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2 1.1. INTRODUCTION

Objectives

After successful completion of this lesson, students will be able to
+ understand the basic concepts of Partial Differential Equations.
+ form PDE by eliminating arbitrary constants.
+ form of PDE by eliminating arbitrary functions.

+ understand the concept of Cauchy’s Problem for first-order equations.

+ tosolve linear equations of first order.

1.1 Introduction

In this section, we present the basic concepts of differential equations. To start with, we recall the
quote given by V.I. Arnold, “Differential equations form the basis for the scientific view of the
world”. Next, we discuss the basic cycle of real world problem,

Real world problem

abstract’/ \ interpret
solve

Mathematical ————  » Mathematical
model solution

Naturally, all the phenomena can be governed by differential equations. So, we begin with the

definition and classification of differential equations.

Differential Equation

An equation involves unknown function and its derivatives (differential coefficients).

or

Partial Differential Equations M.Sc.(Mathematics)-11 Sem|



1.1.INTRODUCTION

3

An equation involves independent variables, dependent variables and derivatives of dependent

variables with respect to independent variables.

Classification of Differential Equations

Ordinary Differential Equations

An ordinary differential equations is a differential equation in which a single independent variable

enters either explicily or implicitly.

which is a general second order equation.

Linear Ordinary Differential Equations

The degree of the dependent variable and its derivatives is one.

dy dy
d_X2+ d—X+y= 0.

Partial Differential Equations

M.Sc.(Mathematics)-11 Sem|



4 1.2. ParTIAL DiffereNTIAL EQUATIONS

Nonlinear Ordinary Differential Equations

The degree of the dependent variable and its derivatives is more than one.

dy  dy
d_x2+yd_x+y=0'

Next section we discuss the partial differential equations and its classifications.

1.2 Partial Differential Equations

Many physical phenomena arise in nature can be governed by differential equations, especially,
the problems in science and engineering are expressed by means of partial differential equations.
Partial differential equations arise in geometry and physics when the number of independent
variables in the problem under discussion is two or more. When such is the case, any dependent
variable is likely to be a function of more than one variable, so that it possesses not ordinary
derivatives with respect to a single variable but partial derivatives with respect to several variables.
For instance, in the study of thermal effects in a solid body the temperature 6 may vary from point

to point in the solid as well as from time to time, and, as a consequence, the derivatives

d6 06 06 o6
5(1 7y1 371 ﬁl

will, in general, be nonzero.

Partial Differential Equations (PDEs)

A partial differential equation is a differential equation in which more than one independent

variables.

Order of PDE

The order of a partial differential equation is the highest partial derivative in the equation.

Partial Differential Equations M.Sc.(Mathematics)-11 Sem|



1.2.ParTIAL DiffereNTIAL EQUATIONS 5

Degree of PDE

The degree of a partial differential equation is the highest power of the highest partial derivative
in the equation.
Example !

0 d2u
nyu—uﬂazu oou — 0

" ox' gy’ ox2' oxay' dy? -
or
F X, Y, U, Uy, Uy, Uxx, Uxy, Uyy = 0

which is a general second order equation.

Furthermore in any particular problem it may happen that higher derivatives of the types

20 20 930
" axat axear S

may be of physical significance.

Linear PDE

A PDE which is linear in the unknown function and all its derivatives with coefficients depending
on the independent variables alone is called a Linear PDE.
Examples:

P, y)p + Q(X, ¥Y)q = R(X, ¥)z + S (X, ) (First Order)
072 072 0z2 oz oz
< A(X, y)W + B(x,y)m + C(x, y)a?+ D(x, y)37+ E(x,y) 87+ F(x,y)z+ H(x,y) = 0
(Second order)

X X
Ai(X, Y)Zxyxg xm + Bi(X, Y)Zxxoxny + 0 FXY)Z+ H(Xy) =0 (mt order)

where Xj = X or y and all coefficients A;, B;, . .., F, H are functions of independent
variables X and y alone.

Partial Differential Equations M.Sc.(Mathematics)-11 Sem|



6 1.2. ParTIAL DiffereNTIAL EQUATIONS

Semi-linear PDE

In a PDE, the coefficients of derivatives of order m are functions of the independent variables
alone is called a Semi-linear PDE.

Examples:
P(x,y)p + Q(x,¥)q = R(X, Y, 2) | (First Order)
or? oz2 oz oz oz
A, Y)axz T B Y)gxay * C(X’y)a_yz +Fxyzo - 0 (Second order)
X
A%, Y)Zxxoxm + F XY 2 Zns Zaixgr - -+ Txoxgodmy,. = 0 (mth order).

Quasi-linear PDE

A PDE of order mis called Quasi-linear if it is linear in the derivatives of order m with
coefficients that depend on the independent variables and derivatives of the unknown function

or order strictly less than m.

Examples:
P, y,2)p + Q(x,y,2)q = R(X, Y, 2) ! (First Order)
. A(xyz)%JrB(xyz)aZZ +C(xyz)%+F xyzﬂﬂ _0 (Second order)
Lokt ogxay oy ok gy
X
A% Y, DZxoxm + F XY, 2,20, Zixgs -+ -0 g oxmy,. = 0 (mth order).

Nonlinear PDE

A PDE is called Nonlinear if it does not comes under the above three types, namely, linear,

semi-linear and quasi-linear.

Examples:
F(x,y,z,p,q) =0 ! (First Order)
F XY,z %(, g—;, 32722, £(Zazy’ 8ayi22 = (Second order)
F XY, Z, 2, Zxixgs - - - 1 Zxoxg 10 Zxoxgoxm. = 0 (mth order).

Partial Differential Equations M.Sc.(Mathematics)-11 Sem|



1.3.0rigINs of FIRsT-ORDeR PaRTIAL DiffereNTIAL EQUATIONS 7

In the main we shall suppose that there are two independent variables x and y and that the
dependent variable is denoted by z. If we write
oz oz

, =" (D
ox ay

P

then the first order partial differential equation can be written in the symbolic form

f(x.y,z,p,q) =0. (2)

1.3 Origins of First-order Partial Differential Equations

In this section, we discuss the formation of partial differential equations. Mainly, there are two

methods to form a partial differential equations

(i) Eliminating arbitrary constants,

(ii) Eliminating arbitrary functions.

1.3.1 Formation of PDE by eliminating arbitrary constants

Let
F(x,y,2,a,b) =0 (1)

where a and b denote arbitrary constants. If we differentiate this equation with respect to x and
Yy, we obtain the relation
8F+p3F -0 3_F+q3_F_
Ox o ' oy oz

The set of equations (1) and (2) constitute three equations involving two arbitrary constants a and

0. (2)

b, and, in the general case, it will be possible to eliminate a and b from these equations to obtain

a relation of the kind
f(x,y,z,p,q) =0 (3)

showing that the system of surfaces (1) gives rise to a partial differential equation (3) of the first

order.

Partial Differential Equations M.Sc.(Mathematics)-11 Sem|



8 1.3. OrigiNs of FIRsT-OrRDeR ParTIAL DiffereNTIAL EQUATIONS

Problem 1.3.1. Find the PDE of the family of spheres whose centres lie on the z— axis and radius

a.

Solution. Let x2 +y2 + (z — ¢)? = a2 (1)
be the family of spheres whose centres lie on the z— axis and radius a.

Differentiating equation (1) partially with respectto X and y, we get

oz X
2X+2(Z—C)6X=0:>x+p(z—c)=0:z—c=—p 2)
oz y
2y+2(z—¢)” =0=>y+q(z-¢)=0=>z—-c=—-". (3)
ay g
From (2) and (3), we have
X y
P9
yp —xq =0
which is the required PDE. [ |

Problem 1.3.2. Find the PDE of the family of right circular cones whose axes coincide with the

line Oz.

Solution. Let X2 +y2 = (z — ¢)2tan? a (1)
be the family of right circular cones whose axes coincide with the line Oz.

Differentiating equation (1) partially with respect to X and y, we get

2x=2(z—c) Qtanz a=Xx=(z—-c)ptanza :>X= (z—c)tanZ2a (2)
oX p

Partial Differential Equations M.Sc.(Mathematics)-11 Sem|



1.3. ORrIgINs Of FIRsT-ORDeR ParTIAL DiffeReNTIAL EQUATIONS 9

2y = 2(z - C)Q tan?a = y=(z—c)qtan?a = Y_ (z—c)tan?a. (3)
ay q
From (2) and (3), we have
Xy
P a
yp —xq=0
which is the required PDE. [ |

Problem 1.3.3. Eliminate the constantsa and b form the equation z = (x + a)(y + b).

Solution. Given z = (x +a)(y + b). (1)

Differentiating (1) partially with respectto x and y, we get

oz
P= o =y+b) = (y+b)=p (2)
oz
q===(x+a) _ (x+a)=g. (3)
ay
Using (2) and (3) in (1), we get
Z=qp
Pq =z
which is the required PDE. [ |

Problem 1.3.4. Find the PDE of the family of spheres of unit radius whose centres lie on the

Partial Differential Equations M.Sc.(Mathematics)-11 Sem|



10 1.3. OrigINs of FIRsT-ORDeR ParTIAL DiffereNTIAL EQUATIONS

Xy— plane.

Solution. Let (x —a)2+(y—b)2+z2=1 (1)
be the family of spheres of unit radius whose centres lie on the xy— plane.

Differentiating equation (1) partially with respect to X and y, we get

2(x_a)+ Zzﬁ

6X=0:>(x—a)=—zp (2)

2(y—b)+25%=0:(y—b)=—zq (3)

Using (2) and (3) in (1), we have

(~2p)2 + (~2q)2 +22 = 1

2(p2+Q2+1)=1

which is the required PDE. [ |
1.3.2 Formation of PDE by eliminating arbitrary functions

In this subsection, we explain the formulation of PDE by eliminating the arbitrary functions.
Problem 1.3.5. Eliminate the arbitrary function f from the equation z = f(x% + y2).

Solution. Given z = f(x2 +y2), (1)

where the function f is arbitrary. Now if we write x2 +y% = u and differentiate equation (1) with

Partial Differential Equations M.Sc.(Mathematics)-11 Sem|
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respectto X and Y, respectively, we obtain the relations

oz

P= g = 2xH (W), (2)
q=Z -0 ), 3)
ay

df
where fi(u) = and by eliminating the arbitrary function f(u),

du
(2) P AxfB(u)
—_ - _
(3) % &y fJ (u)
9y
Py = gXx
which is the required PDE. [ |
Problem 1.3.6. Form the PDE by eliminating the arbitrary function from z = f S
Solution. Given z = f Xzy . (D
Differentiating equation (1) partially with respectto X and y, we get
—y. 2
Q J Xy y z-1-x _ fJ Xy Z;D_X
_ ;Y2
p = = f 2 8x: (2)
ox z z
X Ty
oz X y L=
= = 1J
q - ay f 7
¥ = f X (3)
22 z 2

Partial Differential Equations M.Sc.(Mathematics)-11 Sem|



(2)
(3)

_Y Z—pXx
Xy Z px
E={hzyz2
Ty X
X z?

px(z — ay) = qy(z — px)

Z—Qqy

Partial Differential Equations

M.Sc.(Mathematics)-11 Sem|



12 1.3. OrigINs of FIRsT-ORDeR ParTIAL DiffereNTIAL EQUATIONS

PXZ — POXy = qyz — poxy

pxz = qyz

PX = qy

which is the required PDE. [ |

1.3.3 Formation of Partial Differential Equations by elimination of

arbitrary function F from F(u, v) = 0, where u and v are functions

of x,y and z

Let
F(u,v) =0, (D)

where U and v are known functions of X,y and z and F is an arbitrary function of u and v.

To form a differential equation by eliminating the arbitrary function F, we differentiate equation
(1) partially with respectto x and Yy, we obtain the equations
dF "3 0 # dF "é?v d #
u adu v
— T+ p +_— —+—_p =0 2
du ox 6zp ov  ox azp (2)

and n # n #
oF du ou OF ov v

au 3y+ a2 oy c’)y+ o7 =0. (3)

oF
If we now eliminating = and

2u g/ for these equations (2) and (3), we obtain

du du ov ov
. + + .
ox ozP ox oz p

. .=O
- o @.Fa_uq ﬂ+ﬂ

,a ; oy oz

| oy Z | !
xtaP oytad T axtaP oyt ol

Partial Differential Equations M.Sc.(Mathematics)-11 Sem|



1.3.0rigINs of FIRsT-ORDeR ParTiAL DiffereNTIAL EQUATIONS 13

ou ov N ou ov N ou ov N ou ov _3u ov _3v ou _3u ov 8_uav
oxay | oxor ) erey® ' arerPl -oyox —oxer) —oyarP—ar oz
I I I
dudv  dudv dudv ovau dudv  dudv

ozoy” oyar Pt axaz " axar 97 ayax “axay

pg=0

which gives
o(u,v) . o(u,v) 9(u,v)

"oy T e T A y)

This is a linear PDE of the type

Pp+Qq =R, (4)
where
I:,za(u,v) Qza(u,v) Rza(u,v)
a(y,z)’ dz,x)’ axy)

Equation (4) is called Lagrange’s PDE of first order.

Problem 1.3.7. Eliminate the arbitrary function f from the equation f(xz+yz+z2, 72 —2xy) = 0.

Solution. The given relation is of the form

F(u,v) = 0,

where U = X2 +y2 + 72, v = 722 — 2Xxy.

Hence, the required PDE is of the form

Pp+Qq =R, (Lagrange equation)

where
. au v .2y —2X.
p = duv) - % ;
' N 4y7 + 4XZ = 47(X +Y)
oy

Partial Differential Equations M.Sc.(Mathematics)-11 Sem|
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14 1.3. OrigINs of FIRsT-ORDeR ParTIAL DiffereNTIAL EQUATIONS

du ov

Aturvy 0z oz 2z 2
Q = = =, L _Ayz — 4Axz = —4z(X+Y)
d(z,x) au ov
ok ox - 2x =2y
and
ou " 2X =2y ¢
R= a(u, V) oxX .= —4x2 = —4(x2 — y2).
oy - XK. Ay
: au - 2y —2X :
. 0 o
Therefore y oy -
4z(x +y)p — 4z(x +y)q = —4(x* — y?)
#ESFp — ST = —HSFX )
= Zp—z29=y— X
which is the required PDE. [ |

Check YouRr Progress

1. Eliminate the constants a and b from the following equations:

(@) z=(x+a)(y+bh)
(b) 2z=(ax+y)2+b

(c) axz2 +by2+z2 =1.
2. Eliminate the arbitrary function f from the equations:

(@ z=xyf(x?+y?)
(b) z=x+y+ f(xy)

Partial Differential Equations M.Sc.(Mathematics)-11 Sem|



1.4.CaucHy’s PrRoBLeM for FIRsT-ORDeR EQUATIONS 15

(c)z:f&Z‘

(@ z=f(x-y)
(e) f(x2+y2+122, 72 — 2xy) = 0.

1.4 Cauchy’s Problem for First-order Equations

Cauchy’s Problem.
If

(@) Xo(M), Yo() and zo(M) are functions which, together with their first derivatives, are
continuous in the interval M defined by p1 < pu < pz2;

(b) And if F(x, Y,z p,q) is a continuous function of X,y,z,p and q in a certain region U of
the xyzpq space, then it is required to establish the existence of a function ¢(x, y) with the
following properties:

(1) @(x,y) and its partial derivatives with respect to X and y are continuous functions of

X and y in aregion R of the Xy space.

(2) For all values of x and y lying in R, the point {X,y, @(X, y), @x(X, ), @y(X, y)} lies in
U and

F[X1 Y, (p(X, y)v (pX(Xv y)v (Py(X, Y)] = 0.

(3) For all g belonging to the interval M, the point {Xo(l), yo(u)} belongs to the region
R, and

@{xo(W), Yo(W)} = zo.

Geometrically, there exists a surface z = (X, y) which passes through the curve I whose

parametric equations are

X = Xo(K), Y = Yo(W), Z = z0(K) ey

and at every point of which the directionl (p, g, —1) of the normal is such that
F(x,y,z,p,q) = 0. (2)

The above theorem is only one form of the Cauchy problem.
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To prove the existence of a solution of equation (2) passing through a curve with equations (1)
it is necessary to make some further assumptions about the form of the function F and the nature
of the curve T.

Theorem 1.4.1. If g(y) and all its derivatives are continuous for |y — yol< &, if xo is a given

number and zo = g(Yo), do = @(Yo), and if f (x, y, z, q) and all its partial derivatives are

continuous in a region S defined by

X — Xo|< &, ly — yol< 6, [g — qol< 6,

then there exists a unique function ¢(x, y) such that:

(@) ¢(xy) and all its partial derivatives are continuous in a region R defined by [x — xo|< 61,

y — Yol< &2;
(b) Forall (x,y)in R, z=¢(x,Yy) is a solution of the equation

oz oz !
=fxY, z .

oX ay
(c) For all values of y in the interval ly — yo/< 31, @(Xo,Y) = g(y).
1.5 Linear Equations of the First Order

Consider the partial differential equations of the form

Pp+Qq=R, (1)
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where P,Q and R are given functions of X,y and z (which do not involve p or q), p denotes

z z .
__, ( denotes __. This equation is known as Lagrange’s equation.

oX oy

Theorem 1.5.1. The general solution of the linear partial differential equation

Pp+Qgq=R (1)

F(u,v) =0 (2)

where F is an arbitrary function and u(x,y,z) = c¢1 and v(x,y,z) = cz form a solution of the

equations
5= o) == (3)
Proof. To prove this theorem in two stages:

(a) We shall show that all integral surfaces of the equation (1) are generated by the integral

curves of the equations (3);

(b) and then we shall prove that all surfaces generated by integral curves of the equations (3)

are integral surfaces of the equation (1).

Equation (2) consists of a set of two independent ordinary differential equations, that is, a two

parameter family of curves in space, one such set can be written as

dy _ Q(xy,2)
dx  P(x,Y,2) (3)
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which is referred to as “characteristic curve”.
We know that the total differential

dz = de + Qdy. (4)

oX oy

The matrix form of the equations (1) and (4) can be written as

P Qr & a R
I i " Dep i (5)
&dy - & g

Both the equations must hold on the integral surface. For the existence of finite solutions of

equation (5), we have

P Q . P R R Q
. . = . . = . . = 0
dx dy dx dz dz dy
on expanding the determinants
Pdy — Qdx =0 Pdz — Rdx =0 Rdy — Qdz =0
Pdy = Qdx Pdz = Rdx Rdy = Qdz
dy o dz_ox dy oz
Q P R P Q R
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Combining all the above, we get

dx dy dz
POAY,2)  QY.2) R(XY.2)

(6)

which are called auxiliary equations for a given PDE.

Next, we have to show that any surface generated by the integral curves of equation (6) has an

equation of the form F(u,Vv) = 0.

Let

uix,y,z2) =Ct¢ and v(x,y,z) =C (7)

be two independent integrals of the ordinary differential equations (6). If equations (7) satisfy

equation (6), then we have

du = 6‘_udx+6‘_udy+3_ud2=0

oX ay 0z

and
dv = a—de + ﬂdy+ ﬂdz = 0.
oX ay 0z
Solving these equations, we find
dx - dy _ dx

which can be rewritten as
dx dy dz
AU, V) T Uy AWV
ay.2)  dzx) dxY)

(8)
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The relation F(u,v) = 0, where F is an arbitrary function, leads to the partial differntial equation

pa(u,v] +qa(u,v] _ a(u, V)
ay,2) azx) axy)

(9)

The equation (8) can be written as
dx dy dz
P Q R’
The solution of these equations are known to be u(X,y,z) = Ci and Vv(X,y,z) = Cz. Hence

F(u,v) = 0 is the required solution. [ |

Next we generalize the Lagrange’s equation to n independent variables is obviously the
equation
Xipr+ Xepz + - - -+ Xopn =Y, (4)

where X1, X2,...,Xp, and Y are functions of n independent variables Xi, X2,...,X, and a
dependent variable f; p; denotes — (i=1,2 n)
o ,2,...,N).

We now state the theorem for obtaining the general solution of generalized Lagrange’s equation.

Theorem 1.5.2. If ui(x1, X2, ..., X, 2) =¢ (i =1,2, ..., n) are independent solutions of the
equations

dx  dxe dx, dz

P P,  Pn R’
then the relation ®(us, Uz, .. ., Uy) =0, inwhich the function @ is arbitrary, is a general solution

of the linear partial differential equation

oz oz 0z

P, — T _=R_
16X1 +P23x2 + +P"6Xn
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Proof. If the solutions of the equations

dx; dx dx, 92
Pl - PZ ) ) Pn -
are
Ui(X1, X2, - .., Xn, Z) =G i=1,2,...
then the n equations
X i :
OUigy + M -0 =12,
an oz

i=1

must be compatible with the equations (5). In other words, we must have

X _ .
p QU , g2 _ g
3Xj oz

j=1

Solving the set of n equations (8) for P;, we find that

Pi
L Uen) T Buntm) 1=1,2,...
O(X1, e Xim1,2,Xis 1. %) AU, Uz,...,Un)
d(U, Uz, ... U _
where o) denotes the Jacobian
AU, Uz, ..., Un)

duy @ du1
X1 X2 OXn
duz @ auz
X1 Xz OXn
Uy au, U,
e 3,

N

lnl

(5)

(6)

(7)

(8)

(9)
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Consider the relation

®(ug, Uz, ...,Uy) = 0. (10)
Differentiating it with respect to X;, we obtain the equation

x @@1+@1 az!

=0
=1 3Uj OXi oz oX;
: e .. 0O o0
and there are n such equations, one for each value of i. Eliminating the n quantities ~,...,
duy au,
from these equations, we obtain the relation
X . -
a|U1,...,Unl+ 0z 9(U1,... Uj-1,Uj, Upp1,. .., Up) _o. (11)

OXt, . X)X A(Xe, .y Xjm1,Zy Xy« e+ Xn)

j=
Substituting from equations (9) into the equation (11), we see that the function z defined by the

relation (10) is a solution of the equation

az oz 0z

Py, kP =R (12)
n

P1
ox1 6X2

This completes the proof. [ |

Methods for Solving Lagrange’s Auxiliary Equation

In this section, we explain how to solve the linear PDE Pp + Q@ = R using the auxiliary equation

o oy

P"Q R’

There are two methods to solve the above Lagrange’s auxiliary equation.
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+ Method of grouping

+ Method of multipliers

1.5.1 Method of grouping

. : . dxdz
Ifitis possible to take two fractions — = ; from which y can be cancelled or is absent, leaving

P
equations in X and z only. If so integrate it by giving u(x, z) = C1.
N | d¢ dy
Similarly take another two fractions say b = 0 which may give V(x,y) = Cz. Therefore,
the solution of (1) is
F(u,v) = 0.

1.5.2 Method of multipliers

Choose any three multipliers I, m, n which may be functions of X,y and z

dx dy dz ldx+ mdy+ndz
=== = k(say)
P Q R IP+mQ +nR

such that the expression IP + mQ + nR = 0.

Since
Idx + mdy + ndz = k(IP + mQ + nR).

we obtain
ldx + mdy + ndz = 0.

On integration, we get u(x, y, z) = Ci.

Similarly, we can choose three multipliers P, m, n, we get v(X, Y, z) = Ca. Therefore, the solution
of (1) is
F(u,v) = 0.
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Example 1.5.1. Find the general solution of the differential equation

XZQ +y2ﬁ = (X +Yy)z

oX ay

Solution. Given XxZp +Yy2q = (X +Y)z. (1)
Comparing (1) with Pp + Qq = R, we have P = x2,Q = y2 R = (X + YY)z

The integral surfaces of this equation are generated by the integral curves of the equations

dx dy dz
Xy (x+y)z @
The first equation of this set has obviously the integral
X1 —y-1=¢q (3)
and it follows immediately from the equations that
dx —dy dz
X2 —y2  (x+y)z
which has the integral
X J—
=Y )
z

Combining the solutions (3) and (4), we see that the integral curves of the equations (1) are given

by equation (4) and the equation

—=C3 (5)
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and that the curves given by these equations generate the surface

where the function F is arbitrary. [ |
Note. The above surface can be expressed as

z=xyf X—Z_y

or

—y!
Z=Xyg = ,

Xy

where f and g are arbitrary functions.

Problem 1.5.1. Find the general integral of the linear partial differential equations y2p — xyq =

X(z — 2y).

Solution. Given yZp — xyq = X(z — 2y). (1)
Comparing (1) with Pp + Qq = R, we have P =y2,Q = —xy,R = X(z — 2y).

The integral surface of the given PDE is generated by the integral curves of the auxiliary equation

dx dy dz

V2 oxy x@z-2y)

(2)

The first two members of equation (2) give us

dx dy

y =, or xdx = —ydy,
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which on integration gives

2 2
X y 2 2

- =Cs. (3)
> 2+C or X +Yy

The last two members of equation (2) give

dy dz

—_y == 2y or zdy — 2ydy = —ydz.

we have

2ydy = ydz + zdy

which on integration yields

y2=yz+Cy; or Yy2-—yz=C,. 4)

Hence, the curves given by equations (3) and (4) generate the required integral surface as

FOe +y?y? —y2) = 0. "

Problem 1.5.2. Find the general integral of the linear partial differential equations (y+zx)p —(x +

y2)q = X2 — y2.

Solution. Given (y+ zx)p — (X +yz)q = X% — y2. (1)

Comparing (1) withPp+Qq =R, we have P =y +2x,Q = —(X+yz),R = X2 — y2.
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The integral surface of the given PDE is generated by the integral curves of the auxiliary equation

dx dy dz
y+zx= —(x+Yyz) =x2—y2' (2)
To get the first integral curve, let us consider the first combination as
xdx + ydy dz
Xy + ZX2 — Xy — y22=X2 —Y
or
xdx + ydy dz
Z(X2—y?) "~ x2—y2’
That is,
xdx + ydy = zdz.
On integration, we get
X2 y2 g2
4+ - = 2+Yy2 _72 =Cy. 3
5+t 5 T3 or X2+ys -z 1 (3)
To get the second integral curve, let us consider the combination such as
ydx + xdy dz
Y2+ Xyz — X2 — xyz X* — ¥
or
ydx + xdy +dz =0
which on integration results in
Xy +2 = Ca. (4)
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Thus, the curves given by equations (3) and (4) generate the required integral surface as

F(x2+y2 —2z2,xy+2)=0. ]

Example 1.5.2. If u is a function of X,y and z which satisfies the partial differential equation

ou au ou
V-2 +@2—x) +(x—-y)” =0
oX oy 0z

show that u contains X,y and z only in combinations x+Yy+z and X2 +Y2 + 72,

Solution. Given

v-2%+z- 02 rx-p¥-o ()
oX oy 0z

The integral surfaces of this equation are generated by the integral curves of the equations

dx dy dz du

y —z z—x=x—y=F

(2)

and they are equivalent to the three relations

du=0

dx+dy+dz=0

xdx +ydy +zdz = 0

On integration, we obtain the integrals

U=Ci, X+Yy+Z=0C2, X2+y2+72=ca.
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Hence the general solution is of the form

u=f(X+y+z, x2+y2+72). ]

Check YouRr Progress

Find the general integrals of the linear partial differential equations:

=

z(xp —yq) =y — x2

2. pX(z = 2y?) = (2 — ay)(z — y* — 2%°)

3. px(x+y) =qy(x+y) — (x = y)(2x + 2y +2)
4. y2p — xyq = X(z — 2y)

5 (y+zxX)p — (X +yz)q = x2 —y2

6. X(X? + 3y2)p — y(3x2 +y?)q = 2z(y? — X?)

Let us Sum up:

In this unit, the students acquired knowledge to

+ classify the differential equations.
+ find the order and degree of the PDE’s.
- formation of PDE’s by eliminating arbitrary functions/constants.

+ solve the linear differential equations.

Suggested Readings:

1. M.D. Raisinghania, Advanced Differential Equations, S. Chand & Company Ltd., New
Delhi, 2001.

2. K. Sanakara Rao, Introduction to Partial Differential Equations, Second Edition,
Prentice-Hall of India, New Delhi, 2006.

Partial Differential Equations M.Sc.(Mathematics)-11 Sem|



30



BLOCK-I
UNIT 2

PARTIAL DIFFERENTIAL EQUATIONS
OF THE FIRST ORDER-II

Structure
Objective
Overview

2.1 Introduction

2.2  Partial Differential Equations
2.3 Origins of Partial Differential Equations

2.4 Cauchy’s Problem for First-order Equations.
2.5 Linear Equations of the First order.

Let us Sum Up

Check Your Progress

Suggested Readings

Let us Sum up:

In this unit, the students acquired knowledge to

+ classify the differential equations.

+ find the order and degree of the PDE’s.
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+ formation of PDE’s by eliminating arbitrary functions/constants.

+ solve the linear differential equations.

2.1 Nonlinear Partial Differential Equations of the First Order

In this section, we discuss the problem of finding the solutions of the partial differential equation

Fx,y,2,p,0) =0 (1)

in which the function F is not necessarily linear in p and g.

The solution of the partial differential equation (1) has two-parameter family of integral curves
f(x,y,z,a,b) =0 (2)

Any envelope of the system (2) touches at each of its points a member of the system.

We now classify the integrals (solutions) of a partial differential equation (1):

(a) Two-parameter systems of surfaces
f(x,y,z,a,b) =0.

Such an integral is called a complete integral.

(b) If we take any one-parameter subsystem

f{x,y,z,a,9(@)}=0

of the system (2), and form its envelope, we obtain a solution of equation (1). When the
function @(a) which defines this subsystem is arbitrary, the solution obtained is called the
general integral of (1) corresponding to the complete integral (2). When a definite function
@(a) is used, we obtain a particular case of the general integral.
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(c) If the envelope of the two-parameter system (2) exists, it is also a solution of the equation
(1); it is called the singular integral of the equation.

[llustration of the above three kinds of solution:

In problem 1.3.4 of section 1, the partial differential equation

22(1+p2+g?) =1, (3)

obtained from the two parameter family of surface

x—a)d+(y—Db)2+z2=1 (4)

where a and b are arbitrary parameters. Since it contains two arbitrary constants, the solution
(4) is thus a complete integral of the equation (3).

Substitute b = a in equation (4), we obtain the one-parameter system

x—a)yl+(y—a)z+z2=1

whose envelope is obtained by eliminating a between this equation and

X+y—2a=0

so that it has equation
(X —y)2+ 222 = 2. (5)

Differentiating both sides of this equation with respect to X and Y, respectively, we obtain the

relations

2Zp=y — X, 22Q=X-—Y

from which it follows immediately that (5) is an integral surface of the equation (3). It is a solution
of type (b); i.e., it is a general integral of the equation (3).

The envelope of the two-parameter system (3) is obtained by eliminating a and b from
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equation (4) and the two equations
x—a=0 y—b=0
i.e, the envelope consists of the pair of planes z = £1. It is readily verified that these planes are

integral surfaces of the equation (3); since they are of type (c) they constitute the singular integral
of the equation.

Check Your ProgRress

1. Verify that z = ax+by+a+b —ab is a complete integral of the partial differential equation

Zpx+qy+p+q— pq,

where a and b are arbitrary constants. Show that the envelope of all planes corresponding
to complete integrals provides a singular solution of the differential equation, and determine

a general solution by finding the envelope of those planes that pass through the origin.

2. Verify that the equations

\/ b4
(a) z= 2x+a+ *2y+b
(b) z2+pu=2(1+A1)(x+Ay)

are both complete integrals of the partial differential equation

1 1
z=",
P qQ
Show, further, that the complete integral (b) is the envelope of the one-parameter subsystem
obtained by taking . a u
in the solution (a). A 144
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2.2 Cauchy’s Method of Characteristics

In this section, we explain the methods of solving the nonlinear partial differential equation using

characteristics strip, due to Cauchy.

|
& & _
F X1 y) Z) 3X’ ay _0- (1)

Theorem 2.2.1. A necessary and suflcient condition that a surface be an integral surface of a
partial differential equation is that at each point its tangent element should touch the elementary

cone of the equation.

Proof. The plane passing through the point P(Xo, Yo, Z0) with its normal parallel to the
direction n defined by the direction ratios (po, o, —1) is uniquely specified by the set of
numbers D(Xo, Yo, Zo, Po, Jo). Conversely any such set of five real numbers defines a plane in three-
dimensional space. For this reason a set of five numbers D(X, Y, z, p, q) is called a planeelement of
the space. In particular a plane element (Xo, Yo, Zo, Po, Jo) whose components satisfy an

equation

F(xy,2,p,9) =0 (2)

is called an integral element of the equation (2) at the point (Xo, Yo, Zo). It is theoretically possible

to solve an equation of the type (2) to obtain an expression

q=0G(xY.zp) (3)
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from which to calculate q when X, Y,z and p are known. Keeping Xo, Yo and zo fixed and
varying p, we obtain a set of plane elements {Xo, Yo, Zo, P, G(Xo, Yo, Zo, )}, which depend on the
single parameter p. As p varies, we obtain a set of plane elements all of which pass through the
point P and which therefore envelop a cone with vertex P; the cone so generated is called the

elementary cone of equation (2) at the point P (cf. Fig. 16).

