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Objectives

After Studying this Unit, the student will be able to

o Explain the sampling distribution of the mean.
o Demonstrate the t distribution and F distribution.
o Elaborate the chi-square distribution with example.

Overview

In this unit, we will study the concept of sampling distribution of the mean, the chi-
square distribution, t distribution and F distribution.

1.1. Introduction

Statistics concerns itself mainly with conclusions and predictions resulting from
chance outcomes that occur in carefully planned experiments or investigations. Drawing
such conclusions usually involves taking sample observations from a given population and
using the results of the sample to make inferences about the population itself, its mean, its
variance, and so forth. To do this requires that we first fin the distributions of certain
functions of the random variables whose value make up the sample, called statistics. The
properties of these distributions then allow us to make probability statements about the
resulting inferences drawn from the sample about the population.

1.1.1. Population

A set of numbers from which a sample is drawn is referred to as a population. The
distribution of the numbers constituting a population is called the population distribution.

1.1.2. Random Sample

If X1, X2, ..., X» are independent and identically distributed random variables, we say
that they constitute a random sample from the infinite population given by their common
distribution.

1.1.3. Sample Mean and Sample Variance

If X1,X2, ..., Xn constitute a random samgrlle,&h%g the sample mean is given byX=

n Xi
—=— and the sample variance is given by §? = == ———
1.1.4. Remark
noxi I (xi—x)?
Let x=—=— and s?2 = “=-——— for observed sample data and refer to these

statistics as the sample mean and the sample variance. Here x; xands? are values of the

corresponding random variables X;, XndS2 . The formulas for xands2 are used even when
we deal with any kind of data, not necessarily sample data, in which case we refer xands?
simple as the mean and the variance.




1.2. The Sampling Distribution of the Mean

1.2.1. Theorem

If X1, X2, ..., X» constitute a random sample 2from an infinite population with the mean u
and the variance o2, then Ey = pand Var(J =7 _

n

Proof:
- 1
Let ¥ =Xand hence setting a; =— We get

EG=3%" 'u=nC.p)=p Since EX)=p
i=1 i

n n

Then, “If the random variables Xi,X»,..,X,» are independent and Y =Y, aX;, then
Var(Y) = Y., a? Var(X)”

n 2

~ 1 , _ 1 2_0
Var(X—Zlﬁ.a —n(ﬁ.a)—z
=

1.2.2. Remark

We write E(¥ as i )?nd Var(¥ as o2 and refer to o- as the standard error of the

mean. The formula for the standard error of )tﬁﬂe mean, o = )6_,the standard deviation of
Vn
the distribution of Xdecreases when n, the sample size, is increased. This means that when

n becomes larger and we actually have more information, we can expect values of Xto
closer to u, the quantity that they are intended to estimate.

1.2.3. Result

For any positive constant c, the probability that Xwill take on a value between u — ¢

g

to u+c is at leastl ~—, Whenn — o, this probability approaches 1. This result, called a
law of large numbers.

1.2.4. Theorem (Central Limit Theorem)

If X1, X5, ..., Xn constitute a random sample from an infinite population with the mean
u, the variance a2, and the moment-generating function Mx(t), then the limiting distribution

of Z = X;"as n — < js the standard normal distribution.
0/\/‘1_1

Proof:
If a and b are constants, then
1. Mx4o(t) = E[e+a)x] = eat, My(t)

2. Myx(t) = E[ebXt] = Mx(bt)

X+a

Oty _ ot ¢
3. Mxia(t) = E[e(C? ] =eb .My ()« we get
b




Nax
Mz () = Mx-u(t) = e~Vnut/o M, (—)

\/n
® v (t)
Mz (t) = Mx—(t) = e—Vut/o - (—=
20 = Mage(© = e ie b

SincenX=X:1+ X2+ -+ Xn
Mz(t) = e—Vmut/o, [My (—\/_)]

and hence that

InM (t) = —‘/““ n.ln M(_)

z o ovn
Expanding M (Lf) as a power series in t, we obtain
ovn

Vot t t2 3
In Mz(t) = — K +nin [1+y +u +u U + ]

o 'ah~  :2n 360%min

Where ,u’l, ,u’zand ,u’3are the moments about the origin of the population distribution, that is,

those of the original random variablesX;.

If nis sufficiently large, we can use the expansion of In(1 + x) as a power series in x, getting

t t2 3
! W Au T 4] 1
\/ i 10\/;7- om 360'371\/71 1
R ut 1 t t? £3 2 1
InM_(t) = - +n —u___+u +u _+ -]
z o ) 2 'oh 2o 3 603nVn ,
t 2
L+ [ O S VO S S | IR |
1 3 1oh 2 2on 3 603nVn J

Then, collecting powers of t, we obtain

VrRu Ry '3
mM =" —1)t+(”2 ——1)tz+( My, M Yt o
z o o 202 202 6a03vn  203n 302\/11

and since ' = uand yu' — (y’)2 = o2, this reduces to
1 2
’ ’ 3

1 u
InM(@®)=_t2+ (3 — ) + )
z 2 6 2 6 03\/n

Finally, observing that the coefficient of t3 is a constant times 1% and in general, forr > 2, the

coefficient of t” is a constant times anr___z , we get



1
lim In Mz(t) = 12 and hence lim My(t) = ezt’

n—oo n—oo
Since the limit of a logarithm equals the logarithm of the limit (Provided these limit exist).

1.2.5. Example

A soft-drink vending machine is set so that the amount of drink dispensed is a
random variable with a mean of 200 milliliters and a standard deviation of 15 milliliters. What
is the probability that the average (mean) amount dispensed in a random sample of size 36
is at least 204 milliliters?

Solution:
The distribution of Xhas the mean ; 200 and the standard deviation o- =X 15 ___=25and
according to the central limit theorem, this distribution is approximately normal. e
Since z =22 — 16
25

By Statistical table, we have
P(X=>204) = P(Z > 1.6) = 0.5 — 0.4452 = 0.0548
1.2.6. Theorem

If Xis the mean of a random sample of size n from a normal population with the mean

u and the variance o2, its sampling distribution is a normal distribution with the mean u and
2

the variance —
n

Proof:
If a and b are constants, then
1. Mx+q(t) = E[e®+at] = eat, Mx(t)

2. Mpx(t) = E[ebXt] = Mx(bt)

X+a a t
3.Mx+a(t) = E [e(T)t] = eEt-MX (;). If X1,X>, ..., X, are independent random variables and
b

Y =X1+ Xo,..+ Xa then My(t) = [Ty My,(t) where My, (t) is the value of the moment-
generating function of X; at t.

n
We can write Mx (t) = [V ()] and since the moment-generating function of a normal
n 1
distribution with mean p and a2 is given by Mx(t) = e “tJ% at

1
According to the theorem Mx(t) = e “*% % ¢, we ger

n
1 22 12£

111
M)‘(t) = [e 'u'n_'z(n) o ] = e‘ut+5t (n)



Ths moment-generating funciton is a normal distribution with the mean u and the variance

o2

n

1.3. The Sampling Distribution of the Mean: Finite Populations

1.3.1. Random Sample-Finite Population

If X1 is the first value drawn from a finite population of size N, X is the second value

drawn,...,X, is the nt» value drawn, and the jgint probability distribution of these n random

variables is given by f(x X,y X ) for each ordered n-tuple of values of
27 n N(N-1)...(N-n+1)

these random variables, Xi,X», ..., X, are said to be constitute a random sample from the

given finite population.

1.3.2. Sample Mean and Variance — Finite Population

Ihe sam Ie mean and the sample variance of the finite population {C1, C2, .. ,CN} are
q
=2N c. =N (c —w>

lllN i=1 i N

1.3.3. Theorem

If X, and X; are the rt» and sth random variables of a random sample of size n drawn
from the finite population {c c ,C } then cov(X X ) =-_"
N-1

Proof:

cov(X , X )=X yN 1 € —de —w,i#j.
T S i=1 ]=1N(N_1) L ]

N N
1

cov(Xr, Xs) Wl)z(a W [X(c;— W, i+ j]
j=1

and since i # j, XV 1(cj —w=x" 1(cj —w) — (ci —w) = —(ci — p), we get
j= j=

N
1 a2

cov(X,, Xs) = NN = 1) Z(Cl w2 = — T

1.3.4. Theorem

If Xis the mean of a random sample of size n taken without replacement from a finite
population of size N with the mean pand the variance o2, then E(Y = p and

_ o2 N—n
var(J = — -
¥ n N-1
Proof:
1 z
Substitutinga = ~, var(X ) = 02, and cov(X ,X) = — _into the formula
LN i L N—-1

E(Y) = Y aE(X)), we get




1.4. The Chi-Square Distribution

If X has the standard normal distribution, then X2 has the special gamma distribution,
which is known as the chi-square distribution and it is denoted by y2.

If a random variable X has the chi-square distribution the v degrees of freedom if its
probability density is given by

v 1 v—2 x
fO)={_—— _x7ez forx >0
22I'(v/2)
0 elsewhere

The mean and the variance of the chi-square distribution with v degrees of freedom are
vand2v, respectively, and its moment-generating function is given by Mx(t) = (1 — 2t)-v/2

1.4.1. Result

If X has the standard normal distribution, then X2 has the chi-square distribution with
v = 1 degree of freedom.

1.4.2. Theorem

If Xi,Xs..,X» are independent random variables having standard normal
distributions, then Y = ., X? has the chi-square distribution with v = n degrees of freedom.

Proof:

Using the moment-generating function with v = 1 and by above result 1.3.1., we get

1
fo(t) = (1—2t) 2 and from the theorem “ My(t) = [Ti=; Mx,(t) then

n

M) = G(1-20"7=(1-20)"7
i=1

This moment-generating funciton is identified as that of the chi-square distribution with v =n
degrees of freedom.




1.4.3. Result

If X1, X2, ..., X» are independent random variables having chi-square distribution with
V1, Un, ... Un degrees of freedom, then Y = }n_.X; has the chi-square distribution with v1 +
vn + -+ + v, degrees of freedom.

1.4.4. Result

If X, and X, are independent random variables, X; has a chi-square distribution with
v1 degrees of freedom, and X1 + X has a chi-sqaure distribution with v > v, defrees of
freedom, then X has a chi-square distribution with v — v; degrees of freedom.

1.4.5. Theorem

If X and S2 are the mean and the variance of a random sample of size n from a
normal population with the mean p and the standard deviation g, then The random variable

_ 2
%has a chi-square distribution with n-1 degrees of freedom.

Proof:

Consider the identity

n n

ST —w? =0 — w? + n(X— p)?

i=1 i=1
Now, divided each term by o2and substitue (n — 1)S2 for Y, (X; — 32,

n

X, —un? (n—1)s2 Xpul
Z(T) =0—2+(a/\/r_1)

i=1

We know from the theorem that the one on the left-hand side of the equation is a random
variable having a chi-square distribution with n degrees of freedom. Also by theorems, the
second term on the right-hand side of the equation is a random variable having a chi-square
distributoin with 1 degree of freedom. Now, since X and S2 are assumed to be independent
that the two terms on the right-hand side of the equation are independent, and therefore

(n—1)S2

Tis a random variable having a chi-squre distribution with n-1 degrees of freedom.

1.4.6. Example

Suppose that the thickness of a parat used in a semiconductor is its critical dimension
and that the process of manufacturing these parts is condsidered to be under control if the
true variation among the thickness of the parts is given by a standard deviation not greater
than ¢ = 0.60 thousandth of an inch. To keep a check on the process, random samples of
size n = 20 are taken periodically, and it is regarded to be “out of control” if the probability
that S2 will take on a value greater than or equal to the observed sample value is 0.01 or
less (even though ¢ = 0.60). What can one conculude about the process if the standard
deviation of such a periodic random sample is s = 0.84 thousandth of an inch?



Solution:

The process will be declared ‘out of control” if (=DS s’ with n = 20 and o = 0.60 exceeds
¥ =36191. Since w-ns = 1908’

0.01,19 o2 (0.60)2
out of control. Here we assumed that the sample regarded as a random sample from a
normal population.

= 37.24 ex(z:eeds 36.191, the process is declared

1.5. The t Distribution

1.5.1. Theorem

If Y and Z are independent random variables. Y has a chi-square distribution with v

degrees of freedom, and Z has the standard normal distribution, then the distribution of T =
(v+1) _ v+l

D ( ) for —oo < t < o and it is called the t distribution

with v degrees of freedom.

G is given by f(t)

Proof:

Since Y and Z are independent, their joint probability density is given by

1 —12 1 v_y _Y

= 2z 5
fory>0 and —0 <z < o, and f(y,z) = 0 elsewhere. Then, to use the change-of-variable
technique, we solve t = for z, getting z = tv/y/v and hence ~ =+/yJv. Thus, the joint

Vy/v
density of Y and T is given by
1 =1 Y02
gy, t) = {\/_ cyze 2w fory>0and —oo <t <oo
l"(z) 20
0 elsewhere

2
and, integrating out y with the aid of the substitution w = (1 +t_), we get
2 v

Fvﬁ-‘_—l t2 _VZ_-ii
f@©) = v.-+3) for —oo <t < oo
\/ﬁl“(z)

1.5.2. Theorem

If Xand S2 are the mean and the variance of a random sample of size n from a
normal population with the mean p and the variance o2 then T = % has the t distribution
S/\Vn

with n-1 degrees of freedom.

Proof:

@D and T = have,
2 a/\/_
respectively, a chi-square distribution with n-1 degrees of freedom and the standard normal

From theorems 1.2.6. & 1.4.5. we get, the random variables Y =

10




distribution. Since they are also independent, substitution into the formula for T of the above
SiE = X

VsZ/gZ  S/Vn

theorem we have T =

1.5.3. Example

In 16 one-hour test runs, the gasoline consumption of an engine averaged 16.4
gallons with a standard deviation of 2.1 gallons. Test the claim that the average gasoline
consumption of this engine is 12.0 gallons per hour.

Solution:

Substituting n = 16,u = 12.x = 16.4 and s = 2.1 into the formula for t in the above theorem
. X—pu 16.4 —12 B
s/vn 21/N16

8.38

Since from statistical table we have, for v = 15 the probability of getting of T greater than
2.947 is 0.005, the probability of getting a value greater than 8 must be negligible. Thus, it
would seen reasonable to conculud that the ture average hourly gasoline consumption of the
engine exceeds 12 gallons.

1.6. The F Distribution

1.6.1. Theorem

If U and V are independent rall?dom variables having chi-squre distributions with v
and v, degrees of freedom, then F = /"1 is a random variable having an F distribution, that

V/v2
is, a random variable whose probability density is given by

r(ute, Bopy_ —Lvi+vo)

9(f) =_t,(112 ,,2) (E) fz"l ta+4p 2 (e for f > 0 and g(f) = 0 elsewhere.
r(,OrC,) 2 v,

Proof:

By virute of independence, the joint density of U and V is given by

() 1 Vg oy 1 2_q
uv)= —— u: e 22— P2 e 2
f 2171/21" (Ul) 2172/21" (VZ)
2 2
1 ﬂ—l V_Z_l _(u+v)
fWv) = vryp—r—ruz v2 @ 2 for u>0 and v>0, and f(u,v)=0
21 20 T(,Or(,)
elsewhere. Then, to use the change-of-variable, we solve f = u/vy
v/v2
for u, getting u = ** .vf and hence &= ""_v. Thus, the joint density of F and V is given by
v2 af v2
(%%)UI/Z ﬂ_l Z_ﬂl_l _z(y_lf_'_l)
g(f,v) = 2(v1+uz)/zr(ﬂzl)r(ﬂzz)f2 v 2 ez for f>0 and v>0, and g(f,v) =0
elsewhere.

11




Now, integrating out v by making the substitutiion w = _( L 1), we finally get
2 v

- (1J+17)

g(f)_—n—z—vz;( )Zfz ta+% f) 2" % forf>0and g(f) = 0 elsewhere.

