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COURSE TITLE : PARTIAL DIFFERENTIAL EQUATIONS 
 

 
COURSE OBJECTIVES 

While studying the PARTIAL DIFFERENTIAL EQUATIONS, the Learner shall be able to: 

CO 1:  Develop an understanding of formation of partial differential equations. 

CO 2: Discuss the method of separation of variables to solving partial differential equations.  

CO 3: Describe about to find the elementary solutions of Laplace equation. 

CO 4: Represent the motion of the string is governed by one-dimensional wave equation. 

CO 5: Solve the diffusion equation by using Integral transform technique. 

COURSE LEARNING OUTCOMES 

After completion of the PARTIAL DIFFERENTIAL EQUATIONS, the Learner will be able to:  

CLO 1: Apply and analyse to describe real world system using Partial Differential Equations 

CLO 2: Master the basic ideas and ability to solve the physical problems.  

CLO 3: Analyze the theory of Green’s function for Laplace equation. 

CLO 4: Obtain the general solution for wave equation. 

CLO 5: Obtain the basic knowledge of diffusion equation and find the solution of diffusion equation 

in cylindrical coordinates and spherical coordinates. 

 

BLOCKI: PARTIAL DIFFERENTIAL EQUATIONS OF THE FIRST ORDER 

Partial Differential Equations – Origins of First Order Differential Equations – Cauchy’s Problem for first 

order equations – Linear Equations of the first order – Nonlinear partial differential equations of the first 

order – Cauchy’s method of characteristics – Compatible system of First order Equations – Solutions 

satisfying Given Condition, Jacobi’s method 
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The Origin of Second Order Equations – Linear partial Differential Equations with constant coefficients – 
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Equations with variable coefficients – Separation of variables – The method of Integral Transforms – Non 

– linear equations of the second order. 

 

BLOCK III: LAPLACE’S   EQUATION 

Elementary solutions of Laplace equation – Families of Equipotential Surfaces – Boundary value 

problems – Separation of variables – Surface Boundary Value Problems – Separation of Variables – 

Problems with Axial Symmetry – The Theory of Green’s Function for Laplace Equation.  

 

BLOCK IV: THE    WAVE   EQUATION 

The Occurrence of the wave equation in Physics – Elementary Solutions of the One – dimensional Wave 

equations – Vibrating membrane, Application of the calculus of variations – Three dimensional problem – 

General solutions of the Wave equation. 

 

BLOCK V: THE DIFFUSION    EQUATION 

Elementary Solutions of the Diffusion Equation – Separation of variables – The use of Integral 

Transforms – The use of Green’s functions 
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In this unit, we will illustrate the basic concepts of differential equations and Origins of 
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2 1.1. INTRODUCTION 
 

 
 

 

1.1 Introduction 

 
In this section, we present the basic concepts of differential equations. To start with, we recall the 

quote given by V.I. Arnold, “Differential equations form the basis for the scientific view of the 

world”. Next, we discuss the basic cycle of real world problem, 
 

 
 
 
 
 
 

 
Naturally, all the phenomena can be governed by differential equations. So, we begin with the 

definition and classification of differential equations. 

 

Differential Equation 

 

An equation involves unknown function and its derivatives (differential coefficients). 

or 

Objectives 

After successful completion of this lesson, students will be able to 

• understand the basic concepts of Partial Differential Equations. 

• form PDE by eliminating arbitrary constants. 

• form of PDE by eliminating arbitrary functions. 

• understand the concept of Cauchy’s Problem for first-order equations. 

• to solve linear equations of first order. 
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An equation involves independent variables, dependent variables and derivatives of dependent 

variables with respect to independent variables. 

Classification of Differential Equations 

 

Ordinary Differential Equations 

 

An ordinary differential equations is a differential equation in which a single independent variable 

enters either explicily or implicitly. 

F

 

x, y, 
dy 

dx
,
 

 
d2y 

dx2   = 0 

 

which is a general second order equation. 
 

Linear Ordinary Differential Equations 

 
The degree of the dependent variable and its derivatives is one. 

 

d2y dy 

dx2 + 
dx 

+ y = 0. 
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Nonlinear Ordinary Differential Equations 

 

The degree of the dependent variable and its derivatives is more than one. 
 

d2y dy 

dx2 + y 
dx 

+ y = 0. 

 
Next section we discuss the partial differential equations and its classifications. 

 

 

1.2 Partial Differential Equations 

Many physical phenomena arise in nature can be governed by differential equations, especially, 

the problems in science and engineering are expressed by means of partial differential equations. 

Partial differential equations arise in geometry and physics when the number of independent 

variables in the problem under discussion is two or more. When such is the case, any dependent 

variable is likely to be a function of more than one variable, so that it possesses not ordinary 

derivatives with respect to a single variable but partial derivatives with respect to several variables. 

For instance, in the study of thermal effects in a solid body the temperature θ may vary from point 

to point in the solid as well as from time to time, and, as a consequence, the derivatives 
 

∂θ ∂θ ∂θ ∂θ 

∂x
, 

∂y
, 

∂z 
, 

∂t 
,
 

 

will, in general, be nonzero. 

 

Partial Differential Equations (PDEs) 

 
A partial differential equation is a differential equation in which more than one independent 

variables. 

 

Order of PDE 

 
The order of a partial differential equation is the highest partial derivative in the equation. 
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Degree of PDE 

The degree of a partial differential equation is the highest power of the highest partial derivative 

in the equation. 

Example 

F

 

x y u 
∂u

 ∂u ∂2u 
 

 

∂2u 
∂2u 

! 

0
 

 
 

, , , 
∂x

, 
∂y 

, 
∂x2 

, 
∂x∂y

, 
∂y2  

=
 

or 

F x, y, u, ux, uy, uxx, uxy, uyy = 0 

which is a general second order equation. 

Furthermore in any particular problem it may happen that higher derivatives of the types 
 

 
 
 

may be of physical significance. 

 
 

Linear PDE 

∂2θ 

∂x2 
,
 

∂2θ 
, 

∂x∂t 

∂3θ 

∂x2∂t
, etc. 

 

A PDE which is linear in the unknown function and all its derivatives with coefficients depending 

on the independent variables alone is called a Linear PDE. 

Examples: 

 
• P(x, y)p + Q(x, y)q = R(x, y)z + S (x, y) (First Order) 

∂z2 ∂z2 ∂z2 ∂z ∂z 

• A(x, y) 
∂x2 + B(x, y) 

∂x∂y 
+ C(x, y) 

∂y2 + D(x, y) 
∂x 

+ E(x, y) 
∂y 

+ F(x, y)z + H(x, y) = 0 

(Second order) 

•  Ai(x, y)zx1 x2 ···xm  +        Bi(x, y)zx1 x2 ···xm−1   + · · · + F(x, y)z + H(x, y) = 0 ( mth  order) 

where xi = x or y and all coefficients Ai, Bi, . . . , F, H are functions of independent 

variables x and y alone. 
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∂x2 
+

 ∂x∂y 
+

 ∂y2 
+

 
, , , , 

∂x ∂y 

∂x2 
+

 
, , 

∂x∂y 
+

 
, , 

∂y2 
+

 
, , , , 

∂x ∂y 

, , , 
∂x

, 
∂y

, 
∂x2 

, 
∂x∂y

, 
∂y2 
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Semi-linear PDE 

 
In a PDE, the coefficients of derivatives of order m are functions of the independent variables 

alone is called a Semi-linear PDE. 

Examples: 

 

• P(x, y)p + Q(x, y)q = R(x, y, z) (First Order) 

• A(x y) 
∂z2  

B(x y) 
∂z2  

C(x y) 
∂z2 

F

 

x y z 
∂z

 
∂z 

!
  

0 (Second order) 

• 
X 

Ai(x, y)zx1 x2 ···xm  + F 
 
x, y, z, zxi , zxi x j , . . . , zx1 x2 ···xm−1 

  
= 0 ( mth  order). 

Quasi-linear PDE 

 
A PDE of order m is called Quasi-linear if it is linear in the derivatives of order m with 

coefficients that depend on the independent variables and derivatives of the unknown function 

or order strictly less than m. 

Examples: 

 

• P(x, y, z)p + Q(x, y, z)q = R(x, y, z) (First Order) 
• A(x y z) B(x y z) C(x y z) F

 

x y z 

! 

0 (Second order) 
∂z2 ∂z2 ∂z2 ∂z ∂z 

 

• 
X 

Ai(x, y, z)zx1 x2 ···xm  + F 
 
x, y, z, zxi , zxi x j , . . . , zx1 x2 ···xm−1 

  
= 0 ( mth  order). 

Nonlinear PDE 

 
A PDE is called Nonlinear if it does not comes under the above three types, namely, linear, 

semi-linear and quasi-linear. 

Examples: 

 

• F(x, y, z, p, q) = 0 (First Order) 

• F

 

x y z
 ∂z

 
∂z ∂z2 

 
 

∂z2 ∂z2 
!
 

 

 

 

0 (Second order) 

• F 
 
x, y, z, zxi , zxi x j , . . . , zx1 x2 ···xm−1 , zx1 x2 ···xm 

  
= 0 ( mth  order). 

, , , = 

, , = 

= 
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In the main we shall suppose that there are two independent variables x and y and that the 

dependent variable is denoted by z . If we write 
 

p = 
∂z 

, q = 
∂z

 
 

(1) 
∂x ∂y 

 

then the first order partial differential equation can be written in the symbolic form 

 
f (x, y, z, p, q) = 0. (2) 

 

 

1.3 Origins of First-order Partial Differential Equations 

In this section, we discuss the formation of partial differential equations. Mainly, there are two 

methods to form a partial differential equations 

 
(i) Eliminating arbitrary constants, 

 
(ii) Eliminating arbitrary functions. 

 
 

1.3.1 Formation of PDE by eliminating arbitrary constants 
 

Let 

F(x, y, z, a, b) = 0 (1) 
 

where a and b denote arbitrary constants. If we differentiate this equation with respect to x and 

y, we obtain the relation 
∂F 

+ p
∂F 

∂x ∂z 
= 0, 

∂F 
+ q

∂F 

∂y ∂z 
= 0. (2) 

The set of equations (1) and (2) constitute three equations involving two arbitrary constants a and 

b, and, in the general case, it will be possible to eliminate a and b from these equations to obtain 

a relation of the kind 

f (x, y, z, p, q) = 0 (3) 
 

showing that the system of surfaces (1) gives rise to a partial differential equation (3) of the first 

order. 
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Problem 1.3.1. Find the PDE of the family of spheres whose centres lie on the z− axis and radius 

a. 

Solution. Let x2 + y2 + (z − c)2 = a2 (1) 

be the family of spheres whose centres lie on the z− axis and radius a. 

Differentiating equation (1) partially with respect to x and y, we get 
 

2x + 2(z c) 
∂z

 
∂x 

 
x 

= 0 ⇒ x + p(z − c) = 0 ⇒ z − c = − 
p
 

 
(2) 

2y + 2(z − c) 
∂z 

= 0 ⇒ y + q(z − c) = 0 ⇒ z − c = − 
y 

. (3) 
∂y q 

 
 

From (2) and (3), we have 
 
 

x y 
– 

p 
= −

q
 

 

 

which is the required PDE. ■ 

 
Problem 1.3.2. Find the PDE of the family of right circular cones whose axes coincide with the 

line Oz. 

Solution. Let x2 + y2 = (z − c)2 tan2 α (1) 

be the family of right circular cones whose axes coincide with the line Oz. 

 
Differentiating equation (1) partially with respect to x and y, we get 

 

2x = 2(z − c) 
∂z 

tan2 α ⇒ x = (z − c)p tan2 α ⇒ 
x
 = (z − c) tan2 α (2) 

∂x p 
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2y = 2(z − c) 
∂z 

tan2 α ⇒ y = (z − c)q tan2 α ⇒ 
y 

= (z − c) tan2 α. (3) 
∂y q 

 
 

From (2) and (3), we have 
 
 

x y 

p 
= 

q 

 

which is the required PDE. ■ 

 
Problem 1.3.3. Eliminate the constants a and b form the equation z = (x + a)(y + b). 

 
Solution. Given z = (x + a)(y + b). (1) 

 
Differentiating (1) partially with respect to x and y, we get 

 

p = 
∂z 

∂x 
= (y + b) ⇒ (y + b) = p (2) 

q = 
∂z 

= (x + a) (x + a) = q. (3) 
∂y 

 
 

Using (2) and (3) in (1), we get 
 

 

z = qp 
 

 

which is the required PDE. ■ 

 
Problem 1.3.4. Find the PDE of the family of spheres of unit radius whose centres lie on the 
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xy− plane. 

 
Solution. Let (x − a)2 + (y − b)2 + z2 = 1 (1) 

be the family of spheres of unit radius whose centres lie on the xy− plane. 

Differentiating equation (1) partially with respect to x and y, we get 

 

2(x a) + 2z 
∂z

 
∂x 

= 0 ⇒ (x − a) = −zp (2) 

2(y − b) + 2z
∂z 

= 0 ⇒ (y − b) = −zq (3) 

 
Using (2) and (3) in (1), we have 

 
 

(−zp)2 + (−zq)2 + z2 = 1 
 

 

which is the required PDE. ■ 

 
1.3.2 Formation of PDE by eliminating arbitrary functions 

 
In this subsection, we explain the formulation of PDE by eliminating the arbitrary functions. 

 

Problem 1.3.5. Eliminate the arbitrary function f from the equation z = f (x2 + y2). 

 
Solution. Given z = f (x2 + y2), (1) 

 
where the function f is arbitrary. Now if we write x2 + y2 = u and differentiate equation (1) with 



Partial Differential Equations M.Sc.(Mathematics)-II Sem   

  

z 

z 

 ∂x  

x  

 2  

py = qx 
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respect to x and y, respectively, we obtain the relations 

p = 
∂z 

∂x 
= 2x f J (u) , (2) 

 
 

where f J(u) = 
d f

 
du 

q = 
∂z 

= 2y f J (u) , (3) 
∂y 

 

and by eliminating the arbitrary function f (u), 

 

(2) p 2/ x f 
J (u ) 

(3) 
⇒

 q  
=  

2/y f J (u ) p x 

q 
= 

y 
 

 

which is the required PDE. ■ 

Problem 1.3.6. Form the PDE by eliminating the arbitrary function from z = f

 
xy

 

. 

Solution. Given z = f 

  
xy

 

. (1) 

Differentiating equation (1) partially with respect to x and y, we get 
 

∂z J   xy 
   z · 1 − x · ∂z  

 

 

 

J

  
xy 

  
 

  
z − px 

 
 

p = = f 

∂x z z 

z 
y 

z2 

(2) 

∂z xy 
 
 

 z · 1 − y · ∂z  

  
xy 

  
  
z − qy 

 
 

q = 
∂y

 = f J 
z 

 

∂y
 = f J x 

z2  z z2 

(3) 

= f y 
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= 

−Jf y 

z z2 

= 

(2) 

(3) 
⇒

 
xy z px 

p   z z2  

q 
f J

 
 xy 

  

x
 
 z−qy 

  

y z − px 

x z2 

z2 

z − qy 

px(z − qy) = qy(z − px) 

! 
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p p 

∂u ∂x ∂z ∂v ∂x ∂z 

∂u ∂y ∂z ∂v ∂y ∂z 

∂u ∂u 
+ p 

∂v 
+ 

∂v
q

! 

−

  
∂v 

+ 
∂v 

p

! 
∂u 

+ 
∂u

q
 

. 

px = qy 
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pxz − pqxy = qyz − pqxy 

pxz = qyz 

 

which is the required PDE. ■ 

 

1.3.3 Formation of Partial Differential Equations by elimination of 

arbitrary function F from F(u, v) = 0, where u and v are functions 

of x, y and z 
 

Let 

F(u, v) = 0, (1) 
 

where u and v are known functions of x, y and z and F is an arbitrary function of u and v. 

To form a differential equation by eliminating the arbitrary function F, we differentiate equation 

(1) partially with respect to x and y, we obtain the equations 

∂F 
" 
∂u 

+ 
∂u 

p

# 

+ 
∂F 

" 
∂v 

+ 
∂v 

p

# 

= 0 (2)
 

 

and 
∂F 

" 
∂u 

+ 
∂u

q

# 

+ 
∂F 

" 
∂v 

+ 
∂v

q

# 

= 0. (3)
 

 

If we now eliminating 
∂F

 
∂u 

and 
∂F

 
∂v 

 

for these equations (2) and (3), we obtain 

 

∂u ∂u ∂v ∂v 
. + + . 

∂x ∂z 
. 

∂x ∂z . = 0 

            ∂u ∂u ∂v ∂v + q + q 

! 
. ∂y ∂z 

 

     

∂y ∂z 
! 

   
= 0 

∂z ∂y ∂x ∂z ∂y ∂z ∂x ∂z 

. . 
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∂u ∂v ∂u ∂v ∂u ∂v ∂u ∂v ∂u ∂v ∂v ∂u ∂u ∂v ∂u ∂v 

∂x ∂y 
+ 

∂x ∂z
q + 

∂z ∂y 
p + 

∂z ∂z 
pq − 

∂y ∂x 
− 

∂x ∂z 
q − 

∂y ∂z 
p − 

∂z ∂z 
pq = 0

 

 
∂u ∂v 

− 
∂u ∂v 

! 

p + 

 
∂u ∂v 

− 
∂v ∂u 

! 

q = 

  
∂u ∂v 

− 
∂u ∂v 

!
 

 

which gives 

p
∂(u, v) 

+ q
∂(u, v) 

= 
∂(u, v) 

.
 

 
This is a linear PDE of the type 

∂(y, z) ∂(z, x) ∂(x, y) 

 
 

where 

Pp + Qq = R, (4) 

 

P = 
∂(u, v) 

, Q = 
∂(u, v) 

, R =  
∂(u, v) 

.
 

∂(y, z) ∂(z, x) ∂(x, y) 

Equation (4) is called Lagrange’s PDE of first order. 

 
Problem 1.3.7. Eliminate the arbitrary function f from the equation f (x2 +y2 +z2, z2 −2xy) = 0. 

Solution. The given relation is of the form 

 
 

F(u, v) = 0, 

 
 

where u = x2 + y2 + z2, v = z2 − 2xy. 

Hence, the required PDE is of the form 

 
 

Pp + Qq = R, (Lagrange equation) 
 

 

where  

 
∂u ∂v 

. . 
 
 

 
. 2y −2x . 

∂(u, v) ∂y P  = = 

∂y 
. = . 

4yz + 4xz = 4z(x + y) 

   

. = 

. . 
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∂z 

∂z 
.
 

2z 2z 
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∂u ∂v 
. . 

 
2z 2z 

∂(u, v) ∂z 
Q  = = 

∂z 
. = . 4yz − 4xz = −4z(x + y) 

∂(z, x) ∂u ∂v 

 

 
and 

. 
∂x ∂x 

.
 

. 2x   −2y . 

∂u ∂v 
. . 

 

 

. 2x −2y . 

 

 

Therefore 

∂(u, v) ∂x 
∂(x, y) 

=
 

∂u 
. ∂y 

∂x 

= 
∂v 

∂y . .
 

2y −2x 

. = −4x2 

. 

+ 4y2 
= −4(x2 − y2). 

 
 

4z(x + y)p − 4z(x + y)q = −4(x2 − y2) 

4/zs(xs+sys)p − 4/zs(xs+sys)q = −4/s(xs+sys)(x − y) 

⇒ zp − zq = y − x 

 
which is the required PDE. ■ 

 

 

1. Eliminate the constants a and b from the following equations: 
 

(a) z = (x + a)(y + b) 

(b) 2z = (ax + y)2 + b 

(c) ax2 + by2 + z2 = 1. 

2. Eliminate the arbitrary function f from the equations: 
 

(a) z = xy f (x2 + y2) 

(b) z = x + y + f (xy) 

R = 
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(c) z = f

 
 xy 

 
 

(d) z = f (x − y) 

(e) f (x2 + y2 + z2, z2 − 2xy) = 0. 

 
1.4 Cauchy’s Problem for First-order Equations 

 
Cauchy’s Problem. 

If 
 

(a)  x0(µ), y0(µ) and z0(µ) are functions which, together with their first derivatives, are 

continuous in the interval M defined by µ1 < µ < µ2 ; 

(b) And if F(x, y, z, p, q) is a continuous function of x, y, z, p and q in a certain region U of 

the xyzpq space, then it is required to establish the existence of a function φ(x, y) with the 

following properties: 

(1) φ(x, y) and its partial derivatives with respect to x  and y  are continuous functions of 

x and y in a region R of the xy space. 

(2) For all values of x and y lying in R, the point {x, y, φ(x, y), φx(x, y), φy(x, y)} lies in 

U and 

F[x, y, φ(x, y), φx(x, y), φy(x, y)] = 0. 

(3) For all µ belonging to the interval M, the point {x0(µ), y0(µ)} belongs to the region 

R, and 

φ{x0(µ), y0(µ)} = z0. 

Geometrically, there exists a surface z = φ(x, y) which passes through the curve Γ whose 

parametric equations are 

x = x0(µ), y = y0(µ), z = z0(µ) (1) 

and at every point of which the directionl (p, q, −1) of the normal is such that 

F(x, y, z, p, q) = 0. (2) 

 
The above theorem is only one form of the Cauchy problem. 
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To prove the existence of a solution of equation (2) passing through a curve with equations (1) 

it is necessary to make some further assumptions about the form of the function F and the nature 

of the curve Γ. 

 
Theorem 1.4.1.  If  g(y)  and all its derivatives are continuous for  |y − y0|<  δ,  if  x0  is a given 

number and z0 = g(y0), q0 = gJ(y0), and if f (x, y, z, q) and all its partial derivatives are 

continuous in a region S defined by 

 
|x − x0|< δ, |y − y0|< δ, |q − q0|< δ, 

 
then there exists a unique function φ(x, y) such that: 

 
 

(a) φ(xy)  and all its partial derivatives are continuous in a region  R  defined by  |x − x0|< δ1, 

|y − y0|< δ2 ; 

 
(b) For all (x, y) in R, z = φ(x, y) is a solution of the equation 

 

∂z 
= f x, y, z, 

∂z  
. 

∂x ∂y 
 

 

(c) For all values of  y  in the interval  |y − y0|< δ1,  φ(x0, y) = g(y). 

 
1.5 Linear Equations of the First Order 

 
Consider the partial differential equations of the form 

 
Pp + Qq = R, (1) 
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where P, Q and R are given functions of x, y and z (which do not involve p or q ), p denotes 
∂z 

, q denotes 
∂x 

∂z 
. This equation is known as Lagrange’s equation. 

∂y 
 

Theorem 1.5.1. The general solution of the linear partial differential equation 

 
 

Pp + Qq = R (1) 

 
 

is 

 
F(u, v) = 0 (2) 

 

where F is an arbitrary function and u(x, y, z) = c1 and v(x, y, z) = c2 form a solution of the 
 

equations  

dx dy 

P 
= 

Q 
= 

 

dz 

R 
. (3) 

 

Proof. To prove this theorem in two stages: 

 

(a) We shall show that all integral surfaces of the equation (1) are generated by the integral 

curves of the equations (3); 

(b) and then we shall prove that all surfaces generated by integral curves of the equations (3) 

are integral surfaces of the equation (1). 

 
Equation (2) consists of a set of two independent ordinary differential equations, that is, a two 

parameter family of curves in space, one such set can be written as 

 

dy 

dx 
=

 

Q(x, y, z) 
(3)

 

P(x, y, z) 
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which is referred to as “characteristic curve”. 

 
We know that the total differential 

 

dz = 
∂z 

dx + 
∂z

dy. (4) 
∂x ∂y 

 

 

The matrix form of the equations (1) and (4) can be written as 
 

P Q  ∂z 

 

R 

 

∂x 

  
 

 

 =  . (5) 

 

 

Both the equations must hold on the integral surface. For the existence of finite solutions of 
 

equation (5), we have 

P Q P R R Q 

. . . . . 

dx dy 

 

on expanding the determinants 

dx   dz dz   dy 

 

 

Pdy − Qdx = 0 Pdz − Rdx = 0 Rdy − Qdz = 0 

Pdy = Qdx Pdz = Rdx Rdy = Qdz 
 

dy dx 

Q 
= 

P 

dz dx 

R 
= 

P 

dy dz 

Q 
= 

R 
. 

∂z 
∂y 

 

. 

= 0 
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Combining all the above, we get 

dx dy dz 

P(x, y, z) 
= 

Q(x, y, z) 
= 

R(x, y, z) 
(6) 

which are called auxiliary equations for a given PDE. 

Next, we have to show that any surface generated by the integral curves of equation (6) has an 

 
equation of the form F(u, v) = 0. 

 
Let 

 
u(x, y, z) = C1 and v(x, y, z) = C2 (7) 

 
be two independent integrals of the ordinary differential equations (6). If equations (7) satisfy 

 

equation (6), then we have  
du = 

∂u
dx + 

∂u
dy + 

∂u
dz = 0 

∂x ∂y ∂z 
 

and  
dv = 

∂v
dx + 

∂v
dy + 

∂v
dz = 0. 

∂x ∂y ∂z 
 

Solving these equations, we find 
 
 

dx 
∂u ∂v 

 
∂u ∂v 

dy = 
∂u ∂v ∂u ∂v 

=
 
 
∂u ∂v 

dx 
∂u ∂v 

∂y ∂z 
− 

∂z ∂y ∂z ∂x 
− 

∂x ∂z ∂x ∂y 
− 

∂y ∂x 
 

which can be rewritten as  

dx 
 

 

∂(u, v) 
∂(y, z) 

 

dy 
= 

∂(u, v) 
=

 

∂(z, x) 

 

dz 

∂(u, v) 
. (8)

 

∂(x, y) 
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The relation F(u, v) = 0, where F is an arbitrary function, leads to the partial differntial equation 

 

p
∂(u, v) 

+ q
∂(u, v) 

= 
∂(u, v) 

. (9)
 

∂(y, z) ∂(z, x) ∂(x, y) 
 
 

The equation (8) can be written as  
dx dy dz 

P 
= 

Q 
= 

R 
. 

 

The solution of these equations are known to be u(x, y, z) = C1 and v(x, y, z) = C2. Hence 
 

F(u, v) = 0 is the required solution. ■ 

 

Next we generalize the Lagrange’s equation to n independent variables is obviously the 

equation 

X1 p1 + X2 p2 + · · · + Xn pn = Y, (4) 

where X1, X2, . . . , Xn and Y are functions of n independent variables x1, x2, . . . , xn and a 

dependent variable f ; pi denotes 
∂ f

 
∂xi 

(i = 1, 2, . . . , n). 

We now state the theorem for obtaining the general solution of generalized Lagrange’s equation. 

 

Theorem 1.5.2. If ui(x1, x2, . . . , xn, z) = ci (i = 1, 2, . . . , n) are independent solutions of the 
 

equations  

dx1 

P1 

 

dx2 
=  

P2
 

 
= · · · = 

 
dxn 

Pn 

 

dz 
= 

R 
, 

 

then the relation Φ(u1, u2, . . . , un) = 0, in which the function Φ is arbitrary, is a general solution 

of the linear partial differential equation 

 

P1 
∂z 

∂x1 

∂z 
+ P2 

∂x2
 

∂z 
+ · · · + Pn 

∂xn

 

 

= R. 
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Proof. If the solutions of the equations 

dx1 

P1 
= 

dx2 

P2  
= · · · = 

dxn 

Pn 

= 

dz 
(5) 

R 

are 

ui(x1, x2, . . . , xn, z) = ci i = 1, 2, . . . , n, (6) 

then the n equations 
n 

i 

j=1 
∂xj 

dxj + 
∂ui 

dz = 0 i = 1, 2, . . . , n (7) 
∂z 

must be compatible with the equations (5). In other words, we must have 

X 
Pj

 ∂ui + R
∂ui 

 

 

 

 
= 0. (8) 

 

Solving the set of n equations (8) for Pi, we find that 
 
 

  Pi  

  ∂(u1,u2,...,un) 
= 

∂(x1,...,xi−1,z,xi+1,...,xn) 

R 
 

 

∂(u1,u2,...,un) 
∂(u1,u2,...,un) 

 

i = 1, 2, . . . , n, (9) 

 

where 
∂(u1, u2, . . . , un) 

∂(u1, u2, . . . , un) 

 

denotes the Jacobian 

 
 

∂u1 
∂x1 

 
∂u2 
∂x1 

 

. 
 

∂un 

. ∂x1 

∂u1 
∂x2 

 
∂u2 
∂x2 

 

. 
 

∂un 

∂x2 

∂u1 
∂xn 

 
∂u2 
∂xn 

 

. 
 

∂un 

∂xn . 

j=1 

· · · 

· · · 

· · · 
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Consider the relation 

 
Φ(u1, u2, . . . , un) = 0. (10) 

 
Differentiating it with respect to xi, we obtain the equation 

 

X

j=1 

 
∂Φ 

∂uj 

∂uj 

∂xi 

∂uj 
+ 

∂z 

 
∂z 

∂xi     

= 0 

 

and there are n such equations, one for each value of i. Eliminating the n quantities 
∂Φ 

, . . . , 
∂Φ

 
  

 
from these equations, we obtain the relation 

∂u1 ∂un 

 

∂(u1, . . . , un) 
+ 
X ∂z ∂(u1, . . . , uj−1, uj, uj+1, . . . , un) 

= 0. (11)
 

 

 

Substituting from equations (9) into the equation (11), we see that the function z defined by the 

relation (10) is a solution of the equation 

 

P1 
∂z 

∂x1 

∂z 
+ P2 

∂x2
 

∂z 
+ · · · + Pn 

∂xn

 

 

= R. (12) 

 
 

This completes the proof. ■ 

 
Methods for Solving Lagrange’s Auxiliary Equation 

 
In this section, we explain how to solve the linear PDE Pp + Qq = R using the auxiliary equation 

 

dx dy dz 

P 
= 

Q 
= 

R 
. 

 

There are two methods to solve the above Lagrange’s auxiliary equation. 
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• Method of grouping 

• Method of multipliers 

 
1.5.1 Method of grouping 

 

If it is possible to take two fractions 
dx 

= 
dz

 

23 

 

 

 

 

 

 

 

from which y can be cancelled or is absent, leaving 
P R 

equations in x and z only. If so integrate it by giving u(x, z) = C1. 

Similarly take another two fractions say 
dx

 
P 

dy 
= 

Q 
, which may give v(x, y) = C2. Therefore, 

the solution of (1) is 

F(u, v) = 0. 
 

 

1.5.2 Method of multipliers 

 
Choose any three multipliers l, m, n which may be functions of x, y and z 

 

dx dy dz 

P 
= 

Q 
= 

R 
= 

ldx + mdy + ndz 

lP + mQ + nR  
= k(say)

 
 

such that the expression lP + mQ + nR = 0. 

Since 

 
 

we obtain 

ldx + mdy + ndz = k(lP + mQ + nR). 

 
 

ldx + mdy + ndz = 0. 
 

On integration, we get u(x, y, z) = C1. 

Similarly, we can choose three multipliers lJ, mJ, nJ, we get v(x, y, z) = C2. Therefore, the solution 

of (1) is 

F(u, v) = 0. 
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Example 1.5.1. Find the general solution of the differential equation 

 
x2 

∂z 
+ y2 

∂z 
= (x + y)z. 

∂x ∂y 
 

Solution. Given x2 p + y2q = (x + y)z. (1) 

 
Comparing (1) with Pp + Qq = R, we have P = x2, Q = y2, R = (x + y)z. 

 
The integral surfaces of this equation are generated by the integral curves of the equations 

 
 

dx dy dz 

x2   
= 

y2   
= 

(x + y)z
. (2)

 
 

 
The first equation of this set has obviously the integral 

 
 

x−1 − y−1 = c1 (3) 

 
and it follows immediately from the equations that 

 

dx − dy 
= 

dz 
 

x2 − y2 (x + y)z 
 

which has the integral  
x − y 

= c2. (4) 
z 

 

Combining the solutions (3) and (4), we see that the integral curves of the equations (1) are given 
 

by equation (4) and the equation  

xy 

z 
= c3 (5) 
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and that the curves given by these equations generate the surface 

F
 

xy
, 

x − y 
  

= 0,
 

 
 

where the function F is arbitrary. ■ 

 

Note. The above surface can be expressed as 

z = xy f

  
x − y 

 
 

 

or 

z = xyg 
x − y  

, 
xy 

 

where f and g are arbitrary functions. 

 
Problem 1.5.1. Find the general integral of the linear partial differential equations y2 p − xyq = 

x(z − 2y). 

 
Solution. Given y2 p − xyq = x(z − 2y). (1) 

Comparing (1) with Pp + Qq = R, we have P = y2, Q = −xy, R = x(z − 2y). 

The integral surface of the given PDE is generated by the integral curves of the auxiliary equation 
 
 

dx dy dz 

y2   
= 

−xy 
= 

x(z − 2y) 
. (2)

 
 

The first two members of equation (2) give us 
 
 

dx dy 

y  
= 

−x 
or xdx = −ydy, 
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which on integration gives 
 

x2 y2 
2 2 

 

2  
= − 

2  
+ C or x  + y = C1. (3) 

 

 

The last two members of equation (2) give 
 
 

dy dz 

−y 
= 

z − 2y 
or zdy − 2ydy = −ydz. 

 

we have 
 

2ydy = ydz + zdy 
 

 

which on integration yields  

y2 = yz + C2 or y2 − yz = C2. (4) 
 

Hence, the curves given by equations (3) and (4) generate the required integral surface as 

 
 

F(x2 + y2, y2 − yz) = 0. ■ 

 
Problem 1.5.2. Find the general integral of the linear partial differential equations (y + zx)p −(x + 

yz)q = x2 − y2. 

 
Solution. Given (y + zx)p − (x + yz)q = x2 − y2. (1) 

Comparing (1) with Pp + Qq = R, we have P = y + zx, Q = −(x + yz), R = x2 − y2. 
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The integral surface of the given PDE is generated by the integral curves of the auxiliary equation 
 
 

dx dy dz 

y + zx 
= 

−(x + yz) 
=
 x2 − y2 . (2) 

 

To get the first integral curve, let us consider the first combination as 
 
 

xdx + ydy 

xy + zx2  − xy − y2z
=
 

dz 

x2 − y2 

 

or 

 
 

 
That is, 

 
xdx + ydy 

z(x2 − y2) 
=
 

 

dz 

x2 − y2 
.
 

 

xdx + ydy = zdz. 
 

 

On integration, we get 
 
 

x2 y2 

2  
+ 

2 
− 

 

z2 

2 
= C or x2 

 

 
+ y2 

 

– z2 

 

 
= C1. (3) 

 

To get the second integral curve, let us consider the combination such as 
 
 

ydx + xdy 

y2 + xyz − x2 − xyz
=
 

dz 

x2 − y2 

 

or 
 

ydx + xdy + dz = 0 
 

 

which on integration results in 
 

xy + z = C2. (4) 
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Thus, the curves given by equations (3) and (4) generate the required integral surface as 

 
 

F(x2 + y2 − z2, xy + z) = 0. ■ 

 
Example 1.5.2. If u is a function of x, y and z which satisfies the partial differential equation 

 
(y − z) 

∂u 
+ (z − x) 

∂u 
+ (x − y) 

∂u 
= 0 

∂x ∂y ∂z 
 

 

show that  u contains x, y and  z only in combinations x + y + z and x2 + y2 + z2. 
 

 

Solution. Given  
(y − z) 

∂u 
+ (z − x) 

∂u 
+ (x − y) 

∂u 
= 0 (1) 

∂x ∂y ∂z 
 

The integral surfaces of this equation are generated by the integral curves of the equations 
 
 

dx dy dz du 

y − z 
= 

z − x 
=

 x − y 
=
 0 

(2) 

 

and they are equivalent to the three relations 

du = 0 
 

dx + dy + dz = 0 

 
xdx + ydy + zdz = 0 

 
 

On integration, we obtain the integrals 

u = c1, x + y + z = c2, x2 + y2 + z2 = c3. 
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Hence the general solution is of the form 

u = f (x + y + z, x2 + y2 + z2). ■ 
 

 
Find the general integrals of the linear partial differential equations: 

1. z(xp − yq) = y2 − x2 

2. px(z − 2y2) = (z − qy)(z − y2 − 2x3) 

3. px(x + y) = qy(x + y) − (x − y)(2x + 2y + z) 

4. y2 p − xyq = x(z − 2y) 

5. (y + zx)p − (x + yz)q = x2 − y2 

6. x(x2 + 3y2)p − y(3x2 + y2)q = 2z(y2 − x2) 
 

 

In this unit, the students acquired knowledge to 
 

• classify the differential equations. 

• find the order and degree of the PDE’s. 

• formation of PDE’s by eliminating arbitrary functions/constants. 

• solve the linear differential equations. 
 
 

 

1. M.D. Raisinghania, Advanced Differential Equations, S. Chand & Company Ltd., New 

Delhi, 2001. 

2. K. Sanakara Rao, Introduction to Partial Differential Equations, Second Edition, 

Prentice-Hall of India, New Delhi, 2006. 
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• formation of PDE’s by eliminating arbitrary functions/constants. 

• solve the linear differential equations. 

 
2.1 Nonlinear Partial Differential Equations of the First Order 

In this section, we discuss the problem of finding the solutions of the partial differential equation 

 
F(x, y, z, p, q) = 0 (1) 

 
in which the function F is not necessarily linear in p and q. 

The solution of the partial differential equation (1) has two-parameter family of integral curves 

 
f (x, y, z, a, b) = 0 (2) 

 
Any envelope of the system (2) touches at each of its points a member of the system. 

We now classify the integrals (solutions) of a partial differential equation (1): 

 
(a) Two-parameter systems of surfaces 

 
f (x, y, z, a, b) = 0. 

 
Such an integral is called a complete integral. 

 
(b) If we take any one-parameter subsystem 

 
f {x, y, z, a, φ(a)} = 0 

of the system (2), and form its envelope, we obtain a solution of equation (1). When the 

function φ(a) which defines this subsystem is arbitrary, the solution obtained is called the 

general integral of (1) corresponding to the complete integral (2). When a definite function 

φ(a) is used, we obtain a particular case of the general integral. 
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(c) If the envelope of the two-parameter system (2) exists, it is also a solution of the equation 

(1); it is called the singular integral of the equation. 

 
Illustration of the above three kinds of solution: 

In problem 1.3.4 of section 1, the partial differential equation 

 
z2(1 + p2 + q2) = 1. (3) 

 
obtained from the two parameter family of surface 

 
(x − a)2 + (y − b)2 + z2 = 1 (4) 

where a and b are arbitrary parameters. Since it contains two arbitrary constants, the solution 

(4) is thus a complete integral of the equation (3). 

Substitute b = a in equation (4), we obtain the one-parameter system 

 
(x − a)2 + (y − a)2 + z2 = 1 

whose envelope is obtained by eliminating a between this equation and 

 
x + y − 2a = 0 

 

so that it has equation  
(x − y)2 + 2z2 = 2. (5) 

 

Differentiating both sides of this equation with respect to x and y, respectively, we obtain the 

relations 

2zp = y − x, 2zq = x − y 

from which it follows immediately that (5) is an integral surface of the equation (3). It is a solution 

of type (b); i.e., it is a general integral of the equation (3). 

The envelope of the two-parameter system (3) is obtained by eliminating a and b from 
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equation (4) and the two equations 

 

x − a = 0 y − b = 0 

i.e., the envelope consists of the pair of planes z = ±1. It is readily verified that these planes are 

integral surfaces of the equation (3); since they are of type (c) they constitute the singular integral 

of the equation. 

 

 
 

1. Verify that z = ax + by + a + b − ab is a complete integral of the partial differential equation 

zpx + qy + p + q − pq, 

where a and b are arbitrary constants. Show that the envelope of all planes corresponding 

to complete integrals provides a singular solution of the differential equation, and determine 

a general solution by finding the envelope of those planes that pass through the origin. 

2. Verify that the equations 

(a) z = 
√

2x + a + 2y + b 

(b) z2 + µ = 2(1 + λ−1)(x + λy) 

are both complete integrals of the partial differential equation 
 

z = 
1 1 

p 
+ 

q
. 

Show, further, that the complete integral (b) is the envelope of the one-parameter subsystem 

obtained by taking 
b = 

a µ 

 
in the solution (a). 

−
λ 

− 
1 + λ 
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2.2 Cauchy’s Method of Characteristics 

In this section, we explain the methods of solving the nonlinear partial differential equation using 

characteristics strip, due to Cauchy. 

F

 

x, y, z, 
∂z 

, 
∂z 

! 

= 0. (1) 

Theorem 2.2.1. A necessary and suflcient condition that a surface be an integral surface of a 

partial differential equation is that at each point its tangent element should touch the elementary 

cone of the equation. 

Proof. The plane passing through the point P(x0, y0, z0) with its normal parallel to the 

direction n defined by the direction ratios (p0, q0, −1) is uniquely specified by the set of 

numbers D(x0, y0, z0, p0, q0). Conversely any such set of five real numbers defines a plane in three-

dimensional space. For this reason a set of five numbers D(x, y, z, p, q) is called a plane element of 

the space. In particular a plane element (x0, y0, z0, p0, q0) whose components satisfy an 

equation 

F(x, y, z, p, q) = 0 (2) 

 

is called an integral element of the equation (2) at the point (x0, y0, z0). It is theoretically possible 

to solve an equation of the type (2) to obtain an expression 

 
q = G(x, y, z, p) (3) 
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from which to calculate q when x, y, z and p are known. Keeping x0, y0 and z0 fixed and 

varying p , we obtain a set of plane elements {x0, y0, z0, p, G(x0, y0, z0, p)}, which depend on the 

single parameter p. As p varies, we obtain a set of plane elements all of which pass through the 

point P and which therefore envelop a cone with vertex P ; the cone so generated is called the 

elementary cone of equation (2) at the point P (cf. Fig. 16). 

 
Consider now a surface S whose equation is 

 
 

z = g(x, y). (4) 

 
 

If the function g(x, y) and its first partial derivatives gx(x, y), gy(x, y) are continuous in a certain 

region R of the xy plane, then the tangent plane at each point of S determines a plane element 

of the type  
{x0, y0, g(x0, y0), gx(x0, y0), gy(x0, y0)} (5) 

 

which we shall call the tangent element of the surface S at the point {x0, y0, g(x0, y0)}. ■ 

A curve C with parametric equations 

 
x = x(t), y = y(t), z = z(t) (6) 

 

lies on the surface (4) if  
z(t) ≡ g{x(t), y(t)} 

 

for all values of t in the appropriate interval I . If P0 is a point on this curve determined 

by the parameters t0, then the direction ratios of the tangent line P0 P1 (cf. Fig. 17) are 

{xJ(t0), yJ(t0), zJ(t0)}, where xJ(t0) denotes the value of 
dx 

when t = t0, etc.  This direction 
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will be perpendicular to the direction (p0, q0, −1) if 

zJ(t0) =  p0 x0
J (t0) + q0yJ

0(t0). 

For this reason we say that any set 
 
 

{x(t), y(t), z(t), p(t), q(t)} (7) 
 

of five real functions satisfying the condition 

 
zJ(t) = p(t)xJ(t) + q(t)yJ(t) (8) 

 
defines a strip at the point (x, y, z) of the curve C. If such a strip is also an integral element of 

equation (2), we say that it is an integral strip of equation (2); i.e., the set of functions (7) is an 

integral strip of equation (2) provided they satisfy condition (8) and the further condition 

 

F{x(t), y(t), z(t), p(t), q(t)} ≡ 0 (9) 
 

for all t in I. 

If at each point the curve (6) touches a generator of the elementary cone, we say that the 

corresponding strip is a characteristic strip. We shall now derive the equations determining a 

characteristic strip. The point (x + dx, y + dy, z + dz) lies in the tangent plane to the elementary 

cone at P if 

dz = pdx + qdy, (10) 
 

where p, q satisfy the relation (2). Differentiating (10) with respect to p, we obtain 

 

0 = dx + 
dq 

dy, (11) 
dp 

 

where, from (2),  
∂F ∂F 

∂p 
+ 

∂q 

dq 
= 0. (12) 

dp 
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Solving the equations (10), (11) and (12) for the ratios of dy, dz to dx, we obtain 
 

dx dy dz 

Fp 

= 
Fq  

= 
pFp + qFq 

(13)
 

 

so that along a characteristic strip xJ(t), yJ(t), zJ(t) must be proportional to Fp, Fq, pFp + qFq, 

respectively. If we choose the parameter t in such a way that 

 
xJ(t) = Fp, yJ(t) = Fq, (14) 

 

then 

zJ(t) = pFp + qFq. (15) 
 

Along a characteristic strip p is a function of t so that 

 
pJ(t) = 

∂p 
xJ(t) + 

∂p 
yJ(t) 

∂x ∂y 
∂p ∂F ∂p ∂F 

= 
∂x ∂p 

+ 
∂y  ∂q 

∂p ∂F ∂q ∂F 
= 

∂x  ∂p 
+ 

∂x ∂q 
 

since 
∂p 

≡ 
∂p

. Differentiating equation (2) with respect to x, we find that 
∂y ∂x 

 

∂F ∂F 

∂x 
+ 

∂z 
p + 

∂F 

∂p 

∂p ∂F 

∂x 
+ 

∂q 

∂q 
= 0

 

∂x 
 

so that on a characteristic strip 

 
 

and it can be shown similarly that 

 
pJ(t) = −(Fx + pFz) (16) 

 

qJ(t) = −(Fy + qFz). (17) 

 

Collecting equations (14) to (17) together, we see that we have the following system of five 
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ordinary differential equations for the determination of the characteristic strip 

xJ(t) = Fp, yJ(t) = Fq, zJ(t) = pFp + qFq, pJ(t) = −Fx − pFz, qJ(t) = −Fy − qFz. (18) 

These equations are known as the characteristic equations of the differential equation (2). The 

characteristic strip is determined uniquely by any initial element (x0, y0, z0, p0, q0) and any initial 

value t0 of t. 