Consider now a surface S whose equation is

z=g(xY). (4)

If the function g(x, y) and its first partial derivatives gy(X, ¥), 9y(X, y) are continuous in a certain
region R of the xy plane, then the tangent plane at each point of S determines a plane element

of the type
{Xo, Yo, g(Xo, Y0), Gx(Xo, Yo), Gy(Xo, Yo)} (5)

which we shall call the tangent element of the surface S at the point {xo, Yo, g(Xo, Yo)}. [

A curve C with parametric equations

x=x(1), y=y®, z=z()) (6)

lies on the surface (4) if

2(t) = oix(t), y(t)}
for all values of t in the appropriate interval I. If Po is a point on this curve determined
by the parameters to, then the direction ratios of the tangent line PoP1 (cf. Fig. 17) are

dx
{X(to), Y(to), Z(to)}, where X(to) denotes the value of _dt when t = ty, etc. This direction

Partial Differential Equations M.Sc.(Mathematics)-11 Sem|



2.2. CaucHY’s MeTHoD of ChaRACTeRISTICS

37

will be perpendicular to the direction (po, go, —1) if

D(to) = pox}(to) + qoyh(to).

For this reason we say that any set

(1), y(1), (1), p(t), q(0)}

of five real functions satisfying the condition

2(1) = p(O¥()) +a®y (1)

(7)

(8)

defines a strip at the point (X, Y, z) of the curve C. If such a strip is also an integral element of

equation (2), we say that it is an integral strip of equation (2); i.e., the set of functions (7) is an

integral strip of equation (2) provided they satisfy condition (8) and the further condition

Fx(1), y(), 2(9, p(t), q()} = 0

forall t in I.

(9)

If at each point the curve (6) touches a generator of the elementary cone, we say that the

corresponding strip is a characteristic strip. We shall now derive the equations determining a

characteristic strip. The point (X + dx, y + dy, z + dz) lies in the tangent plane to the elementary

cone at P if
dz = pdx + qdy,

where p, g satisfy the relation (2). Differentiating (10) with respect to p, we obtain

where, from (2),

(10)

(11)

(12)
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Solving the equations (10), (11) and (12) for the ratios of dy,dz to dx, we obtain

dx dy dz

= = 13
Fo Fq pFp + qFyq (13)

so that along a characteristic strip X(t), y/(t), Z(t) must be proportional to Fp, Fq, pFp + gFg,
respectively. If we choose the parameter t in such a way that

XM =F, YO=F, (14)

then
2(1) = pFp + gk (15)
Along a characteristic strip p is a function of t so that
d 2,
p® = 2 00 + 2y

oX oy
op oF dp oF

T3y o
dp oF oq oF
=X % + 2 29
o op_dp - . : .
since = = ~ . Differentiating equation (2) with respect to x, we find that
gy  ox

oF oF OF dp IF gq
—t —p+t— —+——=0
ox oz op OX 9q ox

so that on a characteristic strip
P() = —(Fx + pF2) (16)

and it can be shown similarly that

¢ = —(Fy+aFy). (17)

Collecting equations (14) to (17) together, we see that we have the following system of five
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ordinary differential equations for the determination of the characteristic strip

X(t) = Fp, V(1) = Fq, Z(1) = pFp +qFq, P(Y) = —F — pF, @(Y) = —Fy —gF.  (18)

These equations are known as the characteristic equations of the differential equation (2). The
characteristic strip is determined uniquely by any initial element (Xo, Yo, Zo, Po, Qo) and any initial
value to of t.

Theorem 2.2.2. Along every characteristic strip of the equation F(x, y, z, p, q) = 0 the function

F(x,y,z, p,q) isaconstant.

Proof. Along a characteristic strip (18), we have

d
4F 10,00, 20, p(0), 900 }

=X+ Ry +F2Z+Fp + F

FxFp + FyFq + Fo(pFp + qFq) — Fy(Fy + pFy) — Fo(Fy + aF)

=0

so that F(x,y,z, p,q) = k, a constant along the strip. [ |

Solution of Partial Differential Equation

The partial differential equation (1) which passes through a curve F whose parameteric equations

are

x=6(v), y =), z=x(V), (19)

then in the solution
X = X(Po, o, Xo, Yo, Zo, to, t), etc. (20)
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of the characteristic equations (18), taking

Xo = 6(V), Yo = @(V), 2o = X(V)

as the initial values of X, y, z. The corresponding initial values of po, Qo are determined by the

relations

X(V) = po@(V) + qo@'(V)
F{G[V), QO[V), X(V)! Po, qO} = 0.

Substituting these values of Xo, Yo, Zo, Po, Qo and the appropriate value of to in equation (20), we

obtain X, Y,z can be expressed in terms of the two parameters t, v, to give
X=Xiv, 1), y = Yi(v, 1), z = Z1(v, 1) (21)
Eliminating v, t from these three equations yields

wxy,2) =0

which is the equation of the integral surface of equation (1) through the curve T.

Problem 2.2.1. Find the solution of the equation
l 2 2
2="(p2+0?) + (p — x)(q - Y

which passes through the X -axis.

Solution. The initial values are (for x— axis)

Xo=V, Yo=0, Zo=0withty =0 (D
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then the solution in the parametric form is

X=X, 1), y=ywv1t), z=2z(,t).

Then, the differential equation becomes

1 1 1
F=20—"(p?+92) +(po— V)(do— Yo) =—" (P?+0?) + (Po — X0)do = —" (Po — Qo) — vgo =0
@ 2 0 0 2 0 0 2

and the strip condition

dz dx dy
av - Pav T
or
dzo  dxo  dyvo
dv Po dv o dv
gives
O=po-1+g -0 or po=0. (by(1))

Using (1) in (2), we obtain

Po=0, go=5s (unique initial strip).

The characteristic equations for this partial differential equation are

dx
a=p+q—y
dy
g - PraTx
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dz
ot =p(p+g—y)+a(p+g—X)
dp
a= p+gq-—-Yy
dq
g -Pra—x

from above equations
dx dp dy dq

dt  dt dt ~ dt

X=p+C1 y=g+cC2
Using the initial conditions
Xo=V, Yo=0, 20=0, po=0, o =2V
then the constants of integration €1 and cC; are

ci=vandc; = —2v

yields
X=V+p,y=0g-—2V.

Also we have

d d
T (P+g—-Xx)=p+q—X " (p+q-y)=p+q-y
dt dt
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gives

p+g—x=ve, p+q-—y-=2ve.

Hence

x=v(2e' —1),y=v(e'—1),p=2v(e' — 1),q=v(e' + 1) (22)

Substituting in the third of the characteristic equations, we have

42 _ o ot _ 3v2e
dt
with solution
2 2(@2t 2(et
z=2v(e —1)—3v3(e - 1) (23)

Now, we obtain the expressions for t and v

e = , V=X_2
2y — X y

so that substituting in (23),
1
2= y(4x - 3y)
2
which is the required integral surface. [ |

Problem 2.2.2. Find the characteristics of the equation pq = z and determine the integral surface

which passes through the parabola x=0,y2 =z.
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Solution. The initial data curve (Parabola x = 0,y2 = z) is

Xo =0, Yo =V, Zo = V2

then the parametric form of solution is

X=xv,t), y=y\,t), z=12(v1)

From the differential equation,

F = podo — Zo = pogo — V2 = 0.

and the strip condition

dz dx dy
o Pav Ty
or
dzo dxo dyo
dv - Pogy T gy
gives
25=po-0+qo-1 or qO—23=0
Therefore,

q _ 20 s2

0=2s and po=_ =_ = (unique initial strip)
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Now, the characteristic equations of the given PDE are given by

dx dy dz dp dg
E=q’ a=p’ a=2pq, E=p’ E=Q-

From the characteristics equations

dp dg dx dy dz
gt~ P dr dt gt =P g - 2Pd
I' dp - dt I' dg - dt d_ e Y e & _ et
L faoy g
logp=t+a logq=t+b dx= cqe'dt dy= cie'dt dz= 2cicze'dt
p = ciel q = cz€' X = C2e' +C3 y=cie'+Cy Z=2c1C2e" +Cs

Using the initial conditions

Vv
Xo=0,Yo=V, Zo=V2 po=", Qo =2V
2

we obtain
c v v
= ,C2=2V,C3=—2V,C4=_,C; =0
1 2 2 3 4 2 5

Therefore,

v v
p="e', q=2ve, x=2v(e' - 1), y="(e'+1)z=v2e?
2 2

Eliminating v and t from X,y and z in the above equation

16z = (4y + x)?

which is the required integral surface. [ |

Problem 2.2.3. Determine the characteristics of the equation z = p2 — g2 and find the integral
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surface which passes through the parabola 4z+x2 =0,y =0.
Solution. The initial data (Parabola 4z +x2 =0, y=0.)is

VZ
%=V, Yo =0, 0=~

then the parametric form of the solution is
X =Xx\v,1), y=ywt), z=1z(v1).

From the differential equation,

2
F 2 2 2 2 v

=p0_%_20=p0_%+_4 =0

and the strip condition

dz dx dy
& Pav v
or
dzo  dxo  dvo
dv - Pogy T9oqy-
gives
v v
—E=po-1+q0-0 or po=—§.
Therefore,
v v
JQo=%" , po=— (unique initial strip).
J_Z )
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The characteristic equations for this partial differential equations are

dx d dz d d
_=2p’ J=2q’ _=_2p2+2q21 _Q=_p1 j=_Q'
dt dt dt dt dt
From the characteristics equations
dp dg dx dy dz
= — = — = — = — = _2 2 _ (g2
fodt- R ot ; 2p g 2q d (P -9
do__" da_ g g = -2ce” a¥= 2c2e~" =27

p q ] f P f e

_ _t _ _t az _
logp=—t+a logq = —t+b dx=—2 cie-dt dy=2 cxe—dt Z——Z dt

p=cie’ q=ce" X =2cie~" +C3 y=—2ce "' +a z=cse 2
Using the initial conditions

V2 v V_\/
= = = — _ = — = +
¥=V, Yo=0, 2 7 Po o Qo =% Ly
we obtain
. Vv v va V2
1= _2 ) CZ = \/—2 l C3 = 251 C4 = 2V1 C5 = __4
Therefore,

v v va V2
Pe—y exp(-0, g == 2/ exp(-0), x=v(2—exp(-1).y 2v(1—exp(~1), 2= —, exp(~21).
Eliminating the parameters v and t from X,y and z in the above equation

47 + (X — _2y)2 =0
which is the required integral surface. [ |
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Check Your ProgRress

1. Write down, and integrate completely, the equations for the characteristics of

(1+92)z = px

expressing X, Y,z and p in terms of ¢, where ( = tan ¢, and determine the integral surface
which passes through the parabola x% =2z, y=0.

2. Integrate the equations for the characteristics of the equation
p%+02 =4z

expressing X,Y,Z and p in terms of ¢, and then find the solutions of this equation which

reduce to z=x2+1 when y = 0.

2.3 Compatible Systems of First-order Equations

Definition 2.3.1. Let f(x,y, 2, p,q) =0 and g(X, Y, z, p, ) = 0 be the two first order partial
differential equations. We say that the two partial differential equations are compatible if every

solution of the first equation is also a solution of the second equation.

Theorem 2.3.1. Let f(X,y,z,p,q) = 0 and g(x,y,z, p,q) = 0 be the two first order partial

differential equations. Then the necessary and suficient conditions for the two partial differential
a(f.q) a(f.a) ad(f.a) a(f.q)
+p + +( =0.
ax,p) adzp) oy.a aza)

equations are compatible is

Proof. Given

fxy,z,p.9) =0 (1)
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and

g(xy.z,p,q) =0 (2)

are two first order partial differential equations.

We have to find the conditions for compatible of (1) and (2).

If
da(f.q)
= 3
a(p. ) )
Solving the equations (1) and (2) to obtain the explicit expressions
p=0oky.2, q=wkxy,2) (4)

for p and g. The condition that the pair of equations (1) and (2) should be compatible reduces
then to the condition that the system of equations should be completely integrable, i.e., that the
differential relation

pdx + qdy = dz

or

@(X, Y, 2)dx + w(x,y,2)dy = dz (1)

should be integrable, for which the necessary condition is

X - curlX = 0
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where X = {@, @, —1}. That s,

i J k
(p+rwi-K. 2 2 2 .20
» y -1

or
P(=w) + w(@) = we — ¢y
which can be rewritten as
Wy + QY2 = @y + Y. (2)

Now, differentiating equation (1) with respetto x and z, we get

fx+prQ+fqa =0
ox oX
and
f, + prQ + fqa =0.
0z oz

But, from equation (1), we have

and so on.

Using these results, the above equations can be recast into

fx + fogox + fq = 0
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and

f, + fop, + fq, = 0.

Multiplying the second one of the above pair by ¢ and adding to the first one, we readily obtain

(fc+ @f) + (@ + @@;) + fy(wx + w,) = 0.

Similarly, from equation (1), we can deduce that

(Ox + ©92) + 9p(@x + @P;) + Ug(Wx + @W;) = 0.

Solving the above pair of equations for (@ + @y;), we have

(W + ow,) 1 1

fo(0x + ©92) — gp(fx + @) ) fa0p — 9qfp K

or

1
Y+t oy, = j[( fodx — gp f) + @(fog9: — gp f2)]

i
1 o(f.q)  d(f.q)
tQ
J a(x,p) "z p)

(3)

where J is defined in equation (3). Similarly, differentiating equation (??) with respect to y and

Z and using equation (??), we can show that

#
_ 1 3(f.q) . d(f.q)
Cpx + ‘W’z - = J a(y, q) + L»Ua(Z, q) ' (4)
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Finally, substituting the values of @y + @y, and ¢« + @, from equations (3) and (4) into

equation (2), we obtain

" #
of.q) o(f.a) _  a(f.q) +w6(f,cﬂ
axp) Pz p) ay,q) " ¥o(zq)

In view of equations (4), we can replace @ and @ by p and g, respectively to get

o(t.g , 6(f,g)+a(f,g) N a(f.g)

o0, oEm Ay ez
This is the desired compatibility condition.
|
Problem 2.3.1. Show that the equations
Xp =yq, Z(xp +Yyq) = 2xy
are compatible and solve them.
Solution. Let
f=xp—yq=0 (1)
and
g =2z(xp+yq) — 2xy = 0. (2)
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Then,
. p X,
it 2,
a(x, p)
pz — 2y Xz
aft.gg - 0 x.
= = — XZ
ozp) TP axy,
XPp+yq Xz
AR B B AP
a(y. )
gz —2x yz
ot _ - 0 Y peyeqy
a(z, ) . .
Xp+yq o yzo
and we find

a(f,q) +pa(f.q] N a(f.q)+qa(f.q)
o(x,p) dz,p) dly,q) a(zq)
= 24 — p2x2 — g% — 2 + BT + QP>

/ /

= 2xy + p(=pxz — axy) — 2 xy + q(pxy + qy*)

_p2x2 + p2x2

= 0.

Hence the given PDEs are compatible.
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Solving equations (1) and (2) for p and g, we obtain

P aq 1
2Xy2  2X%y  2xyz

from which we get

2xyz y
- 2Xyz ~ 2
and
2X%y X
S 2xyz 2

In order to get the solution of the given system, we have to integrate

dz=¥dx+idy
z z

or

zdz = ydx + xdy.

On integration, we get

—==Xy+C1

The solution of the given system is

22 =2xy+cC

which is one parameter family.

Problem 2.3.2. Show that the equations xp — yq = X and X2p +( = Xz are compatible and find
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the solution.

Solution. Let

and

Then,

a(f.q)
a(x, p)

o(f.q)
a(z, p)

o(f.q)
ay, a)

a(f. q)
9(z,9)

and we find

f=xp—-yqg—x=0

g=x2p+q—xz=0.

(P—1) X

= PX2 — X2 — 2XZPp+ XZ=XZ — X2p — X?,

. (@xp -2 x* .

a(f.q) a(f.q) a(f.q) a(f.q)
+ + +

a(x, p)

P v awa)

XZ — X2p — X2 + px2 — g — gxy

XZ — q — gxy — X2

(1)

(2)

Partial Differential Equations
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Xz —q— X2p

= 0.

Hence the given PDEs are compatible.

Next we have to find the solution.

Solving equations (1) and (2) for p and g, we obtain

Y q 1
Xyz+X —x3+X%2z2  X+Xx%y
from which we get
_X(1+yz) 1+yz

x(1+xy) 1+xy

and

Xz xz-x)

a= X(L+xy)  1+xy
In order to get the solution of the given system, we have to integrate

_ 1+vyz dX+x(z—x)d

dz
1+xy 1+xy
or
dz — dx = Y2=X g, X2=X)
1+xy 1+xy
or

dz — dx xdx +ydy
Z—X 1+xy '
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On integration, we get

In(z — x) =In(1 +xy) +Inc.

That is,

Z— X =c(1+xy).

The solution of the given system is

Z=x+C(1+xy)

which is one parameter family. [ |

Problem 2.3.3. Show that the equation z = px + qy is compatible with any equation

f(X, Y,z p,q) = 0 that is homogeneous in X,y and z.

Solve completely the simultaneous equations

z=px+ay, 2xy(p*+0?) =z(yp + xq).

Solution. (i) Given that differential equation

f(xy,z,p,0) = 0 (1)

is homogeneousinx, y, z. If f(x, Y, z, p, q) is a homogeneous function in X, y, z of degree n, then

by Euler’s theorem,

+z, =nf. (2)
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Here

af af  of
Xax+yay+zaz =0.
Taking g(X,Y,z,p,q) = px+qy — 2= 0. Then
af of of of
af,g) = X o _- 9 X
o Pl of _ o
of af - " 55 ot
af,g) = & dp - a X
(ha = =% 3t of
-1 x -~ )
ozp W @ A
af af - - 91 of
a(f, = ay 0 B y
(t.9) -9 aq af_qaf
v - & & &
q vy
gt ot - - af of
= . y
3(f,q) oz @ _ ox
aq of  of
and we find aq - 1y = +
8(z, q) % . M 4
"o af " af  of
af.q)  af.q a(f.q) a(f.q) ot of 4 At + +yZr — g
+p + +( = X - p
ax,p)  diz,p) ay.q  a(z0q) ox afapaf oz 8p gy  dq
"4 Yo + 3 ’
af  of —
= X, + + (px +
ox Yoy (%f ay) gy
of of +7__
= xa—X+yW ay
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Hence, the differential equation z = px + qy is compatible with any differential equation

f(x,v,z, p,q) that is homogeneous in X, Y, z.

(i) f(x,y,z,p,q) = 2xy(p* +0?) — z(yp+xq) = 0

g(X,y,Z, p,q): pX+qy_Z=0

From (4),

Using (5) in (4), we get

so that

and

For p =—22),( q=" ;) then

(3)

(4)

(5)

2X(X2 +y2)p? — z(3x2 +y2)p+ xz2 =0

(2xz = p)[(x* +y?)p — xZ]

0
v Z
p=",0=
2X 2y
Xz yz
p= g = :
0E+y?) (¥ +y?)
dz = pdx + qdy

(6)

(7)
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dz= " dx+ “ dy
2X 2y
Jdz _dxdy
z Xy

2logz =logx+logy +logcy

22 = C1Xy. (8)
For p= _* ,q=_Y, then
(x2+y3) (x2+y?)
dz = pdx + qdy
dz = X dx + yz dy

(X2 +Yy2) (X2 +y?)
ZQ _ 2xdx + 2ydy
7 (X2 +y?3)

2logz =log(x% +y2) + logc»

22 = C1(X2 +y2). 9)

Equations (8) and (9) are two common solutions of (3) and (4). [ |

Check YouRr Progress

1. Show that the equations f(x,y, p,q) =0, g(x,y, p,q) = 0 are compatible if

mnm+%tm_
ox, p) oy.q)

Verify that the equations p = P(x,y), g = Q(X,y) are compatible if

P oQ
oy ox
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2. Ifu = 8_u, Up = 3_u, us = —, show that the equations
oX oy 0z
f(X,y,z, U1, Uz u3) = 0, g(X, Y, Z, U1, Uz, u3) = 0

are compatible if

o(f.g) , 9.9 a(f,g) _
ax,u1) A(y,u2) 9(z,us)

2.4 Solutions Satisfying Given Conditions

In this section, we explain the outline of three important concepts.

(i) Determination of surfaces satisfies the partial differential equation and passing through a

given surface.

(ii) Determination of surfaces satisfies the partial differential equation and circumscribing a

given surface.

(iii) Derivation of one complete integral from the other.

Definition 2.4.1. A curve which touches each member of a given family of curves is called

envelope of that family.

Note 2.4.1. (i) Envelope of one parameter family of curves can be obtained by differentiating
the equation with respect to the parameter and eliminating the parameter from the given
equation and equation obtained by differentiation gives the envelope of the given one

parameter family.

(ii) If the given equation of curve is quadratic in terms of parameter, i.e. Aa? + Ba+ ¢ = 0,

then envelope is given by discriminant is equal to zero ( B2 — 4AC = 0).
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(iii) Envelope of two parameter family of curves and a relation connecting the two parameters
obtained by differentiating the given equation and relation with respect to one parameter and
eliminating the parameter from the given equation and equation obtained by differentiation

gives the envelope of the given two parameter family.

2.4.1 Solution passing through a given Surface

Consider a first order partial differential equation
F(x,y,2,p,0) = 0. (1)

Now, we determine the solution of (1) which passes through a given curve C which has parametric

equations

x=x1), y=y®, z=2z(1) (2)
t being a parameter.

If the integral surface of the equation (1) through the curve C exists, then it may be one of the

three possible cases

(a) A particular case of the complete integral
f(x,y,2,8b)=0 (3)

obtained by giving a or b particular values; or

(b) A particular case of the general integral corresponding to (3), i.e., the envelope of a

one-parameter subsystem of (3); or

(c) The envelope of the two-parameter system (3).

To determine the solution (surface E) of (1) which passes through a given curve C, that is, E
is the envelope of a one-parameter subsystem of (3) each of whose members touches the curve C,

provided that such a subsystem exists.
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We must find E such that the subsystem made up of those members of the family (3) which
touch the curve C, that is, the points of intersection of the surface (3) and the curve C are
determined in terms of the parameter t by the equation

F{x(1), y(®), z(t), a, b} = 0 (4)

and the condition that the curve C should touch the surface (3) is that the equation (4) must have
two equal roots and the equation

0
= Hx(), y(0, 2(0), a,b} = 0 (5)

should have a common root. The condition for this to be so is the eliminant of t from (4) and (5),

w(a,b)=0 (6)

which is a relation between a and b alone. The factors of (6) leads to

b=¢i(a), b=ga),... (7)

each of which defines a subsystem of one parameter. The envelope of each of these one-parameter

subsystems is a solution of the problem.

Problem 2.4.1. Find a complete integral of the partial differential equation

(p? +0g%)x = pz

and deduce the solution which passes through the curve x =0, z% = 4y.

Solution. Given partial differential equation

F(X’ Y.z, p, q) = (pZ + qZ)X —pz= 0 (1)
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By Charpit’s method, the auxillary equations of the given PDE are

dx dy dz dp dq

F, Fy PF,+aFq _(x+pFj) —(Fv+aF9)
F

From (1), we have

FX:p2+q2’Fy=O:FZ=_ppr=2px—Z,Fq=2qx,

then (2) becomes
dx dy dz dp dq

2pX — z=2qx= 2(p2+q3) — pz  —q% pq

From (3),
dp dg
—q2 pq
—pdp =qdq
Onintegration
pZ + qZ = aZ
Using (4) in (1), we obtain
azx P Eu—
p= Tandq =5 72 — a?x?
and
dz = pdx + qdy

(2)

(3)

(4)
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Substituting p and q in the above equation

azx as———
5 72 — a?xdy

dz = —dx
7 +
|
zdz — alxdx =a z¢ — alxy

zdz — azxdx - ady

72 a2y2
d@2 — 2% =ady

2 72 —aix?
——
72 —alxt=ay+b

= z2=ax?+ (ay+Db)?

which is the required complete integral of (1).

The parametric equations of the given curve (x = 0, z2 = 4y) are
x=0, y=t, z=2t
The intersections condition of (5) and (6) gives

412 = (at2 + b)?

a2t* + (2ab — 4)t2+bz2 =0

and this equation has equal roots if

(ab — 2)2 = azb2ab =1,

(5)

(6)
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then the one-parameter subsystem is

2

=a’’ + ay+§ a'(x* +y) +a’(2y —7)+1=(
then the envelope of the surface becomes
(2y — 22)2 = 4(x2 +y?).
which is the required surface passing through the given surface. [ |

2.4.2 Derivation of one complete integral from the other

Let
f(x,y,z,a,b) =0 (8)

and
90%,y,z,h,K) =0 (9)

be the two complete integral.

Steps

(i) Choosing a curve I on the surface (9) in whose equations the constants h, k appear as

independent parameters.

(ii) The intersection of (8) and curve I with the equal roots conditions gives the one parameter

family of subsystem.

(iii) Find the envelope of the one-parameter subsystem.

This envelope contains two arbitrary constants h and k, it gives (9), it is a complete integral.
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Problem 2.4.2. Show that the equation

Xpq +yg* =1

has complete integrals

(@) (z+b)? = 4(ax+y)

(b) kx(z +h) =kzy + x2

and deduce (b) from (a).

Solution. The two complete integrals may be derived from the characteristic equations.

Consider the curve

y=0, x=k(z+h) (1)

on the surface (b).

The intersections of (a) and (1), we have

(z+Db)2 — 4ak(z+b) + 4ak(b —h) =0

and this has equal roots if

azkz = ak(b — h)

this implies ak = 0 or b =h+ak.

If we consider a = 0, then the envelope of the subsystem formed does not depend on h and k.
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So, we consider the second subsystem formed by substituting b = h + ak in (a), we obtain

(z+h+ak)2 =4(ax+y)

k2az +2afk(z+h) — 2x} + (z+h)2 — 4y =

and this has envelope

{k(z +h) — 2x}* = {(z + h)? — 4y}k2.

On simplification, we get the complete integral (b), i.e.,

kx(z + h) = k2y + x2. ]

2.4.3 Solution circumscribes a given Surface

In this subsection, we explain the determination of an integral surface which circumscribes a given
surface.

Definition 2.4.2. Two surfaces are said to circumscribe each other if they touch along a curve.

Example: A conicoid and its enveloping cylinder.

Consider a first order partial differential equation

F(x,y,z,p,0) =0 (1)

whose complete integral is given by

f(x,y,z,a,b) = 0. (2)

To determine a surface E, satisfies the partial differential equation (1), that is, complete integral
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(2),
ux,y,2) = 0 (3)

which circumscribes
w(x,y,2) = 0. (4)

Hence the surface E is the envelope of the one parameter subsystem S of the two-parameter
system (2), it is touched at each of its points, and, in particular, at each point P of I, is a curve

where the surface E touches the given surface Z.

Steps:
(i) To find the complete integral f(x,y,z,a,b) = 0 of given PDE F(x,y,z, p,q) = 0.
(ii) Given circumscribing @(X,y,z) = 0.

(iii) To determine the equation

(iv) Eliminating X,y and z from complete integral f(X,Y,z, a,b) = 0, circumscribing equation

Ww(x,Y,2) = 0 and the above equation, we obtain a relation x(a, b) = 0.
(v) Factorizing x(a,b) = 0, we have b = ¢i(a), b =¢2(a), ....
(vi) Using each factors, we find a one parameter subsystem of complete integral.

(vii) To find the envelope of the above one parameter subsystem, which is the required integral
surface E circumscribing the surface ¥ alonga curve T.

Problem 2.4.3. Show that the only integral surace of the equation

2q(z — px—qy) =1+0?

which is circumscribed about the paraboloid 2x = y2+2z2 is the enveloping cylinder which touches

it along its section by the plane y+1 = 0.
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Solution. Given PDE

2q(z — px—qy) =1+0?

can be written as

g2+ 1

= 1
Z=px+qy+ 2 (1)
which is in the form of Clairaut type
z=px+aqy+ f(p,q).
Then the complete integral is
b bz +1
z=ax+by+
y T (2)
Given circumscribing equation
2X =y2 +72 (3)
The consistent condition is
jl = fy = —f; = g — L — __1
Wy ‘,Uy W, 2 —Zy -2z
which give the relations
y b , 1
= _ = 4
a a’ )

Eliminating X between equations (2), (3) and (4), we have

abyz + 2b2y + abzz — 2bz+ bz +1 = 0.
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Eliminating y and z from this equation and the equations (4), we obtain

(b—a)b2+1)=0

If we take b2 = —1, then we does not obtain the one parameter family of subsystem.

Therefore, we consider the relation b = a, a one parameter family of subsystem

{2(x+y)+1}az — 2az+1 = 0.

The envelope of the above subsystem is

22=2(x+y)+1 (5)

which is the enveloping cylinder touches the surface (2),

(y+1)2=0 =2y+1=0

is the plane section. ]

Check YouRr Progress

1. Find a complete integral of the equation p2x + qy = z, and hence derive the equation of an

integral surface of which the line y =1, x+z = 0 is a generator.

2. Show that the integral surface of the equation

z(1 - g?) = 2(px +qy)
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which passes through the line x = 1, y = hz +k has equation

(y — kx)2 = z2{(1 + h?)x — 1}.

3. Show that the differential equation

2XZ2+ Q2 = X(xp +yq)

has a complete integral
Z+a?Xx =axy + bx?

and deduce that
X(y + hx)% = 4(z — kx?)

is also a complete integral.

4. Find the complete integral of the differential equation

xp(1+q)=(y+2)q

corresponding to that integral of Charpit's equations which involves only g and X, and
deduce that

(z +hx + k)2 = 4hx(k —y)
is also a complete integral.

5. Find the integral surface of the differential equation

(v +20)2 = 22(1 + p2 + G7)

circumscribed about the surface x2 — z2 = 2y.

6. Show that the integral surface of the equation 2y(1+ p?) = pg which is circumscribed about
the cone X2 + z2 = y2 has equation

72 = y2(4y2 + 4x + 1).
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2.5 Jacobi’s Method

Consider a first order partial differential equation

Fx,y,2,p,0) =0 (1)

and let us assume the solution of (1) with the following relation

u(x,y,z) = 0, (2)

then u u
p= __1! q-= __2! (3)

us us

du
where u; denotes % (i=1,2,3) and X1 = X, X2 =y and X3 = z. Substitute from equations
I

(3) into equation (1), we obtain
f(X,Y,z, U1, Uz, u3) = 0. (4)

The main idea of Jacobi’s method is the introduction of two further partial differential equations
of the first order
g(x,y,z,U1, Uz, u3,8) =0, h(X,y,z,U1, Uz U3, b) =0 (5)

involving two arbitrary constants a and b and such that:

(a) Equations (4) and (5) can be solved for ui, Uz, U3 ;

(b) The equation
du = uidx + uzdy + uszdz (6)

obtained from these values of Uy, Uz, U3 is integrable, for which the conditions are

du QU1 gu; Uz gu; dus

X ~ 9y’ Oy 8z’ 01  ox’

We have to find two equations which are compatible with (4), it is clear that g and h have to be
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solutions of the linear partial differential equation

g, W, q, Wog W A %
' OX 2oy > oz dus ou; au3

which has subsidiary equations

dx dy gz dur duz dus
= = = = = (8)

fy  f fs o —f, —f, -f

Steps
1. Given equation F(x,Y,z, p,q) = 0.

W
2. Find f(X, Y,z U1, Uz U3) = 0 by substituting p = —“513 and q = U in F(x,y,z,p,q) = 0.

3. Form an auxiliary equation

dx dy dz dur _duz _dus

R N —y

4. Find two solutions g(X, Y, z, U1, Uz, U3, @) = 0 and h(x, Yy, z, U1, Uz, U3, b) = 0 of the auxiliary

equations.
!
X 9goh dgoh

5. Verify the condition (g, h) = ox du. AU X
r r r r

6. Find the values of ui, u; and us

~

. Find the solution from du = uidx+uzdy+usdz. On integration, we get the required solution.

Problem 2.5.1. Solve the equation p2x + g2y = Z.

Solution. Given p2x+Q2y = z. (D)
u u

Let p=—_1, q=——2. (2)
usz usz
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Substitute the equation (2) in equation (1), we get

f(X,y,z, U1, Uz, U3) = XUf +yuf — zy? = 0 (3)

then

fx = U21, fy = UZZ fz = —U%, fu1 = 2U1X, fUz = 2u2y! fU3 = —ZU3Z

Aucxiliary equations are

dx dy dz dup duz dus

El B fUz B E i __fy __fz
dx dy dz dur  duz dus

200X 202y  —2uz ¢ —g? | w2

with solutions

Xu?Z = a, yuz =b
1 2
whence
|1
1 H
a2 z
U = - ’ Uz = b
X y
From (3), we have N
a+b
usz =
z

Substitute the values of uy, Uz and us in

du = uidx + uz2dy + uzdz
!

[T
o

az:
= dx+b  dy+ | dz.
X y z -
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On integration

us= Z(ax)}2 + Z(by)12 +2{(a+ b)z}21 +C.

Taking b=1, c=Db, we get the complete integral

1 1

{(1+ a)z}}2 = (ax)z +yz +h.

|
Generalization of Jacobi’s method
Solve an equation of the type
fl[xll X21 rey an ul! ey Un) = 0!
h i denot du

where Ui denotes X (i=1,2,...,n), then we find n—1 auxiliary functions f, f3, ..., f, from
the subsidiary equations

dx;  dxz dx, _ dui _ duy dun

foo  f, 0 fw —fy —f, T —f,
involving n — 1 arbitrary constants. Solving these for uy, Uz, ..., U, we determine u by
integrating the Pfaffian equation

X
du = uidx;

i=1

the solution so obtained containing n arbitrary constants.
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Check Your ProgRress

1. Show thata complete integral of the equation

|
du du du

ox oy oz )
is
u=ax+by+6(ab)z+c,

where a,b and ¢ are arbitrary constants and f(a, b, 6) = 0.