2

1.6.2. Result

If 52 and 52 are the variances of independent random samples of sizes n; and n;

populatlons from normal populations with the variances 02 and 02 then F = /7 ?25?3 a

/a 155
random variable having an F distribution with n; — 1 and n, — 1 degrees of freedom.The F
distribution is also known as the variance-ratio distribution.

Let Us Sum Up

In this unit, we explained the concept of sampling distribution of the mean, the chi-
square distribution, t distribution and F distribution with illustration.

Check Your Progress

1. The stand error of Xis

2. The standard deviation computed from the observations of sampling distribution of a
statistic is

3. The standard error of Xvaries with standard deviation and with sample size.

Glossaries

Population: It means the whole of the information which comes under the purview of
statistical investigation.

Parameter: Any statistical measure computed from population data.
Statistic: Any statistical measure computed from sample data.
Population distribution: The distribution of the numbers constituting a population.

Random sample: It is a subset of individuals chosen from a larger set in which a subset of
individuals is chosen randomly, all with the same probability.

Sample mean: It is an average value found in a sample.

12
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1. o,
Vn

2. Standard error of the statistic.

3. Directly, inversely.

13



Unit -2

Structure

Objectives

Overview

2.1. Introduction

2.2. Unbiased Estimators
2.3. Efficiency

2.4. Consistency

2.5. Sufficiency




Objectives

After Studying this Unit, the student will be able to

o Explain the unbiased estimators, efficiency, consistency and sufficiency.
e Demonstrate the concept of the method of moments and maximum likelihood.
o lllustrate the numerical problems in point estimation.

Overview

In this unit, we will study the concept of Point estimation. We will mainly focus on
unbiased estimators, efficiency, consistency, sufficiency, the method of moments and the
method of maximum likelihood.

2.1. Introduction

Problems of statistical inference are divided into problems of estimation and tests of
hypotheses, though actually they are all decision problems and, hence, could be handled by
the unified approach. The main difference between the two kinds of problems is that in
problems of estimation we must determine the value of a parameter or the values of several
parameters from a possible continuum of alternatives, whereas in tests of hypotheses we
must decide whether to accept or reject a specific value or a set of specific values of a
parameter or those of several parameters.

2.1.1 Point Estimation.

Using the value of a sample statisitc to estimate the value of a population parameters
is called point estimation. We refer to the value of the statistic as a point estimate.

2.2. Unbiased Estimators

Perfect decision functions do not exist, and in connection with problems of estimation
this means that there are no perfect estimators that always give the right answer. Thus, it
would seem reasonable that an estimator should do so at least on the average; that is, it's
expected value should equal the parameter that is supposed to estimate. If this is the case,
the estimator is said to be unbiased; otherwise it is said to be biased.

2.2.1. Unbiased Estimator

A statistic'@s an unbaised estimataor of the parameter 8 of a given distribution if and only if
E (9 = 6 for all possible vlaues of 8.

2.2.2. Example

Show that unless 6 = L the minimax estimator of the binomial parameter 9 is biased.
2

Solution:

Since E(X) = no
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X+'vn EX+'Vn) no+'vn
25— 2 2
n+v n+v n++Vn

E(
This quantity does not equal to 6 unless 6 = !

2

2.2.3. Example

If X has the binomial distribution with the parameters n and 6, show that the sample
proportion, %, is an unbiased estimator of 6.
n

Solution:

E(X) = né
X 1 1
EQ=_EX)=_.n0=06
n n n

Hence £ is an unbiased estimator of 6.
n

2.2.4. Example

If X1, X, ..., X constitute a random sample from the population given by

e—(x—zS) for x>6

fG) ={

0, otherwise
Show that Xis a biased estimator of §.

Solution:

Since the mean of the population is u = gwx em=8dx =1+96

From the theorem “If Xis the mean of a random sample of size n taken without replacement
from a fini}eNpopuIation of size N with the mean u and the variance o2, then g = uand
g

—MNyy

var( = °_."_" that @ =1+ § # & and hence that Xis a biased estimator of §.
n N-1

2.2.5. Asymptotically unbiased Estimator

Letting b.(8) = E(p — 8 express the bias of an estimator '© based on a random
sample of size n from a given distribution, we say that ‘® is an asymptotically unbiased
estimator of 6 if an only if lim b,(6) = 0.

n—>oo

2.2.6. Example
If X1, X2, ..., X» constitute a random sample from a uniform population with « = 0.

Show that the largest sample value (that is, the nth order statistic, Y,) is a biased estimator
of the parameter S. Also, modify this estimator of 8 to make it unbiased.
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Solution:

Substituting into the formula for

In _¥n
n - ;[1—9 0] 0
gny) =€ foryn>
0, otherwise

We find that the sampling distribution of Y5, is given by

n -1
g =n 1 Lan)’ = e

B o B pr "
for 0 < y, < B and g.(y») = 0 elsewhere, and hence that
B
E(Yw="f"yrdy =_" .p
B o " 0 n+1

Thus, E(Y.) # B and the nth order statistic is a biased estimator of the parameter g.

SinceE(" .y)=""." g=p
n+1 ™ n nt+l

ntitimes the largest sample value is an unbiased estimator of the parameter g.

n

2.2.7. Theorem

If S2 is the variance of a random sample from an infinite population with the finite
variance o2, then E(52) = o2.

Proof:

By definition of sample mean and sample variance

1 n
ESD=F[ % —x )

n—1
i=1

1 n
E(S?) = —F [Z{(X: —w) — (= )]
n—1 )
i 1 " _
E(S?) = — [3 B - 102 = n. E{(- 102)]
i=1

— 2
Then, since — w2} = 02 and E{(¥- u)2} = °__we get
E{(X: "
E(s? 1 " i o2 ,
( )—n—_l[glﬂ —n.n]—a'

17



2.3. Efficiency

2.3.1. Minimum Variance unbiased Estimator

The estimator for the parameter 8 of a given distribution that has the samllest variance
of all unbiased estimators for 6 is called the minimum variance unbiased estimator, or the
best unbiased estimator for 6.

2.3.2. Result

If "6is an unbiased estimator of 8 and var(® = W then "Gis a minimum

nE[(

00
variance unbiased estimator of 6.

2.3.3. Example

Show that Xis a minimum variance unbiased estimator of the mean u of a normal
population.

Solution:

1 x—p~2
Since f(x) = g\/12n 9—5(7‘4) for —oo < x <

Inf(x) = —InoVZr— % (x _ M)Z

ag

dinf(x) _ 1
A = ;(

™ and hence
ou o

dInf(X)_ 2 1 xX—u 2 1 1
—)
du o

E(

Thus,

1
aInf(X) 2 —
nE( o, ) ] P

- . 2 _ . . . .
and since Xis unbiased and Var(y = ? ,Xis a minimum variance unbiased estimator of .
n

2.3.4. Result

Unbiased estimators of one and the same parameter are usually compared in terms
of the size of their variances. If§ and’® are wo unbiased esitmators of the parameter 8 of a
given population and the vairance @ is less than the variance '@ is relatively more

efficient than @, Also :ﬂr(%))as a measure of the efficient of '© , relative to Q.
ar 2

2.3.5. Example

If X1,X>, ..., Xn constitute a random sample from a uniform population with & = 0, then
ntl  is an unbiased estimator of 5. (a) Show that 2Xis also an unbiased estimator of S.
’ n

n
(b) Compare the efficient of these two estimators of .
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Soluiton:

(a) Since the mean of the population is u = B? accoring to the theorem, “The mean and the

variance of the uniform distribution are given by u =" and o2 = 1_(3 — a)?” and also from
2 12

the theorem “If X1, X5, ..., X» constitute a random sample from an infinite population with the
mean u and the variance o2, then EQy = pand var(§ = ° "that EQy = # and hence that
n 2

E(2% = B. Thus 2Xis an unbiased estimator of £.

(b) Using the sampling distribution of ¥ and the expression for E(Y ) = " [ Py dy _n.B
n n pn 0 m o+l

E(Y?2) :ifﬁyn+1 dy _ n f2and
n pn 0 7 n n+2

n o, n 2

varor) = 8~ Grr P
n+1 32

n Vo) = n(n + 2)

Var (

2 _
Since the variance of the population is ¢2 =1_ﬁz according to the theorem we have Var(¥ =

B2 > y=F
£~ and hence Var(2¥ = 4.var(F =" —
12n 3n

Therefore, the efficiency of 2Xrelative to »+1.Y s given by

n n

2

ntl (82 )
Var(, Y») __wmt2)’ _ 3 and forn > 1 the estimator based on the nth order statistic is much

Var(Zy (13?_2) n+2
more efficient than the other one. For n = 10, foro exmpale, the relative efficiency is only 25
percent, and for n = 25 it is only 11 percent.

2.3.6. Example

When the mean of a normal population is estimated on the basis of a random sample
of size 2n + 1, what is the efficiency of the median relataive to the mean?

Solution:

From the tzheorem we know that Xis unbaised and that Var(¥ is unbiased and that
Var( = 2

_ 2n+1
For X, it is unbiased by virtug of the symmetry of the normal distribution about its mean, and

[

for large sample Var(§ ="7__
4n

Thus for larage samples, the efficiency of the median relative to the mean is approximately

o2
Var® _ G — _4 and the asymptotic efficiency of the median with respect to the
Var(® (EQE) n(2n+1)
an
meanis lim " =2 or about 64 percent.
n-oo m(2n+1) b4
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2.4. Consistency

2.4.1. Consistent Estimator

The Statistic Gis a consistent estimator of the parameter 6 of a given distribution if
and only if for each ¢ > 0 lim P([6-6] <c¢) =1
n—oo

2.4.2. Result

If'ds an unbiased estimator of the parameter 8 and var(® — 0 asn — o, then'@s a
consistent estimator of 6.

2.4.3. Example

Show that for a random sample from a normal population, the sample variance 52 is a
consistent estimator of o2.

Solution:
Since S2 is an unbiased estimator of g2 by theorem.

2
To show that var(s?) — 0 asn — c. From the theorem “the random variable ("05_ 55 4
g

chi-square distribution with n — 1 degress of freedom”

We find that for a random sample from a normal population var(s2) = i
n—1

Var(5§2) - 0asn — o and we have S2is a consistent estimator of variance of a normal
population.

2.4.4. Example

If X1, X2, ..., X» constitute a random sample from the population given by

e—(=9) forx >4
X
fx) = { elsewhere
Show that the smallest sample value (that is, the first order statisitic Y1) is a consistent

estimator of the parameter 6.
Solution:

Substituting into the formula for gi(y1), we find that the sampling distribution of Y is given by
g, (y)—ne o, =9). f e—(x— 5)dx] 1—ne —nly =9 for Y, >§ and g (y)—O elsewhere.
Based on this result, we have E(Y) =0 + and hence Y1 is an asymptotlcally unbiased
estimator of 6. "

5+c

P(lY1=6|<c)=P(6<Y1<6+c)=[ n.eno19dy, =1—ene
5
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Since lim (1 — e—) = 1, from Definition we have Y, is a consistent estimator of §.

n—oco

2.5. Sufficiency

2.5.1. Sufficient Estimator

The statistic'® is a sufficient estimator of the parameter 8 of a given distribution if and
only if for each value of '® the conditional probability distribution or density of the random
sample X1, X2, ..., Xn, given 8= 0, is independent of 6.

2.5.2. Example

If X1, X2, ..., Xn constitute a random sample of size n from a Bernoulli population, Show
that'@= 12050 1o 5 gufficient estimator of the parameter 6.
Solution:

By the definition “BERNOULLI DISTRIBUTIONS, A random variable X has a Bernoulli
distributon and it is referred to as a Bernoulli random variable if and only if its probability
distribution is given by f(x; 6) = 6x(1 — 0)—* forx = 0,1".

f(x; 6) = 6x(1 — 6)1~i forx; = 0,1

So that f(x1, x2, ..., xn) = [IL; 6%(1 — 6)1—x

" xi

ynooXi n
flxy, x2, 0, x0) = 0721 (1—0) =1
f(xl, X2, en, Xn) = 0x(1 — Q)=
f(x1, x2, o, Xn) = O78(1 — Q)n—10

for x;, =00r1 and i=1,2,...,n. Also, since X=X; + X, + --- + X, is a binomial random
varaible with the parameters 0 and n, its distribution is given by

b(x;n, 6) = (1)0*(1 — )= and the transformation-of-variable technique we have

9(8 = (m)en(1— O)efor” g =o' 1

n

We know that

flx,x,..,x . (X1, X2, oy X, €
1

S g

f(x X e X é =ﬂxl‘l21_llﬂ)
D IC)

ng1 — g)n-né
e, %2, 0,20 |9 = Gﬂgﬁ
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o 1 1 1
flx,x,..,x 19= = = _
e O n

(x1+x2+«~+x,>

forx =0orl and i=1,23,..,n. This does not depend on 6 and therefore, A(%):XZ is a

sufficient estimator of 6.

2.5.3. Example

Show that Y =_1K +2Z +3X) is not a sufficient estimator of the Bernoulli
s 1 2 3
parameter 6.

Solution:
Since f(x ,x ,x |y) = [G12223) s ot independent of @ for some values of X ,X and X .
17273 172 3
9

Let us consider the case where x; = 1,x, = 1, and x3 = 0.

Thus, y =£(1 +2.1+3.0) ='and
6 2

1
PXi=1X.=1X;=0Y =)
P(Y=")
2

FLL0IY =2 =
2

_1 B f(1,1,0)
FALOIY =) = T 0y 7(0,0,1)

Where f(xl, X2, x3) = @Qrx1tx2txs (1 _ 9)3—(x1+xz+x3)

forx; =0or1landi=1,2,3. Since f(1,1,0) = 62(1 — 6) and £(0,0,1) = 6(1 — 6)2

1 02(1 —0)

P 0 rea—oz ?

f(@,10|Y=

This conditional probability depends on 6.

Thus, Y = 1(X +2X +3X ) is not a sufficient estimator of the parameter 6 of a Bernoulli
5 1 2 3

population.

2.5.4. Result: (Factorization theorem)

The statistic ‘Ois a sufficient etimator of the parameter 6 if and only if the joint
probability dsitrbution or density of the randam sample can be factored so that
f(x1,%2, o, Xn; 0) = g(86). h(x1, X2, ..., xn), where g(9#8) depends only on Band 6, and
h(x1, x2, ..., x») does not depend on 6.

2.5.5. Example

Show that Xis a sufficient estimator of the mean u of a normal population iwht the
known variance a2.
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Solution:

We know that

f(xl; X2y ey Xy [J,) = (To_ 127'[) . e—E i=1(ﬁjﬁ)
and that

ST —w? =20 =¥ — (u—3]?

i=1 i=1

S0 —w? =200 =¥+ > (% — p)?
i=1 i=1 i=1

ST —w? = — ¥+ n(x — p)?

i=1 i=1

We get

\/ﬁ 17xu 2 n—1 1 xj=x?
- ) 1 1 no Xi=
fO e i) = (e 3 3 { () ety
oV21 Vn oV2m

Where the first factor on the right-hand side depends only on the estimate ¥ and the

population mean u, and the second factor does not involve u. According to the theorem, X is
a sufficient estimator of the mean u of a normal population with the known variance o2.

2.6. The Method of Moments

2.6.1. Sampe Moments

The kth sample moment of a set of observations xi, xz, ..., x» is the mean of their kt
power and it is denoted by m'x. Symbolically,
n xk

’ i=1""1i
n

Thus, if a population has r parameters, the method of meoments consists of solving the
system of equations m'y = ', k = 1, 2, ...,r for the r parameters.

2.6.2. Example

Given a random sample of size n from a unifrom population with 8 =1, use the
method of moments to obtain a formula for estimating the parameter a.