 
Theorem 2.2.2. Along every characteristic strip of the equation F(x, y, z, p, q) = 0 the function 

F(x, y, z, p, q) is a constant. 

 
Proof. Along a characteristic strip (18), we have 

 

 d 
F x(t), y(t), z(t), p(t), q(t) 

dt 
 

= Fx xJ + FyyJ + FzzJ + Fp pJ + FqqJ 

 

= FxFp + FyFq + Fz(pFp + qFq) − Fp(Fx + pFz) − Fq(Fy + qFz) 

= 0 

 
 

so that F(x, y, z, p, q) = k, a constant along the strip. ■ 

 
Solution of Partial Differential Equation 

The partial differential equation (1) which passes through a curve F whose parameteric equations 

are 

 

then in the solution 

x = θ(v), y = φ(v), z = χ(v), (19) 

 
 

x = x(p0, q0, x0, y0, z0, t0, t), etc. (20) 
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of the characteristic equations (18), taking 

 
x0 = θ(v), y0 = φ(v), z0 = χ(v) 

 
as the initial values of x, y, z. The corresponding initial values of p0, q0 are determined by the 

relations 

 

χJ(v) = p0θJ(v) + q0φJ(v) 

F{θ(v), φ(v), χ(v), p0, q0} = 0. 

Substituting these values of x0, y0, z0, p0, q0 and the appropriate value of t0 in equation (20), we 

obtain x, y, z can be expressed in terms of the two parameters t, v , to give 

 
x = X1(v, t), y = Y1(v, t), z = Z1(v, t) (21) 

 
Eliminating v, t from these three equations yields 

 
ψ(x, y, z) = 0 

 
which is the equation of the integral surface of equation (1) through the curve Γ. 

 

Problem 2.2.1. Find the solution of the equation 

 
z = 

1 
(p2 + q2) + (p − x)(q − y) 

which passes through the x -axis. 

Solution. The initial values are (for x− axis) 

 
x0 = v, y0 = 0, z0 = 0 with t0 = 0 (1) 
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then the solution in the parametric form is 

x = x(v, t), y = y(v, t), z = z(v, t). 

Then, the differential equation becomes 

F = z0 − 
1 

(p2 + q2) + (p0 − v)(q0 − y0) = −
1 

(p2 + q2) + (p0 − x0)q0 = −
1 

(p0 − q0)2 − vq0 = 0 

(2) 
2 0 0 2 0 0 2 

and the strip condition 

dz dx dy 

dv 
= p

dv 
+ q

dv 

or 

dz0 dx0 dy0 

dv  
= p0  

dv 
+ q0  

dv 

gives 

0 = p0 · 1 + q0 · 0 or p0 = 0. (by(1)) 

Using (1) in (2), we obtain 

 
 

p0 = 0, q0 = s (unique initial strip). 

 
 

The characteristic equations for this partial differential equation are 

 

dx 

dt 
= p + q − y 

dy 

dt 
= p + q − x 
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dz 

dt 
= p(p + q − y) + q(p + q − x) 

dp 

dt 
= p + q − y 

dq 

dt 
= p + q − x 

 
from above equations 

 
 

dx dp 

dt 
= 

dt 

dy dq 

dt 
= 

dt 

x = p + c1 y = q + c2 

 
 

Using the initial conditions 

 
 

x0 = v, y0 = 0, z0 = 0, p0 = 0, q0 = 2v 

 
 

then the constants of integration c1 and c2 are 

 
 

c1 = v and c2 = −2v 
 

 

yields  
x = v + p, y = q − 2v. 

 

Also we have  
 d 

(p + q − x) = p + q − x, 
d 

(p + q − y) = p + q − y 

dt dt 
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gives 

p + q − x = ve
t, p + q − y = 2ve

t. 

Hence 
 
 

x = v(2e
t
 − 1), y = v(e

t
 − 1), p = 2v(e

t
 − 1), q = v(e

t
 + 1) (22) 

 

Substituting in the third of the characteristic equations, we have 

 

dz 
= 5v2e2t

 3v2e
t
 

dt 
 
 

with solution 

z = 
5 

v2(e2t
 − 1) − 3v2(e

t
 − 1) (23) 

 

Now, we obtain the expressions for t and v 

 
 

e
t
 = 

 y − x 
, v = x 2y 

2y − x 
 
 

so that substituting in (23), 
 

z = 
1 

y(4x 3y) 
2 

 

which is the required integral surface. ■ 

 
Problem 2.2.2. Find the characteristics of the equation pq = z and determine the integral surface 

which passes through the parabola x = 0, y2 = z. 
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Solution. The initial data curve (Parabola x = 0, y2 = z ) is 

 
 

x0 = 0, y0 = v, z0 = v2. 

 
 

then the parametric form of solution is 

 
 

x = x(v, t), y = y(v, t), z = z(v, t) 

 
 

From the differential equation, 

 
 

F = p0q0 − z0 = p0q0 − v2 = 0. 
 

 

and the strip condition 

dz dx dy 

dv 
= p

dv 
+ q

dv 

 

or 

dz0 dx0 dy0 

dv  
= p0  

dv 
+ q0  

dv 

 

gives  
2s = p0 · 0 + q0 · 1 or q0 − 2s = 0 

 

Therefore, 

 q 

 
 

z0 s2 s 
 0 = 2s and p0 = 

q0   
= 

2s 
= 

2 
(unique initial strip) . 
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Now, the characteristic equations of the given PDE are given by 

dx 

dt 
= q, 

dy 

dt 
= p, 

dz 

dt 
= 2pq, 

dp 

dt 
= p, 

dq 

dt 
= q. 

From the characteristics equations 

 
dp 

dt 
= p 

dp 
= dt 

p 

log p = t + a 

p = c1e
t
 

 
dq 

dt 
= q 

dq 
= dt 

q 

log q = t + b 

q = c2e
t
 

 
dx 

dt 
= q 

dx 
= c2e

t
 

∫ 

dx = 

∫ 

c2e
t
dt 

x = c2e
t
 + c3 

 
dy 

dt 
= p 

dy 
= c1e

t
 

∫ 

dy = 

∫ 

c1e
t
dt 

y = c1e
t
 + c4 

 
dz 

dt 
= 2pq 

dz 
= 2c1c2e

t
 

∫ 

dz = 

∫ 

2c1c2e
t
dt 

z = 2c1c2e
t
 + c5 

Using the initial conditions 
 
 

x0 = 0, y0 = v, z0 = v2, p0 = 
v 

, q0 = 2v 
2 

 
 

we obtain 

c 
v v 

 

1 = 
2 

, c2 = 2v, c3 = −2v, c4 = 
2 

, c5 = 0 
 

Therefore,  
p = 

v
e

t, q = 2ve
t, x = 2v(e

t
 − 1), y = 

v 
(e

t
 + 1) z = v2e2t. 

2 2 
 

Eliminating v and t from x, y and z in the above equation 

 
 

16z = (4y + x)2 

 
 

which is the required integral surface. ■ 

 

Problem 2.2.3. Determine the characteristics of the equation z = p2 − q2 and find the integral 

∫ ∫ 
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surface which passes through the parabola 4z + x2 = 0, y = 0. 

 
Solution. The initial data (Parabola 4z + x2 = 0, y = 0. ) is 

 

x 
v2 

 

0 = v, y0 = 0, z0 = − 
4

 

 
then the parametric form of the solution is 

 
 

x = x(v, t), y = y(v, t), z = z(v, t). 

 

 
From the differential equation, 

 

F 2 2 2 2 v2
 

 

= p0 − q0 − z0 = p0 − q0 + 
4  

= 0 
 

 

and the strip condition 

dz dx dy 

dv 
= p

dv 
+ q

dv
.
 

 

or 

dz0 dx0 dy0 

dv 
= p0 

dv 
+ q0 

dv 
.
 

 

gives 

v v 
−

2 
= p0 · 1 + q0 · 0 or p0 = −

2 
. 

 

Therefore, 

q0 = ±
 v 

, p0 = − 
v
 

 
 

 

 (unique initial strip). 
√

2 2
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The characteristic equations for this partial differential equations are 

dx 
= 2p, 

dy 
= 2q, 

dz 
= −2p2 + 2q2, 

dp 
= −p, 

dq 
= −q. 

dt dt dt dt dt 

From the characteristics equations 

 
dp 

dt 
= −p 

∫ 
dp 

= − 

∫ 

dt 

 
dq 

dt 
= −q 

∫ 
dq 

= −dt 

 
dx 

dt 
= −2p 

dx 
=   2c e−t

 
dt 

 
dy 

dt 
= −2q 

dy 
= 2c2e−t

 
dt 

 

dz 
=   2(p2 q2) 

dt 
dz 

dt 
= −2z 

log p = −t + a 

p = c1e−t
 

log q = −t + b 

q = c2e−t
 

∫ 

dx = −2 

∫ 

c1e−t
dt 

∫ 

dy = 2 

∫ 

c2e−t
dt 

x = 2c1e−t
 + c3 y = −2c2e−t

 + c4 

∫ 
dz 

= −2 

∫ 

dt 

z = c5e−2t
 

Using the initial conditions 
 

x 
v2 

 
 

 
v v   

 0 = v, y0 = 0, z0 = − 
4 

, p0 = −
2 

, q0 = ± √
2 

, 
 

 

we obtain  
c 

v v   
 

 

 
√ v2 

 

 
 

 

Therefore, 

1 = −
2 

, c2 = √
2 

, c3 = 2s, c4 = 2v, c5 = − 
4

 

 

p 
v v   

 
 

√ v2 
 

 
 = −

2 
exp(−t), q = ± √

2 
exp(−t), x = v(2 −exp(−t)), y = 2v(1 −exp(−t)), z = − 

4 
exp(−2t). 

 
 

Eliminating the parameters v and t from x, y and z in the above equation 

 

4z + (x − 
√

2y)2 = 0 

 
which is the required integral surface. ■ 
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1. Write down, and integrate completely, the equations for the characteristics of 

 
(1 + q2)z = px 

 
expressing x, y, z and p in terms of φ, where q = tan φ, and determine the integral surface 

which passes through the parabola x2 = 2z, y = 0. 

2. Integrate the equations for the characteristics of the equation 

 
p2 + q2 = 4z 

 
expressing x, y, z and p in terms of q, and then find the solutions of this equation which 

reduce to z = x2 + 1 when y = 0. 

 
 

2.3 Compatible Systems of First-order Equations 

 
Definition 2.3.1. Let f (x, y, z, p, q) = 0 and g(x, y, z, p, q) = 0 be the two first order partial 

differential equations. We say that the two partial differential equations are compatible if every 

solution of the first equation is also a solution of the second equation. 

Theorem 2.3.1. Let f (x, y, z, p, q) = 0 and g(x, y, z, p, q) = 0 be the two first order partial 

differential equations. Then the necessary and suflcient conditions for the two partial differential 

equations are compatible is 
∂( f, g) 

+ p
∂( f, g) 

+ 
∂( f, g) 

+ q
∂( f, g) 

= 0. 
∂(x, p) ∂(z, p) ∂(y, q) ∂(z, q) 

 

Proof. Given 
 

f (x, y, z, p, q) = 0 (1) 

CheCK YOUR PROgRess 
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and 

 
g(x, y, z, p, q) = 0 (2) 

 

are two first order partial differential equations. 

 
We have to find the conditions for compatible of (1) and (2). 

 

If 

J = 
∂( f, g) 

∂(p, q) 

 

 
0. (3) 

 

Solving the equations (1) and (2) to obtain the explicit expressions 

 
 

p = φ(x, y, z), q = ψ(x, y, z) (4) 

 
 

for p and q. The condition that the pair of equations (1) and (2) should be compatible reduces 

then to the condition that the system of equations should be completely integrable, i.e., that the 

differential relation 

pdx + qdy = dz 

 

or 

 
φ(x, y, z)dx + ψ(x, y, z)dy = dz (1) 

should be integrable, for which the necessary condition is 

X̃ · curlX̃ = 0 
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where X = {φ, ψ, −1}. That is, 
 

ˆi ˆj kˆ 
 

(  ̃ i + ψ j̃ k̃) ∂ ∂ ∂  0 
∂x ∂y ∂z 

. . 

or 

.

 

φ ψ −1 . 

 

φ(−ψz) + ψ(φz) = ψx − φy 
 

which can be rewritten as 
 

ψx + φψz = φy + ψφz. (2) 

 
Now, differentiating equation (1) with respet to x and z, we get 

 

fx + fp 
∂p 

+ fq 
∂q 

= 0 
∂x ∂x 

 
 

and  
fz + fp 

∂p 
+ fq 

∂q 
= 0. 

∂z ∂z 
 

But, from equation (1), we have  

∂p ∂φ 

∂x 
= 

∂x
,
 

 

∂q ∂ψ 

∂x 
= 

∂x 

 

and so on. 

 
Using these results, the above equations can be recast into 

 
 

fx + fpφx + fqψx = 0 
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and 

fz + fpφz + fqψz = 0. 

 
 

Multiplying the second one of the above pair by φ and adding to the first one, we readily obtain 

 
 

( fx + φ fz) + fp(φx + φφz) + fq(ψx + φψz) = 0. 

 
 

Similarly, from equation (1), we can deduce that 

 
 

(gx + φgz) + gp(φx + φφz) + gq(ψx + φψz) = 0. 

 
 

Solving the above pair of equations for (ψx + φψz), we have 
 

  (ψx + φψz)  

fp(gx + φgz) − gp( fx + φ fz) 
=
 

 
1 1 

fqgp − gq fp 
= 

J 

 

or 
 
 

1 
ψx + φψz = [( fpgx − gp fx) + φ( fpgz − gp fz)] 

= 
1 

" 
∂( f, g) 

+ φ
∂( f, g)

# 

(3)
 

where J is defined in equation (3). Similarly, differentiating equation (??) with respect to y and 

 
z and using equation (??), we can show that 

 

φx + ψφz = − 
1 

" 
∂( f, g) 

+ ψ
∂( f, g)

# 

. (4)
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Finally, substituting the values of ψx + φψz and φx + ψφz from equations (3) and (4) into 
 

equation (2), we obtain 

∂( f, g) 
+ φ

∂( f, g) 
= − 

" 
∂( f, g) 

+ ψ
∂( f, g)

# 

.
 

 
 
 

In view of equations (4), we can replace φ and ψ by p and q, respectively to get 
 
 

∂( f , g) 
 

 

∂(x, p) 

∂( f , g) 
+ p

∂(z, p) 
+

 

∂( f , g) 
 

 

∂(y, q) 

∂( f , g) 
+ q 

∂(z, q) 

 

= 0. 

 

 

This is the desired compatibility condition. 
 

■ 

 

Problem 2.3.1. Show that the equations 

 
 

xp = yq, z(xp + yq) = 2xy 

 

 
are compatible and solve them. 

 

 
Solution. Let  

f = xp − yq = 0 (1) 
 

and  

g = z(xp + yq) − 2xy = 0. (2) 
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Then, 

∂( f, g) 

∂(x, p) 
=

 

 

p x 
= 2xy, 

. 

. pz − 2 y xz . 

 

∂( f, g) 

∂(z, p) 
=

 

0 x 
= −px2 

. – qxy, 

 
 

∂( f, g) 

∂(y, q) 
=

 

xp + yq xz 

 
. − . 

= −2 xy, 
. . 

. qz − 2 x yz . 

 

∂( f, g) 

∂(z, q) 
=

 

. 

= pxy + qy2 
. 

xp + yq yz 

 
and we find 

 
 

∂( f, g) ∂( f, g) ∂( f, g) ∂( f, g) 
+ p + + q =   2xy + p(−px2 − qxy) − 2 xy + q(pxy + qy2) 

∂(x, p) ∂(z, p) ∂(y, q) ∂(z, q)  
=    2x/y − p2 x2 − spqsxsy − 2x/y + spqsxsy + q2y2 

/ / 

 

=  −p2 x2 + p2 x2 

=  0. 
 

 

Hence the given PDEs are compatible. 

0 −y . 

. 

. . 
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Solving equations (1) and (2) for p and q, we obtain 
 
 

p q 1 

2xy2 
= 

2x2y 
= 

2xyz 

from which we get 

p 
2xy2 y 

 
 

= 
2xyz 

= 
z 

and  
2x2y x 

q = 
2xyz 

= 
z 

.
 

 

In order to get the solution of the given system, we have to integrate 

 

dz = 
y 

dx + 
x 

dy 
  

z z 
 
 

or 
 

zdz = ydx + xdy. 
 

 

On integration, we get 
 
 

z2 

2 
= xy + c1 

 

The solution of the given system is 

 
z2 = 2xy + c 

 

which is one parameter family. ■ 

 

Problem 2.3.2. Show that the equations xp − yq = x and x2 p + q = xz are compatible and find 



Partial Differential Equations M.Sc.(Mathematics)-II Sem   

. 

. 

. 

2.3. COMpaTIBLe SYsTeMs Of FIRsT-ORDeR EQUATIONs 55 

the solution. 

Solution. Let 
 
 

f = xp − yq − x = 0 (1) 
 

and  
g = x2 p + q − xz = 0. (2) 

 

Then, 
 
 
 

∂( f, g) 

∂(x, p) 

 
 

(p − 1) x 

. 

 
. = px2 − x2 − 2x2 p + xz = xz − x2 p − x2, 

. (2xp − z) x2 . 

 

∂( f, g) 

∂(z, p) 

 

 

. . = x2, 

. −x x2 . 

 

 
∂( f, g) . −q   −y . 

∂(y, q) 
=

 = −q, 

0 1 . 

 

 

∂( f, g) 

∂(z, q) 
=

 

0 −y 

= −xy 
. . 

 
 

and we find 

. −x 1 . 

 
∂( f, g) ∂( f, g) ∂( f, g) ∂( f, g) 

+ p + + q 
∂(x, p) ∂(z, p) ∂(y, q) ∂(z, q) 

= xz − x2 p − x2 + px2 − q − qxy 

= xz − q − qxy − x2 

0 x 

= 

= 
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= xz − q − x2 p 

=  0. 

 

 
Hence the given PDEs are compatible. 

 
Next we have to find the solution. 

 
Solving equations (1) and (2) for p and q, we obtain 

 
 

p q 1 

xyz + x 
= 

−x3 + x2z 
= 

x + x2y 

from which we get 

p = 
x(1 + yz) 

x(1 + xy) 

1 + yz 
= 

1 + xy 

and 

x2(z x) 
q = 

x(1 + xy) 
=

 

x(z − x) 
.
 

1 + xy 

In order to get the solution of the given system, we have to integrate 

dz = 
1 + yz 

dx + 
x(z − x) 

dy
 

1 + xy 1 + xy 

or 

dz − dx = 
y(z − x) 

dx + 
x(z − x) 

dy
 

1 + xy 1 + xy 

or 

dz − dx 
= 

xdx + ydy
.
 

 

z − x 1 + xy 
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On integration, we get 

ln(z − x) = ln(1 + xy) + ln c. 

That is, 
 
 

z − x = c(1 + xy). 
 

The solution of the given system is 
 

z = x + c(1 + xy) 

 
which is one parameter family. ■ 

 
Problem 2.3.3. Show that the equation z = px + qy is compatible with any equation 

 
f (x, y, z, p, q) = 0 that is homogeneous in x, y and z. 

 
Solve completely the simultaneous equations 

 
 

z = px + qy, 2xy(p2 + q2) = z(yp + xq). 

 
 

Solution. (i) Given that differential equation 

 
 

f (x, y, z, p, q) = 0 (1) 

 
 

is homogeneous in x, y, z. If f (x, y, z, p, q) is a homogeneous function in x, y, z of degree n, then 

by Euler’s theorem, 

 

∂ f ∂ f ∂ f 

∂x 
+ y 

∂y 
+ z 

∂z 

 

= n f . (2) x 
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Here 
 
 

∂ f ∂ f ∂ f 

∂x 
+ y 

∂y 
+ z 

∂z 

 

= 0. 

 
 

Taking g(x, y, z, p, q) = px + qy − z = 0. Then 
 

∂ f ∂ f 
. . 

 

 

∂ f ∂ f 
     

 
 

∂( f , g) ∂x . ∂p ∂x . = . ∂p ∂ f 
. = 

∂ f 
– p , 

∂(x, p) ∂g ∂g ∂x ∂p 
. . 

∂x ∂p p x . 
∂ f ∂ f . . 

 

 

∂ f ∂ f 
     

 
 

∂( f , g) ∂z . ∂p ∂x . = . ∂p ∂ f ∂ f 
. = + , 

∂(z, p) ∂g ∂g ∂z ∂p 
. . 

−1 x . 
∂z ∂p 

∂ f ∂ f . . 
 

 

∂ f ∂ f 
     

 
 

∂( f , g) ∂y . ∂q ∂y . = . ∂q ∂ f 
. = 

∂ f 
– q , 

∂(y, q) ∂g ∂g ∂y ∂q 
. . 

∂y ∂q q y . 
∂ f ∂ f . . 

 

 

 

∂ f ∂ f 
     

 
 

∂( f , g) ∂z . ∂q ∂x . = . 
∂q ∂ f ∂ f 

. = + and we find 

∂(z, q) ∂g 
. ∂z 

∂q . −1 y . 

∂z ∂q 

∂( f, g) ∂( f, g) ∂( f, g) ∂( f, g) 
+ p + + q 

∂ f ∂ f 
= x − p + p 

"

x
∂ f

 
+ 

∂ f 
# 

+ y
∂ f 

− q
∂ f 

∂(x, p) ∂(z, p) ∂(y, q) ∂(z, q) ∂x 
+q  y

∂ f
 

∂z 
∂ f 

∂p 

+ 
∂ f 
∂q 

∂ f 

∂z ∂p 
∂ f 

∂y ∂q 

= x
∂x

 

∂ f 
= x

∂x
 

+ y 
∂y

 

∂ f 
+ y 

∂y
 

+ (px + qy) ∂y 
∂ f 

+ z 
∂y 

∂g 
= 

= 

= 

= 

# 

x 

   

   

   

   

. 
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=  0. 
 

 

Hence, the differential equation z = px + qy is compatible with any differential equation 

 
f (x, y, z, p, q) that is homogeneous in x, y, z. 

 
(ii) f (x, y, z, p, q) = 2xy(p2 + q2) − z(yp + xq) = 0 (3) 

g(x, y, z, p, q) = px + qy − z = 0 (4) 

From (4), 

q = 
z − px 

y 

 
(5)  

 

Using (5) in (4), we get 
 

 

2x(x2 + y2)p2 − z(3x2 + y2)p + xz2 = 0 

(2xz − p)[(x2 + y2)p − xz] = 

0 

 

so that  
p =

 z 
, q = 

 z 
 

 

 
(6)  

2x 2y 
 

and  
p =

 xz 
, q =

 yz 
. (7) 

(x2 + y2) (x2 + y2) 
 

For p = z
 , q = z

 , then 
2x 2y 

 

 

dz = pdx + qdy 
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dz =  
z 

dx +  
z 

dy 
  

2x 2y 

2 
dz 

= 
dx 

+ 
dy 

z x y 
 

2 log z = log x + log y + log c1 
 

(8) 
 

 
For p =     xz

   , q =     yz
 , then 

(x2+y2) (x2+y2) 

 

 

dz = pdx + qdy 
 

dz = 
xz

 
(x2 + y2) 

dx + 
yz 

dy 
(x2 + y2) 

2 
dz 

= 
2xdx + 2ydy 

z (x2 + y2) 
 

2 log z = log(x2 + y2) + log c2 
 

(9) 

 
 

Equations (8) and (9) are two common solutions of (3) and (4). ■ 
 

 

1. Show that the equations f (x, y, p, q) = 0, g(x, y, p, q) = 0 are compatible if 
 

∂( f , g) 
 

 

∂(x, p) 

∂( f , g) 
+ 

∂(y, q) 

 

= 0. 

 

Verify that the equations p = P(x, y), q = Q(x, y) are compatible if 
 

∂P ∂Q 

∂y 
= 

∂x 
.
 

z2 = c1(x2 + y2). 

z2 = c1 xy. 
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2. If u1 =
 ∂u

, u2 =
 ∂u

, u3 =
 ∂u

, show that the equations 
∂x ∂y ∂z 

f (x, y, z, u1, u2, u3) = 0, g(x, y, z, u1, u2, u3) = 0 

are compatible if 
∂( f , g) 

∂(x, u1) 

∂( f , g) 
+ 

∂(y, u2) 
+

 

∂( f , g) 

∂(z, u3) 
= 0. 

 
2.4 Solutions Satisfying Given Conditions 

 
In this section, we explain the outline of three important concepts. 

 
(i) Determination of surfaces satisfies the partial differential equation and passing through a 

given surface. 

(ii) Determination of surfaces satisfies the partial differential equation and circumscribing a 

given surface. 

(iii) Derivation of one complete integral from the other. 

 

Definition 2.4.1. A curve which touches each member of a given family of curves is called 

 
envelope of that family. 

 
Note 2.4.1. (i) Envelope of one parameter family of curves can be obtained by differentiating 

the equation with respect to the parameter and eliminating the parameter from the given 

equation and equation obtained by differentiation gives the envelope of the given one 

parameter family. 

(ii) If the given equation of curve is quadratic in terms of parameter, i.e. Aα2 + Bα + c = 0, 

then envelope is given by discriminant is equal to zero ( B2 − 4AC = 0 ). 
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(iii) Envelope of two parameter family of curves and a relation connecting the two parameters 

obtained by differentiating the given equation and relation with respect to one parameter and 

eliminating the parameter from the given equation and equation obtained by differentiation 

gives the envelope of the given two parameter family. 

 
2.4.1 Solution passing through a given Surface 

 
Consider a first order partial differential equation 

 
F(x, y, z, p, q) = 0. (1) 

 
Now, we determine the solution of (1) which passes through a given curve C which has parametric 

equations 

x = x(t), y = y(t), z = z(t) (2) 
 

t being a parameter. 
 

If the integral surface of the equation (1) through the curve C exists, then it may be one of the 

three possible cases 

 
(a) A particular case of the complete integral 

 
f (x, y, z, a, b) = 0 (3) 

 
obtained by giving a or b particular values; or 

 
(b) A particular case of the general integral corresponding to (3), i.e., the envelope of a 

one-parameter subsystem of (3); or 

(c) The envelope of the two-parameter system (3). 

 
To determine the solution (surface E ) of (1) which passes through a given curve C, that is, E 

is the envelope of a one-parameter subsystem of (3) each of whose members touches the curve C, 

provided that such a subsystem exists. 



Partial Differential Equations M.Sc.(Mathematics)-II Sem   

2.4. SOLUTIONs SaTIsfYINg GIveN CONDITIONs 63 
 

We must find E such that the subsystem made up of those members of the family (3) which 

touch the curve C, that is, the points of intersection of the surface (3) and the curve C are 

determined in terms of the parameter t by the equation 

 

f {x(t), y(t), z(t), a, b} = 0 (4) 

and the condition that the curve C should touch the surface (3) is that the equation (4) must have 

two equal roots and the equation 
 

∂ 

∂t 
f {x(t), y(t), z(t), a, b} = 0 (5) 

 

should have a common root. The condition for this to be so is the eliminant of t from (4) and (5), 

 
ψ(a, b) = 0 (6) 

 
which is a relation between a and b alone. The factors of (6) leads to 

 
b = φ1(a), b = φ2(a), . . . (7) 

 
each of which defines a subsystem of one parameter. The envelope of each of these one-parameter 

subsystems is a solution of the problem. 

 
Problem 2.4.1. Find a complete integral of the partial differential equation 

 
 

(p2 + q2)x = pz 

 
 

and deduce the solution which passes through the curve x = 0, z2 = 4y. 

 
Solution. Given partial differential equation 

 
 

F(x, y, z, p, q) = (p2 + q2)x − pz = 0 (1) 
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By Charpit’s method, the auxillary equations of the given PDE are 
 
 

dx dy 

F  
= 

F  
= 

pF 

dz 

+ qF 

 
= 

−(
F 

dp 
= 

+ pF ) −(F 

dq 
. (2) 

+ qF ) 

 

From (1), we have 
 

 

Fx = p2 + q2, Fy = 0, Fz = −p, Fp = 2px − z, Fq = 2qx, 
 

 

then (2) becomes  

dx dy 

 

dz dp dq 

 

 
From (3), 

2px − z 
= 

2qx 
=  

2(p2  + q2) − pz 
=  

−q2 

=
 

pq
. (3) 

 
 

dp dq 

−q2 
= 

pq 

−pdp = qdq 
 

 

On integration 
 

 

p2 + q2 = a2 (4) 
 

 

Using (4) in (1), we obtain  
 

p 
a2 x 

and q 
z 

a ,
z2  − a2 x2 

 

and 
 

dz = pdx + qdy 

p q x y 

= 
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Substituting p and q in the above equation 

 
 
 
 
 

dz = 

 
 
 

 
a2 x

dx 
z 

65 

 

 
 

+ 
a ,

z2  − a2 x2dy 

zdz − a2 xdx = a 
,

z2  − a2 x2dy 

zdz − a2 xdx 

,
z2  − a2 x2 

2 
,

z2  − a2 x2 

= ady 
 

= ady 

,
z2  − a2 x2  = ay + b 

⇒ z2 = a2 x2 + (ay + b)2 (5) 

 
which is the required complete integral of (1). 

 
The parametric equations of the given curve ( x = 0, z2 = 4y ) are 

 
 

x = 0, y = t2, z = 2t. (6) 

 
 

The intersections condition of (5) and (6) gives 

 
 

4t2 = (at2 + b)2 

a2t4 + (2ab − 4)t2 + b2 = 0 

and this equation has equal roots if 

 
 

(ab − 2)2 = a2b2ab = 1, 
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then the one-parameter subsystem is 
 
 

2 2 2 1 
!2  

4 2 2 2 2 

 
 
 

then the envelope of the surface becomes 

 
 

(2y − z2)2 = 4(x2 + y2). 

 
which is the required surface passing through the given surface. ■ 

 
2.4.2 Derivation of one complete integral from the other 

 

Let 

 
 

and 

 
 

be the two complete integral. 

 
 

Steps 

 
f (x, y, z, a, b) = 0 (8) 

 
 

g(x, y, z, h, k) = 0 (9) 

 

(i) Choosing a curve Γ on the surface (9) in whose equations the constants h, k appear as 

independent parameters. 

(ii) The intersection of (8) and curve Γ with the equal roots conditions gives the one parameter 

family of subsystem. 

(iii) Find the envelope of the one-parameter subsystem. 

 
This envelope contains two arbitrary constants h and k , it gives (9), it is a complete integral. 

z + 
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Problem 2.4.2. Show that the equation 

xpq + yq2 = 1 

 
 

has complete integrals 

 
 

(a) (z + b)2 = 4(ax + y) 

 
(b) kx(z + h) = k2y + x2 

 

and deduce (b) from (a). 

 
Solution. The two complete integrals may be derived from the characteristic equations. 

 
Consider the curve 

 
y = 0, x = k(z + h) (1) 

 

on the surface (b). 

 
The intersections of (a) and (1), we have 

 
 

(z + b)2 − 4ak(z + b) + 4ak(b − h) = 0 
 

 

and this has equal roots if  
a2k2 = ak(b − h) 

 

this implies ak = 0 or b = h + ak. 

 
If we consider a = 0, then the envelope of the subsystem formed does not depend on h and k. 
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So, we consider the second subsystem formed by substituting b = h + ak in (a), we obtain 

 
 

(z + h + ak)2 = 4(ax + y) 

k2a2 + 2a{k(z + h) − 2x} + (z + h)2 − 4y = 

0 

 

and this has envelope  
{k(z + h) − 2x}2 = {(z + h)2 − 4y}k2. 

 

On simplification, we get the complete integral (b), i.e., 

 
 

kx(z + h) = k2y + x2. ■ 

 
2.4.3 Solution circumscribes a given Surface 

 
In this subsection, we explain the determination of an integral surface which circumscribes a given 

surface. 

 
Definition 2.4.2. Two surfaces are said to circumscribe each other if they touch along a curve. 

 
Example: A conicoid and its enveloping cylinder. 

Consider a first order partial differential equation 

F(x, y, z, p, q) = 0 (1) 

 
whose complete integral is given by 

 
f (x, y, z, a, b) = 0. (2) 

 

To determine a surface E, satisfies the partial differential equation (1), that is, complete integral 
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(2), 

 
 

which circumscribes 

69 

 
 

u(x, y, z) = 0 (3) 

 
 

ψ(x, y, z) = 0. (4) 
 

Hence the surface E is the envelope of the one parameter subsystem S of the two-parameter 

system (2), it is touched at each of its points, and, in particular, at each point P of Γ, is a curve 

where the surface E touches the given surface Σ. 

Steps: 

 
(i) To find the complete integral f (x, y, z, a, b) = 0 of given PDE F(x, y, z, p, q) = 0. 

 

(ii) Given circumscribing  ψ(x, y, z) = 0. 
 

(iii) To determine the equation 
 fx 

ψx 

fy fz 
= 

ψy 

= 
ψz

 

 

(iv) Eliminating x, y and z from complete integral f (x, y, z, a, b) = 0, circumscribing equation 

ψ(x, y, z) = 0 and the above equation, we obtain a relation χ(a, b) = 0. 
 

(v) Factorizing χ(a, b) = 0, we have b = φ1(a), b = φ2(a), . . . . 

(vi) Using each factors, we find a one parameter subsystem of complete integral. 
 

(vii) To find the envelope of the above one parameter subsystem, which is the required integral 

surface E circumscribing the surface Σ along a curve Γ. 

 
Problem 2.4.3. Show that the only integral surace of the equation 

 
 

2q(z − px − qy) = 1 + q2 

 
which is circumscribed about the paraboloid 2x = y2 +z2 is the enveloping cylinder which touches 

it along its section by the plane y + 1 = 0. 

. 
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Solution. Given PDE 
 

2q(z − px − qy) = 1 + q2 
 

can be written as 
 
 

z = px + qy + 

 
q2 + 1 

(1)
 

2q 
 

which is in the form of Clairaut type 
 

 

z = px + qy + f (p, q). 
 

 

Then the complete integral is  

 
z = ax + by + 

 
b2 + 1 

2b   
. (2) 

 

Given circumscribing equation 

 
2x = y2 + z2 (3) 

 

 

The consistent condition is 
 
 
 

 fx 

 

 

 
 fy = 

 
 
 

 fz = 

 
⇒ 

a 
= 

 b   
=  

−1 

ψx ψy ψz 2 −2y −2z 
 

which give the relations  
y = 

b
, z 

a 

 

 
1 

= 
a
. 

 
 

(4) 

 

Eliminating x between equations (2), (3) and (4), we have 

 
 

aby2 + 2b2y + abz2 − 2bz + b2 + 1 = 0. 
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Eliminating y and z from this equation and the equations (4), we obtain 

 
 

(b − a)(b2 + 1) = 0 

 
If we take b2 = −1, then we does not obtain the one parameter family of subsystem. 

Therefore, we consider the relation b = a, a one parameter family of subsystem 

 

{2(x + y) + 1}a2 − 2az + 1 = 0. 

 
The envelope of the above subsystem is 

 

 

z2 = 2(x + y) + 1 (5) 

 
 

which is the enveloping cylinder touches the surface (2), 

 
 

(y + 1)2 = 0  ⇒ y + 1 = 0 

 
is the plane section. ■ 

 

 

1. Find a complete integral of the equation  p2 x + qy = z, and hence derive the equation of an 

integral surface of which the line y = 1, x + z = 0 is a generator. 

2. Show that the integral surface of the equation 

 
z(1 − q2) = 2(px + qy) 
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which passes through the line x = 1, y = hz + k has equation 

 
(y − kx)2 = z2{(1 + h2)x − 1}. 

 
3. Show that the differential equation 

 
2xz + q2 = x(xp + yq) 

 

has a complete integral 

 
 

and deduce that 

 
 

is also a complete integral. 

 
z + a2 x = axy + bx2 

x(y + hx)2 = 4(z − kx2) 

4. Find the complete integral of the differential equation 

 
xp(1 + q) = (y + z)q 

 
corresponding to that integral of Charpit’s equations which involves only q and x, and 

deduce that 

 

is also a complete integral. 

(z + hx + k)2 = 4hx(k − y) 

 

5. Find the integral surface of the differential equation 

(y + zq)2 = z2(1 + p2 + q2) 

circumscribed about the surface x2 − z2 = 2y. 

6. Show that the integral surface of the equation 2y(1 + p2) = pq which is circumscribed about 

the cone x2 + z2 = y2 has equation 

 
z2 = y2(4y2 + 4x + 1). 



Partial Differential Equations M.Sc.(Mathematics)-II Sem   

2.5. JaCOBI’s MeTHOD 73 

2.5 Jacobi’s Method 

Consider a first order partial differential equation 

 
F(x, y, z, p, q) = 0 (1) 

 
and let us assume the solution of (1) with the following relation 

 
u(x, y, z) = 0, (2) 

 

then 
p = −

u1 
, q = −

u2 
, (3) 

u3 u3 

where ui denotes 
∂u

 
∂xi 

 

(i = 1, 2, 3) and x1 = x, x2 = y and x3 = z. Substitute from equations 

(3) into equation (1), we obtain 

f (x, y, z, u1, u2, u3) = 0. (4) 
 

The main idea of Jacobi’s method is the introduction of two further partial differential equations 

of the first order 

g(x, y, z, u1, u2, u3, a) = 0, h(x, y, z, u1, u2, u3, b) = 0 (5) 

involving two arbitrary constants a and b and such that: 

(a) Equations (4) and (5) can be solved for u1, u2, u3 ; 
 

(b) The equation 

du = u1dx + u2dy + u3dz (6) 

obtained from these values of u1, u2, u3 is integrable, for which the conditions are 
 

∂u2 

∂x 

∂u1 
=  

∂y 
, 

∂u3 

∂y 

∂u2 
=  

∂z 
, 

∂u1 

∂z 

∂u3 
= 

∂x 
. 

 

We have to find two equations which are compatible with (4), it is clear that g and h have to be 
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solutions of the linear partial differential equation 
 

∂g 
fu + fu 

∂g 
+ fu 

∂g ∂g 
– fx 

∂g 
– fy 

∂g 
– fz 

 
= 0 (7) 

1   ∂x 2   ∂y 3    ∂z ∂u1 ∂u2 ∂u3 
 

which has subsidiary equations 
 

dx 
= 

fu1 

dy 
= 

fu2 

dz 

fu3 

du1 
= 

– fx 

du2 
= 

– fy 

du3 
= 

– fz 

 

. (8) 

 
 

Steps 
 

1. Given equation F(x, y, z, p, q) = 0. 

2. Find f (x, y, z, u1, u2, u3) = 0 by substituting p = −
u1

 

 
and q = 

u2
 

u3 

 
 
in F(x, y, z, p, q) = 0. 

3. Form an auxiliary equation 
 

dx 
= 

fu1 

dy 
= 

fu2 

dz 

fu3 

du1 
= 

– fx 

du2 
= 

– fy 

du3 
= . 

– fz 

 

4. Find two solutions g(x, y, z, u1, u2, u3, a) = 0 and h(x, y, z, u1, u2, u3, b) = 0 of the auxiliary 

equations. 

X 
∂g ∂h 

 

   

∂g ∂h 
!
 

 

 

6. Find the values of u1, u2 and u3 
 

7. Find the solution from du = u1dx+u2dy+u3dz. On integration, we get the required solution. 

 

Problem 2.5.1. Solve the equation p2 x + q2y = z. 

 
Solution. Given p2 x + q2y = z. (1) 

Let p = −
u1 

, q = −
u2 

. (2) 
u3 u3 

∂xr ∂ur ∂xr 
r=1 

5. Verify the condition (g, h) = = 0. 
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b
 

2 

    1    !
b
 

 

 !

a + b 

1 2 3 

1 2 3 

3 
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Substitute the equation (2) in equation (1), we get 

f (x, y, z, u1, u2, u3) = xu2 + yu2 − zu2 = 0 (3) 

then 

 

 
fx = u2, fy = u2, fz = −u2, fu 

 

 

 

= 2u1 x, fu 

 

 

 

= 2u2y, fu 

 

 
= −2u3z. 

 

Auxiliary equations are 
 
 

dx dy dz du1 du2 du3 
= 

fu1 

= 
fu2 

 
 

fu3 

= = = 
– fx − fy − fz 

dx dy dz du1 du2 du3 

2u1 x 
= 

2u2y 
= 

−2u3z 
= 

−u2 
= 

−u2  = 2 

 

with solutions 

 
xu2 = a, yu2 = b 

1 2 

 

whence 
 

 
u1 = 

 
 

 
1 

 

2 

, u2 = 
x y 

 

From (3), we have 
 
a + b 

!1

 

u3 = 
z
 

 

Substitute the values of u1, u2 and u3 in 

 
 

du = u1dx + u2dy + u3dz 

=  
a  2  

dx + 
x 

 
1 

 

2 

y 
dy + 

 
1 

 

2 

z 
dz. 

1 2 3 

2 a 
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On integration 
 

 
1 1 1 

u = 2(ax) 2 + 2(by) 2 + 2{(a + b)z} 2   + c. 

 
Taking b = 1, c = b, we get the complete integral 

 

 
1 1 1 

{(1 + a)z} 2 = (ax) 2   + y 2   + b. 
 

 

■ 

 
 

Generalization of Jacobi’s method 

 
Solve an equation of the type 

 

 
where ui denotes 

∂u
 

∂xi 

f1(x1, x2, . . . , xn, u1, . . . , un) = 0, 

 
(i = 1, 2, . . . , n), then we find n − 1 auxiliary functions f2, f3, . . . , fn from 

the subsidiary equations 
 

dx1 

fu1 

dx2 
= 

fu2 

= · · · = 
dxn 

fun 

 du1  
= 

– fx1 

 du2  
= 

– fx2 

 dun  

= · · · = 
− fx

 

 

involving n − 1 arbitrary constants. Solving these for u1, u2, . . . , un, we determine u by 

integrating the Pfaffian equation 
n 

du = uidxi 
i=1 

the solution so obtained containing n arbitrary constants. 

n 
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1. Show that a complete integral of the equation 

f

 
∂u

, 
∂u

, 
∂u 

! 

= 0
 

 

is 

u = ax + by + θ(a, b)z + c, 
 

where a, b and c are arbitrary constants and f (a, b, θ) = 0. 

Find a complete integral of the equation 

∂u 

∂x 
+

 

∂u ∂u ∂u ∂u ∂u 

∂y 
+ 

∂z 
= 

∂x ∂y ∂z 
.
 

 

2. Show how to solve, by Jacobi’s method, a partial differential equation of the type 

f

 

x, 
∂u

, 
∂u 

! 

= g

 

y, 
∂u

, 
∂u 

!

 

and illustrate the method by finding a complete integral of the equation 
 

 
2x2y 

 
∂u 

!2 
∂u 

= x2 ∂u 
 
+ 2y 

 
∂u 

!2 

∂x ∂z ∂y ∂x 

 

3. Prove that an equation of the “Clairaut” form 

x
∂u 

+ y
∂u 

+ z
∂u 

= f 

 
∂u

, 
∂u

, 
∂u 

!
 

is always soluble by Jacobi’s method. 

Hence solve the equation 

 
∂u 

+ 
∂u 

+ 
∂u 

!  

x
∂u 

+ y
∂u 

+ z
∂u 

! 

= 1.
 

CheCK YOUR PROgRess 

. 
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In this unit, the students acquired knowledge to 

 
• solve nonlinear PDE’s of the first order. 

• derive of one complete integral from the other. 

• Jacobi’s method. 
 
 

 

1. M.D. Raisinghania, Advanced Differential Equations, S. Chand & Company Ltd., New 

Delhi, 2001. 

2. K. Sanakara Rao, Introduction to Partial Differential Equations, Second Edition, 

Prentice-Hall of India, New Delhi, 2006. 

Let us Sum up: 



 

Structure 

Objective 

Overview 

3. 1 

3. 2 

3. 3 

3. 4 

Origin of Second-order Equations 

Linear PDE’s with constant coefficients 

Equations with variable coefficients 

Separation of Variables. 

Let us Sum Up 

Check Your Progress 

Suggested Readings 

Overview 

 

BLOCK-II 

UNIT 3 

PARTIAL DIFFERENTIAL EQUATIONS 

OF THE SECOND ORDER-I 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

In this unit, we discuss the partial differential equations of the second order with constant and 

variable coefficients. We also explain method of solving partial differential equations using the 

separation of variables. Finally, we discuss the method of integral transforms. 

Notations: 

p 
∂z ∂z ∂2z 

 
 

∂2z ∂2z 
 

= 
∂x

, q = 
∂y

, r = 
∂x2 , s = 

∂x∂y
, t = 

∂y2 . 

 
79 



Partial Differential Equations M.Sc.(Mathematics)-II Sem   

80 3.1. ORIgIN Of SeCOND-ORDeR EQUATIONs 

 

3.1 Origin of Second-order Equations 

 
In this section, we discuss the formation of second order partial differential equations by 

eliminating arbitrary functions. 

 
Problem 3.1.1. Form a second order PDE by eliminating arbitrary functions from z = f (u) + 

g(v) + w, where f and g are arbitrary functions of u and v , respectively, and u, v , and w are 

prescribed functions of x and y . 