Find a complete integral of the equation

ou Jdu oJu Jdu du du

3x+8_y+az ox 0y oz

2. Show how to solve, by Jacobi’s method, a partial differential equation of the type

fxa—u@.— du au’
v ez 9 Y oy oz

and illustrate the method by finding a complete integral of the equation
!2 !2
2x2y au a_uzxza_u+2y au
ox oz ay ox

3. Prove that an equation of the “Clairaut” form

|
Qu, Qu du . du du du

+ +7_ = .
ox yg 0z oxX oy oz

is always soluble by Jacobi’s method.

Hence solve the equation

| |
du du du  du du du
+ Z

6x+ay 0z Xaerya_y+ 0z
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Let us Sum up:

In this unit, the students acquired knowledge to

+ solve nonlinear PDE's of the first order.
+ derive of one complete integral from the other.

+ Jacobi’s method.

Suggested Readings:

1. M.D. Raisinghania, Advanced Differential Equations, S. Chand & Company Ltd., New
Delhi, 2001.

2. K. Sanakara Rao, Introduction to Partial Differential Equations, Second Edition,
Prentice-Hall of India, New Delhi, 2006.
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BLOCK-II
UNIT 3

PARTIAL DIFFERENTIAL EQUATIONS
OF THE SECOND ORDER-I

Structure

Objective

Overview
3.1 Origin of Second-order Equations
3.2 Linear PDE’s with constant coefficients
3.3 Equations with variable coefficients
3.4  Separation of Variables.

Let us Sum Up

Check Your Progress

Suggested Readings

Overview

In this unit, we discuss the partial differential equations of the second order with constant and
variable coefficients. We also explain method of solving partial differential equations using the
separation of variables. Finally, we discuss the method of integral transforms.

Notations:
0 oz oz 0%z 0%z 0%z
o 47 oy’ o2 57 oxay’ t= ay?’

79
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3.1 Origin of Second-order Equations

In this section, we discuss the formation of second order partial differential equations by

eliminating arbitrary functions.

Problem 3.1.1. Form a second order PDE by eliminating arbitrary functions from z = f(u) +

g(v) + w, where fand g are arbitrary functions of u and v, respectively, and u, v, and w are

prescribed functions of x and .

Solution. Given

z=f(u+g(v)+w
Differentiating (1) partially with respect to x and Yy, we get
p = B(u)uy + g(V)vx + Wy
Q= DUy + PV + Wy
Again differentiating, we have
r= fﬂ(u)ui + gJJ(v)vi + FI(U)Uxx + P(V)Vix + Wiy

S = fﬂ(u)uxuy + gJJ(V)VXUy + fJ(U)ny + gJ(V)ny + Wyy

t = fI(u)uz + g*(V)v2 + fI(U)uyy + g(V)Vyy + Wyy.
y y

(1

(2)

(3)

(4)

(5)
(6)
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Eliminate the four quantities f/, fU, ¢ and g’ from the equations (2) to (6), we obtain

'p_WX UX VX 0 0
q—wy U Vy 0 0
2 -=0 (7)

r — WXX uXX VXX U%( VX

. S — ny qu ny UXUy vay .

u
Vyy

which involves only the derivatives p, g, , S, t and known functions of x and y, therefore a partial

differential equation of the second order.

Furthermore if we expand the determinant on the left-hand side of equation (7) in terms of the

elements of the first column, we get
Rr+Ss+Tt+Pp+Qq=W, (8)

where R, S, T, P, Q, W are known functions of x and y. Therefore the relation (1) is a solution

of the second-order linear partial differential equation (8). [

Problem 3.1.2. Form a second order PDE by eliminating arbitrary functions from z = f(x+ay) +

g(x — ay), where f and g are arbitrary functions.

Solution. Given

z=f(x+ay)+g(x — ay). (D)
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Differentiating (1) twice partially with respect to x, we get

oz
p= ox = fi(x + ay) + ¢(x — ay)
0%z
r=om= fu(x +ay) + g (x — ay). (2)

Differentiating (1) twice partially with respect to y, we get

g-= oz =afl(x+ay) _ag'(x _ay)

ay
t 0z 2 ) 2 )
- = (x+ay)+ag (x — a
oy =2 f ( y)
t = az(fi(x +ay) + gi(x — ay)). (3)
From (2) and (3), we obtain
t=a?r
which is the required second-order linear partial differential equation. [ |

Problem 3.1.3. Prove that if f and g are arbitrary functions of a single variable, then u =

f(x — vt +iay) + g(x — vt — iay) is a solution of the equation

J2u  Jd%u 1 dZu

Ero A
provided that az = 1 — vZ/c2.

Solution. Given

u=f(x —vt+iay) +g(x — vt — iay). (1)
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Differentiating (1) twice partially with respect to x, we get

a_;x= fi(x — vt +iay) + ¢(x — vt — iay)
d2u
5 = x—vi+iay) + g (x — vt — iay). (2)

Similarly differentiating (1) twice partially with respect to y and t respectively, we get

d%u

EY s fUx — vt +iay) + gV(x — vt — iay)’ (3)
and

d2u ) i ..

o vz fI(x — vt +iay) + g¥(Xx — vt — iay) . (4)

Adding (2) and (3) and using (4), we obtain

32_“ L U (1 —a2) fu(x — vt +iay) + g/(x — vt — iay)’

ok 555
1 — a2 d2u
v
2 2 2
d%u 3_U_ 102 (5)

PV Y-

where a? =1 — v2/c2.

Thus given u is a solution of the partial differential equation (5). [ |

Problem 3.14. If z=f xX2 -y +g X2+y , where the functions f and g are arbitrary, prove
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that
02z _ 10z 20%2

Solution. Given

z=f x2 -y +g x2+y .

Differentiating (1) twice partially with respect to x, we get

g—; =2xf) X2 —y +2xg X2+y

=2X P x2—y +@ X2+y
0%z

ox2

Differentiating (1) twice partially with respect to y, we get

g—;=fl X2—y — ¢ x2+y
0%z

a_y2=fJJ x2_y +g’ X2 +y .

From (2), we have

K
fl x2—y +0¢ X2+y =% ox.

From (3), (5) and (6), we obtain

which is the required partial differential equation.

= f X _y +g K2 +y +4xz X* _y +g¥ X +y

(1

(2)
(3)

(4)

(5)

(6)
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Note 3.1.1. If z = fr (vr), where the functions f; are arbitrary and the functions v, are
r=1

known, then it leads to a linear partial differential equation of the nth order.
Problems

1. Verify that the partial differential equation

0%z 902 2z
X Ty X
is satisfied by 1

; = J
= U =0+9(y—X

where ¢ is an arbitrary function.

2. If u= f(x+1iy) +g(x — 1y), where the functions f and g are arbitrary, show that

J2u  Jd%u

et a0

3. A variable z is defined in terms of variables X,y as the result of eliminating t from the
equations

z=tx+yf(t)+g(t)
0=x+yfi(t)+g()

Prove that, whatever the functions f and g may be, the equation

n—s2=0

is satisfied.
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3.2 Linear Partial Differential Equations with Constant Co-
efficients

Consider a linear partial differential equation with constant coefficients of the form
F'DD z=f(xY), (1)

where F (D, DY) denotes a differential operator of the type

) XX
F DD = cD'D”® (2)
r S
. d
and the quantities C;s are constants; and D = L D = .
oX oy

Solution:

The most general solution of the corresponding homogeneous linear partial differential equation

FDDz=0 (3)

is called the complementary function of the equation (1), which contains the correct number of
arbitrary elements (functions), as in the case of ordinary differential equations.

Similarly, any particular solution of the equation (1) which contains no arbitrary constants or

functions is called a particular integral of (1).
Thus, the general solution of (1) is the sum of complementary function (C.F) and the particular
integral (P.I) of (1), i.e,,
z=C.F+P.I

Theorem 3.2.1. If u is the complementary function and z; a particular integral of a linear partial

differential equation, then u : z1 is a general solution of the equation.
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Proof. Consider alinear PDE

F'DD z=f(xY),

Given u is the complementary function of (1), i.e.,

F'D,Du=0.

Also given z; a particular integral of a linear PDE (1), i.e,

F'DD z1=f(xY),

To prove: u+z; is the general solution of (1).

F'DD (U+z1)=F'D,D u+F'D,D 73

=0+ f(x,y)

F'D,D (u+z) = f(x,y).

= U+2; satisfies the equation (1). Therefore, U+ 21 is the general solution of (1).

Theorem 3.2.2. If uy, U, . . ., Uy, are solutions of the homogeneous linear partial differential

equation F (D,D/)z =0, then

X
Crlr

r=1

where the ¢, ’s are arbitrary constants, is also a solution.

(1)

(2)

(3)
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Proof. The given homogeneous linear partial differential equation is

FDDz=0
Given that u1, Uz, ..., U, are the solution of (1).
F'D,Du =0
F'D,Duz=0
F'D,D u,=0.

Also,
F .D, DJ Cilur = CrF .D, D‘| Ur.
Now,
)n )n
FDD " cu.= F'DD Cdlr
Kl r=1
X
= c¢F D,D ur
r=1
=ciF ' D,D u1+cF D,D uz + - -
=0.
X
Therefore, CrUy is the solution of (1).
r=1

(1)

-+ CnF .D, DJ Un
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Classification of linear differential operators

Reducible The operator F (D, D!) is said to reducible if it can be factorized into the linear factor
of the type D +aD! + b, where a and b are constants.

Example: D2 — DzZ=(D+ D) (D - D).

Irreducible The operator F (D, DY) is said to irreducible if it is not reducible.

Example: D2 — D..

Theorem 3.2.3. If the operator F (D, D!) is reducible, the order in which the linear factors occur

IS unimportant.

Proof. For proving this theorem, we have to prove : (a/D + B,D’ + y;) (asD + BsD’ + ys)

= (asD + BsD + ys) (a:D + BD! + y¢) . Now

‘aD +BD +y; ‘asD + BsD! + ys = arasD? + ayB,DD! + a,BsDD + B,BsD2 + ysa,.D

+ yrasD + ys5,D) + yiBsD’ + yiys

= ara;D? + (as,Br + ar,Bs) DD + B,B;D2 + (vsar + yras) D

+ (VsBr + ViBs) D! + yis. (1)

Also,

‘asD +BsD +ys ‘oD +BD +yr = arasD? + (asPr + arBs) DD’ + BiBsD'2 + (ysar + yras) D

+ (VsBr + ViBs) D + yiYs. (2)

Partial Differential Equations M.Sc.(Mathematics)-11 Sem|



90 3.2. LiNneaR ParTIAL DiffereNTIAL EQUATIONS WITH CONSTANT Co- effiCleNTs

From (1) and (2), we get
.arD + BrDJ + yr -asD + BsDJ + VS = -asD +BsD‘J + VS -arD + BrDJ + Vr .

.". For any reducible operator can be written in the form

n

F .D, DJ = .arD +BrD‘J + Vr . |

r=1

Theorem 3.2.4. If a,D + B,D! + y; is a factor of F (D, D)) and ¢,(§) is an arbitrary function of
the single variable ¢, thenif a; /=0,

!
X
Ur = exp _% @r (Brx — ay)

Is a solution of the equation F (D, D))z = 0.

Proof. Let

F'D,D z=0 (1)

be a partial differential equation. Since (1) is reducible

| =}

I:-D,DJ Z= -arD+ﬁrD‘l+Vr Z. (2)

r=1

If z satisfies (oD +B:D'+y,)z =0,r =0,1,2,...n, then it gives us complementary function.

Now

0z oz
arg +Bra—y + VrZ = 0
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is a linear first order partial differential equation and the auxiliary equation

dx_dy_ dz 3
@ BT, (3)

z

Consider the first and second term, we get

dx dy
ar Br
= Cr1 = BrX — ayy,
Cr1 being a constant. Also
!
1 dZ _ — r — I’X
7 dx a = Z=Cr2exp a

where ¢y is a constant. Therefore the solution of (3) is
Cr2 = (pl’(cl’l)

implies | |

—VrX —VrX
—Hes = @r (Brx — ary) exp e

ay ay

Z =@ (Cr1) exp

If a /=0, therefore
!
—YrX

CF. = o (Brx— ay) exp :
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@, is an arbitrary function and hence it is a solution of (aD + D' + y;)z = 0. Now

FDDu .L ‘aD+BD'+y '"-gD+BD+y u.
S S r r r r

r S

s=1

Combining equations (5) and (6), we get

F'D,D u=0.
!
- YeX - : :
Thus u; =exp — q O (Brx" — ayy) is a solution of (1). Ths completes the proof.
r

Theorem 3.2.5. If B;,D’ + y; is a factor of F (D, D) and ¢((¢) is an arbitrary function of the

single variable &, thenif B, /=0,

Ur = eXp _% (pr (ﬁrx)

is a solution of the equation F (D, D’) = 0.

Proof. Let

FD,Dz=0

be a partial differential equation. Since (1) is reducible

n

I:-D,DJ Z= -arD'l'BrD‘l'l'vr Z.

r=1

(6)

(1)

(2)
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If z satisfies (8D’ +y,)z=0,r=0,1,2,.....n, then it gives us complementary function. Now

OQ+,BrQ+yrz=0

ox oy

is a linear first order partial differential equation and the auxiliary equation

== 3)

Consider the first and second term, we get

dx _ dy
0 B
= Cr1 = BrX,

Cr1 being a constant. Also, consider the second and third of (3), we get

—VrX
dz _ dy => Z = Cr2 €Xp -
—vz B Br
where ¢y is a constant. Therefore the solution of (3) is
Cr2 = @r(Cr1)
implies
! !
— VX —ViX
Z= @ (Cr1) exp a = o= (Brx) exp 8 =
r r
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Therefore |

r

C.F. = ¢ (BrX) exp

@r is an arbitrary function and hence it is a solution of (B,D' + y;)z = 0. Now

FD,Du .2 'asD+,BSDJ+y ',BrDJ+V u. (6)

r r

r=1 s
s=1

Combining equations (5) and (6), we get

F'D,D u=0.
!
- YiX : : :
Thus u; =exp — 8 @r (BrX) is a solution of (1). This completes the proof. [ |
r

Theorem 3.2.6. If (aD+B:D'+y,)"(ar 0) is a factor of F(D,D) and if the functions
¢, - .., Om are arbitrary, then

|
"X
exp _MLX X~ 1grs (Brx — ary)

ar s=1

is a solution of F (D, D)) = 0.

Proof. In the decomposition of F (D, DY) into linear factors, we may get multiple factors of the
type (a;D +B:D +yy)".
For n =1, the solution corresponding to a factor of this type can be obtained from Theorems

2.2.4 and 2.2.5.
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For n = 2, we have to find the solutions of the equation

‘aD+BD +y 22=0 (1)
Let

Z="aD+BD+y; *z (2)
then

‘aD+BD' +y, Z=0. (3)

By theorem 2.2.4, (3) has the solution of the form

]
X
Z = exp _% @r (Brx — ary),

lfar /=O.

To find the corresponding function z we have to solve the first-order linear partial differential

equation
I

oz

0z
Gr gy * Brogy *ViZ = exp N

"
a @r (Brx — ary) .
which is a Lagrange’s linear equation of the form Pp + Q@ = R, then the auxiliary equations are

dx dy dz

?r ) E ) —yiz+e g (Bx — ay)

(4)
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96
Consider the first and second term, on integration, we get

BrX — ayy =C1
Next we consider the first and last term and substituting ¢1 = B,X — ay in the last term, we get

the

dx dz
T —yiz+e Vg (cq)

(5)

dZ yr 1 _
AT

dx " a’ " ar
which is a first-order linear equation of the form
dy
ax Py=0Q
and whose solution of the form
Pi Qe P 4¢

ye =

Therefore the solution of (5) is

z=1 "¢ (C1)X+Cz e & X,

r

Therefore the solution of (1) is

m
z={X@r (Brx — ay) + wr (Brx — ary)}
e
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where the functions ¢y, g, are arbitrary.

By induction, the result holds. This completes the proof. [ |

Theorem 3.2.7. If (BD +y,)" is a factor of F (D, D) and if the functions @,....@m are
arbitrary, then
I
- X
exp _Jg)l X' ors (BrX)

N s=1

is a solution of F (D,D)z=0.

Proof. The proof is similar to proof of Theorem 2.2.6. [ |

Note 3.2.1. + By the above theorems, any reducible operator F (D, D)) is of the form

n

F'D,D = ‘“aD+BD+y, ™

r=1

and if none of the a, ’s is zero, then the corresponding complementary function is

DY |

n X
u= exp _MLX X1 (Brx — ary)
ay
r=1 s=1
where the functions ¢s(S=1,...,n;r=1,...,n) are arbitrary.

- If some of the a;’s are zero, the necessary modifications to the above expression can be

made by means of Theorems 2.2.5 and 2.2.7.
Problem 3.2.1. Solve the equation

047 04z
"t a7 Laaayr
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Solution. Given

|
o1 1 . oM o1 04 dz . &1 9’
A o T T o ) T oa@ o -

can be written as

(D2 — D12)2 = 0
D+DMD-D'%z=0

D+D*D-D?%z=0.

Therefore, the solution is

Z=XQ1(X = y) + @2(X — y) + Xwi(X +y) + (X +Y)
where the functions @1, @2, Y1, Y2 are arbitrary. [ |

Particular Integral

Consider a non-homogeneous linear partial differential equation with constant coefficients of the
form

F'D,D z=f(xy), (D)

where F (D, D)) denotes a reducible linear differential operator of the form

n

I:-D,DJ = -arD+BrDJ+Vr.

r=1

We discussed the complementary function of equation (1). Now we need to find a particular
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integral to complete the solution.

If

n
1= ‘aD+BD +y, z (2)
r=2

then equation (1) is

‘aD + B1DJ +Vy121 = f(X, Y)
on  on
= a1 % + B ay+y1z1 = f(x,y)

which is a Lagrange’s equation, substituting the value of z; in (2) and repeating the process, until

the last first-order equation for z.

. . . 01 9«
Problem 3.2.2. Find the solution of the equation - X—y

2 =
_ 1 %
Solution. Given =~ = — X—y (1)

ox2  oy?
can be written as

D2 -D2z=x-y

D-D D+Dz=x-Y.
The complementary function is

C.F=gix+y) +@(x—Y)

where @1 and @ are arbitrary.

To find the particular integral

D—-D D+D z=x-—vy. (2)
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Let

z1="D+D z (3)

then the equation (2) becomes

D-—D z1=x—-Y
dn on
ox _ay =Xy

which is a first-order linear equation of the form Pp+ Qg = R with the auxillary equation

1 -1 x-—y

1 -1 1-(-1) x-—y
J J ,
dx=— dy —Z(X—y)(dx—dy)=d21
) 1(x—y)?
=Ty+a T =n+c
20 By
X+y==C1 :1- =271 +C2

Then the solution is

c2 = f(c1) where fisanarbitrary function

X -y)?

. f(x+y)

Z1
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_x_yp

71 +f(x+y)

Takef =0

— 2
)

Substituting this value of z; into (3), we have

O+ D)z = E W

gz 9z (x—y)?

ax+ay= 4

which is a first-order linear equation of the form Pp+ Qq = R with the auxillary equation

On solving, we get Solving the above equation, we obtain

1
z="X(Xx=y)+f(x-y)
in which f is arbitrary. Taking f = 0, we obtain the particular integral

Z= lx(x _Y)?
4
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Hence the general solution of (1) is

z=C.F+P.Il

1
2= @Qix+Y) + @2(x —y) +, X(X —y)%

where the functions @1 and ¢ are arbitrary. [ |
Theorem 3.2.8. F (D, D) e®*? = F(a, b)e®*.

Proof. Let F (D, D)) = ¢sD'D”®. Then
Dreax+by — areax+by

Djseax+by - bseax+by_

Now,

F .D, D = Crs D" DJseax+by

Crsarbjseax+by

F(a, b)e™™,

This completes the theorem.

n }
Theorem 3.2.9. F (D, D) e™Yg(x,y) = e*YF (D +a, D’ +b)¢(x,y).

Proof. Let F (D, D)) = ¢sD'D®. By Leibnitz’s theorem for the rth derivative of a product, we
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have
X
Dr (eano) - GC (Dpeax) -Dr_p¢
p=0
o
=™ 16 opr-p
h 00 Cpa D ,(0
=e¥(D+a)'e
X -
DS e¥p = SC, DY ‘D' Pe
p=0
>
=eYr. o opmyr—p
- 00 Cpb DJ ,(0
= e”(D! + b)°p.
Now,
F'D,D =cD'D%e™p(x,Y)
= ce™e™(D + a) (D + b)°p(x, y)
= ™ (D +a)' (D + b)°p(x, Y)
= e F'D+a, D +b (X Y).
This completes the proof. [ |
: &’z 10z
Problem 3.2.3. Show that the equation _ _ _ == possesses solutions of the form
ox2 k ot
X 2
C, cos (Nx +¢g,) e~ ",
"o %z 1oz
Solution. Given - (D)
X2 kot
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Let us assume the solution of the form

7 = eax+bt (2)

Substitute (2) in (1), we get

and this relation is satisfied if we take a = +in,b = —kn2. Then the general solution is

X 2
Z=  Cncos(nx+én)e ", |
n=0

Particular integral for irreducible differential operator

Consider a non-homogeneous linear partial differential equation with constant coefficients of
the form

F'D,D z=f(xY), (1)

where F (D, DY) denotes a reducible / irreducible linear differential operator.

To find the particular integral of the equation (1), we write

1

=" .
F (D, D)

f(x )

Expand the operator F-1 by the binomial theorem and integrations with respect to x and y are
made for the respective operators D-1 and D/-1.

Problem 3.2.4. Find a particular integral of the equation Dz — D' z = 2y — x2.

Solution. Given D2 — D/ z =2y — X2, (D

Then the particular integral is
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|

D2 7' 1
=-1-F g 2y—x
n #
1 Dz D¢ 2
= o W

1 1
Z=—"p 2y — X D2 D2z 2y — x?

-y ey (2)
D2

P.l = x2y. m

Particular integral for f(x,y) = e™

Consider a non-homogeneous linear partial differential equation with constant coefficients of

the form
F'D,D z=f(xY), (1

where F (D, D) denotes a reducible / irreducible linear differential operator.

To find the particular integral of the equation (1), we write

1

————————qaxtby

F(D,D)

except if it happens that F(a,b) = 0.
Problem 3.2.5. Find a particular integral of the equation Dz — D z = e2¥,

Solution. Given D2 — D/ z = e2¥, (1)

Here F (D,D)) = D2 — D), a=2,and b=1, sothat F(a,b) = 3, and the particular integral is

P.l= le2x+y. [ ]
3

Problem 3.2.6. Find a particular integral of the equation D2 — D/ z = e*”.
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Solution. Given D2z — D/ z = ¢V, (1)

Here F (D,D)) =D2 - D), a=1,b=1, and F(a,b) = 0. However,
FD+aD+b=(D+1)2-"D+1 =D2+2D - D

Then the particular integrals are

1 + +
“xe* and _ye*. [ |
2

Particular integral for f(x,y) = sin(ax + by) or cos(ax + by)

When the function f (X, y) is of the form of a trigonometric function, it is possible to make use
of the last two methods by expressing it as a combination of exponential functions with imaginary
exponents, but it is often simpler to use the method of undetermined coefficients.

Problem 3.2.7. Find a particular integral of the equation D% — D' z = Acos(Ix + my), where

A, |, m are constants.

Solution. Given Dz — D! z = Acos(Ix + my). (1)

Let us assume the particular integral of the form
z = ¢1 cos(Ix + my) + ¢z sin(Ix + my). (2)

Substitute (2) in (1) and equating the coefficient of the sine to zero and that of the cosine to A, we

obtain the equations

mcy — 12c2 = 0

—12c1+mecy; = A
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for the determination of ¢; and c2. Solving these equations for ¢ and cz, we obtain the

particular integral

A n
zZ= m4 msin(Ix + my) + 12 cos(Ix + my)}l

Working Procedure for Complementary Function

Consider a non-homogeneous linear partial differential equation with constant coefficients of the
form

F'D,D z=f(xY), (1)

where F (D, DY) denotes a reducible / irreducible linear differential operator.

By putting m =—DJD then the auxiliary equation can be written as
F(m,1) =0
(i) If the roots of auxiliary equation (A.E.) are m, mz, ms, ... (all distinct), then
CF. =fi(y+mix)+ fa(y+m2Xx) + fa (y+m3x) +...

where fi, fz, f3,... are all arbitrary functions.

(ii) Iftwo roots of A.E. are equal i.e. mz =mq, then
CF.=fi(y+mx)+xfz(y+mix)+ f3(y+msx)+...,

where fi, f2, f3,... are all arbitrary functions.

(iii) Ifthree roots of A.E. are equal i.e. m3 =mz =my, then

CF=fi(y+mix)+xfz (y+mix) +x2f3 (y + mix) + fa (y + max) +..., C.F.
=1 (y + mux) + xfo (Y + mixX) + X2 f5 (Y + mix) + « - -,

where fi, f2, f3,... are all arbitrary functions.
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Working Procedure for Particular Integral (P.1.)

The Particular Integral (P.1.) of the equation

F'D,D z=F(xbY)
where
F'D,D =D"+a;D"1D) + a;D"-2D)2 + ... a,D"

1
is gi by Pl = ————
is given by FD.D) F(X, Y).

Method | (Particular Cases for f(x,Yy))

(i) When f(x,y) = e then P.I =—1eax+by, F(a,b) 0.
F (D, D)
If F(a,b) = 0, then it is called a case of failure.

(i) When f(x,y) = sin(ax + by)

Pl = 1 sin(ax + by) = L sin(ax + by)
F ‘D%, DD, D2 F —a?, —ab, —b?

provided F —a?, —ab, 8 0 otherwise itis called a case of failure. A similar rule holds
for F(x,y) = cos(ax + by).

(iii) When f(x,y) = x™y", m,n are positive integers, then

1

I. = mn _ ‘gt J =1 _ mn
F(D,DJ)Xy F D, D Xy
If m < n, we expand binomially [F (D, D)]-! in powers of D/D' and for m > n. If

m < n, we expand binomially ‘¢ (D, D))"~ in powers of D/D. Also we have

1 J 1 /
= f , = f , d d — f ) =
S (x,y) (x,y)dx  an o (x,y) f(x, y)dy.

y-constant X-constant
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(iv) When f(x,y) = e®*@(x,y), then

Pl = ax+by
F(D.D) ¢ P(x, y)
- eax+by (P(X, Y)
F(D+a,D +h)
1
for ®(X,y) can be evaluate using any one of the above steps (i), (ii) and

F(D+a,D +h)
(iii).

Method I1. (General Method)

This method is applicable to all cases where f(X,y) is not of the form.

Now F (D, D) can be factorized, in general, into n-linear factors, therefore

1
PIL = F . DJ)f(X’ Y) 1
_ f
(B—m-DYD— D ——(B—mby | V)
1] 1° 1"

"b-mD D-mD  D-mD *Y

We find that L [

—  F(xy)=" F(x,c mx)dx,

D-—mD
where C is replaced by y+mx after integration. Thus P.I. can be evaluated by repeated application
of the above rule.

. 01 0z
Problem 3.2.8. Solve the equation -2 — 032 03z

L 2 Xy
ox3  ox?oy

oozt ey
Solution. Given
632 _2 332 — 332 832 X+Yy
M Oxdy

oxay? *e ay3 =€
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can be written as

(D3 — 2D2D) — DD'2 + 2D33)z = & (1)

To find complementary function:

Auxiliary equation is

m3—2m2—m+2=
Om+1)(m— 1)(m— 2)
=0

m=—-1m=1,m-=2

CF =iy = x) + @2y + X) + @3(y + 2X)

To find Particular Integral:

P.I= ! ey
D3 — 2D2D! — DD'2 + 2D’3
1
~ (D -2D)(D+D)D-D)
— 1 ex+y
(-1)(2)(D - D)
= _Q ex+y
2(D - D)
1
= —5 g =X where y = ¢ — X
1
= —E e“dx
I
1.
=—€ dx
1

o

Il

[
@
N3

e D=1,D=1)

Partial Differential Equations
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1
= T Xe*Y,
P.l ?

The general solution is

z=C.F+P.l

1
7= (Pl(y— X)+(p2(y+ X)+§03(y+2X) _zxex Y, x

ProBLems forR PRACTICe

62
1. Show that the equation _y + Zké\[ = o2 %y

ot? ot ox?
T CreJ‘t cos (XrX + &) cos (wrt + &), where ¢y, ar, &, 0, are constants and w? — a%c? —&

possesses solutions of the form

2. Solve the equations
(@) r+s — 2t = —e,
(b) r —s+2q —z=x%2
(cr+s—-2t—p—2q=0.

3. Find the solution of the equation V%z = e~* cosy which tends to zero as X — o and has
the value cosy when x=0.

X ar+SZ
4. Show that a linear partial differential equation of the type  C XrVSWays = f(x,y) may
rs
be reduced to one with constant coefficients by the substitutions ¢ = logx, n =logy.

Hence solve the equation x2r — y2t + xp — yq = log x.

3.3 Equations with Variable Coefficients

Consider a second order partial differential equation with variable coefficients of the form

Rr+Ss+Tt+f(X,y,2,p,q) =0 (D
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which may be written in the form

L@+ f(xy,2,p,0) = 0 (2)
where L is the differential operator defined by the equation

0? 0? 0?
L o— -
—Rax2 +Saxay+T3y2 (3)

and R, S, T are continuous functions of X and y possessing continuous partial derivatives.

The equation (1) is said to be

(i) Ellipticif S2—4RT <0
(ii) Parabolic if S2 — 4RT =0, and
(iii) Hyperbolic if S2 — 4RT >0

at a point (Xo, Yo)

If this is true at all points in a domain Q, then (1) is said to be elliptic, parabolic or hyperbolic
in that domain.

Canonical Forms
Consider the transformation of the independent variables x and y of equation (1) to new variables

§=¢(x,y), n=nxy (4)

such that the functions ¢ and n are continuously differentiable and the Jacobian

JoUEM - & & =gn-gn o )
oy Ty

in the domain Q where equation (1) holds.
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By chain rule of partial differential equation, we have

oz = 029§ , dz9n _ Ez +N1
T Ox  9EOX  Anox xn

oz
q ay §y ¢ + nyzn ]
CC AR z 7z 27 7 2z
- = fzf"'r]xr] =§x gt §§XX""7X mt nlhx* fxr]x &n
ax2  ox )
d%z
agz Zufy +28yNyZen + ZanNy + Zeyy + Znlyy
= 3oy 2y = 2g,ExCy + ZngNxly + Zenbxlly + ZentSy + ZnMxy + Ze6xSy

Substituting the values of p,g,r, s and t in (1), we get

A ¢, fy zy + 2B & fy, N Ny Zg, + An,ny g =F $1, N, 2, 1, Zp

where

A(u,Vv) = Ruz + Suv + Tv2

2B (u1, v1, Uz, v2) = 2Ruiuz + S (U1ve + Uzvi) + 2Tviv

Then

2B2 (&, &uuy) — A & & A nny = (S — 4RT) J.

Casel: S2 — 4RT > 0.
Under the condition S2 — 4RT > 0, the equation

RAZ+SA+T =0

has real and distinct roots and the roots A1 and A; are given by

v/
ALA -S + "SZ—4RT

1 2= 2R

Choose ¢ and n such that
& = Mgy, Nx = Azny.

(6)

(7)

(8)
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Now & = A1éy = & — Ay = 0, we have

dx dy d¢é
1 A0
dé =0 = ¢ = constant and
dy dx dy
_—= 1— = d—X+A1(X,y) =0.
M
Similarl
imilarly dy
(17+ A2(x,y) =0
which is known as characteristic equations. Thus, fi(X, y) = constant and f2(X,y) = constant
implies
¢ = fi(x,y) and n=f(x,y).
Now

Ay =RE+SES +TE
=82 RAZ+SA1+T
=40
=0

since A1 isarootof RA2+SA+T =0.

Similarly A ny,ny =0, as Az is also a root of equation (12).
B2=SZ—-4RT J /=0

Equation (6) reduces to
2p =9 §N2,2512,

which is a required canonical form for the hyperbolic PDE.

Case ll: S2 — 4RT = 0.

(9)

(10)

(11)

(12)
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Under the condition S2 — 4RT = 0, the equation

RA2+SA+T =0

has equal roots A1 = A, = A (say). Choose ¢ = fi(X,y), fi(X,y) = constant is a solution of
dy
ax AlX,y) =0

Since A &, ¢ = 0,52 — 4RT = 0, therefore from (7), we have B=0.
However, A ny,ny, 0, otherwise n will depend upon ¢.

Substituting A = B =0 in equation (6) reduces to

Zn =09 &N 2,26 2,

which is the required canonical form for the parabolic partial differential equation.

Case lll: S2 — 4RT < 0.
Under the condition S2 — 4RT < 0, the equation

RAZ+SA+T =0

has imaginary roots and therefore ¢ and n will be complex.

Let é=a+iB,n=a—iB;a,B are equal.

1 i
a=5(§+n)B=50~-2¢)

With this transformation, we have
1
Zn = 4 Zaat Zgp

and proceeding on the similar lines as in Case I, we get

Zaa + 288 = @ Q, B, Z,24, 28

which is the required canonical form for the elliptic partial differential equation.
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2

Problem 3.3.1. Reduce the equation E _ XZaﬁ to canonical form.
ox? dy?
Solution. The given equation is
0%z ,0%2 dz  ,0%
@ X = e g (1)

Comparing (1) with

Rr+Ss+Tt+f(X,y,2,p,q) =0

we haveR=1,S =0, T = —x2, then

S2 — 4RT =0 — 4(1)(—x2) = 4x2 > 0

forall x and y. Hence the given equation is hyperbolic everywhere.