Solution:

The equation that we shall to solve is m'y = u's
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Wherem' =xandy’ _ atf _ atl
1 1= 5

_ +1
Thus ¥ = £
2

a=2x—-1
2.6.3. Example

Given a random sample of size n from a gamma population, we use the method of
meoments to obtain formulas for estimating the parameters a and g.

Solution:
The system of equations that we shall have to solve is m'y = u'y and m', =y,

Where u's = af and ¢’z = a(a + 1)2.

Thus, m'y = af and m’; = a(a + 1)2

Solving for a and B, we get the following formulas for estimating the two parameters of the
gamma distribution:

r \2 A o r \2
o= — I gng p= M)

m'z2—(m'1)? m'y
n X n 2
Since m's = 2= = % and m', = 5 %
n n
n ¥ 3 1(xi—9?)2_ - .
a= —pzand B =221 _  interms of the original observations.

i=1

2.7. The Method of Maximum Likelihood

2.7.1. Maximum Likelihood Estimator

If x1, x2, ... , x, are the values of a random sample from a population with the
parameter 6, the likelihood functin of the sample is given by L(0) = f(x1, x2, ..., xn 6) for
values of 6 within a given domain. Here f(x1, xz, ..., xn; 8) is the value of the joint probability
distribution or the joint probability density of the random variables X1, X», ..., X» at X1 = x1,
X2 = x2,.., Xn = xn. We refer to the value of 6 that maximizes L(6) as the maximum
likelihood estimator of 6.
2.7.2. Example

Given x “successes” in n trials, find the maximum likelihood estimates of the parameter
0 of the corresponding binomial distribution.

Solution:

To find the value of 6 that maximizes L(0) = (")6*(1 — )~

The value of 6 that maximizes L(8) will also maximize
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ML) =In (Z) +x.m0+n—-x).In(1-0)

Thus, we get

dlinL(®)] _ x

a0 "0 _% and, equating this derivative to 0 and solving for 8, we get the likelihiood

function has a maximum at @ = ~.
n

This is the maximum likelihood estimate of the binomial parameter 6, we refere to'@= X as

n

the corresponding maximum likelihood estimator.
2.7.3. Example

If x1,x2, ..., x, @re the values of a random sample from a exponential population, find
the maximum likelihood estimator of its parameter 6.

Solution:

Since the likelihood function is given by L(6) = f(x1, x2, ..., Xn; 0)
L(B) = G f(x; 0)
i=1
1n e R
L(O) = (g) e o s

Differentiation of In L(6) with respect to 6, we have

n

d[in L(6)] n 1
T etex™

i=1
Equating this derivative to zero and solving for 6, we get the maximum likelihood estimate

6= ">" x =Xx. Hence, the maximum likelihood estimator ise=X
i=1

2.7.4. Example

If x1,x2, ..., x, @re the values of a random sample of size n form a uniform population
with a = 0, find the maximum likelihood estimator of £.
Solution: The Likelihood funciton is given by

n

L(B) = G f(xsB) = (

i=1

171
B

for B greater than or equal to the largest of the x's and 0 otherwaise. Since the value of this
likelihood function increases as  decreases, we must male 8 as samll as possible, and it
follows that the maximum likelihood estimator of S is Y», the nth order statistic.
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2.7.5. Example

If X1, X, ..., X» constitute a random sample of size n from a normal population with the
mean u and the variance o2, find joint maximum likelihood estimates of these two
parameters.

Solution:

Since the likelihood function is given by

n

L(‘Ll, 0—2) =G n(xi; uw O-)
i=1
" 72"2 l(xL #)2

eZO'

L(u, 02) = (

m/_

Partial differentiation of In L(u, 02) with respect to 4 and o2, we have

n

dlin L, 0?)] 1

2 20 — @
dll i=1
and
dinlwod] n 1 :
~a " 27 2 X

i=1

Equating the first of these two partial derivatives to zero and solving for u, we get

S

1
At

and equating the second of these partial derivatives to zero and solving for o2 after
substituting u = x, we get

1 n
¢= 3I(x —x)
i
i=1

Let Us Sum Up

In this unit, we studied the concept of unbiased estimators, efficiency, consistency,
sufficiency, the method of moments and the method of maximum likelihood.

Check Your Progress

1. A good estimator must possess

2. A statistic t = t, based on the sample size n is said to be consistent estimator of the
parameter if
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3. Method of moment estimators are usually less efficient than

Glossaries

Point estimate: The estimate of a population parameter given by a single number.

Unbiasedness: The mean value of the sampling distribution of the statistic t is equal to the
parameter of the population.

Efficiency: An estimator with less variability is said to be more efficient and consequently
more reliable than the other.

Sufficiency: It contains all the information in the sample regarding the parameter.

Suggested Readings

1. Freund. J.E.,” Mathematical Statistics”, Prentice Hall of India, Fifth Edition, 2001.

2. Gupta. S.C. and Kapoor. V. K., “Fundamentals of Mathematical Statistics”, Sultan Chand & Sons,
Eleventh Edition, 2003.

3. Devore. J. L. “Probability and Statistics for Engineers”, Brooks/Cole (Cengage Learning), First
India Reprint, 2008.

Answers to Check Your Progress

1. Unbiasedness, Consistency, Efficiency, Sufficiency.
2.t > 0asn—> o

3. Method of Maximum likelihood.
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Unit -3

Structure

Objectives

Overview

3.1. Introduction

3.2.The Estimation of Means

3.3. The Estimation of Differences between Means

3.4. The Estimation of Proportions

3.5. The Estimation of Differences between Proportions
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Objectives

After Studying this Unit, the student will be able to

¢ Distinguish between the estimation means and differences between means.

e Examine the difference between the estimation of proportions and differences
between proportions.
e Explain the estimation of variances and ratio of two variances.

Overview

In this unit, we will study the concept of Interval estimation. We will mainly focus on
the Estimation of Means, differences between means, proportions, and differences between
proportions, variances and ratio of two variances.

3.1. Introduction

Although point estimation is a common way in which estimates are expressed. For
instance, it does not tell us on how much informationthe estimate is based, nor does it tell us
anything about the possible size ofthe error. Thus, we might have to supplement a point

estimate ® of 8 with the size ofthe sample and the value of Var(or with some other

information about the samplingdistribution of '® This will enable us to appraise the possible
size of the error. Alternatively, we might use interval estimation.

An interval estimate of 6 is an interval of the form§ < 6 < 8, where’§ and @ are
values of appropriate random variables @ and’6.

3.1.1. Confidence Interval

If' and @ are values of the random variables @ and’@ such that P(9 < 6 <'9) = 1
— a for some specified probability 1 — a, we refer to the interval § <8 <8 as a (1—
a)100% confidence interval for 6. The Probability 1 — « is called the degree of confidence,
and the endpoints of the interval are called the lower and upper confidence limits.
When a = 0.05, the degree of confidence is 0.95 and we get a 95% confidence intrval.

3.2.The Estimation of Means

Suppose that the mean of a random sample is to be used to estimate the mean of a
normal population with the known variance o2. By the theorem “If y is the mean of a random
sample of size n from a normal populaton with the mean u and the variance 2, its sampling

distribution of Xfor random samples of size n from a normal poyzulation with the mean u and
the variance o2 is a normal distribution with y = pand o2 =", Then p(|Z| < z y )=1-a,
x a/2

_ x n

where Z = Z and z./; is such that the integral of the standard normal density from
vn _

z toowequals a/2. Therefore, P ([~ ul<z .°)=1-a

a/2 a/2 \/;
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3.2.1. Result

If X the mean of a random sample of size n from a normal population with the known

variance o2, is to be used as an estimatoy of the mean of the population, the probability is
1 — a that the error will be lessthanz .
a2 Vn

3.2.2. Example

A team of efficiency experts intends to use the mean of a random sample of size n =
150 to estimate the average mechanical aptitude of assembly-line workers in a large industry
(as measured by a certain standardized test). If, based on experience, the efficiency experts
can assume that ¢ = 6.2 for such data, what can they assert with probability 0.99 about the
maximum error of their estimate?

Solution:

Substituting n = 150,06 = 6.2, and zo00s = 2.575 into the expression for the maximum error,
we get

6.2
2.575.——=1.30
150

Thus, the efficiency experts can assert with probability 0.99 that their error will be less than
1.30.

3.2.3. Result
To construct a confidence interval formula for estimating the mean of a normal
population with the known variance o2, then P (|X—pu| < z ._)=1-a, we write
a/2 \fn

_ o - o
P(X~z . _ <u<Xtz ._)=1-a«a
a2 T_l al2 1
If x is the value of the mean of a random sample of size n from a normal population with the
known variance o2, then x —z o <u<x+z o is (1—a)100% confidence interval
a/Z'\/;l a/2'\/;1
for the mean of the population.

3.2.4. Example

If a random sample of size n = 20 from a normal population with the variance g2 =
225 has the mean x = 64.3 construct a 95% confidence interval for population mean p.

Solution:

Substituting n = 20,x = 20,0 = 15 and z025 = 1.96 into the confidence-interval formula of
above theorem, we get

15 15
643—-196 —<u<643+196 —
V20 V20

57.7 <u <709
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3.2.5. Remark

Confidence-interval formulas are not unique. This may be by changing the
confidence-interval formula of the above result, we have

_ o _ o
X —Zaq3 =< U< X+ Zg3.—=
n n

or to the one-sided (1 — a)100% confidence-interval formulay <x +z o

a

B

3.2.6. Example

An industrial designer wants to determine the average amount of time it takes an adult
t assemble an “easy-to-assemble” toy. Use the following data (in minutes), a random
sample, to construct a 95% confidence interval for the mean of the population sampled: 17,
13, 18, 19, 17, 21, 29, 22, 16, 28, 21, 15, 26, 23, 24, 20, 8, 17, 17, 21, 32, 18, 25, 22, 16, 10,
20, 22, 19, 14, 30, 22, 12, 24, 28, 11

Solution:

Letdx=x—A=x—-20

>dx =-3,>dx2=1151

=3)?
2 _Gar 1151
s VR T 35 _ 573

n—1 35

for ¢ into the confidence-interval formula of the above Result, we get

5.73 5.73
1992 -196 —<u<1992+196 ——
V36 V36

18.05 < u < 21.79
Thus, the 95% confidence limits are 18.05 and 21.79 minutes.
3.2.7. Result

When we are dealing with a random sample from a normal population, n < 30, and o is

unkqown, Results 3.2.1 and 3.2.3. cannot be used. Instead, we make use of the fact that

T = ;i—“ﬁ is a random variable having the t distribution with n —1 degrees of freedom.

u
Substituting Wfor T inP (—tgzn_1 <T< tgfl_l) =1 —a we get the following confidence

interval for u.
If ¥ and s are the values of the mean and the standard deviation of a random sample of size

n from a normal population, then x —te L E<u<ixk+te < isa (1-a)100%
2,71—1 Vn 2,n—l Vn

confidence interval for the mean of the population.This confidence-interval formula is used
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mainly when n is samll, less than 30, we refer to it as a small-sample confidence interval for
U

3.2.8. Example

A paint manufacturer wants to determine the average drying time of a new interior wall
paint. If for 12 test areas of equal size he obtained a mean drying time of 66.3 minutues and
a standard deviation of 8.4 minutes, construct a 95% confidence interval for the true mean p.

Solution:

Substituting ¥ = 66.3, s =8.4 and toozs11 = 2.201 (from statistical table), the 95%
confidence interval for u becomes

8.4 8.4
663 —2.201 X — < u<663+2201 X —
V12 V12

61 <pu<716

This mean that we can assert with 95% confidence that the interval from 61 minutes to 71.6
minutes contains the true average drying time of the paint.

3.2.9. Result
When we used the random variable Z = )l“ whose value cannoe calculated without
Vn

knowledge of u, but whose distribution for random samples from normal populations, the
standard normal distribution, does not involve u. This method of condfidence interval
construcation is called the pivotal method.

3.3. The Estimation of Differences Between Means

3.3.1. Result

For independent random samples from normal populations

7 = A=B-M-12) pas the standard normal distribution.

If we substitute this expression of Z intoP (—z« < Z < z:) = 1 — a the pivotal method yields the
2 2
following confidence interval formula for u; — .

%f X, and X are the values of the means of independent random samples of sizes n; and n;
rom normal populations with the known variances 012 and G;, then

2 2 2 2

_ _ _ _ g o

(%1 — x2) — Za/z\/_q +_9 < —pr < (X1 —x2) + Za/z\/_1 + 2

ni n; n, n

isa (1 —a)100% confidence interval for the difference between the two population means.
By the central limit theorem, this confidence-interval formula can also be used for

independent random samples from nonnormal populations with known variances with n; and
ny are large, that is, when n; = 30 and n, = 30.
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3.3.2. Example

Construct a 94% confidence interval for the diffference between the mean lifetimes of
two kinds of light bulbs, given that a random sample of 40 light bulbs of the first kind lasted
on the average 418 hours of continuous use and 50 light bulbs of the second kind lasted on
the average 402 hours of continuous use. The population standard deviations are known to
be 01 = 26 and g; = 22.

Solution:

For a = 0.06, we find from the statistical table that zoos = 1.88. Therefore, the 94%
confidence interval for yy — u2 is

262 222 262 222

(418 — 402) — 1.88 x \/—+ —— < — iz < (418 — 402) +1.88 x V ot s

50 50

6.3 < 1 — puz < 25.7

Hencew, we are 94% confident that the interval from 6.3 to 25.7 hours contains the actual
difference betweem the mean lifetimes of the two kinds of light bulbs. The fact that both
confidence limits are positive suggests that on the average the first kind of light bulb is
superior to the second kind.

3.3.4. Result

To Construct a (1 — a«)100% confidence interval for the difference between two means
when n; = 30 and n; = 30, but g1 and o, are unknown, we simply substitute s; and s, for a1
and o; and proceed as before. When ¢, and ¢, are unknown and either or both of the
samples are small, the procedure for estimating the difference between the means of two

normal populatlor@}? J@ Qot strf':nght forward unless it can be assumed that g1 =0, . If 01 =

o,=0,thenZ = is a random variable having the standard distribution, and o2
+—1
Vit

can be estimated by pooling the squared deivations from the means of the two samples.

The Pooled estimator 52 = M~DSt+m-1S} js an ynbiased esitmator of o2.  Now, by
p ni+nz—2

two theorems, “If Xand S2 are the mean and the variance of a random sample of size n from
a normal population with the mean y and the standard deivation ¢ then (i)Xand S2 are
independent (ii) the random variable " has a chi-square distribution with n — 1 degrees

o2
of freedom. If X3, X>, ... X, are independent random variables having chi-square distributions
with vy, v, ... v, degrees of freedom, then Y = }"_, X;, has the chi-square distribution with
v, +v2 + -+ v, degrees of freedom” the independent random variables m-DST gng
o2
(2= 1S , have chi-square distributions with n —1 andn — 1 degrees of freedom, and their
1 2

(m-1S?  (2-1S*  (n14np=2)S?
sum Y = + = — .. | has a chi-squre distribution with ni +n, -2
2 o2

degrees of frgedom. Since the random variables Z and Y are independent.

o2
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7= "7 K-¥)-G@u-p) has a t distribution with n, +n, -2 degrees of freedom.
1 1

—
iz SVt : .
Substituting this expression for T into P (—te, | <T <t« ) =1-a, we get the following

2 2,n—1

(1 — a)100% confidence interval for ui — ua.

If X, X2, s1 and s; are the values of the means and the standard deviations of
independent random samples of sizes n; and n; from normal populations with equal
variances, then

_ _ 1 1 _ _ 1 1
(X1 —%2) — ta sV - < —pp < (X1 —%2) + ta sV

pN1+n2—2 ni N2 pnitnz—2 ni N

isa (1 — a)100% confidence interval for the difference between the two population means.

This confidence-interval formula is used mainly when n; and/or n, are small, less than 30,
we refer to it as a small-sample confidence interval for y; — .