Solution. Given 

 
z = f (u) + g(v) + w (1) 

 

Differentiating (1) partially with respect to x and y , we get 

 
 

p = f J(u)ux + gJ(v)vx + wx (2) 

 

q = f J(u)uy + gJ(v)vy + wy (3) 

 

Again differentiating, we have 

 
 

r = f JJ(u)u2 + gJJ(v)v2 + f J(u)uxx + gJ(v)vxx + wxx (4) 
x x 

 

s = f JJ(u)uxuy + gJJ(v)vxuy + f J(u)uxy + gJ(v)vxy + wxy (5) 
 

t = f JJ(u)u2 + gJJ(v)v2 + f J(u)uyy + gJ(v)vyy + wyy. (6) 
y y 
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Eliminate the four quantities f J , f JJ, gJ and gJJ from the equations (2) to (6), we obtain 

. p − wx ux vx 0 0 . 

q − wy uy vy 

. 
0 0 

.
 

 

  
 

. s − wxy uxy vxy uxuy vxvy . 
 

. t − wyy 
uyy 

vyy 
2 2 

 
which involves only the derivatives p, q, r, s, t and known functions of x and y, therefore a partial 

differential equation of the second order. 

Furthermore if we expand the determinant on the left-hand side of equation (7) in terms of the 

elements of the first column, we get 

 
Rr + S s + Tt + Pp + Qq = W, (8) 

 
 

where R, S, T, P, Q, W are known functions of x and y . Therefore the relation (1) is a solution 

of the second-order linear partial differential equation (8). ■ 

Problem 3.1.2. Form a second order PDE by eliminating arbitrary functions from z = f (x + ay) + 
 

g(x − ay), where f and g are arbitrary functions. 
 

Solution. Given  

z = f (x + ay) + g(x − ay). (1) 

v x 
2 
x 
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Differentiating (1) twice partially with respect to x, we get 
 

p = 
∂z 

∂x 
=  f J(x + ay) + gJ(x − ay) 

∂2z 
r = 

∂x2  = f JJ(x + ay) + gJJ (x − ay). (2) 

 
 

Differentiating (1) twice partially with respect to y, we get 

 

q = 
∂z 

= a f J(x + ay) agJ(x ay) 
∂y 

t 
∂2z 

 
 

2   JJ 2   JJ 

= 
∂y2 = a f (x + ay) + a g (x − ay) 

 

t = a2( f JJ(x + ay) + gJJ(x − ay)). (3) 
 

 

From (2) and (3), we obtain 

 
t = a2r 

 

which is the required second-order linear partial differential equation. ■ 

 
Problem 3.1.3. Prove that if f and g are arbitrary functions of a single variable, then u = 

 

f (x − vt + iαy) + g(x − vt − iαy) is a solution of the equation 
 

∂2u ∂2u 1 ∂2u 

∂x2  
+ 

∂y2  
= 

c2  ∂t2 

 

provided that α2 = 1 − v2/c2 . 
 

Solution. Given  

u = f (x − vt + iαy) + g(x − vt − iαy). (1) 
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Differentiating (1) twice partially with respect to x, we get 

∂u 
= f J(x − vt + iαy) + gJ(x − vt − iαy) 

∂2u 

∂x2  = f JJ(x − vt + iαy) + gJJ (x − vt − iαy). (2) 

Similarly differentiating (1) twice partially with respect to y and t respectively, we get 

∂2u 

y 
= −α2 

. 
f JJ(x − vt + iαy) + gJJ(x − vt − iαy)

. 
(3) 

and 

∂2u 

∂t2 
= v2 

. 
f JJ(x − vt + iαy) + gJJ(x − vt − iαy)

. 
. (4) 

Adding (2) and (3) and using (4), we obtain 

∂2u 

x 

∂2u 
+ 

y
 

 

= (1 − α2) 
. 
f JJ(x − vt + iαy) + gJJ(x − vt − iαy)

.
 

∂ 2 ∂ 2 

1 − α2 ∂2u 
 

 

= 
v2 

 

 

∂t2  
 

(5) 
 
 

where α2 = 1 − v2/c2. 

Thus given u is a solution of the partial differential equation (5). ■ 

 

Problem 3.1.4. If z = f
 

x2 − y
 

+ g
 

x2 + y
 

, where the functions f and g are arbitrary, prove 
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∂ 
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that 

∂2z 1 ∂z − 
 

 

2 ∂2z 
 

∂x2 x ∂x 
= 4x 

∂y2 
.
 

 

Solution. Given 

z = f 
 
x2 − y

  
+ g 

 
x2 + y

  
. (1) 

 

Differentiating (1) twice partially with respect to x, we get 
 

∂z 
= 2x f J

 
x2 − y

 
+ 2xgJ

 
x2 + y

 
 

= 2x 
. 
f J
 

x2 − y
  

+ gJ

 
x2 + y

 . 
(2) 

∂2z 

∂x2  = 2 
. 
f J

 

x2
 

– y
 
 + gJ

 
x2 + y

 . 
+ 4x2 

.
 f JJ

 

x2 
– y

 
 + gJJ 

 

x2 + y
 .  

. (3) 

 
 

Differentiating (1) twice partially with respect to y, we get 

 

∂z 
= f J

 
x2 − y

  
− gJ

 
x2 + y

 
(4) 

 

∂2z 

∂y2  = f 
JJ
 

x2 
– y

 
 + gJJ 

 

x2 + y
 
 
 

. (5) 

 
 

From (2), we have 

f J
 

x2 − y
  

+ gJ

 
x2 + y

  
= 

 1 
 

 

∂z 
. (6) 

∂x 
 

From (3), (5) and (6), we obtain 

 

 

which is the required partial differential equation. ■ 
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n 

Note 3.1.1. If  z = fr (vr) , where the functions fr are arbitrary and the functions vr are 
r=1 

known, then it leads to a linear partial differential equation of the n th order. 

 
Problems 

 
1. Verify that the partial differential equation 

 

∂2z ∂2z 2z 

∂x2  
− 

∂y2  
=  

x 
 

is satisfied by 
z 

1 J 

 
where φ is an arbitrary function. 

=  
x
φ(y − x) + φ (y − x) 

 

2. If u = f (x + iy) + g(x − iy) , where the functions f and g are arbitrary, show that 
 

∂2u ∂2u 

∂x2 
+ 

∂y2 
= 0

 

 
3. A variable z is defined in terms of variables x, y as the result of eliminating t from the 

equations 

z = tx + y f (t) + g(t) 

0 = x + y f J(t) + gJ(t) 

Prove that, whatever the functions f and g may be, the equation 

 
rt − s2 = 0 

 

is satisfied. 
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3.2 Linear Partial Differential Equations with Constant Co- 

efficients 

Consider a linear partial differential equation with constant coefficients of the form 

F 
.
D, DJ

 
z = f (x, y), (1) 

where F (D, DJ) denotes a differential operator of the type 

F 
.
D, DJ

 
= 
X X 

crsD
r
DJs (2) 

 

and the quantities crs are constants; and D = 
∂ 

, DJ = 
∂ 

. 
  

∂x ∂y 
 
 

Solution: 

 
The most general solution of the corresponding homogeneous linear partial differential equation 

F 
.
D, DJ

 
z = 0 (3) 

is called the complementary function of the equation (1), which contains the correct number of 

arbitrary elements (functions), as in the case of ordinary differential equations. 

Similarly, any particular solution of the equation (1) which contains no arbitrary constants or 

functions is called a particular integral of (1). 

Thus, the general solution of (1) is the sum of complementary function (C.F) and the particular 

integral (P.I) of (1), i.e., 

z = C.F + P.I. 

 

Theorem 3.2.1. If u is the complementary function and z1 a particular integral of a linear partial 

differential equation, then u : z1 is a general solution of the equation. 
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Proof. Consider a linear PDE 

F 
.
D, DJ

 
z = f (x, y), (1) 

Given u is the complementary function of (1), i.e., 

 

F 
.
D, DJ

 
u = 0. (2) 

Also given z1 a particular integral of a linear PDE (1), i.e., 

 

F 
.
D, DJ

 
z1 = f (x, y), (3) 

To prove: u + z1 is the general solution of (1). 

 

F 
.
D, DJ

 
(u + z1) = F 

.
D, DJ

 
u + F 

.
D, DJ

 
z1 

= 0 + f (x, y) 

F 
.
D, DJ

 
(u + z1) = f (x, y). 

⇒ u + z1 satisfies the equation (1). Therefore, u + z1 is the general solution of (1). ■ 

Theorem 3.2.2. If u1, u2, . . . , un , are solutions of the homogeneous linear partial differential 

equation F (D, DJ) z = 0 , then 
n 

crur 

r=1 

 

where the cr ’s are arbitrary constants, is also a solution. 
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Proof. The given homogeneous linear partial differential equation is 

 

F 
.
D, DJ

 
z = 0 (1) 

Given that u1, u2, . . . , un are the solution of (1). 

 

F 
.
D, DJ

 
u1 = 0 

F 
.
D, DJ

 
u2 = 0 

. 

F 
.
D, DJ

 
un = 0. 

 

 

Also, 

 
 

 
Now, 

F 
.
D, DJ

 
crur = crF 

.
D, DJ

 
ur. 

 

F 
.
D, DJ 

 

n 

 
r=1 

crur  = 

 
n 

 
 

r=1 

n 

F 
.
D, DJ 

 
crur 

= crF D, DJ ur 
r=1 

= c1F 
.
D, DJ

 
u1 + c2F 

.
D, DJ

 
u2 + · · · + cnF 

.
D, DJ

 
un 

= 0. 
 
 

n 

Therefore, crur is the solution of (1). ■ 
r=1 
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Classification of linear differential operators 

 

Reducible The operator F (D, DJ) is said to reducible if it can be factorized into the linear factor 

of the type D + aDJ + b , where a and b are constants. 

Example: D2 − DJ2 = (D + DJ) (D − DJ) . 

Irreducible The operator F (D, DJ) is said to irreducible if it is not reducible. 

Example: D2 − DJ. 

 
Theorem 3.2.3. If the operator F (D, DJ) is reducible, the order in which the linear factors occur 

is unimportant. 

 

Proof. For proving this theorem, we have to prove : (αrD + βrDJ + γr) (αsD + βsDJ + γs) 

= (αsD + βsDJ + γs) (αrD + βrDJ + γr) . Now 

 
.
αrD + βrDJ + γr

 .
αsD + βsDJ + γs

  
= αrαsD2 + αsβrDDJ + αrβsDDJ + βrβsDJ2 + γsαrD 

+ γrαsD + γsβrDJ + γrβsDJ + γrγs 

 

= αrαsD2 + (αsβr + αrβs) DDJ + βrβsDJ2 + (γsαr + γrαs) D 

 

+ (γsβr + γrβs) DJ + γrγs. (1) 

 

Also, 

 
.
αsD + βsDJ + γs

 .
αrD + βrDJ + γr

  
= αrαsD2 + (αsβr + αrβs) DDJ + βrβsDJ2 + (γsαr + γrαs) D 

+ (γsβr + γrβs) DJ + γrγs. (2) 



Partial Differential Equations M.Sc.(Mathematics)-II Sem   

.   . .   

αr 

.   . .   

90 3.2. LINeaR PaRTIAL DIffeReNTIAL EQUATIONs WITH CONsTANT CO- effICIeNTs 

From (1) and (2), we get 

 
.
αrD + βrDJ + γr

  .
αsD + βsDJ + γs

  
= 

.
αsD + βsDJ + γs

  .
αrD + βrDJ + γr

  
. 

∴ For any reducible operator can be written in the form 

 
n 

F  D, DJ = αrD + βrDJ + γr  . ■ 
r=1 

 

Theorem 3.2.4. If αrD + βrDJ + γr is a factor of F (D, DJ) and φr(ξ) is an arbitrary function of 

the single variable ξ , then if αr /= 0 , 

ur = exp

 

−
γr x 

! 

φr (βr x − αry) 

is a solution of the equation F (D, DJ) z = 0 . 
 

 

Proof. Let 

F 
.
D, DJ

 
z = 0 (1) 

 

be a partial differential equation. Since (1) is reducible 
 
 

n 

F D, DJ z = αrD + βrDJ + γr  z. (2) 
r=1 

 

If z satisfies (αrD + βrDJ + γr) z = 0, r = 0, 1, 2, . . . n , then it gives us complementary function. 
 

Now 

∂z ∂z 
αr 

∂x 
+ βr 

∂y 
+ γrz = 0 
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is a linear first order partial differential equation and the auxiliary equation 

dx dy 

αr 
= 

βr 

 

dz 
= 

−γr

z 

 

 
. (3) 

 

Consider the first and second term, we get 
 
 

dx dy 

αr 
= 

βr 
 

⇒ cr1 = βr x − αry, 
 

 

cr1 being a constant. Also  
 

1 dz 

z dx 

 
 

= 
−γr 

αr 
⇒ z = cr2 exp 

 
−γr x 

!

 

 

where cr2 is a constant. Therefore the solution of (3) is 

 
 

cr2 = φr(cr1) 
 

 

implies 

z = φr (cr1) exp 

  
−γr x 

! 

= φr (βr x − αry) exp 

  
−γr x 

! 

. 

 
If αr /= 0 , therefore 

αr αr 

 
 

C.F. = φr (βr x − αry) exp

 
−γr x 

!
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φr is an arbitrary function and hence it is a solution of (αrD + βrDJ + γr) z = 0. Now 
 

F 
.
D, DJ u .n

 .
α D + β DJ + γ 

  

  . 
 
α D + β DJ + γ 

  

 
u . (6) 

 
 
s=1  

 

Combining equations (5) and (6), we get 

 

F 
.
D, DJ

 
ur = 0. 

Thus ur = exp

 

−
γr x 

! 

φr (βr x¯ − αry) is a solution of (1). Ths completes the proof. ■ 

Theorem 3.2.5. If βrDJ + γr is a factor of F (D, DJ) and φr(ξ) is an arbitrary function of the 

single variable ξ , then if βr /= 0 , 

ur = exp

 

−
γry 

! 

φr (βr x) 

is a solution of the equation F (D, DJ) = 0. 

Proof. Let 

F 
.
D, DJ

 
z = 0 (1) 

 

be a partial differential equation. Since (1) is reducible 
 
 

n 

F D, DJ z = αrD + βrDJ + γr  z. (2) 
r=1 

r r r s s = r 
r 
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If z satisfies (βrDJ + γr) z = 0, r = 0, 1, 2, ...... n , then it gives us complementary function. Now 

0
 ∂z 

+ βr

 ∂z 
+ γrz = 0 

∂x ∂y 

is a linear first order partial differential equation and the auxiliary equation 

dx dy 

0  
= 

βr 

 

dz 
= . (3) 

−γrz 
 

Consider the first and second term, we get 
 
 

dx dy 

0  
= 

βr 
 

⇒ cr1 = βr x, 

 
cr1 being a constant. Also, consider the second and third of (3), we get 

 

  dz dy 
= ⇒ z = cr2 exp 

 
−γr x 

!

 

−γrz βr βr 
 

where cr2 is a constant. Therefore the solution of (3) is 

 
 

cr2 = φr(cr1) 
 

 

implies 

z = φr (cr1) exp

 
−γr x 

! 

= φr (βr x) exp

 
−γr x 

! 

. 
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Therefore 

C.F. = φr (βr x) exp

 
−γr x 

!

 

φr is an arbitrary function and hence it is a solution of (βrDJ + γr) z = 0. Now 
 

F 
.
D, DJ u .n

 .
α D + β DJ + γ 

  

  .
β DJ + γ 

 

 
u . (6) 

 
 
s=1  

 

Combining equations (5) and (6), we get 

 

F 
.
D, DJ

 
ur = 0. 

Thus ur = exp

 

−
γr x 

! 

φr (βr x) is a solution of (1). This completes the proof. ■ 

 

Theorem 3.2.6. If (αrD + βrDJ + γr)
n
 (αr 

φr1, . . . , φrn are arbitrary, then 

0) is a factor of F (D, DJ) and if the functions 

 

 
exp γr x 

! Xn
 x

s−1φrs (βr x − αry) 
αr s=1 

 

is a solution of F (D, DJ) = 0 . 

 

Proof. In the decomposition of F (D, DJ) into linear factors, we may get multiple factors of the 

type (αrD + βrDJ + γr)
n
 . 

For n = 1, the solution corresponding to a factor of this type can be obtained from Theorems 

 
2.2.4 and 2.2.5. 

r r s s = r 
r 

− 
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For n = 2 , we have to find the solutions of the equation 

 
 
 
 
 

Let 

 
 

 
then 

.
αrD + βrDJ + γr

 2 
z = 0 (1) 

 
Z = 

.
αrD + βrDJ + γr

 2 
z (2) 

 
.
αrD + βrDJ + γr

  
Z = 0. (3) 

 

By theorem 2.2.4, (3) has the solution of the form 
 

Z = exp

 

−
γr x 

! 

φr (βr x − αry) , 

if αr /= 0. 

To find the corresponding function z we have to solve the first-order linear partial differential 
 

equation 

αr 
∂z 

+ βr 
∂z 

+ γrz = exp

 

−
γr x 

! 

φr (βr x − αry) . 
 

which is a Lagrange’s linear equation of the form Pp + Qq = R, then the auxiliary equations are 
 

 
dx dy dz 

αr  
=  

βr  
= 

−γrz + e−γJ x/αr φr (βr x − αry) 
(4)
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Consider the first and second term, on integration, we get 

 
 

βr x − αry = c1 

 
Next we consider the first and last term and substituting c1 = βr x − αry in the last term, we get 

the 

 

dx dz 

αr 
= 

−γrz + e−γr x/αr φr (c1) 
dz γr 1  − γr x 

 

dx 
+ 

α 
z = 

α 
e  αr 

φr (c1) . (5) 
r r 

 

 

which is a first-order linear equation of the form 

 

dy 

dx 
+ Py = Q 

 
 

and whose solution of the form 

ye
∫ 

Pdx = 

∫ 

Qe
∫ 

Pdx + c 
 

 

Therefore the solution of (5) is 
 
 

1 − γr x 

 

 
 

Therefore the solution of (1) is 
 

 

z = {xφr (βr x − αry) + ψr (βr x − αry)} 
e 

γr x 
αr − 

. 
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where the functions φr, ψr are arbitrary. 

By induction, the result holds. This completes the proof. ■ 

Theorem 3.2.7. If (βrDJ + γr)
m
 is a factor of F (D, DJ) and if the functions φr1, . . . .φrm are 

arbitrary, then 

exp 
   

γry 
! Xm 

xs−1φrs (βr x) 

is a solution of F (D, DJ) z = 0 . 

βr s=1 

Proof. The proof is similar to proof of Theorem 2.2.6. ■ 

Note 3.2.1. • By the above theorems, any reducible operator F (D, DJ) is of the form 
 
 

n 

F  D, DJ = αrD + βrDJ + γr 
mr

 

r=1 

 

and if none of the αr ’s is zero, then the corresponding complementary function is 
 

u = 
X
 
 

exp γr x 
! Xmr

 x
s−1φrs (βr x − αry) 

r=1 
αr s=1 

 

where the functions φrs (s = 1, . . . , nr; r = 1, . . . , n) are arbitrary. 

 
• If some of the αr ’s are zero, the necessary modifications to the above expression can be 

made by means of Theorems 2.2.5 and 2.2.7. 

Problem 3.2.1. Solve the equation 
 

 
∂4z 

 
∂4z 

 
∂4z 

∂x4 
+ 

∂y4 
= 2 

∂x2∂y2 
.
 

n 

− 
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+ 

∂y4   
= 2 

∂x2∂y2 
⇒

 ∂x4 
+ 

∂y4 
− 2 

∂x2∂y2   
= 0    ⇒

 ∂x2 
− 

∂y2 
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Solution. Given 
 

∂4z 
 

 

∂4z 
 

 

∂4z ∂4z 
 

 

∂4z 
 

 

∂4z 
  
∂2z 

 
 

∂2z 
!2

 
 

 
  

 
 
 

can be written as 
 

 

(D2 − DJ2)2 = 0 

.
D + DJ(D − DJ

 2 
z = 0 

.
D + DJ

 2 .
D − DJ

 2 
z = 0. 

Therefore, the solution is 
 

 

z = xφ1(x − y) + φ2(x − y) + xψ1(x + y) + ψ2(x + y) 

 
where the functions φ1, φ2, ψ1, ψ2 are arbitrary. ■ 

 
Particular Integral 

 
Consider a non-homogeneous linear partial differential equation with constant coefficients of the 

form 

F D, DJ z = f (x, y), (1) 

where F (D, DJ) denotes a reducible linear differential operator of the form 
 

n 

F  D, DJ = αrD + βrDJ + γr . 
r=1 

 

We discussed the complementary function of equation (1). Now we need to find a particular 

= 0 
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integral to complete the solution. 

If 

then equation (1) is 

 
 

n 

z1 = αrD + βrDJ + γr  z (2) 
r=2 

 
 

 

.
α1D + β1DJ + γ1

 
z1 = f (x, y) 

 

  
⇒ α1 

∂x 
+ β1 

∂y 
+ γ1z1 = f (x, y) 

which is a Lagrange’s equation, substituting the value of z1 in (2) and repeating the process, until 

the last first-order equation for z . 

Problem 3.2.2. Find the solution of the equation 
∂2z 

− 
∂2z

 
 

  

x − y 

∂x2 ∂y2  = . 

Solution. Given 
∂2z 

− 
∂2z

 
 

  

x − y (1) 

∂x2 ∂y2 
=

 
can be written as  

 
D2 − DJ2

 
z = x − y 

.
D − DJ

  .
D + DJ

 
z = x − y. 

 

 

The complementary function is 
 

 

C.F = φ1(x + y) + φ2(x − y) 
 

 

where φ1 and φ2 are arbitrary. 
 

To find the particular integral 

 
.
D − DJ

  .
D + DJ

 
z = x − y. (2) 

∂z1 ∂z1 
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Let 
 

 
 
 

then the equation (2) becomes 

z1 = 
.
D + DJ

 
z (3) 

 
.
D − DJ

 
z1 = x − y 

∂z1 

∂x 
−
 

∂z1 

∂y 
= x − y 

 
 

which is a first-order linear equation of the form Pp + Qq = R with the auxillary equation 
 

dx dy dz1 

1 
= 

−1 
= 

x − y 
 

Solving the above equation, we obtain 
 
 

dx dy 
= 

  

dx − dy dz1 
= 

 

1 −1 1 − (−1) x − y 

∫  

dx = − 

∫  

dy 
1 

(x − y)(dx − dy) = dz1 

x 
1 (x − y)2 

 

= −y + c1 

x + y = c1 

2 2 
= z1 + c2 

(x y)2 

4 
= z1 + c2 

 
 

Then the solution is 
 

 

c2 = f (c1) where f is an arbitrary function 

(x y)2 
z1 

4 
= f (x + y) 
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z1 = 
(x y)2 

4 
+ f (x + y) 

 
 

Take f = 0 
 

 
z1 = 

(x − y)2 
 

4 
 
 

Substituting this value of z1 into (3), we have 
 

 
(D + 

 
DJ)z = 

(x − y)2 
 

4 
∂z ∂z (x − y)2 

∂x 
+ 

∂y 
= 

4 
 

which is a first-order linear equation of the form Pp + Qq = R with the auxillary equation 
 

 
dx dy 

1  
=  

1  
= 

 

dz 
 

 

(x y)2 

4 

 

On solving, we get Solving the above equation, we obtain 

 

z = 
1 

x(x − y)2 + f (x − y) 

 
in which f is arbitrary. Taking f ≡ 0, we obtain the particular integral 

 
z = 

1 
x(x y)2 

4 
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Hence the general solution of (1) is 

 
 

z = C.F + P.I 

z = φ1(x + y) + φ2(x − y) + 
1 

x(x − y)2. 

 
where the functions φ1 and φ2 are arbitrary. ■ 

 

Theorem 3.2.8. F (D, DJ) eax+by
 = F(a, b)e

ax+by. 

 
Proof. Let F (D, DJ) = crsD

r
DJs. Then 

 

Dreax+by = areax+by 

DJseax+by = bseax+by. 

 

Now, 

 

F 
.
D, DJ

 
= crs D

r DJseax+by 

=  crsa
rbJseax+by 

 
= F(a, b)e

ax+by. 
 

 

This completes the theorem. ■ 

Theorem 3.2.9.  F (D, DJ) 
n
e

ax+byφ(x, y)
} 

= eax+by
F (D + a, DJ + b) φ(x, y) . 

Proof. Let F (D, DJ) = crsD
r
DJs. By Leibnitz’s theorem for the rth derivative of a product, we 
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r 

D
r
 (e

axφ) = r
Cρ (D

ρ
e

ax) D
r−ρφ 

ρ=0 

r 

= eax 
 
ρ=0 

rCρaρ Dr−ρ
 φ

 

 

= eax(D + a)rφ 

s 

Ds   ebyφ  = sCρ  D
Jρeby DJr−ρφ 

ρ=0 

s 

= eby 
 
ρ=0 

sCρbρ DJr−ρ
 φ

 

 

= eby(DJ + b)sφ. 
 

 

Now, 

 

F 
.
D, DJ

 
= crsD

r
DJse

ax+byφ(x, y) 

= crse
ax

e
by(D + a)r(DJ + b)sφ(x, y) 

 

= e
ax+by

crs(D + a)r(DJ + b)sφ(x, y) 

= eax+by
crsF 

.
D + a, DJ + b

 
φ(x, y). 

This completes the proof. ■ 
 

Problem 3.2.3. Show that the equation 
∂2z

 
∂x 

1 ∂z 

k ∂t 

 

possesses solutions of the form 

X 
cn

 

cos (nx + ε ) e−kn2t. 
n=0 

Solution. Given 
∂2z 1 ∂z

 
 

 

 
(1) 

∂x2 
= 

k ∂t 
.
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Let us assume the solution of the form 
 

z = eax+bt
 (2) 

 

 

Substitute (2) in (1), we get  
a2 = 

b
 

k 
 

and this relation is satisfied if we take a = ±in, b = −kn2 . Then the general solution is 

 

z = 
X 

cn cos (nx + ε ) e−kn2t. ■ 
n=0 

 

Particular integral for irreducible differential operator 

Consider a non-homogeneous linear partial differential equation with constant coefficients of 

the form 

F D, DJ z = f (x, y), (1) 

where F (D, DJ) denotes a reducible / irreducible linear differential operator. 

To find the particular integral of the equation (1), we write 

 
z =

  1 
f (x, y) 

F (D, DJ) 
 

Expand the operator F−1 by the binomial theorem and integrations with respect to x and y are 

made for the respective operators D−1 and DJ−1. 

 
Problem 3.2.4. Find a particular integral of the equation

 
D2 − DJ

 
z = 2y − x2. 

Solution. Given  
 
D2 − DJ

 
z = 2y − x2. (1) 

Then the particular integral is 

 
 

P.I =
  1 

2y x2 
D2 − DJ 
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D2 
!−1

 1    
 

"  
 1 D2 D4 

#
 

2
  

  

 

z = −
 1   

2y − x2
  
−

 1 
D2 

 
2y − x2

 
 

= y2 + x2y +
 1 

(2) 

D2 

■ 

 
 

Particular integral for f (x, y) = eax+by
 

Consider a non-homogeneous linear partial differential equation with constant coefficients of 

the form 

F D, DJ z = f (x, y), (1) 

where F (D, DJ) denotes a reducible / irreducible linear differential operator. 

To find the particular integral of the equation (1), we write 

 

z =
 1 

eax+by 

F (D, DJ) 
 

except if it happens that F(a, b) ≡ 0 . 

 
Problem 3.2.5. Find a particular integral of the equation

 
D2 − DJ

 
z = e2x+y. 

Solution. Given  
 
D2 − DJ

 
z = e2x+y. (1) 

Here F (D, DJ) = D2 − DJ, a = 2 , and b = 1 , so that F(a, b) = 3 , and the particular integral is 

 
P.I = 

1 
e2x+y. ■ 

3 

 
Problem 3.2.6. Find a particular integral of the equation

 
D2 − DJ

 
z = ex+y. 

P.I = x2y. 

= 
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Solution. Given  
 
D2 − DJ

 
z = ex+y. (1) 

Here F (D, DJ) = D2 − DJ, a = 1, b = 1 , and F(a, b) = 0 . However, 

 

F 
.
D + a, DJ + b

 
= (D + 1)2 − 

.
DJ + 1

  
= D2 + 2D − DJ 

Then the particular integrals are 

1 
xe

x+y
 and ye

x+y. ■ 
2 

Particular integral for f (x, y) = sin(ax + by) or cos(ax + by) 

When the function f (x, y) is of the form of a trigonometric function, it is possible to make use 

of the last two methods by expressing it as a combination of exponential functions with imaginary 

exponents, but it is often simpler to use the method of undetermined coefficients. 

 
Problem 3.2.7. Find a particular integral of the equation

 
D2 − DJ

 
z = A cos(lx + my), where 

A, l, m are constants. 

 
Solution. Given  

 
D2 − DJ

 
z = A cos(lx + my). (1) 

Let us assume the particular integral of the form 

 
 

z = c1 cos(lx + my) + c2 sin(lx + my). (2) 

 
 

Substitute (2) in (1) and equating the coefficient of the sine to zero and that of the cosine to A , we 

obtain the equations 

 

mc1 − l2c2 = 0 

−l2c1 + mc2 = A 
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for the determination of c1 and c2 . Solving these equations for c1 and c2 , we obtain the 
 

particular integral  
 

z =  
  A   

m sin(lx + my) + l2 cos(lx + my)  ■. 
m2 − l4 

 

 

Working Procedure for Complementary Function 

 
Consider a non-homogeneous linear partial differential equation with constant coefficients of the 

form 

F D, DJ z = f (x, y), (1) 

where F (D, DJ) denotes a reducible / irreducible linear differential operator. 

By putting m = D
 , then the auxiliary equation can be written as 

 
F(m, 1) = 0 

 
(i) If the roots of auxiliary equation (A.E.) are m1, m2, m3, . . . (all distinct), then 

C.F. = f1 (y + m1 x) + f2 (y + m2 x) + f3 (y + m3 x) + . . . 

where f1, f2, f3, . . . are all arbitrary functions. 
 

(ii) If two roots of A.E. are equal i.e. m2 = m1 , then 

 
C.F. = f1 (y + m1 x) + x f2 (y + m1 x) + f3 (y + m3 x) + . . . , 

 
where f1, f2, f3, . . . are all arbitrary functions. 

 
(iii) If three roots of A.E. are equal i.e. m3 = m2 = m1 , then 

 
C.F = f1 (y + m1 x) + x f2 (y + m1 x) + x2 f3 (y + m1 x) + f4 (y + m4 x) + . . . , C.F. 

= f1 (y + m1 x) + x f2 (y + m1 x) + x2 f3 (y + m1 x) + · · · , 

where f1, f2, f3, . . . are all arbitrary functions. 
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Working Procedure for Particular Integral (P.I.) 

 
The Particular Integral (P.I.) of the equation 

F 
.
D, DJ

 
z = F(x, y) 

 

where 

F 
.
D, DJ

 
= D

n
 + a1D

n−1DJ + a2D
n−2DJ2 + . . . anD

n
 

 
 

 is given by P.I. = 
1

 
F (D, DJ) 

F(x, y). 

 

Method I (Particular Cases for f (x, y) ) 
 

(i) When f (x, y) = eax+by
 , then P.I. =

 1 
e

ax+by, F(a, b) 0. 
F (D, DJ) 

If F(a, b) = 0 , then it is called a case of failure. 
 

(ii) When f (x, y) = sin(ax + by) 
 

P.I.  =
 1 

sin(ax + by) =
 1 

sin(ax + by) 

F 
.
D2, DDJ, DJ2

 
F 

.
−a2, −ab, −b2

 
 

 

provided F −a2, −ab, −b2 

for F(x, y) = cos(ax + by) . 

0 otherwise it is called a case of failure. A similar rule holds 

 

(iii) When f (x, y) = x
m
y

n, m, n are positive integers, then 
 

 

P.I. = 
1 

 
 

F (D, DJ) 
x

m
y

n
 = 

.
F 

.
D, DJ

 .−1 
x

m
y

n
 

 

If m < n , we expand binomially [F (D, DJ)]−1 in powers of D/DJ and for m > n . If 

m < n , we expand binomially 
.
φ (D, DJ)

.−1 in powers of DJ/D . Also we have 

1 
f (x, y) = 

D 

 

 

 
y-constant 

f (x, y)dx and 
1 

f (x, y) = 
DJ 

 

 
x-constant 

 
f (x, y)dy. 

∫ ∫ 
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(iv) When f (x, y) = eax+byφ(x, y), then 

 
P.I =

  1 
e

ax+byφ(x, y) 
F(D, DJ) 

= eax+by 1 
φ(x, y). 

F(D + a, DJ + b) 
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for
 1 

φ(x, y) can be evaluate using any one of the above steps (i), (ii) and 
F(D + a, DJ + b) 

(iii). 

 
 

Method II. (General Method) 

 
This method is applicable to all cases where f (x, y) is not of the form. 

Now F (D, DJ) can be factorized, in general, into n -linear factors, therefore 

 
P.I. =

  1 
f (x, y) 

F (D, DJ) 
1 = 

(D − m DJ) (D − m DJ) . . . (D − m DJ) 
f (x, y)

 
1 2 n 

1 1 1 
= 

D − m DJ · 
D − m DJ . . . D − m DJ f (x, y). 

 
We find that 

1 2 n 

  1 
F(x, y) = F(x, c mx)dx, 

D − mDJ 

where c is replaced by y+mx after integration. Thus P.I. can be evaluated by repeated application 

of the above rule. 
 

Problem 3.2.8. Solve the equation 
∂3z 

− 2 
∂3z

 
 

 

∂3z − 
 

 

2 
∂3z 

 
 

ex+y 

∂x3 ∂x2∂y 
∂x∂y2  

+
 ∂y3  = . 

Solution. Given 
 

∂3z ∂3z – 2 
 

 

 

∂3z − 
 

 

 
∂3z 

 
 

 

 

 

x+y 

∂x3 ∂x2∂y 
∂x∂y2 

+ 2 
∂y3   

= e
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C.F = φ1(y − x) + φ2(y + x) + φ3(y + 2x) 

  1  

110 3.2. LINeaR PaRTIAL DIffeReNTIAL EQUATIONs WITH CONsTANT CO- effICIeNTs 

can be written as 
 

(D3 − 2D2DJ − DDJ2 + 2DJ3)z = ex+y
 (1) 

 
To find complementary function: 

 
Auxiliary equation is 

 
 

m3 − 2m2 − m + 2 = 

0 (m + 1)(m − 1)(m − 2) 

=0 

m = −1, m = 1, m = 2 

 

To find Particular Integral: 

 
 

P.I =
  1 

e
x+y

 
D3 − 2D2 DJ − DDJ2 + 2DJ3 

=  e
x+y

 (D = 1, DJ = 1) 
(D − 2DJ)(D + DJ)(D − DJ) 

= ex+y 

(−1)(2)(D − DJ) 

= ex+y 

2 (D − DJ) 

= − 

∫ 

e
x+c−x

 where y = c − x 

= − 

∫ 

e
c
dx 

= −  ec
 

∫ 

dx 

= e
c
 x
2
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r=0 cre−kt

 cos (xr x + εr) cos (ωrt + δr) , where  cr, αr, εr, δr  are constants and  ω2 −α2c2 −k2 . 

∂xr∂ys  
=

 

P.I = − 
1 

2 
xex+y. 

PROBLeMs fOR PRACTICe 
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The general solution is 
 

 

z = C.F + P.I 

 
■ 

 

 

 

1. Show that the equation 
∂2y

 
∂t2 

∂y 
+ 2k = 

∂t 
c2 ∂2y 

∂x2 

 

possesses solutions of the form 

r r 

 

2. Solve the equations 

(a) r + s − 2t = −e
x+y. 

(b) r − s + 2q − z = x2y2. 

(c) r + s − 2t − p − 2q = 0. 
 

3. Find the solution of the equation ∇2z = e−x
 cos y which tends to zero as x → ∞ and has 

the value cos y when x = 0 . 

 
4. Show that a linear partial di erential equation of the type 

X 
c 

 

 

 

xrys  ∂
r+sz 

 
 

f (x 

 
 

y) may 

be reduced to one with constant coefficients by the substitutions ξ = log x, η = log y. 

Hence solve the equation x2r − y2t + xp − yq = log x. 

 
3.3 Equations with Variable Coefficients 

Consider a second order partial differential equation with variable coefficients of the form 

 
Rr + S s + Tt + f (x, y, z, p, q) = 0 (1) 

r,s 

z = φ1(y − x) + φ2(y + x) + φ3(y + 2x) − 
1 

2 
xex+y. 

ff rs , 
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which may be written in the form 

 
L(z) + f (x, y, z, p, q) = 0 (2) 

 
where L is the differential operator defined by the equation 

 

L 
∂2 ∂2 ∂2 

 

= R
∂x2  + S 

∂x∂y 
+ T 

∂y2 (3) 

and R, S, T are continuous functions of x and y possessing continuous partial derivatives. 

The equation (1) is said to be 

 

(i) Elliptic if S 2 − 4RT < 0 

(ii) Parabolic if S 2 − 4RT = 0 , and 

(iii) Hyperbolic if S 2 − 4RT > 0 

at a point (x0, y0) 

If this is true at all points in a domain Ω , then (1) is said to be elliptic, parabolic or hyperbolic 

in that domain. 

 

 
Canonical Forms 

 
Consider the transformation of the independent variables x and y of equation (1) to new variables 

 
ξ = ξ(x, y), η = η(x, y) (4) 

 
such that the functions ξ and η are continuously differentiable and the Jacobian 

 

∂(ξ, η) ξx ξy J = = 
 

 

. = ξ η – ξ η 
 

0 (5) 

∂(x, y) . x y . x   y y   x 

in the domain Ω where equation (1) holds. 

η η 
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By chain rule of partial differential equation, we have 

113 

 

p = 
∂z ∂z ∂ξ ∂z ∂η = + = ξxz 

 
+ η z 

∂x ∂ξ ∂x ∂η ∂x 
ξ x η 

q = 
∂z 

= ξyz 
∂y 

+ ηyzη 

r 
∂2z 

 
 

∂ .  
z
 z 

. 
2z z 2z z 2 z 

= 
∂x2  

= 
∂x  

ξx
 

t 
∂2z 2 

 

ξ + ηx  η = ξx ξy + 
 
2 

ξξxx + ηx ηη + ηηxx + ξxηx ξη 

= 
∂y2 = zuξy + 2ξyηyzξη + zηηηy + zξξyy + zηηyy 

∂2z 
s = 

∂x∂y 
= zξy ξxξy + zηηηxηy + zξηξxηy + zξηηxξy + zηηxηy + zξξxξy 

 

Substituting the values of p, q, r, s and t in (1), we get 

 
A

 
ξx, ξy

 
zy + 2B

 
ξx, ξy, ηx, ηy

 
zξη + A

 
ηx, ηy

 
zηη = F

 
ξ1, η, zz, zz, zη

 
(6) 

 

where 

 

A(u, v) = Ru2 + S uv + Tv2 

2B (u1, v1, u2, v2) = 2Ru1u2 + S (u1v2 + u2v1) + 2Tv1v2 

 

Then 

2B2 (ξk, ξwηkηv) − A
 

ξe, ξy

 
A

 
ηkηy

 
= (S 

a
 − 4RT ) J. (7) 

 

Case I: S 2 − 4RT > 0. 

Under the condition S 2 − 4RT > 0 , the equation 

Rλ2 + S λ + T = 0 

 
has real and distinct roots and the roots λ1 and λ2 are given by 

 
 

λ , λ −S ± 
√

S 2 − 4RT 
 

 

1 2 2R
 

 
Choose ξ and η such that 

ξx = λ1ξy, ηx = λ2ηy. (8) 

ξ 
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Now ξx = λ1ξy ⇒ ξx − λ1ξy = 0 , we have 
 

dx dy dξ 

 
∴ dξ = 0 ⇒ ξ = constant and 

1  
= 

−λ1 
=  

0 

 

dy dx dy 

 

 
Similarly 

−
λ1 

=   
1   

⇒ 
dx 

+ λ1(x, y) = 0. (9) 

 
dy 

dx 
+ λ2(x, y) = 0 (10) 

which is known as characteristic equations. Thus, f1(x, y) = constant and f2(x, y) = constant 

implies 

 

Now 

ξ = f1(x, y) and η = f2(x, y). (11) 

 
 
 

A
 
ξx, ξy

 
= Rξ2 + S ξxξy + Tξ2 

= ξ2
y

 
Rλ2 + S λ1 + T 

 
 

= ξ2
y0 

= 0 

 
since λ1 is a root of Rλ2 + S λ + T = 0. (12) 

Similarly A
 

ηx, ηy

 
= 0 , as λ2 is also a root of equation (12). 

B2 =
 
S 2 − 4RT

 
J /= 0 

 

Equation (6) reduces to 

zξη = g
 

ξ, η, z, zξ, zη

 
 

 

which is a required canonical form for the hyperbolic PDE. 

Case II: S 2 − 4RT = 0. 
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Under the condition S 2 − 4RT = 0 , the equation 

Rλ2 + S λ + T = 0 

 
has equal roots λ1 = λ2 = λ (say). Choose ξ = f1(x, y), f1(x, y) = constant is a solution of 

 
dy 

dx 
+ λ(x, y) = 0 

Since A
 

ξx, ξy

 
= 0, S 2 − 4RT = 0 , therefore from (7), we have B = 0 . 

115 

However, A
 

ηx, ηy

 
0 , otherwise η will depend upon ξ . 

 

Substituting A = B = 0 in equation (6) reduces to 

 
zηη = g

 
ξ, η, z, zξ, zη

 
 

which is the required canonical form for the parabolic partial differential equation. 

Case III: S 2 − 4RT < 0. 

Under the condition S 2 − 4RT < 0 , the equation 

Rλ2 + S λ + T = 0 

 
has imaginary roots and therefore ξ and η will be complex. 

Let ξ = α + iβ, η = α − iβ; α, β are equal. 
 

1 i 

 

 
With this transformation, we have 

α = 
2 

(ξ + η), β = 
2 

(η − ξ) 

z = 
1  

z + z 
 

and proceeding on the similar lines as in Case I, we get 

 
zαα + zββ = φ

 
α, β, z, zα, zβ

 
 

which is the required canonical form for the elliptic partial differential equation. 

ββ 
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Problem 3.3.1. Reduce the equation 
∂2z

 
∂x 

x2 ∂2z 

∂y2 

 
to canonical form. 

 

Solution. The given equation is 
 

 
∂2z 

∂x2  = x 
2 ∂2z 

 
 

∂y2 

 
∂2z 

∂x2  − x 
2 ∂2z 

∂y2 = 0. (1) 

 

 

Comparing (1) with 
 

Rr + S s + Tt + f (x, y, z, p, q) = 0 

we have R = 1, S = 0, T = −x2 , then 

S 2 − 4RT = 0 − 4(1)(−x2) = 4x2 > 0 

 
for all x and y. Hence the given equation is hyperbolic everywhere. 

 
Then the characteristic equations to find ξ and η are 

 

 
dy dy + λ  = 0  ⇒ –  −S + 

√
S 2 − 4RT  

  
 

 
= −x 

dx 1 dx  2R  
 

dy dy 
+ λ  = 0  ⇒ 

–  −S − 
√

S 2 − 4RT  x.
 

 
On integration 

dx 2 dx  2R  

 

y 
x2 x2 

 

= − 
2  

+ c1, y = + 
2 

+ c2 
 

c1 = y + 

 

∴ ξ = y + 

x2 

c  = y 
x
 

2 

x2 x2 

2 
η = y − 

2 
. 

= 

⇒ 

= 
= 

2 
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∂ξ∂η 
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4(ξ − η)   ∂ξ 
− 

∂η 

∂2ζ   1 ∂ζ 
  

∂ζ 
! 
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Then ξx = x, ξy = 1, ξxx = 1, ξxy = 0, ξyy = 0 and ηx = −x, ηy = 1, ηxx = −1, ηxy = 0, ηyy = 0. Now 

 
zx = zξξx + zηηx = x(zξ − zη) 

zy = zξξy + zηηy = zξ + zη 

zxx = zξξξ2 + 2zξηξxηx + zηηη2 + zξξxx + zηηxx = x2(zξξ − 2zξη + zηη) + (zξ − zη) 
 

zxy = zξξξxξy + zξη(ξxηy + ξyηx) + zηηηxηy + zξξxy + zηηxy = x(zξξ − zηη) 

zyy = zξξξ2 + 2zξηξyηy + zηηη2 + zξξyy + zηηyy = zξξ + 2zξη + zηη. 
y y 

 

 

Substituting these values in (1), we get 

 

 

which is the required canonical form of the given equation. ■ 
 

Problem 3.3.2. Reduce the partial differential equation y2 
∂2z 

−2xy 
∂2z

 
 

  
x2 ∂2z 

 
 

y2 ∂z 
 

 

x2 ∂z 
 

 

 
to canonical form and hence solve it. 

 

Solution. The given equation is 

 
y2 

∂2z 
− 2xy 

∂2z
 

 
 

∂x2 

 
 
 
 

 
2 ∂2z y2 ∂z x2 ∂z + x − − 

 
   

∂x∂y 
+

 ∂y2 
=

 x ∂x 
+ 

y ∂y 

∂x2 ∂x∂y ∂y2 x ∂x y ∂y 
= 0. (1) 

 
 

Comparing (1) with 
 

Rr + S s + Tt + f (x, y, z, p, q) = 0 
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we have R = y2, S = −2xy, T = x2 , then 

 
S 2 − 4RT = 4x2y2 − 4x2y2 = 0 

 
for all x and y. Hence the given equation is parabolic everywhere. 