Then the characteristic equations to find ¢ and n are

dy +A =0 => dy

dx 1 dx
dy +A =0 = dy
dx 2 dx —
On integration
X2
y=—— +C1q,
ZX2
Cl = y + 7
X2
§=y+ 2

. \/2
—S+ S2—4RT. _ _y
2R
S v 4RT""-
SoOR-WTEE
XZ
y=+E+C2
_ X2
cz—y_7
XZ
'7=y_—2

Partial Differential Equations
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Then fx = X, fy = 17€XX = 1,§Xy = O,fyy = O and r’X = _X,r’y = 1,r’XX = _1,rlxy = 0,nyy = 0 NOW

Zy = 2ely + Znhx = X(Ze — Zp)
Zy = 2ey + ZpNy = Ze + 7
Zxx = 2ggboxk 22t + Zngxet Zebx + ZnMhx = X*(Zgg — 22gy + 2ng) + (26 — 2)

Zy = Zee§uy + Zen(Sxly + SyM) + ZpnMxy + ZeSyy + Znlxy = X(Zgg — Zpn)

Zyy = Zfs‘ff/ +2Zen6yny + Znnflj +2e8yy + Znllyy = Zeg + 2Zen + .

Substituting these values in (1), we get

FC 1
sgon ~ 4(E—nm) o

which is the required canonical form of the given equation. [ |
0 0

Problem 3.3.2. Reduce the partial differential equation y?2 ’ —2Xy ’ 2 0’z y20z x2oz

— — = —

o oxay ¥ ay? X ox ¥ y oy

to canonical form and hence solve it.

Solution. The given equation is

2 2
yZaz — 2Xxy x +x20%7 _y?01 _x?01

ov2 IvAv 2 v ay . =0 1
ox oxay o oxax g (1)
Comparing (1) with

Rr+Ss+Tt+ f(X,y,2,p,q) =0
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we have R=y2 S = —2xy, T = X2, then

S2 — 4RT = 4x2y2 — 4x2y2 = 0

forall x and y. Hence the given equation is parabolic everywhere.

Then the characteristic equation to find ¢ is

. J .
dy +A=0 = dy _7S* ST=WRTT S - _x
dx dx 2R " 2Ry
On integration
yZ - _XZ +q
C1 = X2 +Yy2
& =Xx2+y2,
Choose n independent of &, we take
== X2 — y2_

Then fx = ZX, fy = Zy, fxx = 2, fxy = 0,§yy = 2y and rlx = 2X, r’y = —2y, rlxx = Z,rlxy = 0,I7yy = _2

Now

Zy = 2&€x + Zphx = 2X(Z¢ + 2p)

Zy = 2¢€y + Zphy = 2Y(Ze — Zp)
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Zyx = Zggfzx + ZZ§U§XI’]X + Z,ml’lzx + foxx + Zphxx = 4X2(Z§§ + 22§n + Z,m) + Z(Zf + 2’7)

Zxy = Zegby + Zen(&clly + &y + Zynully + 266y + Znflxy = 4XY(Zege — Znn)

Zyy = 2ge€§ + 2Zenbylly + ZanN§ + Zeyy + ZnNyy = 4Y2(Zgg — 22gn + Znn) + 2(2e — Zp).

Substituting these values in (1), we get

Zpn=0

which is the required canonical form of the given equation.

To solve the canonical form

0%z

ap =Y

oz

_ =A

an
z=An+B,

where A and B are arbitrary functions of . Therefore

z=nA(8) +B(&)

2= (¢ — y2) AGC +y2) + BOE +Y7)

which is the required solution of the given equation. [ |

0z 0z
Problem 3.3.3. Reduce the equation (n—1)2 =~ —y2"

— —

ox o2 Y

nyZn—li to canonical form and find
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its general solution.

Solution. The given equation is

0%z 0%z 0z
(h—12" " —y"" - nyz”—l—0 (1)

W W oyt

Comparing (1) with

Rr+Ss+Tt+ f(x,y,2,p,q) =0

we have R=(n—1)2,S =0,T = —y2", then
S2 — 4RT = 4(n — 1)2y2" = (2(n — 1)y")2 >0

forall x and y. Hence the given equation is hyperbolic everywhere.

Then the characteristic equations to find ¢ and n are

_ . 2R (-1
dx +A1=0 = dx
o .
dy  -S— SI-ART' "
Onintegration gy *A2=0 = x R - 1
(n — 1)y-"dy = —dx (n — 1)y-"dy = dx
yl—” = —X +C1, yl—” =X+Cy
c1=x+yl-" Cz = x —y1-"
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&=x+yt-" n=x—y-".

Then fx = 1,§y = (1 - n)y_n,fxx = O,gxy = O,fyy = _n(l - n)y_n_l and I’]X = 1,
ny =

—(1 = n)y ", N« = 0,y = 0,1y =n(1 — n)y—"-1. Now
Zy = Ze€x + Zphx = Zg + Z

zy = 2eby + 2ghy = (1 — n)y~"(z¢ — zp)

I = fofzx +2Z¢n6unx + anﬂ?’j +Ze6xx + Znlxx = Zgg + 2Zen + Znn

Zyy = Zegbxly + Zen(Sully + EyNx) + ZnnMly + Zebyy + Znlxy

Zyy = Zgg§§ + 22enGylly + Lyl + Zeyy + Znfyy = (1 — )2y~2"(zge — 22gp + Zpp) — N(1 — n)y—1="(z¢ —
2

Substituting these values in (1), we get

4n — 1)%2g, = 0

Z§q=0

which is the required canonical form of the given equation.

To find the solution of the given equation, we can solve the canonical form,

9’z
o&on
0z
% A(S)

z=A(§)¢+B(n)
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z=f1(8) + f2(n)

z=fi(x +y1=") + fo(x + y1-") (f1 and f, are arbitrary functions)
which is the required solution of the given equation [ |
2
z
Problem 3.3.4. Reduce the equation ) 02z 9%Z 0 to canonical form and hence solve

ox? ¥ oxoy * ay?
it.

Solution. The given equation is

0%z 0%z 0%z

W-FZM-I- avzo (1)

Comparing (1) with

Rr+Ss+Tt+f(X,y,2,p,q) =0

we have R=1,5S =2,T =1, then

S2-4RT =4-4=0

forall x and y. Hence the given equation is parabolic everywhere.
Then the characteristic equation to find ¢ is

QY+A=0:> d :—S+ SZ—_A'..RI:_ - =1.

dx x 2R “ 2R
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On integration

Choose n independent of &, we take

n=x+y.
Then §X= 1,§y= _17§XX=01§Xy=01§W=O and I’]X= 1,’7y= 1,r’XX=O,nxy=0,r’yy=0. Now

Zy = Ze€x + Zplhx = Ze + 7

Zy =26y +2phy = —2s+ 7y

Zax = 26662 + 2ZenCulx + Znnh? + Ze§ux + Znlix = Zegg + 2Zgn + Znp
X X

Zyy = ZeebxSy + Zen(Sxlly + Sy) + ZpnMxy + ZeSxy + ZnMNxy = Znn — Zee

Zyy = 26669 + 22en8yNy + Zngh§ + Zebyy + ZnMyy = Zgg — 22gn + Zpn.

Substituting these values in (1), we get

Zpn =0

which is the required canonical form of the given equation.
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To solve the canonical form

0%z
Eria
0z
_=A
an
z=An+B,

where A and B are arbitrary functions of ¢. Therefore

2=nA(§) +B(&)

z=(x+y)AXx—y)+B(x—VY)

which is the required solution of the given equation. [ |
N A
Problem 3.3.5. Reduce the equation _ + Xz_2 = 0 to canonical form.
Ox? ay
Solution. The given equation is
0z 20%
W + X a—yz = O. (1)

Comparing (1) with

Rr+Ss+Tt+f(x,y,2,p,q) =0

we haveR=1,S =0, T = X2, then

S2 — 4RT =0 — 4(1)(x2) = —4x2 < 0

forall x and y. Hence the given equation is elliptic everywhere.
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Then the characteristic equations to find ¢ and n are

dy+A =0 > dy _ .S+ SToART _ijyx
dx 1 d« 2R
dl +A - 0 = gy '. \/ . = _iX.
dx 2 dx = ':—S - %ﬁ— 4RT:
On integration
. X2 X2
|Y=—E+cl, —iy=——2 +C2
NG Xt
C1=7+Iy C2=7—Iy
X2 x*
§=7+|y n=—-1.

Now, we introduce the second transformation

a=§+r] and ’8=§_rl

[\
[\

we obtain

Then oy =X, ay = 0,0y = 1,05y = 0,0y, =0 and Bx =0,8, =1, Bxx =0,Bx = 0,8y = 0. Now

Zy = ZgOx + 2gBx = XZa

Zy = 240y + 2Py = 2

2 2 2
Zyy = Zgagd~ + ZZCIBGXBX + Z,B,BB +ZoQxx + ZBBXX = X"2qa
X X
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ny = Zaaaxay + Zaﬁ(axﬁy + ayB)() + ZBBB)(By + Zaaxy + ZBB)(y = XZGB

Zyy = ZqaQ? + 2ZqpQyBy + Zpp% + ZaQyy + 2Py = Zpp-
y y

Substituting these values in (1), we get

2 *¢ 19

— +

o2 9B2 2ada

which is the required canonical form of the given equation. [ |

Examples

+ The one-dimensional wave equation

%z 0%
X2 oy*
is hyperbolic with canonical form
02¢
=0
oéon
+ The one-dimensional diffusion equation
0z oz
ox2 oy
is parabolic with canonical form.
+ The two-dimensional harmonic equation
322 aZZ
-+ __ = 0
ox?  oy?

is elliptic and in canonical form.
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Check YouRr Progress

1. Show how to find a solution containing two arbitrary functions of the equation s=f(x,y) .
Hence solve the equation s = 4xy + 1.

2. Show that, by a simple substitution, the equation Rr + Pp =W can be reduced to a linear
partial differential equation of the first order, and outline a procedure for determining the
solution of the original equation.

[llustrate the method by finding the solutions of the equations:
(a) xr+2p=-2y
(b)) s—q=¢e".

3. If the functions R, P,Z contain y but not X, show that the solution of the equation
Rr+ Pp+ Zz=W can be obtained from that of a certain second-order ordinary differential

equation with constant coefficients. Hence solve the equation yr + y2 + 1 p +yz = €.

3.4 Separation of Variables
Consider a second-order linear partial differential equation
Rr+Ss+Tt+Pp+Qq+Zz=F. (1)

Let us assume a solution of the form

z = X(X)Y(y)- (2)

Substituting (2) in (1) it is possible to write the equation (1) in the form
1 1

;f(D)X =y DY, (3)
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where (D), g (DY) are quadratic functions of D = ¢/dx and D! = 6/dy, respectively, we say
that the equation (2) is separable in the variables X, y. In equation 3,

1 1
< f(DX=5gD Y =4

f(D)X = AX, g(D)Y =AY 4)

Problem 3.4.1. Solve the one-dimensional diffusion equation

J’z 1oz

ox2 kot
using the method of separable of variables.
Solution. Given

0%z oz

= ___ 1

ox¢ kot (1)
Let us assume a solution of the form

2(x,t) = X(JT (1) (2)

Substituting equation (2) in equation (1), we get

XU

1T A ,
~ kT oA (a separation constant)

Then we have

Partial Differential Equations M.Sc.(Mathematics)-11 Sem|



3.4. SepaRrATION of VaRiABLes 129
dT
dt

— AKT = 0.

The following three cases arises:

Case | Let A> 0, then A =n?, we get

d2X L. dT
—~ n*x=0 and _ =0.
dx2 dt kn2T 0
which gives
X =cie™+ce"™, Y =ce"
Case Il Let A< 0, then A =—n2, we get
dzx 2 dT 2
2 +A X=0 and dt+knT=0.
which gives
X = C1c0s NX + C 2sin NX, Y = cse— <",
Case lll Let A=0. Then
dzX dT
d? = 0 and E= O
which gives
X = C1X + Cp, Y =cs.
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Thus, various possible solutions of the heat conduction equation (1) are

7 (X, t) I"IX) eknzt

(ce™+ce
1 2

7(x, 1) (¢ cosnx + ¢ sin nx)e—""
2

1

Z(x,t) = cdyx+0,

where

C¢; =C1C3, C, =C2Cs.

If a solution tends to zero ast — oo, then it is possible to take the second solution on

simplification,

2(X, t) = cacos (NX + ) e,

where C, is a constant, is a solution of the partial differential (1) for all values of n. Hence

expressions formed by summing over all values of n,

X 2
Z(Xx,) = Cncos (nx + en)e" K.
n=0
Asz— 0 ast— oo, we get
X
2(x,0) = Cnh cos (NX + &) .
"o 0%z
Problem 3.4.2. Solve the two-dimensional di usion equation 0%z
ff 2z ¥ oo =
ox? ¥ ay?

Solution. Given
0z 0%z 1oz
ol vy

(1)
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Let us assume the solution of the form

z=X)YWT). (2)

Substituting equation (2) into equation (1), we get

£'1J+Y_JJ=1TJ = —nZz,

X Y kT

Then T! + kn?T = 0 whose solution is

T = e—knzt
and
XJJ 1) |
X = n2 v = —12 (say)
Hence,
XvV+2X =0
YU
v = —n?+12 = —m?(say) = YV +m?Y = 0.

which gives

X = AcosIx+ Bsinlx = ¢ cos(Ix + €1)

and

Y = C cosmy + Dsinmy = ¢y cos(my + &2)
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Thus, the general solution of the given PDE is

2(X, Y, 1) = & cos(Ix + £1)ancos(my + £2)e=K(*+m )t
= Clm COS(IX + 81) COS(my + 82)e_k(|2+m2)t
where
n2 =12+m2and Cpm = C(Cp.
By the principle of superposition, the most general solution is
XX
2(x,y, ) = Cim cos (IX + £1) cos (my + £r) ek(Pm)t, .
I=0 m=0

Check YouRr Progress

1. By separating the variables, show that the one-dimensional wave equation

0%z 107z
X2 cZot?

has solutions of the form Aexp(=xinx I inct), where A and n are constants. Hence show
that functions of the form

X }
rmct rmct r
z(x,t) = Arcos _a + B, sin _a sin _a

where the A; ’s and B, ’s are constants, satisfy the wave equation and the boundary
conditions z(0,t) = 0,z(a,t) =0 forall t.

2. By separating the variables, show that the equation Vi?V = 0 has solutions of the form
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Aexp(xnx=+ iny); where A and n are constants. Deduce that functions of the form

x I
V(x,y)=  Ae"™%sin _Zy Xx“0,0<y“a
r

where the A; ’s are constants, are plane harmonic functions satisfying the conditions
V(x,0) =0,V(x,a) =0,V(x,y) - 0as x — .

3. Show that if the two-dimensional harmonic equation V4V = 0 is transformed to plane polar
coordinates r and 6, defined by X = r cos 6,y = rsin 6 it takes the form

o2V 1oV 102V

ot ror e T

and deduce that it has solutions of the form (Ar" + Br-") =0, where A, B, and n are
constants.

Determine V if it satisfies V2V = 0 in the region 0 “r “a,0 “ 8 “ 21T and satisfies the
conditions:

(i) V remains finiteas r — 0;

(ii) V = =,cycos(n0)on r =a.

4. Show that in cylindrical coordinates p, z, ¢ Laplace’s equation has solutions of the form

R(0)ex™ + ing, where R(p) is a solution of Bessel’s equation

IfR - 0asz — o and is finite when p = 0, show that, in the usual notation for Bessel

functions 1 the appropriate solutions are made up of terms of the form J,(mp)e-"+"% |

5. Show that in spherical polar coordinates r, 6, ¢ Laplace’s equation possesses solutions of

the form

B .
Ar' +— I O(cos B)e="?
rn+1

where A, B,m, and n are constants and O(l) satisfies the ordinary differential equation
( » )

1-

2
1 _ 12 (37?_2“%—?1+ n(n+1) —

0=\

Partial Differential Equations M.Sc.(Mathematics)-11 Sem|



134 3.4. SepaRATION Of VaRIABLes

Let us Sum up:

In this unit, the students acquired knowledge to

+ solve linear PDE’s with constant coefficients.
+ solve linear PDE’s with variable coefficients.

+ solve PDE’s by method of separation of variable techniques.

Suggested Readings:

1. M.D. Raisinghania, Advanced Differential Equations, S. Chand & Company Ltd., New
Delhi, 2001.

2. K. Sanakara Rao, Introduction to Partial Differential Equations, Second Edition,
Prentice-Hall of India, New Delhi, 2006.
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Suggested Readings

Overview

In this unit, we will illustrate the method of integral transforms and Laplace transform
techniques.
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4.1 The Method of Integral Transforms

In this section, we explain the method of integral transforms to find the solution of partial
differential equations.

To determine a function u which depends on the independent variables X1, Xz, ..., X, and
governed by the linear partial differential equation

%u au
a(x) b(x) ~ +c(x)u+Llu=f(x,x,...,x), (1)
1 6_)(§ + U o, 1 1 2 n
where L is a linear differential operator in the variables Xz,...,X, and a “ x1 “ 8. Let
g
U(é x2,..., %) = U (X, X2, ..., Xo) K (& x1) dxq (2)

a
2

. o°u au
Multiply a(x ) b(x) c(x )u by K( x) and integrating with respectto x from

1 _+ 1 3X1 + 1 ;1 1 a
to B, we have ox® )
f B ( o2u 3_U < y
] a (x1) 3721 +b (x1) ox, +C(x])u (¢, x1) dx1 (3)

Then, the integration by parts gives

fB d2u fﬁ d )
T = (@K )0
Ig
= [uJKa]éf - a (aK}JUJd)j‘ 5
= [uKal® - [u@K) 1®-  u(aK)'dx
I T Te

B du
(6K)&dx - ubKE - ulbKydx
(cK)udx = I u(cK)dx.

a a

Using the above equations, we obtain
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f,C )
a (x1) a—? +b (x1) ou +c(x))u K (& x1)dxs
a ox] Xy
e G, ; )
=g(& X2, ..., %) + u 3721(aK) ~x, (bK) +cK dx1 (4)
Where n au ( a )#ﬁ
e = a_ bK _ 7~ )
g€ )= Az K(Ex)+u DKo (@) (5)
From equation (4), we can get the idea of choosing the function K (¢, x1)
0* )
(aK) =7 (bK) cK K (6)
FrP R S

where A is a constant.

Multiplying equation (1) by K (& x1) and integrating with respect to x1 from a to 8, we find
that the function 0 (¢, Xz, ..., Xn), defined by equation (2), satisfies the equation

(L+A)0( X2, ..., %) =F (&, X2, ..., %), (7)

where

F($ X2, %) = }'(f,xZ,...,xn)—g(f,xZ,...,xn),
B

f(E X2, ..., %) = f (X1, X2, ..., X)) K (& x1) dxu.

a

Definition 4.1.1. The integral transform of u is defined as

[
(& X2,y Xn) = u(Xy, Xz, ..., Xn) K (¢ x1) dxq,

a

where K (¢, x1) is the kernel of the transform.

Note 4.1.1. + The effect of employing the integral transform defined by the equations (2) and

(6) is to reduce the partial differential equation (1) in n independent variables X1, X, ..., X,
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to one in n — 1 independent variables Xz, ..., X, and a parameter ¢.

+ The successive use of integral transforms of this type the given partial differential equation

may eventually be reduced to an ordinary differential equation.

Definition 4.1.2. Inverse Integral Transform The inverse integral transform of T (&, X2, ..., Xn) is

given by

| s

U(Xt, X2, ..., %) = U x2,..., %) H (¢ x1)d¢,
y

where U (¢, X2, ..., Xn) is defined by (2).

Table 4.1: Inversion Theorems for Integral Transforms

Transform (a,B) K(¢ x) (v, 0) H(¢ X)
Fourier (— 00, 00) Vet (— 00, ) e iE
Z Z
Fourier cosine | (0, o) i cos(¢x) (0, ) - €0s(§X)
"2 7.
Fourier sine (0, o) ; sin(¢x) (0, o) - sin(éx)
Laplace (0,00) | e*R() >c |(y—ioo,y+io)| anf ¥V >C
Mellin (0, ) X1 (y — oo, y+ioo) X
Hankel (0, 0) | XJ(§x), v "™ — (0, o) ¢Jv(¢X)

Solution of Partial Differential Equations by using Integral Transform
Technique

Steps

(i) The calculation of the function f (¢ Xz, ..., X,) by simple integration;
(ii) The construction of the equation (4) for the transform U;

(iii) The solution of this equation;
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4.1. The MeTHoD of INTegRAL TRANSFORMS 139

(iv) The calculation of u from the expression for U0 by means of the appropriate inversion

theorem.

Problem 4.1.1. Derive the solution of the equation:

oV 1oV oV

o tar Tz 70
for the regionr “ 0,z “ 0, satisfying the conditions:
(i) V-0 asz—oandasr— o
(i) V="Ff(r)onz=0,r"“0.
Solution. Given
o2V 19V o2V
arntrvar T 0 (1
By the definition of Hankel transform, we have
[
V= rv(r,z)J,(¢rdr.

0

then, integration by parts and using the condition (i), we get

Nl 1o

a7 Fror Mo(éndr = —&\

0

where Jo(¢r) is a solution of Bessel’s differential equation

d2f 1df
_ __ ‘f=o.

dr2+rdr+f
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140 4.1. The MeTHoD of INTegRAL TRANSFORMS

Then the Hankel transform of (1) is

v
a2 sV =0

where, as a result of the boundary conditions, we know that V. _, ( 35 7 — o and that V = ()
on z =0, f (§) denoting the Hankel transform (of zero order) of (r). The appropriate solution of

the equation for V is therefore
V= f(get

From the inversion theorem for the Hankel transform, we know that

I
V= §V(§2)J,(¢nd¢

0

so that the required solution is

f 00
Vi = EF(Qe ) (€ndE

0

If the form of f(r) is given explicitly, f(¢) can be calculated so that V(r,z) can be obtained as

the result of a single integration. [

Problem 4.1.2. Determine the solution of the equation

d%z 0%z
W-i- 87= 0

(o0 « x <00,y .. 0)satisfying the conditions:

(i) z and its partial derivatives tend to zero as x- > 1, o0 ;
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(i z---f(x), 0zy:—-0 ony=0.

Solution. Given

0%z 0%
Eral T
By the definition of Fourier transform,
1 Ia :
Z2EY) =V y)edx
m

for which, as a result of an integration by parts taking account of (i), we have

f 0

L

d'z -
- 3742 edx : £z
m -

so that the equation determining the Fourier transform z~ is

@2z

d_yz+§Z=0

with Z = F(¢),dZ/dy = 0 when y = 0. Therefore

Z = F(&) cos &y .

By the inversion theorem for Fourier transforms, we have

f © .
Z(& y)e-%d¢

2(x,y) =

he
]
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142 4.1. The MeTHoD of INTegRAL TRANSFORMS

so that finally |
1 * i
206) =7 F(@cos &y e¥de,
mo_
where F(¢) is the Fourier transform of f(x). [ |

Check YouRr Progress

1. The temperature 6 in the semi-infinite rod 0 < x < o is determined by the differential

equation
06 026

o oxz
and the conditions
(i) 6=0 whent=0,x“0
(i) =060 = const. when x=0 and t>0

Making use of sine transform, show that

2|
G(X, t) = n_eo . sinf¢éx 1— einzt df

2. If in the last question the condition (ii) is replaced by (ii') d6/0x = —, a constant, when
X=0and t> 0, prove that

I
o(x, 1) = 2477* CL;@ 1—e* ¥t d¢

3. Show that the solution of the equation
oz o«
ax 9y?
which tends to zero asy — o and which satisfies the conditions

(i) z=f(x) when y=0,x>0
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(i) z=0 wheny>0,x=0

may be written in the form J
I i €
A7 (e tdg
21i V—ioo

Evaluate this integral when f(x) is a constant k.

4. The function V(r, 6) satisfies the differential equation

o2V 1oV 102V

o ror roer
in the wedge-shaped region r “ 0,/6* a and the boundary conditions V = f(r) when
6 = +a. Show that it can be expressed in the form

v(r,e) =1 I e cos(£6) HGIEAT:

2m cos(éa)

where

f(&) = i f(r)ré-1dr.

0

5. The variation of the function z over the Xy plane and for t “ 0 is determined
by the equation by the equation

1 0%z
Viz= Z e
If, when t = 0,zj =f f(x,y) and 0z60t = 0, show that, at any subsequent
' = w ' *F T €2 4 n2 a—idxny) h = _
tinfe,, Jz&x,]y%x’ T E M ddly. (& mcos ct & +n* e dédn where  F(¢,n)

2 o
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144 4.2. Laplace TrRANsfORM TeCHNIQUe

4.2 Laplace Transform Technique

Definition 4.2.1. Suppose f (t) is a piecewise continuous function and if it has an additional

property that there exists a real number Yo and a finite positive number M such that

tl_go\f(t)le—"‘ <M for y2y

and the limit does not exist when y < yo, then such a function is said to be of exponential order

Yo, also written as

(0= O(e"").

Definition 4.2.2. Let f(t) be a continuous and single valued function of the real variable t defined
for all t, 0 <t < o, and is of exponential order. Then the Laplace transform of f(t) is defined

as a function F(s) denoted by the integral

L[f(1);s] = F(s) = ) e~ f (t)dt

0

over that range of values of s for which the integral exists. Here s is a parameter, real or complex.

Obviously, L[f(t);s] is a function of s. Thus

LIf(D;s] = F(s)

f = LFE);

where L is the operator which transforms f(t) into F(s), called Laplace transform operator and
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4.2. Laplace TrRaNsfORM TeCHNIQUe 145

L-1 is the inverse Laplace transform operator.

Properties of Laplace transform

Linearity Property

If ¢1 and c; are any two constants and if F1(s) and F2(S) are the Laplace transform, respectively
of f1(t) and f2(t), then

L[{c: fa() + c2 f2(0} S] = CiL[f1(1); S] + CaL[F2(1); S] = C1F1(S) + C2Fa(S).

Shifting Property

If a function is multiplied by €*, the transform of the resultant is obtained by replacing s by s—a
in the trasform of the original function. That is, if

L[f(D); s] = F(s)

then
L[e* f(t); s] = F(s — a).

Multiplication by power of t

IfL[f(1); s] = F(s), then

L[t"f(t); 5] = (—1)" ¢ FGS) (-1)"FM(s) for n 123

dsn
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Division by t
If L[f(t);s] = F(s), then " #
L i&ll; s = F(s)ds.
Differentiation Property
If L[f(t); s] = F(s), then
LIFO(); 8] = s"F(s) — s"-1f(0) — s"-2f(0) — - - - — sf(-2)(0) — f(-D(0).

Initial Value Theorem

If f(t) and fi(t) are Laplace transformable and F(s) is the Laplace transform of f(t), then

Lt f(t) = Lt sF(s).

-0 S— 00

Final VValue Theorem

If f(t) and fi(t) are Laplace transformable and F(s) is the Laplace transform of f(t), then

Lt f(t) = Lt SF(s).

t— o0 s—0

Transform of Periodic Function

If f(t) is a periodic function with period T, (i.e, f(t+T) = f(t) forall t, T >0), then
Iy
e f (t)dt

L[f(t);s]= ————
(1—e™Y
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Transform of Error Function

I

If erf(t) is a error function defined by erf(t) = -‘vz% . e-"du then the Laplace transform is

1 2
Llerf(t);s] = e’ erfc °
S 2

where erfc(t) is the complementary error function erfc(t) = erf(t).

Properties of Inverse Laplace Transform

Linearity Property

If F1(s) and F2(s) are the Laplace transform of fi(t) and f2(t) and if ¢c1 and c; are any two
constants, then

L-1[{ciF1(s) + c2F2(S)} t] = ciL-1[F1(s); t] + coL—1[F2(s); t].

Shifting Property

IfL[f(1); s] = F(s), then
L-1[F(s + a); 1] = e~L-1[F(s); .

Change of Scale property

If L-1[F(s); f] = f(t), then

L-1[F(as);t] = . f

Q_)Ir—l-
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Convolution Theorem

If F(s) and G(s) are the Laplace transforms of f(t) and g(t) respectively, then F(s) G(s) is the
Laplace transform of the convolution of f(t) and g(t),
"J‘ t #
LI(f % g)(t);s] = L 0 f(t - uyg(u)du;s = F(S)G(s)

or

[
LIFEGEs T = (T = F(t - uyg(u)du.

Transform of Partial Derivatives

If u(x, t) is a function of two variables x and t, prove that
n #
Il
(i) L S = sU(x, s) — u(x, 0)
n 2

. u
(i) L __s - s2U(X, s) — su(x, 0) — uy(x, 0)

ot
n #
(iii) L a_u_s _ dU(x,s)
ox’T T dx
"azu # ,
(v) L _ ;s _ d°
oxz dxzu(x’ s)
"otu # d d
(v) L __5s =s— Ux q &
axat a8 = gux 0).

where U(X, S) = L[u(X, 1); s].
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4.3 Fourier Transform Technique

Definition 4.3.1. Let f(x) be a function defined on (—o0, 00) and is piecewise continuous,

differentiable in each finite interval and is absolutely integrable on (—o, c0), if

I
F(a) = ﬁl—_n f (1)t 1)
then we have, for all x,
I
f) == Fa)e-"da. 2)

2T _

Here, F(a) defined by equation (1) is the Fourier transform of f(x), and f(x) defined by equation

(2) is called the Inverse Fourier transform of F(a) and is denoted by

Fla) = FL(;al

fx) = F'[F(a); x]

which constitute the Fourier transform pair.

Definition 4.3.2. Fourier sine transform of f(x) is

’ _f P
Fs (a) = Zﬂ 0 f(t) sin atdt = Fs[f(t); ]

Inverse Fourier sine transform is

f )

2
p Fs(a) sin axda = F§'[Fs(a); X].

f(x) =
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Definition 4.3.3. Fourier cosine transform of f(x) is

.
. f(Dcosatdt = Fclf(t);al

Fc(a) =

SELY

Inverse Fourier cosine transform is

Fc(a) cos axda = Fc'[Fc(a); x].

Properties of Fourier Transform

Linearity Property

If F(a) and G(qa) are the Fourier transforms of f(x) and g(x) respectively, then

Flcif(t) +cag(t);a] = ciF(a) +c2G(a)
F ~![ciF(a) + c2G(a); X] = ¢1 T (X) + c29(X)

where ¢1 and ¢c2 are constants.

Change of Scale

If F[f(t); a] = F(a), then

@ =

F[f(at);a] = _F

o IQ

Shifting Property

If F[f(x);a] = F(a), then
F[f(x — a); a] = e*F(a).
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Modulation Property
If F[f(x); a] = F(a), then

[F(a — a) + F(a +a)].

N| =

F[f(X) cosax; a] =

Differentiation

If f(X) and its first (r — 1) derivatives are continuous, and if its rth derivative is piecewise
continuous, then

FIfOX);a] = (—ia)'F[f(x);a], r=0,1,2,...
provided f and its derivatives are absolutely integrable. In addition, we assume that f(x) and its
first (r — 1) derivatives vanish as X — * o0,

If F [u(x,t); x = a] = U(a, t), then

" #
(i F aa—l;((x, t);x - a =—iaU(a,t).
- 4
(i) F Za00lix — @ = (~1)2(@ J2U@ 1)
" #
du _ -
(iii) F %(X’t);x - a =(=1)'®)yugat):
g 4
(v) F S0~ a =Ufa,b.
"azu # H 2_
(W) Fs zzX;x—a = ~U(x )] xe0 ~ PF s[u(x: 1) x — a]-
"aZU >2.8u
(vi) Fc a?(x,t);x —-a =— o (X0~ PFc [u(x ); x — a].
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Convolution Theorem

If F[f(x);a] = F(a) and F[g(X); a] = G(a), then F[(f * g)(x); a] = F(a)G(a) where

[«

(W ="  T(Wgk - u)d,

Parseval’s Relation

If F[f(x);a] = F(a), then [ J e
IF(a)[2da=  |F()2dx

which is known as Parseval’s relation.

4.4 Finite Fourier Transform

If a function f(X) satisfies Dirichlet conditions in the interval 0 < X < 1, then it has Fourier sine
series

xX
f(x)=  bysinnx (1)
n=1
where Zf -
b”=n f(x)sinnxdx, n=1,2,.... (2)
0

The Fourier series in equation (1) converges pointwise to f(x) at points where f(x) is continuous
1
and to the value > [f(x+) + f(x=)] at other points.

If a function f(x) satisfies Dirichlet conditions in the interval 0 < x < m, then it has Fourier
cosine series

do X
fx)=— + apcosnx (3)
2
n=1
where 5 |
an= _ f(x)cosnxdx, n=1,2,.... (4)
T o
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4.5 Nonlinear Equations of the Second Order
Consider a second order nonlinear partial differential equation

F(x,y,z,p,q,r,,t) =0. (1)

45.1 Monge’s Method

In this method, we consider one or two first integrals of the form

n=f(9. (2)

where ¢ and n are the functions of X,y,z, p,and g and the function f is arbitrary.