3.3.5. Example

A study has been made to compare the nicotine contents of two brands of cigarettes.
Ten cigarettes of Brand A has an average nicotine content of 3.1 milligrams with a standard
deviation of 0.5 milligram. While eight cigarettes of Brand B had an average nicotine content
of 2.7 milligrams with a standard deviatoin of 0.7 miligram. Assuming that the two sets of
data are independent random samples from normal populations with equal variances,
construct a 95% confidence interval for the difference between the mean nicotine contents of
the two brands of cigarettes.

Solution:

Substitute n; = 10,n; = 8,51 = 0.5 and s2 = 0.7 into the formula for s,, we get

(n1 — 1)511 + (n; —1)s? \/910.255 +7(0.49)

sp=V. 2 = =0.596

n+ny;—2 16

Then, substituting this value together with n; = 10,n; = 8, x1 = 3.1,x; = 2.7 and to.0.2516 =
2.120 (form statistical table) into the confidence-interval formula, we find that the required
95% confidence interval is

1,1 JI T
(31-27)—2120%x0596V— + - <pu —u <(B1-27)+2120%x0596V__ + _
10 8 1 2 10 8

=020 < —p2 < 1.00

Thus, the 95% confidence limits are —0.20 and 1.00 milligrams; since this includes u; —
uz = 0, we cannot conclude that there is a real difference between the average nicotine
contents of the two brands of cigarettes.
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3.4.The Estimation of Proportions

3.4.1. Result

In many problems we must esitmate proportions, probabilites, percentages or rates,
such as the proportion of defectives in a large shipment of transistors, the probability that a
car stopped at a road block will have faulty fights, the percentage of school children with
I.Q.’s over 115 or the mortality rate of a disease. In many of these it is reasonable to
assume that we are sampling a binomial population and hence our problem is to estimate
the binomial parameter 8. Thus we can make use of the fact that for large n the binomial

—né

distribution can br approximated with a normal distribution; that is Z= ____ ¢an be
Vno(1-6)

treated as a random variable having approximately the standard normal distributon.

Substituting this expectation for Z into P (— Za <Z< Za) =1—a, we get,
X—n6 X—n6
P(—ze < < za) =1— «aand the two mequalltles —za<________and
X—nd Vno(1-6) 2 2 Vno(1-6)
< za,whose solution will give (1 — a)100% confidence limit for 6.
Vno(1-6) 2

Let us give here instead a large sample approximation by rewriting

_ 1 _ . X—nb
P (—ZQZ <Z< ZQZ) =1— a with \/g(lﬁg)ubstltuted for Z, as
) 9(1-0) . o(1 - 0)
PO-ze V" <0<0+ 2N ) =1-a
2 n 2’ n
where '8=*_  Then, if we substitute B for 6 inside the radicals,which is a futher

n
approximation, we get the following

If X is a binomial random variable with the parameters n and 6, n is large, and 4 = then

bz NTT <9<tz VE 75 = "is an approximate (1 — a)100% confidence mterval
a/2 n a/2 n

for 6.

3.4.2. Example

In a random sample, 136 of 400 persons given a flu vaccine experienced some discomfort.
Construct a 95% confidence interval for the true proportion of persons who will experience
some discomfort from the vaccine.

Solution:

Substituting n = 400, 6 = =0.34 and z 0025 = 1.96 into the confidence-interval formula,
400 :

we get

A \/Ql -9 01 —6)

06— Za2z T -

n <9<é+2a/2\/
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6\/(0'34)(0'66) <0 <034+ 1.96x/(0'34)(0'66)
400 400

0.34-19

0.294 < 6 <0.386
0.29<6<0.39

3.4.3. Result
Using the same approximations that led to above result, we can get the following

A X
If6 = - is used as an estimate of 6, we can assert with (1 — @)100% confidence that the

. [61-
error is less than z,/; .\/%

3.4.4. Example

A study is made to determine the proportion of voters in a sizable community who
favor the construction of a nuclear power plant. If 140 of 400 voters selected at random

favor the project and we use 6 = %: 0.35 as an estimate of the actual proportion of all
voters in the community who favor the project, what can we say with 99% confidence about
the maximum error?

Solution:

Substituting n = 400,60 = li: 0.35 and z = 2.575 into the formula we get
200 0.005

61 -6 .35)(0.65
J 1-6) :2.575\/(03 )(0.65)
n 400

Za)2 - = 0.061 = 0.06

Thus, if we use 6 = "9 — 0.35 as an estimate of the actual proportion of voters in the

400
community who favor the projet, we can assert with 99% confidence that the error is less
than 0.06

3.5. The Estimation of Differences Between Proportions

3.5.1. Result

In many probalems we must estimate the difference between the binomial parameters
61 and 6, on the basis of independent random samples of sizes n; and n, from two binomial
populations. For example, if we want to estimate the difference between the poportions of
male and female voters who favor a certain candidate for governor of Illinois.

If the respective numbers of successes are X1 and X, and the corresponding sample

. A X1 M =52 et i ti th lei
proportions are denoted by @ = and 9 = €l us Investgage the sampieing
2

distribution of @ — '@, which is an obvious estimator of 8, — 6,.
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01(1-61) n 02(1-63)

Let's takeE(A(E)1 —AG))2 =0 -0 and var(®@ —'0) = and since, for
1 12

nq n2
large samples, X:and X, and hence also their differences, can be approximated with
normal distributions, we get

7= @1 @)—1(—1294 is a random variable having approximately the standard normal
VEIUSETT B20=070

ni n2

distribution. Substituting this expression for Z into P (—ze < Z < ze) =1 — a, we get the
2 2

following
If X1 is a binomial random variable with the parameters n; and 6., szls a blnomlal

random variable with the parameters n and 6 ,n andn are large,and 8 == and 6 =

2 1 1, 2
,then

n2

A a1-4) 6(1-9)

(01— 02) — Zay2 v - + -~ <0:—6;

A qa(1-4) B(1-9)
< (91—92)+Za/2.\/ +

ni ns
is an approximate (1 — «)100% confidence interal for 6; — 6.

3.5.2. Example

If 132 and 200 male voters and 90 of 150 female voters favor a certain candidate
running for governor of lllinois, find a 90% confidence interval for the difference between the
actual proportions of male and female voters who favor the candidate.

Solution:

Substituting 6 =f=0.66, § _ 9 =060 and z = 2.575 into the confidece interal
L 200 27 150 0.005

formula, we get

. qQ(1-9) B8Qa-9
(61— 02) — zap2 .V — T <61-0
. a1-9 B1-®
< (61—062) + za/2 . +

ni ns

(0.66)(0.34) (0.60)(0.40)

_ _ V. + _
(0.66 — 0.60) — 2.575 x 500 150 <6,—-06;<

\/(0-66)(0-34) . (0.60)(0.40)

(0.66 — 0.60) + 2.575 X
200 150

—0.074 < 61— 62 < 0.194
Thus, we are 99% confident that the interval form -0.074 to 0.194 contains the difference

between the actual proportions of male and female voters who favor the condidate. This
includes the possibility of a zero difference between the two proportions.
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3.6. The Esimation of Variances

3.6.1. Result

Given a random sample of size n from a normal populatlon we can obtain a (1 —a)100%
confidence interval for g2 by making use of the result, s is a random variable having a

o2
chi-square distribution with n — 1 degreees of freedom. Thus,

Plrza <D J=1-a

1- pN= 1 o M= 1

P[ﬁ 02<(_n2L)SZ]=1—a

Xa X «

2,n—l 1—E,n—1
Thus, we get the following

If§12 is the vaIu? of the variance of a random sample of size n from a normal population, then
(D™ 52 *isa (1 — @)100% confidence interval for o2.

2,n—l Xl—in—l
3.6.2. Example

In 16 test runs the gasoline consumption of an experimental engine had a standard of
2.2 gallons. Construct a 99% confidence interval for a2, which measures the true variability
of the gasoline consumption of the engine.

Solution:

Assuming that the orbserved data can be looked upon as a random sample from a normal
population. We substitute n = 16 and s = 2.2, along with X2 00515 = 32.801 and X2 o9s 15 =

4.601, obtained from tatistical tables, into the confidence-interval formula we get,

15 (2.2)2 15 (2.2)2
—_—< 0-2 < —_—
32.801 4.601

2.21 <02 < 15.78

For 99% confidence interval , 1.49 < 0 < 3.97

3.7. The Estimation of the Ratio of Two Variances

3.7.1. Result

If S2 and S2 are the variances of independent random samples of sizes n; and n; from
normal populatlons then, according to the theorem, “If 52 and S2 are the variances of

independent random samples of sizes n; and n, from normal populatlons with the variances
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2
o) _
SZ
—2)

2

o2 and a%, then F =

2 _’—”g is a random variables having an F distribution with n; — 1

12

and n; — 1 degrees of freedom”

2¢2
F = 22—222 is a random variable having an F distribution with n; —1 and n; — 1 degrees of
1

freedom. Thus, we can writeP (f « < 7% < fa )=1—-a
1—2 ,n1—1nz2—1 021522 2,,n1—1,nz—1

. 1 .
Since f « = , we have the following
1-,,n1—1n2—1 fa
2,,n2—1,n1—1
If si and 522 are the values of the variances of independent random samples of sizes n; and

n, from normal populations, then

2
% < 112 <ilz . fea isa (1 —a)100% confidence interval for of

a
2n1=1n2-1

Corrponding (1 — @)100% confidence limits for <1 can be obtained by taking the square roots

o2

2
of the confidence limit for-3.
2

3.7.2. Example

A study has been made to compare the nicotine contents of two brands of cigarettes.
Ten cigarettes of Brand A has an average nicotine content of 3.1 milligrams with a standard
deviation of 0.5 milligram. While eight cigarettes of Brand B had an average nicotine content
of 2.7 milligrams with a standard deviatoin of 0.7 miligram. Assuming that the two sets of
data are independent random samples from normal populations with equal variances. Find a

2
98% confidence interval forft; 1
2

Solution:
Substituting n; = 10,n, = 8,s1 = 0.5,s2 = 0.7, and
foo197 = 6.72 and foo0179 = 5.61 from the statistical table, we get

025 1 _of 025

049 642 02 049

2

0.076 <1 < 2.862

9
-
9

Since the interval obtained here includes the possibility that the ratio is 1, there is no real

evidence against the assumption of equal population variances.
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Let Us Sum Up

In this unit, we discussed the concept of interval estimation, in particularly the
Estimation of Means, differences between means, proportions, and differences between
proportions, variances and ratio of two variances.

Check Your Progress

1. The interval bounded by two limits is known as
2. The end points of the confidence interval are called

3. A random sample of size 100 has mean 15, the population variance being 25. The interval
estimates of the population mean with a confidence level of 99% is

Glossaries

Interval estimation: It is the range of values used in making estimation of a population
parameter.

Population proportion: The population proportion P is the ratio of the number of elements
possessing a characteristic to the total number of elements in the population.

Sample Proportion: The sample proportion p is the ratio of the number of elements
possessing to the total number of elements n in the sample.

Degrees freedom: The degrees freedom is the number of independent random variables.

Suggested Readings

1. Freund. J.E.,” Mathematical Statistics”, Prentice Hall of India, Fifth Edition, 2001.

2. Gupta. S.C. and Kapoor. V. K., “Fundamentals of Mathematical Statistics”, Sultan Chand & Sons,
Eleventh Edition, 2003.

3. Devore. J. L. “Probability and Statistics for Engineers”, Brooks/Cole (Cengage Learning), First
India Reprint, 2008.

Answers to Check Your Progress

1. Confidence interval
2. Confidence limits

3.13.71t0 16.29
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| BLOCK II: Testinﬂ of Hxﬁothesis |

Unit 4 Hypothesis Testing

Unit 5 Testing of Hypothesis involving Means, Variances and Proportions
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Unit -4

Structure

Objectives

Overview

4.1. Introduction

4.2.Testing a Statistical Hypothesis
4.3. Losses and Risks

4.4. The Neyman-Pearson Lemma
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Objectives

After Studying this Unit, the student will be able to

o Demonstrate the simple hypothesis, alternative hypothesis, Type | and Type Il errors,
Critical Region.

o Explain the Neyman-Pearson lemman with example.
o Explain the Power function and the uniformly most powerful critical region test

e Summarize the Likelihood ratio test..

Overview

In this unit, we will study the concept of testing a statistical hypothesis, the Neyman-
Pearson Lemma, the Power function of a test, Likelihood ratio test with examples.

4.1. Introduction

If an engineer has to decide on the basis of sample data whether the true average
life time of certain kind of tire is at least 42,000 miles, if an agronomist has to decide on the
basis of experiments whether one kind of fertilizer produces a higher yield of soybeans than
another, and if an manufacturer of pharmaceutical products has to decide on the basis of
samples whether 90 percent of all patients given a new medication will recover from a
certain disease, these problems can all be translated into the language of statistical tests of
hypotheses. In the first case we might say that the engineer has to test the hypothesis that
0, the parameter of an exponential population, is at least 42,000; in the second case we
might say that the agronomist has to decide whether u; > u2, where u; and u; are the
means of two normal populations; and in the third case we might say that the manufacturer
has to decide whether 0, the parameter of a binomial population, equals 0.90. In each case
it must be assumed that the chosen distribution correctly describes the experimental
conditions. That is, the distribution provides the correct statistical model.

4.1.1. Statistical Hypothesis

An assertion or conjecture about the distribution of one or more random variables is
called a statistical hypothesis. If a statistical hypothesis completely specifies the distribution,
it is called a simple hypothesis, if not; it is referred to as a composite hypothesis.

A simple hypothesis is not only the functional form of the underlying distribution, but
also the values of all parameters. In the third of the above examples, the effectiveness of the
new medication, the hypothesis 8 = 0.90 is simple, assuming that we specify the sample
size and that the population is binomial. In the first of the preceding examples the hypothesis
is composite since 6 > 42,000 does not assign a specific value to the parameter 6.

For testing statistical hypotheses, it is necessary that we formulate alternative
hypotheses. In the first example dealing with the lifetimes of the tires, we might formulate the
alternative hypothesis that the parameter 6 of the exponential population is less than 42,000.
In the second example dealing with the two kinds of fertilizer, we might formulate the
alternative hypothesisu; = p2. In the third example dealing with the new medication, we
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mightformulate the alternative hypothesis that the parameter 6 of the given binomial
population is only 0.60, which is the disease’s recovery rate without the new medication.

The concept of simple simple and composite hypothesis applies also to alternative
hypotheses. In the first example we can say that we testing the compositive hypothesis 6 >
42000 against the composite alternative 8 < 42,000, where 8 < 42,000, where 0 is the
parameter of an exponential population. In the second example we are testing the
composite hypothesis ui1 > u, against the composite alternative u1 = p, where ui, y, are the
means of two normal populations. In the third exmple we are tesing the simple hypotheis
6 = 90 against the simple alternative 86 = 60, where 6 is the parameter of a binomial
population for which n is given.

If we want to show that the students in one school have higher average 1.Q. than
those in another school, we formulate the hypothesis that there is no difference: the
hypothesis u1 = .

In view of the assumptions of “no difference”, hypotheses such as these led to the
term null hypothesis, but this term is applied to any hypotheis that we may want to test.

We use the symbol H, for the null hypothesis that we want to test and Hi1 or H, for
the alternative hypothesis.

4.2.Testing a Statistical Hypothesis

4.2.1. Type | and Type Il errors

1. Rejection of a null hypothesis when it is true is called a type | error. The probability of
committing a type | error is denoted by a.

2. Acceptance of the null hypothesis when it is false is called a type Il error. The probability
of commiting a type Il error is denoted by .