 
Then the characteristic equation to find ξ is 

 

 
dy dy + λ = 0  ⇒ –  −S + 

√
S 2 − 4RT  S   

 
 

 

 
x = −  . 

dx 

 

On integration 

dx  2R  2R y 

 

 

y2 = −x2 + c1 

c1 = x2 + y2 

∴ ξ = x2 + y2. 
 

 

Choose η independent of ξ, we take 
 

 

ξ == x2 − y2. 

 
Then ξx = 2x, ξy = 2y, ξxx = 2, ξxy = 0, ξyy = 2y and ηx = 2x, ηy = −2y, ηxx = 2, ηxy = 0, ηyy = −2. 

Now 

 
 

zx = zξξx + zηηx = 2x(zξ + zη) 

zy = zξξy + zηηy = 2y(zξ − zη) 

= = 
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zηη = 0 

z = (x2 − y2) A(x2 + y2) + B(x2 + y2) 
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zxx = zξξξ2 + 2zξηξxηx + zηηη2 + zξξxx + zηηxx = 4x2(zξξ + 2zξη + zηη) + 2(zξ + zη) 
x x 

 

zxy = zξξξxξy + zξη(ξxηy + ξyηx) + zηηηxηy + zξξxy + zηηxy = 4xy(zξξ − zηη) 

zyy = zξξξ2 + 2zξηξyηy + zηηη2 + zξξyy + zηηyy = 4y2(zξξ − 2zξη + zηη) + 2(zξ − zη). 

 
Substituting these values in (1), we get 

 

 

 

which is the required canonical form of the given equation. 

To solve the canonical form 

∂2z 

∂η2 = 0 

∂z 
= A 

∂η 
 

z = Aη + B, 

 

 
where A and B are arbitrary functions of ξ. Therefore 

 
 

z = ηA(ξ) + B(ξ) 
 

 

which is the required solution of the given equation. ■ 
 

Problem 3.3.3. Reduce the equation (n − 1)2 
∂2z 

− y2n
 
∂2z

 
 

  

ny2n−1 ∂z  to canonical form and find 

∂x2 
∂y2  

= 
∂y 
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its general solution. 
 

 
Solution. The given equation is 

 
(n − 1)2 

∂2z 
− y2n

 
∂2z 

− ny2n−1 
∂z

 
0 

 
  

 
 
 
 (1) 

∂x2 ∂y2 ∂y 
=   . 

 
 

Comparing (1) with 
 

Rr + S s + Tt + f (x, y, z, p, q) = 0 

we have R = (n − 1)2, S = 0, T = −y2n
 , then 

S 2 − 4RT = 4(n − 1)2y2n
 = (2(n − 1)y

n)2 > 0 

 
for all x and y. Hence the given equation is hyperbolic everywhere. 

 
Then the characteristic equations to find ξ and η are 

 

√  
dy dy  −S + S 2 − 4RT  y

n
 

 

 
 

dx 
+ λ1 = 0   ⇒ 

dx 
= −  2R  = −

(n − 1) 
 

  

√  

dy dy  −S − S 2 − 4RT  y
n
 

On integration dx 
+ λ2 = 0   ⇒ 

dx 
= −  2R  (n − 1) 

 

 

(n − 1)y−n
dy = −dx (n − 1)y−n

dy = dx 

y1−n
 = −x + c1,  y1−n

 = x + c2 

c1 = x + y1−n
 c2 = x − y1−n
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∴ ξ = x + y1−n

 η = x − y1−n. 

121 

 

 

Then ξx = 1, ξy = (1 − n)y−n, ξxx = 0, ξxy = 0, ξyy = −n(1 − n)y−n−1   and ηx = 1, 

ηy = 

−(1 − n)y−n, ηxx = 0, ηxy = 0, ηyy = n(1 − n)y−n−1. Now 

 
zx = zξξx + zηηx = zξ + zη 

 

zy = zξξy + zηηy = (1 − n)y−n(zξ − zη) 

zxx = zξξξ2 + 2zξηξxηx + zηηη2 + zξξxx + zηηxx = zξξ + 2zξη + zηη 
x x 

 

zxy = zξξξxξy + zξη(ξxηy + ξyηx) + zηηηxηy + zξξxy + zηηxy 

 

zyy = zξξξ2 + 2zξηξyηy + zηηη2 + zξξyy + zηηyy = (1 − n)2y−2n(zξξ − 2zξη + zηη) − n(1 − n)y−1−n(zξ − 
zη). 

 
Substituting these values in (1), we get 

 
 

4(n − 1)2zξη = 0 
 

 

which is the required canonical form of the given equation. 

 
To find the solution of the given equation, we can solve the canonical form, 

 

 
∂2z 

 
 

∂ξ∂η 

∂z 
 

 

∂ξ 

 
= 0 

 
= A(ξ) 

 

z = A(ξ)ξ + B(η) 
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z = f1(ξ) + f2(η) 
 

( f1 and f2 are arbitrary functions) 

 
 

which is the required solution of the given equation ■ 
 

Problem 3.3.4. Reduce the equation 
∂2z

 
 

 
2 

∂2z ∂2z 
 

  

 0 to canonical form and hence solve 

∂x2 
+

 
it. 

 

Solution. The given equation is 

∂x∂y 
+ 

∂y2 
=

 

 

∂2z ∂2z ∂2z 

∂x2 + 2 
∂x∂y 

+ 
∂y2   = 0. (1) 

 
 

Comparing (1) with 
 

Rr + S s + Tt + f (x, y, z, p, q) = 0 

we have  R = 1, S = 2, T = 1 , then 

S 2 − 4RT = 4 − 4 = 0 

 
for all x and y. Hence the given equation is parabolic everywhere. 

 
Then the characteristic equation to find ξ is 

 

 
dy dy + λ = 0  ⇒ –  −S + 

√
S 2 − 4RT  

 
 

 

 S   
= 1. 

dx dx  2R 
 

2R 
= = 

z = f1(x + y1−n) + f2(x + y1−n) 
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On integration 

123 

 

 

y = x + c1 

c1 = x − y 

∴ ξ = x − y. 
 

 

Choose η independent of ξ, we take 
 

η = x + y. 

 
Then ξx = 1, ξy = −1, ξxx = 0, ξxy = 0, ξyy = 0 and ηx = 1, ηy = 1, ηxx = 0, ηxy = 0, ηyy = 0. Now 

zx = zξξx + zηηx = zξ + zη 

zy = zξξy + zηηy = −zξ + zη 

zxx = zξξξ2 + 2zξηξxηx + zηηη2 + zξξxx + zηηxx = zξξ + 2zξη + zηη 
x x 

 

zxy = zξξξxξy + zξη(ξxηy + ξyηx) + zηηηxηy + zξξxy + zηηxy = zηη − zξξ 

zyy = zξξξ2 + 2zξηξyηy + zηηη2 + zξξyy + zηηyy = zξξ − 2zξη + zηη. 

Substituting these values in (1), we get 
 

 

 

which is the required canonical form of the given equation. 
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To solve the canonical form 

 

∂2z 

∂η2 = 0 

∂z 
= A 

∂η 
 

z = Aη + B, 

 

 
where A and B are arbitrary functions of ξ. Therefore 

 
 

z = ηA(ξ) + B(ξ) 
 

 

which is the required solution of the given equation. ■ 
 

Problem 3.3.5. Reduce the equation 
∂2z

 
∂x 

∂2z 

∂y2 
=

 

 

0 to canonical form. 

 

Solution. The given equation is  

∂2z 

∂x2  + x 

 
2 ∂2z 

∂y2 = 0. (1) 

 

Comparing (1) with 
 

Rr + S s + Tt + f (x, y, z, p, q) = 0 

we have R = 1, S = 0, T = x2 , then 

S 2 − 4RT = 0 − 4(1)(x2) = −4x2 < 0 

 
for all x and y. Hence the given equation is elliptic everywhere. 

x2 
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Then the characteristic equations to find ξ and η are 

125 

 

 
dy dy + λ  = 0  ⇒ –  −S + 

√
S 2 − 4RT  

  
 

 
= ix 

dx 1 dx  2R  
 

dy dy 
+ λ  = 0  ⇒ 

–  −S − 
√

S 2 − 4RT  
= −ix. 

 
On integration 

dx 2 dx  2R  

 

iy 
x2 x2 

 

= − 
2  

+ c1, −iy = − 
2 

+ c2 
 

c1 = 

 

∴ ξ = 

x2 

2  
+ iy c2 = 

x2 

2  
+ iy η = 

x2 

2 
− iy 

x2 

2 
− iy. 

 
 

Now, we introduce the second transformation 
 
 

α = 
ξ + η 

2 
and   β = 

ξ − η
, 

2 
 
 

we obtain  
α = 

1 
x2, β = y. 

2 
 

Then αx = x, αy = 0, αxx = 1, αxy = 0, αyy = 0 and βx = 0, βy = 1, βxx = 0, βxy = 0, βyy = 0. Now 

 
 

zx = zααx + zββx = xzα 

zy = zααy + zββy = zβ 

zxx = zααα
2 + 2zαβαxβx + zβββ

2 + zααxx + zββxx = x2zαα 
x x 

= 

= 
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zxy = zαααxαy + zαβ(αxβy + αyβx) + zβββxβy + zααxy + zββxy = xzαβ 

 
zyy = zααα2 + 2zαβαyβy + zβββ2 + zααyy + zββyy = zββ. 

y y 

 

 

Substituting these values in (1), we get 

 

 

which is the required canonical form of the given equation. ■ 

 
 

Examples 

• The one-dimensional wave equation 

 
 
 
 

∂2z ∂2z 

∂x2 
= 

∂y2 

 

is hyperbolic with canonical form 

 

 
• The one-dimensional diffusion equation 

 
∂2ζ 

 
 

∂ξ∂η 
 
 

 
∂2z 

 

= 0. 

 
 

 
∂z 

∂x2 
= 

∂y 
 

is parabolic with canonical form. 

• The two-dimensional harmonic equation 

∂2z 

 

 

 

∂2z 

∂x2 
+ 

∂y2 
= 0

 
 

is elliptic and in canonical form. 
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1. Show how to find a solution containing two arbitrary functions of the equation s = f (x, y) . 

Hence solve the equation s = 4xy + 1. 

2. Show that, by a simple substitution, the equation Rr + Pp = W can be reduced to a linear 

partial differential equation of the first order, and outline a procedure for determining the 

solution of the original equation. 

Illustrate the method by finding the solutions of the equations: 

(a) xr + 2p = −2y 

(b) s − q = ex+y. 

3. If the functions R, P, Z contain y but not  x , show that the solution of the equation 

Rr + Pp + Zz = W can be obtained from that of a certain second-order ordinary differential 

equation with constant coefficients. Hence solve the equation yr +
 
y2 + 1

 
p + yz = ex. 

3.4 Separation of Variables 

 
Consider a second-order linear partial differential equation 

 
Rr + S s + Tt + Pp + Qq + Zz = F. (1) 

 

Let us assume a solution of the form 

z = X(x)Y(y). (2) 
 

Substituting (2) in (1) it is possible to write the equation (1) in the form 
 

1 1 

X 
f (D)X = 

Y 
g 

.
DJ

 
Y, (3) 
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where f (D), g (DJ) are quadratic functions of D = ∂/∂x and DJ = ∂/∂y , respectively, we say 

that the equation (2) is separable in the variables x, y . In equation 3, 
 

1 1 

X 
f (D)X = 

Y 
g DJ Y = λ 

f (D)X = λX, g(D)Y = λY (4) 

 
 

Problem 3.4.1. Solve the one-dimensional diffusion equation 
 

∂2z 1 ∂z 

∂x2  
= 

k ∂t 
 
 

using the method of separable of variables. 
 
 

Solution. Given  

∂2z 1 ∂z 

∂x2   
= 

k ∂t 
(1)

 
 

Let us assume a solution of the form 
 

 

z(x, t) = X(x)T (t) (2) 

 
 

Substituting equation (2) in equation (1), we get 
 
 

XJJ 1 T J 

X 
= 

k T 
= λ, (a separation constant) 

 
 

Then we have 
 

 
d2X 

dx2   − λX =  0 
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dT 

dt  
− λkT =   0. 

129 

 

 

The following three cases arises: 

 

Case I Let λ > 0, then λ = n2, we get 

 
d2X 

n2 X 
dx2 

 

= 0 and 
dT

 
dt 

 
 
– kn2T 

 

 

 
= 0. 

 
 

which gives  

X = c e
nx

 + c e−nx, Y = c e
kn2t. 

 

 

Case II Let λ < 0, then λ = −n2, we get 
 

d2X 2 dT 2 
 

dx2   + λ X = 0 and 
dt 

+ kn T = 0. 
 

 

which gives  

X = c cos nx + c sin nx, Y = c e−kn2t. 
 

 

Case III Let λ = 0. Then  

d2X 

dx2   = 0 and 

 

dT 

dt 
= 0. 

 

which gives 
 

X = c1 x + c2, Y = c3. 
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Thus, various possible solutions of the heat conduction equation (1) are 

 
 

z(x, t)   =    (cJ enx
 + cJ e−nx)e

kn2t
 

1 2 
 

z(x, t)   =   (cJ cos nx + cJ sin nx)e−kn2t
 

1 2 

 

z(x, t) = cJ
1 x + cJ

2 

 

 

where  

cJ
1 = c1c3, cJ

2 = c2c3. 
 

If a solution tends to zero as t → ∞, then it is possible to take the second solution on 

simplification, 

z(x, t) = c cos (nx + ε ) e−n2kt, 

 
where cn is a constant, is a solution of the partial differential (1) for all values of n . Hence 

expressions formed by summing over all values of n, 

z(x, t) = 
X 

cn 

 

cos (nx + ε ) e−n2kt. 

 
As z → 0 as t → ∞, we get 

n=0 

 
 
 

∞ 

z(x, 0) = cn cos (nx + εn) . ■ 
n=0 

 Problem 3.4.2. Solve the two-dimensional di usion equation 
∂2z

 
 

 

∂2z 
 

 

1 ∂z 

 

Solution. Given 

ff 
∂x2 

+ 
∂y2   

= 
k ∂t 

.
 

 
∂2z ∂2z 1 ∂z 

∂x2 
+ 

∂y2   
= 

k ∂t 
. (1)

 



Partial Differential Equations M.Sc.(Mathematics)-II Sem   

Y 

3.4. SepaRATION Of VaRIABLes 

 

Let us assume the solution of the form 

131 

 

 

z = X(x)Y(y)T (t). (2) 

 
 

Substituting equation (2) into equation (1), we get 
 
 

XJJ YJJ 
+ 

  

1 T J 
= 

 

= −n2. 
X Y k T 

 

Then T J + kn2T = 0 whose solution is 
 
 

T = e−kn2t 

 

 

and  

XJJ 

X = −

 

n2 + 
YJJ 

! 

= −l2 (say). 

 

Hence, 
 

 
 

YJJ 

Y 

XJJ + l2X =   0 
 

= −n2 + l2 =  −m2(say) ⇒ YJJ + m2Y = 0. 

 

which gives 
 

X = A cos lx + B sin lx = cl cos(lx + ε1) 
 

 

and 
 

Y = C cos my + D sin my = cm cos(my + ε2) 
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Thus, the general solution of the given PDE is 

 
 

z(x, y, t) = c cos(lx + ε )c cos(my + ε )e−k(l2+m2)t
 

= c cos(lx + ε ) cos(my + ε )e−k(l2+m2)t
 

 

 

where  
 

n2 = l2 + m2 and clm = clcm. 
 

 

By the principle of superposition, the most general solution is 
 

∞ ∞ 

z(x, y, t) = 
X X 

c 
 

 

cos (lx + ε ) cos (my + ε ) e−k(l2+m2)t. ■ 

 

 

 

1. By separating the variables, show that the one-dimensional wave equation 
 

∂2z 1 ∂2z 

∂x2  
= 

c2 ∂t2 

has solutions of the form A exp(±inx I inct), where A and n are constants. Hence show 

that functions of the form 

z(x, t) = 
X 

Ar cos 
rπct 

+ Br sin 
rπct 

} 
sin 

rπx
 

 

where the Ar ’s and Br ’s are constants, satisfy the wave equation and the boundary 

conditions z(0, t) = 0, z(a, t) = 0 for all t . 

2. By separating the variables, show that the equation ∇2V = 0 has solutions of the form 

CheCK YOUR PROgRess 

l=0  m=0 

lm m 
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ρ dρ 
+

 
– 

ρ2 

dµ2 
µ 

dµ 
+ 

1 − µ2 
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A exp(±nx± iny); where A and n are constants. Deduce that functions of the form 

133 

V(x, y) = 
X 

Are−rπx/a
 sin 

rπy
 

 

 

x “ 0, 0 < y “ a 

 

where the Ar ’s are constants, are plane harmonic functions satisfying the conditions 

V(x, 0) = 0, V(x, a) = 0, V(x, y) → 0 as x → ∞ . 

3. Show that if the two-dimensional harmonic equation ∇2V = 0 is transformed to plane polar 

coordinates r and θ , defined by x = r cos θ, y = r sin θ it takes the form 
 

∂2V 1 ∂V 1 ∂2V 

∂r2  
+ 

r ∂r 
+ 

r2  ∂θ2  
= 0

 

and deduce that it has solutions of the form (Ar
n
 + Br−n) e±in0 , where A, B , and n are 

constants. 

Determine V if it satisfies ∇2V = 0 in the region 0 “ r “ a, 0 “ θ “ 2π and satisfies the 

conditions: 

(i) V remains finite as r → 0 ; 

(ii) V = r cn cos(n0) on r = a . 

4. Show that in cylindrical coordinates ρ, z, φ Laplace’s equation has solutions of the form 

R(ρ)e±mz
 ± inφ , where R(ρ) is a solution of Bessel’s equation 

 
d2R 

 
 

 
1 dR 2 n2 ! 

 

 
 

If R → 0 as z → ∞ and is finite when ρ = 0 , show that, in the usual notation for Bessel 

functions 1 the appropriate solutions are made up of terms of the form Jn(mρ)e−mz±inφ . 

5. Show that in spherical polar coordinates r, θ, φ Laplace’s equation possesses solutions of 

the form 

Ar
n
 + 

   B    
Θ(cos θ)e±imφ 

rn+1 

where A, B, m , and n are constants and Θ(µ) satisfies the ordinary differential equation 
 

 
1 − 

2 d2Θ 
− 2 

dΘ 
(

n(n 1) − 
m2 

) 

0 

r 

m R = 0 

µ + . 
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In this unit, the students acquired knowledge to 

 
• solve linear PDE’s with constant coefficients. 

• solve linear PDE’s with variable coefficients. 

• solve PDE’s by method of separation of variable techniques. 
 

 

 

1. M.D. Raisinghania, Advanced Differential Equations, S. Chand & Company Ltd., New 

Delhi, 2001. 

2. K. Sanakara Rao, Introduction to Partial Differential Equations, Second Edition, 

Prentice-Hall of India, New Delhi, 2006. 
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In this unit, we will illustrate the method of integral transforms and Laplace transform 

techniques. 
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∫ 

a (x1) 
∂x2 + b (x1) 

∂x
 + c (x1) u 

=   [u Ka]β − α (aK) u dx 

=    [u Ka]β − [u(aK) ]β + u(aK) 

α α 

α 

α α 
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4.1 The Method of Integral Transforms 

 
In this section, we explain the method of integral transforms to find the solution of partial 

differential equations. 

To determine a function u which depends on the independent variables x1, x2, . . . , xn and 

governed by the linear partial differential equation 
 

a (x ) 
∂2u 

b (x ) 
∂u

 
 

 

 
+ c (x ) u + Lu = f (x , x , . . . , x ) , (1) 

1 ∂x2 
1    

∂x1 
1 1 2 n 

where L is a linear differential operator in the variables x2, . . . , xn and α “ x1 “ β . Let 

∫ β 

  
 

 

Multiply a (x ) 
∂2u

 
 

 

b (x ) 
∂u

  c (x ) u by K (  x ) and integrating with respect to x  from 
1 

to β, we have ∂x2 
+

 
1 

 

∫ β ( 

∂x1 + 1 

 
∂2u 

 
 

ξ, 1 1 α 

∂u 
)
 

α 1 1 

Then, the integration by parts gives 

∫ β d2u 
∫ β d J 

 

 

(aK) 
dx2 dx  = (aK) 

dx 
(u )dx 

J 

∫ β 
J  J 

J J 

∫ β 
JJ 

 

α α 
∫ β 

du 
∫ β 

β 

(cK)udx = 
α 

β 

u(cK)dx. 
α 

 

Using the above equations, we obtain 

α 

u (x1, x2, . . . , xn) K (ξ, x1) dx1 (2) ū (ξ, x2, . . . , xn) = 

α 

∫ 

K (ξ, x1) dx1 (3) 

dx 

(bK) 
dx 

dx  =  [u(bK)]β − u(bK)Jdx 
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∂x
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∫ β 
( 

∂2u ∂u 
)
 

 

α 1 1 
∫ β 

( 
∂2 ∂ 

)
 

 

 

 
where 

 
 
 

g (ξ, x2, . . . , xn) = 

 

a 
∂u 

∂x1 

α 
 
 
 
 

K (ξ, x1) + u 

1 

 
 

bK 
∂ 

∂x1 

1 

 
 

β 

(aK) 
α 

 
 

 
. (5) 

From equation (4), we can get the idea of choosing the function K (ξ, x1) 
 

∂2 

(aK) −
  ∂

 
 

 

 (bK) cK K  (6) 

 
 

where λ is a constant. 

∂x2 ∂x1 + = λ  , 

 

Multiplying equation (1) by K (ξ, x1) and integrating with respect to x1 from α to β , we find 

that the function  ū (ξ, x2, . . . , xn) , defined by equation  (2) , satisfies the equation 

 
(L + λ)ū (ξ, x2, . . . , xn) = F (ξ, x2, . . . , xn) , (7) 

 

where  

 
F (ξ, x2, . . . , xn) = 

f¯(ξ, x2, . . . , xn) = 

 
f¯(ξ, x2, . . . , xn) − g (ξ, x2, . . . , xn) , 

β 

f (x1, x2, . . . , xn) K (ξ, x1) dx1. 
α 

 

Definition 4.1.1. The integral transform of u is defined as 

 

∫ β 

  
 

 

where K (ξ, x1) is the kernel of the transform. 

 
Note 4.1.1. • The effect of employing the integral transform defined by the equations (2) and 

(6) is to reduce the partial differential equation (1) in n independent variables x1, x2, . . . , xn 

α 

u (x1, x2, . . . , xn) K (ξ, x1) dx1, ū (ξ, x2, . . . , xn) = 

)# 

K (ξ, x1) dx1 

= g (ξ, x2, . . . , xn) + dx1 (4) 

" ( 
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to one in n − 1 independent variables x2, . . . , xn and a parameter ξ . 

 
• The successive use of integral transforms of this type the given partial differential equation 

may eventually be reduced to an ordinary differential equation. 

 

Definition 4.1.2.  Inverse Integral Transform The inverse integral transform of  ū (ξ, x2, . . . , xn)  is 
 

given by  
 

u (x1, x2, . . . , xn) = 

 
 

δ 

ũ (ξ, x2, . . . , xn) H (ξ, x1) dξ, 
γ 

 

where  ū (ξ, x2, . . . , xn)  is defined by (2). 

 
Table 4.1: Inversion Theorems for Integral Transforms 

 

Transform (α, β) K(ξ, x) (γ, δ) H(ξ, x) 
Fourier (−∞, ∞) √1   eiξx 2π , 

(−∞, ∞) √1   e−iξx 2π , 

Fourier cosine (0, ∞) 

 

2 
cos(ξx) 

π , (0, ∞) 

 

2 
cos(ξx) 

π , 

Fourier sine (0, ∞) 
2 

sin(ξx) 
π (0, ∞) 

2 
sin(ξx) 

π 
Laplace (0, ∞) e−ξx, R(ξ) > c (γ − i∞, γ + i∞) 1 eξx, γ > c 2πi

 1  
 

Mellin (0, ∞) xξ−1 (γ − i∞, γ + i∞) 
2 i 

x−ξ 
π 

Hankel (0, ∞) xJν(ξx), ν “ −1
 2 (0, ∞) ξJν(ξx) 

 

 
Solution of Partial Differential Equations by using Integral Transform 

Technique 

 

Steps 

 
(i) The calculation of the function 

 
 
f¯(ξ, x2, . . . , xn) by simple integration; 

 

(ii) The construction of the equation (4) for the transform  ū ; 
 

(iii) The solution of this equation; 

∫ 
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(iv) The  calculation  of   u  from  the  expression  for  ũ  by  means  of  the  appropriate  inversion 

theorem. 

 

Problem 4.1.1. Derive the solution of the equation: 
 

 
∂2V 1 ∂V 

 
∂2V 

∂r2  
+ 

r ∂r 
+

 ∂z2   = 0 

 
 

for the region r “ 0, z “ 0 , satisfying the conditions: 

 

(i) V → 0 as z → ∞ and as r → ∞ 

 

(ii) V = f (r) on z = 0, r “ 0. 
 

Solution. Given 
 
 

∂2V 1 ∂V 

 
 

∂2V 

∂r2  
+ 

r ∂r 
+

 ∂z2   = 0. (1) 

 

By the definition of Hankel transform, we have 
 

V̄  = 

∫ ∞ 

rV(r, z)J (ξr)dr. 
0 

 

then, integration by parts and using the condition (i), we get 
 

∫ ∞ (∂2V 1 ∂V 
) 

2 ¯ 

 

where J0(ξr) is a solution of Bessel’s differential equation 
 

d2 f 1 d f 2 
 

dr2 
+ 

r dr 
+ ξ

 

f = 0. 
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Then the Hankel transform of (1) is 

d2V̄ 

dz2 
– ξ2V̄  = 0 

 

where, as a result of the boundary conditions, we know that  V̄ → 0  as  z → ∞ and that  V̄ = f¯(ξ) 
 

on z = 0, f¯(ξ) denoting the Hankel transform (of zero order) of (r). The appropriate solution of 
 

the equation for  V̄ is therefore  
 

V̄  = 

 

f¯(ξ)e−ξz. 
 

From the inversion theorem for the Hankel transform, we know that 

 

V(r, z) = 

∫ ∞ 

ξV̄ (ξ, z)J (ξr)dξ 
0 

 

so that the required solution is  
V(r, z) = 

∫ ∞ 

ξ f (ξ)e−ξz
 J (ξr)dξ. 

0 

 

If the form of f (r) is given explicitly, f (ξ) can be calculated so that V(r, z) can be obtained as 

the result of a single integration. ■ 

Problem 4.1.2. Determine the solution of the equation 
 

 
∂4z ∂2z 

∂x4 + 
∂y2 = 0. 

(−∞ « x < ∞, y ∴ 0) satisfying the conditions: 

(i) z  and its partial derivatives tend to zero as  x· > 1, ∞ ; 
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2π ∂x4 

√
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(ii) z · · · f (x), ∂z/∂y : −0 on y = 0 . 

141 

 

Solution. Given 
 
 

∂4z 

 
 

∂2z 

∂x4 + 
∂y2 = 0. 

By the definition of Fourier transform, 

 

Z(ξ, y) =
  1  

∫ ∞ 

z(x, y)e
iξx

dx 

for which, as a result of an integration by parts taking account of (i), we have 
 

   1    
∫ ∞ ∂1z 

e
iξx

dx : − 

 
4z¯ 

 

 

so that the equation determining the Fourier transform z¯  is 
 

d2Z 4 
 

dy2 + ξ Z = 0 

 
with Z = F(ξ), dZ/dy = 0 when y = 0 . Therefore 

 
 

Z = F(ξ) cos
 
ξ2y

 
. 

By the inversion theorem for Fourier transforms, we have 

 

z(x, y) = 
   1  

∫ ∞ 

Z(ξ, y)e−iξx
dξ 

−

∞ 

ξ 

−

∞ 
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so that finally 

z(x, y) = 
   1  

∫ ∞ 

F(ξ) cos
 

ξ2y
 

e−iξx
dξ, 

 

where F(ξ) is the Fourier transform of f (x) . ■ 

 

 

1. The temperature θ in the semi-infinite rod 0 < x < ∞ is determined by the differential 

equation 
∂θ ∂2θ 

∂t 
= κ

∂x2 

and the conditions 

(i) θ = 0 when t = 0, x “ 0 

(ii) θ = θ0 = const. when x = 0 and t > 0 

Making use of sine transform, show that 

2 
θ(x, t) = θ 

∫ ∞ sin(ξx) 
1 − e−κξ2t

  

dξ.
 

 

2. If in the last question the condition (ii) is replaced by (ii’) ∂θ/∂x = −µ , a constant, when 

x = 0 and t > 0 , prove that 

θ(x, t) = 
2µ 

∫ ∞ cos(ξx) 
1 − e−κξ2t

 

dξ 

3. Show that the solution of the equation 
 

∂z ∂2z 

∂x 
= 

∂y2 

which tends to zero as y → ∞ and which satisfies the conditions 

(i) z = f (x) when y = 0, x > 0 

−

∞ 

0 
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time, z(x, y) =  1  

∫ ∞  ∫ ∞  
F(ξ, η) cos 

 
ct 
,

ξ2  + η2
  

e−i(ξx+ηy)dξdη   where F(ξ, η) = 
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(ii) z = 0 when y > 0, x = 0 

may be written in the form 

 
  1  

∫ γ+i∞ 

 

 
f (ξ)e

ξx−y
√

ξ 
dξ 
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γ−i∞ 

Evaluate this integral when f (x) is a constant k . 
 

4. The function V(r, θ) satisfies the differential equation 
 

∂2V 1 ∂V 1 ∂2V 

∂r2  
+ 

r ∂r 
+ 

r2  ∂θ2  
= 0

 

in  the  wedge-shaped  region  r  “ 0, |θ|“ α  and  the  boundary  conditions  V  =   f (r)  when 

θ = ±α . Show that it can be expressed in the form 

 
V(r, θ) =   1 

∫ γ+i∞ cos(ξθ) 
 
f (ξ)r 

 
−ξdξ 

 
 

where 

2πi 
γ−i

∞ 

cos(ξα) 

f (ξ) = 
∞ 

f (r)r
ξ−1dr. 

0 
 

5. The variation of the function z over the xy plane and for t “ 0 is determined 

by the equation by the equation 

∇2z 
1 ∂2z 

= 
c2 ∂t2 

.
 

If,   when   t = 0, z = f (x, y)  and  ∂z/∂t = 0 , show that, at any subsequent 
 

 1 ∫ ∞ ∫ ∞ 
 

  

 

 

f (x, y)e
i(ξx+ηy)dxdy. 

2π 

...∞ 2π −

∞ 
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4.2 Laplace Transform Technique 

 
Definition 4.2.1. Suppose f (t) is a piecewise continuous function and if it has an additional 

property that there exists a real number γ0 and a finite positive number M such that 

 

Lt | f (t)|e−γt
 ≤ M for γ ≥ γ0 

 
and the limit does not exist when γ < γ0, then such a function is said to be of exponential order 

 
γ0, also written as 

 

| f (t)|= O(eγ0t). 

Definition 4.2.2. Let f (t) be a continuous and single valued function of the real variable t defined 

for all t, 0 < t < ∞, and is of exponential order. Then the Laplace transform of f (t) is defined 

as a function F(s) denoted by the integral 

 

L[ f (t); s] = F(s) = 
∞ 

e−st
 f (t)dt 

0 

 

over that range of values of s for which the integral exists. Here s is a parameter, real or complex. 

Obviously, L[ f (t); s] is a function of s. Thus 

 
L[ f (t); s]   = F(s) 

 

f (t)   = L−1[F(s); t] 

 
 

where L is the operator which transforms f (t) into F(s), called Laplace transform operator and 
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L−1 is the inverse Laplace transform operator. 

 
 

Properties of Laplace transform 

 
Linearity Property 
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If c1 and c2 are any two constants and if F1(s) and F2(s) are the Laplace transform, respectively 

of f1(t) and f2(t), then 

 

L[{c1 f1(t) + c2 f2(t)}; s] = c1L[ f1(t); s] + c2L[ f2(t); s] = c1F1(s) + c2F2(s). 

 
Shifting Property 

If a function is multiplied by eat, the transform of the resultant is obtained by replacing s by s −a 

in the trasform of the original function. That is, if 

 
L[ f (t); s] = F(s) 

 

then  
L[eat

 f (t); s] = F(s − a). 
 

 

Multiplication by power of t 
 

If L[ f (t); s] = F(s), then 
 

L[tn
 f (t); s] = (−1)n

 
dn 

F(s) 
 

 

 
(−1)n

F(n)(s) for n 

 

 
1 2 3 

dsn 
=

 
=   ,  , , . . . . 
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Division by t 
 

If L[ f (t); s] = F(s), then 

L 

"
 f (t) 

; s

# 

= 

∫ ∞ 

F(s)ds. 
 

 
 

Differentiation Property 

If L[ f (t); s] = F(s), then 

 
L[ f (n)(t); s] = s

n
F(s) − sn−1 f (0) − sn−2 f J(0) − · · · − s f (

n−2)(0) − f (
n−1)(0). 

 
Initial Value Theorem 

If f (t) and f J(t) are Laplace transformable and F(s) is the Laplace transform of f (t), then 

 
Lt f (t) = Lt sF(s). 

t→0 s→∞ 

 

Final Value Theorem 

If f (t) and f J(t) are Laplace transformable and F(s) is the Laplace transform of f (t), then 
 

Lt 
t→∞ 

f (t) = Lt sF(s). 
s→0 

 
 

Transform of Periodic Function 

 
If f (t) is a periodic function with period  T, (i.e., f (t + T ) = f (t) for all  t, T > 0 ), then 

∫ T 

e−st
 f (t)dt 

 L[ f (t); s] = 0 

(1 − e−st) 

s 
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Transform of Error Function 

 
If erf(t) is a error function defined by erf(t) = 

 
  2   

∫ t 

e−u2 

du 

 

 

 

 
 

then the Laplace transform is 
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L[er f (t); s] = 
1 

e 
s2 

erfc
 

s 
 
 

s 2 
 

where erfc(t) is the complementary error function erfc(t) = erf(t). 

 

 
Properties of Inverse Laplace Transform 

 
Linearity Property 

 
If F1(s) and F2(s) are the Laplace transform of f1(t) and f2(t) and if c1 and c2 are any two 

constants, then 

 

L−1[{c1F1(s) + c2F2(s)}; t] = c1L−1[F1(s); t] + c2L−1[F2(s); t]. 

 
Shifting Property 

 

If L[ f (t); s] = F(s), then 

L−1[F(s + a); t] = e−at
L−1[F(s); t]. 

 

 

Change of Scale property 

If L−1[F(s); t] = f (t), then 
 

L−1[F(as); t] = 
1 

f

 
t 

  

. 

, 
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Convolution Theorem 

 
If F(s) and G(s) are the Laplace transforms of f (t) and g(t) respectively, then F(s) G(s) is the 

Laplace transform of the convolution of f (t) and g(t), 

 
L[( f 

 
or 

∗ g)(t); s] = L 

"∫ t 

f (t 
 

– u)g(u)du; s

# 

= 

 
F(s)G(s) 

L−1[F(s)G(s); t] = ( f ∗ g)(t) = 

t 

f (t 
0 

– u)g(u)du. 

 
 

Transform of Partial Derivatives 

 
If u(x, t) is a function of two variables x and t, prove that 

(i) L 

" 
∂u 

; s

# 

= sU(x, s) − u(x, 0) 
 

(ii) L 
∂2u 

; s 
∂t2 

= s2U(x, s) − su(x, 0) − ut(x, 0) 

(iii) 
L 

"
 ∂u 

; s

# 

=
 dU(x, s) 

∂x 

(iv) L 
∂2u 

; s 
∂x2 

dx 

d2 

= 
dx2 U(x, s) 

(v) L 
∂2u 

; s 
∂x∂t 

= s
 d 

U(x, 
dx 

 

s) 
 d 

u(x, 
dx 

 
0). 

 

where U(x, s) = L[u(x, t); s]. 

0 

∫ 
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4.3 Fourier Transform Technique 
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Definition 4.3.1. Let f (x) be a function defined on (−∞, ∞) and is piecewise continuous, 

differentiable in each finite interval and is absolutely integrable on (−∞, ∞), if 

F(α) = 
   1  

∫ ∞ 

f (t)e
iαt

dt (1) 

 

then we have, for all x, 

f (x) = 
   1    

∫ ∞ 

F(α)e−iαx
dα. (2) 

 

Here, F(α) defined by equation (1) is the Fourier transform of f (x), and f (x) defined by equation 

 
(2) is called the Inverse Fourier transform of F(α) and is denoted by 

 
 

F(α) =   F [ f (t); α] 

f (x)   =    F −1[F(α); x] 

 
which constitute the Fourier transform pair. 

 

Definition 4.3.2. Fourier sine transform of f (x) is 
 

F (α) = 

,
 2 

∫ ∞ 

f (t) sin αtdt = F 

 
[ f (t); α] 

 

 

Inverse Fourier sine transform is 
 

f (x) = 

, 
2 

∫ ∞ 

F 
 

 
 
(α) sin αxdα = F −1[F 

 

 

 
(α); x]. 

0 

−

∞ 

S 

S S 
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Definition 4.3.3. Fourier cosine transform of f (x) is 
 

F (α) = 

, 
2 

∫ ∞ 

f (t) cos αtdt = F 

 
[ f (t); α] 

 

 

Inverse Fourier cosine transform is 
 

f (x) = 

, 
2 

∫ ∞ 

F 
 

 
 
(α) cos αxdα = F −1[F 

 

 

 
(α); x]. 

 

 

Properties of Fourier Transform 

 
Linearity Property 

 
If F(α) and G(α) are the Fourier transforms of f (x) and g(x) respectively, then 

 
F [c1 f (t) + c2g(t); α] =   c1F(α) + c2G(α) 

F −1[c1F(α) + c2G(α); x] = c1 f (x) + c2g(x) 

where c1 and c2 are constants. 

 

Change of Scale 

If F [ f (t); α] = F(α), then 
 

F [ f (at); α] = 
1 

F

 
α

 
. 

 

 

Shifting Property 

If F [ f (x); α] = F(α), then 

 
 

F [ f (x − a); α] = eiαa
F(α). 

0 

C 

C C 
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Modulation Property 

If F [ f (x); α] = F(α), then 

1 

151 

F [ f (x) cos ax; α] = 
2 

[F(α − a) + F(α + a)]. 

 
Differentiation 

If f (x) and its first (r − 1) derivatives are continuous, and if its rth derivative is piecewise 

continuous, then 

F [ f (r)(x); α] = (−iα)rF [ f (x); α], r = 0, 1, 2, . . . 

provided f and its derivatives are absolutely integrable. In addition, we assume that f (x) and its 

first (r − 1) derivatives vanish as x → ±∞. 

If F [u(x, t); x → α] = U(α, t), then 

(i) F 

" 
∂u 

(x, t); x → α

# 

= −iαU(α, t). 

(ii) F 

" 
∂2u 

(x t); x → 

# 

(−1)2(i )2U( t) 

(iii) F 

" 
∂nu 

(x t); x → 

# 

(−1)n(i )n
U( t) 

(iv) F 

"
 ∂u 

(x, t); x → α

# 

= Ut(α, t). 

 
(v) F 

" 
∂2u 

(x
 

t) ; x → 

#

 

, 
2 

u(x t)| 

 
–  2F [u(x 

 
t); x → ] 

 
(vi) F 

" 
∂2u 

(x
 
t); x → 

#

 – 

, 
2 ∂u 

(x
 
 
t)| 

 
–  2F 

 
[u(x t); x → ] 

. 

. 

S , = x=0 , . 

C , = , x=0 C . 



Partial Differential Equations M.Sc.(Mathematics)-II Sem   

∫ 

∫ 

X 

∞ 

√
2π 

f (x) = 
a0 

+ 
X 

an cos nx (3) 

an = 
π

 

| | 

152 4.4. FINITe FOURIeR TRANsfORM 

 

Convolution Theorem 

If F [ f (x); α] = F(α) and F [g(x); α] = G(α), then F [( f ∗ g)(x); α] = F(α)G(α) where 

( f ∗ g)(x) =
  1  

∫ ∞ 

f (u)g(x − u)du. 
 
 

Parseval’s Relation 

If F [ f (x); α] = F(α), then 
∞

 

−∞ 

 

 
|F(α)|2dα = 

 
 

 
∞ 

f (x) 2dx 
−∞ 

which is known as Parseval’s relation. 

 

 
4.4 Finite Fourier Transform 

If a function f (x) satisfies Dirichlet conditions in the interval 0 ≤ x ≤ π, then it has Fourier sine 

series 

 
 

where 

 
 

 
2 π 

bn = 
0 

∞ 

f (x) = bn sin nx (1) 
n=1 

 

 
f (x) sin nxdx, n = 1, 2, . . . . (2) 

The Fourier series in equation (1) converges pointwise to f (x) at points where f (x) is continuous 
1 

and to the value 
2 

[ f (x+) + f (x−)] at other points. 

If a function f (x) satisfies Dirichlet conditions in the interval 0 ≤ x ≤ π, then it has Fourier 

cosine series 
 

 
 

where 
2 

∫ π 

 

 

2 
n=1 

0 

∫ 

π 

−

∞ 

f (x) cos nxdx, n = 1, 2, . . . . (4) 
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4.5 Nonlinear Equations of the Second Order 

 
Consider a second order nonlinear partial differential equation 
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F(x, y, z, p, q, r, s, t) = 0. (1) 
 

 

4.5.1 Monge’s Method 

 
In this method, we consider one or two first integrals of the form 

 
η = f (ξ). (2) 

 
where ξ and η are the functions of x, y, z, p , and q and the function f is arbitrary. 

 

Problem 4.5.1. If the partial differential equation has the integral η = f (ξ), where ξ and η 

are the functions of x, y, z, p , and q and the function f is arbitrary, then prove that the partial 

differential equation is of the form Rr + S s + Tt + U
 
rt − s2

 
= V or Rr + S s + Tt = V. 

Solution. Consider a second order nonlinear partial differential equation 

 
 

F(x, y, z, p, q, r, s, t) = 0. 

 

 
Given the equation has the integral of the form 

 
 

η = f (ξ), 

 

 
where ξ and η are the functions of x, y, z, p and q and the function f is arbitrary. 
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Differentiating (2) partially with respect to x and y, we get 
 

∂η 
+ 

∂η ∂z 
+ 

∂η ∂p 
+ 

∂η ∂q 
= f J(ξ)

 
∂ξ 

+ 
∂ξ ∂z 

+ 
∂ξ ∂p 

+ 
∂ξ ∂q 

!
 

 

ηx + ηz p + ηpr + ηq s = f J(ξ)
 

ξx + ξz p + ξpr + ξq s
 

(3) 

∂η 
+ 

∂η ∂z 
+ 

∂η ∂p 
+ 

∂η ∂q 
= f J(ξ)

 
∂ξ 

+ 
∂ξ ∂z 

+ 
∂ξ ∂p 

+ 
∂ξ ∂q 

!
 

 

ηy + ηzq + ηp s + ηqt = f J(ξ)
 

ξy + ξzq + ξp s + ξqt
 

(4) 

Eliminating f J(ξ) from equations (3) and (4), then 
 

 
(3) 

 
ηx + ηz p + ηpr + ηq s

 
 

 
 

 f 
J (ξ )

 
ξx + ξz p + ξpr + ξq s

 
 

 

 

 

(4) 
⇒

 
 
ηy + ηzq + ηp s + ηqt

 
  f 

J (ξ )
 
ξy + ξzq + ξp s + ξqt

 
 

 

implies 

 
  

ηx + ηz p + ηpr + ηq s
   

ξy + ξzq + ξp s + ξqt
 

= 
  
ηy + ηzq + ηp s + ηqt

    
ξx + ξz p + ξpr + ξq s

 
 

On simplifying, we get 

 
. 

ξpηy − ξyηp

 
+ q

 
ξpηz − ξzηp

 . 
r + 

. 
ξqηy − ξyηq

 
+ q

 
ξqηz − ξzηq

 
−

 
ξpηx − ξxηp

 
 

−p
 

ξpηz − ξzηp

 . 
s + 

. 
ξxηq − ξqηx

 
+ p

 
ξzηq − ξqηz

 . 
t +

 
ξpηq − ξqηp

 
(r t − s2) 

=
 
ξyηx − ξxηy

 
+ p

 
ξyηz − ξzηy

 
+ q (ξzηx − ξxηz) 

" 
∂(ξ, η) 

+ q
∂(ξ, η)

# 

r + 

" 
∂(ξ, η) 

+ q
∂(ξ, η) 

− 
∂(ξ, η) 

− p
∂(ξ, η)

# 

s + 

" 
∂(ξ, η) 

+ p
∂(ξ, η)

# 

t
 

 

+ 
∂(ξ, η) 

(r t − s2) = 
∂(ξ, η) 

+ p
∂(ξ, η) 

+ q
∂(ξ, η) 

∂(p, q) ∂(y, x) ∂(y, z) ∂(z, x) 

= 
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The required form of the partial differential equation 
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Rr + S s + Tt + U 
 
rt − s2

  
= V (5) 

which has the first integral as η = f (ξ). 