Problem 4.5.1. If the partial differential equation has the integral n = f(¢), where ¢ and n

are the functions of X, Y, z, p, and gand the function fis arbitrary, then prove that the partial

differential equation is of the form Rr+Ss+Tt+U rt —s2 =V or Rr+Ss+ Tt =V.

Solution. Consider a second order nonlinear partial differential equation

F(x,y,z,p,q,1,5,t) =0.

Given the equation has the integral of the form

n="%(),

where ¢ and n are the functions of X,y,z, p and q and the function f is arbitrary.
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Differentiating (2) partially with respect to X and y, we get

I
8_r1+8n62+6nap+6n6q= () 3_§+8632+868p+363q

OX 0dzdx Ipox dqox OX 0zox dpox 9qox

Nx + NP+ Mol +1NqS = P(E) &+ &P+ Gpr + §gS | (3)
N R a0 e

Ny + N0+ MpS+ngt = F(E) & +&a+ s+ Gt (4)

Eliminating f)(¢) from equations (3) and (4), then

3) Nx + NzP + Nl + NgS fI(§) S+ &p+&or+&qs

(4) Ny + M9 + NS + Nt fI(§) &+ &+ s+t

implies
M+ MP+ Ml + NS §y+&A+ &S+ &t = Ny + M+ NS+ Nt G+ &p+&r+&es
On simplifying, we get

' Sofly — &Mp + 9 SNz — Sy T+ Sy — §Ng +d &Nz — &g — Sl — Exlp
—p &N — &Ny s+ &g — &l + P &g — gz 4 Splg — Sqflp (r't — s2)

= Gk — &y +p &N — &y +9(&nx — &)

# # #
o(€&n) & n) - oén)  d&n a&n  I(&n) - o(&n) o(é n)
ap.y) " "a(p,2) aay) " a@z)  8p.x)  "e(p.2) axq) "z q)
AEM . o AEM . AEM . AEm
ot T a0 TPay.n e x)
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The required form of the partial differential equation

Rr+Ss+Tt+U rt—s2 =V (5)

which has the first integral as n = f(¢).

If the Jacobian, J = g

=0, then equation (5) reduces to the form
a(p, )

Rr+Ss+Tt=V. [ |

4.5.2 Solution of Second Order Nonlinear Partial Differential Equations

Let us assume a first integral of the equation

Rr+Ss+Tt+U rt—sz =V (D)

exists and that it is of the form

n=1(&. (2)
For any function z of x and y, we have

- By Py, dp = sdy

dp =rdx+sdy = r= (3)
oX ay dx

dg = iy 4 a—qdy =sdx+tdy = t= dg — sdx (4)
oX ay dy

Substituting (3) and (4) in (1), we get

(Rdpdy + Tdgqdx — Udpdq — Vdxdy) — s R(dy)? — Sdxdy + T (dx)2 + Udpdx + Udgdy =

(Monge’s subsidiary equations are

L = Rdpdy + Tdqdx + Udpdg — Vdxdy = 0 (5)
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and

M = R(dy)? — Sdxdy + T (dx)? + Udpdx + Udgdy = 0. (6)

Let us factorise M + AL, where A is an undetermined multiplier. Now,

M + AL = R(dy)2 + T (dx)2 — (S + AV)dxdy + Udpdx + Udqdy + ARdpdy + ATdqdx + AUdpdq
=0 (7)

and let k and m be constants such that
I

M + AL = (Rdy + mTdx + kUdp) dy + %]dx+ Akdq = 0. (8)

Comparing coefficients in (7) and (8), we get

R
m+mT=—(S +AV), (9)
and take
RA
k=m and — =U. (10)
k
Using the above equations, we get
AZ(UV +RT) + AUS + U2z = 0, (11D)

which is quadraticin A. Let A1 and Az be its roots.
When A=A, (10)=>Rh=U = k=% = m=RY Equation(8) gives

RA U .U
Rdy + U Tdx + RAdp dy + RA1dX+ qu =0
(Udy + A1Tdx + A1Udp) (Udx + A1Rdy + A1UdQq) = 0. (12)
Similarly for A = A2, we have
(Udy + A2Tdx + A2Udp) (Udx + Az2Rdy + A2Udq) = 0 (13)
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implies

Udy + A1 Tdx + A Udp =0, Udx + A2Rdy + A2Udg = 0 (14)
Udy + A2Tdx + A2Udp = 0, Udx + A1Rdy + A1Udq = 0. (15)

Equations (14) give two integrals Ui = ¢1 and Vi = €1 so that one intermediate integral is

ur = 1 (v1), (16)
where fi isan arbitrary function. Similarly, the second intermediate integral

uz = f2 (v2), (17)

where f; isan arbitrary function.
On solving (16) and (17) for p and q and substitute in dz = pdx + qdy, which after integration

gives the desired general solution.

Problem 4.5.2. Solve the equation r+4s+t+rt — sz = 2.

Solution. Given

r+4s+t+rt—s2=2. (1)

Comparing (1) with Rr+Ss+Tt+U rt —s2 =V, wehave R=1,S=4,T=1,U=1, V =2.

A2(UV+RT)+AUS +U2 =0 = 3A2+4A+1=0

1
with roots A1 = —3_,/\2 = —1.

To find the integrals, we have

3dy —dx —dp =0, dy —dx+dg=0
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leading to the first integral
3y —x—p=Tfly—x+q)

where the function f is arbitrary. Similarly equations (23) reduce to

dy —dx —dp =0, dy —3dx+dg=0

and yield the first integral
y—3x+q=9(y —x—p)
the function g being arbitrary.

Combine the general integral (24) with any particular integral of (25), we have
y—3Xx+Q=Ct
where ¢ is a constant. Solving equations (24) and (26), we find that
g=Cc1+3x—Yy, p=3y—x— f(2x+c1)
from which it follows that
dz = {3y — x — f (2x +c1)}dx + {c1 + 3x — y}dy

and hence that

1
z=3xy—2_ X2+y2 +F(2x+cCc1)+Cciy+cC2
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where C . is an arbitrary constant. Equation (28) gives the complete integral. To obtain the

general integral we replace c1 by ¢, ¢c2 by G(c) , where the function G is arbitrary, and the

required integral is then obtained by eliminating ¢ between the equations

z=3xy—2l X2 +y2 +F(2x+c)+cy+G(c)

0=F(2x+c)+y+G(c).
In particular, U = 0. Monge’s subsidiary equations are
Rdpdy + Tdgdx = Vdxdy
and

Rdy2 — Sdxdy + Tdx2 = 0.

Problem 4.5.3. Solve the equation g2r — 2pgs + p?t = 0.

Solution. Given

q%r — 2pgs + p?t = 0.

Comparing (1) with Rr+Ss+ Tt =V, we have R=02%,S = —-2pq,T = p?, V = 0.

Monge's subsidiary equations becomes

g2dpdy + p2dqdx = 0

(pdx + qdy)2 = 0

(1)

(2)
(3)
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From equation (3), we have

dz = pdx + qdy = dz=0 = Z=Ci.

From equations (2) and (3), we have

qdp=pdg =  p=cq.

Then, the first integral becomes

p=0af(d
where the function f is arbitrary. This is a Lagrange’s equation and the auxiliary equations are

dx dy dz

1 —f@@ o

with integrals z = ¢1,y + Xf (C1) = C2 leading to the general solution

y+xf(2) =9(2)

where the functions f and g are arbitrary. [ |

Check YouRr Progress

1. Solve the wave equation r =t by Monge’s method. )
0°z 01

2. Show that if a function z satisfies the differential equation 0%z 07 itis of the
ox2dy  Oxdy ox
form f{x + g(y)}, where the functions f and ¢ are arbitrary.
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3. Solve the equation z(gs — pt) = pg?.
4. Solve the equation pqg = X(ps — qr).
5. Solve the equation rgz — 2pgs + tpZ = pt — gs.

6. Find an integral of the equation z2 rt — s2+z 1+ Q2 r—2pqzs+z 1+ p? t+1+p2+g2 =0
involving three arbitrary constants.

Let us Sum up:

In this unit, the students acquired knowledge to

+ solve the PDE’s by using Laplace transform techniques.
+ find Fourier Transform Technique.

+ find Finite Fourier Transform.

Suggested Readings:

1. M.D. Raisinghania, Advanced Differential Equations, S. Chand & Company Ltd., New
Delhi, 2001.

2. K. Sanakara Rao, Introduction to Partial Differential Equations, Second Edition,
Prentice-Hall of India, New Delhi, 2006.
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BLOCK-III
UNIT 5

BOUNDARY VALUE PROBLEMS

Structure
Objective
Overview
5.1 Elementary Solutions of Laplace’s Equation
5.2 Families of Equipotential Surfaces
5.3 Boundary Value Problems Let us Sum Up
Check Your Progress

Suggested Readings

Overview

In this unit, we discuss the elementary solutions of Laplace equation, necessary
conditions for a surface to be equipotential, boundary value problems for Laplace equation.

5.1 Elementary Solutions of Laplace’s Equation

In this section, we investigate the elementary solution of Laplace equation.

—q

| ) is a solution of the Laplace equation.
r—r

Problem 5.1.1. Prove that y =

163



164 5.1. EleMeNTARY SoLUTIONs of Laplace’s EQUATION

Solution. Consider a function g of the form

- - , (1)
TP T =Xy - )P+ (2 2

where ( is a constant and (¥, y!,Z) are the coordinates of a fixed point, then since

w__ax-¥)

& r—ep

Py 4 34— X2
= — + r—pf

2 — 3

o g™ sqy - py
= — +r—pfs

Py g qe-2p

o = T —pt TP

Adding the last three equations, we get

Gy oy oty q 3q(x — ¥)? q 3a(y — ¥)? q 3q(z — 2)?
+ + = — —_— - - JS
ox*  9y* gz r—rF = r—eB T ir—pf  r—ppt r—=rl
3 X —X)2+(y—y)2+(z—2)?
= _|r_ rJ‘3+ |r_ rJ|5
30 3qr—1rP
= —|r _ I’J\3+ Ir—nrp
3 3q
= Tt
Vip=0

showing that the function (1) is a solution of Laplace’s equation except possibly at the point

(¥, ¥, Z), where it is not defined. [ ]
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If S is any sphere with center (XY, Z), then

I ow
san

dS = 4mq.

By Gauss’ theorem, that equation (1) gives the solution of Laplace’s equation corresponding to an
electric charge +q.

By a superposition principle, we have

W= (2)
io1 Ir—ril

is the solution of Laplace’s equation corresponding to n charges ¢ situated at points with position
vectors rj (i=1,2,...,n).

In electrical problems, we encounter the situation where two charges +0 and —(q are situated
very close together, say at points I’ and r'+dr, where or'= (I, m, n) a. The solution of Laplace’s
equation corresponding to this distribution of charge is

— q _
r—r| |r—r+or
Now
1 _ 1 +I(x—xJ)+m(y—yJ)+n(z—zJ)a+0(az)
r—r—& |r—#g r—nr3

so thatif a — 0, g — oo in such a way that ga — |, i.e, an electric dipole is formed, it follows
that the corresponding solution of Laplace’s equation is

wzuI(x—xJ)+m(y—yJ)+n(z—zJ)

1
r—rp (1)
a result which may be written in other ways: If we introduce a vector m = p(l, m, n), then
m:(r—r)
Y= —"—. (2)
r — 3

Also since
o 1 _ Xx—X

— = , etc
X r—p r—orp
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it follows that (1) may be written in the form

1 1
W= (m . gradJ) - = ! I_a _|_m_a +né . (3)

r—r oxl oy 97 |r—p
The corresponding form of the function y is

J dg
v Ir—=mrf

p= (4)

where q is the Stieltjes measure of the charge at the point I, or if p denotes the charge density,
by [

wn=" A0

r—p|

(5)

By a similar argument it can be shown that the solution corresponding to a surface S carrying an

electric charge of density o is [
o(r)ds’

s r—r

w(r)= (6)

Problem 5.1.2. If p > 0 and (r) is given by equation (5), where the volume V is bounded,

prove that

limry(r)=M

r=00

where

J
M= p(r)dr.
\Y

Solution. Let ry, r; be the maximum and minimum values of the distance |[r — F’| from the point

I to the integration points I of the bounded volume V. Then by a theorem of elementary calculus

M _ d p(r)dr _M

I vV Ir—r nr
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an equality which may be written in the form

| |
T M<rgm<" m.
I r2

r r
Nowas . o0 ,- and  both tend to unity, so that

r )

lim ry(r) = M. [ |

r=00

Check Your ProgRress

1. Prove that r cos 6 and r-2 cos 6 satisfy Laplace’s equation, when r, 6, ¢ are spherical polar

coordinates.

An electric dipole of moment [ is placed at the center of a uniform hollow conducting
sphere of radius a which is insulated and has a total charge e. Verify that V;, the potential
inside the sphere, and Vo, the potential outside the sphere, are given by

e WcosB r e
Vi="+ 5 _“_3 cos 6, Vo=",
a r a r

where r is measured from the center of the sphere and 6 is the angle between the radius

vector and the positive direction of the dipole.

. A surface S carries an electrical charge of density 0. In the negative direction of the normal
from each point P of S there is located a point P1 at a constant distance h, thus forming a
parallel surface S1. Assuming that corresponding points P and P; have the same normal
and that corresponding elements of area carry numerically equal charges of opposite sign,

show that the potential function of the system is

I L)

W= — | o(r )dS4.
s [r—r| Ir—r+hn

By letting h — 0, p — o in such a way that oh — | everywhere uniformly on S, obtain
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the expression

I

P U Ul ) Y

s Ir—nrp

for the potential of an electrical double layer.

3. A closed equipotential surface S contains matter which can be represented by a volume

density 0. By substituting ¢# = |[r — /|~ in Green’s theorem

J ! /
w oY 2 2
Won ™ Won 45 = WV - uViyhdr
prove that [ ! [
oy dS) +4m  p(M)dre =0.
s on r—r| v Ir—r

Deduce that the matter contained within any closed equipotential surface S can be thought
of as spread over the surface S with surface density

1 oy
41 an
at any point.

4. By applying Green’s theorem in the above form to the region between an equipotential

surface S and the infinite sphere with ¢/ = [r — F|~! and g the potential of the whoe
distribution of matter, prove that the potential inside S due to the joint effects of Green’s
equivalent layer and the original matter outside S is the constant potential of S.

5. Show that

J 3y

v
fracdPlr — | < 2m
am
irrespective of whether the point with position vector r is inside or outside the volume V

or on the surface bounding it.

6. Prove that the potential

and its first derivatives are continuous when the point P with position vector r lies inside
or on the boundary of V.
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Show further that VZy = —4mp if P €V and that VZy =0 if P £ V.

5.2 Families of Equipotential Surfaces

If the function @(X, Y, z) is a solution of Laplace’s equation, the one-parameter system of surfaces

wxy,z)=c¢

is called a family of equipotential surfaces. It is not true, however, that any one-parameter family

of surfaces
f(x,y,2) =¢ (D

is a family of equipotential surfaces.

Theorem 5.2.1. The necessary condition for the surface f(x,y,z) = c to be equipotential if
Vvt
|grad f|2

is a function of f alone.

Proof. The surfaces (1) will be equipotential if the potential function  is constant whenever

f(X, Y, z) is constant. A functional relation must be of the form

w = F{f(x,y,2)} (2)

between the functions @ and f. Differentiating equation (2) partially with respect to X, we obtain

the result

X~ df 3 (3)

and hence the relation

(4)
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from which it follows that

V2 = F(f)(grad )2 + P(f)V?1. (5)

Now, in free space, V2 = 0, so that the required necessary condition is that

Vi Fu(f)

(grad 1)2 =~ p(n) "X

(6)

Hence the condition that the surfaces (1) form a family of equipotential surfaces in free space is

that the quantity
v
- |grad f |2

x(f)
is a function of f alone.

Problem 5.2.1. Derive the general form of potential function.

Solution. From (6), we have
dzF dF
are XD g7 =0

from which it follows that

d_F - Aefj.)((f)df’

df

where A is a constant, and hence that

I
w=A e XNdfgf B,

where A and B are constants.

(7)
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Problem 5.2.2. Show that the surfaces

A
3

X2 +Yy2+72 =cx

can form a family of equipotential surfaces, and find the general form of the corresponding

potential function.

Solution. Given

can be written as

so that

Hence

and

Wit

X2 +Yy2 +72 =cX

f=xtexT(y2+22)
2
gradf = 7 x—, (2x2 — y2 — 72, 3xy, 3xz).
3
Vif= mx—; (4x2 +y2 + 72)
9

|grad f|? = ix_;& (4x2 +y2 +22)(x2 +y2 +722)

9

Partial Differential Equations
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Now

Vif

x(f) =
grad fl_E 2 gL
=4‘_7n 92(3,['4’2},'-’-) -;-2)7

X 3@x Ay +7)(X +y +2)

5
2f
which is a function of f alone. The given set of surfaces therefore forms a family of equipotential

surfaces.

General form of potential function

I J
w=A e XNgf.p

Iy
-A e 7#4fiB

)
=A e ?ls'df+B

o
=A eEidfep

I
-A f-ldf+B

w=Af7 +B
from which it follows that the required potential function is
W= AX(X2 +yZ + 22)j3+ B

where A and B are constants.
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Check YouRr Progress

1. Show that the surfaces
(X2 +y2)2 — 2a2(x2 — y2) +at =

can form a family of equipotential surfaces, and find the general form of the corresponding

potential function.

2. Show that the family of right circular cones
X2 +y2Z = cz2,

where C is a parameter, forms a set of equipotential surfaces, and show that the
corresponding potential function is of the form Alogtan 16 +B, where A and B are

constants and 0 is the usual polar angle.

3. Show that if the curves f (xy) = ¢ form a system of equipotential lines in free space for a two-
dimensional system, the surfaces formed by their revolution about the X axis do not

constitute a system of equipotential surfaces in free space unless

’ | |
1ot

!
y o9y ' oX ay

is a constant or a function of ¢ only.

Show that the cylinders x2 +y2 = 2¢x for a possible set of equipotential surfaces in free
space but that the spheres X2 +y2 = 2¢x for a possible set of equipotential surfaces in free
space but that the spheres X2 +y2 +z2 = 2¢cx do not.

4. Show that the surfaces
X2 +y2 — 2cx+a? =0,
where a is fixed and ¢ is a parameter specifying a particular surface of the family, form a
set of equipotential surfaces.

The cylinder of parameter ¢1 completely surrounds that of parameter ¢z, and cg > a > 0.

The first is grounded, and the second carries a charge E per unit length. Prove that its
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potential is
(c1+a)(c; —a)

(c1 — a)(cz +a)

_Elog

5.3 Boundary Value Problems

In addition to satisfying Laplace’s equation within a certain region of space V, also satisfy certain
conditions on the boundary S of this region. Any problem in which we are required to find such
a function y is called a boundary value problem for Laplace’s equation.

There are three main types of boundary value problem for Laplace’s equation:

Interior Dirichlet Problem

If fis a continuous function prescribed on the boundary S of some finite region V, determine a

function (X,Y,z) such that V2w =0 within V and @ = fon S.

Exterior Dirichlet Problem

If f is a continuous function prescribed on the boundary S of a finite simply connected region

V, determine a function (X,Y,z) which satisfies V2@ = 0 outside V and is such that ¢ = f on
S.

Interior Neumann Problem

If f is a continuous function which is defined uniquely at each point of the boundary S of a finite

region V, determine a function (X, Y, z) such that V2w = 0 within V and its normal derivative

_" coincides with f at every point of S.
on
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Exterior Neumann Problem

If f is a continuous function prescribed at each point of the (smooth) boundary S of a bounded

?,
simply connected region V, find a function @(x,y,z) satisfying V2@ = 0 outside V anda—gj =f

on S.

Churchill problem

If f is a continuous function prescribed on the boundary S of a finite region V, determine a

function @(X,Y,z) such that V2 @ =0 within V and

0
_w+(k+1)cp=f
an

at every point of S.

Let us Sum up:

In this unit, the students acquired knowledge to

+ find the elementary solution of Laplace’s Equation.
+ understand the basic concepts of Families of Equipotential Surfaces.

+ classify the various types of boundary value problems.

Suggested Readings:

1. M.D. Raisinghania, Advanced Differential Equations, S. Chand & Company Ltd., New
Delhi, 2001.

2. K. Sanakara Rao, Introduction to Partial Differential Equations, Second Edition,
Prentice-Hall of India, New Delhi, 2006.
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BLOCK-III
UNIT 6

LAPLACE EQUATIONS

Structure
Objective
Overview
6.1 Separation of Variables
6.2 Problems with Axial Symmetry
6.3 The Theory of Green’s function for Laplace’s
Equation
Let us Sum Up
Check Your Progress

Suggested Readings

Overview

In this unit, we discuss the solutions of Laplace equation in spherical coordinates,
cylindrical and rectangular Cartesian coordinates using separation of variables and also finding
solution of Laplace equation using Green'’s function.

177
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6.1 Separation of Variables

6.1.1 Solution of Laplace equation in spherical coordinates

The Laplace equation in spherical coordinates is given by

 ,ou o 1 d2yw
= = Z_iu v + — . =
V¥ o ar Tsinse M se Tiinredp? (1)
Let us assume the solution of the form
w(r, 6, ¢) = R(NF(6, ¢). (2)
Substituting equation (2) into equation (1), we get
I I
d ,L0R R o oF R 0%F
FZrr -+ o sinh - +——— = 0
or  or sin030 °" 99  sinz60¢?
ar’ rfjf—_ - of SinbF +Ggdr _ A
> R - = = .
where A is a separation constant. This leads to
I
1d dr
. | Rdr o, = A
1 a9 Ha_F' , 1 0°F
Fsind 00 " 60  sin0ag’
ield
yields rdeR R
¥+2rdr +AR=0 (3)

which is a Euler’s equation. Hence using the transformation r = ¢, and for A = —n(n + 1), we

have c
R=cir"+—=. (4)
rn+1
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For A= —n(n+1), _

|
sin Gﬁ_. 1 _22F .
2 0t sin 6 37 +n(n+1)Fsin6 = 0. (5)
Let the solution of equation (5) be

F = 0(6)0(0) (6)
which gives #
n ! 2
sind d sinGd—H + ol +1)sind—| = idq)
H do ° do *9¢

oag2 =™ 2

where m? is another separation constant. Then

d?o

2

+m ® =0,
n | #
sinf d

(8)
dH
: : _ m

4 de Smed@ +a(a+1)sin6H =m2.

(9)

The solution of equation (8) is

® = c3 cos(me) + ¢4 sin(me) (10)
provided m /=0Q

If m =0, then the solution is independent of ¢ which corresponds to the axisymmetric case.
Putting cos 6 = p in equation (9), we obtain

.
(1 20 2% ooy "

o ()
Wz ™ Hgp ™ 7 12

which is the well-known Legendre equation. Its general solution is given by

O(W) = csPR(W) +CeQa(W),  —1<p<1 (12)
or
0(6) = csPM(cos 6) + c6Qq(cos ),

-1 <cosf<1
where P", Q"
n

(13)

are associated Legendre functions of the first and second kind respectively.

The continuity of ©(6) at 6 = 0, ™ implies the continuity of ©(6) at g = =1. Since Q") has

Partial Differential Equations
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a singularity at 4 = 1, we choose Cs = 0. Therefore, the solution of Laplace equation in spherical

coordinates is given by

W(r,6,¢) = i’ +—% (cs cos(M@) + Cu sin(m)) csP{cos 6). (14)

r

In the antisymmetric case (m = 0), then the solution is
C
w(r, 6,9) = cir" +—2> cscsPa(cos 6). (15)
rn+l

By the principle of superposition, we get
X B
wr,0) = Ar"+ —”1 P.(cos ) (16)
rn+

n=0
which is the required solution.

In the general case in which m /= 0 we find that when 0 < m < n, equation (11) possesses
solutions of the type

P'() (2— 1y d"Pa(l)

nH = H )2 (17)
Q) (2- 1 dW
nH = H 2
D* g (18)

When p = +1, Q™) is infinite, so that in any physical problem in which it is known that O,
i.e, @, does not become infinite on the polar axis we take P (l) to be the solution of equation

(11). In this way we obtain solutions of Laplace’s equation (1) of the form

X X :
W= (Amnr™ + Bl ="-1) P™{cos ) ex™? (19)
n=0 m<n
which may be written as
X [ n '7 X m :
® a ) nm nm n [
w= AnPn(cos 6) + m=1 (A cosme+B sinmg) P (cos6) . (20)

Problem 6.1.1. A rigid sphere of radius a is placed in a stream of fluid whose velocity in the
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undisturbed state is V. Determine the velocity of the fluid at any point of the disturbed stream.

Solution. Take the polar axis Oz to be in the direction of the given velocity and take polar

coordinates (r, 6, @) with origin at the center of the fixed sphere.

The velocity of the fluid is given by the vector q = —grady, where

(i) V2p=0

(ii) a_L'U=O onr=a
or

(iii) @ ~ —Vrcos@ = —VrPi(cos ) as r — 0.

The axially symmetrical function

W= Anr” + B Pn(cos 6)

n+1
n=0 ro

satisfies (i).
Differetiating (1) partially with respect to r, we get

X

B
n_ n
or = Ainr=t = (n+ 1) 2% Po(cos 6).

Applying condition (ii) in (2), put r=a

X B
0= Amna"~1—(n+1)—" Pycos6)

=0 an+2

_ _Bn
- Ana L_(n+1)— =0
an+2

(1

(2)

Partial Differential Equations
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na2n+1 An
= B=Thmeny
Equation (1) becomes
X 2n+1
na<"tA
W= A" + m Py (cos 6)
n=0

As r — oo, this velocity potential has the asymptotic form

o0

X
W~ Anr"Py(cos 6)

n=0

—VrP1(cos 8) ~ AoPo(cos 6) + AirPi(cos 6) + +Azr2Pz(cos 6) + - - -

Comparing the coefficients of like powers of r on both sides, we obtain

Ao=0,A1=-V,A2=0,A3=0,....
Hence the required velocity potential is
b33

w=-V r"‘z? cos 6.

The components of the velocity are therefore

oy 3!
Qr_-ar=V 1_r_3 cod

1 ay <
Je _r o0 -V 1+2? Sin@.

(3)

Problem 6.1.2. A uniform insulated sphere of dielectric constant Kk and radius a carries on its
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surface a charge of density AP,(cos 6). Prove that the interior of the sphere contributes an amount

8m2A2a3kn
(2n+1)(kn+n+1)2

to the electrostatic energy.

Solution. The electrostatic potential ¢ takes the value y; inside the sphere and . outside,

where by virtue of Sec. 1 (d) we have:

(i) V2w1=0, V2y2=0

(ii) wq isfiniteat r=0; g - 0 asr — oo;
I

(iii) w1 =y, and K %% - %‘f = 41mAP,(cos @) on r = a.

Conditions (i), (ii) and the first of (iii) and the condition of axial symmetry are satisfied if

n+

n a 1
w1 =A Pn(cos 6), w2 =A ; Pn(cos 6)

QD I=

and the second of (iii) is satisfied if we choose A so that

"
%Kﬂ%l A = 4mA.

Hence the required potential function is

41Tal rn
=~ = Pu(cos ).
Vi kn+n+1 a l )
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The energy due to the interior of the sphere is known from electrostatic theory to be

|
K J a—(ﬂ-dS _ K  161m2a2A? ﬂ2nazf

Y1 an gm (m+n+1) a . sin BPy(cos 6) Py(cos ) d6.

Since

I

1
p () i =—"—
_1{ (u)} 2n+1

Then the energy becomes

k | a_w_l!dsz K 16m2a2A2 n_

——— " 2ma
8m e an 8m (kn+n+1)% a 2n+1
812A2a3kn
C@n+D(kn+n+1)2°
which is the electrostatic energy in the interior of the sphere. [ |

6.1.2 Solution of Laplace equation in Cylindrical coordinates

The Laplace equation in cylindrical coordinates is given by

e a2y low 10y oy

"’zap2+pap+pzacp2+az2=0' (1)
Let us assume the solution of the form
w(p, ¢, 2) = R(P)®(P)Z(2). (2)
Substituting equation (2) into equation (1), we get
J’?R 10R 1 dzo dz2z

Partial Differential Equations M.Sc.(Mathematics)-11 Sem|



6.1. SeparATION Of VaRIABLeS

185

or
1R 1R 1 d2O 1d2z

Rapr prap T dg? =z az - (W)

where K is a separation constant. Therefore,

dz2z
7zt kZ =0
and 2

Ra? "o Tredge <70

We have the following three cases:

If k>0, then k = A2 and the solution is
Z =C1c0SAZ + C2 sin Az.
If k<0, then k= —A2 and the solution of equation (5) is
Z = cie™ + coe.
If k = 0, then the solution of equation (5) is
Z =C1Z + Cp.

Under the physical suituation, the only acceptable solution is

Z = c1e™ + g

Equation (6) becomes

P2#R PR ,, 1dd |

— e —— k().
Rap2+Rap+mr q)d(pz

(4)

(5)

(6)

(7)

(8)

()

(10)

(11)

Since the solution to be periodic in ¢, which can be obtained when k' is positive and we take
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K = n2. Therefore, the acceptable solution will be
® = c3 cos N + C4 sin NQ. (12)

If k¥ = nZ, then the equation (11) becomes

rzdzR d_R 2 2 2
¥+rdr+(mr—n)R=O (13)

which is a Bessel’s equation and its general solution is
R = Amn\]n(mp) + anYn(mp) (14‘)

where Jn(Ar) and Y,(Ar) are the nth order Bessel functions of first and second kind, respectively
and Aynand By, are constants. The function Y,(mp) becomes infinite as p — 0, so that if we
are interested in problems in which it is obvious on physical grounds that ¢ remains finite along
the line p = 0, we must take By, = 0. In this way we obtain a solution of the type
XX :
lp = Amn \]n(mp) eimzim(p. (15)
m n

For problems in which there is symmetry about the z axis we may take n = 0 to obtain solutions

of the form

X m
w=  Ando(mp) e=™. (16)

m

In particular if we wish a solution which is symmetrical about Oz and tends to zero as p — 0
and as z — oo, we must take it in the form

X
W= Aypdo(mp) e-™. (17)

m

Problem 6.1.3. Find the potential function g(p, z) in the region 0 < p < 1, z > 0 satisfying the

conditions

(i) g—0asz—
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(i) y=0onp=1
(iii) w=f(p) onz=0 for 0 <p <1.

Solution. The conditions (i) and (ii) are satisfied if we take a function of the form

X
e, ) = Ado(Ap) e, (18)

S

where A is a root of the equation

Jo(A) = 0.

Now it is a well-known result of the theory of Bessel functions that we can write

X
f(p) = As Jo(Asp)

where
, I
As = f(p) Jo(Asp) dp. 19
S [Jl(AJ]Z 0 p (p) 0( Sp) p ( )
Hence the desired solution is (18), with A given by the formula (19). [ |

6.1.3 Solution of Laplace Equation in Rectangular Cartesian Coordinates

The Laplace equation in rectangular cartesian coordinatesis given by

VU = Ugc+ Uy + Uy = 0 (1)
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By the variables separable method, let us assume the solution in the form
u(x,y,z) = X(0JY([y)Z(2).
Substituting equation (2) into the Laplace equation (1), we get
XY (Y)Z(2) + XY (Y)Z(2) + X(X)Y(y)2¥(2) = 0

which can also be written as

YY), 2@ XK _
YO T 20 T XM

where A; is a separation constant. Thus we have
XU(x) + A3X(x) = 0.

After the second separation, we also have

Zﬂﬂ_)\z - Yi(y) Y
20 NV A

YI(y) +A2Y(y) = 0
Z0(X) — MZ(2) = 0

where A2 = A2 + A2, The general solution of equations (3), (4) and (5) are
3 1 2

X(X) = €1 cos A1 X + C2 sin A1 X
Y(y) = C3 cos A2y + C4 sin A2y

Z(2) = Cs5 cosh Asz + Cg sinh Aez.

Then the solution becomes

u(x,y,z) = (c1 cos A1 x + Cz sin A1X)(C3 cos A2y + C4 sin A2y)(Cs cosh Asz + Cs sinh AeZ).

(2)

(3)

(4)
(5)

(6)
(7)
(8)
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Problem 6.1.4. Find the potential function u(x,y,z) in the region 0 < x < a, 0 <y < D,

0 <z < c satisfying the conditions

()u=0onx=0,x=a,y=0,y=b,z=0

(i) u=f(x,y)onz=c, 0<x<a 0<y<h
Solution. The potential distribution in the rectangular box satisfies the Laplace equation.

The problem is described by

VZU = Uyx + Uyy +U; = 0 (1)
subject to the boundary conditions

u(0,y,z2) = u(ay,z)=0

ux,0,z2) = u(x,b,z)=0

ux,y,0) = 0

u(x,y,c) = fxy).

Figure 6.1.1: Boundary Conditions
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The most suitable solution for the given problem is

u(x,y,z) = X(XY(y)Z(2),

where

X(X) = €1 cos A1 X + C2 sin A1 X (D
Y(y) = C3 cos A2y + C4 sin Azy (2)
Z(2) = ¢s5 cosh Asz + Ce sinh Aez. (3)

From the boundary conditions, we have

X(0) = X(a)=0
Y(0) = Y(b)=0
Z(0) = 0

Applying the boundary conditions X(0) =0 and X(a) =0 in (1), we get ¢1 = 0 and Ara =mrr

mrir
impliesAit ==, m=1,2,....
a

Applying the boundary conditions Y(0) = 0 and Y(b) = 0 in (2), we get ¢3 = 0 and Azb = n17

n
implies A2 = _77’ n=1,2,....
b

Applying the boundary conditions Z(0) = 0 in (3), we get s = 0.
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Further, we note that

2 , m?  n? 2
As=A1+A =1 §+b_2 =Amn  Say.
Then
m2  n2
A3 =m ; + b—2 = Amn
The solutions now take the form
mITx
X(X) = Camsin— m=1,2,...
a
n
Y() = camsin ™, n=1,2,...
b
Z(Z) = Cémn Slnh Ang.