Hy is true Hy is false
Accept Hy No error Type Il error probability = 8
Reject Ho Type I error probability = « No error

4.2.2. Critical Region

It is customary to refer to the rejection region for Hy as the critical region of a test.
The probability of obtaining a value of the test statistic inside the critical region when Hy is
true is called the size of the critical region. Thus, the size of the critical region is just the
probability a« of committing a type | error. This probability is also called the level of
significance of the test.

4.2.3. Examples
4.2.3.1. Suppose that the manufacturer of a new medication wants to test the null hypothesis
6 = 0.90 against the alternative hypothesis 0.60. His test statistic is X, the observed number

of successes (recoveries) in 20 trials, and he will accept the null hypothesis if x > 14;
otherwise, he will reject. Find a and f.
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Solution:

The acceptance region for the hull hypothesis is x = 15, 16, 17, 18, 19 and 20, and
correspondingly, the rejection region or critical regionis x = 0, 1, 2,3, ..., 14. Therefore, from
the Binomial Probabilites table of statistical tables we have

a=P(X <14; 6 =090) =0.0114 and g = P(X > 14; 6 = 0.60) = 0.1255

4.2.3.2. Suppose that we want to test the null hypothesis that the mean of a normal
population with 2 = 1 is uo against the alternative hypothesis that it is w1, where u1 > po.
Find the value of K such that x > K provides a critical region of size a = 0.05 for a random
sample of size n.

Solution:

From the above figure and the standard normal distribution table of statisitcal tables, we find
that z = 1.645 corresponds to an entry of 0.45 and hence that

K _
1.645 = —H
1/vn
1.645
K = Uo +
n

4.2.3.3. With reference to the previous example, Determine the minimum sample size
needed to test the null hypothesis yo = 10 against the alternative hypothesis u; = 11 with
p<e6.

Solution:

Since g is given by the area of the ruled region of the above figure, we get

) 1.645
B=P(X<10+ ___;pu=11)
n

(10 +1% —11

=\[Z Vn
B=1Z< T ]

B = (Z < —/n+ 1.645)
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and since z = 1.555 corresponds to an entry of 0.5 — 0.06 = 0.44 in the standard normal
distribution table of statistical table, we get —vVn ™+ 1.645 equal to - 1.555. Vn = 1.645 +
1.555 =3.2 andn = 10.24 or 11.

4.3. Losses and Risks

The concepts of loss functions and risk functions also play an important part in the
theory of hypotesis testing. In the decision theory approach to testing the null hypothesis
that a population parameter 6 equals 6, against the alternative that it equals 61, the
statistican either takes the action asand accepts the null hypothesis, or takes the action a;
accepts the alternative hypothesis. Depending on the true “state of Nature” and the action
that she takes, her losses are shown in the following table

Statistician
ao ai
Nature Oo L(ao, 60) L(ay, 60)
01 L(ao, 91) L(a1, 91)

These losses can be positive or negative (reflecting penalties or rewards), and the only
condition that we shall impose is that

L(ao, 00) < L(ai, 80) and L(ai, 61) < L(ao, 61)
That is, in either case the right decision is more profitable than the wrong one.

The statistician’s choice will depend on the outcome of an experiment and the
decision funciton d, which tell her for each possible outcome what action to take. If the null
hypothesis is true and the statistician accepts the alternative hypothesis, that is, if the value
of the parameter 6, and the statistician takean action a;, she commits a type | error;
correspondingly, if the value of the parameter is 6, and the statistician takes action ay, she
commits a type Il error. For the decision function d, we shall let a(d) denote the probability
of committing a type | error and g(d) the probability of committing a type Il error. The values
of the risk function are that

R(d, 80) = [1 — a(d)]L(ao, 80) + a(d)L(a1, 6o)
R(d, 60) = L(ao, 60) + a(d)[L(ai, 60) — L(ao, 60)]
and
R(d, 81) = B(d)L(ao, 61) +[1 — B(d)] L(a1, 61)
R(d, 61) = L(a1, 61) + B(d)[L(ao, 61) — L(a1, 61)]
Where, by assumption, the quantities in brackets are both positive. It is apparent from this
that to minimize the risks the statistician must choose a decision funciton that, keeps the
probabilities of both types of errors as small as possible.

If we could assign prior probabiiities to 8, and 6, and if we know the exact values of
all the losses L(a;, 6)), we could calculate the Bayes risk and look for the decision funciton
that minimize this risk. Alternatively, if we looked upon nature as a malevolent oppeonent,

we could use the mimimax criterion and choose the decision funciton that minimizez the
maximum risk.
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4.4. The Neyman-Pearson Lemma

4.4.1. The Power of a Test

When testing the null hypothesis Ho: 6 = 6, against the alternaive hypothesis H1: 6 =
61, the quantity 1 — B is referred to as the power of the test 8 = 6,. A critical region for
testing a simple null hypothesis Ho: 8 = 6, against a simple alternative hypothesis Hi: 8 = 61
is siad to be a best critical region or a most powerful critical region if the power of the test is
maximum at 6 = 0.

To Construct a most powerful critical region
The likelihoods of a random sample of size n from the population under consideration when
6 = 6y and 6 = 01. Denoting these likelihoods by L, and L, we have

n n

Lo = G f(x;,00) andLi =G f(x;01)
i=1 i=1

ff Should be small for sample points inside the critical region, which lead to type | erros
when 6 = 6, and to correct decisions when 8 = 6.

Lo should be large for sample points inside the critical region, which lead to correct decisions
L1
when 8 = 6, and type Il erros when 6 = 6;.

4.4.2. Theorem (Neyman-Pearson Lemma)

If C is a critical region of size a and k is a constant such that 0 < k inside C and

L
Lo> k outside € then C is a most powerful critical region of size a for tesﬁng 6 =60 against
Ly 0

0 = 0.

Proof:

Suppose that C is a critial region satisfying the conditions of the theorem and that D is some
other critical region of size a. Thus,

[ofLodx=[..[Lodx =«

Cc D
where dx stads for dxi, dx; .. , dx, and the two multiple integrals are taken over the
respective n-diemansional regions C and D. Now, making use of the fact that C is the union
of disjoint sets C N D and C n D', while D is the union of the disjoint sets C N D and ¢’ n D,
we can write

JofLodx+[..[Lodx=[.[Lodx+[..[Lidx=a
cnD cnD' cnD c'nD

and hence
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f...fLo dx=f...fL0 dx
cnD c'nD

Then, since L > Lo inside C and L < Lo qutside C,
1 g 1

f...ledxzf...fLQ dxzf...fLdezf...le dx
k k
cnD' cnD' c'nD c'nD

and hence

f...ledef...ledx
cnD c'nD

Finally,

f...fld dx=f...fL1 dx+f...fL1 dx
C cnD cnD'

f...fL1 dx=f...fL1 dx+f...fL1 dx=f...fL1 dx
Cc cnD cnD D

So that

JofLidx=f..[Lidx=a
Cc D

The final inequality states that for the critical region C the probability of not committing a type
Il error is greater than or equal to the corresponding probability for any other region of size
a.

4.4.3. Example

A random sample of size n from a normal population with ¢2 = 1 is to be used to test
the null hypothesis 1 = uo against the alternatiave hypothesis y = u1, where w1 > po. Use
the Neyman-Pearson lemma to find the most powerful critical region of size a.

Solution:

The two likelihoods are

1

1 " %( )? 1 n 3( )2
Lo=(=) ez “H agndli=(=—) ¢, M

V2w V2w

Where the summations extend from i = 1to n, and after some simplification their ratio
becomes

1
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Lo 2421 uomu 5
L]_ =p2 1
Thus, we find a constant k and a region C of the sample sapce such that

=)+ (po—m) T xi
ez 1 0 <k insideC

=)+ (po—m) T xi
ez 1 0 =k Outside C

and after taking logarithms, subtractng » (42 — u2), and dividing by the negative quantity
2 1 0

n(uo — H1), these two inequalities become

X <K insideC

X = K Outside C

where K is an expresssion in k, n, uo and p.

4.5. The Power Funciton of a Test

4.5.1. Power Function

The Power function of a test of a statistical hypothesis H, against an alternative
hypothesis H; is given by

a(0) for values of 6 assumed under Hy
1 — B(0) for values of 6 assumed under H1

n(6) = {
4.5.2. Uniformly Most Powerful Critical Region (Test)
If, for a given problem, a critical region of size a is uniformly more powerful than any

other critical region of size «, it is said to be uniformly most powerful critical region, or a
uniformly most powerful test.

4.6. Likelihood Ratio Tests

The Neyman-Pearson lemma provides a means of constructing most powerful critical
regions for testing a simple null hypothesis against a simple alternative hypothesisi, but it
does not always apply to compositie hypotheses. We shall now present a general method
for constructing critical regions for tests of composite hypotheses that in most caes have
very satisfactory properties. The resulting tests, called Likelihood ratio tests, are based on a
generalization of the method of Neyman-Pearson lemma, but they are not necessarily
uniformly most powerful.

To lllustrate the likelihood ratio technique, Let us suppose that Xi, X», ... X» constitute
a random sample of size n form population whose density at x is f(x; ) and that Q is the set
of values that can be taken on by the parameter 8. We refer Q as the parameter space for
6. To test the null hypothesis is Ho: 6§ € w and the alternative hypothesis is Hi: 0 € w’, where
w is the subset of Q and w’ is the complement of w with respect to Q. Thus, the parameter
space for 6 is partitioned into the disjoint sets w and w’. The null hypothesis is 6 is an
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element of the first set and the alternative hypothesis 6 is an element of the second set. Q is
either the set of all real numbers, the set of all positive real numbers, some interval of real
numbers or a discrete set of real numbers.

When Hy and H: are both simple hypotheses, ¢ each have one element, and in 4.4.
we constructed tests by comparing the likelihood Lo and Li. In the general case, where at
least one of the two hypotheses is composite, we comare instead the two quantitties max
Loand max L, where max Lo is the maximum value of the likelihood funciton for all values of
6 in w, and max L is the maximum value of the likelihood function for all values of 8 in Q. In
other words, if we have a random sample of size n from a population whose density at x is
f(x; 6), 6 is the maximum likelihood estimate of 8 subject to the restriction that 8 must be an

element of w, and 0 is the maximum likelihood estimate of 9 for all value of 8 in Q, then
max Lo = [}_, f(x;0) and max L = [T"_; f (x; é)

These quantities are both values of randgp,yaraibles, since they depend on the observed
values x ,x ,..,x , and their ratio A1 = is known as a value of the likelihood ratio
1 2

n

max L

statistic.

Since max Lo and max L are both values of a likelihood function and therefore are
never negative. Therefore A > 0; also, since w is a subset of the parameter space (,
therefore 1 < 1. When the null hypothesis is false, would expect max Lo, to be small
compared to max L, in which case 1 would close to zero. On the other hand, when the null
hypothesis is true and 8 € w, we would expect max Lo to be close to max L, in which case 4
would be close to 1. A likelihood ratio test states that the null hypothesis H, is rejected if
and only if A falls in a critical region of the form A < k, where 0 < k < 1.

4.6.1. Likelihood Ratio Test

. If w and w%@;qocomplementary subsets of the parameter space  and if the likelihood
ratio statistic A = where max L0 and max L are the maximum values of the likelihood

max L
function for all values of 6 in w and Q, respectively, then the critical region 1 < k, where 0 <
k < 1, defines a likelihood ratio test of the null hypothesis 6§ € w against the alternative
hypothesis 6 € w'.

If Hy is a simple hypothesis, k is chosen so that the size of the critical region equals
a; if Hy is composite, k is chosen so that the probability of a type | error is less than or equal
to a for all & in w, and equal to «, if possible, for at least one value of 8 in w. Thus, if Hy is a
simple hypothesis and g(4) is density of A at A when H, is true, then k must be such that

P(AS k) = [ g(Ddd=a

In the discrete case, the integral is replaced by a summation, and k is taken to be the
large values for which the sume is less than or equal to «a.

4.6.2. Example
Find the critical region of the likelihood ratio test for testing the null hypothesis

Ho: u = po against the composite alternative Hi: 4 # po on the basis of a random sample of
size n from a normal population with the known variance o2.
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Solution:

Since w contains only o, i = uo, and since Q is the set of all real number, i = . Thus,

n v —p)? n - y(x —%)?
max L, = (— 227 % andmax L = (- 277
0 (ﬁg e 20 (ﬁ?; e 20
where the summation from i = 1 to n, and the value of the likelihood ratio statistic becomes
—— S —n)?
e 2 g2 i 0

R —
o~ 202 Li—D)?
A =e 202 0

—"(F—p )?

Hence , the critical region of the likelihood ratio testis e 202 ¢ < k and taking logarithms
and dividing by — "_2 we have
2 g2’

B 2 0?

x—w)=z—— Ink
n

|X — ol = K

Where K will have to be determined so that the size of the critical region is a.

2
Since has a normal distribution with the mean y, and the variance <, the critical region of
this likelihood ratio test is

o
|f - ,liol = Za, —=
2 \/n
|z| =z wherez= 4
2 N

In other words, the null hypothesis must be rejected when Z takes on a value greater than or
equal to ze« or a value less than or equal to —z«
2 2

4.6.3. Example

On the basis of a single observation, we want to test the simple null hypothesis that
the probability distribution of X is

x 1 2 3 4 5 6 7
) 1 1 1 1 1 1 1
12 12 12 4 6 6 6

against the composite alternative that the probability distribution is

x 1 2 3 4 5 6 7
g(x) a b < 2 0 0 0
3 3 3 3
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where a + b + ¢ = 1. Show that the critical region obtained by means of the likelihood ratio
technique is inadmissible.

Soluiton:

The compositie alternative bypothesis includes all the probability distributions that we get by

assigning different values from 0 to 1to 1, a, b, and c, subject only to the restriction that a +

b+c=1.

For each value of x, let x = 1, for this value we get max L = i,max L= i(corresponding to
12 3

a = 1) and hence 1 = L

4

Determining A for the other values of x in the same way, we get

X 1 2 3 4 5 6 7
1 1 1 1 1 1 1 1
4 4 4 8

If the size of the critical region is to be a = 0.25, we find that the likelihood ratiod technique
yields, the critical region for which the null hypothesis is rejected when A =l4. This is, when
x=1x=2,x=3, we have f(1)+ f(2)+ f(3) = %+ %+ %z 0.25. The corresponding

probability of a type Il error is given by g(4) + g(5) + g(6) + g(7) = 2
3

Now, let us consider the critical region for w?ich the null hypothesis is rejected only when
x = 4. lts size is also a = 0.25 since f(4) = _, but the corresponding probability of a type Il

erroris () () O O O ¢) a

c 1
gl +92 +93 +g5 +g6 +g7 =5+;+;+0+0+0=~

Since theis is less than 25 the critical region obtained by means of the likelihood ratio
technique is inadmissible.

Let Us Sum Up

In this unit, we discussed the concept of testing a statistical hypothesis, the Neyman-
Pearson Lemma, the Power function of a test, Likelihood ratio test with examples.

Check Your Progress

1. The Probabilities of committing the type | and type Il errors are called
2. The Power of a test is maximum, when the probability of type Il error is

3. If both null hypothesis and alternative hypothesis are simple hypotheses, then Likelihood
ratio test is

4. The Likelihood ratio test is a generalization of
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| Glossaries |

Hypothesis: A hypothesis is a statement about the population parameter.
Type | error: It is the error of rejecting null hypothesis when it is true.
Type Il error: It is the error of accepting the null hypothesis when it is false.

Critical Region: It is the region of the standard normal curve corresponding to a
predetermined level of significance.

| Suggested Readings |

1. Freund. J.E.,” Mathematical Statistics”, Prentice Hall of India, Fifth Edition, 2001.

2. Gupta. S.C. and Kapoor. V. K., “Fundamentals of Mathematical Statistics”, Sultan Chand & Sons,
Eleventh Edition, 2003.