If the Jacobian, J = 
∂(ξ, η)

 
∂(p, q) 

 
= 0, then equation (5) reduces to the form 

 
 

Rr + S s + Tt = V. ■ 

 
 

4.5.2 Solution of Second Order Nonlinear Partial Differential Equations 

Let us assume a first integral of the equation 

 
Rr + S s + Tt + U 

 
rt − s2

  
= V (1) 

 

exists and that it is of the form 

 
 

For any function z of x and y, we have 

 
η = f (ξ). (2) 

 

dp = 
∂p

dx + 
∂p

dy = rdx + sdy  ⇒  r = 
dp − sdy

 
 

(3) 
∂x ∂y dx 

dq = 
∂q

dx + 
∂q

dy = sdx + tdy   ⇒  t = 
dq − sdx

. (4) 
∂x ∂y dy 

 

Substituting (3) and (4) in (1), we get 

 
(Rdpdy + Tdqdx − Udpdq − Vdxdy) − s

 
R(dy)2 − S dxdy + T (dx)2 + Udpdx + Udqdy

   
= 

0. Monge’s subsidiary equations are 

L ≡ Rdpdy + Tdqdx + Udpdq − Vdxdy = 0 (5) 
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and 

 

M ≡ R(dy)2 − S dxdy + T (dx)2 + Udpdx + Udqdy = 0. (6) 

Let us factorise M + λL , where λ is an undetermined multiplier. Now, 

M + λL ≡ R(dy)2 + T (dx)2 − (S + λV)dxdy + Udpdx + Udqdy + λRdpdy + λTdqdx + λUdpdq 

= 0 (7) 

 
and let k and m be constants such that 

M + λL ≡ (Rdy + mTdx + kUdp)

 

dy + 
1 

dx + 
λ
dq

! 

= 0. (8) 

Comparing coefficients in (7) and (8), we get 

 
 

and take 

 
 

Using the above equations, we get 

R 

m 
+ mT = −(S + λV), (9) 

 
k = m and 

Rλ 
= U. (10) 

k 

 

λ2(UV + RT ) + λUS + U2 = 0, (11) 

 
which is quadratic in λ. Let λ1 and λ2 be its roots. 

When λ = λ1, (10) ⇒ Rλ1
 = U ⇒ k = Rλ1

 ⇒ m = Rλ1 . Equation (8) gives 

 
Rdy + 

Rλ1 
Tdx + Rλ1dp

   

dy + 
  U 

dx + 
U 

dq

! 

= 0 
 

(Udy + λ1Tdx + λ1Udp) (Udx + λ1Rdy + λ1Udq) = 0. (12) 

 
Similarly for λ = λ2, we have 

 
(Udy + λ2Tdx + λ2Udp) (Udx + λ2Rdy + λ2Udq) = 0 (13) 
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implies 
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Udy + λ1Tdx + λ1Udp = 0, Udx + λ2Rdy + λ2Udq = 0 (14) 

Udy + λ2Tdx + λ2Udp = 0, Udx + λ1Rdy + λ1Udq = 0. (15) 

 
Equations (14) give two integrals u1 = c1 and v1 = c1 so that one intermediate integral is 

 
u1 = f1 (v1) , (16) 

 
where f1 is an arbitrary function. Similarly, the second intermediate integral 

 
u2 = f2 (v2) , (17) 

 
where f2 is an arbitrary function. 

On solving (16) and (17) for p and q and substitute in dz = pdx + qdy , which after integration 

gives the desired general solution. 

 
Problem 4.5.2. Solve the equation r + 4s + t + rt − s2 = 2. 

 

Solution. Given  
r + 4s + t + rt − s2 = 2. (1) 

 

Comparing (1) with Rr + S s + Tt + U
 
rt − s2

 
= V, we have R = 1, S = 4, T = 1, U = 1 , V = 2. 

λ2(UV + RT ) + λUS + U2 = 0 ⇒ 3λ2 + 4λ + 1 = 0 

with roots λ1 = −
1 

, λ2 = −1. 

To find the integrals, we have 

 
 

3dy − dx − dp = 0, dy − dx + dq = 0 
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leading to the first integral 
 

3y − x − p = f (y − x + q) 

 
where the function f is arbitrary. Similarly equations (23) reduce to 

 
 

dy − dx − dp = 0, dy − 3dx + dq = 0 
 

 

and yield the first integral  
y − 3x + q = g(y − x − p) 

 

the function g being arbitrary. 

 
Combine the general integral (24) with any particular integral of (25), we have 

 
 

y − 3x + q = c1 

 
where c1 is a constant. Solving equations (24) and (26), we find that 

 
 

q = c1 + 3x − y, p = 3y − x − f (2x + c1) 

 
from which it follows that 

 
 

dz = {3y − x − f (2x + c1)} dx + {c1 + 3x − y} dy 
 

 

and hence that 

z = 3xy − 
1  

x2 + y2
  

+ F (2x + c1) + c1y + c2 
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where c2 . is an arbitrary constant. Equation (28) gives the complete integral. To obtain the 

general integral we replace c1 by c, c2 by G(c) , where the function G is arbitrary, and the 

required integral is then obtained by eliminating c between the equations 

z = 3xy − 
1 

x2 + y2
  

+ F(2x + c) + cy + G(c) 

0 = FJ(2x + c) + y + GJ(c). ■ 

 
In particular, U = 0 . Monge’s subsidiary equations are 

 
Rdpdy + Tdqdx = Vdxdy 

 

and  
Rdy2 − S dxdy + Tdx2 = 0. 

 

 

Problem 4.5.3. Solve the equation q2r − 2pqs + p2t = 0 . 
 

Solution. Given  
q2r − 2pqs + p2t = 0. (1) 

 

Comparing (1) with Rr + S s + Tt = V, we have R = q2, S = −2pq, T = p2, V = 0. 

Monge’s subsidiary equations becomes 

 
 

q2dpdy + p2dqdx = 0 (2) 

 
(pdx + qdy)2 = 0 (3) 
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From equation (3), we have 

 
 

dz = pdx + qdy ⇒ dz = 0 ⇒ z = c1. 

 
From equations (2) and (3), we have 

 
 

qdp = pdq ⇒ p = c2q. 

 
Then, the first integral becomes 

 
p = q f (z) 

 

where the function f is arbitrary. This is a Lagrange’s equation and the auxiliary equations are 
 
 

dx dy dz 

1  
= 

− f (z) 
=  

0 
 

with integrals z = c1, y + x f (c1) = c2 leading to the general solution 

 
 

y + x f (z) = g(z) 

 
 

where the functions f and g are arbitrary. ■ 

 

 

1. Solve the wave equation r = t by Monge’s method. 

 2. Show that if a function z satisfies the di erential equation 
∂2z ∂z

 
 

 

∂2z ∂z 
 

 

 it is of the 
ff 

∂x2 ∂y 
=

 ∂x∂y ∂x 

form f {x + g(y)} , where the functions f and g are arbitrary. 



Partial Differential Equations M.Sc.(Mathematics)-II Sem   

            

Let us Sum up: 

Suggested Readings: 

4.5. NONLINeaR EQUATIONs Of THe SeCOND ORDeR 
 

3. Solve the equation z(qs − pt) = pq2. 

4. Solve the equation pq = x(ps − qr). 

5. Solve the equation rq2 − 2pqs + tp2 = pt − qs. 

161 

 

6. Find an integral of the equation z2 rt − s2 +z 1 + q2 r−2pqzs+z 1 + p2 t+1+ p2 +q2 =0 

involving three arbitrary constants. 
 
 
 

 

In this unit, the students acquired knowledge to 

 
• solve the PDE’s by using Laplace transform techniques. 

• find Fourier Transform Technique. 

• find Finite Fourier Transform. 
 
 

 

1. M.D. Raisinghania, Advanced Differential Equations, S. Chand & Company Ltd., New 

Delhi, 2001. 

2. K. Sanakara Rao, Introduction to Partial Differential Equations, Second Edition, 

Prentice-Hall of India, New Delhi, 2006. 
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BLOCK-III 

UNIT 5 

BOUNDARY VALUE PROBLEMS 

 
 

 
 

In this unit, we discuss the elementary solutions of Laplace equation, necessary 

conditions for a surface to be equipotential, boundary value problems for Laplace equation. 

 

 
5.1 Elementary Solutions of Laplace’s Equation 

 
In this section, we investigate the elementary solution of Laplace equation. 

 

Problem 5.1.1. Prove that ψ = 
  q 

 

|r − rJ| 

 

is a solution of the Laplace equation. 

Overview 

Structure 

Objective 

Overview 

5. 1 

5. 2 

5. 3 

Elementary Solutions of Laplace’s Equation 

Families of Equipotential Surfaces 

Boundary Value Problems Let us Sum Up 

Check Your Progress 

Suggested Readings 
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Solution. Consider a function ψ of the form 
 
 

q 
ψ 

|r − rJ| 

q 
=   , (1) 

(x − xJ)2 + (y − yJ)2 + (z − zJ)2 

 

where q is a constant and (xJ, yJ, zJ) are the coordinates of a fixed point, then since 

 
∂ψ 

= −
q(x − xJ) 

, etc.
 

 

∂x 

∂2ψ 
 

 

|r − rJ|3 

q 
 

 

3q(x − xJ)2 
 

 

∂x2   
= −

|r − rJ|3  
+
 

, 
|r − rJ|5 

∂2ψ 
 

 

q 3q(y − yJ)2 
 

  

∂y2   
= −

|r − rJ|3  
+
 

, 
|r − rJ|5 

∂2ψ 
 

 

q 3q(z − zJ)2 
 

  

∂z2    
= −

|r − rJ|3  
+
 

. 
|r − rJ|5 

 

Adding the last three equations, we get 
 

 
∂2ψ 

 
 

 
∂2ψ 

 
 

 
∂2ψ 

 
 

q 3q(x − xJ)2 
 

  

q 3q(y − yJ)2 
 

  

q 3q(z − zJ)2 
 

  

∂x2  
+ 

∂y2  
+

 ∂z2    
= −

|r − rJ|3  
+
 |r − rJ|5 

− 
|r − rJ|3  

+ 
|r − rJ|5 

− 
|r − rJ|3  

+
 

|r − rJ|5 

    3q  

= −
|r − rJ|3  

+
 

    3q  

= −
|r − rJ|3  

+
 

3q 

= −
|r − rJ|3  

+
 

3q  (x − xJ)2 + (y − yJ)2 + (z − zJ)2 

|r − rJ|5 

3q|r − rJ|2 
 

|r − rJ|5 

3q 

|r − rJ|3 

∇2ψ = 0 

 
showing that the function (1) is a solution of Laplace’s equation except possibly at the point 

(xJ, yJ, zJ), where it is not defined. ■ 

= 
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If S is any sphere with center (xJyJ, zJ), then 

∂ψ 
dS = 4πq. 

S ∂n 

By Gauss’ theorem, that equation (1) gives the solution of Laplace’s equation corresponding to an 

electric charge +q. 

By a superposition principle, we have 

ψ = 
X qi  

 

 

 

(2) 

 

is the solution of Laplace’s equation corresponding to n charges qi situated at points with position 

vectors ri (i = 1, 2, . . . , n). 

In electrical problems, we encounter the situation where two charges +q and −q are situated 

very close together, say at points rJ and rJ+δrJ, where δrJ = (l, m, n) a . The solution of Laplace’s 

equation corresponding to this distribution of charge is 
 

ψ = 
   −q    

+ 
q 

.
 

 

 

Now 

|r − rJ| |r − rJ + δrJ| 

  1 
=  

    1 
+ 

l(x − xJ) + m(y − yJ) + n(z − zJ) 
a + O(a2)

 
 

|r − rJ − δrJ| |r − rJ| |r − rJ|3 

so that if a → 0, q → ∞ in such a way that qa → µ, i.e., an electric dipole is formed, it follows 

that the corresponding solution of Laplace’s equation is 
 

ψ = µ 
l(x − xJ) + m(y − yJ) + n(z − zJ) 

|r − rJ|3 

a result which may be written in other ways: If we introduce a vector m = µ(l, m, n), then 

 

(1) 

 

 
 
 

Also since 

ψ = 
m · (r − rJ) 

. (2)
 

|r − rJ|3 

∂ 
 

 

∂xJ 

1 

|r − rJ| 
= 

x − xJ 

|r − rJ|3 
, etc. 

i=1 

∫ 
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it follows that (1) may be written in the form 
 

ψ = (m · gradJ) 
  1 

= µ

 

l
 ∂

   ∂ ∂ 
+ m + n 

! 
    1 

. (3) 

|r − rJ| ∂xJ 

The corresponding form of the function ψ is 

∂yJ ∂zJ |r − rJ| 

 

   dq  
ψ = 

|r − rJ| 
, (4) 

 

where q is the Stieltjes measure of the charge at the point rJ, or if ρ denotes the charge density, 

by 

ψ(r) = 
V 

ρ(rJ) dτJ 
. (5)

 

|r − rJ| 

By a similar argument it can be shown that the solution corresponding to a surface S carrying an 

electric charge of density σ is 

ψ(r) = 
S 

σ(rJ)dS J 
. (6)

 

|r − rJ| 
 

Problem 5.1.2. If ρ > 0 and ψ(r) is given by equation (5), where the volume V is bounded, 

prove that 

 
lim r ψ(r) = M 
r=∞ 

 

where 

 
 

M = ρ(rJ) dτJ. 
V 

 

Solution.  Let  r1,  r2  be the maximum and minimum values of the distance  |r − rJ| from the point 

r to the integration points rJ of the bounded volume V. Then by a theorem of elementary calculus 
 

M 
< 

∫ 
ρ(rJ)dτJ 

< 
M 

 

r1 V |r − rJ| r2 
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an equality which may be written in the form 

 
 r 

! 

M < r ϕ(r) <
 r 

! 

M. 

Now as r ,
 r 

r1 
and

 r 

r2 

r1 r2 

both tend to unity, so that 

lim r ψ(r) = M. ■ 
r=∞ 

 

 
1. Prove that r cos θ and r−2 cos θ satisfy Laplace’s equation, when r, θ, φ are spherical polar 

coordinates. 

An electric dipole of moment µ is placed at the center of a uniform hollow conducting 

sphere of radius a which is insulated and has a total charge e. Verify that Vi, the potential 

inside the sphere, and V0, the potential outside the sphere, are given by 
 

V = 
e 

+ 
µ cos θ µr 

a r2 a3 
cos θ, V0 = 

e
, 

r 
 

where r is measured from the center of the sphere and θ is the angle between the radius 

vector and the positive direction of the dipole. 

2. A surface S carries an electrical charge of density σ. In the negative direction of the normal 

from each point P of S there is located a point P1 at a constant distance h, thus forming a 

parallel surface S 1. Assuming that corresponding points P and P1 have the same normal 

and that corresponding elements of area carry numerically equal charges of opposite sign, 

show that the potential function of the system is 

ψ = 

∫ (
    1  

− 
  1  

|

) 

σ(rJ )dS J. 

S |r − rJ| |r − rJ + hn 

 

By letting h → 0, p → ∞ in such a way that σh → µ everywhere uniformly on S, obtain 
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the expression 

ψ = 
µ{n · (r − rJ)} 

dS J
 

S |r − rJ|3 

for the potential of an electrical double layer. 
 

3. A closed equipotential surface S contains matter which can be represented by a volume 

density  σ. By substituting  ψJ = |r − rJ|−1   in Green’s theorem 

∫ 

ψJ 
∂ψ 

− ψ
∂ψJ 

! 

dS = 

∫

 (ψJ∇2ψ − ψ∇2ψJ)dτ 

 

prove that ∫   
∂ψ 

! 
dS J + 4π 

∫

 

 

ρ(rJ)dτJ 
 

 
= 0. 

S ∂n   |r − rJ| V  |r − rJ| 

Deduce that the matter contained within any closed equipotential surface S can be thought 

of as spread over the surface S with surface density 
 

1 ∂ψ 
−

4π ∂n 

at any point. 
 

4. By applying Green’s theorem in the above form to the region between an equipotential 

surface  S   and  the  infinite  sphere  with  ψJ  =  |r − rJ|−1    and  ψ  the  potential  of  the  whole 

distribution of matter, prove that the potential inside S due to the joint effects of Green’s 

equivalent layer and the original matter outside S is the constant potential of S. 

5. Show that 
∫ 

3V 
!1 

 

f racdτJ|r − rJ| ≤ 2π   
4π

 

irrespective of whether the point with position vector r is inside or outside the volume V 

or on the surface bounding it. 
 

6. Prove that the potential 
 

ψ(r) = 
V 

ρ(rJ)dτJ 
 

|r − rJ| 

and its first derivatives are continuous when the point P with position vector r lies inside 

or on the boundary of V. 

V 

∫ 
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Show further that  ∇2ψ = −4πρ if  P ∈ V  and that  ∇2ψ = 0  if  P ∈/ V. 

 
5.2 Families of Equipotential Surfaces 

169 

 

If the function ψ(x, y, z) is a solution of Laplace’s equation, the one-parameter system of surfaces 

 
ψ(x, y, z) = c 

 
is called a family of equipotential surfaces. It is not true, however, that any one-parameter family 

of surfaces 

f (x, y, z) = c (1) 
 

is a family of equipotential surfaces. 
 

Theorem 5.2.1. The necessary condition for the surface f (x, y, z) = c to be equipotential if 

∇2 f 

|grad f |2 

 
is a function of f alone. 

 

Proof. The surfaces (1) will be equipotential if the potential function  ψ is constant whenever 

 
f (x, y, z) is constant. A functional relation must be of the form 

 
 

ψ = F{ f (x, y, z)} (2) 

 
between the functions ψ and f . Differentiating equation (2) partially with respect to x, we obtain 

 

the result  

∂ψ dF ∂ f 

∂x 
= 

d f  ∂x 

 

 
(3) 

 

and hence the relation  

∂2ψ 

∂x2  
=

 

 

d2F 

d f 2 

 
∂ f 2 

∂x 

 

dF 
+ 

d f 

 
∂2 f 

(4) 
∂x2 
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from which it follows that 
 

∇2ψ = FJJ( f )(grad f )2 + FJ( f )∇2 f . (5) 

 
Now, in free space, ∇2ψ = 0, so that the required necessary condition is that 

 

∇2 f FJJ( f ) 
 

(grad f )2 = − 
FJ( f ) 

= χ( f ). (6) 

 
Hence the condition that the surfaces (1) form a family of equipotential surfaces in free space is 

 

that the quantity  

2 f 

χ( f ) = 
|grad f |2 

 

is a function of f alone. ■ 

 
Problem 5.2.1. Derive the general form of potential function. 

 
 

Solution. From (6), we have 

d2F dF 

d f 2 + χ( f ) 
d f 

= 0 

 

from which it follows that  
dF 

= Ae− χ( f )d f , 
d f 

 

where A is a constant, and hence that 

 

ψ = A 

∫ 

e− 
∫ 

χ( f )d f d f + B, (7) 

where A and B are constants. ■ 
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Problem 5.2.2. Show that the surfaces 

171 

 

 

x2 + y2 + z2 = cx 
2

 

 

 

can form a family of equipotential surfaces, and find the general form of the corresponding 

potential function. 

 

Solution. Given 
 

x2 + y2 + z2 = cx 
2

 

 

 

can be written as 
 

 

f = x 
4  

+ x−
2  

(y2 + z2) 
 

 

so that 

 
grad f = 

2 
x−

2 

(2x2 − y2 − z2, 3xy, 3xz). 
3 

 
 

Hence 

 
∇2 f = 

10 
x−

2 

(4x2 + y2 + z2) 
9 

 
 

and 

 
|grad f |2 = 

4 
x−

10 

(4x2 + y2 + z2)(x2 + y2 + z2) 
9 
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Now 
 

∇2 f 
 

grad f 
10   − 2 

 
 

 

 
2     ,2,, ,2 

9  x  3 ,(4,x ,+ y + z ) 
= 4   − 10 

, 
2 

 
 

,2,, ,2 2 2 2 

9 x 

5 
= 

2 f 

3  (4,x ,+ y + z )(x + y  + z ) 

 
 

which is a function of f alone. The given set of surfaces therefore forms a family of equipotential 

surfaces. 

General form of potential function 

ψ = A 

∫ 

e− 
∫ 

χ( f )d f d f + B 

= A 

∫ 

e− 
∫ 5 d f 

d f + B 

= A 

∫ 

e−
5 log f d f + B 

= A 

∫ 

elog f 

 

5 
 

2 
d f + B 

= A 

∫  

f −
5  

d f + B 

ψ = A f −
3  

+ B 

 

from which it follows that the required potential function is 

 
 

ψ = Ax(x2 + y2 + z2)−
3 

+ B 

 

where A and B are constants. ■ 

− 



Partial Differential Equations M.Sc.(Mathematics)-II Sem   

2 

CheCK YOUR PROgRess 

5.2. FaMILIes Of EQUIpOTeNTIAL SURfaCes 173 
 

 

 

 
 

1. Show that the surfaces  
(x2 + y2)2 − 2a2(x2 − y2) + a4 = c 

 

can form a family of equipotential surfaces, and find the general form of the corresponding 

potential function. 

2. Show that the family of right circular cones 

 
x2 + y2 = cz2, 

 
where c is a parameter, forms a set of equipotential surfaces, and show that the 

corresponding potential function is of the form A log tan 1 θ + B, where A and B are 

constants and θ is the usual polar angle. 
 

3. Show that if the curves f (xy) = c form a system of equipotential lines in free space for a two-

dimensional system, the surfaces formed by their revolution about the x axis do not 

constitute a system of equipotential surfaces in free space unless 

1  
 
∂ f 

!
  

∂ f 
!2  

∂ f 
!2  

y ∂y   
÷ 

  ∂x 
+   

∂y  

 

is a constant or a function of c only. 

Show that the cylinders x2 + y2 = 2cx for a possible set of equipotential surfaces in free 

space but that the spheres x2 + y2 = 2cx for a possible set of equipotential surfaces in free 

space but that the spheres x2 + y2 + z2 = 2cx do not. 

4. Show that the surfaces 

x2 + y2 − 2cx + a2 = 0, 

where a is fixed and c is a parameter specifying a particular surface of the family, form a 

set of equipotential surfaces. 

The cylinder of parameter c1 completely surrounds that of parameter c2, and c8 > a > 0. 

The first is grounded, and the second carries a charge E per unit length. Prove that its 
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potential is 

E log 
(c1 + a)(c2 − a) 

.
 

(c1 − a)(c2 + a) 

 
5.3 Boundary Value Problems 

 
In addition to satisfying Laplace’s equation within a certain region of space V, also satisfy certain 

conditions on the boundary S of this region. Any problem in which we are required to find such 

a function ψ is called a boundary value problem for Laplace’s equation. 

There are three main types of boundary value problem for Laplace’s equation: 

 
 

Interior Dirichlet Problem 

 
If f is a continuous function prescribed on the boundary S of some finite region V, determine a 

function ψ(x, y, z) such that ∇2ψ = 0 within V and ψ = f on S. 

 
Exterior Dirichlet Problem 

 
If f is a continuous function prescribed on the boundary S of a finite simply connected region 

V, determine a function ψ(x, y, z) which satisfies ∇2ψ = 0 outside V and is such that ψ = f on 

S. 

 
 

Interior Neumann Problem 

If f is a continuous function which is defined uniquely at each point of the boundary S of a finite 

region V, determine a function ψ(x, y, z) such that ∇2ψ = 0 within V and its normal derivative 
∂ψ 

coincides with f at every point of S. 
∂n 

− 
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Exterior Neumann Problem 

175 

 

If f is a continuous function prescribed at each point of the (smooth) boundary S of a bounded 

simply connected region V, find a function ψ(x, y, z) satisfying 2ψ = 0 outside V and 
∂ψ 

= f 
∂n 

on S. 

 

 
Churchill problem 

 
If f is a continuous function prescribed on the boundary S of a finite region V, determine a 

function ψ(x, y, z) such that ∇2 ψ = 0 within V and 

∂ψ 

 

 
at every point of S. 

+ (k + 1)ψ = f 
∂n 

 
 

 

In this unit, the students acquired knowledge to 

 
• find the elementary solution of Laplace’s Equation. 

• understand the basic concepts of Families of Equipotential Surfaces. 

• classify the various types of boundary value problems. 
 

 

 

1. M.D. Raisinghania, Advanced Differential Equations, S. Chand & Company Ltd., New 

Delhi, 2001. 

2. K. Sanakara Rao, Introduction to Partial Differential Equations, Second Edition, 

Prentice-Hall of India, New Delhi, 2006. 
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BLOCK-III 

UNIT 6 

LAPLACE EQUATIONS 

 

 
 

In this unit, we discuss the solutions of Laplace equation in spherical coordinates, 

cylindrical and rectangular Cartesian coordinates using separation of variables and also finding 

solution of Laplace equation using Green’s function. 

Overview 
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dr 

ψ = 
∂r ∂r 

+ 
sin θ ∂θ 

θ 
∂θ 

+ 
sin2 θ ∂φ2 

=
 

∂r ∂r 
+ 

sin θ ∂θ 
θ 

∂θ 
+ 

sin2 θ ∂φ2 
=

 

dr dr sin θ ∂θ ∂θ sin θ ∂φ2 

R 
= 

F 
=  −λ. 

θ 
∂θ 

+ 
sin θ ∂φ2 

∂ 
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6.1 Separation of Variables 

 
6.1.1 Solution of Laplace equation in spherical coordinates 

 
The Laplace equation in spherical coordinates is given by 

 

∇2 r2 ∂ψ 
! 

   1 ∂ 
 

sin 
∂ψ 

!
 1 ∂2ψ 

0
 
 

(1) 

 

Let us assume the solution of the form 

 
ψ(r, θ, φ) = R(r)F(θ, φ). (2) 

 
Substituting equation (2) into equation (1), we get 

 

F 
∂  

 

r2 ∂R 
!
   R ∂ 

 

sin 
∂F 

!
 R ∂2F 

0
 

d  
 

r2 dR 
 
 

 
 

–  1    
n 

∂ 
 

sin θ∂F
 

+ 1 ∂2F 
}
 
 

 

where λ is a separation constant. This leads to  
 

1 d 

R dr 

 

r2 
dR 

!  

=   −λ 

    1 
" 

∂ 
 

 

 

sin 
∂F 

!
 1 ∂2F 

#
 

 

 

 

yields 

r2 d
2R dR 

 

dr2   + 2r 
dr 

+ λR = 0 (3) 

which is a Euler’s equation. Hence using the transformation r = ez, and for λ = −n(n + 1), we 

have 

R = c1r
n
 + 

  c2   
. (4) 

rn+1 

F sin θ 

. 

⇒ 

∂θ 
=  λ. 
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∂θ 
sin θ

∂F
 

∂θ 

   1 ∂ F 
+ 

sin θ ∂φ2 + n(n + 1)F sin θ = 0. (5) 

H dθ 
θ 

dθ 
+ α α + θ 

H dθ dθ 
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For λ = −n(n + 1),       ! 
2

 

179 

Let the solution of equation (5) be 

which gives 

F = Θ(θ)Φ(φ) (6) 

sin θ 
"
 d

 

sin
 dH 

! 

(
 1) sin H

#

 
1 d2Φ 

− m2 (7) 

where m2 is another separation constant. Then 

d2Φ 2 
 

φ2  + m Φ = 0, (8) 

sin θ 
"
 d

 

sin θ
dH 

! 

+ α(α + 1) sin θH

# 

= m2. (9) 

The solution of equation (8) is 

 
provided m /= 0. 

Φ = c3 cos(mφ) + c4 sin(mφ) (10) 

If m = 0, then the solution is independent of φ which corresponds to the axisymmetric case. 

Putting cos θ = µ in equation (9), we obtain 

(1 − 2
) 

d2Θ 
 

 

2 
dΘ 

"

n(n 1) −
   m 

#

  0 (11) 
µ 

dµ2 + µ 
dµ 

+ + 
Θ = 

1 − µ2 

 

which is the well-known Legendre equation. Its general solution is given by 

 
Θ(µ) = c5P

m(µ) + c6Qα(µ), −1 ≤ µ ≤ 1 (12) 

 

or 

 
 

where P
m, Qm

 

 

Θ(θ) = c5P
m(cos θ) + c6Qα(cos θ), −1 ≤ cos θ ≤ 1 (13) 

are associated Legendre functions of the first and second kind respectively. 
n n 

The continuity of Θ(θ) at θ = 0, π implies the continuity of Θ(θ) at µ = ±1. Since Q
m(µ) has 

= 
Φ dφ2  

=
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∞ 

n 

∞ 
nm nm n  

ψ(r, θ, φ) =
 

c1r
n
 +

 c2  
 

(c3 cos(mφ) + c4 sin(mφ)) c5P
m(cos θ). (14) 

n 

rn+1 
n 
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a singularity at µ = 1, we choose c6 = 0. Therefore, the solution of Laplace equation in spherical 

coordinates is given by 

 

rn+1 n 

In the antisymmetric case (m = 0), then the solution is 

ψ(r, θ, φ) =
 

c1r
n
 +

 c2  
 

c3c5Pn(cos θ). (15) 

 

By the principle of superposition, we get 
 

ψ(r, θ) = 
X
 

 
A r

n
 + 

  Bn   
  

P (cos θ) (16) 
 

 
 

which is the required solution. 

In the general case in which m /= 0 we find that when 0 ≤ m ≤ n, equation (11) possesses 

solutions of the type 
 

P
m(  ) ( 2 − 1 m d

m
Pn(µ) 

 
 

 
 

n µ =  µ 1) 2 

dµm 
(17) 

Q
n(  ) ( 2 − 1 m d

m
Pn(µ) 

 
 

 
 

n µ =  µ 1) 2 

dµm 
. (18) 

 

When µ = ±1, Qm(µ) is infinite, so that in any physical problem in which it is known that Θ, 

i.e., ψ, does not become infinite on the polar axis we take Pm(µ) to be the solution of equation 

(11). In this way we obtain solutions of Laplace’s equation (1) of the form 

ψ = 
X X 

(Amnr
n
 + Bmnr−n−1) Pm(cos θ) e±imφ (19) 

n=0  m<n 

 

which may be written as 
 

X 
r
 n 

 
X 

 

 

m  

ψ = 
n=0 

AnPn(cos θ) + m=1 (A cos mφ + B sin mφ) P (cos θ) . (20) 
 

Problem 6.1.1. A rigid sphere of radius a is placed in a stream of fluid whose velocity in the 

a 

n=0 

∞ 

n 
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undisturbed state is V. Determine the velocity of the fluid at any point of the disturbed stream. 

 

Solution. Take the polar axis Oz to be in the direction of the given velocity and take polar 

coordinates (r, θ, φ) with origin at the center of the fixed sphere. 

The velocity of the fluid is given by the vector q = −gradψ, where 

 
(i) ∇2ψ = 0 

(ii) 
∂ψ 

= 0 on r = a 
∂r 

 

(iii) ψ ∼ −Vr cos θ = −VrP1(cos θ) as r → ∞. 

 
The axially symmetrical function 

 

ψ = 
X 

Anr
n
 + 

 Bn   
   

Pn(cos θ) (1) 

satisfies (i). 

 
Differetiating (1) partially with respect to r, we get 

 

∂ψ 
= 
X 

Annr
n−1 − (n + 1)

 Bn   
  

Pn(cos θ). (2) 

 

Applying condition (ii) in (2), put r = a 

 

0 = 
X 

Anna
n−1 − (n + 1)

  Bn   
  

Pn(cos θ) 
 

n=0 

A na
n−1 (n + 1)

 Bn 
= 0 

an+2 

an+2 
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na2n+1 An
 

⇒ Bn = 
(n + 1) 

.
 

 

 

Equation (1) becomes 
 
 

 
ψ = 

n=0 

 

 
Anr

n
 

 

 
na2n+1 A 

+ 
(n + 1)rn+1 

 

 
Pn(cos θ) (3) 

 

As r → ∞, this velocity potential has the asymptotic form 

 
∞ 

ψ 
n=0 

 
Anr

n
Pn(cos θ) 

 

−VrP1(cos θ) ∼ A0P0(cos θ) + A1rP1(cos θ) + +A2r2P2(cos θ) + · · · . 

 
Comparing the coefficients of like powers of r on both sides, we obtain 

 
 

A0 = 0, A1 = −V, A2 = 0, A3 = 0, . . . . 
 

 

Hence the required velocity potential is 

 
 

ψ = −V 

 

 

a3 

+ 
2r2 

 
 

 
cos θ. 

 
 

The components of the velocity are therefore 
 

 
qr = 

 
∂ψ 

– 
∂r 

= V 

 

1 − 
a3 

! 

cos 

1 
qθ = − 

r
 
∂ψ 

∂θ 
=

 −V 

 

1 
a3 

+ 
2r3 sin θ. ■ 

 

Problem 6.1.2. A uniform insulated sphere of dielectric constant κ and radius a carries on its 

θ 
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surface a charge of density λPn(cos θ). Prove that the interior of the sphere contributes an amount 

 
8π2λ2a3κn 

(2n + 1)(κn + n + 1)2 

 
to the electrostatic energy. 

 

Solution. The electrostatic potential ψ takes the value ψ1 inside the sphere and ψ2 outside, 

where by virtue of Sec. 1 (d) we have: 

 

(i) ∇2 ψ1 = 0, ∇2 ψ2 = 0 

 
(ii) ψ1 is finite at r = 0; ψ2 → 0 as r → ∞ ; 

(iii) ψ1 = ψ2 and κ
 ∂ψ1 

! 

−
 ∂ψ2

 

 
= 4πλPn(cos θ) on r = a. 

 

 

Conditions (i), (ii) and the first of (iii) and the condition of axial symmetry are satisfied if 

 
 

ψ1 = A 

  
r
 n 

 

 

 
Pn(cos θ), ψ2 = A 

  
a
 n+1 

 

 

 
Pn(cos θ) 

 

 
and the second of (iii) is satisfied if we choose A so that 

 

" 
nκ 

+ 
(n + 1)

# 

A = 4mλ.
 

 

 

Hence the required potential function is 

 

    4πaλ  
ψ1 = 

κn + n + 1 

  
r
 n 

 

 

 

 

 
Pn(cos θ). 

a 

r a 
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The energy due to the interior of the sphere is known from electrostatic theory to be 
 

 
κ 

8π 
ψ1

 

 
∂ψ1 

∂n 
dS =  

κ
 

8π 

 
16π2a2λ2 

(κn + n + 1)2 

n 
2πa2 

a 0 

 
sin θPn(cos θ) Pn(cos θ) dθ. 

 

Since 

 
 

 
Then the energy becomes 

 
 
 

1 

Pn(µ) 2 
−1 

 
dµ = 

    2 
 

2n + 1 

 

 
κ 

8π 
ψ1

 

 
∂ψ1 

∂n 
dS =  

κ
 

8π 

 
16π2a2λ2 

(κn + n + 1)2 

8π2λ2a3κn 

 
n 

2πa 
a 

2   2  

2n + 1 

= 
(2n + 1)(κn + n + 1)2 

.
 

 
which is the electrostatic energy in the interior of the sphere. ■ 

 
6.1.2 Solution of Laplace equation in Cylindrical coordinates 

 
The Laplace equation in cylindrical coordinates is given by 

 

∂2ψ 
∇2 

 
 

1 ∂ψ 1 ∂2ψ 
 

 

∂2ψ 
 

ψ = 
∂ρ2 

+ 
ρ ∂ρ 

+ 
ρ2 ∂φ2 

+
 ∂z2   = 0. (1) 

Let us assume the solution of the form 

 
ψ(ρ, φ, z) = R(ρ)Φ(φ)Z(z). (2) 

 
Substituting equation (2) into equation (1), we get 

 

∂2R 1 ∂R 1 d2Φ d2Z 

∂ρ2 ΦZ + 
ρ ∂ρ 

ΦZ + 
ρ2 dφ2 RZ + 

dz2 RΘ = 0 (3) 

∫ 

π 
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or 

1 ∂2R 

 

 

 1 ∂R 

 

 
1   d2Φ 

 

 
1 d2Z 
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R ∂ρ2  + 
ρR ∂ρ 

+ 
ρ2Φ dφ2  = −

Z dz2   = k (say) (4) 

where k is a separation constant. Therefore, 

 
d2Z 

dz2   + kZ = 0 (5) 

 

and 
1 ∂2R

  
 1 ∂R 

 
1 d2Θ 

R ∂r2   
+ 

rR ∂r 
+ 

r2Θ dθ2   
− k = 0. (6)

 

We have the following three cases: 

If k > 0, then k = λ2 and the solution is 

 
Z = c1 cos λz + c2 sin λz. (7) 

 
If k < 0, then k = −λ2 and the solution of equation (5) is 

Z = c1e
λz

 + c2e−λz. (8) 

 
If k = 0, then the solution of equation (5) is 

 
Z = c1z + c2. (9) 

 
Under the physical suituation, the only acceptable solution is 

 
Z = c1e

λz
 + c2e−λz. (10) 

 

Equation (6) becomes  
 

ρ2 ∂2R ρ ∂R 2 2 
 

  

 
1 d2Φ J 

 

R ∂ρ2  
+ 

R ∂ρ 
+ m r

 
= −

Φ dφ2  = k (say). (11) 

Since the solution to be periodic in φ, which can be obtained when kJ is positive and we take 
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kJ = n2. Therefore, the acceptable solution will be 

 
Φ = c3 cos nφ + c4 sin nφ. (12) 

 
If kJ = n2, then the equation (11) becomes 

 

r2 d
2R dR 

 
 

 2 2 2 

dr2   + r 
dr 

+ (m r − n )R = 0 (13) 
 

which is a Bessel’s equation and its general solution is 

 
R = Amn Jn(mρ) + BmnYn(mρ). (14) 

 
where Jn(λr) and Yn(λr) are the n th order Bessel functions of first and second kind, respectively 

and Amn and Bmn are constants. The function Yn(mp) becomes infinite as ρ → 0, so that if we 

are interested in problems in which it is obvious on physical grounds that ψ remains finite along 

the line ρ = 0, we must take Bmn = 0. In this way we obtain a solution of the type 

ψ = 
X X 

Amn Jn(mρ) e±mz±inφ. (15) 

For problems in which there is symmetry about the z axis we may take n = 0 to obtain solutions 

of the form 

ψ = Am J0(mρ) e±mz. (16) 
m 

In particular if we wish a solution which is symmetrical about Oz and tends to zero as ρ → 0 

and as z → ∞, we must take it in the form 

ψ = Am J0(mρ) e−mz. (17) 
m 

 
 

Problem 6.1.3. Find the potential function ψ(p, z) in the region 0 ≤ p ≤ 1, z ≥ 0 satisfying the 

conditions 

 
(i) ψ → 0 as z → ∞ 
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(ii) ψ = 0 on ρ = 1 

 
(iii) ψ = f (ρ) on z = 0 for 0 ≤ ρ ≤ 1. 

 
Solution. The conditions (i) and (ii) are satisfied if we take a function of the form 

187 

 

 

ψ(ρ, z) = 
s 

As J0(λsρ) e−λsz, (18) 

 

where λs is a root of the equation 

 
J0(λ) = 0. 

 

 

Now it is a well-known result of the theory of Bessel functions that we can write 
 

 

f (ρ) = 
s 

As J0(λsρ) 

 

where 

A 
  2 

∫ 1
 

   

 
 

 
f ( ) J ( ) d 

 

 

 
(19) 

 

Hence the desired solution is (18), with As given by the formula (19). ■ 

 
6.1.3 Solution of Laplace Equation in Rectangular Cartesian Coordinates 

 
The Laplace equation in rectangular cartesian coordinatesis given by 

 
∇2u = uxx + uyy + uzz = 0 (1) 

0 s 1 
ρ ρ. 
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By the variables separable method, let us assume the solution in the form 

 
u(x, y, z) = X(x)Y(y)Z(z). (2) 

 
Substituting equation (2) into the Laplace equation (1), we get 

 
XJJ(x)Y(y)Z(z) + X(x)YJJ(y)Z(z) + X(x)Y(y)ZJJ(z) = 0 

 

which can also be written as  
YJJ(y) 

+ 
ZJJ(z) 

= − 
XJJ(x) 

= λ2 
   

Y(y) Z(z) X(x) 1 

 
where λ1 is a separation constant. Thus we have 

 
XJJ(x) + λ2X(x) = 0. (3) 

 
After the second separation, we also have 

 
ZJJ(z) 

− λ2  = 
YJJ(y) 

= λ2 
  

Z(z) 1 Y(y) 2 

 
 

YJJ(y) + λ2Y(y) = 0 (4) 

ZJJ(x) − λ2Z(z) = 0 (5) 

where λ2 = λ2 + λ2. The general solution of equations (3), (4) and (5) are 
3 1 2 

 

X(x) = c1 cos λ1 x + c2 sin λ1 x (6) 

Y(y) = c3 cos λ2y + c4 sin λ2y (7) 

Z(z) = c5 cosh λ5z + c6 sinh λ6z. (8) 

 

Then the solution becomes 

 
u(x, y, z) = (c1 cos λ1 x + c2 sin λ1 x)(c3 cos λ2y + c4 sin λ2y)(c5 cosh λ5z + c6 sinh λ6z). 
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Problem 6.1.4. Find the potential function u(x, y, z) in the region 0 ≤ x ≤ a, 0 ≤ y ≤ b, 

0 ≤ z ≤ c satisfying the conditions 

 
(i) u = 0 on x = 0, x = a, y = 0, y = b, z = 0 

 
(ii) u = f (x, y) on z = c, 0 ≤ x ≤ a, 0 ≤ γ ≤ b. 

 
Solution. The potential distribution in the rectangular box satisfies the Laplace equation. 

 

The problem is described by  
∇2u = uxx + uyy + uzz = 0 (1) 

 

subject to the boundary conditions 
 

 

u(0, y, z)  =  u(a, y, z) = 0 

 
u(x, 0, z)  =  u(x, b, z) = 0 

 
u(x, y, 0) =  0 

 
u(x, y, c)  = f (x, y). 

 
 

 

 

Figure 6.1.1: Boundary Conditions 



Partial Differential Equations M.Sc.(Mathematics)-II Sem   

190 6.1. SepaRATION Of VaRIABLes 

The most suitable solution for the given problem is 

 
 

u(x, y, z) = X(x)Y(y)Z(z), 

 

 
where 

 
 

X(x) = c1 cos λ1 x + c2 sin λ1 x (1) 

 
Y(y) = c3 cos λ2y + c4 sin λ2y (2) 

 
Z(z) = c5 cosh λ5z + c6 sinh λ6z. (3) 

 
 

From the boundary conditions, we have 

 
 

X(0)   = X(a) = 0 

 
Y(0)   =   Y(b) = 0 

 
Z(0)  =   0 

 
 

Applying the boundary conditions X(0) = 0 and X(a) = 0 in (1), we get c1 = 0 and λ1a = mπ 

implies λ1 = 
mπ

, m = 1, 2, . . . . 
a 

 

Applying the boundary conditions Y(0) = 0 and Y(b) = 0 in (2), we get c3 = 0 and λ2b = nπ 

implies λ2 = 
nπ

, n = 1, 2, . . . . 
b 

 

Applying the boundary conditions Z(0) = 0 in (3), we get c5 = 0. 
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Further, we note that 

 
 
 
 
 
 

 
2 2 2 

 
2 

  
m2 

 

 
n2 ! 

2
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Then 

λ  = π 

,
m2

 

 

n2 

= λ . 
 

 

The solutions now take the form 

 

X(x)  =  c2m sin 
mπx

, m = 1, 2, . . . 
a 

Y(y)  =  c4n sin 
nπy

, n = 1, 2, . . . 
b 

Z(z) =  c6mn sinh λmnz. 

 
 

Let cmn = c2mc4nc6mn, then, after using the principle of superposition, the required solution is 
 

∞ ∞ 

u(x, y, z) = X(x)Y(y)Z(z) = 
X X 

cmn sin 
mπx 

sin 
nπy 

sinh λmnz. (4) 

Applying the last boundary condition u(x, y, c) = f (x, y) in (4), we get 

 

f (x, y) = 
X X 

cmn sinh λmnc sin 
mπx 

sin 
nπy

 
 

 

which is a double Fourier sine series, where 
 

 
c sinh c 

4 
∫ a ∫ b 

f (x 
  

y) sin 
 mπx 

sin 
 nπy

dxdy 

 
(5) 

0 0 

λmn , . 
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Therefore, equation (4) along with the constants cmn given in (5) constitute the required 

potential. ■ 

 

 

 

1. If ψ is a harmonic function which is zero on the cone θ = α and takes the value αnr
n
 

on the cone θ = β, show that when α < θ < β, 
 

∞ 

ψ = αn 
n=0 

Qn(cos α)Pn(cos θ) − Pn(cos α)Qn(cos θ) 
rn. 

Qn(cos α)Pn(cos β) − Pn(cos α)Qn(cos β) 

 

2. A small magnet of moment m lies at the center of a spherical hollow of radius a in medium 

of uniform permeabiIity µ. Show that the magnetic field in this medium is the same as that 

produced by a magnet of moment 3m/(1 + 2µ) lying at the center of the hollow. 

Determine the field in the hollow. 
 

3. A grounded nearly spherical conductor whose surface has the equation 
 

r = a 1 + 
X∞   

ε P (cos θ)  
 

 
n=z  

is placed in a uniform electric field E which is parallel to the axis of symmetry of the 

conductor. Show that if the squares and products of the ε ’s can be neglected, the potential 

is given by 

V Ea 

( 

1 6 
! 

a
 2 

− 
r 
) 

P
 3 

X ( n  
 

 

 
 n + 1  

) 
a

 n+1  

P 0
 

 

4. Heat flows in a semi-infinite rectangular plate, the end x = 0 being kept at temperature θ0 

and the long edges y = 0 and y = a at zero temperature. Prove that the temperature at a 

point (x, y) is 

4θ0 

π 

X

m=0 

  1  

2m + 1 
sin 

(2m + 1)πy 
e−(2m+1)πx/a. 

a 

n=2 

n   n 

CheCK YOUR PROgRess 

1 + . 
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5. V is a function of r and θ satisfying the equation 

∂2V 1 ∂V 1 ∂2V 

∂r2 
+ 

r ∂r 
+ 

r2 ∂θ2  = 0 

within the region of the plane bounded by r = a, r = b, θ = 0, θ = 1 π. Its value along the 

boundary r = a is θ( 1 π − θ), and its value along the other boundaries is zero. Prove that 

2 
V = 

π
 
X

n=1 

(r/b)4n−2 − (b/r)4n−2 

(a/b)4n−2 − (b/a)4n−2 

sin(4n − 2)θ 
.
 