Let Cmn = C2mC4nCemn, then, after using the principle of superposition, the required solution is

XX
U, Y, 2) = XOOY(DZ(@) = Con sin X g D " sinh Anez (4)
a
m=1 n=1

Applying the last boundary condition u(x,y, c) = f(x,y) in (4), we get

XX
f(x,y) = Cmn Sinh ApnC sin % sin n_zy
which is a double Fourier sine series, where
Fals mmx .0y
CmnSinh ApaC = ab . f(x,y) sin ? b dxdy . (5)
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Therefore, equation (4) along with the constants Cyy given in (5) constitute the required

potential. [ |

Check Your ProgRress

1. If w is a harmonic function which is zero on the cone 6 = a and takes the value apr”

on the cone 6 =, show that when a <0<,

o0 . (Q_n(cos a)Py(cos 8) — Py(cos a)Qn(cos 9]) .
o Qn(cos @)Py(cos B) — Po(cos @)Qn(cos )

2. A small magnet of moment m lies at the center of a spherical hollow of radius a in medium
of uniform permeability J. Show that the magnetic field in this medium is the same as that
produced by a magnet of moment 3m/(1 + 2) lying at the center of the hollow.

Determine the field in the hollow.

3. A grounded nearly spherical conductor whose surface has the equation

X
r=a:1+ &P (cosO):
nn

n=z

is placed in a uniform electric field E which is parallel to the axis of symmetry of the
conductor. Show that if the squares and products of the ¢£’s can be neglected, the potential

is given by

( ! ) x )
) 2 n n+1 a 1
V = Ea 1+%2 8% I ges3 frit S Em o Prsi=0

L, 2n—1 2n+3

4. Heat flows in a semi-infinite rectangular plate, the end x = 0 being kept at temperature 6o
and the long edges y =0 and y = a at zero temperature. Prove that the temperature at a
point (X,Y) is

46, 1 sin (2m+ 1)my p—@m)md/a

T m=0 2Mm+1 a
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5. V isa function of r and 8 satisfying the equation

v 1oV 1 0%V

rtrar im0

within the region of the plane bounded by r = a,r = b,6 = 0,6 = 1g. Its value along the

boundary r = ais 6(1 5 — 6), and its value along the other boundaries is zero. Prove that

2 X (r/o)""-2 — (b/r)*"-2 sin(4n — 2)6
o (@hyl— (bt (2n- 1)

V =

6.2 Problems with Axial Symmetry

The determination of a potential function  for a system which has axis of symmetry to be the
polar axis 6 = 0. Suppose that we wish to determine the potential function (r, 6, ¢) corresponding
to a given distribution of sources (such as masses, charges, etc.) and we have to calculate its value
@(z,0,0) at a point on the axis of symmetry. If we expand (z, 0, 0) in the Laurent series

X B
Wwz,0,0)= A"+, (1)

=0 Zn+1

then it is readily shown that the required potential function is
X B
Wr6,¢)=  Ar'+ " Pyfcos6) (2)
rn+

n=0

for

(i) Vi=0;
(i) w(r, 6, @) takes the value (1) on the axis of symmetry, since there Py(cos6) =1, r=1z;

(iii) w(r, B, @) is symmetrical about Oz as required.

The determination of the potential due to a uniform circular wire of radius a charged with

Partial Differential Equations M.Sc.(Mathematics)-11 Sem|



6.2. PROBLEMS WITH AXIAL SYMMETRY

194
electricity of line density €. Ata point on the axis of the wire it is readily seen that
21rea
W(z,0,0) = ——
az+z2
so that
X (1 2
| 2me < v z<a
w(z,0,0) = =0 —
2me, (O (-1 g2t 2>,
Xl 5"
=0
where we have used the notation (a), = a(an+ 1) - - - (a+n—1). Hence at a general point we have
X
S 2me @5“_1 ™ py(cos) r<a
!
n azn
2
w(r, 9) - D no
X
ome " 2n+1
' r2n+1
(—1 Pan(cos@) r>a

(M)n

n!
M.Sc.(Mathematics)-11 Sem|
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Problem 6.2.1. A uniform circular wire of radiys a charged with electricity of line density e

surrounds grounded concentric spherical conductor of radius c. Determine the electrical charge
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density at any point on the conductor.

Solution. The potential functions is of the form

X (")
W1 = 211€ ?(_1) n

r 2n

Partial Differential Equations
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(1)n a 2n+l

n(—1)

W2 = 21re

Partial Differential Equations M.Sc.(Mathematics)-11 Sem|



a 2n+1,

Partial Differential Equations M.Sc.(Mathematics)-11 Sem|



Partial Differential Equations M.Sc.(Mathematics)-11 Sem|



n=0

Partial Differential Equations M.Sc.(Mathematics)-11 Sem|



6.2.PrROBLEMS WITH AXIAL SYMMETRY

195

The boundary conditions
(i) wy1=0onr=c
_

(ii) (,U1=(,Uz,% =7 onr=a

yield the equations

1
)(”_1 %h & 2n'*'An —2n+Bn=0
n' a a
c 2n+1
An+ B, ~ =Ch
c 2n+1
20An - (2n+ DBy = —(2n+1)Cy

from which it follows that

2n

An=0, By=—(-1(h ¢
n' a

Hencewhen ¢ <r < g,
X )
w1 =2me” (—1 (%)n (I’Z“_ ¢t P2n(cos 6).

n

120 n! a’  g2np2n

The surface density on the spherical conductor is given by the formula

so that

0o 1 2n

X _ on(€0s 6).
o= 287 ym 4 4 P
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ProBLems for PRACTICe

1. Prove that the potential of a circular disk of radius a carrying a charge of surface density o
at a point (z,0,0) on its axis 6 =0 is

2mof(z? + az)% - 1].

Deduce its value at a general point in space.

2. A grounded conducting sphere of radius a has its center on the axis of a charged circular
ring, any radius vector ¢ from this center to the ring making an angle a with the axis. Show
that the force pulling the sphere into the ring is

2 X a 2n+l
s (n + 1Pn.1(cos a)Py(cos 6) .
C? n-0 c

3. A grounded conducting sphere of radius ais placed with its center at a point on the axis
of a circular coil of radius b at a distance ¢ from the center of the coil; the coil carries a
charge e uniformly distributed. Prove that if a is small, the force of attraction between the

sphere and the coil is " 14
eZac az (3cz ) ad’

where f2 = b2 + 2.

4. Adielectric sphere is surrounded by a thin circular wire of large radius b carrying a charge

E. Prove that the potential within the sphere is

E®pn4n+l  TO+Y) © 2 p,cosh).

n=0 1+2n(1+kK =
(1+8) nir(¥) b
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6.3 The Theory of Green’s Function for Laplace’s Equation

oy
Suppose the values of y and a5 are known at every point of the boundary S of a finite region

V and that V2 = 0 within V. We determine by Green’s theorem in the form

J J 0 % |
WV - Vs g - g s, (1)

where X denotes the boundary of the region Q.

To determine the solution (r) at a point P with position vector r, then we surround P by a
sphere C which has its center at P and has radius € and take Z to be the region which is exterior

to C and interior to S. Putting "

¥ —r
we know that the above function is an elementary solution of Laplace equation, i.e.,

Vi =Vip=0
within Q, we see that
I« ) I )
w(r) 4 1 1 oy ds’ + w(r) 2 11 elll ds) = 0, 2)
c onp— |P—rl o s onp—r |P¥—rl on

where n, the normals. Now, on the surface of the sphere C,

dS’ = €2 sin 6dOde

and

w(r) = y(r) +dy
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|

d d oy’
= (r) + )ﬁali+y—g§/+z—glz

)
= (r) + ¢ sin B cos (pﬂ + sin 6 sin (paJu + cosGaJH

oX oy oz |
) :
W(r) = w(r) +0(s) on ¢ ¥ _duw”
an an (s)
o]
so that
0 _1
wr) = dS’ = 4my(r) + O(s)
c onp—r
and
I 1 Su ds’ = 0(s).
clP—r| on

Substituting these results into equation (2) and letting ¢ tend to zero, we find that
17« 1 )
w(r) = 1 opr) .9 ds? (3)
— y(r)
4T s [P —r| on on P —r|

so that the vlglue of  at an interior point of the region V can be determined in terms of the values
of w and o On the boundary S.

Taking the directions of the normals to be as indicated in Fig. 24 and proceeding as above, we
find, in this instance, that

J ( 1 ) J (1 5 )
Amy(r) +0(s) + Low) oy T asi+ L Y¥ gsi-o,
s w—r am T onp—t . Ron R?

Letting € — 0 and R — oo, the solution (3) is valid in the case of the exterior Dirichlet problem

. v
provided that Ry and RZ% an remain finite as R — oo,

Equation (3) would seem at first sight to indicate that to obtain a solution of Dirichlet’s problem

we need to know not only the value of the function  but also the value of —a%j We define a
Green’s function G(r, ') by the equation

G(r,r) = H(r, ) +—1 , (4)
¥ —r
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where the function H(r, ') satisfies the relations

¢ 92
N =
o2t oy? " 9212 Ar.r) =0 G)
and 1
H(r,P)+— =0 onS. (6)
P —r
The derivation of equation (3) is given by
1 J ( )
= aw(r) aG(r, )
W)=,  GnP) Tgn~ — W, ds (7)
Then the solution of the Dirichlet problem is given by the relation
Il J
1 %6 s (8)

- _ r
W(r) Y S W( ) on

where G(r, ') satisfying equations (4), (5) and (6).

The solution of the Dirichlet problem is thus reduced to the determination of the Green’s
function G(r,r).

Thus the Green’s function for the Dirichlet problem involving the Laplace operator is a function

G(r, ') which satisfies the following properties:

(i) The Green’s function G(r, r)) has the property of symmetry, i.e.,
G(ry, r2) = G(rz, r1) (9)

i.e,, if P1 and P; are two points within a finite region bounded by a surface S, then the
value at P2 of the Green’s function for the point P1 and the surface S is equal to the value
at P1 of the Green’s function for the point P2 and the surface S.

(i) V2G(r,r) = (r — r) in the region.
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6.3.1 Physical Interpretation

If S is a grounded electrical conductor and if a unit charge is situated at the point with radius

vector r, then 1
G(r,r) = — —+H(r,n)

P —r
is the value at the point I of the potential due to the charge at r and the induced charge on S.
The first term on the right of this equation is the potential of the unit charge, and the second is the
potential of the induced charge. By the definition of H(r, F¥) the total potential G(r, r') vanishes
on S.

6.3.2 Solution of Dirichlet Problem using Green’s Function

Dirichtet’s Problem for a Semi-infinite Space

If the semi-infinite space to be X > 0, then we have to determine a function g such that Vi =0
inx>0,w="f(y,z) onx=0,and ¢ — 0 as r — o0,

The corresponding conditions on the Green’s function G(r, ) are that equations (4) and (5)
should be satisfied and that G should vanish on the plane x = 0.

Suppose that M, with position vector p, is the image in the plane x = 0 of the point P with
position vector r. If
H(r,r) _ _;, (10)
~o—r
then the equation (5) is satisfied. Since PQ = MNQ whenever Q lies on X = 0, it follows that
equation (6) is also satisfied.

The required Green'’s function is given by

G(r,n) = 1 — L (11)

r—r| [p—r

where r = (X,y,2) and p = (—X,Y, 2).
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Since
aG(r,r)y 2 1 1
e R Y R (T R VR P T
on the plane ¥ =0 aG(r, ) _ 2%

Z J 2 T
X+ -y) +(z—-2) ]
Substituting the above equation and w(r) = f(y), Z) into equation (8), we obtain the solution of
this Dirichlet problem

[Z]]

X ol o f (y, 2)dy/dz
wixy. ) = : (12)
T o —w DE+Y =¥+ (2 —2)7P?
Dirichlet’s Problem for a Sphere
To determine the function @(r, 6, ¢) satisfying the conditions
Vi3w=0 r<a (13)
w="1(6,9) onr=a. (14)

The Green’s function G(r, r) satisfies (4) and (5) and G should vanish on the surface of the
sphere r = a.

Suppose that M, with position vector &, is the inverse point with respect to the sphere r = a

of the point P with position vector r. Then from

H(r Py = ———= ——2 (15)

rp—rl  r2r_p

r
the equation (5) is satisfied, and if Q lies on the surface of the sphere, PQ = 3 nQ, so that

equation (6) is also satisfied. The Green’s function is given by

Grm=———24r (16)

2
r—o 2r_
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Now !
G 1 R r2 R
- R Ron @ R; :
where
R2 =r2 + 12 — 2rr cos O,
4 2a2
2 _ @ J
RZ2 = o+ 2 ——Fcos® (17)
and
cos @ = cos Bcos @ + sin Bsin @ cos(p — ¢). (18)
Thus
a_G _ rJ(aZ — r2)
or aZR3
and when r = a, G 4G az — r2

= =— . (19)
) 3
on o a(r* +a% - 2ar cos 0):

Hence if ¢ =f(6, ) on r = a, it follows from equations (8) and (19) that the solution of the

interior Dirichlet problem for a sphere is given by the equation

w(r, 6,¢) = a@*—r?) I 2"dqojf "6, ¢) sinedo (20)
41T

0 o (a®+r?— 2arcos0):

where cos © is defined by equation (18).

The solution of the exterior Dirichlet problem is

w(r, 6, @) = a(r2477 @) | 2ﬂd§DJf " f(8, ¢)sinBde . (21)

0 o (a2 +r2 — 2ar cos )2

The integral on the right-hand side of the solution (20) of the interior Dirichlet problem is called

Poisson’s integral. The function

X .
W(>|’< 0,9) “ r" “(A cosmp+B sinmg)P" (cos ) (22)
mn '
A mn n
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is a solution of Laplace’s equation which is finite at the origin. If this function is to provide a
solution of our interior Dirichlet problem, then the constants Ay, By, must be chosen so that

X X
f(6,¢) = (Amn cos M@ + By, sinmg) P (cos 6),

n=0 m=0
where

['nln
Aop = % (@, @ )Pn(cos 8) sin &d6)dg)
0

_(2n+1) (n—m) Jnl

m
™7 o2m (n+m)! . f(0, ¢ )PM(cos 6”) sin & cos(me))d6 de!

I'nlw

2n+1 —
(antd) (0 —my f(&, @)PM(cos 6”) sin &’ sin(mg’)d6de.
0

Bon= " o (n+m)!

Then the solution becomes

Tl L
w(r, 6, @) = ;T f(&,¢)gsin6 d6 do , (23)

-m 0

where

!
X 0 X (n—m)!

g-= :0 (2n+1) . " Po(cos O)Po(cos ) +2 (0 +m)! P™(cos B)P™ (cos &) cos m(¢ — @) .

and
1—R X

- = (2n+1)h"Py(cos ©)
(1 —2hcos@+H)2  no

X*(n = m)!

|
o (n+m)!

Pn(cos ©) = Py(cos B)P,(cos @) + 2 P"cos B)P"¢cos @) cos m(¢ — ¢),

where O is defined by equation (18), we have

2 _ g2
a(@ —r?y N (24)
(a2 — 2ar cos @ +r?)2

g=
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Check Your ProgRress

. Suppose that P1 and P; are two points with position vectors ri1 and rz, respectively, which

lie in the interior of a finite region V bounded by a surface S. By applying Green’s theorem
in the form (1) to the region bounded by S and two spheres of small radii surrounding P

and P; and taking w(r) = G(r1, '), @/(r) = G(rz, '), prove that

G(r1, r2) = G(r2, r1)

If the function (X, Y, z) is harmonic in the half space x> 0, and if on x= 0, =1 inside
a closed curve Cand @ = 0 outside C, prove that 2my(X, Y, z) is equal to the solid angle
subtended by C at the point with coordinates (X, Y, z).

If w(x,y,2) is such that V2@ =0 for x >0, @ = f(y) on x=0, and ¢ — 0 as r — oo,
prove that

w(x,y,7) = X fdy

T - X2+ (y = ¥)?
The function (r) is harmonic within a sphere S and is continuous on the boundary. Prove
that the value of  at the center of the sphere is equal to the arithmetic mean of its values

on the surface of the sphere.

. Use Green'’s theorem to show that, in a usual notation, if at all points of space

Vip = —4mp,

where p is a function of position, and if ¢ and rgrad tend to zero at infinity, then

Let us Sum up:

In this unit, the students acquired knowledge to
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+ find the solution of Laplace Equation in Rectangular Cartesian Coordinates.
+ understand the concept of problems with axial symmetry.

« analysis Dirchlet Problem using green’s function.

Suggested Readings:

1. M.D. Raisinghania, Advanced Differential Equations, S. Chand & Company Ltd., New
Delhi, 2001.

2. K. Sanakara Rao, Introduction to Partial Differential Equations, Second Edition,
Prentice-Hall of India, New Delhi, 2006.
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BLOCK-IV
UNIT 7

THE WAVE EQUATION-I

Structure
Objective
Overview

7.1 The Occurence of the Wave Equation in
Physics.

7.2 Elementary Solutions of the One-dimensional
Wave Equation.

7.3 Vibrating Membrances: Application of the
Calculus of Variations.
Let us Sum Up
Check Your Progress

Suggested Readings

Overview

In this unit, we consider the elementary solutions of the wave equation and Vibrating
Membrances.

Now. we consider the wave equation

A

207
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which is a typical hyperbolic equation. This equation can be written in the form
O2y=0,

where 02 denotes the operator

92 52 02 1 02
@ art e o

Assume a solution of the wave equation of the form
w=W(xy 2 e

then the function W must satisfy the equation

(VE+k)w =0

which is called the space form of the wave equation or Helmholtz's equation.

7.1 The Occurrence of the Wave Equation in Physics

In this section, we present the list of situations in physics where the wave equation arise.

Transverse Vibrations of a String

If a string of uniform linear density p is stretched to a uniform tension T, and if in the equilibrium
position, the string coincides with the x axis, then when the string is disturbed slightly from
its equilibrium position, the transverse displacement Yy(X, t) satisfies the one-dimensional wave
equation

o2y 1 9%y

T (1)

where c2 = 5 Atany point x =a of the string which is fixed y(a, t) =0 for all values of t.
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Longitudinal Vibrations in a Bar

If a uniform bar of elastic material of uniform cross section whose axis coincides with Ox
is stressed in such a way that each point of a typical cross section of the bar takes the same

displacement é(x,t), then
p §&x 0 o 186

e (2)

E
where ¢2 = =, E being the Young’s modulus and p the density of the material of the bar.
o

Longitudinal Sound Waves

If plane waves of sound are being propagated in a horn whose cross section for the section with
abscissa X is A(X) in such a way that every point of that section has the same longitudinal
displacement é(x, t), then ¢ satisfies the partial differential equation

2044 ) 1 %

- (A =T = 3
ox A dx (AS) c2 ot? (3)
which reduces to the one-dimensional wave equation (2) in the case in which the cross section is

uniform.

Electric Signals in Cables

If the resistance per unit length R, and the leakage parameter G are both zero, the voltage V(x, t)
and the current z(X, t) both satisfy the one-dimensional wave equation, with wave velocity ¢
defined by the equation 1
=", (4)
LC

where L is the inductance and C the capacity per unit length.
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Transverse Vibrations of a Membrane

If a thin elastic membrane of uniform areal density 0o is stretched to a uniform tension T, and if
in the equilibrium position, the membrane coincides with the Xy plane, then the small transverse
vibrations of the membrane are governed by the wave equation

, 1 0%z
Viz= , o (5)

where z(X, Y, t) is the transverse displacement (assumed small) at time t of the point (X, y) of the
membrane. The wave velocity ¢ is defined by the equation

2= (6)

Sound Waves in Space

Consider a sound wave at the point (X, Y, z) at time thas velocity v = (u, v, w) and that the
pressure and density there and then are p, p, respectively; then if po, po are the corresponding
values in the equilibrium state, we write

P =po(l+59), P=po+CZPos, (7)

d
where s is called the condensation of the gas and c? is given by ¢2 = & . Then the equations

of motion governed by the wave equation

2=
vie c? ot?’ (8)

where the motion of the gas is irrotational.
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Electromagnetic Waves

If we write
1 9A
H = curl A, E= ~—_
c ot grad ¢,
then Maxwell’s equations
div E = 4mp, divH =0
1 :
curlE = — 3_H1 curlH=ﬂ+la—E
c ot C <cot

are satisfied identically provided that A and ¢ satisfy the equations

V2A 1 9%2A _ 4mj Vv, 1&¢p —4

- - @ TP
¢t oz ¢ e X

Therefore in the absence of charges or currents ¢ and the components of A satisfy the wave
equation.

Elastic Waves in Solids

If (u,v,w) denote the components of the displacement vector v at the point (X, Y, z), then the
components of the stress tensor are given by the equations

| |
u v ow du v ow

ax * ay+ 0z vl ox’ dy) oz
oW ov du ow ov Ju

+ ) + ) + )
gy 0z dz Ox ox oy

(Gx, Gy, Oz) = A

(Tym Tzx, Txy) =M

where A and [ are Lame’s constants. The equations of motion are

doy Odry 0Ty d2u
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where F = (X, Y, Z) is the body force at (x,Y,z). If we write
F= gradg + curlW,

thenitis easily shown that the displacement vector can be taken in the form
VvV = grad@ + curl¥

provided that ¢ and W satisfy the equations

2 2
a(p—CZVZ aw—CZVZ
w 1 % e oz VEY
where the wave velocities C1, C; are given by
C2 — A+_2Ll, CZ = u-
oo 2 p

Hence, in the absence of body forces, ¢ and the components of W each satisfies a wave equation.

7.2 Elementary Solutions of the One-dimensional Wave
Equation

Consider the one-dimensional wave equation

02y 1 9%y
ol R (1)

The canonical form of the one-dimensional wave equation (1) is

Yen = 0, (2)
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with the transformation variables are { = x + ¢t and n = x — ct. Then the solution of (1) is

9%y
aEn - 0
% - A
y= A(§dé+B(n)
y=f()+9(n)
y = f(x+ct) +g(x — ct) (f and g are arbitrary functions) (3)

which is called the elementary solution of one dimensional wave equation.

Problem 7.2.1. Derive the D’Alembert solution of one-dimensional wave equation.

or

The displacement and the velocity of an infinite string is given by n(x) and v(x) respectively, at

the initial time (i.e., t = 0). Determine the motion of the string.

Solution. Consider the one-dimensional wave equation

g2y 1 9%y
8_)(2=C_2W’ —oc0o<X<oo, t=0 (D
subject to the initial conditions
() y(x 0) = n(x, (2)
oY
(if) at (x,0) = v(x), (3)
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where n(x) and v(X) are twice continuously differentiable.

The general solution of the one-dimensional wave equation is

y(x,t) = f(x+ct) + g(x — ct)

where f and g are arbitrary functions.

Applying the condition (i) y=n on t=0 in (4), we get
n=f(x) +9(x).
Differentiating (4) with respect to t, we have
oy
(x,t) =cfi(x+ct) _cg/(x _ct)
ot

2
Applying the condition (i) ZX(x, 0) = v(x) in (6), we get
at

v(x) = cf(x) — cg(x)

Integrating equation (7), we have

J
l X
f(X) - g(X) = c . V(Qdf,

where b is arbitrary.

(4)

(5)

(6)

(7)

(8)

Partial Differential Equations
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Solving (5) and (8) yields

J

1 1«
(00 =00+ 50 Vg
J

N
900 = 0 =5 Ve

Substituting these expressions in equation (4), we obtain

f X+Ct

y= e e nc- Ol vy V(e ©)

e
which is the required D’Alembert’s solution of the one-dimensional wave equation.

Ifv =0, ie, the string is released from rest, then the solution (9) becomes

y=% n(x+ct)+n(x—ct). |

Note 7.2.1. The above solution shows the subsequent displacement of the string is produced by
1
two pulses of “shape” y = _zn(x), each moving with velocity c, one to the right and the other to

the left. By taking the initial displacement is

00 x<-—a

= 1 [x<a

0
+ 0 x>a.

Problem 7.2.2. Consider the motion of a semi-infinite string x > 0 fixed at the point x = 0 with
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the conditions

o

y=n), =v(x) x,0 at t=0

ay
y=0, =0 tZO at x=0.

ot

Solution. The motion of the string is governed by the one-dimensional wave equation

o2y 1 9d%y

8_)(2=C_2W’ 0<Xx<oo, t=0.

Then the D’Alembert’s solution

f x+ct

Y= 20 e) +ntc— cob+s (O

X
is no longer applicable, since n(x — ct) would not have a meaning if t > x/c. [ |

Problem 7.2.3. Consider the motion of an infinite string subject to the initial conditions

y=Y(), Qy:V(x) at t=0,
ot
where
n(x) ifx 0 . V(X) ifx>0
Y(X) =+ B and V(x) =
—n(=x) if x <0 . —v(—x) ifx<0.

Solution. The motion of the string is governed by the one-dimensional wave equation

d2y 1 9%y

3_)(2=C7W' —0<xX<o, t>0 (1)

Partial Differential Equations M.Sc.(Mathematics)-11 Sem|



7.2. ElemeNTARY SoLUTIONS of THe ONe-diMeNsIONAL Wave EQUATION 217

Then its displacement is given by

1 1 f X+Ct
y=5 {Y(x+ct) +Y(x — ct)} 'y V(&§)dé (2)
X
when X =0
1 1 I a
Y=Y +Y(ctb+ 5 V(dE 3)
and
1 1
ol = “c{Yi(ct) — Yi(—ct)} + ~ {V(ct) + V(—ct)}. (4)
o 2 2
From the definitions of Y and V and from the equations (3) and (4) we get y and at x=0
t
are identically zero for all values of t.
d
The function (3) also satisfies the condition y = 0, Y _ 0,t _ 0atx=0.
ot -

In particular, if the string is released from rest so that v, and consequently V, is identically

zero, then the appropriate solution is

I % [n(x+ct) + n(x —ct)] x>ct
y=_

. % [n(x+ct) — n(x — ct)] x < ct.

Using the above problems, we construct the wave problem in finite string with the initial
conditions.
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Problem 7.2.4. Consider the motion of a finite string of length | with the initial conditions

y =Y, Qy=V(x) 0_x_latt=0

ot
y =0, Qy:O t>0atx=0andx=|,
ot -
where Y(X) is defined by
nx)  if0cxcl . V(X) if 0<x<I
YX) = and V(x) =
-n(-x) if —l<x< ¢ —v(—=x) if —l1<x<0

0
and

Y(x+2r)=Y(X); V(x+2r)=V(x) if =1 <x<I,r=+1+2,....

In other words, Y(x) and V(x) are odd periodic function of period 2lI.

Solution. The motion of the string is governed by the one-dimensional wave equation

02y 1 9%y
a_ﬂzﬁﬁ’ 0<x<l, t=0. (D
Then its displacement is given by
1 1 J‘ x+ct
y=3 {Y(x+ct)+Y(x —ct)}+ 26 V(&)dé. (2)

e
Given that Y(x) and V(x) are odd periodic function and has a Fourier sine expansion of the form

X% m

Y(X) = Nmsin _I (3)

m=0
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where the coefficients 1y are given by the formula

2 1 mré
r’m = I 0 ’7(@ Sin I df
Similarly
% m
V(X) = Vmsin B
m=1
where
2 mmé
Vm = | V() sin | dé.
0
Using the above equations, we get
1 X mmx mrrct
E {Y(x+ct)+Y(x —ct)} = [sIn : cos :
m=0
1 J. x+ct X ® Vm . m mct
" V(§)dé = — SIn- === 5in T
C x—ct m._ ., m t I

Substituting the above equations in (2), we obtain the solution of the present problem is

X . mmx mrrct LX Vim . mmx . mrct
y= Nm SiN cos + — sin sin

et I I m._, m I I

where nn, and vy, are defined by equations (4) and (6), respectively.

(4)

(5)

(6)

(7)

Problem 7.2.5. The points of trisection of a string are pulled aside through a distance s on

opposite sides of the position or equilibrium, and the string is released from rest. Derive an
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expression for the displacement of the string at any subsequent time and show that the mid-point

of the string always remains at rest.

Solution. The motion of the string is governed by the one-dimensional wave equation

02y 1 9%y

T 5 0<x<l t>0. (1)

Take the length of the string | = 3a.

From the given conditions, the string OC ( 3a) is trisected at A and C. We have to find the three

line equation OA, AB and BC for the initial position of the string. Equation of straight line with

¥y

ol(0.0) (.0) x

two given points (X1, y1) and (Xz,Y2) is

y -¥y,= : ' (X — X1)
X2 — X1

Equation of OA is
E—0 X
y—0=[—1(x—0) => y=".
(a—0) a
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Equation of AB is

—£E—¢ 2€ £(3a — 2x
y—£=(—1(x—a) > y—&=—" (x—a) = y=_[—1.
(2a—a) a a
Equation of BC is
y—0=-(L_O)(x—3a) N yM_
(2a — 3a) a
Therefore the initial position of the string is
. &X
U a 0<x<a
o 0) = np) = =L, oy g
&x—3a)
— a a<x<3a
o oy
and the string is released fromrestso - y(x) =
ot t=0
Then its displacement is given by
X MmITx mrrct
y= Nm sin I_ cos I— (2)
m=1
where
2 I miT
Nm = n(¢) sin | dé
26 = mmx, % mmx % m1Tx
Nm=_ . xsin —_ _dx+ (3a—2x)sin —__ dx+ (x —3a)sin —__ dx
3a2 o 3a a 3a 2a 3a
|
18¢ S o .
= 2{1 + (—1)"}sin Nl (by Bernoulli’s integration formula)
m2m
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and

Vm=0

so that the displacement (2) is

3_3)@"_ . mm . mmx mrrct
y= sin sin cos™_ (3)
T2 m=1 m2 3a 3a
Replace m by 2n, we get
95X sin 2n7TSin 2nmx cos 2nrrct @
Y= m m 3 3a 3a
=1
To find the displacement at the midpoint of the string:
3a
Put X="""in (4), we get
2n 2nrct
y= 9s X 1 gjp 0T sin(n1) cos NI
- =1 o 3 3a
n
(. sinnm=0 V nez
y=0
Therefore, the displacement of the mid-point of the string is always zero. [ |

Check YouRr Progress

Partial Differential Equations
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1. A uniform string of line density p is stretched to tension pc? and executes a small transverse
vibration in a plane through the undisturbed line of the string. The ends x =0, | of the string
are fixed. The string is at rest, with the point x = b drawn aside through a small distance ¢
and released at time t = 0. Show that at any subsequent time t the transverse displacement

< oiven bv the Four _ sk X1 ! t
is given e Fourier expansion y = ——— .
yise g P y mb(l -8 _, szsin 2 sin P cos T4
4e
2. If the string is released from rest in the position y = = X(I _ x), show that its motion is
t2
326X __ 1 2n+ 1)mx (20 + )mct
described by the equation y = sin ( ) cos ( ) .

3 ., (@n+1)] I I
3. If the string is released from rest in the ﬁaosition y = f(x), show that the total energy of
[
T 4 . STIX
the string is s’k?, where kg = | f(x) sin : dX. The mid-point of a string is
0
s=1
pulled aside through a small distance and then released. Show that in the subsequent motion
the fundamental mode contributes 8/m2 of the total energy.

7.3 Vibrating Membranes: Application of the Calculus of

Variations

The transverse vibrations of a thin membrane S bounded by the curve I in the xy plane is
described by a function z(X, Y, t) satisfies the wave equation

1 922
ViL= 5 2@ (1)
the boundary condition
Zz=0onT forallt (1)
and the initial conditions
oz
z=f(x,y), a =g(xy) t=0, (xy).S. (2)
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7.3.1 Solution of the Equation of the Vibrating Membrane (Rectangular

Membrane) - Integral Transforms Method
In this subsection, we discuss the integral methods to solve the vibrating membrane problem.

Problem 7.3.1. A thin membrane of great extent is released from rest in the position z = f(X, ).

Determine the displacement at any subsequent time.

Solution. The motion of the vibrating membrane is governed by the two-dimensional wave

equation
0z 0z 10«
et @ e (1)

From the given data, the boundary condition
Zz=0onT forallt (2)

and the initial conditions

z="1(xY), o =0 t=0, forall (x,y) of the plane. (3)
ot

The two dimensional Fourier transform of z(X, y, t) is

I ol &
Z(E n, 1) =71n 2(X, y, t)e' & Mdxdy.