3. Devore. J. L. “Probability and Statistics for Engineers”, Brooks/Cole (Cengage Learning), First
India Reprint, 2008.

| Answers to Check Your Progress |

1. Sizes of errors

2. Minimum.
3. Neyman-Pearson Lemma

4. Neyman-Pearson Lemma
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Unit-5

Structure
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5.2. Test Concerning Means

5.3. Tests Concerning Differences Between Means
5.4. The Concerning Variances

5.5. Test Concerning Proportions
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Objectives

After Studying this Unit, the student will be able to

o Analyse and compare the tests based on normal, t, y2and F distributions for testing
of mean, variance and proportions.

e Explain the tests for Independence of attributes and Goodness of fit.

o |llustrate with the numerical examples in normal, t, y2and F distributions.

Overview

In this unit, we will study the tests based on normal, t, y2and F distributions for
testing of means, variance and proportions and tests for Independence of attributes and
Goodness of fit.

5.1. Introduction

We shall preseent some of the standard tests that are most widely used in
applications. Most of these tests, at least those based on known population distributions,
can be obtained by the likelihood ratio technique.

5.1.1. Test of Significance

A statistical test which specifies a simple null hypothesis, the size of the critical
region, a, and a composite alternative hypothesis is called a tet of significance. In such a
test, a is referred to as the level of signficance.

5.1.2. Two Tailed Test

When thes test of hypothesis is made on the basis of rejection region represented by
both sides of the standard normal curve, it is called a two tailed test. A test of statistical
hypothesis where the alternative hypothesis is two tailed such as

Null Hypothesis Ho : u = po

Alterntaive Hypothesis Hi: u # o
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Reject Hy Accept Hy Reject Hy

a2 k
I p—

_ o Lo lig
Ho™= Lo ——— T
v Vi

Crtical region for two-tailed test.

Or
- [ - o
X S[b—Za/sz_and X Zlb +Za/2\/_'r_l
5.1.3. One tailed test

A test of statistical hypothesis, where the alternative hypothesis is one side is called
as one tailed test.

There are two types of one tailed test.

1. Right tailed test: In the right tailed test the rejection region or critical region lies entirely on
the right tail of the normal curve.

Null Hypothesis Ho : u = uo

Alterntaive Hypothesis Hi: u > po (Right tailed)

Accept Hy Reject Hy

[TH _ T
Mo ¥+ Z,——
I *+n

y

Critical region for one-tailed test (H;: p > o).
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2. Left tailed test: In the left tailed test the rejection region or critical region lies entirely on the
left tail of the normal curve.

Null Hypothesis Ho : u = uo

Alterntaive Hypothesis Hi: u < po (Left tailed)

Reject Hy Accept Hy

s

ir r
M= Iy N e

=|

Critical region for one-tailed test (H;: pt < pg).

5.1.4. The following are the steps for testing of hypothesis by means
1. Formulate Ho and H1, and specify a.

2. Usng the sampling distribution of an appropriate test statistic, determine a critical region of
size a.

3. Determine the value of the test statistic from the sample data.

4. Check whether the value of the test statistic falls into the critical region and accordingly,
reject the null hypothesis, or reserve judgement. (Note that we do not accept the null
hypothesis because B, the probability of false acceptance, is not specified in a test of
significance)

Definition: (P- Value) Corresponding to an observed value of a test statistic, the P-value is
the lowest level of significance at which the null hypothesis could have been rejected.

5.1.5. Alternative approach to testing hypotheses
1. Formulate Ho and H, and specify a.
2. Specify the tst statistic.

3. Determine the value of the test statistic and the corresponding P-value from the sample
data.

4. Check whether the P-value is less than or equal to a and, accordingly, reject the null
hypothesis, or reserve judgement.
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5.2. Test Concerning Means

Suppose that we want to test the null hypothesis ¢ = uo against one of the
alternatives u # o, 4 > po or u < po on the basis of a random sample of size n from a
normal population with the known variance o2. Thre critical regions for the respective

; _ X~Ho
alternatives are |z| > z./2, z =z and z < —z »Where z =

o/\n

The most commonly used levels of significance are 0.05 and 0.01, and the corresponing
values of z, and Zgs2 Al Zoos = 1.645, Zoo1 = 2.33,Zo02s = 1.96 and zo0s = 2.575.

5.2.1. Example

Suppoe that it is known from experience that the standard deviation of the weight of
8-ounce package of cookies made by a certain bakery is 0.16 ounce. To chcek whether its
production is under control on a given day, that is, to check whether the true average weight
of the packages is 8 ounces, employees select a random sample of 25 packages and find
that their mean weight is X = 8.091 ounces. Since the bakery stands to lose money when
u > 8 and the custormer loses out when u < 8, test the null hypothesis u = 8 against the
alternative hypothesis u # 8 at the 0.01 level of significance.

Solution:
1. Ho:[i =8
H1:[1 * 8
a=0.01

2. Reject the null hypothesis if z < —2.575 or z > 2.575

1o
zZ = =
a/\n
3. Substituting x = 8.091, 4o = 8,0 = 0.16,and n = 25, we get
8.091 -8
z=———=284
0.16/\/25

4. Since z = 2.84 exceeds 2.575, the null hypothesis must be rejected and suitable
adjustments should be made in the production process.

5.2.2. Larage-sample test.

When we dealing with a large sample of size n > 30 from a population that need not
be normal but has a finite variance, when 2 is unknown we can approximate its value with
s2 in the computation of the test statistic. The following example is a larage-sample test.

5.2.3. Example
Suppose that 100 high-performance tires made by a certain manufacturer lasted on
the average 21,819 miles with a standard deviation of 1,295 miles. Test the null hypothesis

u = 22,000 miles against the alternative hypothesis u < 22,000 miles at the 0.05 level of
significance.
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Solution:

1. Ho: . = 22,000
Hi:p < 22,000
a = 0.05

2. Reject the null hypothesis if z < —1.645
X— o

zZ= —
a/\n

3. Substituting x = 21,819, uo = 22,000,s = 1.295 for o,and n = 100, we get
21,819 —22,000
z= =-1.40
1,295/v/100

4. Since z = —1.40 is greater than —1.645, the null hypothesis cannot be rejected; there is no
convincing evidence that the tires are not as good as assumed under the null hypothesis.

5.2.4. One-Sample t test

When n < 30 and a2 is unknown, for random samples from normal populations, the

likelihood ratio techniques yidles a corresponding test based on ¢t —5\73 which is a value of

a random variable having the t distribution with n — 1 degrees of freedom. Thus, critifcal
regions of size a for testing the null hypothesis u = uo against the alternatives u # po, u >

po or u < po are, respectively, [t| > te,_, t > tan-1 @nd t < —tgn-1.

5.2.5. Example

The specifications for a certain kind of ribbon call for a mean breaking strength of 185
pounds. If five pieces randomly selected from different rolls have breaking strength of 171.6,
191.8, 178.3, 184.9, and 189.1 pounds, test the null hypothesis u = 185 pounds against the
alternative hypothesis y < 185 pounds at the 0.05 level of significance.

Solution:
1. Ho:p = 185
Hi: u< 185
a = 0.05
2. Reject the null hypothesis if ¢ < —2.132, where 2.132 is the value of to.0s4
X— o
t= —
o/\n
3.
x dx=x—A dx?
dx =x—183
171.6 - 114 129.96
191.8 8.8 77.44
178.3 —4.7 22.09
184.9 1.9 3.61
189.1 6.1 37.21
> x =915.7 > dx =0.7 >dxz =270.31
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g=2x_92157 _ 143
n

5
072
o Sdx?  27031—
Standard deviation s = V2&Z="n— _ V. 5 =82

n—1 4

Substituting ¥ = 183.1, 4o = 185,s = 8.2 for g,and n = 5, we get
ep,  183.1-185

A B = —0.51
o/\n 8.2/v/5

t

4. Sincet = —0.49 is greater than - 2.132, the null hypothesis cannot be rejected. If we went
beyond this and concluded that the rolls of ribbon from which the sample was selected meet
spectifications.

5.3. Tests Concerning Differences Between Means

Let us suppose that we are dealing with independent random samples of sizes n;

and n; from two normal populations having the means u; and u, and the knqwn variances
012 an 022 and that we want to test the hypothesis u1 — u; = 6, where 6 Is a given constant,

against one of the alternatives w1 — w2 # 6, 1 — p2 > 6 or i — P2 < 6. Applying the
likelihood ratio technique, we will arrive at a test based on 1 — X, and the respective critical
regions can be written as |z| = zq/2, z = z. and z < — z,, where
X1—X2—6
7=
N
ni nz

When we deal with independent random samples from populations with unknown
variances that may not even be normal, we can still use the test that we have just descirbed
with s; substituted for o1 and s, substituted for g, as long as both samples are large enough
to invoke the central limit theorem.

5.3.1. Example

An experiment is performed to determine whether the average nicotine content of
one kind of cigarette exceeds that of another kind by 0.20 miligram. If n; = 50 cigarettes of
the first kind had an average nicotine content of x; = 2.61 miligrams with a standard
deviation of s1 = 0.12 miligram, whereas n, = 40 cigarettes of the other kind had an average
nicotine content of X; = 2.38 miligrams with a standard deviation of s; = 0.14 miligram, test
the null hypothesis ui — u2 = 0.20 against the alternative hypothesis pi — p2 # 0.20 at the
0.05 level fo significance. Based the decision on the P-Value corresponding to the value of
the appropriate test statistic.

Solution:
1. Ho:[,l1 — Uz = 0.20

Hi:pr —pz2 #0.20
a = 0.05
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X1—X2—6

2. Use the test statistic Z, where z = —
71,72
ni1 n2

3 Substitutingx; = 2.61,x; = 2.61,6 = 0.20,s1 = 0.12 for 01,52 = 0.14 for g2, n1 = 50 and
nz = 40 into this formula, we get

X1—X2—06 2.61—2.38-0.20
zZ = = = 1.08
o2 O 2o t)+
N
ni n2 50 40

This corrsponding P-value is 2 (0.5 - 0.3599), where 0.3599 is the entry in the statisical table
forz=1.08.

4. Since 0.2802 exceeds 0.05, the null hypothesis cannot be rejected; we say that the
difference between 2.61 — 2.38 = 0.23 and 0.20 is not significant. This means that the
difference may well be atributed to chance.

5.3.2. Two-Sample t test
When n; and n, are samll and o1 and g, are unknown. For independent random

samples from two normal populations having the same unknown variance o2, the likelihood
ratio technique yields a test based on

X1—X2—8 Wh (n1—1)s%+(n2—1)s3
t = ere sz = 1

s Vi== p ni+nz—2

P nq1 n2

Under the given assumptions and the null hypothesis u1 — u, = 6, this expression for tis a
vlaue of a random variable having the t distribution with n; + n, — 2 degrees of freedom.
Thus, the appropriate critical regions of size a for testing the null hypothesis 1 — @z = §
against the alternatives pui1 — 2 # 8, 41 — 12 > 6 or u1 — p2 < § under the given assumptions

are, respectively, |t| = tﬂ,nl -2 Jt 2 taniny—2,and t < —tgn4n,—2-
2

5.3.3. Example

In the comparison of two kinds of paint, a consumer testing service finds that four 1-
gallon cans of the one brand over on the average 546 square feet with a standard deviation
of 31 square feet, whereas four 1-gallon cans of another brand cover on the average 492
square feet with a standard deviation of 26 square feet. Assuming that the two populations
sampled are normal and have equal variances, test the null hypothesis ui1 — u2 = 0 at the
0.05 level of significance.

Solution:

1.H0:/,11—u2 =0
Hi:p1—u2>0
a = 0.05

2. Reject the null hypothesis if t = 1.943, and 1.943 is the value of tose.
3.5 =V T 98609 and then substituting its value together with x = 546,
p 4+4-2 1

X2 = 492,8 =0n =ny = 4. we get
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546 — 492

t= = 2.67

28.609v- + 1
4 4

4. Since t = 2.67 exceeds 1.943 the null hypothesis must be rejected; we conclude that on
the average the first kind of paint covers a greater area than the second.

5.4. The Concerning Variances

Given a random sample of size n from a normal population, we shall want to the null
hypothesis o2 = 0% against one the alternativesg? # 0202 > 0%, of 0% < o?, and the

likelihood ratio technique leads to a test based on s2, the value of the sample variance.
Based on theorem “ If X; and X, are independent random variables, X; has a chi-square
distribution with v, degrees of freedom and X1 + X, has a chi-square distribution with v > v,
degrees of freedom, then X, has a chi-square distributon with v — v, degrees of freedom”.
Thus, the critical regions for testing the null hypothesis &ggz}g}st the two one-sided

alternatives as y2 > yx2 and y2 < y? , Wherey? =
an—1 1-an—1 0(2)
Forthe two sided alterntalve we rejct the null hypothesis o ) )
if x2 = x2 or y2 < y2 , -and the size of all these critical regions is equal to a.
a/2n—1 1-a/2n— 1
5.4.1. Example

Suppose that the uniformity of the thickness of a part used in a semiconductor is
critical and that measurements of the thickness of a random sample of 18 such parats have
the variance sz = 0.68, where the measurements are in thousandths of an inch. The
process is considered to be under control if the variation of the thickness is given by a
variance not greater than 0.36. Assuming that the measurements constitute a random
sample from a normal population, test the null hypothesis 62 = 0.36 against the alternative
hypothesis o2 > 0.36 at the 0.05 level of significance.

Solution:
1. Ho: 02 = 0.36
Hi: 02 > 0.36
a = 0.05
2. Reject the null hypothesis if y2 > 27.587 and 27.587 is the value of x?3 s 17

3. Substituting s2 = 0.68, 0% = 0.36 and n = 18 we get

(n—1)s?  17(0.68)
XP= ———=———=3211
ay 0.36

4. Since y2 = 32.11 exceeds 27.587, the null hypothesis must be rejected and the process
used in the manufacture of the parts must be adjusted.

5.4.2. Note

In the above example, if @ = 0.01, the null hypothesis could not have been rejected,
since x? = 32.11 does not exceed x3 ;17 = 33.409.
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5.4.3. Remark

The likelihood ratio statistic for testing the equality of the variances of two normal
populations can be expressed in terms of the ratio of the two sample variances. Given

indepdendent random samples of sizes n; and_n; form two normal_ populations with the
var%ances o2 and aZ,rProm the tlsweoreme‘ Sz and 52 are the var?ances of ﬁ’l ependent random

sampels of Sizes n1 and n; from normal p%)pulatiozns with the variances 012 and Gé’ then F =
§2/0? . . . C .
é/z_é — 02252 is a random variable having an F distribution with n; — 1 and n, — 1 degrees of
048S:

ffeedom” that corresponding critical regions of size a for testing the null hypothesis 012 = 022
against the one-sided alternaive 012 > J; or ai < 022 are respectively.

2 2
Si>f and 52 > f
522 ani—1lnz—1 512 ani—1,n1—1
The appropriate critical region for testing the null hypothesis against the two-sided

alternative g2 # 02 i1 > fajon —1n -1 if 52 = 52 @NdS2 > fojon —10 -1 if 52 < 52
1 2 S% 1 2 1 2 512 2 1 1 2

5.4.5.. Example

In comparing the variabliity of the tensile strength of two kinds of structural steel, an
experiment yielded the following results: n, = 13, s3 = 19.2, n = 16 and s? % 3.5, where
the units of measurement are 1,000 pounds per square inch. Assuming that the

measurements constitute independent. random samples from two normal populations, tet the
hypothesis Gf = 022 against thepalternaive 021 * 022 atpthe (gOrB fevel signﬁi&r?ce.

Solution:
1. Ho: 02 = o2
Hi: 0?2 # 022
1 2
a=0.02

2. Since s2 > s2, reject the null hypothesis if 3> 3.67, where 3.67 is the value of foo1,1215
1 2

2
S2

3. Substituting Sf =19.2 and s; = 3.5, we get

sZ 192

5 - ——=1>549
s 35

4. Since f = 5.49 exceeds 3.67, the null hypothesis must be rejected; we conculde that the
variability of the tensile strength of the two kinds of steel is not the same.