(2n − 1)3 

6.2 Problems with Axial Symmetry 

The determination of a potential function ψ for a system which has axis of symmetry to be the 

polar axis θ = 0. Suppose that we wish to determine the potential function (r, θ, φ) corresponding 

to a given distribution of sources (such as masses, charges, etc.) and we have to calculate its value 

ψ(z, 0, 0) at a point on the axis of symmetry. If we expand ψ(z, 0, 0) in the Laurent series 

ψ(z, 0, 0) = 
X 

A z
n
 + 

 Bn   
  

, (1) 

 

then it is readily shown that the required potential function is 
 

ψ(r, θ, φ) = 
X 

A r
n
 + 

 Bn   
  

P (cos θ) (2) 

 

for 

 
(i) ∇2ψ = 0 ; 

(ii) ψ(r, θ, φ) takes the value (1) on the axis of symmetry, since there Pn(cos θ) = 1, r = z ; 

(iii) ψ(r, θ, φ) is symmetrical about Oz as required. 

 
The determination of the potential due to a uniform circular wire of radius a charged with 
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electricity of line density e. At a point on the axis of the wire it is readily seen that 
 

 
 

 
so that 

2πea 
ψ(z, 0, 0) =    

a2 + z2 

 
X
  ( 1 )n 
 

 

z2 !n 
 

2πe 

ψ(z, 0, 0) =  n=0      
n! 

 

  

−
a2 z < a 

 

 

 
 

 
2πe 

X

n=0 

( 1 )n 
n! 

(−1
)n

 

  
a
 2n+1 z > a, 

where we have used the notation (a)n = a(a + 1) · · · (a + n − 1). Hence at a general point we have 

 2πe  
X
 
 

( 1 )n 
 

 
 
 

 
(−1
)n

 

 
r2n 
 

 

 
P2n(cos θ) r ≤ a 

n 

 n 0 

a2n 

ψ(r, θ) =  

=         

 
2πe 

X

n=0 

( 1 )n 

n! 

(−1

)n
 

a2n+1 

r2n+1 

P2n(cos θ)  r ≥ a. 

! 

2 
∞ 

∞ 
2 

z 

∞ 
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r  

r  Problem 6.2.1. A uniform circular wire of radius a charged with electricity of line density e 

surrounds grounded concentric spherical conductor of radius c. Determine the electrical charge 



Partial Differential Equations M.Sc.(Mathematics)-II Sem  

 

density at any point on the conductor. 

Solution. The potential functions is of the form 

ψ1 = 2πe 
X
 

(−1)n
 

( 1 )n 
 
r
 2n 



Partial Differential Equations M.Sc.(Mathematics)-II Sem  

 

+ An 

  
r
 2n 
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+ Bn 

  
c 
 2n+1  
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P2n(cos θ) c < r < a 
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and 

n=0  
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n! a a 
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ψ2 = 2πe 
X
 

(−1)n
 

( 1 )n 
 
a
 2n+1 
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+ Cn 

  
a 
 2n+1  
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P2n(cos θ) r ≥ a. 
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n=0  

n! r 
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∂r 

2 

a 

2 

2 

4π ∂r 

2c n! a2n 

n 

( 
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The boundary conditions 

(i) ψ1 = 0 on r = c 

(ii) ψ1 = ψ2,
 ∂ψ1

 
∂ψ2 
∂r 

on r = a 

yield the equations 
 
 

(−1
)n

 

 
( 1 )n 

 
c
 2n 

 
 

 

 

 

 
+ An 

 
  
c
 2n 

 

 

 

 
+ Bn = 0 

n! a  
An + 

a 

B 
  

c
 2n+1 

 
= Cn 

 
2nAn – (2n + 

 
1)Bn 

  
c
 2n+1 

 

 
= −(2n 

 
+ 1)Cn 

 

 

from which it follows that  
An = 0, Bn = −(−1)n

 ( 1 )n 
 
c
 2n 

 
 

 
Hence when c ≤ r ≤ a, 

ψ1 = 2πe 
X
 

 

 
(−1
)n

 

 

 

 

( 1 )n r2n 
− 

  

n! a 

 

 
 

c4n+1     
) 

 

 

 

 

 
P2n(cos θ). 

n=0 
n! a2n a2nr2n+1 

 

The surface density on the spherical conductor is given by the formula 
 

σ = −
 1  

 
∂ψ1 

!
 

 

 

so that 
 

∞ 1 2n 
 

σ = −
 e  X

(−1)n
 
( 2 )n 

(4n + 1) 
c    

P 

(cos θ). ■ 

r=c 

a 

= 

∞ 

n=0 

2n 

. 
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∞ 

2 

c2 
n 

c 

E X 

"

1 

( 

− 1

) 

O

 !# 
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1. Prove that the potential of a circular disk of radius a carrying a charge of surface density σ 

at a point (z, 0, 0) on its axis θ = 0 is 

 
2πσ[(z2 + a2) 

1 

− z]. 

Deduce its value at a general point in space. 
 

2. A grounded conducting sphere of radius a has its center on the axis of a charged circular 

ring, any radius vector c from this center to the ring making an angle α with the axis. Show 

that the force pulling the sphere into the ring is 
 

– 
Q2    X

(n 
 

 
1)P 

 
(cos 

 
)P (cos )

 
a
 2n+1 

 

3. A grounded conducting sphere of radius a is placed with its center at a point on the axis 

of a circular coil of radius b at a distance c from the center of the coil; the coil carries a 

charge e uniformly distributed. Prove that if a is small, the force of attraction between the 

sphere and the coil is 

 

 
where f 2 = b2 + c2. 

e2ac a2 3c2 

f 4 
+ 

f 2 f 2 

a3 

+ 
f 3 , 

 

4. A dielectric sphere is surrounded by a thin circular wire of large radius b carrying a charge 

E. Prove that the potential within the sphere is 
 

(−1)n
   4n + 1  Γ(n + 1 )   r 2n 

 
 

 

 
P2n(cos θ). 

b 
n=0 1 + 2n(1 + κ) 

n! Γ( 1 ) b 

n=0 

PROBLeMs fOR PRACTICe 

∞ 

+ n+1 α θ . 
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6.3 The Theory of Green’s Function for Laplace’s Equation 

Suppose the values of ψ and 
∂ψ

 
∂n 

are known at every point of the boundary S of a finite region 

V and that ∇2ψ = 0 within V. We determine ψ by Green’s theorem in the form 

∫ 

(ψ∇2ψJ − ψJ∇2ψ)dτ = 

∫ 

ψ
∂ψJ 

− ψJ 
∂ψ 

! 

dS, (1) 
  

 

where Σ denotes the boundary of the region Ω. 

To determine the solution ψ(r) at a point P with position vector r, then we surround P by a 

sphere C which has its center at P and has radius ε and take Σ to be the region which is exterior 

to C and interior to S. Putting 

ψJ =  
    1 

, 

|rJ − r| 

we know that the above function is an elementary solution of Laplace equation, i.e., 

 
∇2ψJ = ∇2ψ = 0 

 

within Ω, we see that 
∫  (

ψ(rJ)  
∂
 
 

    1  1  
− 

∂ψ 
) 

dS J + 

∫

 

(

ψ(rJ)  
∂
 
 

    1  1  
− 

∂ψ 
) 

dS J = 0, (2) 

C ∂n |rJ − r| |rJ − r|  ∂n S ∂n |rJ − r| |rJ − r|  ∂n 
 

where n, the normals. Now, on the surface of the sphere C, 
 

1 1 

|rJ − r| 
=  

ε
,
 

∂ 1 1 

∂n  |rJ − r| 
=  

ε2 
,
 

dS J = ε2 sin θdθdφ 

 

and 

 

ψ(rJ) = ψ(r) + dψ 

Σ Ω 
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= ψ(r) +

 

x
∂ψ 

+ y
∂ψ 

+ z
∂ψ 

!

 

= ψ(r) + ε 

(

sin θ cos φ
∂ψ 

+ sin θ sin φ
∂ψ 

+ cos θ
∂ψ 

)

 

∂x ∂y 

ψ(rJ) = ψ(r) + O(s) on C 
∂ψ(rJ)

 
∂n 

∂z 

= 
∂ψ(r) 

∂n 

 

+ O(s) 
P 

 

so that 

 
 
 

and 

 
ψ(rJ) 

∂
 

C ∂n 

 
    1 

dS J = 4πψ(r) + O(s) 
|rJ − r| 

∫ 
    1  

∂ψ 
dS J = O(s). 

C |rJ − r|  ∂n 
 

Substituting these results into equation (2) and letting ε tend to zero, we find that 
 

ψ(r) =
 1 

∫

 
(
 1 ∂ψ(rJ) 

− ψ(rJ) 
∂ 

 

    1 
) 

dS J (3) 

4π S |rJ − r| ∂n ∂n  |rJ − r| 
 

so that the value of ψ at an interior point of the region V can be determined in terms of the values 

of ψ and 
∂ψ

 
∂n 

on the boundary S. 

Taking the directions of the normals to be as indicated in Fig. 24 and proceeding as above, we 

find, in this instance, that 

4πψ(r) + O(s) + 

∫

 
(
 1 ∂ψ(rJ) 

− ψ(rJ) 
∂ 

 

    1 
) 

dS J + 

∫

 

( 
1  ∂ψ 

+  
ψ 

) 

dS J = 0. 

S |rJ − r| ∂n ∂n  |rJ − r| ΣJ R ∂n R2 

 

Letting ε → 0 and R → ∞, the solution (3) is valid in the case of the exterior Dirichlet problem 

provided that Rψ and R2 
∂ψ

 
∂n 

an remain finite as R → ∞. 

Equation (3) would seem at first sight to indicate that to obtain a solution of Dirichlet’s problem 

we need to know not only the value of the function ψ but also the value of 
∂ψ

. We define a ∂n 
Green’s function G(r, rJ) by the equation 

 

G(r, rJ) = H(r, rJ) + 
     1 

, (4) 
|rJ − r| 

∫ 
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∂yJ2 
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∂zJ2 
H(r, r ) = 0 (5) 

∂n ∂n 
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where the function H(r, rJ) satisfies the relations 

  
∂2 

∂2 ∂2  
! 

J
 

and 
H(r, rJ) + 

     1 
= 0 on S. (6) 

|rJ − r| 

The derivation of equation (3) is given by 

 1  
ψ(r) = 

(

G(r, rJ) 
∂ψ(rJ) 

− ψ(rJ) 
∂G(r, rJ)

) 

dS J. (7) 

Then the solution of the Dirichlet problem is given by the relation 

 1  
ψ(r) = −

4π
 ψ(rJ) 

∂G(r, rJ) 
dS J. (8) 

S ∂n 
 

where G(r, rJ) satisfying equations (4), (5) and (6). 

The solution of the Dirichlet problem is thus reduced to the determination of the Green’s 

function G(r, rJ). 

Thus the Green’s function for the Dirichlet problem involving the Laplace operator is a function 

G(r, rJ) which satisfies the following properties: 

 
(i) The Green’s function G(r, rJ) has the property of symmetry, i.e., 

 
G(r1, r2) = G(r2, r1) (9) 

 
i.e., if P1 and P2 are two points within a finite region bounded by a surface S, then the 

value at P2 of the Green’s function for the point P1 and the surface S is equal to the value 

at P1 of the Green’s function for the point P2 and the surface S. 

(ii) ∇2G(r, rJ) = δ(r − rJ) in the region. 

4π S 

∫ 

∫ 
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6.3.1 Physical Interpretation 

 
If S is a grounded electrical conductor and if a unit charge is situated at the point with radius 

vector r, then 
G(r, rJ) =  

    1 
+ H(r, rJ) 

|rJ − r| 

is the value at the point rJ of the potential due to the charge at r and the induced charge on S. 

The first term on the right of this equation is the potential of the unit charge, and the second is the 

potential of the induced charge. By the definition of H(r, rJ) the total potential G(r, rJ) vanishes 

on S. 

 
 

6.3.2 Solution of Dirichlet Problem using Green’s Function 

 
Dirichtet’s Problem for a Semi-infinite Space 

 

If the semi-infinite space to be x ≥ 0, then we have to determine a function ψ such that ∇2ψ = 0 

in x ≥ 0, ψ = f (y, z) on x = 0, and ψ → 0 as r → ∞. 

The corresponding conditions on the Green’s function G(r, rJ) are that equations (4) and (5) 

should be satisfied and that G should vanish on the plane x = 0. 

Suppose that Π, with position vector ρ, is the image in the plane x = 0 of the point P with 

position vector r. If 

H(r, rJ) 
  1 

, (10) 
|ρ − rJ| 

then the equation (5) is satisfied. Since PQ = ΠQ whenever Q lies on x = 0, it follows that 

equation (6) is also satisfied. 

The required Green’s function is given by 

 
G(r, rJ) =  

    1 
−

 1 
, (11) 

|r − rJ| |ρ − rJ| 

where r = (x, y, z) and p = (−x, y, z). 
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Jr 

∂xJ (x + xJ)2 + (y − yJ)2 + (z − zJ)2 
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Since 

∂G(r, rJ) ∂ 1 
= − , – , 

1 
 

on the plane xJ = 0 
∂G(r, rJ) 

∂n 
= − 

2
 

 
 

2x 
. J 2 J 2 3 

 
 

[x + (y − y )  + (z − z ) ] 2 

Substituting the above equation and ψ(rJ) = f (yJ, zJ) into equation (8), we obtain the solution of 

this Dirichlet problem 
 

 x  
ψ(x, y, z) = 

2π
 

∞ ∞ 

−∞ −∞ 

f (yJ, zJ)dyJdzJ 
 

[x2 + (y − yJ)2 + (z − zJ)2]3/2 

 
. (12) 

 

 
Dirichlet’s Problem for a Sphere 

 
To determine the function ψ(r, θ, φ) satisfying the conditions 

 
∇2ψ = 0 r < a (13) 

ψ = f (θ, φ) on r = a. (14) 

 
The Green’s function G(r, rJ) satisfies (4) and (5) and G should vanish on the surface of the 

sphere r = a. 

Suppose that Π, with position vector æ, is the inverse point with respect to the sphere r = a 

of the point P with position vector r. Then from 
 

H(r, rJ) = −
 a 

= −
 a 

 
 

(15) 
r|ρ − rJ| r 

 a2  
r − rJ 

the equation (5) is satisfied, and if Q lies on the surface of the sphere, PQ =
 
r
 

ΠQ, so that 

equation (6) is also satisfied. The Green’s function is given by 

 
G(r rJ) = 

    1 
−

 a/r 
. (16) 

, 
|r − rJ| . r2 − . 

∫ 

∂n (x − xJ)2 + (y − yJ)2 + (z − 

zJ)2 
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∞ 

2 

∫ 

∫ 
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Now 
∂G 1 ∂R r2 J ∂RJ 

!
 

 

 
where 

∂rJ 
= −

R3 
R 

∂rJ − 
a2  R 

∂rJ   
,
 

 

R2 = r2 + rJ2 − 2rrJ cos Θ, 

 
 
 

and 

RJ2 = a4 

r2  + rJ − 
2a2 

rJ 

r 
cos Θ (17) 

 
 
 

Thus 

cos Θ = cos θ cos θJ + sin θ sin θJ cos(φ − φJ). (18) 

 

 
and when rJ = a, 

 
 
 

∂G ∂G 

∂G 

∂rJ = − 
rJ(a2 − r2) 

a2R3 

 
a2 − r2 

∂n 
= 

∂rJ 
= −

 a(r2 + a2 
3 . (19) 

– 2ar cos Θ) 2 

Hence if ψ = f (θ, φ) on r = a, it follows from equations (8) and (19) that the solution of the 

interior Dirichlet problem for a sphere is given by the equation 

 
ψ(r, θ, φ) = a(a2 − r2) 

 

 
2π π 

dφ 

 

f (θJ, φJ) sin θJdθJ 
 

3 , (20) 
 4π 0 

 
where cos Θ is defined by equation (18). 

0 (a2 + r2 − 2ar cos Θ) 2 

The solution of the exterior Dirichlet problem is 
 

 
ψ(r, θ, φ) = a(r2 − a2) 

 

 
2π π 

dφ f (θJ, φJ) sin θJdθJ 
 

3 
. (21) 

 4π 0 
0  (a2 + r2 − 2ar cos Θ) 2 

 

The integral on the right-hand side of the solution (20) of the interior Dirichlet problem is called 

Poisson’s integral. The function 

ψ(r, θ, φ) 

= 
X
 

  
r
 n 

X
(A 

 

cos mφ + B 
 

sin mφ)P
m
 (cos θ)   (22) 

n=0    
a m=0 

mn n 

∞ 

mn  
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n 

∞ 

n 

 

f (θ , φ )Pn(cos θ ) sin θ dθ dφ 

f (θ , φ )Pn (cos θ ) sin θ cos(mφ )dθ dφ 

f (θ , φ )Pn (cos θ ) sin θ sin(mφ )dθ dφ . 

2 3 

  1 − h   
= 
X

(2n + 1)hn
Pn(cos Θ) 

Pn(cos Θ) = Pn(cos θ)Pn(cos θJ) + 2 
X (n − m)! 

P
m(cos θ)P

m(cos θJ) cos m(φ − φJ), 

= 
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is a solution of Laplace’s equation which is finite at the origin. If this function is to provide a 

solution of our interior Dirichlet problem, then the constants Amn, Bnn must be chosen so that 

∞ ∞ 

f (θ, φ) = 
X X

(Amn cos mφ + Bmn sin mφ)P
m(cos θ), 

n=0 m=0 

where 

2n + 1 
 

 

∫ π ∫ π 
J J

 

 

  

 

 
J J J J 

(2n + 1) 
 

 

(n − m)! 

 

∫ π ∫ π 
 

  

 
J J m J J 

 

J J J 

(2n + 1) 
 

 

(n − m)! 

 

∫ π ∫ π 
 

  

 
J J m J J 

 

J J J 

Then the solution becomes 

 1  
∫ π ∫ π 

J J

 

 

 
J J J 

 
 

where 

ψ(r, θ, φ) = 
4π

 
−π 0 

f (θ , φ )g sin θ dθ dφ , (23) 

 

X r
 n  

X 
(n − m)!

!
 

 

  

 

g = (2n+1) 
a
 Pn(cos θ)Pn(cos θJ) + 2 (n m)! P

m(cos θ)P
m(cos θJ) cos m(φ − φJ)  . 

 
and 

n=0  m=1 
+  

2 ∞ 
 

(1 − 2h cos Θ + h )2 

∞ 

 

n=0 

 

n=1 

where Θ is defined by equation (18), we have 

(n + m)! n
 

n
 

 

g 
a(a2 − r2) 

3 . (24) 
 

 

(a2 − 2ar cos Θ + r2) 2 

n n 

0 −

π 

(n + m)! 2π 

0 −

π 

(n + m)! 2π 

0 −

π 

4π 
A0n = 

Amn = 

Bmn = 
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1. Suppose that P1 and P2 are two points with position vectors r1 and r2, respectively, which 

lie in the interior of a finite region V bounded by a surface S. By applying Green’s theorem 

in the form (1) to the region bounded by S and two spheres of small radii surrounding P1 

and P2 and taking ψ(rJ) = G(r1, rJ), ψJ(rJ) = G(r2, rJ), prove that 

 
G(r1, r2) = G(r2, r1) 

 
2. If the function ψ(x, y, z) is harmonic in the half space x ≥ 0, and if on x = 0, ψ = 1 inside 

a closed curve C and ψ = 0 outside C, prove that 2πψ(x, y, z) is equal to the solid angle 

subtended by C at the point with coordinates (x, y, z). 

3. If ψ(x, y, z) is such that ∇2ψ = 0 for x ≥ 0, ψ = f (y) on x = 0, and ψ → 0 as r → ∞, 
prove that 

ψ(x, y, z) = 

∫ ∞

 f (yJ)dyJ 
. 

 

π −∞ x2 + (y − yJ)2 

4. The function ψ(r) is harmonic within a sphere S and is continuous on the boundary. Prove 

that the value of ψ at the center of the sphere is equal to the arithmetic mean of its values 

on the surface of the sphere. 

5. Use Green’s theorem to show that, in a usual notation, if at all points of space 

 
∇2φ = −4πρ, 

where ρ is a function of position, and if φ and rgradφ tend to zero at infinity, then 

 

φ = 
ρdV 

.
 

r 
 

 

 

 

In this unit, the students acquired knowledge to 

CheCK YOUR PROgRess 
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• find the solution of Laplace Equation in Rectangular Cartesian Coordinates. 

• understand the concept of problems with axial symmetry. 

• analysis Dirchlet Problem using green’s function. 
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Prentice-Hall of India, New Delhi, 2006. 



206  

 



207  

 

BLOCK-IV 

UNIT 7 

THE WAVE EQUATION-I 

 
 

 
 

In this unit, we consider the elementary solutions of the wave equation and Vibrating 

Membrances. 

Now. we consider the wave equation 
 

2 1 
∇ ψ = 

c2 
∂2ψ 

 
 

∂t2 

Overview 

Structure 

Objective 

Overview 

7. 1 

Physics. 

7. 2 

The Occurence of the Wave Equation in 

Elementary Solutions of the One-dimensional 

Wave Equation. 

7. 3 Vibrating Membrances: Application of the 

Calculus of Variations. 

Let us Sum Up 

Check Your Progress 

Suggested Readings 
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which is a typical hyperbolic equation. This equation can be written in the form 

 
□2 ψ = 0, 

 

where □2 denotes the operator 
 

∂2 ∂2 ∂2 1   ∂2 

∂x2 
+ 

∂y2  
+ 

∂z2  
− 

c2  ∂t2 
.
 

 

Assume a solution of the wave equation of the form 

 
ψ = Ψ(x, y, z) e±ikct

 

 
then the function Ψ must satisfy the equation 

 
(∇2 + k2) Ψ = 0 

which is called the space form of the wave equation or Helmholtz’s equation. 

 

 
7.1 The Occurrence of the Wave Equation in Physics 

 
In this section, we present the list of situations in physics where the wave equation arise. 

 
 

Transverse Vibrations of a String 

If a string of uniform linear density ρ is stretched to a uniform tension T, and if in the equilibrium 

position, the string coincides with the x axis, then when the string is disturbed slightly from 

its equilibrium position, the transverse displacement y(x, t) satisfies the one-dimensional wave 

equation 
∂2y 1 ∂2y 

∂x2 
= 

c2 ∂t2 , (1) 

where c2 = 
T 

. At any point x = a of the string which is fixed y(a, t) = 0 for all values of t. 
ρ 
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Longitudinal Vibrations in a Bar 

209 

 

If a uniform bar of elastic material of uniform cross section whose axis coincides with Ox 

is stressed in such a way that each point of a typical cross section of the bar takes the same 

displacement ξ(x, t), then 
∂2ξ 1 ∂2ξ 

∂x2 
= 

c2 ∂t2 , (2) 

where c2 = 
E 

, E being the Young’s modulus and ρ the density of the material of the bar. 
ρ 

 

 

Longitudinal Sound Waves 

 
If plane waves of sound are being propagated in a horn whose cross section for the section with 

abscissa x is A(x) in such a way that every point of that section has the same longitudinal 

displacement ξ(x, t), then ξ satisfies the partial differential equation 

∂ 
( 

1 
 

  

∂ 
(A )

)

 
1 ∂2ξ 

 

 

 
(3) 

 

which reduces to the one-dimensional wave equation (2) in the case in which the cross section is 

uniform. 

 
 

Electric Signals in Cables 

If the resistance per unit length R, and the leakage parameter G are both zero, the voltage V(x, t) 

and the current z(x, t) both satisfy the one-dimensional wave equation, with wave velocity c 

defined by the equation 

c2 = 
  1 

, (4) 
LC 

where L is the inductance and C the capacity per unit length. 

∂t2 A ∂x 
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Transverse Vibrations of a Membrane 

 
If a thin elastic membrane of uniform areal density σ is stretched to a uniform tension T, and if 

in the equilibrium position, the membrane coincides with the xy plane, then the small transverse 

vibrations of the membrane are governed by the wave equation 
 

∇2 z 
 1 

= 
c2 

∂2z 

∂t2 
,
 

 

(5) 

 

where z(x, y, t) is the transverse displacement (assumed small) at time t of the point (x, y) of the 

membrane. The wave velocity c is defined by the equation 

c2 = 
T 

. (6) 
σ 

 
 

Sound Waves in Space 

 
Consider a sound wave at the point (x, y, z) at time t has velocity v = (u, v, w) and that the 

pressure and density there and then are p, ρ, respectively; then if p0, ρ0 are the corresponding 

values in the equilibrium state, we write 

 
ρ = ρ0(1 + s), p = p0 + c2 ρ0 s, (7) 

 

where s is called the condensation of the gas and c2 is given by c2 = 
dp

 
dρ 

 

. Then the equations 
0 

of motion governed by the wave equation 

 
∇2 

where the motion of the gas is irrotational. 

 
 

 1 
φ = 

c2 

 
 
∂2φ 

∂t2 , (8) 
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If we write  
H = curl A, E = 

1
 

c 

 
 
∂A 

∂t 
− grad φ, 

 

then Maxwell’s equations 

 
div E = 4πρ, div H = 0 

curlE = −
1

 ∂H 
, curlH = 

4πi 
+ 

1 ∂E 

c ∂t c c ∂t 
 

are satisfied identically provided that A and φ satisfy the equations 
 

∇2A 1 ∂2A 4π – i 
 

 

1 ∂2φ ∇ − 4 
 

 

= 
c2 

∂t2 c 
,
 

φ = 
c2 ∂t2 

πρ. 

Therefore in the absence of charges or currents φ and the components of A satisfy the wave 

equation. 

 
 

Elastic Waves in Solids 

 
If (u, v, w) denote the components of the displacement vector v at the point (x, y, z), then the 

components of the stress tensor are given by the equations 

(σx, σy, σz) = λ

 
∂u 

+ 
∂v 

+ 
∂w 

! 

+ 2µ

 
∂u

, 
∂v

, 
∂w 

!

 

(τyz, τzx, τxy) = µ

 
∂w 

+ 
∂v

, 
∂u 

+ 
∂w

, 
∂v 

+ 
∂u 

! 

, 

where λ and µ are Lame’s constants. The equations of motion are 
 

∂σx ∂τxy ∂τxz ∂2u 

∂x 
+

 ∂y 
+

 ∂z 
+ ρX = ρ 

∂t2 , etc. 
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where F = (X, Y, Z) is the body force at (x, y, z). If we write 
 

Ḟ  = gradφ + curlΨ, 

 
then it is easily shown that the displacement vector can be taken in the form 

 
v = gradφ + curlΨ 

 

provided that φ and Ψ satisfy the equations 

 ∂2φ 
− c2 ∇2

 
 

 

 
∂2Ψ 

− c2 ∇2
 

 
 

∂t2 
1 φ = Φ, 

∂t2 
2 Ψ = Ψ, 

 

where the wave velocities c1, c2 are given by 

 
c2 = 

λ + 2µ
, c2 = 

µ
. 
 

1 ρ 2 ρ 

 

Hence, in the absence of body forces, φ and the components of Ψ each satisfies a wave equation. 

 

 
7.2 Elementary Solutions of the One-dimensional Wave 

Equation 

Consider the one-dimensional wave equation 
 

∂2y 1 ∂2y 

∂x2 
= 

c2 ∂t2 . (1) 

 

The canonical form of the one-dimensional wave equation (1) is 

 
yξη = 0, (2) 
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with the transformation variables are ξ = x + ct and η = x − ct.  Then the solution of (1) is 

∂2y 
 

 

∂ξ∂η 

∂y 
 

 

∂ξ 

= 0 

 
= A(ξ) 

y = 

∫ 

A(ξ)dξ + B(η) 

y = f (ξ) + g(η) 

 
 
 

 
( f and g are arbitrary functions) (3) 

 
 

which is called the elementary solution of one dimensional wave equation. 

 

Problem 7.2.1. Derive the D’Alembert solution of one-dimensional wave equation. 

 
 

or 

 
 

The displacement and the velocity of an infinite string is given by η(x) and v(x) respectively, at 

the initial time (i.e., t = 0 ). Determine the motion of the string. 

Solution. Consider the one-dimensional wave equation 
 

 
∂2y 1 ∂2y 

∂x2 
= 

c2 ∂t2 , −∞ < x < ∞, t ≥ 0 (1) 

 
 

subject to the initial conditions 

 
 

(i) y(x, 0) = η(x), (2) 

 

(ii) 
∂y 

(x, 0) = v(x), (3) 
∂t 

y = f (x + ct) + g(x − ct) 
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where η(x) and v(x) are twice continuously differentiable. 

 
The general solution of the one-dimensional wave equation is 

 
 

y(x, t) = f (x + ct) + g(x − ct) (4) 

where f and g are arbitrary functions. 

Applying the condition (i) y = η on t = 0 in (4), we get 

 
 

η = f (x) + g(x). (5) 

 
 

Differentiating (4) with respect to t, we have 

 

∂y 
(x, t) = c f J(x + ct) cgJ(x ct) (6) 

∂t 

 

Applying the condition (ii) 
∂y 

(x, 0) = v(x) in (6), we get 
∂t 

 

v(x) = c f J(x) − cgJ(x) (7) 
 

 

Integrating equation (7), we have  
 

 
f (x) 

 
 

1 
– g(x) = 

c
 

 

 

 

 
x 

ξ)dξ, 
b 

 

 

 
(8) 

 

where b is arbitrary. 
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η(x) = 
 

1    |x|< a 

y = 
2 

{η(x + ct) + η(x − ct)} + 
2c
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Solving (5) and (8) yields 

f (x) 

g(x) 

 

1 
= 

2 
η 

1 
= 

2 
η 

 

 
(x) 

 
(x) 

 

 1 
+ 

2c 

 1 
– 

2c 

 

 
x 

ξ)dξ 
b 

x 

ξ)dξ 
b 

 

 

Substituting these expressions in equation (4), we obtain 
 

1 1 
∫ x+ct 

  
 

which is the required D’Alembert’s solution of the one-dimensional wave equation. 

 
If v ≡ 0, i.e., the string is released from rest, then the solution (9) becomes 

 

y = 
2 

.
η(x + ct) + η(x − ct)

. 
. ■ 

Note 7.2.1. The above solution shows the subsequent displacement of the string is produced by 

two pulses of “shape” y = 
1 

η(x), each moving with velocity c , one to the right and the other to 
2 

the left. By taking the initial displacement is 
 

 0 x < −a 

 
0 x > a. 

Problem 7.2.2. Consider the motion of a semi-infinite string x ≥ 0 fixed at the point x = 0 with 

v(ξ)dξ (9) 
x−

ct 
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the conditions 
 
 

y = η(x), 
∂y 

= v(x) x 0 at t = 0 
∂t 

y = 0, 
∂y 

= 0 t 0 at x = 0. 
∂t 

 
 

Solution. The motion of the string is governed by the one-dimensional wave equation 
 

 
∂2y 1 ∂2y 

∂x2 
= 

c2 ∂t2 , 0 ≤ x < ∞, t ≥ 0. 

 
 

Then the D’Alembert’s solution 

 

1 1   
∫ x+ct 

 

 

is no longer applicable, since η(x − ct) would not have a meaning if t > x/c. ■ 

 
Problem 7.2.3. Consider the motion of an infinite string subject to the initial conditions 

 
y = Y(x), 

∂y 
= V(x) at t = 0, 

∂t 
 
 

where  

 
Y(x) 

 

η(x) if x 0 
= 

 

 

 
and V(x) = 

 v(x) if  x ≥ 0 

−η(−x)    if x <0  −v(−x)    if  x < 0. 
 

 
 

∂2y 1 ∂2y 

∂x2 
= 

c2 ∂t2 , −∞ < x < ∞, t ≥ 0 (1) 

Solution. The motion of the string is governed by the one-dimensional wave equation 

v(ξ)dξ 
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= 
2 

{ − } + 
2c

 ξ 
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Then its displacement is given by 

1 1 
∫ x+ct 

  
 

when x = 0  

y 
1 

Y(ct) 

 
 

 
Y( ct) 

1   
∫ ct 

 

 

 

 

 
V( )d 

 

 

 
(3) 

 

and 

 
∂y 

= 
1 

c{YJ(ct) − YJ(−ct)} + 
1 

{V(ct) + V(−ct)}. (4) 
∂t 2 2 

From the definitions of Y and V and from the equations (3) and (4) we get y and 
∂y

 
∂t 

at x = 0 

are identically zero for all values of t. 

The function (3) also satisfies the condition y = 0, 
∂y  

= 0, t 0 at x = 0. 
∂t 

In particular, if the string is released from rest so that v, and consequently V, is identically 

zero, then the appropriate solution is 

y =  

 

1 
[η(x + ct) + η(x − ct)] x ≥ ct 

1 
[η(x + ct) − η(x − ct)] x ≤ ct. 

 
 

Using the above problems, we construct the wave problem in finite string with the initial 

conditions. 

−

ct 

V(ξ)dξ (2) 
x−

ct 

+ ξ 

■ 
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Problem 7.2.4. Consider the motion of a finite string of length l with the initial conditions 

 
y = Y(x),  

∂y 
= V(x) 0 x l at t = 0 

∂t 

y = 0, 
∂y 

= 0 t 0 at x = 0 and x = l, 
∂t 

 
 

where Y(x) is defined by 
 

 
 

Y(x) 

 
η(x) if 0 x l 

= 
 

 

 
and V(x) = 

 v(x) if  0 ≤ x ≤ l 

 

 
and 

−η(−x)    if   − l ≤ x ≤ 

0 

 −v(−x)    if   − l ≤ x ≤ 0 

 

Y(x + 2rl) = Y(x); V(x + 2rl) = V(x) if − l ≤ x ≤ l, r = ±1, ±2, . . . . 

 
In other words, Y(x) and V(x) are odd periodic function of period 2l. 

 

Solution. The motion of the string is governed by the one-dimensional wave equation 
 

 
∂2y 1 ∂2y 

∂x2 
= 

c2 ∂t2 , 0 < x < l, t ≥ 0. (1) 

 
 

Then its displacement is given by 

 

1 1   
∫ x+ct 

 

 

Given that Y(x) and V(x) are odd periodic function and has a Fourier sine expansion of the form 

 

Y(x) = 
X 

ηm sin 
mπx

, (3) 

V(ξ)dξ. (2) 
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where the coefficients ηm are given by the formula 

2 
ηm = 

l
 

 

 
l 

η(ξ) sin 
0 

  
mπξ 

 
 

 

 

 

dξ. (4) 

 

Similarly 
 

V(x) = 
X 

vm sin 
mπx

, (5) 

 

where  

vm = 
2

 
l 

 

 

 

 
l 

v(ξ 
0 

 
) sin

 
mπξ

 
dξ. 

 
 

 
(6) 

 

Using the above equations, we get 

 

1 
{Y(x + ct) + Y(x − ct)} = 

X
 

 
η sin

 
mπx

 
cos

 
mπct 

 
 

 
 

1 x+ct 

2c x−ct 

∞ 

V(ξ)dξ = 
πc 

m=0 

vm 
sin 

m 

  
mπx 

 
 

 

 

 

sin 
  
mπct 

 
 

 

 

 

Substituting the above equations in (2), we obtain the solution of the present problem is 

 

y = 
X
 η  sin 

  
mπx 

  
cos 

  
mπct 

  
+ 

  l  X
∞

 vm 
sin

 
mπx 

  

sin
 

mπct
 

, (7) 
 

  

 

where ηm and vm are defined by equations (4) and (6), respectively. ■ 

Problem 7.2.5. The points of trisection of a string are pulled aside through a distance s on 

opposite sides of the position or equilibrium, and the string is released from rest. Derive an 

m=1 m=1 

l t 

m=0 

l 

∫ 

∫ 

∞ 

∞ 



Partial Differential Equations M.Sc.(Mathematics)-II Sem   

– 1 

220 7.2. EleMeNTARY SOLUTIONs Of THe ONe-dIMeNsIONAL Wave EQUATION 

expression for the displacement of the string at any subsequent time and show that the mid-point 

of the string always remains at rest. 

Solution. The motion of the string is governed by the one-dimensional wave equation 
 

 
∂2y 1 ∂2y 

∂x2 
= 

c2 ∂t2 , 0 < x < l, t ≥ 0. (1) 

 
 

Take the length of the string l = 3a. 

 
From the given conditions, the string OC ( 3a ) is trisected at A and C. We have to find the three 

line equation OA, AB and BC for the initial position of the string. Equation of straight line with 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

two given points (x1, y1) and (x2, y2) is 

 

y y  =
 y2 − y1 

x2 − x1 

 

 
(x − x1) 

 

Equation of OA is  
y − 0 = 

(ε − 0)
(x − 0)  ⇒  y = 

εx
. 

(a − 0) a 
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Equation of AB is 

y − ε = 
(−ε − ε)

(x − a)  ⇒  y − ε = −
2ε 

(x − a)   ⇒  y = 
ε(3a − 2x) 

. 

(2a − a) a a 

 
Equation of BC is 

 (−ε − 0) ε(x − 3a) 
y − 0 = (x − 3a)   ⇒ y = . 

(2a − 3a) 

Therefore the initial position of the string is 

 

y(x, 0) = η(x) =  

    

and the string is released from rest so 
∂y

 . 

 

 

 
εx 

a 

ε(3a − 2x) 
a 

ε(x − 3a) 
a 

 
= v(x) ≡ 0. 

a 

 

 

 

0 ≤ x ≤ a 

a ≤ x ≤ 2a 

2a ≤ x ≤ 3a 

 

Then its displacement is given by 

 

y = 
X
 

∂t t=0 

 
 

 

η sin
 

mπx
 

cos
 

mπct
 

(2) 
 

 

 

where 

 

2 
ηm = 

l
 

 

 

 

 
l 

η(ξ) sin 
0 

 
  
mπξ

 
dξ

 

 2ε 
ηm = 

3a2 

"∫ a 
 

 

 

x sin 
mπx

dx +
 

3a 

2a 

a  

(3a − 2x) sin 
mπx

dx +
 

3a 

3a 

2a 

(x − 3a) sin 
mπx

dx
 

3a 

=
 18ε 

{1 + (−1)m} sin

 
1 

mπ

! 

(by Bernoulli’s integration formula) 

0 

m=1 

 

 

∞ 

∫ 
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= 

  36ε 

π2m2 sin
  

mπ
  

,  m − even 

 

 
and 

 0, m  − odd 

 

 

vm = 0 

 
 

so that the displacement (2) is 
 

y = 
36ε X 1 

sin
 mπ 

sin
 mπx 

cos
 mπct 

 

 

 
(3) 

 

Replace m by 2n, we get 

 

 
(4) 

 
 
 

To find the displacement at the midpoint of the string: 
 

Put x = 
3a

 
2 

 

in (4), we get 

 
y = 

9s X 1 
 

 

 
 
sin 

2nπ 
sin(nπ) cos 

2nπct 
. 

π2 
n 1 

n2 

 

 

3 3a 

(∵ sin nπ = 0 ∀ n ∈ Z) 

 

Therefore, the displacement of the mid-point of the string is always zero. ■ 

 

y = 0 

= 

=1 m 

y = 
9s 1 2nπ 

π2 
n 

n2 

X ∞ 

sin sin 
2n πx 

cos 
2nπct 

. 
=1 

3 3a 3a 
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1. A uniform string of line density ρ is stretched to tension ρc2 and executes a small transverse 

vibration in a plane through the undisturbed line of the string. The ends x = 0, l of the string 

are fixed. The string is at rest, with the point x = b drawn aside through a small distance ε 

and released at time t = 0. Show that at any subsequent time t the transverse displacement 

y is given by the Fourier expansion y 
2sl2 X 1 

 

  
sin

 
sπb 

! 

sin
 

sπx
 

cos
 

sπct 
 
 

2. If the string is released from rest in the position y =
 4ε

x(l x), show that its motion is 
t2 

described by the equation y = 
32ε X 1 

sin 
(2n + 1)πx 

cos 
(2n + 1)πct 

. 

3. If the string is released from rest in the position y = f (x), show that the total energy of 

the string is 
π T X

 s2k2 
 

where k 
2 

∫ l 

f (x) sin
 sπx

 

dx 
 

 

The mid-point of a string is 

pulled aside through a small distance and then released. Show that in the subsequent motion 

the fundamental mode contributes 8/π2 of the total energy. 

 
 

7.3 Vibrating Membranes: Application of the Calculus of 

Variations 

The transverse vibrations of a thin membrane S bounded by the curve Γ in the xy plane is 

described by a function z(x, y, t) satisfies the wave equation 
 

 
 
 

the boundary condition 

∇2z 
 1 

= 
c2 

∂2z 
 

 

∂t2 

 

(1) 

 
 

and the initial conditions 

z = 0 on Γ for all t (1) 

 
 

z = f (x, y), 
∂z 

= g(x, y) t = 0, (x, y) S. (2) 
∂t 

0 

s2 
s=1 

. 

s = . 
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7.3.1 Solution of the Equation of the Vibrating Membrane (Rectangular 

Membrane) - Integral Transforms Method 

In this subsection, we discuss the integral methods to solve the vibrating membrane problem. 

 
Problem 7.3.1. A thin membrane of great extent is released from rest in the position z = f (x, y). 

 
Determine the displacement at any subsequent time. 

 
Solution. The motion of the vibrating membrane is governed by the two-dimensional wave 

 

equation  

∂2z ∂2z 1 ∂2z 

∂x2 
+ 

∂y2 
= 

c2 ∂t2 . (1) 

 

From the given data, the boundary condition 

 
 

z = 0 on Γ for all t (2) 

 
 

and the initial conditions 

 

z = f (x, y), 
∂z 

= 0 t = 0, for all (x, y) of the plane. (3) 
∂t 

 
 

The two dimensional Fourier transform of z(x, y, t) is 

 

Z(ξ, η, t) =
 1 

∫ ∞ ∫ ∞ 

z(x, y, t)e
i(ξx+ηy)dxdy. 

  

Taking the Fourier transform of (1) on both sides, we get 
 

 
d2Z 

 
 

 

 2 2 2 

dt2 + c (ξ + η )Z = 0 (4) 

−

∞ 

−

∞ 
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and the conditions (3) becomes 

225 

 
 

Z = F(ξ, η), 
dZ

 
dt 

 

= 0 t = 0. (5) 

 
 

The solution of (4) is 

Z = A cos 
.
c 
,

ξ2  + η2t
. 

+ B sin 
.
c 
,

ξ2  + η2t
. 

. (6) 
 

 

Using the condition (5), we obtain 
 

 

A = F(ξ, η) and B = 0. 

 

 
Substituting the values of A and B in (6), we have 

Z = F(ξ, η) cos[c(ξ2 + η2) 
1 

t]. (7) 

Applying the inverse Fourier transform to find the solution of the given problem 

 

z =
 1 

∫ ∞ ∫ ∞  
F(ξ, η) cos[c(ξ2 + η2) 

1 

t]e−i(ξx+ηy)dξdη. ■ 
2π −∞ −∞ 

 

7.3.2 Solution of the Equation of the Vibrating Membrane (Rectangular 

Membrane) - Separation of Variables 

The motion of the vibrating membrane is governed by the two-dimensional wave equation 
 

∂2z ∂2z 1 ∂2z 

∂x2 
+ 

∂y2 
= 

c2 ∂t2 . (1) 
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Let us assume the solution of the form 

 
z(x, y, t) = X(x)Y(y)T (t). (2) 

 
Substituting equation (2) in equation (1), we have 

 
1 

XYT
 JJ [XJJYT + XYJJT ] = 0 

c2 

 
Dividing throught by XYT, we get 

 

XJJ YJJ 
+ 

  

1 T JJ 
= 

 

= −k2 (a separation constant) 
X Y c2 T 

 

implies 

 
XJJ 

= −k2 
 

 
YJJ 

= −k2 
 

 
1 T JJ 

= −k2 
 

X 1 Y 2
 c2   T 

XJJ = −k2X YJJ = −k2Y T JJ = −k2c2T 

XJJ + k2X = 0 YJJ + k2Y = 0 T JJ + k2c2T = 0 
1 2 

X = c1 cos k1 x + c2 sin k1 x Y = c3 cos k2y + c4 sin k2y T = c5 cos kct + c6 sin kct. 

Then the solution becomes 

z(x, y, t) = (c1 cos k1 x + c2 sin k1 x)(c3 cos k2y + c4 sin k2y)(c5 cos kct + c6 sin kct), (3) 

where k2 = k2 + k2. 
1 2 

Problem 7.3.2. A rectangular membrane with fastened edges makes free transverse vibrations. 

Find the displacement of the vibrating membrane. 

Solution. The transverse vibration of a rectangular membrane is described by 

∂2z ∂2z 1 ∂2z 

∂x2 
+ 

∂y2  
= 

c2 ∂t2 , 0 ≤ x ≤ a, 0 ≤ y ≤ b (1) 



Partial Differential Equations M.Sc.(Mathematics)-II Sem   

7.3. VIBRATINg MeMBRANes: ApplICATION Of THe CalCULUs Of VaRIATIONs 

 

subject to the boundary conditions 

 
 

(i) z(0, y, t) = 0 

 

(ii) z(a, y, t) = 0 

 

(iii) z(x, 0, t) = 0 

 

(iv) z(x, b, t) = 0 

227 

 

 

and initial conditions  
z(x, y, 0) = f (x, y), 

∂z 
(x, y, 0) = 0. 