Taking the Fourier transform of (1) on both sides, we get

d2z 2 2 2

qetc € +n)Z=0 (4)
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and the conditions (3) becomes

dz
Z=F¢En, ~ =0 t=o0. (5)
dt
The solution of (4) is
Z=Acos.c’§2+n2t.+Bsin.c’§2+nzt.. (6)

Using the condition (5), we obtain
A=F( n) and B=0.
Substituting the values of A and B in (6), we have

Z = F(& n) cos[c(& + n?) ]. (7)

Applying the inverse Fourier transform to find the solution of the given problem

oo_[oo

7 _21 F(& n) cos[c(& + 112), tle~&*™dgdn. .
m —00 —00

7.3.2 Solution of the Equation of the Vibrating Membrane (Rectangular

Membrane) - Separation of VVariables

The motion of the vibrating membrane is governed by the two-dimensional wave equation

02z 92z 19%
Pl v (1)
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Let us assume the solution of the form
Z(x, Y, 1) = XYY T (0. (2)

Substituting equation (2) in equation (1), we have

1
SXYTY _[XOYT + XYIT] = 0
CZ

Dividing throught by XYT, we get

XV Y9 - 1TV = —k2 (aseparation constant)
X Y ¢T
implies
Xﬂ=_k2 Yu=_k2 17 = _k2
X ! Y 2 2T
Xy = —k2X YU = —k2Y Ty = —k2¢c2T
XU +k2X =0 Yu+k2Y =0 TV +k2e2T =0
1 2
X =¢1 cos ki X + C2 sin kg X Y = c3 coskzy + Cs4 sinkay T = c5 cos Kct + C6 sin kct.

Then the solution becomes

Z(x,Y,1) = (c1 cos ki X + ¢z sin k1x)(c3 cos kzy + C4 sin kzy)(Cs cos kct + C6 sin kct), (3)
where k2 = k12 + k;.
Problem 7.3.2. A rectangular membrane with fastened edges makes free transverse vibrations.
Find the displacement of the vibrating membrane.

Solution. The transverse vibration of a rectangular membrane is described by

%z 0%z 1 0%z

wtar- g 0<x<a 0<y<hb (1)
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subject to the boundary conditions

(1) z(0,y,) =0
(i) z(a,y,t) =0
(iii) z(x,0,t) =0

(iv) z(x,b,t) =0

and initial conditions

20y, 0) = F(x.Y), i(x, y,0) = 0.

The suitable solution is

Z(x,Y,1) = (c1 cos ki X + ¢z sin k1x)(c3 cos kzy + C4 sin kzy)(Cs cos kct + C6 sin kct),

where k2 = kZ + k2.
1 2

Applying the boundary condition z(0,y,t) = 0, we get
0 = c1(c3 cos kay + €4 sin kay)(Cs cos kct + Cg sin kct)
which gives ¢1 = 0, then equation (2) becomes

Z(x,y,1) = c2 sinkix (C3 cos kay + C4 sin kay)(Cs cos kct + Ce sin kct),

(2)

(3)
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Applying the boundary condition z(X, 0,t) = 0, we get
0 = ¢z sinkiX ¢3 (Cs5 cos ket + €6 sin kct)
which gives c3 = 0, then equation (3) becomes
Z(x,y,1) = c2 €4 sinkix sinkay (Cs coskct + Cg sin kct), (4)

Applying the boundary condition z(a, y,t) = 0, we get

0 = C2 ¢4 sinkja sinkzy (Cs cos ket + €6 sin kct)
implies that ki = mm/a, m=1,2,..., applying the boundary condition u(x,b,t) = 0, we get

0 = c2 ¢4 sinkiX sinkzb (cs cos ket + c6 sin kct)

implies that ko =nmmhb, n=1,2,........ Then, the equation (4) becomes

MmIrx n
Z(X,y,t) =C2 Ca sin —  sin _rry(cs cos kct + C6 sin kct).
a b

After adjusting the constants and by the principle of superposition, we get

X X
2(x,y,8) = [Amn €0s KmnCt + By sin kpnCt] sin mmx sin njb[ 5)

m=1 n=1 a
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where
!
2 2 mz n*
mn =TT S+ b_2 '
Applying the initial condition —(X,y, 0) = 0 yields Bp, = 0, then the solution becomes
ot
XX
z(x,y,t) = Aun 08 Kt sin 2 gin DY (6)
1 ne a b
m=1 n=1
Applying the initial condition z(x,y, 0) = f(x,y), we have
X X"
f(x,y) = Amn sin _7TX _ﬂy
a b
m=1 n=1
where
I ol
4 a’ b MITX _ﬂy
A =" f(x in —_ dxdy . 7
m= oy, (O sin T = sin iy (7)

Hence, the required solution is given by equation (6) along with the coefficients Ay, in the above

equation (7). [ |

7.3.3 Solution of the Equation of the Vibrating Membrane (circular

Membrane) - Separation of Variables

The motion of the vibrating membrane takes the form

0z 1oz 102 10«
mrTa e T ()

and the curve T can be taken as r = a. Let us assume the solution of the form

z=R(r)0(6)e="*, (2)
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then the functions R, © must satisfies

2 42
rr dR ld—R+k2R

#
+ +ld2@_
R a7 "rodr o &

using the separation constants we obtain the ordinary differential equations for R, © are

dze 2
@ +mo=0 (3)
and
|
dZR+ld—R+ k2 m?’ -
azrar " K-y R=O ®
The solutions of (3) is of the form
0= e—iimel

If the displacement z(r, 6, t) is periodic, i.e., z(r, 8+ 2m, t) = z(r, 6, 1), then we must choose m to
be an integer. Furthermore, at r = 0 the solution of (4) is

R = Jn(kr),
where Jy(X) denotes the Bessel function of the first kind of order m and argument X. Thus the
solution of the equation (1) of the form
X

7 = Amk\]m(kr)eiimeiikd. (5)

m,k

If z vanishes on the circle r = a, then the numbers k must be chosen so that
Jm(ka) = 0 (6)

and we obtain the solution

X
Z= Amn\]m(kmnr) eXp{iime + ikmnct}, (7)

m,n
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where An, are constants and K1, kmz, . . . are the positive roots of the transcendental equation (6).

In the symmetrical case in which z is a function of r and t alone the corresponding solution is

— x +ickqt
Z(I’, t) = AnJO(knr)e_ '

n
where ki, kz, . .. are the positive zeros of the function Jo(ka).

Problem 7.3.3. Find the displacement of the vibrating circular membrane.

Solution. The initial condition is

z=f(n), %2 _Gatt=0,

ot

then the solution of the problem is
X
Z= AnJo(knr) cos(kqct),
where the constants A, are chosen so that
X
f(r)= AnJo(Kar).
Using the Bessel functions we obtain

I'a
A, = j J3(k @) rf(r)d (k)dr.
2 0

The complete solution of our problem is therefore given by the equations (1) and (2).

(3)

(1)

(2)

Partial Differential Equations M.Sc.(Mathematics)-11 Sem|



232 7.3. VIBRATINg MeMBRANes: ApplicaTION of THe CalcuLus of VaRIATIONS

7.3.4 Solution of the Equation of the Vibrating Membrane whose

boundary T

The transverse vibrations of a thin membrane S bounded by the curve I in the xy plane is
described by a function z(X, Y, t) satisfies the wave equation

1 922
2= | — 1
V1Z CZ atz ( )
the boundary condition
Z=0onT forallt. (2)
IRV
When the boundary curve T is fixed is of the form f (x, y)e" #, then the nth eigenvalue A, is the
minimum of the integral
|=T7>~ I dxdy (3)

S'.%‘)’(!Z"'%g.'.

with respect to those sufficiently regular functions ¢ which vanish on I' and satisfy the
normalization condition

o @2dxdy =1 (4)
S

and the n — 1 orthogonality relations

. @ Pndxdy = 0, (5)

where @y, is the minimizing function which makes | equal to Ay. If

2= yn(x, y)e"r" (6)

is an approximate solution of the problem stated in equations (1) and (2), then if @1,...,®, are
n functions which are continuously differentiable in S and which vanish on I, an approximate

solution is > i
v (xy) = . C O(x
i=1

V. (7h
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where the coefficients C{™ are the solutions of the linear algebraic equations

X
(O'ijk?n—rij)qm=0 i=1,2,...,n (8)
j=1
with
gij = Oji = S CDiCD,-dxdy (9)
i (3CD! 3CD| + 8(])! aCDI)dXd 10
rIj - rjI s aX ax ay ay y ( )
and the first n approximate eigenvalues ki, k, ..., Kk, are given by the n positive roots of the
determinantal equation
O11k> — 11 O12k> = T1p - -+ opk® = Ty
"O21k* — Ta1 O2k? —Tap - o Ok — Ty
.= 0. (11)
. q11k2 — h1 O'nzk2 —lhz Unnk2 — [pn -

In addition the coefficients must be chosen to satisfy the normalization condition

X
o C(im)C(jm)O'ij =1. (12)
i j=1

If the boundary curve I' of the membrane S has equation u(xy) = 0, a simple choice of the

approximate functions ®; (i=1,2,...,n) is to take
D1 = u(x,y), ®2 = xu(x, y), ®3 = yu(x, y)
D4 = X2U(X,Y), ®s = xyu(Xx,y), D6 = y2u(x,y), etc.

The variational approach to eigenvalue problems is useful not only in the derivation of
approximate solutions but also in the establishing of quite general theorems about the eigenvalues
of a system.

Problem 7.3.4. Find approximate values for the first three eigenvalues of a square membrane of
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side 2.

Solution. Here the membrane is bounded by the lines x = +1, y = +1.

Assume
and we obtain
256
O11 = 22—5,
256
Mi= 45

The determinantal equation is

O1 = (1 —x)(1 —y?),
Oz =X(1 — ) (1 - y?),

O3 =y(1 - x3)(1 —y?)

Then the first three approximate eigenvalues of the square are

ki =

whereas the exact results are

ki =

J
2

2

256
022 = 033 = {575 O12=023=031=0
3328
M2 =T33 = {575 M2 =T23 =T31 =0.
(k2 —5)(k2 —13)2=0
5=2.236, ko=ks= 13=3.606,
J
T 5
=2221, k2=k3= T=3942

Partial Differential Equations
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Check YouRr Progress

1. Avery large membrane which is in its equilibrium position lies in the shape z

f(r)

grz =z X2 + y2). Show that its subsequent d}spocl)acement is given by the equation z(r, t)

ET (&) cos(cét)d ((ér)dE, where € = rf(r)J, (ér)dr.

0 0

2. A square membrane whose edges are fixed receives a blow in such a way that a concentric
and similarly situated square area one-sixteenth of the area of the membrane acquires a
transverse velocity v without sensible displacement, the remainder being undisturbed. Find

a series for the displacement of the membrane at any subsequent time.

3. A membrane of uniform density o per unit area is stretched on a circular frame of radius
ato uniform stress oc2. When t=0, the membrane is released from rest in the position

X = g(@? — r?), where s is small, and r is thg distance from the center. Show that the

cos(¢nct/a
displacement of the center at time t is 8¢a? —G”—l, where &, is the nth positive

n=1 $n J1(6n)

zero of the Bessel function Jo.

4. Using the approximations ®1 =1 —7x2 4+ yZ, ®2 = X — X X2 + y2, O3 =y — y’ X2 +y?
show that the first three approximate values of the constant k in the solution f(r)e*",

c&escribing the t&ansverse vibrations of a circular membrane of unit radius, are K; =

6, Kz=Kz= 15.

Let us Sum up:

In this unit, the students acquired knowledge to

+ find D’Alembert solution of the one-dimensional wave equation.
+ find the motion of the string is governed by one-dimensional wave equation.

- the application of the Calculus of Variations in Vibraring Membranes.

Suggested Readings:

Partial Differential Equations M.Sc.(Mathematics)-11 Sem|



236 7.3. VIBRATINg MeMBRANes: ApplicaTION of THe CalcuLus of VaRIATIONS

1. M.D. Raisinghania, Advanced Differential Equations, S. Chand & Company Ltd., New
Delhi, 2001.

2. K. Sanakara Rao, Introduction to Partial Differential Equations, Second Edition,
Prentice-Hall of India, New Delhi, 2006.
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BLOCK-IV
UNIT 8

THE WAVE EQUATION-II

Structure
Objective
Overview
8.1 Three-dimensional Problems
8.2  General Solution of the wave equation.
Let us Sum Up
Check Your Progress

Suggested Readings

Overview

In this unit, we will illustrate the method to find the solution of three-dimensional wave
equation in Rectangular Cartesian Coordinates.

8.1 Three-dimensional Problems

In this section, we consider the three-dimensional wave equation

2 1 o2y
Vs = (1)

237
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8.1. Three-diMeNsIONAL PROBLEMS

8.1.1 Solution of the Three-Dimensional Wave Equation in Cartesian

Coordinates

Consider a three-dimensional wave equation

2y oy oty 1 oty
et e 1)
Let us assume the solution of the form
wix,y,z,1) = X)Y(Y)Z(2)T (1) (2)
Substituting equation (2) in equation (1), we have
11
XUYZT + XYVZT + XYZ'T = TV
c?c?
Dividing throught by XYZT, we get
Xy Yy ZV - 1T) = k2 (aseparation constant)
X Y Z T
implies
XU 1)
v —|2 Y— - _mZ
X Y
XU = —12X YU = —m2Y
XU +12X =0 YU +m2Y =0
X = c1 cosIx + ¢z sin Ix Y = C3cosmy + C4 sin my
ZY o2 1 TV
- = _ — = — k2
y4 CZ T~ k
ZV = —n2Z Tu = —k2c2T
ZV+n2Z =0 TV +Kk2¢c2T =0

Z = C5CcoSNZ+ CgSinnz

T = c7 cos ket + cg sin ket

Partial Differential Equations
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Then the solution becomes
WX, Y, z,t) = (c1 cos Ix+Cz sin IX)(C3 cos my +Cs4 sin my)(Cs cos nz+Cs sin nz)(C7 cos Kct +Cg sin Kct),

(3)

where k2 =12 + m2 + n2,

Problem 8.1.1. A gas is contained in a cubical box of side a. Show that if ¢ is the velocity of

sound in the gas, the periods of free oscillations are

2a

e —
2012 4n2
C Nnf+ns+ng

where nq, Nz, N3 are integers.

Solution. In this problem the governing equation is three-dimensional wave equation

2y oy oty 102y
et T e ()

The solution of (1) is

w(x,Y,z,1) = (c1 cos Ix+cz sin IX)(C3 cos my+Cs sin my)(Cs cos Nz+Ce sin Nz)(C7 cos ket +Cg sin kct),

(2)
where k? =12 + m2 + n2.

0
From the given data, solution (2) is valid in the space 0 _ (X,Y,2z) _ a and such that Y. 0 on
B - on

the boundaries of the cube. Therefore, the solution can be obtaine das follows

Trct

X
N{1X Ny N3TTZ
wxy,z,t) = An n,n, COS —_ COS my cos cos N3+ nf + ng
e a a a a

o

Nn1,N2,N3
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where ni, Nz, N3 are integers. The periods of the free oscillations of the gas are

2a

.
2 2 2
C n?+n?+n?

8.1.2 Solution of the Three-Dimensional Wave Equation in Spherical Polar

Coordinates

Consider a three-dimensional wave equation in spherical polar coordinates (r, 6, ¢)

!
32_L;J+ZQLQ+ 1 g sin@ﬂu+ 1 aZi=laz_q"_ 1)
or: r or r%sinf 90 80 r2sin2@ d@* c? ot?

Let us assume the solution of the form

w(r, 6,9, t) = W¥(r) Pﬂ(cog 0) eJ_riWPiikCt’ @

where W(r) is a function of r and P"(¢os 6) is the associated Legendre function. Substituting
equation (2) into equation (1), we find that W(r) satisfies the ordinary differential equation

d2¢  2d¥ n(n+1) 2

T+ T — O W+kw=o0. 3

drz T r dr r2 (3)
Put

W= r—lfR(r),

Equation (3) becomes

d?2R 1 dR (n + %)2.

— —+kz-1—— " R=

az Trar r2 iR=0. )
Ifn+L

is neither zero nor an integer, then tte solution of (4) is
R(r) = Al g (kr) + BJ_,_: (kr), (5)
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where A and B are constants and J,(z) denotes the Bessel function of the first kind of order v

and argument z. By symmetry property,

wr, 6+, @) =w(r,6,¢), wr 6 ¢+2m=y(r,6, ¢),

we take m and n to be integers.

Hence the function

([J[r, 9, (D’ t) = r_12 \]i(n+1](kr) Pr:n(cos e) eiim(PiikCt (6)

is a solution of the wave equation (1). The functions J.,,1(kr), which occur in the solution (6),
are called spherical Bessel functions.

If n is half of an odd integer, then

I
Jn(X) = ;ZX [ f(X) sin X — gn(X) cos X]
|

1 W= S0 g (9 sin+ F,0) cos ],

where fy(X) and g,(X) are polynomials in x~1.

1
Whenn = 2— fli(x) =1, gli(x) = 0.
3
+ When n = L fa(x) = 1/x and gs(x) = 1.

Then, we have

QU(F) — % Eiikriikct 4 (7)
W(r, 6) = % %[rk_rl — cos(kr) cos Be=* (8)

are particular solutions of the wave equation (1).

In the case of spherical symmetry, i.e,, if @ is a function of r and t alone, then it must satisfy

Partial Differential Equations M.Sc.(Mathematics)-11 Sem|



242 8.1. Three-diMeNsIONAL PROBLeMS

the equation
2y 20y 102y

wrtra T a ©)
Put g =%, we get
a2p 10%
arz ¢z otz

then
@ =f(r —ct) +g(r +ct),

where the functions f and g are arbitrary. Therefore, the general solution of the equation (9) is
1
w= _[f(r _ct)+g(r+ct)], (10)
r

where the functions f and g are arbitrary.

The function r=1f(r — ct) represents a diverging wave. Taking

1

1 r
P=Ym f ¢ (11)

to be the velocity potential of a gas, then the velocity of the gas is

_de _1 ro_1 r
U= =5 _477r2f t_c *4mme ! t_c

so that the total flux through a sphere of center the origin and small radius ¢ is
4mrezu = f (1) + O(¢).
The difference between the pressure at an instantt and the equilibrium value is given by

29 __p r
P=Po=Py =gp P t—¢ - (12)

Problem 8.1.2. A gas is contained in a rigid sphere of radius a. Show that if ¢ is the velocity of

sound in the gas, the frequencies of purely radial oscillations are céj/a, where &1, &, . .. are the
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positive roots of the equation tan ¢ = ¢
Solution. The given problem is governed by the given equation

2y 20y 102y

T E ()

subject to the condition that ¢ remains finite at the origin, and given that u = dy/or = 0 at

r=a.
Using the conditions, we find the solution of (1) is given by

w=A sin(kr) oiket

r

where A is a constant. Now,

#
U= oy _ A k cos(kr)  sin(kr) ket
or r 2

Applying the second condition, we obtain

tan(ka) = ka.

The possible frequencies are cé/a (i =1, 2,...), where &, &, ... are the positive roots of the

transcendental equation

tan € = ¢.

(2)
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8.1.3 Solution of the Three-Dimensional Wave Equation in Cylindrical

Coordinates

Consider a three-dimensional wave equation in cylindrical coordinates (o, ¢, z)

2y 1oy 12y oy 12w
7 P PR I E (1)

Let us assume the solution of the form
w(p, ©,z,1) = RNO()Z(2)T (1) (2)

Substitute equation (2) in equation (1), we get the following equations for each variables

|
d2R 1dR , m?’
+

aztrart W R0

dzo 2
L otmO=0,

dez
.,y Z=0,

dfiz? .
¥+kCT=0,

where
VZ:kZ_wZ_

The solutions of the form
W(p; o, Z, t) = \]m(wp)eikCt_iyZi_im(p,

where y is related to k and w. The phase velocity is

v=ke
|4
and the group velocity is
w="Y (ko=
dy k

Partial Differential Equations M.Sc.(Mathematics)-11 Sem|



8.1. Three-diMeNsIONAL PROBLEMS 245

Solution in terms of Hankel Functions

The general solution of (1) is

@, ¢, 2,1) = [Andn(wp) + BnYn(wp)]e" """, (3)

where Yy, (wp) denotes Bessel’s function of the second kind and Ay, By, denote complex
constants.

Relation between Bessel’s functions and Hankel functions are given by

HB(wp) = Im(wp) + iYm(wp),
HB (wp) = In(wp) — iYm(wp).

The the solution (3) can be written as

W(p, 9,2,1) = [AHO(wp) + BmHg)(wp)]e‘k”‘”r"““’. (4)

In case of axial symmetry (m = 0), we obtain solutions of the form

w(p, 2,1) = [AHO(wp) + BHO(wp)]e"-"", (5)
0 0

Now, for large values of p

HB( 2
0 W)~ mwp '

2 .
) 4 _ 1
Ho ( )N o i(wp . 1

(6)
soas p — o0, I

(z1t)~ _2 [Aei(kcuwp—ivztlﬁ Bei(kct—wp—iyztlﬂ)]
qu’ 1 7Twp 4 + 4 :

Thus the solution

wo(p, 2,1) = HEY (wp)e™ - (7)
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represents waves diverging from the axis p = 0, while the solution

wilo, 2,1) = HP (wp)e™ - (8)

represents waves converging to this axis.

In the two-dimensional case, the solution becomes

w(p, @, 1) = [Amenl)(kp) + BmH(i‘)(kp)]eikctiim(p o
with
wolp, ) = HO(kp)e™™
and
wi(p, t) = HBZ)(kp)eikct
respectively.

Problem 8.1.3. Harmonic sound waves of period 2mm/kc and small amplitude are propagated
along a circular wave guide bounded by the cylinder p = a. Prove that solutions independent of

the angle variable ¢ are of the form

w = eiket-) 3 énp
a

where &, is a zero of Ji(§) and yZ = k2 — (§/a?).

Show that this mode is propagated only if k > §,/a.

Solution. Since y is independent of ¢, then by taking m = 0 in equation, we obtain the solution
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of the form

W = Jo(wp)e'*-1), (1)

where y% = k2 — w?. The boundary condition is that the velocity of the gas vanishes on the

cylinder; i.e.,

0
Y_oonp=-a 2)
ap
Since J(x) = —Ji(x), and by condition Ji(wa) = 0; w = &/a, where &1, &, ... are the zeros of
J1(€). Then
y = et g, §P 3)
a
where y2 = k2 — (§%/a2).
For the mode given by equation (3) to be propagated we must have y real; i.e.,, k > &/a. [ |

Check YouRr Progress

1. Awave of frequency V is propagated inside an endless uniform tube whose cross section is

rectangular.

(a) Calculate the phase velocity and the wavelength along the direction of propagation.

(b) Show thatifa wave is tqbe propagated along the tube, its fre quency cannot be lower
c1 1,

+ , Where a and b are the lengths of the sides of the cross
2 az b2

than Vmin =

section.

(c) Verify that the group velocity is always less than c. Show that the group velocity tends
to zero as the frequency decreases to Vmin.

2. Show that the flux of energy through unit area of a fixed surface produced by sound waves of

o0p 0
velocity potential ¢ in a medium of average density p is _p_(p_(p. A source of strength

ot on
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Acos(ot) is situated at tgle origin. Show that the average rate at which the source loses

energy to the air is ey where c is the velocity of sound in air.
TTC

3. A symmetrical pressure disturbance poA sin kct is maintained over the surface of a sphere
of radius a which contains a gas of mean density po. Find the velocity potential of the

forced oscillation of the gas, and show that the radial velocity at any point of the surface of
!

o>

1
the sphere varies harmonically with amplitude ka oot ka .

8.2 General Solutions of the Wave Equation

In this section, we state the theorem to discuss conditions on general solutions of the wave equation
with @(r, t) and its normal derivative dy/dn are prescribed on a surface S.

Suppose that W is a solution of the space form of the wave equation
VW +kw =0 (1)

and that the singularities of W all lie outside a closed surface S bounding the volume V. Put

eik\r—rJ
)= ————
M r—r| (2)
we observe that if the point with position vector r lies outside S, then
f ( P iklr—p| iklr—r )
e e J
W) — C 9¥(Mys -, 3)
s onr—v| ir— on
By Green’s theorem, we have
) !
f ( ; 9 eikr—r) Je‘ik\rfr alp(rJ) dSJ . f ( 1 ] aw[rj]) giklr—r| i
w(r) — = 11m ik — —
s ( )an!r—p]— im0 o Ik r—d Wir)—"5p r—pl

r—r| on
and the value of the limit on the right-hand side of this equation is —4mW(r).

We now state the following standard theorems:
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Helmbholtz’s First Theorem.

If W(r) is a solution of the space form of the wave equation VW + k2W = 0 whose partial
derivatives of the first and second orders are continuous within the volume V on the closed surface
S bounding V, then

¢ . o
1 () 9 gkr—p glkir=r al-lJ(rJ))dSJ _ W) ifreVv
4T onlr—r [r— on 0 ifrev,

(1)

where n is the outward normal to S.

Helmholtz’s Second Theorem.

If W(r) is a solution of the space form of the wave equation whose partial derivatives of the first
and second orders are continuous outside the volume V and on the closed surface S bounding
V, if r¥(r) is bounded, and if

|
v .

For k¢ — 0
uniformly with respect to the angle variables as r — oo, then

I« g ekr—rl  glkr=r aw(rj))dsﬁ W) ifréVv (2)

onfr—p Yr— on 0 ifrev,

where n is the outward normal to S.
Weber’s Theorem.

If W(p) is a solution of the space form of the two-dimensional wave equation VW +k2W =0
whose partial derivatives of the first and second orders are continuous within the area S and on

the closed curve I bounding S, then

( ) |
1 w@) LHoke — @) — HOKE — 2 V@) gy V) IfRES

4i on 0 0 on

"0 ifeets,

where n is the outward normal to T.

Kirchhoff’s First Theorem.

If w(r,t) is a solution of the wave equation whose partial derivatives of the first and second
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orders are continuous within the volume V and on the surface S bounding V, then

(
[ ’ ’

a ! # #) :
1 —Wl 1 1 oA dw 1 dwT o, wnY, WP EV, (3)
41T ¢ on A cAon dt A on L0, i£P(r) £V,

where A = |r — | and n is the outward normal to S.

Kirchhoff’s Second Theorem.
If w(r,t) is a solution of the wave equation which has no singularities outside the region V

bounded by the surface S for all values of the time from —oo to t, and ifas r — oo,

flct=1r)
Wiy~
where f(u), fJ(u) are bounded near u = —oo, then
(
J- Q ' n # n #) ' .
1 Wl = 17 _10A aw 1 dw gs) = W, ifP() eV (4)
41T ¢ on A cAon dt A on 0, ifP( 2V,

where n is the outward normal to S.

Let us Sum up:

In this unit, the students acquired knowledge to

+ find the solution interms of Hankel functions.

Suggested Readings:

1. M.D. Raisinghania, Advanced Differential Equations, S. Chand & Company Ltd., New
Delhi, 2001.

2. K. Sanakara Rao, Introduction to Partial Differential Equations, Second Edition,
Prentice-Hall of India, New Delhi, 2006.
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UNIT 9

THE DIFFUSION EQUATION

Structure
Objective
Overview

9.1 Elementary Solutions of the Diffusion
Equation.

9.2  Seperation of Variables.

9.3  Solution of Diffusion Equation in Cylindrical
Coordinates.

9.4  Solution of Diffusion Equation in Spherical
Coordinates.
Let us Sum Up
Check Your Progress
Suggested Readings

Overview

In this unit, we will illustrate to find the one-dimensional Diffusion Equation and

two-dimensional Diffusion Equation.
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In this chapter, we consider the one-dimensional diffusion equation

26 90
koxz = ot

which is parabolic type equation. The generalized form of diffusion equation is given by
26 =%,
ot
where K is a constant.

26
CIFVE 52 92 then kV? — is called two-dimensional di usion equation.

- — _+ 0= ff
o + ay?’ ot 30
cIf V2 _ 3_2 + 3_21 then kV, — iscalled three-dimensional di usion equation.
o2 ayr A 6= ot ff

9.1 Elementary Solutions of the Diffusion Equation

In this section, we consider elementary solutions of the one-dimensional diffusion equation

026 106 .
X K ot .
Consider the expression
1
0 - 7_ e,x2/4;<t, (2)
t
then
g_ig = XZ —x2/4/<t_ 1 e—x2/4Kt
4Ktz 2Kt2
and
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0’6 06

substituting the above expressions of X and 2 in (1), we observe that it satisfies (1) and hence

the expression (2) is a solution of the equation (1).

Again, we consider the another expression

0= oo, 3)

where ¢ is areal constant. Itis easy to verify that expression (3) is also a solution of equation (1).

If @(X) is a bounded function on real numbers, then the Poisson integral

0 _ ; f ” f) ef(xff)2/4xtd§ 4
(x,t)_2¢ﬁ oofp( (4)

is also, in some sense, a solution of the equation (1).

Problem 9.1.1. Prove that the Poisson integral

1 =
o, = %ﬁ @(&) e~ v 9TgE

— 00

is the solution of the one-dimensional diffusion equation with initial condition

0’6 106

(5)
6(x, 0) = ¢(x) is bounded.

Solution. It is easy to observe that the integral (4) is convergent if t > 0 and that the integrals
obtained from it by differentiating under the integral sign with respect to X and t are uniformly

convergent in the neighborhood of the point (X, t).

The function 8(x, t) and its derivatives of all orders therefore exist for t > 0, and since the

integrand satisfies the one-dimensional diffusion equation, it follows that 6(x, t) itself satisfies
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that equation for t > 0.

Now
1 J

P(Ee-C-9"dE — o(x). =l 140 - ),

— 00

RIS

*2(mkt)

where

Iy J
[ {p(X+2u k) - ()} e-*"du

T e(x+2u ke du

Taking N sufficiently large and if the function @(X) is bounded, the integrals I, I3, s are small
and by the continuity of the function ¢, and for sufficiently small values of t, the integral I
becomes small. Thus as t — 0, 8(x, t) — @(x), i.e, 6(x, 0) = ¢@(x). Hence, it is proved that the

Poisson integral (4) is a solution of the initial value problem (5). [ |

Remark 9.1.1. Put u = (Xl_{ 9 in the solution (4) of the IVP (5), can be written as
2 Kkt
1/~

Voo
6(x, t) = @ @(x+2u ke du. (6)

— 00
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Problem 9.1.2. Solve the boundary value problem (BVP)

9”20 106

KA 0= x<eo
0(x, 0) = f(x) x>0 (7)
6(0,t) =0 t>0.

Solution. If we write

f(x) for x>0
ox) = _
" —f(—x) for x <0,

then we rewrite the Poisson integral (4) as

I o

1 : :
Q(X, t) - \/_ f(f) e—(x—gz/t}xt _ e—(x+§)z/4Kt df (8)
2 Tkt o

It is easy to verify that (8) is the solution of the boundary value problem (14). [ |

Problem 9.1.3. Solve the boundary value problem (BVP)

026 106
K 0=x<oo
8(x,0) =0 x>0 (9)
6(0,1) = 6o t>0.
Solution. The solution (8) can be express in the form
) J
17 Voo e 10 v o
o(x,t) = f(x+2u kt)e~"du—"" f(—x+2u kt)e"du. (10)
J - v
T X T X
2 VKt 2V Kt
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Thus if the initial temperature is a constant, 6y say, then

( )
B(x, 1) = 6o erf V= (11)
2 ki
where
2 .
erfz= \/_ e—u du (12)
T o
The function
n !#
6(x,1) = 6 1 — erf 2—\¢X: (13)
Kt
will therefore have the property that 6(x, 0) = 0. [ |
Problem 9.1.4. Solve the boundary value problem (BVP)
026 106
K 0=x<e
0(x,0) =0 x>0 (14)
6(0, 1) = g(t) t>0.
Solution. Thus the function
n |#

6, t,t) = g(t) 1 — erf z—v%

is the function which satisfies the one-dimensional diffusion equation and the conditions

6(x,0,t) = 0, 6(0,t,) = g(t). By applying Duhamel’s theorem it follows that the solution
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of the boundary value problem
0(x,0) =0, 6(0,t) =g(t)
is

| «
oxn=",_ =  9®)dy e~ du
ot !
m | 0 X/2(Kt—Kb) 2
X t p— X2/ 4K(t—4)
= \/— g(t) — dv.
2 K o t—1t):

Changing the variable of integration from ¢ to u where

X2
e

we see that the solution may be written in the form

o]

X2| X

2 !
o, t) ="/ gt ____ e-udu, n-= —
\/rr n 4Kl - 2 kKt

9.2 Separation of Variables

In this section, we derive the solution of the diffusion equation

29_1@

v T Kot

by using the method of the separation of variables.

(15)

(1)
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9.2. SeparATION Of VaRrIABLeS

Let us assume the solution of the form

6=0(nNT(),

Substituting equation (2) in equation (1), we get

_1.dT

2
v P=wT dt

1
%

then the governing equations of the functions T and ¢ is of the form

T, ent = 0
dt
(VZ+A2)@ =0,

where A is a constant which may be complex.

The solution of linear first order equation (3) is
T(1) = e
Thus the general solution (2) of equation (1) takes the form
o(r, ) = p(r)e~""",

where the function @ is a solution of the Helmholtz equation (4).

9.2.1 One-dimensional Diffusion Equation

Consider the one-dimensional diffusion equation

0’6 106
X2 K ot

(2)

(3)
(4)

(5)

(1)
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Let us assume the solution of the form

O(x,t) = X(X)T (1)

Substituting equation (2) in equation (1), we get

XU
X

Then we have

dzx
The following three cases arises:

Case | Let ¢ > 0, then ¢ = A2, we get
dzX 2
o AX=0 and

which gives

X = c1e™ + cze—,

Case Il Let ¢ <0, then c = —A%, we get

X,

§+AX=O and

which gives

X = ¢ 1cos AX + C 2sin AX,

Case Ill Let ¢ = 0. Then

dz2X

o 0 and
which gives

X = C1X +Cz,

(2)

= —J = ti tant
= — =C, d Separation constan

=0
= 0.
dT 2
at aA T =0.
T = ce™®,
dT )
at +aA T =0.
T =ce M
dT
a= 0
T =c3.