5.5. Test Concerning Proportions

Let's take the most powerful critical region for testing the null hypothesis 6 = 6,
against the alternative hypothesis 6 = 61 < 6o, where 6 is the parameter of a binomial
population, is based on the value of X, the number of “successes” obtained in n trials. When
it comes to compositve alternaives, the likelihood ratio technique also yields test based on
the observed number of successes. If we want to test the null hypothesis 6 = 6, against the
one-sided alternative 6 > 0,, the critical region of size a of the likelihood ratio criterion is x >
k. wher k., is the smallest integer for which Z;zka b(y;n,00) < a and b(y;n,0y) is the
probability of getting y successes in n binomial trials when 8 = 6,. The size of this critical
region is thus as close as possible to a without exceeding it.
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The corresponding critical region for testing the null hypothesis 6 = 6, against the
one-sided alternative 6 <6, is x <k . Where k is the largest integer for which
F

k
Zygka b(y;n, 80) and finally, the critical region for testing the null hypothesis 6 = 8, against
two-sided alternative 6 + 0o is x = ka2 OF x < ky /5.

5.5.1. Example

If x = 4 of n = 20 patients suffered serious side effects from a new medication, test
the null hypothesis 8 = 0.50 against the alternative hypothesis 8 # 0.50 at the 0.05 level of
significance. Here 6 is the true poportion of patients suffering serious side effects from the
new medication.

Solution:
1. He:0 =0.50
Hq:0 # 0.50
a = 0.05
2. Use the test statistic X, observed number of successes.

3.x =4, and since P(X < 4) = 0.0059, the P-value is 2(0.0059) = 0.0118

4. Since the P-value, 0.0118 is less than 0.05, the null hypothesis is must be rejected; we
conclude that 6 # 0.50.

5.5.2. Remark
For large values of n we can use the normal approximation to the binomial
. . . X—n
distribution and treat z = T 2 @ value of a random variable haing the standard
01—

normal distribution. For large n, we can thus test the null hypothesis 8 = 6, against the
alternatives 6 + 0y, 8 > 6y or 8 < 6ousing, respectively, the critical regions

(xt-)—nb,
|z| = Zysp Z >z, andz < -z, where z =__x—90 orz=__2
Vn6o(1—60) VnBo(1—60)

If we use the continuity correction. We use the minus sign when x exceeds né, and
the plus sign when x is less than né,.

5.5.3. Example
An oil claims that less than 20 percent of all car owners have not tried its gasoline.

Test this claim at the 0.01 level of significance if a random check reveals that 22 of 200 car
owners have not tried the oil company’s gasoline.
Solution:
1. Ho: 9 = 020

Hi:6 <0.20

a=0.01

2. Reject the null hypothesis of z < —2.33, where (without the continuity correction)
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x —nby

\/Tl@o(l — 90)

zZ =

3. Substituting x = 22,n = 200, and 6y = 0.20 we get

22 —200(0.20)
z= = —3.18
v/200(0.20)(0.80)

4. Since z = —3.18 is less than - 2.33, the null hypothesis must be rejected; we conclude
that, as claimed, less than 20 percent of all car owners have not tried the oil company’s
gasoline.

5.5.4. Note

If we hadused the continuity correction in the above problem, we get
£ )=m8;  (22+0.5)—200(0.20)

2

2 —3.09

B Vno(1 — 60) v/200(0.20)(0.80)

Since z = —3.09 is less than - 2.33, the null hypothesis must be rejected; we conclude that,
as claimed, less than 20 percent of all car owners have not tried the oil company’s gasoline.

5.6. Tests Concerning Differences among k proportions

Suppose that x1, x2, ..., xx are observed values of k independent random variables
X1, X2, ..., Xk having binomial distributions with the parameters n, and 61, n, and 8,...n, and
0r. If n’s are sufficiently large, we can approximate the distributions of the independent
random variables

= Xmbi i =12,k

i Vnifi(1—6y)

With standard normal distributions, and , according to the theorem : If X1,X,, ..., X, are
independnet random variables having standard normal distributions, then Y = , X? has
the chi-square distribution with v = n degrees of freedom, we have

k (x.—n 6 )2
x2=> : ii
=1 Tligi(l — 91)

as a value of a random variable having the chi-square distribution with k degrees of freedom.
To test the null hypothesis 81 = 6, = - . = 6, = 0, (against the alternative that the least one
of the 's does not equal 6), we can thus use the critica region x? > x%,where

k (x,—n 0 )?
x2=> i 0
=1 ni90(1 — 90)

When 6, is not specified, that is, when we are interested only in the null hypothesis 6, =

6, = ---.= O, we substitute for 6 the pooled estimate

X1+Xx2+ - Xk
n +ny+ - +ng

9=
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and the critical region becomes x? = x%,_;, where

k .2
x2=> (i —np)
i=1 niAQl _Aa

The loss of 1 degree of freedom, thati is, the change in the critical region from y2 . to y2 et
Qa, a,K—

is due to the fact that an estimate is substituted for the unkown parameter 6.

Let us now present an alternative formula for the chi-square statistic. If we arrange
the data as in the following table, let us refer to its entries as the observed cell frequencies
fii, where the first subscript indicates the row and the second subscript indicates the column
of this k x 2 tables

Under the null hypothesis 6, = 0, =

Successes Failures
Sample 1 X1 ni — X1
Sample 2 X2 Nz — X2
Sample k Xk Ny — Xk

-+ . = O = 0 the expected cell frequencies for

the first column are ni6, fori = 1,2, ... , k, and those for the second column are n;(1 — 6,).
when 6 is not known, we substitute for it, the pooled estimate 6, and estimate the expected
cell frequencies as ei1 = n:@and e;» = n; (1 — A@ fori =1,2,..,k. The chi-square statistic

— 2
X2 =Yk &9 can also b written as =y y2 Y787
i=1 0129 i=17j=1 g

5.6.1. Example

Determine on the basis of the sample data shown in the following table, whether the
true proportion of shoppers favoring detergent A over detergent B is the same in all three

cities:

Number favoring | Number favoring
detergent A detergent B
Mumbai 232 168 400
Chennai 260 240 500
Kerala 197 203 400

Use the 0.05 level of significance.
Solution:
1. H0:91 = 92 = 93
Hg: 64,62, and 63 are not all equal.
a = 0.05

2. Reject the null hypothesis if y2 > 5.991, where

—p:) 2
=33 y2 L= 4n45 991 is the value of y2 .
=1 j=1 ¢, 0.05,2
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3. Since the pooled estimate of 9 is

232+260+197
400 + 500 + 400

6 =
The expected cell frequencies are

e11 = 400(0.53) =212, ez =400(0.47) = 188, e21 = 500(0.53) = 265
ez = 500(0.47) = 235, e31 = 400(0.53) = 212, es2 = 400(0.47) = 188

and substituted into the formula we get

_ 2 (260 —1265)2 (197 —212)2 (168 —188)2 (240 — 235)2
,_ (232-212) +( )+( )+( )+( )

212 265 212 188 235
4 (203 — 188)?

188

= 6.48

4. Since y2 = 6.48 exceeds 5.991, the null hypothesis must be rejected; That is, the true
proportions of shoppers favoring detergent A over detergent B in the three cities are not the
same.

5.7. The Analysis of an r x ¢ Table

5.7.1. Contingency Table

A table having r rows and ¢ columns where each row represents ¢ values of a non-
numerical variable and each column represents r values of a different nonnumerical variable
is called a contingency table. In such a table, the entries are count data (Positive integers)
and both the row and the column total are left to chance. Such a table is assembled for the
purpose of testing whether the row variable and the column variable are independent.

We denote the observed frequency for the cell in the it rwo and the jt:column by f,
the row totals by fi, the column totals by f; and the grand total, the sum all the cell
frequencies, by f, With this notation, we estimate the probabilities 6;and 6; as

6 _L andf 7T
Loof JF
and under the null hypothesis of independenfce we get
oA fi fj fi-f;
=09 Ty 7

for the expected frequency for the cell in the it* rwo and the jt:column. e; is obtained by
multiplying the total of the row to wich the cell belongs by the total of the coulmn to which it
belongs and then dividing by the grand total.

2
(i=eij)

ei]

The value of y2=Y_, %7,

Reject the null hypothesis if y2 exceeds o (r—1)(c—1)"
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5.7.2. Example

Use the data shown in the following table to test at the 0.01 level of significance
whether a person’s ability in mathematics is independent of his or her interest in statistics.

Ability in Mathematics

Low | Average | High
Interest Low 63 42 15
in Average 58 61 31
statistics High 14 47 29

Solution:
1. Ho: Ability in mathemtics and interest in statistics are independent.
H1: Ability in mathematics and interest in statistics are not independent.

a=0.01

(fi—eij) 2 .
2. Reject the null hypothesis if y2 > 13.277, where x2 = Y7, ¥, _  and 13.277 is the

€ij
value of X2 ) = x2 C ) = x?
a, r—1"(c=1) 0.01,'3-1°(3-1) 0.01,4

120x75

3. The expected frequencies for the first row are 120x135 = 45, 120150 _ 50, 25.
360 360 360
The expected frequencies for the second row are 150x135 = 56,25, 10120 _ 62.5,
360 360
150x75 = 31.25.
360
The expected frequencies for the fourth row are 90x135 = 33,75, 90x150 _ 37.5,
360 360
90x75 = 18.75 .
360
2 _ (63-45)? n (42-50)2 n (15-25)2 n (58—56.25) | (61-62.5)% | (31-31.25)% | (14-33.75)% |
- A5 50 25 5625 625 3125 | 33.75 |
(47375 | (29-1875)° _ 25 14
37.5 18.75

4. Since y? = 32.14 excedds 13.277, the null hypothesis must be rejected; we conclude that
there is a relationship between a person’s ability in mathematics and his or her interest in
statistics.

5.7.3. Goodness of Fit

The goodness-of-fit test considered here applies to situtations in which we want to
determine whether a set of data may be looked upon as a random sample from a population
having a given distribution.
5.7.4. Example

From the following table, test at the 0.05 level of significance whether the nhumber of

errors the compositor makes in setting a galley of type is a random variable having a
Poisson distribution.
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Number of | 0 1 2 3 4 5 6 7 8 9
errors

Observed 18 53 103 107 82 46 18 10 2 1
frequencies

Solution:

Since the expected frquencies corresponding to eight and nine errors are less than 5, the
two classes are combined.

1. Ho: Number of errors is a Poisson random variable.

H1: Number of errors is not a Poisson random variable.

a = 0.05
Number of errors | Observed Poisson Probabilites Expected
frequencies f; with A =3 frequencies e;
0 18 0.0498 21.9
1 53 0.1494 65.7
2 103 0.2240 98.6
3 107 0.2240 98.6
4 82 0.1680 73.9
5 46 0.1008 44 .4
6 18 0.0504 22.2
7 10 0.0216 9.5
8 2 0.0081 3.6
9 1 0.0038 1.7

(fi—ep? :
2. Reject the null hypothesis if y2 > 14.067, where y2 = Y, :, and 14.067 is the value

2
of x0.05,7-

3.
2 _ (18-219)° n (53-65.7)2 n (103-98.6)> | (107-98.6)2 | (82—73.9)% | (46—44.4)? | (18-22.2)% |
, 219 , 657 986 986 739 444 222
(10-9.6)2 | (3-5.3)
+ = 6.83.
9.5 5.3

4. Since y2 = 6.83 is less than 14.067, the null hypothesis cannot be rejected, the close
agreement between the observed and expected frequencies suggest that the Poisson
distribution provides a “good fit”

Let Us Sum Up

In this unit, we studied the tests based on normal, t, y2and F distributions for testing
of mean, variance and proportions and tests for Independence of attributes and Goodness of
fit.
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| Check Your Proaress |

1. The x2 test is one of the simplest and most widely used test.
2. The range of F-distribution is
3. The range of t-distribution is

4. Inar X c contingency table, the degrees of freedom is

| Glossaries |

Level of Significance: The level of significance is the maximum probability of making a type |
error.

Two tailed test: When the test of hypothesis is made on the basis of critical region
represented by both sides of the standard normal curve.

One tailed test: A test of statistical hypothesis, where the alternative hypothesis is one sided.

Critical value: The value of the sample statistic that defines the region of acceptance and
rejection.

| Suggested Readings |

1. Freund. J.E.,” Mathematical Statistics”, Prentice Hall of India, Fifth Edition, 2001.

2. Gupta. S.C. and Kapoor. V. K., “Fundamentals of Mathematical Statistics”, Sultan Chand & Sons,
Eleventh Edition, 2003.

3. Devore. J. L. “Probability and Statistics for Engineers”, Brooks/Cole (Cengage Learning), First
India Reprint, 2008.

| Answers to Check Your Progress |

1. Non-parametric test

2.1to
3. - to

4. (r—-1)x(c—-1)
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| BLOCK lll: Correlation and Regression |

Unit 6 Correlation and Regression Analysis

Unit 7 Partial and Multiple correlation and regression Analysis
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Unit -6

Structure

Objectives

Overview

6.1. Introduction

6.2. Linear Regression

6.3. Method of Least Squares

6.4. Normal Regression Analysis
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Objectives

After Studying this Unit, the student will be able to

e Explain the relationship between two variables and the relationship between
the average values of two variables.

¢ Relationship between correlation analysis and regression analysis.

e Solving problems in correlation and regression analysis.

Overview

In this unit, we will study the concept of correlation and Regression analysis. That is,
correlation is the relationship between two variables and regression means relationship
between the average values of two variables. Regression is very useful in estimating and
predicting the average value of one variable for a given value of the other variable.

6.1. Introduction

The main objective of many statistical investigations is to establish relationships that
make it possible to predict one or more variables in terms of others. Thus, studies are made
to predict the potential sales of a new product in terms of its price, a patient’s weight in terms
of the number of weeks he or she has been on a diet, family expenditures on entertainment
in terms of family income etc.

If we are given the joint distribution of two random variables X and Y, and X is known
to take on the value x, the main objective of bivariate regression is that of determining the
conditional mean uy | , thatis, “ the average value of Y for the given value of X. In Problems
involving more than two random variables, that is, in multiple regression, we are concerned
with quantities such as puz |y , the mean of Z for given values of X and Y, uw |y, the
mean of W for given values of X, Y, Z and so on.

6.1.1. Bivariate Regression (Regression equation)

If f(x, y) is the value of the joint density of two random variables X and Y, bivariate
regression consists of determining the conditional density of Y, given X = x and then
evaluating the integral

prix = E(Y | x) = f_ y.w(ylx)dy

The resulting equation is called the regression equation of Y on X. Alternately, the
regression equation of X on Y is given by

uxy =EX | y) = x flxly)dx

—00

6.2. Linear Regression

The Linear regression equation is of the form uy | x = @ + Bx , where a and 8 are
constant, called the regression coefficients.
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Let us express the regression coefficients « and g in terms of some of the lower
moments of the joint distribution of X and Y,_that is, in terms of E(X) = u, E(Y) =
Varr?X?= ai, Vard/% = 022 anaJ cov(X,Y) = 012. ‘Then, also uselng the COI('re)Iatlélr% cgegﬂaéﬁf

_ 912
0102-
6.2.1. Theorem

If the regression of Y on X is linear, then #y| :u2+p 2 (x—u) and if the
x 1

=p+p T -u)
1 2

y oy

a1

regression of X on Y is linear, then u
X|

Proof:

Since uy |x = a + Bx

Jywl | x)dy = a + Bx

and if we multiply the expression on both sides of this equation by g(x), the corresponding
value of the marginal density of X, and integrate on x, we obtain

JTy.w0)g@)dy dx = a [ g(x)dx + B [ x. g(x)dx

p2 =a+ B

Since w(y |x)g(x) = f(x,y). If we had multiplied the equation for uy|x on both sides by  x.
g(x) before integrating on x, we obtain

[ [xy.flx,y)dydx = a [ x.g(x)dx + B [ x2 g(x)dx

E(XY) = aus + BE(X?)