∂t 
 

The suitable solution is 

 
 

z(x, y, t) = (c1 cos k1 x + c2 sin k1 x)(c3 cos k2y + c4 sin k2y)(c5 cos kct + c6 sin kct), (2) 

 
 

where k2 = k2 + k2. 
1 2 

 

Applying the boundary condition z(0, y, t) = 0, we get 

 
 

0 = c1(c3 cos k2y + c4 sin k2y)(c5 cos kct + c6 sin kct) 

 
 

which gives c1 = 0, then equation (2) becomes 

 
 

z(x, y, t) = c2 sin k1 x (c3 cos k2y + c4 sin k2y)(c5 cos kct + c6 sin kct), (3) 
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Applying the boundary condition z(x, 0, t) = 0, we get 

 
 

0 = c2 sin k1 x c3 (c5 cos kct + c6 sin kct) 

 
 

which gives c3 = 0, then equation (3) becomes 

 
 

z(x, y, t) = c2 c4 sin k1 x sin k2y (c5 cos kct + c6 sin kct), (4) 

 
 

Applying the boundary condition z(a, y, t) = 0, we get 

 
 

0 = c2 c4 sin k1a sin k2y (c5 cos kct + c6 sin kct) 

 
 

implies that k1 = mπ/a, m = 1, 2, . . . , applying the boundary condition u(x, b, t) = 0, we get 

 
 

0 = c2 c4 sin k1 x sin k2b (c5 cos kct + c6 sin kct) 

 
 

implies that k2 = nπ/b, n = 1, 2, ........ Then, the equation (4) becomes 

 
z(x, y, t) = c2 c4 sin 

mπx 
sin 

nπy 
(c5 cos kct + c6 sin kct). 

a b 
 
 

After adjusting the constants and by the principle of superposition, we get 
 

∞ ∞ 

z(x, y, t) = 
X X

[Amn cos kmnct + Bmn sin kmnct] sin 
mπx 

sin 
nπy

 
 

 

(5) 
m=1 n=1 
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where 
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k2 2

 
m2

 n2 ! 
 

 

 

Applying the initial condition 
∂z 

(x, y, 0) = 0 yields Bmn = 0, then the solution becomes 
∂t 

 
∞ ∞ 

z(x, y, t) = 
X X

 
 

 

Amn cos kmnct sin 
mπx 

sin 
nπy

 (6) 

 

Applying the initial condition z(x, y, 0) = f (x, y), we have 
 

∞ ∞ 

f (x, y) = 
X X 

Amn sin 
mπx 

sin 
nπy

 

 

where 

A 
4 

∫ a ∫ b 

f (x 
  

 
y) sin

 mπx 
sin

 nπy
dxdy 

 

 
(7) 

 

Hence, the required solution is given by equation (6) along with the coefficients Amn in the above 

equation (7). ■ 

 

7.3.3 Solution of the Equation of the Vibrating Membrane (circular 

Membrane) - Separation of Variables 

The motion of the vibrating membrane takes the form 
 

∂2z 1 ∂z 1 ∂2z 1 ∂2z 

∂r2 
+ 

r ∂r 
+ 

r2  ∂θ2  
= 

c2 ∂t2 (1) 

 

and the curve Γ can be taken as r = a. Let us assume the solution of the form 

 
z = R(r)Θ(θ)e±ikct, (2) 

0 0 

m=1 n=1 

. 

, . 
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dr2  
+ 

r dr 
+ k R + 

Θ dθ2   = 0 

dr2  
+ 

r dr 
+

 − 
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then the functions R, Θ must satisfies 

r2 
" 
d2R 

 

  

 
1 dR 2  

# 
1

  
d2Θ 

 

 

 

using the separation constants we obtain the ordinary differential equations for R, Θ are 
 

d2Θ 2 
 

 

and 

dθ2   + m Θ = 0 (3) 

 
d2R 

 
 

 

1 dR 2 m2 ! 

 

 

The solutions of (3) is of the form 

Θ = e−±imθ. 

 

If the displacement z(r, θ, t) is periodic, i.e., z(r, θ + 2π, t) = z(r, θ, t), then we must choose m to 

be an integer. Furthermore, at r = 0 the solution of (4) is 

 
R = Jm(kr), 

 
where Jm(x) denotes the Bessel function of the first kind of order m and argument x. Thus the 

solution of the equation (1) of the form 

 

z = Amk Jm(kr)e±imθ±ikct. (5) 
m,k 

 

If z vanishes on the circle r = a, then the numbers k must be chosen so that 

 
Jm(ka) = 0 (6) 

 

and we obtain the solution 

z = 
X 

Amn Jm(kmnr) exp{±imθ ± ikmnct}, (7) 
 m,n 

r2 

R 

k R = 0. (4) 
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where Amn are constants and km1, km2, . . . are the positive roots of the transcendental equation (6). 

In the symmetrical case in which z is a function of r and t alone the corresponding solution is 

 
z(r, t) = An J0(knr)e±icknt, (3) 

n 

 

where k1, k2, . . . are the positive zeros of the function J0(ka). 

 
Problem 7.3.3. Find the displacement of the vibrating circular membrane. 

 
Solution. The initial condition is 

 
z = f (r), 

∂z 
= 0 at t = 0, 

∂t 
 
 

then the solution of the problem is  
 
 
z = An J0(knr) cos(knct), (1) 

n 

 

where the constants An are chosen so that 

 
 

f (r) = An J0(knr). 
n 

 

Using the Bessel functions we obtain 
 

A 
2 

J2(k a) 

∫ a 

r f (r)J (k r)dr 
  

 
(2) 

 

The complete solution of our problem is therefore given by the equations (1) and (2). ■ 

0 2 
. 
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with respect to those sufficiently regular functions φ which vanish on Γ and satisfy the 
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7.3.4 Solution of the Equation of the Vibrating Membrane whose 

boundary Γ 

The transverse vibrations of a thin membrane S bounded by the curve Γ in the xy plane is 

described by a function z(x, y, t) satisfies the wave equation 
 

 
 
 

the boundary condition 

∇2z 
 1 

= 
c2 

∂2z 
 

 

∂t2 

 

(1) 

z = 0 on Γ for all t. (2) 

When the boundary curve Γ is fixed is of the form f (x, y)e
it
 
√

λ, then the n th eigenvalue λn is the 

minimum of the integral 
„ 

I = T  
∂φ 

!2  
∂φ 

!2  dxdy (3) 

S   ∂x ∂y  
 

normalization condition 

 
 

and the n − 1 orthogonality relations 

„ 

σ φ2dxdy = 1 (4) 
S 

„ 

φ φmdxdy = 0, (5) 
S 

 

where φm is the minimizing function which makes I equal to λm. If 

 
z = ψm(x, y)e

ikmct (6) 

 
is an approximate solution of the problem stated in equations (1) and (2), then if Φ1, . . . , Φn are 

n functions which are continuously differentiable in S and which vanish on Γ, an approximate 

solution is 
n
 

m 
i 

i=1 
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i j 

. 
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i, j=1 
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where the coefficients C(m) are the solutions of the linear algebraic equations 
 

X
(σi jk2  − Γi j)C

m
 = 0 i = 1, 2, . . . , n (8) 

 

with  

„ 

σi j = σji = 
S 

 

 
ΦiΦ jdxdy (9) 

„ (
∂Φi ∂Φ j ∂Φi ∂Φ j 

)
 

 

and the first n approximate eigenvalues k1, k2, . . . , kn are given by the n positive roots of the 

determinantal equation 

 

σ11k2 − Γ11 σ12k2 − Γ12 · · · σ1nk
2 − Γ1n 

σ21k2 − Γ21 σ22k2 − Γ22 · · · σ2nk
2 − Γ2n 

. . . 

. . . 
. 

= 0. (11) 
. 

n1k2 
n1 n2k2 −  n2 nnk

2 − Γnn 
. 

 

In addition the coefficients must be chosen to satisfy the normalization condition 
 

σ 
X 

C(m)C(m)σi j = 1. (12) 

 

If the boundary curve Γ of the membrane S has equation u(xy) = 0, a simple choice of the 

approximate functions Φi (i = 1, 2, . . . , n) is to take 

 
 

Φ1 = u(x, y), Φ2 = xu(x, y), Φ3 = yu(x, y) 

Φ4 = x2u(x, y), Φ5 = xyu(x, y), Φ6 = y2u(x, y), etc. 

 

The variational approach to eigenvalue problems is useful not only in the derivation of 

approximate solutions but also in the establishing of quite general theorems about the eigenvalues 

of a system. 

 
Problem 7.3.4. Find approximate values for the first three eigenvalues of a square membrane of 

Γi j = Γji = dxdy (10) 
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side 2. 

 
Solution. Here the membrane is bounded by the lines  x = ±1, y = ±1. 

Assume 

 
 

Φ1 = (1 − x2)(1 − y2), 

Φ2 = x(1 − x2)(1 − y2), 

Φ3 = y(1 − x2)(1 − y2) 

and we obtain 
 
 

256 256 
σ11 = 

225 
, σ22 = σ33 = 

1575 
, σ12 = σ23 = σ31 = 0 

256 3328 
Γ11 = 

45 
, Γ22 = Γ33 = 

1575 
, Γ12 = Γ23 = Γ31 = 0. 

 
 

The determinantal equation is  
(k2 − 5)(k2 − 13)2 = 0 

 

Then the first three approximate eigenvalues of the square are 

 

k1 = 
√

5 = 2.236, k2 = k3 = 
√

13 = 3.606, 
 

 

whereas the exact results are 

 
 

k1 = 

 
π 

√
2 

2 
= 2.221, k2 = k3 = 

 
π 

√
5 

2 
= 3.942. ■ 
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displacement of the center at time t is 8εa2 
X cos(ξnct/a) 

, where ξn is the n th positive 
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1. A very large membrane which is in its equilibrium position lies in the shape z = f (r) 

(r2 = x2 + y2). Show that its subsequent displacement is given by the equation z(r, t) = 
∞ 

ξ f (ξ) cos(cξt)J (ξr)dξ, where ξ = 
∞ 

r f (r)J (ξr)dr. 
  

2. A square membrane whose edges are fixed receives a blow in such a way that a concentric 

and similarly situated square area one-sixteenth of the area of the membrane acquires a 

transverse velocity v without sensible displacement, the remainder being undisturbed. Find 

a series for the displacement of the membrane at any subsequent time. 

3. A membrane of uniform density σ per unit area is stretched on a circular frame of radius 

a to uniform stress σc2. When t = 0, the membrane is released from rest in the position 

x = ε(a2 − r2), where s is small, and r  is the distance from the center. Show that the 
 

 
zero of the Bessel function J0. 

 
n=1 

ξn J1(ξn) 

 
   

4. Using the approximations Φ1 = 1 − x2 + y2,  Φ2 = x − x x2 + y2,  Φ3 = y − y x2 + y2 

show that the first three approximate values of the constant k in the solution f (r)e
ikct, 

describing the transverse vibrations of a circular membrane of unit radius, are K1 = 
√

6, K2 = K3 = 
√

15. 
 
 
 

 

In this unit, the students acquired knowledge to 

 
• find D’Alembert solution of the one-dimensional wave equation. 

• find the motion of the string is governed by one-dimensional wave equation. 

• the application of the Calculus of Variations in Vibraring Membranes. 
 

 

0 0 
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BLOCK-IV 

UNIT 8 

THE WAVE EQUATION-II 

 
 

 
 

In this unit, we will illustrate the method to find the solution of three-dimensional wave 

equation in Rectangular Cartesian Coordinates. 

 

 
8.1 Three-dimensional Problems 

 
In this section, we consider the three-dimensional wave equation 

 

2 1 
∇ ψ = 

c2 

∂2ψ 

∂t2 . (1) 

 
 
 
 
 
 

237 
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8.1.1 Solution of the Three-Dimensional Wave Equation in Cartesian 

Coordinates 

Consider a three-dimensional wave equation 
 

∂2ψ ∂2ψ ∂2ψ 1 ∂2ψ 

∂x2 
+ 

∂y2 
+

 ∂z2  
= 

c2 ∂t2 . (1) 

 

Let us assume the solution of the form 

 
ψ(x, y, z, t) = X(x)Y(y)Z(z)T (t). (2) 

 
Substituting equation (2) in equation (1), we have 

 

XJJYZT + XYJJZT + XYZJJT =
 1  1 

T JJ 
c2 c2 

 

Dividing throught by XYZT, we get 
 

XJJ YJJ ZJJ 
+ + 

   

1 T JJ 
= 

 

= −k2 (a separation constant) 

 

implies 

X Y Z c2   T 

 

XJJ 

X 
= l2 YJJ 

Y 
= −m2 

XJJ = −l2X YJJ = −m2Y 

XJJ + l2X = 0 YJJ + m2Y = 0 

X = c1 cos lx + c2 sin lx Y = c3 cos my + c4 sin my 

ZJJ 

Z 
= n2 1 

c2 

T JJ 

T = −k2 

ZJJ = −n2Z T JJ = −k2c2T 

ZJJ + n2Z = 0 T JJ + k2c2T = 0 

Z = c5 cos nz + c6 sin nz T = c7 cos kct + c8 sin kct 
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Then the solution becomes 
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ψ(x, y, z, t) = (c1 cos lx +c2 sin lx)(c3 cos my +c4 sin my)(c5 cos nz +c6 sin nz)(c7 cos kct +c8 sin kct), 

(3) 

where k2 = l2 + m2 + n2. 

 
Problem 8.1.1. A gas is contained in a cubical box of side a . Show that if c is the velocity of 

sound in the gas, the periods of free oscillations are 

2a 
  , 

c n2 + n2 + n2 

 

where n1, n2, n3 are integers. 

 
Solution. In this problem the governing equation is three-dimensional wave equation 

 

 
∂2ψ ∂2ψ 

 
∂2ψ 1 ∂2ψ 

∂x2 
+ 

∂y2 
+

 ∂z2  
= 

c2 ∂t2 . (1) 

 
 

The solution of (1) is 

 
 

ψ(x, y, z, t) = (c1 cos lx +c2 sin lx)(c3 cos my +c4 sin my)(c5 cos nz +c6 sin nz)(c7 cos kct +c8 sin kct), 
 

(2) 

 
where k2 = l2 + m2 + n2. 

From the given data, solution (2) is valid in the space 0 (x, y, z) a and such that 
∂ψ 

= 0 on 
∂n 

the boundaries of the cube. Therefore, the solution can be obtaine das follows 

 

(x y z t) 
X 

A 
 

 

cos
 

n1πx
 

cos
 

n2πy
 

cos
 

n3πz
 

cos 
  

n2 n2 n2
 1 πct 

 
 

n1,n2,n3 

ψ n ,n ,n + , 1 2 3 
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n 

n 

2 

 

2 

1 2 3 

∂r2  
+ 

r ∂r 
+ 

r2 sin θ 
sin θ 

∂θ 
+ 

r2 sin2 θ ∂φ2  
= 

c2 ∂t2 . (1) 

+ + k2 − 2 
R = 0. (4) 

2 2 
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where n1, n2, n3 are integers. The periods of the free oscillations of the gas are 

 
2a 

  . ■ 
c n2 + n2 + n2 

 

 

8.1.2 Solution of the Three-Dimensional Wave Equation in Spherical Polar 

Coordinates 

Consider a three-dimensional wave equation in spherical polar coordinates ( r, θ, φ ) 
 

∂2ψ 
 

 

2 ∂ψ   1 ∂ ∂ψ 
!
   1 ∂2ψ 

 
 

1 ∂2ψ 
 

 
 

 
 

Let us assume the solution of the form 

 
ψ(r, θ, φ, t) = Ψ(r) Pm(cos θ) e±imφ±ikct, (2) 

 
where Ψ(r) is a function of r and P

m(cos θ) is the associated Legendre function. Substituting 

equation (2) into equation (1), we find that Ψ(r) satisfies the ordinary differential equation 
 

d2Ψ 2 dΨ 
 

   

n(n + 1) 2 
 

 

Put 

dr2   
+ 

r dr 
−
 r2 Ψ + k Ψ = 0. (3) 

Ψ = r−
1 

R(r), 
 

Equation (3) becomes  
d2R 

 

 

 
1 dR 

 

  

 
(n + 1 )2  

 

If n + 1 

is neither zero nor an integer, then the solution of (4) is 

R(r) = AJn+ 1 (kr) + BJ−n− 1 (kr), (5) 

r2 dr r dr2 

∂θ 
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2 
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2  

(−1)n−
1 

[g (x) sinx n 

2 2 

r kr 

−

n 

(x) = 2 
n + f (x) cos x] 
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where A and B are constants and Jν(z) denotes the Bessel function of the first kind of order ν 

and argument z. By symmetry property, 

 
ψ(r, θ + π, φ) = ψ(r, θ, φ), ψ(r, θ, φ + 2π) = ψ(r, θ, φ), 

 
we take m and n to be integers. 

Hence the function 
 

– 1 m ±imφ±ikct 
 ψ(r, θ, φ, t) = r 2  J±(n+ 1 )(kr) Pn (cos θ) e (6) 

 

is a solution of the wave equation (1). The functions J±(n+ 1 )(kr), which occur in the solution (6), 

are called spherical Bessel functions. 

If n is half of an odd integer, then 

 
 2 

!1 

Jn(x) = 
 
 

πx 

 
 2 

!1 

 

 

[ fn(x) sin x − gn(x) cos x] 
 
 

 

where fn(x) and gn(x) are polynomials in x−1. 

1 
• When n = 

2 
, f 1 (x) = 1, g 1 (x) = 0. 

  

2 2 

 
3 

• When n = 
2 

, f 3 (x) = 1/x and g 3 (x) = 1. 

 

Then, we have  
ψ(r) = 

1 
e±ikr±ikct (7) 

ψ(r, θ) = 
1 

" 
sin(kr) 

− cos(kr)

# 

cos θe±ikct
 (8) 

 

are particular solutions of the wave equation (1). 

In the case of spherical symmetry, i.e., if ψ is a function of r and t alone, then it must satisfy 

πx 

2 

J , 
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the equation 
∂2ψ 2 ∂ψ 1 ∂2ψ 

 

Put ψ = φ , we get 

∂r2  
+ 

r ∂r 
= 

c2 ∂t2 . (9) 

∂2φ 1 ∂2φ 

 

then 

∂r2  
= 

c2   ∂t2 

φ = f (r − ct) + g(r + ct), 

where the functions f and g are arbitrary. Therefore, the general solution of the equation (9) is 
 

ψ = 
1 

[ f (r ct) + g(r + ct)], (10) 
r 

 

where the functions f and g are arbitrary. 

The function r−1 f (r − ct) represents a diverging wave. Taking 

φ = 
  1   

f

 

t − 
r
 

(11) 

 

to be the velocity potential of a gas, then the velocity of the gas is 

 

u = −
∂φ 

= 
  1   

f 

 

t − 
r
  

+ 
   1    

f J
 

t − 
r 
 
 

 

so that the total flux through a sphere of center the origin and small radius ε is 

 
4πε2u = f (t) + O(ε). 

 
The difference between the pressure at an instant t and the equilibrium value is given by 

 

p − p0 = ρ
∂φ 

= 
  ρ

 f J
 

t − 
r
 

. (12) 
 

 

Problem 8.1.2. A gas is contained in a rigid sphere of radius a . Show that if c is the velocity of 

sound in the gas, the frequencies of purely radial oscillations are cξi/a, where ξ1, ξ2, . . . are the 
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positive roots of the equation tan ξ = ξ. 

 

Solution. The given problem is governed by the given equation 

243 

 

 
∂2ψ 

 
2 ∂ψ 

 
1 ∂2ψ 

∂r2 
+ 

r ∂r 
= 

c2 ∂t2 (1) 

 
 

subject to the condition that ψ remains finite at the origin, and given that u = ∂ψ/∂r = 0 at 

 
r = a. 

 
Using the conditions, we find the solution of (1) is given by 

 

ψ = A 
sin(kr) 

e
ikct, (2) 

r 
 
 

where A is a constant. Now, 

 

u = −
∂ψ 

= A 

" 
k cos(kr)  

− 
sin(kr)

# 

eikct.
 

Applying the second condition, we obtain 

 
 

tan(ka) = ka. 

 

 
The possible frequencies are cξi/a (i = 1, 2, . . .), where ξ1, ξ2, . . . are the positive roots of the 

transcendental equation 

tan ξ = ξ. ■ 
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8.1.3 Solution of the Three-Dimensional Wave Equation in Cylindrical 

Coordinates 

Consider a three-dimensional wave equation in cylindrical coordinates (ρ, φ, z) 
 

∂2ψ 1 ∂ψ 1 ∂2ψ ∂2ψ 1 ∂2ψ 

∂ρ2 
+ 

ρ ∂ρ 
+ 

ρ2  ∂φ2  
+

 ∂z2  
= 

c2 ∂t2 . (1) 

 

Let us assume the solution of the form 

ψ(ρ, φ, z, t) = R(r)Φ(φ)Z(z)T (t) (2) 

Substitute equation (2) in equation (1), we get the following equations for each variables 
 

d2R 
 

 

1 dR 2 m2 ! 
 

 
d2Φ 2 

 

dφ2 + m Φ = 0, 
d2Z 2 

 

dz2 + γ Z = 0, 
d2T 2 2 

 

 

where 

 
 

The solutions of the form 

dt2   + k c T = 0, 

 
γ2 = k2 − ω2. 

 
ψ(ρ, φ, z, t) = Jm(ωρ)e

ikct−iγz±imφ, 
 

where γ is related to k and ω. The phase velocity is 

 

V = 
kc 

γ 
 

and the group velocity is 
W = 

 d 
(kc) = 

cγ
. 

dγ k 

ρ2 
ω R = 0, 



Partial Differential Equations M.Sc.(Mathematics)-II Sem   

m 

m 

2 

0 

2 

−i(ωρ− 1 π) 

8.1. ThRee-dIMeNsIONAL PROBLeMs 

 
Solution in terms of Hankel Functions 

 
The general solution of (1) is 

245 

 

ψ(p, φ, z, t) = [Am Jm(ωρ) + BmYm(ωρ)]eikct−iγz±imφ, (3) 

 
where Ym(ωρ) denotes Bessel’s function of the second kind and Am, Bm denote complex 

constants. 

Relation between Bessel’s functions and Hankel functions are given by 

 
H(1)(ωρ) = Jm(ωρ) + iYm(ωρ), 

H(2)(ωρ) = Jm(ωp) − iYm(ωρ). 

The the solution (3) can be written as 

 
ψ(ρ, φ, z, t) = [AmH(1)(ωρ) + BmH(2)(ωρ)]eikct−iγz±imφ. (4) 

m m 

 

In case of axial symmetry (m = 0), we obtain solutions of the form 

 
ψ(ρ, z, t) = [AH(1)(ωρ) + BH(2)(ωρ)]eikct−iγz. (5) 

0 0 

 

Now, for large values of ρ  

 
H(1)(  

  2   
!1 

 

 
i(ωρ− 1 π) 

 
 

0 ωρ) ∼ 

 

 

e 4   , 
πωρ 

 
  2 

!1 

 
 

so as ρ → ∞, 

0 ωρ) ∼ 

 
1 

 
 

e 4 
πωρ 

(6) 

( z t) ∼

 
 2 

!
2 

[Aei(kct+ωρ−iγz− 1 π) 
 Bei(kct−ωρ−iγz+ 1 π)] 

 
 

 
Thus the solution 

ψ ρ, , 
πωρ 

4 + 4 . 

ψ0(ρ, z, t) = H(1)(ωρ)e
ikct−iγz

 (7) 

H(2)( 
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represents waves diverging from the axis ρ = 0, while the solution 

 
ψi(ρ, z, t) = H(2)(ωρ)e

ikct−iγz
 (8) 

 
represents waves converging to this axis. 

In the two-dimensional case, the solution becomes 

 
ψ(ρ, φ, t) = [AmH(1)(kρ) + BmH(2)(kρ)]eikct±imφ (9) 

m m 

 

with 

 

ψ0(ρ, t) = H(1)(kρ)e
ikct

 

 

and 

 

ψi(ρ, t) = H(2)(kρ)e
ikct

 

 

respectively. 

 

Problem 8.1.3. Harmonic sound waves of period 2π/kc and small amplitude are propagated 

along a circular wave guide bounded by the cylinder ρ = a. Prove that solutions independent of 

the angle variable φ are of the form 

ψ = ei(kct−γz) J0 

   
ξn p

 
, 

 

 

where ξn is a zero of J1(ξ) and γ2 = k2 − (ξ2/a2). 

Show that this mode is propagated only if k > ξn/a. 

 
Solution. Since ψ is independent of φ, then by taking m = 0 in equation, we obtain the solution 
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of the form 

247 

 

 
ψ = J0(ωρ)e

i(kct−γz), (1) 
 

where γ2 = k2 − ω2. The boundary condition is that the velocity of the gas vanishes on the 

cylinder; i.e., 

∂ψ 
= 0 on ρ = a. (2) 

∂ρ 
 

Since  J0
J (x) = −J1(x), and by condition  J1(ωa) = 0;   ω = ξn/a, where  ξ1, ξ2, . . . are the zeros of 

J1(ξ). Then 

 
 

where γ2 = k2 − (ξ2/a2). 

ψ = ei(kct−γz) J0 

   
ξnρ

 
, (3) 

 

For the mode given by equation (3) to be propagated we must have γ real; i.e., k > ξn/a. ■ 

 

 

1. A wave of frequency ν is propagated inside an endless uniform tube whose cross section is 

rectangular. 

(a) Calculate the phase velocity and the wavelength along the direction of propagation. 

(b) Show that if a wave is to be propagated along the tube, its fre quency cannot be lower 
c 

 
 1 1 

!1

 

than νmin = 
2 

section. 
a2 

+ 
b2 

, where a and b are the lengths of the sides of the cross 

(c) Verify that the group velocity is always less than c. Show that the group velocity tends 

to zero as the frequency decreases to νmin. 

2. Show that the flux of energy through unit area of a fixed surface produced by sound waves of 

velocity potential ψ in a medium of average density ρ is ρ
∂φ ∂φ

. A source of strength 
∂t ∂n 
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A cos(σt) is situated at the origin. Show that the average rate at which the source loses 

energy to the air is 
ρA2σ2

 

8πc 
where c is the velocity of sound in air. 

3. A symmetrical pressure disturbance ρ0A sin kct is maintained over the surface of a sphere 

of radius a which contains a gas of mean density ρ0. Find the velocity potential of the 

forced oscillation of the gas, and show that the radial velocity at any point of the surface of 

the sphere varies harmonically with amplitude 
A

 
 1 

− cot ka

! 

. 
 
 

8.2 General Solutions of the Wave Equation 

 
In this section, we state the theorem to discuss conditions on general solutions of the wave equation 

with ψ(r, t) and its normal derivative ∂ψ/∂n are prescribed on a surface S. 

Suppose that Ψ is a solution of the space form of the wave equation 

 
∇2Ψ + k2Ψ = 0 (1) 

and that the singularities of Ψ all lie outside a closed surface S bounding the volume V. Put 
 

eik|r−rJ | 

ΨJ =  
|r − rJ| 

(2) 
 

we observe that if the point with position vector r lies outside S, then 
 

∫ ( 
J

 

 

 

∂  eik|r−rJ| eik|r−r

J | 

∂Ψ(rJ)
) 

J 

 

By Green’s theorem, we have 
 

∫ ( 
J

 
∂  eik|r−rJ| 

 
 

eik|r−r
J | 

∂Ψ(rJ)
) 

J 
 

 

∫ (      1 
!
 

J ∂Ψ(rJ)
)  

eik|r−rJ | 
J
 

 

Ψ(r ) 
S ∂n |r − rJ| – 

|r − rJ| ∂n 

dS  = lim 
ε→0     C ik − 

|r − rJ| 
Ψ(r ) − ∂rJ 

dS 
|r − rJ| 

and the value of the limit on the right-hand side of this equation is −4πΨ(r). 

We now state the following standard theorems: 

S 

, 

∂n 
= 0. (3) 
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∂r 

 

1 

Ψ(r )  
∂n |r − rJ| 

− 
|r − 

rJ| 

dS 
0 if r ∈/ V, 

(1)
 

Ψ(r )  
∂n |r − rJ| 

− 
|r − 

rJ| 

dS = (2) 
 0 if r ∈ V, 
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Helmholtz’s First Theorem. 

If Ψ(r) is a solution of the space form of the wave equation ∇2Ψ + k2Ψ = 0 whose partial 

derivatives of the first and second orders are continuous within the volume V on the closed surface 

S bounding V, then 

 1  
∫ (

 
 

  

J ∂  eik|r−rJ| 

 

eik|r−r

J | 

∂Ψ(rJ)
) 

J Ψ(r) if r ∈ V 

 

where n is the outward normal to S. 

Helmholtz’s Second Theorem. 

If Ψ(r) is a solution of the space form of the wave equation whose partial derivatives of the first 

and second orders are continuous outside the volume V and on the closed surface S bounding 

V , if rΨ(r) is bounded, and if 

r

 
∂Ψ 

− ikΨ

! 

→ 0 

uniformly with respect to the angle variables as r → ∞, then 
 

 1  
∫ (

 
 

  

J ∂  eik|r−rJ| eik|r−r

J | 

∂Ψ(rJ)
) 

J Ψ(r)    if r ∈/ V 

 

where n is the outward normal to S. 

Weber’s Theorem. 

If Ψ(p) is a solution of the space form of the two-dimensional wave equation ∇2Ψ + k2Ψ = 0 

whose partial derivatives of the first and second orders are continuous within the area S and on 

the closed curve Γ bounding S, then 
 

1 
∫
 

(

Ψ(æJ)   
∂ 

H(1)(k|æ − æJ|) − H(1)(k|æ − æJ|) 
∂Ψ(æJ)

) 

dsJ =  
Ψ(æ)    if æ ∈ S

 
 

 

4i Γ ∂n 0 0 ∂n 
 0 if æ ∈/ S , 

 

where n is the outward normal to Γ. 

Kirchhoff’s First Theorem. 

If ψ(r, t) is a solution of the wave equation whose partial derivatives of the first and second 

S 4π 

S 4π ∂n 
= 

∂n 
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orders are continuous within the volume V and on the surface S bounding V, then 
 

 1 
∫
 

(

−[ψ]   
∂
 
  

1 
! 

+
 1 ∂λ 

" 
∂ψ 

# 

+ 
1 

" 
∂ψ 

#) 

dS J  =  
ψ(r, t),   if P(r) ∈ V, 

 
(3) 

4π S ∂n  λ cλ ∂n ∂t λ  ∂n  0, if P(r) ∈/ V, 
 

where  λ = |r − rJ| and  n  is the outward normal to  S . 

Kirchhoff’s Second Theorem. 

If ψ(r, t) is a solution of the wave equation which has no singularities outside the region V 

bounded by the surface S for all values of the time from −∞ to t, and if as r → ∞, 

ψ(r, t) 
f (ct − r) 

,
 

r 
 

where f (u), f J(u) are bounded near u = −∞ , then 

 1 
∫
 

(

[ψ]   
∂
 
  

1 
! 

−
 1 ∂λ 

" 
∂ψ 

# 

− 
1 

" 
∂ψ 

#) 

dS J  = 

 
ψ(r),   if P(r) ∈ V, 

 

(4) 
4π S ∂n  λ cλ ∂n ∂t λ  ∂n  0, if P(r) ∈/ V, 

 

where n is the outward normal to S. 

 

 

In this unit, the students acquired knowledge to 

 
• find the solution interms of Hankel functions. 
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In this chapter, we consider the one-dimensional diffusion equation 
 

∂2θ ∂θ 

∂x2  
=  

∂t 
 

which is parabolic type equation. The generalized form of diffusion equation is given by 

 

k 2θ = 
∂θ

, 
∂t 

 

where k is a constant. 
 

∂2 • If ∇2
 ∂2 then k∇2

 
 

 

∂θ 
is called two-dimensional di  usion equation. 

= 
∂x2  

+ 
∂y2 

,
 

θ = 
∂t 

ff 

• If ∇2 ∂2

 

 
∂2 ∂2 

2
 + + , then k∇ 

 
  

∂θ 
is called three-dimensional di usion equation. 

∂x2 ∂y2 ∂z2 
θ = 

∂t 
ff 

 

 

9.1 Elementary Solutions of the Diffusion Equation 

In this section, we consider elementary solutions of the one-dimensional diffusion equation 
 

∂2θ 1 ∂θ 

 

 
Consider the expression 

∂x2  
= 

κ 
. (1) 

∂t 

 

 
then 

θ =  
 1   

e−x2/4κt, (2) 
t 

 

∂2θ 
∂x2  

=
 

x2 

e−x2/4κt 
2 5 

 
 

1 
e−x2/4κt 

 
 

 
and 

4κ t 2 

 

 
∂θ x2 

 
  

 
 
 
−x2/4κt 

2κt 2 

 

 
1 

 
 

 
 
 
−x2/4κt 

∂t 
=

 

e 
4κt 2 – 

2t 2 

= 

k 

− 3 

e 
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substituting the above expressions of 
∂2θ

 
∂x2 

and 
∂θ

 
∂t 

 
in (1), we observe that it satisfies (1) and hence 

the expression (2) is a solution of the equation (1). 

Again, we consider the another expression 

 

θ =  
    1 

e−(x−ξ)2/4κt, (3) 

2 πκt 

 

where ξ is a real constant. It is easy to verify that expression (3) is also a solution of equation (1). 

If φ(x) is a bounded function on real numbers, then the Poisson integral 
 

    1  
θ(x, t) = 

2 
√

πκt
 

∞ 

φ(ξ) e−(x−ξ)2/4κtdξ (4) 

−∞ 

 

is also, in some sense, a solution of the equation (1). 

 

Problem 9.1.1. Prove that the Poisson integral 
 

 
    1  

θ(x, t) = 
2 

√
πκt

 

∞ 

φ(ξ) e−(x−ξ)2/4κtdξ 

−∞ 

 

is the solution of the one-dimensional diffusion equation with initial condition 

 
∂2θ 1 ∂θ 

∂x2 
= 

κ ∂t 
− ∞ < x < ∞  

(5) 

θ(x, 0) = φ(x) is bounded. 

 

Solution. It is easy to observe that the integral (4) is convergent if t > 0 and that the integrals 

obtained from it by differentiating under the integral sign with respect to x and t are uniformly 

convergent in the neighborhood of the point (x, t). 

The function θ(x, t) and its derivatives of all orders therefore exist for t > 0, and since the 

integrand satisfies the one-dimensional diffusion equation, it follows that θ(x, t) itself satisfies 

∫ 

∫ 
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that equation for t > 0. 

 

Now 

.
 1 

∫ ∞ 

φ(ξ)e−(x−ξ)
2/4κtdξ − φ(x). = |I 

 

 

 
+ I2 

 
 
+ I3 

 
– I4|, 

 
where 

. 2(πκt) 2 

 
I 

−∞ 

 

 

  1    
∫ N 

(x
 

 

 

 
2u 

√ 
t) 

. 

 
(x) 

 
 
 

e−u2 

du 

I =
 1 

∫ ∞ 

φ(x + 2u 
√

κt) e−u2 

du 
 

 2 √
π

 

I3 = 
  1   

π 

N 

– 

φ(x 

−∞ 

+ 2u 
√

κ 

 
t) e−u2 

du 

2φ(x) 
I4 = √

π
 

∞ 

e−u2   

du. 
N 

 

Taking N sufficiently large and if the function φ(x) is bounded, the integrals I2, I3, I4 are small 

and by the continuity of the function φ, and for sufficiently small values of t, the integral I1 

becomes small. Thus as t → 0, θ(x, t) → φ(x), i.e., θ(x, 0) = φ(x). Hence, it is proved that the 

Poisson integral (4) is a solution of the initial value problem (5). ■ 
 

Remark 9.1.1.  Put  u =  
(x 

√
− ξ)  

in the solution (4) of the IVP (5), can be written as 

2 κt 

 
  1   

θ(x, t) = √
π

 

 
∞ 

φ(x + 2u 
√

κt) e−u2 

du. (6) 
−∞ 

−

N 

1 1 

∫ 

∫ 

1 = + – φ } 
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Problem 9.1.2. Solve the boundary value problem (BVP) 

∂2θ 1 ∂θ 

∂x2 
= 

κ ∂t 
0 ≤ x < ∞ 

θ(x, 0) = f (x) x > 0 

θ(0, t) = 0 t > 0. 

(7) 

Solution. If we write 

φ(x) =  
f (x) for x > 0 

– f (−x) for x < 0, 

then we rewrite the Poisson integral (4) as 

    1  
θ(x, t) = 

2 
√

πκt
 

∞   

f (ξ) 
.
e−(x−ξ)2/4κt − e−(x+ξ)2/4κt

. 
dξ. (8) 

It is easy to verify that (8) is the solution of the boundary value problem (14). ■ 

Problem 9.1.3. Solve the boundary value problem (BVP) 

∂2θ 1 ∂θ 

∂x2 
= 

κ ∂t 
0 ≤ x < ∞ 

θ(x, 0) = 0 x > 0 

θ(0, t) = θ0 t > 0. 

(9) 

Solution. The solution (8) can be express in the form 

θ(x, t) =
 1 

∫ ∞

 

 
 

 

 

f (x + 2u 
√

κt)e−u2 

du −
 1   

∫ ∞
 

 

 

f (−x + 2u 
√

κt)e−u2 

du. (10) 
 

√
π x   

2   κt 

√
π x   

2   κt 

− 

∫ 

0 
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Thus if the initial temperature is a constant, θ0 say, then 
 

θ(x, t) = θ0 erf 

(
 x   

) 

(11) 
 

 

where  

erf z = 
 2  

 
 

π 

 
z 

e−u2 

du 
0 

 
 

 
(12) 

 

The function 

θ(x, t) = θ0 

"

1 − erf

 
  x   

!# 

(13) 
 

will therefore have the property that θ(x, 0) = 0. ■ 

 
Problem 9.1.4. Solve the boundary value problem (BVP) 

 
∂2θ 1 ∂θ 

∂x2 
= 

κ ∂t 
0 ≤ x < ∞ 

θ(x, 0) = 0 x > 0 

 
θ(0, t) = g(t) t > 0. 

(14) 

 

Solution. Thus the function 

θ(x, t, tJ) = g(tJ) 

"

1 − erf

 
  x 

!#

 

 
 

is the function which satisfies the one-dimensional diffusion equation and the conditions 
 

θ(x, 0, tJ) = 0, θ(0, t, tJ) = g(tJ). By applying Duhamel’s theorem it follows that the solution 

∫ 
. 
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of the boundary value problem 

257 

 

 

θ(x, 0) = 0, θ(0, t) = g(t) (15) 
 

 

is 

 

θ(x, t) = 
 2  ∂

 
 

∂t 

∫ t 

g(tJ)dt J 
∫ ∞ 

 

 
e−u2 

du 
 

 

π 0 

    x 
∫ t

 

x/2(κt−κtJ) 2 

e−x2/4κ(t−4) 
 

 

  2 πκ 0 (t − t ) 2 

 

Changing the variable of integration from tJ to u where 
 

x2 

tJ = t − 
4κu2 

 
 

we see that the solution may be written in the form 
 

θ(x, t) =
 2  

 
π 

∞ 

g t 
x2

 

η 4κu 

 
e−u

2 

du, η =  
   x   

. ■ 
2 κt 

 

 

9.2 Separation of Variables 

 
In this section, we derive the solution of the diffusion equation 

 

2
θ = 

1 ∂θ 

κ ∂t 
 

by using the method of the separation of variables. 

 

(1) 

3 
J 

1 

∫ 

∇ 

= g(tJ) dtJ. 

2 

! 
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Let us assume the solution of the form 

 
θ = φ(r) T (t), (2) 

 

Substituting equation (2) in equation (1), we get 

 
1 

∇2φ =
 1 dT 

φ κT dt 
 

then the governing equations of the functions T and φ is of the form 
 

dT 
+ κλ2T = 0 (3) 

dt 

(∇2 + λ2)φ = 0, (4) 

where λ is a constant which may be complex. 

The solution of linear first order equation (3) is 

 
T (t) = e−κλ2t. 

 
Thus the general solution (2) of equation (1) takes the form 

 
θ(r, t) = φ(r)e−κλ2t, (5) 

 
where the function φ is a solution of the Helmholtz equation (4). 

 
 

9.2.1 One-dimensional Diffusion Equation 

Consider the one-dimensional diffusion equation 
 

∂2θ 1 ∂θ 

∂x2 
= 

κ 
(1) 

∂t 
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Let us assume the solution of the form 

259 

 

θ(x, t) = X(x)T (t) (2) 

 
Substituting equation (2) in equation (1), we get 

 

XJJ 1 T J 

 
 

Then we have 

X 
= 

α T 
= c, (a separation constant) 

 

d2X 

dx2   − cX =  0 

dT 

dt  
− αcT =  0. 

 

The following three cases arises: 

Case I Let c > 0, then c = λ2, we get 
 

d2X 
–  2 

 
 

dT 2 

which gives 

dx2 
λ X = 0 and 

dt  
− αλ T = 0. 

X = c e
λx

 + c e−λx, T = c e
αλ2t. 

Case II Let c < 0, then c = −λ2, we get 

d2X 2 dT 2 
 

 

which gives 

dx2   + λ X = 0 and 
dt  

+ αλ T = 0. 

X = c cos λx + c sin λx, T = c e−αλ2t. 
 

Case III Let c = 0. Then 

 
 

which gives 

 
d2X 

dx2   = 0 and 

 
dT 

dt 
= 0. 

X = c1 x + c2, T = c3. 
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Thus, various possible solutions of the diffusion equation (1) are 

 
θ(x, t)   =    (c e

λx
 + d e−λx)e

αλ2t
 

θ(x, t) = (c cos λx + d sin λx)e−αλ2t 

θ(x, t) = cλx + dλ 

 

where 

cλ = c1c3, dλ = c2c3. 
 

Problem 9.2.1. The faces x = 0, x = a of an infinite slab are maintained at zero temperature. The 

initial distribution of temperature in the slab is described by the equation θ = f (x) (0 ≤ x ≤ a). 

Determine the temperature at a subsequent time t. 

 
Solution. The temperature function θ(x, t) which satisfies the one-dimensional diffusion equation 

 

∂2θ 1 ∂θ 

∂x2 
= 

κ 
. (1) 

∂t 
 
 

From the given problem, we get the following boundary conditions 

 
 

(i) θ(0, t) = 0 for all t ≥ 0. 

 
(ii) θ(a, t) = 0 for all t ≥ 0. 

 
(iii) θ(x, 0) = f (x), 0 ≤ x ≤ a 

 
The possible solutions are 

 
 

θ(x, t)   =    (cλe
λx

 + dλe−λx)e
κλ2t
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θ(x, t) = (c cos λx + d sin λx)e−κλ2t 

θ(x, t) = cλx + dλ 

261 

 

The most suitable solution satisfying the boundary conditions of the given problem is 

 
 

θ(x, t) = (c cos λx + d sin λx)e−κλ2t. (2) 

Applying the boundary condition (i) in equation (2), we get 

0 = c e−κλ2t. 

 

Here e−κλ2t /= 0, since it is defined for all t. 

 
∴ cλ = 0. 

 
 

Substituting cλ = 0 in (2), we get 

 
 

θ(x, t) = d sin λx e−κλ2t. (3) 

 

Applying the boundary condition (ii) in equation (3), we get 
 

 

θ(a, t) = d sin λa e−κλ2t = 0 

sin λπ = 0 (∵ d /= 0 & e−κλ2t 0) 

λa = nπ 
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a 

X 

a 

∞ 

a 
a 

n 
a 

a 

n = 
a

 
a 

, = 
a

 
0 a a 

a   . ■ 
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nπ 
λ = 

a 
, 

 
 

where n is an integer. 
 

Hence the solution is  

 
θ(x, t) = d sin

 
nπx

  
e− κn2π2t 

.
 

 

 

By the principle of superposition, the most general solution is 

 

θ(x, t) = 
X
 d sin

 nπx
 

e− κn2π2t 

.
 

 

 

 

Applying the condition (iii), we get 

 
∞ 

θ(x, 0) = 
n=1 

 
dn sin

 
nπx 

 
 

∞ 

f (x) = 
n=1 

dn sin
 

nπx 
 
 

 

which is a half-range Fourier Sine series in the interval (0, a) and therefore the dn can be obtained 
 

using the Fourier coefficient formula, 

 
 

d 
2 

∫ a 

f (u) sin
 nπu

 

du 
 

 

 

Thus, the general solution is 
 

 
(x t) 2 X "∫ a 

f (u) sin
 nπu

 

du

# 

sin
 nπx

 

e−
κn2π2t

 

 n=1 

0 

n=1 

∞ 

λ 

. 

θ 



Partial Differential Equations M.Sc.(Mathematics)-II Sem   

2 

 π − x, ≤ x ≤ π. 
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Problem 9.2.2. Solve the one-dimensional diffusion equation in the region 0 ≤ x ≤ π, t ≥ 0, 

subject to the conditions 

 
(i) T remains finite as t → ∞ 

 
(ii) T = 0, if x = 0 and π for all t 

(iii) At  t = 0,  T  =  
x, 0 ≤ x ≤ π 

 
 π 

2 
 

Solution. The one-dimensional diffusion equation is 
 

∂T ∂2T 

∂t 
= α 

∂x2 . (1) 

 
 

The possible solutions are: 
 

 

T (x, t)   =    (c e
λx

 + c e−λx)e
αλ2t

 

T (x, t) =   (c cos λx + c sin λx)e−αλ2t
 

 
T (x, t) =  (c1 x + c2). 

 
 

As t → ∞, e
αλ2t → ∞, this violates the first boundary condition hence we reject the first solution. 

