynomial for T; is some power of the prime f;.
Thus, the characteristic polynomial for T; is of the form fid' ,where d; r;:

Obviously,
dimV;
deg f;

Since V; is the null space of ;(T)" .
) dimV; = dim [Null space of f;(T)"]
) dim V; is the nullity of f,(T) "

Nullity of f,(T)"
) di= :

degree of f;
Also, T =T, Tk.

ie;; Characteristic polynomial for T is the product of characteristic

polynomial of Ty; Ty Tk
PR di gd2 d
ier; f = fhfR g
Hence part (iii) .

This completes the proof of the theorem.

Rational Form:
Let us look at the matrix analogue of the cyclic decomposition theorem.

ie:; Assume that we have an operator T such that

Vo= W, Z( ;T) Z(;T)
Where ; ,; ;. arenon-zero vectorsin V.
Let B, = f T T2 5 ;TS 1.l be the cyclic ordered basis for

Z( T
where k; = dimension of Z( ;; T) = The degree of the annihilator p;

The matrix of the induced operator T; in the ordered basis B; is the

companion matrix of the polynomial p; .
i;e:;; If B is the ordered basis for v .
Then B is the union of B;, namely B; B, B, .

If A; denote the k; k; companion matrix of p; and if A is the matrix
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of T in the ordered basis B. Then

An n n matrix A, which is the direct sum of companion matrices
A Ao ; A, of non-scalar monic polynomials p;; pz; ; pr Such that pj.1
divides p; (i = 1;2; ;r 1), is said to be in Rational Form.

Theorem 9.5. let F be a eld and let B be an n n matrix over F . Then B is

similar over the eld F to one and only one matrix which is in rational form.

Proof. Let T be the linear opertor on F" and let T be represented by the matrix

B, in the standard ordered basis.

i:e;; There is some ordered basis for F", in which the linear operator T is

represented by a matrix (say) A, which is in rational form.
Then B is similarto A.
Claim: B is similar to only one and ony matrix, which is in rational form.

If possible, let B be similar to another matrix C which is in the rational form

over F.

i:e;; There is some ordered basis for F", in which the linear operator T is

represented by the matrix C.

Thus, C is the direct sum of companion matrices c; of monic polynomials

01,02, 0s suchthat g;.1=g; for i=1;2; ;s 1.

By using cyclic decomposition theorem, there exists non-zero vectors

1, s In V with respective T -annihilators g,; ;gs such that
Vo= Z( 4T) Z(5T)
Since g;; 9,;  ; gsare the T -annihilator with respect to the matrix C.
Similarly, pi; p;;  ; prare the T -annihilators with respect to the matrix A .

Thus, the uniqueness of the cyclic decomposition theorem implies that the

polynomial g; are identical with the polynomials p; .
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Hence C = A:

This completes the proof of the theorem.

Let us Sum Up:

In this unit, the students acquired knowledge to

explain the concept of cyclic decomposition theorem.

understand the concept of Rational Forms.

Suggested Readings:

1.

2.

M. Artin, Algebra, Prentice Hall of India Pvt. Ltd., 2005.

S.H. Friedberg, A.J. Insel and L.E Spence, Linear Algebra, 4"
Edition, Prentice-Hall of India Pvt. Ltd., 2009.

I.N. Herstein, Topics in Algebra , 2" Edition, Wiley Eastern Ltd,
New Delhi, 2013.

J.J. Rotman, Advanced Modern Algebra , 2" Edition, Graduate
Studies in Mathematics, VVol. 114, AMS, Providence, Rhode Island,
2010.

G. Strang, Introduction to Linear Algebra , 2" Edition, Prentice
Hall of India Pvt. Ltd, 2013.
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UNIT-10

THE JORDAN FORM

Structure
Objective
Overview
10. 1 The Jordan Form
Let us Sum Up
Check Your Progress

Suggested Readings

Overview

In this unit, we shall discuss the Jordan form.