Partial Differential Equations
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Thus, various possible solutions of the diffusion equation (1) are
O(x,t) = (cae™ +dre")e?"
B(x, 1) = (¢ casAx+d sinAx)e-"

O(x,t) = cxx+d,

where

C, = C1C3, d, = c2Cs.

Problem 9.2.1. The faces x= 0, x=a of an infinite slab are maintained at zero temperature. The
initial distribution of temperature in the slab is described by the equation 6=1f(x) (0 < x < a).

Determine the temperature at a subsequent time t.

Solution. The temperature function 6(x, t) which satisfies the one-dimensional diffusion equation

0’6 106

= _ . 1
ox¢ K ot (1)

From the given problem, we get the following boundary conditions

(i) 6(0,t) =0 forall t > 0.
(ii) 6(a,t) =0 forall t > 0.

(iii) 6(x,0) = f(x), 0<x<a

The possible solutions are

0, t) = (cre™ +de)et
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B(x,t) = (C cosAx+d simAx)e—"*"

e(X, t) = C/\X+d/\

The most suitable solution satisfying the boundary conditions of the given problem is

B(x, 1) = (4 cos AX + da sin Ax)e—" )

Applying the boundary condition (i) in equation (2), we get

0 = cae—"",
Here e~ /= 0, since itis defined for all t.
cy=0
Substituting ¢, = 0 in (2), we get
6(x, t) = da sin Ax e, (3)

Applying the boundary condition (ii) in equation (3), we get

6(a,t) = disinAa e—*t = 0
sinAr=0 (Fch /=0 & et 0)

Aa=nrr
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where n is an integer.

Hence the solution is

. n _ knlmlt
B(x,t) = d,sin 4 e

By the principle of superposition, the most general solution is

X
. n7TX _KI'IZTI2
o(x,t) = d,sin —— e .
1 n a
n=1

Applying the condition (iii), we get

oo

- n
0(x,0) =  dysin =™ _
n=1 a
P n
f(X) = dn Sln -
n=1 a

which is a half-range Fourier Sine series in the interval (0, a) and therefore the d, can be obtained

using the Fourier coefficient formula,

I
2t nmu
d =~ f(Wsin — du.
= fl@sin T
Thus, the general solution is
IIJ' #
2 X0 a nmmu n k2t
o(x,t) = = in —— in —— e & . [ |
(x1) a . Of(u)sm a du sin q ©
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Problem 9.2.2. Solve the one-dimensional diffusion equation in the region 0 < x < m, t > 0,

subject to the conditions

(i) T remains finiteas t — o
(i) T=0,if Xx=0 and m forall t

X, 0<x<7%
(i) Att=0, T =
‘T—x, T<x<m

Solution. The one-dimensional diffusion equation is

aT 02T

The possible solutions are:

T(x 1) = (cie™+cae")e™"
T(X,1) = (CicosAX+cCzsinAx)e-*"
T(x,t) = (cix+cz).

Ast — oo, ™ — co, this violates the first boundary condition hence we reject the first solution.

Applying the boundary condition (ii), the third solution gives

0=c1:0+cy, O=c1-m+cC

implies that ¢1 =0 and ¢z =0 and hence T =0 for all t which is a trivial solution.

Partial Differential Equations
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The suitable solution satisfying the conditions is

T (X, 1) = (Ct cos AX + Cz sin Ax)e~",

Applying the boundary condition T = 0 when x =0 in (2), we have

0 = (c1 cos AX + Cz sin AX)|x=0

implying c1 = 0 since e /= 0 defined for all t. Then the solution (2) becomes

T (X, 1) = c2 sin Ax e,

Applying the boundary condition T =0 when x = 17 in (3), we get

. 2
0 = casin Arr et

= sinAm=0
= ATT=n1T
A=n

where n is an integer.

Equation (3) becomes

T(xt) = csinnx e=",

(2)

(3)
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By the principle of superposition, the most general solution is
X 2.
T(X,) = Casinnx e™" (4)
n=1
Applying the condition (iii), we get
T(x,0) = Cp sin NX
n=1

which is a half-range Fourier-sine series and, therefore,

[ w
Ch = 0 T (X, 0) sin nxdx i 4
“ . Xsinnxdx + (rm — X) sin nxdx
_ 2 2 J‘71/2
T o
- Cosnx  sin nx ™2 T @cos NX  sin nx ln
= T —X - 2 - TT - + 2
m n n 0 n n /2
4 sin(n11/2)
Cn = - - .
n2rmr
Thus, the required solution is
4> 1 . :
T(xt) = - sin. — = sin(nx) e-""". -
n=1

9.2.2 Two-dimensional Diffusion Equation

0’8 926 106

W-i-avzzﬁ (6)
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Let us assume the solution of the form

6(x,y, ) = XLAYWIT (0. (2)

Substituting equation (2) into equation (1), we get

&+Y'U=1B]=—A2.

X Y af

Then B + aA2B = 0 whose solution is

B = e~
and
X %
X =— A2+Yy = —p? (say)
Hence,
XV+p2X =0

)
¥ = A2+ p2 = —qi(say) = YU+ GRY = 0.

which gives
X = Acos px + B sin px

and
Y =Ccosqy + Dsinqy

Thus, the general solution of the given PDE is

T (XY, t) = (Acos px + B sin px)(C cos qy + D sin qy)e-""*

where
A2 = p2 + Q2.

The solution X X

o(x.y, 0 = Cau cos(AX + £4) cos(py + en)e—+ K (7)
Ao
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of the two-dimensional equation which we derived in Sec. 9 of Chap. 3 may be treated in a
precisely similar way (cf. Prob. 3 below).

9.3 Solution of Diffusion Equation in Cylindrical Coordinates

Consider a three-dimensional diffusion equation

aT
at = GVZT

In cylindrical coordinates (r, 6, z), it becomes

10T 02T 10T 12T 07T
aot o ‘rar Treet a2 M

where T =T(r, 6, z,1).

Let us assume solution of the form
T(r,6,z,1t) = R(NO(O)Z(2)D(1). (2)

Substituting equation (2) into equation (1), we get

RVOZO + lRJOZ(D +_1 ROYZD + ROZYOD = @ RoZ

r r2 a

Dividing by ROZO
L RLIRL 10,2 10y

R rR r2oe Z ad

where —A? is a separation constant. Then

Q
6 = —AZ = CDJ + CMZCD = 0 (3)
RLIR, 100, 2. e
R rR r¢o z
RCGCIR 10 .,  ZV=—p2 (say).
R*rRY*re M ""7

1
a
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yil
-2 > - wz=0 (4)
) J
RELESLFv
o gR TR ?o o
r2 +r _ +A2+p3r2=—_ =2 (say).
C]

R R
oY
"o =V¢ > H+vH=0 (5)
1
y = N
R +rRJ+ (AZ +u2)_-r\v2L R—O (6)

Equations (3), (4) and (5) have particular solutions of the form

D = e—aAZt
H = ccosvB+ DsinVvl

Z = Ae"+Be M.

The differential equation (6) is called Bessel’s equation of order v and its general solution is
known as
RN =c1dy, A2+ p2r +coYy, A2+ p2r (7)

where J,(r) and Y,(r) are Bessel functions of order v of the first and second kind, respectively.
Equation (7) is singular when r = 0. The physically meaningful solutions must be twice
continuously differentiable in 0 < r < a. Hence, equation (7) has only one bounded solution,
Le.

R()=J, > AZ+p2r.

Finally, the general solution of equation (1) is given by

T(r,6,2,t) = e—""[Ae"” + Be—"][ccos VO + Dsinv8]J, A2+ pr .

Problem 9.3.1. Determine the temperature T (r, t) in the infinite cylinder 0 < r < a when the

initial temperature is T (r, 0) = f(r), and the surface r = a is maintained at 0° temperature.
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Solution. According to the problem, the governing equation is

at=aVZI'

where T isafunction of r and t only. Therefore,

02T 10T 10T
o ror  aot

The corresponding boundary and initial conditions are given by
BC: T(a,t)=0
IC:T(r,0) = f(n).

The general solution of Eq. (3.63) is
T(r,t) = Aexp(—aAZt)Jo(Ar).
Applying the boundary condition T (a,t) = 0, we get

0 = Aexp(—aAzt)Jo(Aa)

implying that Jo(Aa) = 0 which has an infinite number of roots, éa(n =1,2,...

By superposition principle,

X
T(r,t) = A,exp(—a&t)do(éar).

n=1
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Now applying the initial condition T (r, 0) = f(r), we get

X
f(r) =" Ando(ér).

n=1
We employ the orthogonal properties of Bessel functions to determine A,

Multiply both sides of the above equation by rJo(énr) and integrate with respect to r from 0
to a, we get
J . J

arf(f)J { &mr)dr i A, aJo(fmf)JO(fnf)dr
0

0 n=1

0o, forn m

a?’
An ) J2(§ma), forn=m

which gives 9 I,
m T a23i(gMa) °
0 fm
Hence, the solution is
X IIJ‘ a #
T(r,t) = 2 Jolénr) exp(_aét) uf(u)Jo($mu)du . |
az 1 J%(fma) 0

9.4 Solution of Diffusion Equation in Spherical Coordinates

Consider the three-dimensional diffusion equation in spherical coordinates

!
FT, 20T, _1 8 odT 1 &T 1T

a7 T ror T r2sing 06 99  r2sin20d@: adt’
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The above equation can be written as

02T 20T 10T cos B oT 1 02T 10T

e e Tsm8d8  renioder  aat (1
Let us assume the solution of the form
T =R(No()O(p)B(Y). (2)

Substituting equation (2) into equation (1), we get

cos 6@

RIODR + 2RIODB +— ROIDB + RODB + Ro®IB = LRoODR!.
r r2 r2 sin 6 rzsinz 6 a

Dividing by ROOS,

RVL,2R  10OY  cosf O, 1 o _18_ _j (say)

R TR r2e rsinf0 r2sinz26® af

where A? is a separation constant. Then,

18 —A2 = B +aA2B

aB” =0
RULZR 1OV cosf & 1 @ -
R TR 1O MPsmdo rZsinffd
n #
I J
rzsinZG% +25+leﬂ+ cosd @ _,_/\zrzsinzg:_cg‘ = m? (say)

rR rzg r’sin @ 0
»

—=m? = @®+m20 = 0
n m GJ#
2 .2, RV 2R 10V cosB +Ar2sin2 = m2
r“sin“0 — +—— + ——+ —
wR TR 20 1r?sinf@
RIC oR 2p2 m? o cos@@l# 1
2 2R 4T O | cosfO =n(n+)(say)

R TR sin6 | © sinf @#
m2n @JJ + t%e%’ _ n(n+ 1)

+cotOGnz n(n -IE) sinf

r

o + - ©@=0
sin2 6
20 ! L #
-— n(n+1) — -0 =
gz * 008 + nn+1) =50 = 0
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n #
JR2RT
2r R * IR +1/\7_ér = n(n+1)
RV + TR + /\2+ﬂ(n;1 R=20
r r2 4
o°R " nn+1
—+@+ 2+_(4- R = 0.
or ror r2

Then, the particular solution of the form

:8 - CefaAZt

O(Q) = 1™ +ce™,

Let R(r) = (Ar)~H(r), then

R = (AN Hr) A )~ H(r)

1 (A r)zfrf H() 31— HN)
RV = (Ar)3 H(r) — : + ’
r

4r2
On simplifying, we get

n+!

Z HN =0

HI) + T + 2 —

which is Bessel’s equation of order n+ 1 whose solution is

H(r) = A'Jn+1,(Ar) + BYn+1,(Ar)'

Therefore,
R(r) = (Ar}y 1 [Adn 5 (Ar) + BY,,, 1, (Ar)]
where J, and Y, are Bessel functions of first and second kind, respectively.

Now, by introducing a new independent variable [ = cos 8 so that

oo - G0 M

1—sinzg 1=
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dH _ s ,dH
o = — ' M
dzH 2 dzH dH
dez = (1—H)d_uz—I1Fu-
n mz #
Then (1_2)d2H_2d_H nin 1) — H 0

Hoge  Map® T 1o

which is an associated Legendre differential equation whose solution is
H(8) = CP"(W) + DQ"(H)

where P"() and Q"(W) are associated Legendre functions of degree n and of order m, of first
n n

and second kind, respectively. Since the solution is singular for r = 0, the solution must be twice

continuously differentiable implying that B = 0, therefore

R() = (/\r)‘%AJmli(/\r).

The continuity of H(6) at 6 = 0, 7 implies that the continuity of H(6) at J = =1. Since Q")
has a singularity at 4 =1, we choose D =0, then

H(6) = CPY(H).

After adjusting the constants, we have

+ime—aAzt

T(r, 6, 9,1 = AR 2., (Ar)Pcos O)e

By the principle of superposition, we have

x B |
Tn6 o= Am@Ar) 23, (Ar)PMcos G)e et

Amn

which is the required solution.

Problem 9.4.1. Find the temperature in a sphere of radius a, when its surface is kept at zero
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temperature and its initial temperature is f(r, ).

Solution. The governing equation is

!
19T _@T 20T, _1 9 g ooT

aot - aZ ror Fresineoe U g (1)

subject to

BC: T(a6t)=0

IC: T(r,6,0)="1(r,6).

The general solution of (1) is

X ot
T 60= An(An) 23, ,(Ar)Py(cos e~ 2)
An

Applying the boundary condition T (a, 6,t) = 0, we get

X 1
0= An(4a) zJ,,.(Aa)Py(cos B)e™ ™
An

implying that J,,: 2{/\&) = 0 which has infinitely many positive roots. Denoting them by &, we

have

oo o0

X X 1 e i
T0.0=  Aggn milEnPlcos8) exp(=ag D). 3)

n=0 i=1
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Now, applying the initial condition T(r, 6, 0) = f(r, ), we have

XX -
f(r,0) = Ani(&ir) 2,1 (&RPy(cos 6).
n=0 i=1
Denoting cos@ by U, we get
XX
f(r, cos—1(p)) = Ani(&ir) 23,5 (GNP ().
n=0 i=1

We employ the orthogonality properties of both Legendre’s and Bessel’s functions to determine

Ani

Multiplying both sides by Pn(H) and integrating between the limits, —1 to 1, we obtain

[ X X - I
f(r, cos~(W))Pm(W)dp = Aui(§r) 2J,5(&0  Pm(H)Pa(H)du
) ::;? i=1 ~ ) !‘
= (&R 2J ..
. Aml(flr) m+7 2m + 1
or | .
2m+1 ! 1 X -,
2 _frcos (W)Pm(WdM = iey Ami(&ir) )
form=0,1,2,3,....
Since
) 0, forn=m
Pm(lJ)Pn(LOdH = . 2
—1 =
S om a1’ forn =m.

Now, multiply both sides of the above equation by rzEJ,ml (§;1) and integrate with respect to r
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between the limits 0 to a and use the orthogonality property of Bessel functions, we get

#
IJ' n
b 2L T g (g T b, cos-1 ()
j 2 0 x 2 f -1
- = Ani aer+{(§ir)Jm+1f(§jr)dr
i=1 0 2 2
) 2
=Amj? ‘]ﬂn,,lz(gir)
Since
[ a 10, fori ]
0 2 2 2
31N o
er+1(§ir)‘]m+1(§Jr)dr = 522 , fori=j.
] ‘ 2
Amp= _@M+DE  Frag(grdr I T Pa)f(r, cos—(w)dy 4)
a2 ) 7( r) 2 m+,
~1
The required solution is m+12 §j ’
X -1
T(r6 =" Anj(§ir) 2J,,4(&r)Pn(cos 6) exp(—aszt)
m,]j
where Apj’s are given in (4). [ |

Check Your ProgRress

1. Solve the one-dimensional diffusion equation in the range 0 < x < 2m, t > 0 subject to the
boundary conditions

B(x, 0) = sin3 x for0 < x <2m

6(0,t) =6(2mt) =0 fort > 0.

2. The edges x = 0,a and y = b of the rectangle 0 < x < a, 0 <y < b are maintained at zero
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temperature while the temperature along the edge y = 0 is made to vary according to the
rule 6(x,0,t) = f(x), 0 <x<a, t >0. If the initial temperature in the rectangle is zero,
find the temperature at any subsequent time t, and deduce that the steady-state temperature
is

2 X sinh[mm(b — y)/a] |

= . m . mzu

a m=1  sinh(mmb/a)  sin e, f(u) sin T gy

3. Acircular cylinder of radius a has its surface kept at a constant temperature 8o. If the initial
temperature is zero throughout the cylinder, prove that for t > 0

2 X '
Br)=6 1— Mﬂ@_e—em

a . &ndi(6a)

where £&1, £&, ..., ¢, ... are the roots of Jo(éa) = 0.

Let us Sum up:

In this unit, the students acquired knowledge to

+ solution of Diffusion Equation in Cylindrical Coordinates.

+ solution of Diffusion Equation in Spherical Coordinates.

Suggested Readings:

1. M.D. Raisinghania, Advanced Differential Equations, S. Chand & Company Ltd., New
Delhi, 2001.

2. K. Sanakara Rao, Introduction to Partial Differential Equations, Second Edition,
Prentice-Hall of India, New Delhi, 2006.
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BLOCK-V
UNIT 10

INTEGRAL TRANSFORMS

Structure
Objective
Overview
10. 1  The Use of Integral Transforms.
10. 2  Partial Differential Equations.
Let us Sum Up

Check Your Progress

Suggested Readings

Overview

In this unit, we will we discuss the use of the Laplace and Fourier transform to obtain
the solution of the diffusion equation.

10.1 The Use of Integral Transforms

10.1.1 Solution of Diffusion Equation by Laplace Transform

Consider the diffusion equation
0

D

1
ve=" " ey

QD

279
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in the region bounded by the two surfaces S1 and S, the initial condition

6=1f(r) when t=0

(2)
and the boundary conditions
a0+ bla_i = g1(r, t) on S; (3)
az0 + bza_e = ga(r, 1) on Sy, (4)
n

where the functions f, g1 and ¢z are prescribed. The quantities ai, az, b1, b, may be functions of
X,y and z, but we shall assume that they do not depend on t.

Using Laplace transform technique, we solve the equation (1) with the initial and boundary
conditions.

The Laplace transform of the function 6(r,t) is given by

[ o
o(r,s) = o(r, t)e—"ldt.

(5)
0
Taking the Laplace transform with respect to t on both sides of equation (1), we have
n ae #
: : 1=;s
2 . - 1 )
L VO(r,t);s =L K ot
TR S -
vee(rs)="n }

s6(r,s) —6(r,0) ( .0 6(r,s) =L[O(r,1);9] )

VZ_Q(r, s) —ng(r, s) = —Kl f(r)
(V2 - k3L s) =~ 1 (), (6)

where k? = . and 6(r, s) satisfies the nonhomogeneous Helmholtz equation. Also the Laplace
transform of the boundary conditions (3) and (4) becomes

a19+b16_a=g_(r,s) on S; 7)
1

a29+bzg_§=g_(r,s) on S».
2

(8)
on
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10.1. The Use of INTegRAL TRANSfORMS 281

We can determine the function 8(r, s) satisfies the equation (6) with the boundary conditions (7)
and (8). Then the temperature function 6(r, t) is determined by the Laplace’s inversion transform
and is given by

1 f C+ioo_
o(r,t) = __. o(r, s)e’'ds.
2m c—ioo 329
Problem 10.1.1. Determine the function (r t) satisfying 106 106 ¢ 00 r a
9. awtroTka T S °
and the conditions (r, 0) = 0, 6(a,t) = f(t).
Solution. Given
06 1096 106 (50 0 )
b=, >0,0<r<a
ar2+ ror K ot (1)
subject to the condition
6(r,0)=0 (2)
6(a,t) = f(1). (3)
The Laplace transform of the function 6(r, t) is
[
O(r,s) = L[6(r,1); 5] = o(r, He—*'dt. (4)
0
The inverse Laplace transform of 6_(r, s) is
Grt-_lfcmo_ std 5
(nt)=". o(r, s)e*'ds. (5)

c—ioo

Taking the Laplace transform with respect to t on both sides of equation (1), we have

n # n # n #
00 1, 96 d
s + L

L — ;S L —/;s
or r or

1
Kk ot
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282 10.1. The Use of INTegrAL TRANSfORMS

a6(r,s) 108(rs) 1 08rsl (r0)
6
+ = " !

or? r or K ot

Using the initial condition 6(r, 0) = 0, we get

0%6(r,s) 1 96(r,s) sa6(r,5s) 0
+ _ — =

or? r or K ot 6)
which is a Bessel’s equation of order zero.
The Laplace transform of the boundary condition 6(a, t) = f(t) is
B(a, s) = f(9), (7)
where f_(s) is the Laplace transform of the function f(t). The solution of equation (6) is
(r, s) = A lo(kr) + B Ko(kr). (8)

Using the physical condition of 8(r, t) and hence O(r, s), cannot be infinite along the axis r = 0

of the cylinder, then the solution (8) becomes
6(r, s) = A lo(kr).

Using the boundary condition (7), we have

o(r, 5) =-f(s) 2
lo(ka)
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S
where k2 = ~. The solution of (1) becomes
K

I

= __ f
o(r, 1) om (S)Io(ka)e
If _:0(::;): is the Laplace transform of the function g(t), i.e., if
0
. 1 f CHico |0[kr] estds (8)
W ami o w® ®
then by convolution theeorem, we have
Iy
o= f(¥)glt—t)dt. 9

To evaluate the contour integral (8), we note that the integrand is a single-valued function of s, so

that we may make use of the contour. The poles of the integrand are at the points

S=Sn=_K§ﬁ n=1,2,...,

where the quantities &1, &, ..., &, ... are the roots of the transcendental equation

Jo(ad) = 0. (10)

Taking the radius of the circle MNL to be k(n+ )2 m2/a?, there will be no poles of the integrand

on the circumference of the circle, and from the asymptotic expansions of the modified Bessel

functions lo(kr), lo(ka) it is readily shown that the integral round the circular arc MNL tends to

the value 0 as n — co. We may therefore replace the line integral for g(t) by the integral of the
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284 10.1. The Use of INTegrAL TRANSfORMS

same function. The residue of this function at the pole s = s, is

lo(iré)et  2K& Jo(reF"

= 11
A2ikE)n(aE) T ahag) ()
since 11(X) = I{(x). Thus x
g(t) - ooZKénJO( rén)e_KQ:t. (12)
o adi(adn)
Substituting (12) into (9), we obtain the required solution of (1) is given by
26 X g1ty |
o(r,t) =" = f()e e tgt (1)
a n=1 Ji(aén) 0
where the sum is taken over the positive roots of the transcendental equation (10). [ |

10.1.2 Solution of Diffusion Equation by Fourier Transform

In this subsection, we discuss the solution of diffusion equation using Fourier transform technique.
Recall the basic definitions of Fourier transform:

- Fourier transform of f(t) is

o0

FIFO;s] = F(8) = 7= f(e™dx
21

+ Two-dimensional Fourier transform of f(x,y) is

[e9) [e9)

FLf(x,y); € 1] = F(E ) —; £ (x, )€ Mdxcly.
m

+ Three-dimensional Fourier transform of ff (X, )1 7) }s

FIf(xy,2;6n. ¢ =F(&n Q=

f(x, y, 2)e'C*M*Adxdydz.

3
2 —0 —00 —00

(2m)

+ Generalized Fourier transform of f(r) is
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e =
_1 ip . r
F[f(r); p] = F(p) = f(re® - dr,
(ZTT]Q —00 —o00 — 00
X Z 3
n times
where r is n-dimensional vector, i.e., r = (X1, X2, ..., X;) and dr = dxidxz . .. dx,.
. . ) 06
Problem 10.1.2. Find the solution of the equation K 20 = __ for an infinite solid whose initial

distribution of temperature is given by 6(r,0) = f(r), where the function f is prescribed.

Solution. Given

a6
Ko20= __ 1
70" o (1)
subject to the initial condition
6(r,0) = f(r). (2)

Here we consider the three-dimensional diffusion equation, i.e., r = (X, Y, ).

The three-dimensional Fourier transform of 6(r, 1) is

)
o(p,) = 2m~*  6(r, t)e'® - Ndr, (3)

where p = (¢, n, {), dr = dxdydz and the integration extends throughout the entire xyz space.

Taking the Laplace transform of the given equation (1) and initial condition (2), we get the

ordinary differential equation with initial condition

4, ipe=0 (4)
dt

©(p, 0) = F(p), (5)
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where F(p) is the Fourier transform of the function f(r). The solution of equation (4) subject to

the initial condition (5) is
o(p. 1) = F(p) e~". (6)
Let
G(p) = e~ (7)

is the Fourier transform of the function

g(r) = (2kt)* e-"1x (8)

Equation (6) becomes
o(p. 1) = F(p) G(p). (9)
By the convolution theorem of Fourier transform, the solution of (1) is

6(r.1) = (f x 9)(})

= (2m~  f(M)g(r — r)de

I
o(r,t) = (k) f(r)e-I"-""/*qp, (10)

where the integration extends over the whole XYz space. If

us=(u,v,w) = (4K’[)‘§1 (r—r
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The solution (10) reduces to

f —o00 f — 00 f — 00
2 2 2
o(r,t) = -2 f(r+2u ~kt)e— " *Idudvdw
which is known as Fourier’s solution. [

Check YouRr Progress

1. Use the theory of the Laplace transform to derive the solution of the boundary value

problem:
0?6 196

Kot
6(0,1) = (1), 6(a,t) = 0, B(x,0) = 0.

0<x<a t>0

2. If 6(r, ta)2 satisfies the equations

(i) 106 106

— , T T _-"—-0=<r<at>0
ar2+r o k ot

(ii) 9r,0)=f[r)0srsa

(i) —+h8 _gt>o0
or

r=a
show that < g e [
2 “e it Jo(&ir a
o(r,t) =~ - o) > uf(u)Jo(u)du,
a2z ; (M2 +8)[J(Ga)]* o
where the sum is taken over the positive roots 1, &, ..., &, ... of the equation
hdo(asi) = &iJi(ado).
T
3. Using the Fourier sine transform (¢ t) = er . B(x, t) sin(éx)dx, show that the
o 1 I
Poisson integral 6(x,t) = 2 Vit F(€) e 00K _ g-0u8t 4g and B(x, 1) =
n '# 0

"
B 1 — erf Z_VLH are the solution of one-dimensional diffusion equation.
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10.2 The Use of Green’s Functions

In this section, we explain the procedure to determine the solution of diffusion equation using
Green'’s function.

Consider the diffusion equation 20

at

in the volume V, which is bounded by the simple surface S, subject to the boundary condition

= K 20 (1)

or,f) =o(rt ifres (2)

and the initial condition
6(r,0) = f(r) ifreVv. (3)

Define the Green'’s function G(r, r, t — t) (t > t) satisfies the equation

dG
— =K VZG (4)
ot
the boundary condition
G(r,r,t—-t)=0 if es (5)
and the initial condition that lim G is zero at all points of V except at the point r where G takes
t—t
the form . " | i
r—r
L P Tt — (6)
8[mK(t — )] K(t — )
since G depends on t only in that it is a function of t — t, then equation (4) becomes
dG
— +K VZG =0. (7)
ot
The time v lies within the interval of t for which equations (1) and (2) are valid, we have
06 5
el kV0 t<t (8)
o(r,t) =@, t) if PeSs. (9)

Partial Differential Equations M.Sc.(Mathematics)-11 Sem|



10.2. The Use of GrReeN’s FUNCTIONS 289

From (7) and (8), we obtain

d (6G) = 68 .62 . K[GV?%6 — 6V2G]
av v at
G T K
N = (6G)dr dt =« [GV20 - Y Gldr df, (10)
0 v ot 0 v

where ¢ is an arbitrarily small positive constant.

By changing the order of integrations on the left-hand side, we get

J J J /
(6G)y=t—dP —  (6G)p=0d? = O(r, 1) [G(r, P, t — V)]pt—edP —  G(r, 1, ) f(r)dr.
Y \ \Y; Vv
From equation (6), we have
J

[G(r, rt— tj)]tjqf()dTJ =1
%

and letting € — 0, the left-hand side of equation (10) reduces

/
o(r,t) — ’ G(r, ¥ t=)dn.

Applying Green'’s theorem to the right-hand side of equation (10) and the boundary conditions (2)

and (5) gives
fe [ 0 96,

-k dt, SOr 0, 05

0
Again, let € — 0, we obtain
S Jo [ G
o(r,t)=  f(MG(r,p,0dr -  dt o, 1) a_ndSJ (11)
\ 0 S

which is the required solution of the boundary value problem.

Problem 10.2.1. If the surface z = 0 of the semi-infinite solid z> 0 is maintained at temperature
o, y, 1) for t >0 , and if the initial temperature of the solid is f (X, y, z), determine the

distribution of temperature in the solid.
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Solution. The Green’s function for the given problem is
( n # n
Grr t—t) — 1 exp — r—r

4K(t — t)

#
—exp — T PF )
o =8[ITK(t—Jt)]32 4K(t —t)

where p' = (¥, V), —2) is the position vector of the image of the point I in the plane z = 0.

Then 4
G &L S S— (X = %)+ (y — y)2 + 22

on o7 =— , . exp —
4k(t — t)

2=0

8m2kz(t —t)z2

We know that the solution of the diffusion equation using Green'’s function is given by
J J
or,) = FO)G(r,r,0dr _x [ «dt | o(r,1) 9Ggs
v J 0 J S on

Then the above equation becomes

J
o(r,t) = NTa—r—PR/akt _ o—|r—a) 2 /4xt A
(r,1) 8(met)? Vf(r)[e e 1d7.
Z f t f (P(XJy Y, tJ) # (X - XJ)Z + (y - yj)z +22 J J )
8( 2 o t)? Axft — 1)
vomgt o ¢ exp = =5 dx dy dt |
where V denotes the half space z> 0 and N the entire xy plane. [ |

Problem 10.2.2. Determine the Green'’s function for the thick plate of infinite radius bounded by

the parallel planes z=0 and z = a.
Solution. We know that the Green'’s function G(r, I, t — t) (t > t) satisfies the equation

=k 26 (1)
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the boundary condition
G(r,r,t—-t)=0 if res (2)

and the initial condition that lim G is zero at all points of V except at the point r where G takes
t—t
the form
1 r—rp
R o
8[mk(t — )] K(t —t)

To determine a function G which vanishes on the planes z = 0,z = a and has a singularity of the

type (3). We write

1 — PP
G(rrt)="_ exp _ | +Gi(n P t)s (4)
#
8[mkt] : 4kt
and from (1), we get
KGG =+
aZGl v 1 ot
ie, 10G; 0°G1 1 6?G1  9G
o (5)
op? p op 072 p? O0¢?
Taking the Laplace transform of (4), we get
L'Grrt) =L ; exp _r—rf +L°Gi(r . 1)
~ 1 T
G(r,r,s) = o
( )= ame 0 e—Hr-7 Jlevﬂl/\d)HG (r,r,s) (6)

where RZ = (X — X)2+(y —y/)2 and p2 = A2+s/ and E Gy are the Laplace transforms of G, Gi.
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Again taking the Laplace transform of (5) on both sides, we get

02G1 1061 02G1 1 02G1 s _
3p2+[_) o0 + 922 +p_2 907 = §Gl, (7)

where p, z, ¢ denote cylindrical Coordinates.

Then the solution of equation (7) is of the form

f 00

61(r, r, s) =ﬁK . :\_1 Jo (AR){F sinh(pz) + H sinh[u(a — z)]}dA,

where the functions F(A) and H(A) must be chosen so that G vanishes on the planesz = 0,z = a.

Therefore

F = —e*®? cosech (pa),
H = —e-* cosech (pa).
If0 <z<Z,we obtain

_G__l [ AJo(AR) sinh[p(a — 2)] sinh(pz) i
2MK o W sinh(pa) '

Substitution A = i§, we get

— 11~ &(@) sinh[n(a - 2)] sinh(nz)
& : g
4K n sinh(na)
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10.2. The Use of GReeN’s FUNCTIONS 293

where n? = s/k — &. By using the residue technique, we have

— 1 X nmz
G= sin sin — Ky(énR),
2Ka a a
n=1
where ¢, = "nm/at + sik. Using the fact that Ko[x ’S/K] is the Laplace transform of

(2)-te~"/*and that the Laplace transform of e-®f(t) is f(s + &), we obtain

—R¥/4k K ’
—G——e sin L sin nmz g mmKt/a
t _ a a
2mkta ™!
which is the required Green'’s function. [ |

Check YouRr Progress

1. Solve the boundary value problem

060 9’6

— = K— > >
5t = K5 Xx=0,t>0

6(0,1) = (t), t>0;
0(x,0) = f(x), x=0.

2. By using the theory of Laplace transforms derive the Green’s function for the segment

0<x=<a.

3. Show that the Green'’s function for problems with radial symmetry, in which the temperature

vanishes on r = a, can be expressed in the form

!
x naro N e

sin sin ——
2marr a a

G(r,nt) =

Partial Differential Equations M.Sc.(Mathematics)-11 Sem|



294 10.2. The Use of GrReeN’s FUNCTIONS

Let us Sum up:

In this unit, the students acquired knowledge to

- find the solution of diffusion equation by Fourier transform technique.

+ understand the concepts of the uses of Green’s funciton.

Suggested Readings:

1. M.D. Raisinghania, Advanced Differential Equations, S. Chand & Company Ltd., New
Delhi, 2001.

2. K. Sanakara Rao, Introduction to Partial Differential Equations, Second Edition,
Prentice-Hall of India, New Delhi, 2006.
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