Applying the boundary condition (ii), the third solution gives 

 
 

0 = c1 · 0 + c2, 0 = c1 · π + c2 

 
implies that c1 = 0 and c2 = 0 and hence T = 0 for all t which is a trivial solution. 



Partial Differential Equations M.Sc.(Mathematics)-II Sem   

1 2 

2 

2 

264 9.2. SepaRATION Of VaRIABLes 

The suitable solution satisfying the conditions is 

 
 

T (x, t) = (c cos λx + c sin λx)e−αλ2t. (2) 

Applying the boundary condition T = 0 when x = 0 in (2), we have 

0 = (c1 cos λx + c2 sin λx)|x=0 

 
implying c1 = 0 since e−αλ2t /= 0 defined for all t. Then the solution (2) becomes 

 
T (x, t) = c sin λx e−αλ2t. (3) 

 

Applying the boundary condition T = 0 when x = π in (3), we get 

 
 

0 = c sin λπ e−αλ2t
 

 

⇒ sin λπ = 0 

⇒ λπ = nπ 

λ = n 

 
where n is an integer. 

 

Equation (3) becomes  

T (x, t) = c sin nx e−αn2t. 
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By the principle of superposition, the most general solution is 
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T (x, t) = 
X 

cn 

 

sin nx e−αn2t. (4) 
n=1 

 

Applying the condition (iii), we get 
 

∞ 

T (x, 0) = cn sin nx 
n=1 

 

which is a half-range Fourier-sine series and, therefore, 

 

2 
∫ π 

2 π/2 

= 
π 0 

 
x sin nxdx + 

π 
 

π/2 

(π − x) sin nxdx

#

 

= 
2 

 

−x 

cos nx 

n 
− 

sin nx 
π/2 

+ 
n2 

0
 −(π −x) 

cos nx 

n 
+ 

sin nx 
π 

n2 
π/2 

 

cn = 
4 sin(nπ/2) 

.
 

n2π 
 
 

Thus, the required solution is 

 

 

■ 

 

 

 

9.2.2 Two-dimensional Diffusion Equation 
 

∂2θ ∂2θ 1 ∂θ 

∂x2  
+ 

∂y2  
= 

κ ∂t 
(6)

 

T (x, t) = 
4 

π 
n
 

X ∞ 1 
sin 

=1 n2 

  nπ 

2 

  
sin(nx) e−αn2t. 

∫ 

cn = T (x, 0) sin nxdx 
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Let us assume the solution of the form 

 
θ(x, y, t) = X(x)Y(y)T (t). (2) 

 
Substituting equation (2) into equation (1), we get 

 

XJJ YJJ 
+ 

  

1 βJ 
= 

 

= −λ2. 
X Y α β 

 

Then βJ + αλ2β = 0 whose solution is 

 
and 

 
β = e−αλ2t 

 

 

Hence, 

XJJ 

X = −

 

λ2 + 
YJJ 

! 

= −p2 (say). 

 

 
 
 
 

which gives 

 
 

and 

 
YJJ 

Y 

XJJ + p2X =   0 

= −λ2 + p2 =  −q2(say) ⇒ YJJ + q2Y = 0. 

 
X = A cos px + B sin px 

 
 

Y = C cos qy + D sin qy 
 

Thus, the general solution of the given PDE is 

 
T (x, y, t) = (A cos px + B sin px)(C cos qy + D sin qy)e−αλ2t

 

 

where 

λ2 = p2 + q2. 

 

The solution 

θ(x, y, t) = 
X X 

c 
 

  

 

cos(λx + ε ) cos(µy + ε )e−(λ
2+µ2)κt (7) 

µ λ 

λµ 
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of the two-dimensional equation which we derived in Sec. 9 of Chap. 3 may be treated in a 

precisely similar way (cf. Prob. 3 below). 

 
 

9.3 Solution of Diffusion Equation in Cylindrical Coordinates 

Consider a three-dimensional diffusion equation 
 

∂T 

∂t 

 

In cylindrical coordinates (r, θ, z), it becomes 

= α∇2T. 

 

1 ∂T ∂2T 1 ∂T 1 ∂2T ∂2T 

 

 
where T = T (r, θ, z, t). 

α ∂t 
=

 ∂r2   
+ 

r ∂r 
+ 

r2  ∂θ2  
+

 ∂z2 (1) 

Let us assume solution of the form 

 
T (r, θ, z, t) = R(r)Θ(θ)Z(z)Φ(t). (2) 

 
Substituting equation (2) into equation (1), we get 

 

RJJΘZΦ + 
1 

RJΘZΦ +
 1 

RΘJJZΦ + RΘZJJΦ = 
ΦJ 

RΘZ 
 

r r2 α 
 

Dividing by RΘZΦ 
RJJ 1 RJ 1 ΘJJ ZJJ 

⇒ + + + 
    

1 ΦJ = 
 

= −λ2 
R r R r2  Θ Z α Φ 

where −λ2 is a separation constant. Then 
 

1 ΦJ 
 

α Φ = −λ2 ⇒ ΦJ + αλ2Φ = 0 (3) 

RJJ 1 RJ 1 ΘJJ ZJJ 
+ + + 

    

= −λ2 
R r R r2   Θ Z 

RJJ 

+ 
1 RJ 

+ 
1 ΘJJ 

+ λ2 = −
ZJJ = −µ2 (say). 

R r R r2   Θ Z 
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ZJJ 

– 
Z

 = −µ2 ⇒ ZJJ − µ2Z = 0 (4) 
RJJ 

+ 
1 RJ 

+ 
1 ΘJJ 

+ λ2 = −µ2 
   

R r R r2 Θ 

r2 
RJJ 

+ r 
RJ 

+ (λ2 + µ2)r2 = −
ΘJJ

 
   

= ν2 (say). 
R R Θ 

ΘJJ 

– 
Θ

 = ν2 ⇒ HJJ + ν2H = 0 (5) 

RJJ 1 
RJ 

"

( 2

 

2) − 
ν2 

# 

R 0 

 
(6) 

 

Equations (3), (4) and (5) have particular solutions of the form 

 
Φ  =   e−αλ2t 

H = c cos νθ + D sin νθ 

Z = Ae
µz

 + Be−µz. 

 
The differential equation (6) is called Bessel’s equation of order ν and its general solution is 

known as 
  

R(r) = c1 Jν λ2 + µ2r + c2Yν λ2 + µ2r (7) 

where Jν(r) and Yν(r) are Bessel functions of order ν of the first and second kind, respectively. 

Equation (7) is singular when r = 0. The physically meaningful solutions must be twice 

continuously differentiable in 0 ≤ r ≤ a. Hence, equation (7) has only one bounded solution, 

i.e. 

R(r) = Jν λ2 + µ2r . 

Finally, the general solution of equation (1) is given by 

T (r, θ, z, t) = e−αλ2t[Ae
µz

 + Be−µz][c cos νθ + D sin νθ]Jν 
  ,

λ2  + µ2r
  

. 

Problem 9.3.1. Determine the temperature T (r, t) in the infinite cylinder 0 ≤ r ≤ a when the 

initial temperature is T (r, 0) = f (r), and the surface r = a is maintained at 0◦ temperature. 

+ + µ . 
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Solution. According to the problem, the governing equation is 

269 

 
 

∂T 

∂t 
= α∇ T 

 

 

where T is a function of r and t only. Therefore, 
 

 
∂2T 1 ∂T 1 ∂T 

∂r2 
+ 

r ∂r  
= 

α ∂t 
.
 

 
The corresponding boundary and initial conditions are given by 

BC: T (a, t) = 0 

IC : T (r, 0) = f (r). 

 
The general solution of Eq. (3.63) is 

 
 

T (r, t) =  A exp(−αλ2t)J0(λr). 

 
Applying the boundary condition T (a, t) = 0, we get 

 
 

0 = A exp(−αλ2t)J0(λa) 

 
implying that J0(λa) = 0 which has an infinite number of roots, ξna(n = l, 2, . . . , ∞). 

By superposition principle, 

 

T (r, t) = 
X 

An exp(−αξ2t)J0(ξnr). 
n=1 
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X 

∫ 

r f (r)J ( 
∞ 

∫ 

J ( 

1 

 

, = 
a2 

J2(ξ a) 
−αξ

m 

0 ξm 

∂r2 
+ 

r ∂r 
+ 

r2 sin θ ∂θ 
sin θ 

∂θ 
+ 

r2 sin2 θ ∂φ2   
= 

α ∂t 
.
 

X 

= 
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Now applying the initial condition T (r, 0) = f (r), we get 
 

∞ 

f (r) = An J0(ξnr). 
n=1 

 

We employ the orthogonal properties of Bessel functions to determine An 

 
Multiply both sides of the above equation by rJ0(ξmr) and integrate with respect to r from 0 

 

to a, we get 
 
 
 

 
a 

0 ξm 
0 

 
 

 
r)dr 

 

 

 
= An 

n=1 

 
 
 

 
a 

0 ξm 
0 

 
 
 
r)J0(ξn 

 

 

 
r)dr 

 0,    for n m 

 

  
 

which gives 

A 
  2 

∫ a 

u f (u)J ( 
 

   

 
 

u)du 

 

Hence, the solution is 

m
 
= 

a2 J2(ξ a) 
0 ξm . 

 

 
T (r t) 

2 X  J0(ξmr) 
exp(

 

  

2 t) 

"∫ a 

u f (u)J ( 
 

u)du

#

 

 
 

9.4 Solution of Diffusion Equation in Spherical Coordinates 

Consider the three-dimensional diffusion equation in spherical coordinates 
 

∂2T 2 ∂T   1 ∂ ∂T 
!
 1 ∂2T 1 ∂T 

 
  

0 m 1 

0 m 1 

J2(ξma), for n = m Am 
2 

∞ 

 
a2 ! 

. ■ 
m=1 
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R r R r2 Θ r2 sin θ Θ Φ 

R r R r2 Θ r2 sin θ Θ 

R  
+ 

r R 
= 

sin2 θ 
+ 

Θ sin θ Θ 
+ 

sin2 θ 
+ 

Θ sin θ 
Θ + 

∂θ2   + cotθ 
∂θ 

+ n(n + 1) − 
sin2 θ

 

ΦJ 

Φ 
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The above equation can be written as 

271 

 

∂2T 2 ∂T 1 ∂2T cos θ ∂T 1 ∂2T 1 ∂T 

∂r2 
+ 

r ∂r 
+ 

r2 ∂θ2 
+ 

r2 sin θ ∂θ 
+ 

r2 sin2 θ ∂φ2 
= 

α ∂t 
. (1) 

Let us assume the solution of the form 

T = R(r)Θ(θ)Φ(φ)β(t). (2) 

 

Substituting equation (2) into equation (1), we get 

 

RJJΘΦβ + 
2 

RJΘΦβ +
 1 

RΘJJΦβ + 
  cos θ

 

 
RΘJΦβ +

 1 
RΘΦJJβ = 

1 
RΘΦβJJ. 

r r2 

 
Dividing by RΘΦβ, 

r2 sin θ r2 sin2 θ α 

 

RJJ 2 RJ 1 ΘJJ cos θ 
+ + + 

   

ΘJ 1 
+ ΦJ 1 βJ 

= 
 

= −λ2 (say) 
R r R r2  Θ r2 sin θ Θ r2 sin2 θ Φ α β 

 

where λ2 is a separation constant. Then, 
 

1 βJ 
α β 

 

= −λ2 ⇒ βJ + αλ2β  =  0 

RJJ 2 RJ 1 ΘJJ cos θ + + + 
   

ΘJ 1 
+ ΦJ 

=  −λ 
R r R r2  Θ r2 sin θ Θ r2 sin2 θ Φ 

r2 sin2 θ 

" 
RJJ 

+ 
2 RJ 

+ 
1 ΘJJ 

+   
cos θ ΘJ 

# 

+ λ2r2 sin2 θ = −
ΦJ

 
=   m2 (say) 

− = m2 ⇒ ΦJ + m2Φ  =   0 

r2 sin2 θ 

" 
RJJ 

+ 
2 RJ 

+ 
1 ΘJJ 

+   
cos θ 

ΘJ 
# 

+ λ2r2 sin2 θ =   m2 

r2 

" 
RJJ 

2 RJ 
#
 2r2 m2 

− 

" 
ΘJJ cos θ ΘJ 

#
 n(n 1) (say) 

m2 

− 

" 
ΘJJ cos θ ΘJ 

#
 n(n 1) 

ΘJJ 

+ cotθΘJ 

"

n(n + 1) 
m 

#

 
2 

 

 

 

Θ  =   0 

∂2Θ 
 

 ∂Θ 
"
 m2  # 

 
 

+ 
sin2 θ 

+ λ = 

= 

Θ   =   0 

2 
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R r R 

∂r2  
+ 

r ∂r 
+

 
λ 

2       
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r2 

" 
RJJ 

+ 
2 RJ 

# 

+ λ2r2 =  n(n + 1) 

RJJ + 
2 

RJ + 

"

λ2 + 
n(n + 1)

# 

R =    0 

 
∂2R 

 
 

r 

2 ∂R 
" 

2 

r2 

n(n + 1)
#
 

 

 

 

Then, the particular solution of the form 

 
β  =   ce−αλ2t 

Φ(φ) =   c1e
imφ + c2e−imφ. 

 

Let R(r) = (λ r)−
1 

H(r), then 
 

RJ =    (λ r)−
1 

HJ(r) − 
 

(λ r)−
1 

H(r) 
2    

2r 
(λ r)−

1 

HJ(r) 
 

 

 
3(λ r)−

1 

H(r) 
RJJ =   (λ r)−

1 

HJJ(r) − + 
r 4r2 

 
On simplifying, we get 

1  n + 1
 2  

 

 
HJJ(r) + 

r 
HJ(r) + λ2 − 

2 H(r) = 0 
r2 

 

which is Bessel’s equation of order
 

n + 1
 

whose solution is 

H(r) = AJn+ 1 (λr) + BYn+ 1 (λr). 
  

2 2 

 

Therefore, 
– 1 

 R(r) = (λr) 2 [AJn+ 1 (λr) + BYn+ 1 (λr)] 2 2 

where Jn and Yn are Bessel functions of first and second kind, respectively. 

Now, by introducing a new independent variable µ = cos θ so that 

 

cot θ = 
cos θ 

=
 cos θ 

= 
µ 

sin θ 

,
1 − sin2 θ 

,
1 − µ2 

r2 
+ R   =   0. 

2 2 
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Aλmn(λr) 2 Jn+ 1 (λr)Pn (cos θ)e 

dθ 
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dH 
=    − 

,
1 − µ2 

dH
 

d2H 
 

 

2 d2H dH 
 

dθ2 =  (1 − µ ) 
dµ2   − µ 

dµ 
. 

 

Then  
(1 − 2

) 
d2H 

− 2 
dH 

 
 

"

n(n 1) − 
m2 

# 

H 0 
 

 

µ 
dµ2 

µ 
dµ 

+ + 
= 

1 − µ2 

which is an associated Legendre differential equation whose solution is 

 
H(θ) = CP

m(µ) + DQ
m(µ) 

n n 

 
where P

m(µ) and Q
m(µ) are associated Legendre functions of degree n and of order m, of first 

n n 

and second kind, respectively. Since the solution is singular for r = 0, the solution must be twice 

continuously differentiable implying that B = 0, therefore 

 

– 1 
 R(r) = (λr) 2 AJn+ 1 (λr). 

 

The continuity of H(θ) at θ = 0, π implies that the continuity of H(θ) at µ = ±1. Since Q
m(µ) 

has a singularity at µ = 1, we choose D = 0, then 

 
H(θ) = CP

m(µ). 

 
After adjusting the constants, we have 

 
– 1 m ±imφ−αλ2t 

 T (r, θ, φ, t) = A(λr) 2 Jn+ 1 (λr)Pn (cos θ)e . 

 

By the principle of superposition, we have 

X −1
 
 

 

  

 
 

m ±imφ−αλ2t 

 

which is the required solution. 

 

Problem 9.4.1. Find the temperature in a sphere of radius a, when its surface is kept at zero 

2 

λ,m,n 

2 

2 

T (r, θ, φ, t) = 
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2 

2 

α ∂t 
=

 ∂r2 
+ 

r ∂r 
+ 

r2 sin θ ∂θ 
sin θ 

∂θ 

Aλn(λr) 2 Jn+ 1 (λr)Pn(cos θ)e 

Aλn(λa) 2 Jn+ 1 (λa)Pn(cos θ)e 

2 Jn+ 1 (ξir)Pn(cos θ) exp(−αξi t). (3) 

λ,n 
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temperature and its initial temperature is f (r, θ). 

 

Solution. The governing equation is 
 

1 ∂T ∂2T 2 ∂T   1 ∂ ∂T 
!
 

 

 

 

 

subject to 
 

 

BC: T (a, θ, t) = 0 

 
IC: T (r, θ, 0) = f (r, θ). 

 

 

The general solution of (1) is 

 
X −1

 
 

 

  

 
 

−αλ2t 

 

Applying the boundary condition T (a, θ, t) = 0, we get 
 

X −1
 
 

 

 
−αλ2t 

 

 

 

implying that Jn+ 1 (λa) = 0 which has infinitely many positive roots. Denoting them by ξi, we 
 

have 
∞ ∞ 

 
X X −1  2

 

  
 

  i=1 n=0 

Ani(ξir) T (r, θ, t) = 

2 

2 
λ,n 

(1) 

T (r, θ, t) = . (2) 

0 = . 
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∞ 

∞ 

 

2 

(µ)) = Ani(ξir) 2 Jn+ 1 (ξir)Pn(µ). 

f (r, cos Ani(ξir) 2 Jn+ 1 (ξir) 

2 Jm+ 1 

∫ 

P ( )P ( )d 

2 2m + 1 

2 

3 
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Now, applying the initial condition T (r, θ, 0) = f (r, θ), we have 

275 

 

∞ ∞ 

 
X X −1

 

   
  

 

Denoting cosθ by µ, we get 
 

∞ ∞ 

 

−1 
X X 

− 1 

   

 

We employ the orthogonality properties of both Legendre’s and Bessel’s functions to determine 

 
Ani 

 

Multiplying both sides by Pm(µ) and integrating between the limits, −1 to 1, we obtain 
 

∫ 1 
−1 

 

 

X X −1 
∫ 1 

 

 

  
 

 
X −1

 

  

 

 

 
  2 

! 
 

 

or 
 

2m + 1 
! ∫ 1 

−1 X −1
 

 
 

 2 
 

for m = 0, 1, 2, 3, . . . . 

f (r, cos 
−1 

(µ))Pm(µ)dµ = i=1 Ami(ξir) 
2 Jm+ 1 (ξir). 

 

Since 
 
 
 

1 

m µ n µ 
−1 

 

0, for n = m 
µ = 

  2  
  

2m + 1 
,   for n = m. 

 

Now, multiply both sides of the above equation by r 2 Jm+ 1 (ξ jr) and integrate with respect to r 

i=1 

= 

−

1 

2 

i=1 n=0 −

1 

2 

i=1 n=0 

i=1 n=0 

2 Jn+ 1 (ξir)Pn(cos θ). Ani(ξir) f (r, θ) = 

f (r, cos 

(µ))Pm(µ)dµ = Pm(µ)Pn(µ)dµ 

Ami(ξir) 



Partial Differential Equations M.Sc.(Mathematics)-II Sem   

ξ 2 3 

∞ 

j 3 

2 

 
( r) 

J
m+ 1 (ξ jr) 

 

Am j(ξ jr) 2 Jm+ 1 (ξ jr)Pm(cos θ) exp(−αξj t) 

∫ 

m, j 
2 
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between the limits 0 to a and use the orthogonality property of Bessel functions, we get 
 

1     
  

2m + 1 
! ∫ a

 
 

 

 
r 2 Jm+ 1 (ξ jr)dr 
 

 

"∫ 1  
Pm(µ) f (r, cos−1 (µ))dµ

#

 

j 
0 

2
 

= 
X 

Ami 

∫

 

−1 

rJm+ 1 (ξir)Jm+ 1 (ξ jr)dr 
  

i=1 
0 

2 2 

a2    
J 

2 
 

 

 
 

Since 

∫ a 

 

  

 0, fori j 

 
 

  
rJm+ 1 (ξir)Jm+ 1 (ξ jr)dr =  

 
 

a2    

  

Am j = (2m + 1)ξ 2 

 

 

a 
r 2 J 

1 
1 (ξ jr)dr 

 
 

Pm(µ) f (r, cos−1(µ))dµ (4) 

a2 

The required solution is 
J

m

J 2 
0

 

+ 1   ξ j 

m+ 2 

−1 

 

X 
− 1 2 

 

where Am j ’s are given in (4). ■ 
 

 

1. Solve the one-dimensional diffusion equation in the range 0 ≤ x ≤ 2π, t > 0 subject to the 

boundary conditions 

 
θ(x, 0) = sin3 x for 0 ≤ x ≤ 2π 

θ(0, t) = θ(2π, t) = 0 for t ≥ 0. 

 
2. The edges x = 0, a and y = b of the rectangle 0 ≤ x ≤ a, 0 ≤ y ≤ b are maintained at zero 

2 2 
1 

2 

J
m

J 
+ 1 (ξ jr) 

2 2 
0 

2 

2 

= Am j 
2 

,  for i = j. 

T (r, θ, t) = 

a 

∫ 
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temperature while the temperature along the edge y = 0 is made to vary according to the 

rule θ(x, 0, t) = f (x), 0 ≤ x ≤ a, t > 0. If the initial temperature in the rectangle is zero, 

find the temperature at any subsequent time t, and deduce that the steady-state temperature 

is 

2 X sinh[mπ(b − y)/a] 
 

 sin
 

mπx
 ∫ a 

f (u) sin
 

mπu
 

du 
 

3. A circular cylinder of radius a has its surface kept at a constant temperature θ0. If the initial 

temperature is zero throughout the cylinder, prove that for t > 0 

 
θ(r, t) = θ0 1 − 

2 X
   J0(ξna)   

e−ξ2κt

 

,
 

a 
n=1 

ξn J1(ξna)  
 

where ±ξ1, ±ξ2, . . . , ±ξn, . . . are the roots of J0(ξa) = 0. 
 
 
 

 

In this unit, the students acquired knowledge to 

 
• solution of Diffusion Equation in Cylindrical Coordinates. 

• solution of Diffusion Equation in Spherical Coordinates. 
 

 

 

1. M.D. Raisinghania, Advanced Differential Equations, S. Chand & Company Ltd., New 

Delhi, 2001. 

2. K. Sanakara Rao, Introduction to Partial Differential Equations, Second Edition, 

Prentice-Hall of India, New Delhi, 2006. 

m=1 

∞ 

a sinh(mπb/a) 0 
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BLOCK-V 

UNIT 10 

INTEGRAL TRANSFORMS 

 
 
 

 

In this unit, we will we discuss the use of the Laplace and Fourier transform to obtain 

the solution of the diffusion equation. 

 
 

10.1 The Use of Integral Transforms 

 
10.1.1 Solution of Diffusion Equation by Laplace Transform 

 

Consider the diffusion equation 
2
θ = 

1 ∂θ 

κ ∂t 

 

(1) 

Structure 

Objective 

Overview 

10. 1 

10. 2 

The Use of Integral Transforms. 

Partial Differential Equations. 

Let us Sum Up 

Check Your Progress 

Suggested Readings 

∇ 
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in the region bounded by the two surfaces S 1 and S 2, the initial condition 

 
θ = f (r) when t = 0 (2) 

 

and the boundary conditions 

 

a1θ + b1 
∂θ 

= g1(r, t) on S 1 (3) 
∂n 

a2θ + b2 
∂θ 

= g2(r, t) on S 2, (4) 
∂n 

 

where the functions f , g1 and g2 are prescribed. The quantities a1, a2, b1, b2 may be functions of 

x, y and z, but we shall assume that they do not depend on t. 

Using Laplace transform technique, we solve the equation (1) with the initial and boundary 

conditions. 

The Laplace transform of the function θ(r, t) is given by 
 

θ(r, s) = 
∞ 

θ(r, t)e−st
dt. (5) 

0 

 
Taking the Laplace transform with respect to t on both sides of equation (1), we have 

 

L 
.
∇2θ(r, t); s

. 
= L 

" 
1

 
 

 

∂θ 
(r, t); s 

∂t 
 

  

2θ(r, s) = 
1

 
κ 

 
  

n
sθ(r, s) − θ(r, 0)

} 
( ∵ θ(r, s) = L [θ(r, t); s] ) 

∇2θ(r, s) − 
s
θ(r, s) = −

1 
f (r) 

 

where k2 = 
s
 

κ 

(∇2 − k2)θ(r, s) = −
1 

f (r), (6) 
 
 

and θ(r, s) satisfies the nonhomogeneous Helmholtz equation. Also the Laplace 

transform of the boundary conditions (3) and (4) becomes 

 
a1θ + b1 

∂θ 
= g (r, s) on S 1 (7) 

 

∂n 1 
a2θ + b2 

∂θ 
= g (r, s) on S 2. (8) 

 

∂n 2 

∇ 
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We can determine the function θ(r, s) satisfies the equation (6) with the boundary conditions (7) 

and (8). Then the temperature function θ(r, t) is determined by the Laplace’s inversion transform 

and is given by 
  1 c+i∞ 

θ(r, t) = 
c−i∞ 

 
 

θ(r, s)e
st
 ds. 

Problem 10.1.1. Determine the function (r t) satisfying 
∂2θ

 
 

 

1 ∂θ 
 

  

1 ∂θ 
t
 

 
  

0 0 r a 

θ  , 
∂r2 + 

r ∂r 
= 

κ ∂t 
, >  , < < 

 

and the conditions θ(r, 0) = 0, θ(a, t) = f (t). 

 

Solution. Given  

∂2θ 

 

1 ∂θ 

 

1 ∂θ 

∂r2 
+ 

r ∂r 
= 

κ 
, t > 0, 0 < r < a (1) 

∂t 
 

subject to the condition 
 

 

θ(r, 0) = 0 (2) 

 
θ(a, t) = f (t). (3) 

 
 

The Laplace transform of the function θ(r, t) is 

 

θ(r, s) = L [θ(r, t); s] = 
∞ 

θ(r, t)e−st
dt. (4) 

0 

 

 
 

The inverse Laplace transform of θ(r, s) is 

 
  1 c+i∞ 

θ(r, t) = 
c−i∞ 

 

 

 

 

θ(r, s)e
st
 

 

 

 

ds. (5) 

 

Taking the Laplace transform with respect to t on both sides of equation (1), we have 
 

L 

" 
∂2θ 

; s

#

 
1 

L 

" 
∂θ 

; s

#
 1 

L 

" 
∂θ 

; s

#
 

2πi 

2πi 
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∂2θ(r, s) 1 ∂θ(r, s) 
 

 

1 
s 
∂θ(r, s) 

−
 (r  0) 

∂r2 
+ 

r ∂r 
= 

κ 
 

∂t 

θ ,  . 

 

Using the initial condition θ(r, 0) = 0, we get 
 

 
 ∂2θ(r, s) 

 
 1 ∂θ(r, s) 

 
 s ∂θ(r, s) 

∂r2 
+ 

r ∂r 
− 

κ 
= 0 (6) 

∂t 
 
 

which is a Bessel’s equation of order zero. 

 
The Laplace transform of the boundary condition θ(a, t) = f (t) is 

 
 
 

θ(a, s) = f (s), (7) 
 
 
 

where f (s) is the Laplace transform of the function f (t). The solution of equation (6) is 

 

 
 

θ(r, s) = A I0(kr) + B K0(kr). (8) 

 
 

Using the physical condition of θ(r, t) and hence θ(r, s), cannot be infinite along the axis r = 0 

of the cylinder, then the solution (8) becomes 

 

θ(r, s) = A I0(kr). 

 
 

Using the boundary condition (7), we have 
 
 

θ(r, s) = f (s) 
I0(kr) 

, 
I0(ka) 
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2 

g(t) = 
2πi

 
I0(ka) 

e
 

f (t ) g(t − t )dt . (9) 

c−i

∞ 

10.1. The Use Of INTegRAL TRANsfORMs 

where k2 = 
s 
. The solution of (1) becomes 

κ 

283 

 

  1 c+i∞ 

θ(r, t) = 
c−i∞ 

f (s) 
I0(kr) 

est 

I0(ka) 

 
ds. 

 

If 
I0(kr) 

I0(ka) 

 

is the Laplace transform of the function g(t), i.e., if 

 

  1 
∫ c+i∞ I0(kr) st 

 

 

then by convolution theeorem, we have 

∫ t 
J J J 

 

 

 

To evaluate the contour integral (8), we note that the integrand is a single-valued function of s, so 

that we may make use of the contour. The poles of the integrand are at the points 

 

s = sn = −κξ2 n = 1, 2, . . . , 

 

 

where the quantities ξ1, ξ2, . . . , ξn, . . . are the roots of the transcendental equation 

 
 

J0(aξ) = 0. (10) 

 
 

Taking the radius of the circle  MNL  to be  κ(n + 1 )2 π2/a2, there will be no poles of the integrand 

on the circumference of the circle, and from the asymptotic expansions of the modified Bessel 

functions I0(kr), I0(ka) it is readily shown that the integral round the circular arc MNL tends to 

the value 0 as n → ∞. We may therefore replace the line integral for g(t) by the integral of the 

0 

2πi 

ds, (8) 

θ(r, t) = 
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same function. The residue of this function at the pole s = sn is 
 

I0(irξn)e−κξ2t 

a/(2iκξn)I1(iaξn) 
=

 

2κξn J0(rξn)e−κξ2t
 

 
 

aJ1(aξn) 
(11)

 
 

since  I1(x) = I0
J (x). Thus 

g(t) = 
X 2κξn J0(rξn) 

e−κξ2t. (12) 
 

n=1 
aJ1(aξn) 

 

Substituting (12) into (9), we obtain the required solution of (1) is given by 
 

 
(r t) 

2κ X 
 

 

ξn J0(rξn) 
 

  

∫ t 

f (tJ)e−κξ2(t−tJ)dtJ 

 

 
(1) 

 

where the sum is taken over the positive roots of the transcendental equation (10). ■ 

 
10.1.2 Solution of Diffusion Equation by Fourier Transform 

In this subsection, we discuss the solution of diffusion equation using Fourier transform technique. 

Recall the basic definitions of Fourier transform: 

 

• Fourier transform of f (t) is 

F[ f (x); s] = F(s) = 
   1  

∫ ∞ 

f (x)e
isx

dx. 

• Two-dimensional Fourier transform of f (x, y) is 

F[ f (x, y); ξ, η] = F(ξ, η) =
 1 

∫ ∞ ∫ ∞ 

f (x, y)e
i(ξx+ηy)dxdy. 

  

• Three-dimensional Fourier transform of f (x, y, z) is 

F[ f (x, y, z); ξ, η, ζ] = F(ξ, η, ζ) =
  1 

∫ ∞ ∫ ∞ ∫ ∞ 

f (x, y, z)e
i(ξx+ηy+ζz)dxdydz. 

(2π) 2 −∞ −∞ −∞ 

• Generalized Fourier transform of f (r) is 

−

∞ 

−

∞ 

0 ) ξn J1(a a 

∞ 

3 

θ = 
n=1 

, 
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F[ f (r); ρ] = F(ρ) =  
   1 

∫ ∞ ∫ ∞ 

· · · 

∫ ∞ 

f (r)e
i(ρ · r)dτ , 
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(2π) 2 −∞ −∞ −∞ 

_______________ _______________ 
n times 

 

where r is n -dimensional vector, i.e., r = (x1, x2, . . . , xn) and dτ = dx1dx2 . . . dxn. 

 

Problem 10.1.2. Find the solution of the equation κ 2θ = 
∂θ

 
∂t 

for an infinite solid whose initial 

distribution of temperature is given by θ(r, 0) = f (r), where the function f is prescribed. 
 

 
Solution. Given  

κ 2θ = 
∂θ

 
∂t 

 

 

(1) 

 

subject to the initial condition 

 
θ(r, 0) = f (r). (2) 

 

Here we consider the three-dimensional diffusion equation, i.e., r = (x, y, z). 

 
The three-dimensional Fourier transform of θ(r, t) is 

Θ(ρ, t) = (2π)−
3 

∫ 

θ(r, t)e
i(ρ · r)dτ , (3) 

where ρ = (ξ, η, ζ), dτ  = dxdydz and the integration extends throughout the entire xyz space. 

 
Taking the Laplace transform of the given equation (1) and initial condition (2), we get the 

ordinary differential equation with initial condition 

dΘ 
+ κp2Θ = 0 (4) 

dt 
 

Θ(ρ, 0) = F(ρ), (5) 

n 
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where F(ρ) is the Fourier transform of the function f (r). The solution of equation (4) subject to 
 

the initial condition (5) is  

Θ(ρ, t) = F(ρ) e−κρ2t. (6) 
 

Let 
 
 

G(ρ) = e−κρ2t (7) 
 

is the Fourier transform of the function 

 
 

g(r) = (2κt)−
3 

e−r2/4κt. (8) 

 

Equation (6) becomes 

 
Θ(ρ, t) = F(ρ) G(ρ). (9) 

 

By the convolution theorem of Fourier transform, the solution of (1) is 

 
 

θ(r, t) = ( f ∗ g)(r) 

= (2π)−
3 

∫ 

f (rJ)g(r − rJ)dτJ 

θ(r, t) = (2κt)−
3   

∫  

f (rJ)e−|r−rJ |2/4κtdτJ, (10) 

where the integration extends over the whole xJyJzJ space. If 

u = (u, v, w) = (4κt)−
1 

(rJ − r) 
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√
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i 
i 

u f (u)J (ξ u)du, 
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The solution (10) reduces to 

287 

 

 

θ(r, t) = π−
3

 

∫ −∞ ∫ −∞ ∫ −∞  

f (·r + 2u 
√

κt)e−(u
2+v2+w2)dudvdw 

−∞ −∞ −∞ 

 

which is known as Fourier’s solution. ■ 
 

 

1. Use the theory of the Laplace transform to derive the solution of the boundary value 

problem: 
∂2θ 1 ∂θ 

∂x2 
= 

κ ∂t 
0 ≤ x ≤ a, t > 0 

θ(0, t) = f (t), θ(a, t) = 0, θ(x, 0) = 0. 

 
2. If θ(r, t) satisfies the equations 

(i) 
∂2θ

 
 

 

1 ∂θ 
 

  

1 ∂θ 
 

∂r2  
+ 

r ∂r 
= 

κ ∂t 
0 ≤ r ≤ a, t > 0 

(ii) θ(r, 0) = f (r) 0 ≤ r ≤ a 

(iii) 
∂θ 

+ hθ 
∂r 

show that 

 

 
r=a 

= 0  t > 0 

 
2  X 

 

  

 
ξ2e−kξ2t J0(ξir) 

∫ a
 

  
 

 

where the sum is taken over the positive roots ξ1, ξ2, . . . , ξi, . . . of the equation 

 
hJ0(aξi) = ξi J1(aξ0). 

 
1 

 

2 

3. Using the Fourier sine transform Θs(ξ, t) = 
π

 
∞ 

θ(x, t) sin(ξx)dx, show that the 
0 

Poisson integral θ(x, t)  =  
  1 

 
2 πκt 

∞ 

f (ξ) 
.
e−(x−ξ)2/4κt − e−(x+ξ)2/4κt

. 
dξ and   θ(x, t)   = 

θ0 

"

1 − erf

 
  x 

!# 

are the solution of one-dimensional diffusion equation. 

i 0 
0 (h2 + ξ2)[J0(ξia)]2 

i a2 
θ(r, t) = 
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10.2 The Use of Green’s Functions 

 
In this section, we explain the procedure to determine the solution of diffusion equation using 

Green’s function. 

Consider the diffusion equation 
∂θ 

= κ 2θ (1) 
∂t 

in the volume V, which is bounded by the simple surface S, subject to the boundary condition 

 
θ(r, t) = φ(r, t) if r ∈ S (2) 

 

and the initial condition  
θ(r, 0) = f (r) if r ∈ V. (3) 

 

Define the Green’s function G(r, rJ, t − tJ) (t > tJ) satisfies the equation 

∂G 
= κ 2G (4) 

∂t 
 

the boundary condition  
G(r, rJ, t − tJ) = 0 if  rJ ∈ S (5) 

 

and the initial condition that lim G is zero at all points of V except at the point r where G takes 

the form 
t→tJ 

  1   
exp 

"

− 
|r − rJ|2   

# 

(6)
 

 

 
 

J   
3 4κ(t − tJ) 8[πκ(t − t )] 2 

since G depends on t only in that it is a function of t − tJ, then equation (4) becomes 

∂G 
+ κ 2G = 0. (7) 

∂tJ 

The time tJ lies within the interval of t for which equations (1) and (2) are valid, we have 
 

∂θ 
 

 

∂tJ 
= κ∇2θ tJ < t (8) 

θ(rJ, tJ) = φ(rJ, tJ) if rJ ∈ S. (9) 
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V 

∂tJ (θG)dτ dt [G∇ θ − θ∇ G]dτ dt , (10) 

f (r )G(r, r , t)dτ – κ dt φ(r , t) dS 
∂n 

V 
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From (7) and (8), we obtain 
 

∂ 
(θG) = θ

∂G 
+ G

∂θ 
= κ[G∇2θ − θ∇2G] 

289 

∂tJ ∂tJ ∂t 

∫ t−ε (∫ 
∂ 

 

  

J

) 
J 

∫ t−ε (∫ 
2

 

 

  

2 J

) 
J 

 

where ε is an arbitrarily small positive constant. 

By changing the order of integrations on the left-hand side, we get 

∫ 

(θG)tJ=t−εdτJ − 

∫ 

(θG)tJ=0dτJ = θ(r, t) 

∫ 

[G(r, rJ, t − tJ)]tJ=t−εdτJ − 

∫ 

G(r, rJ, t) f (rJ)dτJ. 

From equation (6), we have 

∫ 

[G(r, rJ t − tJ)]tJ=t−0dτJ = 1 

and letting ε → 0, the left-hand side of equation (10) reduces 

θ(r, t) − 

∫ 

G(r, rJ t−)dτJ. 

Applying Green’s theorem to the right-hand side of equation (10) and the boundary conditions (2) 

and (5) gives 
∫ t 

J 

∫ J ∂G J 

 

Again, let ε → 0, we obtain 

κ dt 
0 

φ(r , t) 
∂n 

dS . 

∫ 
J J 

 

 

J 

∫ t 
J 

∫ 

 

 

J ∂G J 

 

which is the required solution of the boundary value problem. 

 

Problem 10.2.1. If the surface z = 0 of the semi-infinite solid z > 0 is maintained at temperature 

φ(x, y, t) for t > 0 , and if the initial temperature of the solid is f (x, y, z), determine the 

distribution of temperature in the solid. 

0 V 

V 0 V 0 
⇒ = κ 

θ(r, t) = 
S 

(11) 

− 
S 
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f (r )G(r, r , t)dτ φ(r , t) dS 
∂n 

V 

3 

290 10.2. The Use Of GReeN’s FUNCTIONs 

Solution. The Green’s function for the given problem is 
 

 
G(r  rJ t − tJ)   1   

(

exp 

"

− 
|r − rJ|2   

# 

− exp 

"

− 
|r − ρJ|2  

#)
 

 
  

 
 , , = J   

3 4κ(t − tJ) , 4κ(t − tJ) 8[πκ(t − t )] 2 

where ρJ =  (xJ, yJ, −zJ) is the position vector of the image of the point rJ in the plane z = 0. 

Then 

∂G ∂G 
!
   z  

"
 

 

  

 

 

(x − xJ)2 + (y − yJ)2 + z2 
#
 

 

∂n 
= − 

∂zJ = − 3   5 5   exp  − . 

4κ(t − tJ) 
zJ=0 

8π 2 κ 2 (t − t ) 2 

We know that the solution of the diffusion equation using Green’s function is given by ∫ 
J J 

J 

∫ t 
J 

∫ J ∂G J 

 

Then the above equation becomes 
 

 
  1  

θ(r, t) = 3 

8(πκt) 2 

∫   

f (rJ)[e−|r−rJ |2/4κt  − e−|r−æJ |2/4κt]dτJ 

  z 
∫ t ∫ 

 

   

φ(xJ, yJ, tJ) 
 

 

 

 

" 
(x − xJ)2 + (y − yJ)2 + z2 #

 
 

 

J J J 

+ πκ) 
(t − J exp − 

4κ(t − tJ) 
dx dy dt , 

where V denotes the half space z > 0 and Π the entire xy plane. ■ 

Problem 10.2.2. Determine the Green’s function for the thick plate of infinite radius bounded by 

the parallel planes z = 0 and z = a. 

Solution. We know that the Green’s function G(r, rJ, t − tJ) (t > tJ) satisfies the equation 

 
∂G 

= κ 2G (1) 
∂t 

t ) 2 0 2 8( 

J 

3 

θ(r, t) = 
V 

– κ 
0 

dt 
S 

Π 
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the boundary condition 

291 

 

 
G(r, rJ, t − tJ) = 0 if  rJ ∈ S (2) 

 

and the initial condition that lim G is zero at all points of V except at the point r where G takes 
t→tJ 

the form 

  1   
exp 

"

− 
|r − rJ|2   

# 

(3)
 

 

 
 

J   
3 4κ(t − tJ) 8[πκ(t − t )] 2 

To determine a function G which vanishes on the planes z = 0, z = a and has a singularity of the 
 

type (3). We write  

G(r rJ t) 
  1   

exp 

"

−
|r − rJ|2 

#
 

 
G (r rJ t) 

 

 
(4) 

 

and from (1), we get  
 

κ 2G  = 
∂G1

 

∂t 
i.e., 

∂2G1
 

 
 

1 ∂G1 ∂2G1 
 

 

1 ∂2G1 
 

 

∂G1 

∂ρ2 
+ 

ρ ∂ρ 
+

 ∂z2  
+ 

ρ2 ∂φ2  
=

 

. (5) 
∂t 

 

Taking the Laplace transform of (4), we get 
 

L 
.
G(r rJ 

 
 

t)
.
 L 

"
 1  

 
 

exp 

"

−
|r − rJ|2 

##
 

L 
.
G (r rJ 

 
 

t)
.
 

G(r, rJ, s) =
 1  

 
∫ ∞ 

e−µ|z−zJ |  J0(λR) 
λdλ + G  (r, rJ, s) (6) 

 

where R2 = (x − xJ)2 +(y −yJ)2 and µ2 = λ2 + s/κ and G, G1 are the Laplace transforms of G, G1. 

= + , 

, 
= + , 

0 
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Again taking the Laplace transform of (5) on both sides, we get 
 

 
  ∂2G1 1 ∂G1 

 
  ∂2G1 1 ∂2G1 s 

 

∂ρ2 
+ 

ρ ∂ρ 
+

 ∂z2  
+ 

ρ2 ∂φ2  = 
K

G1, (7) 

 
 

where ρ, z, φ denote cylindrical Coordinates. 

 
Then the solution of equation (7) is of the form 

 

G (r, rJ, s) =
 1  

 

∫ ∞ λ 
J (λR){F sinh(µz) + H sinh[µ(a − z)]}dλ, 

 

 

where the functions F(λ) and H(λ) must be chosen so that  G vanishes on the planes z = 0, z = a . 

Therefore 

 

F = −e−µ(a−zJ) cosech (µa), 

H = −e−µzJ 

cosech (µa). 
 

 

If 0 < z < zJ , we obtain 

 
G = 

  1   

2πκ 

 

∞ λJ0(λR) sinh[µ(a − zJ)] sinh(µz) 
dλ.

 

0 µ sinh(µa) 
 
 

Substitution λ = iξ, we get 

 

G 
1   

∫ i∞ 

 

 

 
ξI0(ξR) sinh[η(a − zJ)] sinh(ηz) 

d
 

−i

∞ 

∫ 

ξ, 
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where η2 = s/κ − ξ2. By using the residue technique, we have 

293 

 

G = 
 1  X 

sin
 

nπz
  

sin

 
nπzJ 

! 

K (ξ R), 
 

 
 

where   ξn   = 
,

n2π2/a2  + s/κ.  Using  the  fact  that   K0[x 
,

s/κ]   is  the  Laplace  transform  of 

(2t)−1e−x2/4κt and that the Laplace transform of e−at
 f (t) is f (s + a), we obtain 

e−R2/4κ

t      
G = 

2πκta 

X

n=1 

 
sin 

  
nπz 

 
 

 

 

 
sin 

 
nπzJ 

!
 

 

 

e−n2π2κt/a2 

 

which is the required Green’s function. ■ 

 

 

1. Solve the boundary value problem 
 

∂θ ∂2θ 

∂t 
= κ

∂x2 x ≥ 0, t > 0 

θ(0, t) = φ(t), t > 0; 

θ(x, 0) = f (x), x ≥ 0. 

 
2. By using the theory of Laplace transforms derive the Green’s function for the segment 

0 ≤ x ≤ a. 

3. Show that the Green’s function for problems with radial symmetry, in which the temperature 

vanishes on r = a , can be expressed in the form 

G(r, rJ, t) =  
    1 X

 sin 
  
nπr 

  
sin 

 
nπrJ 

! 

e−n2π2κt/a2 

.
 

 n=1 

a a 

n=1 

∞ 

∞ 
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294 10.2. The Use Of GReeN’s FUNCTIONs 
 

 

In this unit, the students acquired knowledge to 

 
• find the solution of diffusion equation by Fourier transform technique. 

• understand the concepts of the uses of Green’s funciton. 
 

 

 

1. M.D. Raisinghania, Advanced Differential Equations, S. Chand & Company Ltd., New 

Delhi, 2001. 

2. K. Sanakara Rao, Introduction to Partial Differential Equations, Second Edition, 

Prentice-Hall of India, New Delhi, 2006. 

Let us Sum up: 
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