Objectives
After successful completion of this lesson, students will be able to

understand the concept of JordanForm.
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The Jordan Form

Let N be a linear ooperator on a vector space V. We say that N is
nilpotent, if there is some positve integer r such that N = O:

Thus, there exists non-zero vectors 4; ,; ; . in VvV with
N -annihilators py; po;  ; p, such that

() V=2( sN) Z( »N) and

(ii) pja=p; for i=1:2; ;r 1

Since N is nilpotent and thus the minimal polynomial for N is x* for

some k n.
) Each N -annihilator p; is of the form p;x“ where k; k K,

The companion matrix of X isthe k; k; given as follows:

0 0 00
fr o 0 o]
A - 01 00

]
)

00 10

These matrices A; are nilpotent and theri size decreases as i increases.

One sees from this that associated with a nilpotent n n matrix is a
postive integer r and r positive integers k;;  ; k. such that k; + +k, =n
and k; ki.1; and these positive integers determine the rational form of the

matrix, i:e:; determine the matrix upto similarity.
Moreover, the positive integer r is the nullity of N.

Claim: Infact, the null space has a basis of r vectors

N TN B SNkt
Let isinthe null space of N.

) N =0, then

= fll"’ +frr
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where f; is a polynomial with deg f; < k;:
ice;; NGt .+ +f ) =0

N(f, 1)+  +N(fr ) =0

) NGy - S

N@©) = N(N(fi 7))
0 = Nf(N)
= (xf);

Thus, xf; is divisible by x* and since deg (f; > k;), this means that

Where c; is some scalar. But

1

= (X! D+ ore(X! )

Which shows that the vectors N* * ;:  ;N% 1 _ forms a basis for the

null space of N.
This proves our claim.

Now, let T be a linear operator on V and assume that the characteristic
polynomialf for T can be factorised over F as

fo= (x c)® (x c)*

where c;;c,; ;¢ are distinct elements of F and each d; 1:
Thus, the minimal polynomial for T will be of the form

p = (x c)™  (x c)™

where 1 r; d;

Let W; be the null space of (T ¢;1)" and let T; be the operator induced
by T on w;.

By using primary decomposition theorem, we have

vV = W, Wy

and the minimal polynomial of each T; is of the form (x «¢;)".

Let N; be the linear operator on W; de nedby
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Ni = Ti Cil

Then N; is nilpotent and has minimal polynomial x" .

Now, we choose a basis the subspace W; corresponding to the cyclic

decomposition for the nilpotent operator N;.

Thus, the matrix of T; in this ordered basis will be the direct sum of

matrices of the form 2 3

© 0 0 0,
vi ¢ 0 O, Z
00 1 ¢

eachnwith ¢ = ¢; . A matrix of this form is called an elementary Jordan

matrix with characteristic value c.

Now, let us put all the bases for the W; together and obtain are ordered
basis for V . Now, let us describe the matrix of T; (ice:; ) A in this ordered

basis, as follows:

The matrix A is the direct sum

éAl 0 0 7
N =§ 0 A, O é
0 0 Ay

of matrices A;; ; A.. Where anch A is of3he form

so 90
: 1
§O 30 !
A 2
B T
g

where each J(J.‘) is an elementary%orddnf matrk with characteristic value

Gi.

An n n matrix A described as above, is said to be Jordan Form.

Let us Sum Up:

In this unit, the students acquired knowledge to
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explain the concept of Jordan Form.

Suggested Readings:

1.

2.

M. Artin, Algebra, Prentice Hall of India Pvt. Ltd., 2005.

S.H. Friedberg, A.J. Insel and L.E Spence, Linear Algebra, 4t
Edition, Prentice-Hall of India Pvt. Ltd., 2009.

I.N. Herstein, Topics in Algebra , 2" Edition, Wiley Eastern Ltd,
New Delhi, 2013.

J.J. Rotman, Advanced Modern Algebra , 2" Edition, Graduate
Studies in Mathematics, VVol. 114, AMS, Providence, Rhode Island,
2010.

G. Strang, Introduction to Linear Algebra , 2" Edition, Prentice
Hall of India Pvt. Ltd, 2013.
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