Solving u; = a + B and E(XY) = aus + BE(X?) for a and B and using
E(XY) = 012 + pau2 and E(X?) = ai + ,uzf we get

a=p —"Fu =p —p*.pand p="2=p%

2 g2 1 2 o 1 o2 o1
The linear regression equation of Y on X as ,uy| =‘u2 + pﬂ (x—u)
x 1

o1

Similarly we prove the regression equation of X on Y is linear, HXI =,u1 +p2y—u)
y 2

(]

6.2.2. Remark

If the regression equation is linear and p = 0 then uyx does not depend on x or uyxjy
does not depend on y. When p = 0 and hence ¢1; = 0, the two random variables X and Y
are uncorrelated and we can say that if two random variables are independent, they are also
uncorrelated, but if two random variables are uncorrelated, they are not necessarily
independent.
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6.3. The Method of Least Squares

6.3.1. Least Squares Estimate

If we are given a set of paired data {(x; y:);i = 1,2, ..., n}. The least squares estimates

of the regression coefficients in bivariate linear regression are those that make the quantity
q=x" ez2=y" [y — (Aa+ px )] 2 minimum with respect to‘aand .-
i=1 i i=1 i i

6.3.2. Theorem

Given the sample data {(x; y:);i = 1,2, ..., n}, the coefficients of the least squares line
y="u+ B are B= " and a="y— Bx.
S

Proof:

q=Xx" ez=)y" [y — (Aa+ px )] 22 minimum with respect toaand .~
i=1 i i i

i i=1
Differentiating partially with respect to wand Bwe have

% _y (2, ~ e+ )] and

%99 = y(-2)xp - (et )
aﬁ l l l

i=1

For the finding the minimum value, %9¢ = Y* (=2)[y — Coet P )]=0and
o =1 i i

0_6{ = Y(-xp —(e+B)]=0

aﬁ ' l l l

i=1

Therefrore we have the system of normal equations

n n
Sy =m+ 3 x

i=1 i=1

n n n
STy =8 xi + B> %2
i=1 i=1 i=1

Solving this system of equations, we have, the least squares estimate of § is
nxr xy)— Q" x)E o)
‘8" — i=1 i=1 L;l
n@r_x) - x)
= L

i=1

Then the least sqaures estimate of « is
n i _A n xi
zi:=1 y 'BZ i=1

n

A

o=
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By solving the first of the two normal equations for @
Therefore a="y— B %

Let us consider

n 2

n 1 n

S =% —X=3Xx2-—_(Zx)

xx i i n i
i=1 i=1 i=1

2

n 1 n
S =3 l_—‘3)2=2y2_— _(Zyi)

vy n
i=1 i=1 i=1
n n 1 n n
Sey =250 —X0)(yi =¥ = Do xiyi — n‘(Z xi) (o yi)
i=1 i=1 i=1 i=1

o xy) = @ %)E )
F=h@ - x)?

i=

p=m

Y
Sxx

6.4. Normal Regression Analysis

When we analyse a set of paired data {(x; v:): 1,2, ..., n} by regression analysis, we
look upon the x; as constants and the y; as values of corresponding independent random
variables. For example, If we want to analyze data on the ages and prices of used cars,
treating the ages as known constants and the price as values of random variables, this is a
problem of regression analysis.

Assume that the for each fixed x; the conditional density of the corresponding random
variable y; is t?e normal densify

_pyi=(athx)
Wilx)= e 2
oV21

Where a, Bando are the same for each i. Given a random sample of such paired data,
normal regression analysis concerns itself mainly with the estimation of ¢ and the regression
coefficients aand B, with tests of hypothesis concerning these three parameters, and the

predictions based on the estimated regression equation y= w+ B, where @ and B are
estimates of a« and .

o ; —e <y < ®

6.4.1. To Obtain maximum likelihood estimates of the parameters a, Qando.

Differentiate partially the likelihood function (or its logarithm, which is easier) with respect to
a, Banda, equate the expressions to zero, we get

n
lnL=—n.lna—f.ann—iZ[Y,—(“"'ﬁx )]?
L L

2 2072 i1
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n

0 InL 1
Pa 0_—22[%‘ —(a+px)]=0
i=1

0 InL 1
5 " gD xily: — (@ + Bx)] = 0

i=1
9 i noo1y 12
—_ _—,— yi—(a+px) =0
do o o3i=1

Since the first two equations are equivalent to the two normal equations. The maximum
likelihood estimates of @ and B are identical with the least squares estimate of the above
theorem.

If we substitute these estimates of a and § into the equation obtained by 2L to zero, we get

do

the maximum likelihood estimate of ¢ is

=VIsy - (et px))
n.

i=1

Let us now investigate their use in testing hypotheses concerning a and 8 and in
constructing confidence intervals for these two parameters.

To study the sampling distribution of B let us write
s, R _G-DC-Y " x-x
X =
— L 3 L — Z( L

Sxx Sxx i=1 Sxx

AB= ) Yi

which is a linear combination of the n independent normal random variables Y;. Bitself has
a normal distribution with the mean

N "x—X nx—X
E(B =221 TEX|x)=>1 ](a+ﬂX)i=/3
i=1 Sax o i=1 S
and the variance
Tox-—x "ox—x o2
Var(? => [~ ] Var(Y'|x,) => [~ lo2=
i=1 SX.X : l i=1 Sxx XX

6.4.2. Result

2
Under the assumptions of normal regression analysis, n;rz is a value of a random

variable having the chi-square distribution with n-2 degree of freedom. Furthermore, this
random variable and Bare independent.
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6.4.3. Result

Under the assumptions of normal regression analysis,

"
(a \/ﬁ) i-p is a value of a random variable having the t distribution withn -

Yo-2)8e =

V) (n-2) @ n

2 of freedom.

6.4.4. Result

Lethe the random variable whose variable are g then

P (—tg
N2 < 2 N

By Result 2, we write this as

P[B-te 3y——<fB<B+t N——]=1-a

2,7’7.—2 (n - Z'n_z (TL - Z)Sxx
Z)Sxx

6.4.5. Result

Under the assumptions of normal regression analysis,

B—te lfoy———< B <Pttt loy——
2,7’7.—2 (n - Z)Sxx 2,71—2 (Tl - Z)Sxx

Isa (1 —a)100% confidence interval for the parameter S.

n

6.5. Normal Correlation Analysis

Assume that the x; are fixed constants analyzing the set of paired data
{(x;, v): 1,2, ..., n}, where x;'s and y;'s are values of a random sample from a bivariagte
normal population with the parameters s, uz, 01, o2andp.

6.5.1. To estimate the parameters uy, Uz, 01, 02andp by the method of maximum
likelihood

we shall have to maximize the likelihood L = [~ f(x; y:)

dinl
aimL gnd ° " “are equated to zero, we get

ol ouz
5 (xi—p1)  pX" (yi—p2) P (xi—p)  yn (vi—w2)
_ =1 o + i=1 — 0 and _ i=1 + i=1 > —
i 0102 0102 o3

Solve these two equations for u: and u2, we get the maximum likelihood estimates of these
two parameters are {11 = x and ji> ="yare the respective sample means.

alnL .
ainL ainlL and ° " are equated to zero and substituting x = x and U =7y, we get
901’ 9oz ap 1 2
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Sn iy? DA (xi=%) (i)
"Q. — \/ i=1 =

w=V =2 _an
and’p= o (xl SRS

The estimate pis called the sample correlation coeff|C|ent, is usually denoted by r.

6.5.2. Result
If {(x,v):1,2,...,n} are the values of a random sample from a bivariate population
S
thenr =——2—
" \/Sxx-syy

6.6. Examples

6.6.1. Given the two random variables X and Y that have the joint density
x(1+ )
f(xy)—{xe Y, forx >0andy >0
elseshere
Find the regression equation of Y on X and sketch the regression curve.

Solution:
Integrating out y, we find that the marginal density of X is given by

g(x) = { e forx >0
elsewhere

and hence the conditional density of Y given X = x is given by

fxy)  x. e *(»)
w(y |x) = = =x.ew

gx) e

for y > 0 and w(y |x) = 0 elsewhere, which we recognize as an exponential density with 8 =
1. Hence, by

X

Uy | x =f y.x.evdy
0

The mean and the variance of the exponential distribution are given by u = 6 and o2 = 62,
so that the regression equation Y on X'is py |x = %

The corresponding regression curve is shown the following figure
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6.6.2. If Xand Y have the multinomial distribution

fox,y) = ( n ).0%.65(1 =6 _ g ynx-y
x,yn—x-—y 12 1 2
forx =0,1,2,..n,and y =0, 1, 2, ...n, with x + y < n, find the regression equation of Y on X.

Solution:

The Marginal distribution of X is given by

)n—x—y )n—x

g(x)= >3 ( i y)91x-92y(1—91—92

ol o
, Xy x - =()o- 21—

y=

for x = 0,1, 2, ...n, which we recognize as a binomial distribution with the parameters n and
6:. Hence,

f(xy) (“‘y") eyz(l — 0y — Gy) Y

90 -6

w(y |x) =

fory=0,1,2,..n,

n—x o> y 1—601—0,; n—x=y
w(y |x) = ( ) ( ) (

y 1—-61 1—-61
The conditional distribution of Y given X = x is binomial distribution with parameters n —
x and_9%2_, so that the regression equation of Y on X is u” _ (=06
1-61 x 1-61

Note: In the Previous example, if we let X be the number of times that an even number
comes cup in 30 rools of a balanced die and Y be the number of times that the reulst is a 5,
then the regression equation becomes

1
n—x)0 B0—-x)- 1
_ (b _ 6= (30 —x)
1—-61 1—E 3

Uy | x
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Because there are equally likely possibilities 1, 3 or 5, for each of the 30 — x outcomes that
are not even.

6.6.3. If the joint density of X1, X2 and X3 is given by

o (x1+ x2)e3, foro<xi <1, 0<x2<1
f O x2,x5) ={ 0 elsewhere

Find the regression equtaion of X, on X; and Xs.
Solution:
The Joint marginal density of X1 and X3 is given by

1
m(x1, x3) = {(xl + E) e for0<x1<1l,x3>0

0 elsewhere

°° (x4, %, %)
= x.if L=223 4

X2|x1,x3 2
—00

_(C +X) X1+
A 2 3

1
x2=f )

m(xll x3) 0 X1 + 2_ 2 2X1 + 1

6.6.4. Consider the following data on the number of hours that 10 persons studies for a
French test and their scores on the test:

Hours | 4 9 10 14 4 7 12 22 1 17
studied
X

Test 31 58 65 73 37 44 60 91 21 84
score

y

(a) Find the equation of the least squares line that approximates the regression of the test
scores on the number of hours studied.

(b) Predict the average test score of persons who studied 14 hours for the test.

Solution:
(@n=10,Yx =100,%x2 = 1,376,% y = 564, ¥ xy = 6,945, y= =7 = *** — 56 4,
n 10
x 100
F=2i=—"_1p
n 10
S =¥ x—-®*=Y% 22— x)2=1376-_(100)2=376
xx i=1 i i=11i n =1 10
n n 1 n n 1
Soy =2l D@ =Y =X xyi - A %) (X yi) = 6945 - 5€100)(564) = 1,305
=1 i=1 i=1 i=1
A Sxy 1,305 N oA
B= = = 3.471 anda="y- fx = 56.4 — 3.471(10) = 56.4 — 34.71 = 21.69

Sxx 376
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Therefore, the equtaion of the least squares is "y= 21.69 + 3.471x
(b) Substituting x = 14 into the equation obtained in part (a), we get
= 21.69 + 3.471(14) = 70.284

6.6.5. Consider the following data on the number of hours that 10 persons studies for a
French test and their scores on the test:

Hours | 4 9 10 14 4 7 12 22 1 17
studied
X

Test 31 58 65 73 37 44 60 91 21 84
score

y

Test the null hypothesis = 3 against the alternative hypothesis § > 3 at the 0.01 level of
significance.

Solution:

1.Hu: =3
Hi:f( >3
a=0.01

2. Reject the null hypothesis if t > 2.896, where 2.896 is the value of to01s from the

statistical table.

3. Caculate n = 10, x = 100, X x2 = 1,376, %y = 564, Y xy = 6,945, y= > = °** = 56.4,
n

10
Y y2 = 36,562.

n n 1 n 2 1
S =3 -»=3y:- (y) =36562—_ (564)? =4,752.4
yy i i n i 10
i=1 i=1 i=1
n n 1 n n 1
Sey =200 — X))y =) =D xiyi — n{z x:) (G yi) = 6,945 — " 0—6100)(564) = 1,305
=1 i=1 i=1 i=1
. S.. 1,305
f=""= =3.471
SXX 376

1 -
=VT[S  — (DS )] =VL[4752 — (3471)(1,305)] = 4.720
n xy 10

i — _ 471-3 8376
t= BBy =08 34713 B376 4 4
w n 4720 10

since t = 1.73 is less than 2.896, the null hypothesis cannot be rejected; we cannot conclude
that one the average an extra hour of study will increase the score by more than 3 points.

6.6.6. Consider the following data on the number of hours that 10 persons studies for a
French test and their scores on the test:
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Hours | 4 9 10 14 4 7 12 22 1 17
studied
X

Test 31 58 65 73 37 44 60 o1 21 84
score

y

Construct a 95% confidence interval for 3.

Solution:

n=10,%x = 100,%x2 = 1,376,% y = 564, %, xy = 6,945, 7y= >¥ = *** = 564,

n 10
x 100
9?=Z—:——10
n 10
S =% (@x-%?=% - x)!=1376-_(100)?=376
xx i=1 i=1i n =1 10

2

S =3 —»=3y*- (3y) =36562—_ (564)? =4,7524
i i n i

yy 10
i=1 i=1 i=1
n n 1 n n 1

Sey =300 =D =¥ =X xyi - A %) (X yi) = 6945 —  5€100)(564) = 1,305
i=1 i=1 i=1 i=1

. S 1,305

f=""= =3.471

Saxx 376

1 N
=[S~ )] = V114,752 — (3,471)(1,305)] = 4.720
n Xy 10

t0.0258 = 2.306

f—te ‘foy———<pB<pf+t lfoy—TH—
2,7’7.—2 (Tl - Z)Sxx 2,71—2 (TL - Z)Sxx

3.471 — (2.306)(4.720)V. 10 - B < 3471 + (2.306)(4.720) V. 10

g 376) 8(376)

2.84 < B < 4.10

6.6.7. Suppose that we want to determine on the basis of the following data whether there is
a relationship between the time, in minutes, it takes a secretary to compute certain form in

the morning and in the late in the late afternoon:

Morning 8.2 9.6 7 9.4 10.9 7.1 9 6.6 8.4 10.5
X

Afternoon | 8.7 9.6 6.9 8.5 11.3 7.6 9.2 6.3 8.4 12.3
y

Compute and interpret the sample correlation coefficient.
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Solution:

From the data we get

n=10,Yx =86.7,Yx2 =771.35, Y y=888 Y xy="792923 y2=2819.34

n 1 n 2 1
S =% —x)2 = inz —_(Zx) =77135-_ (86.7) = 19.661

xx i n 10
i=1 i=1 i=1
n n 1 n 2 1
S =3 -»=>y?2- (y) =89134—  (88.8)2=30.796
yy i i n i 10
i=1 i=1 i=1
n n 1 n n 1
Sey = 2200 =0 =¥ =y — A0 %) (XD yi) =792.92 — | -86.7)(88.8)
i=1 i=1 i=1 i=1
Sy = 23.024
Sxy 23.024

r= = =0.936
VS Syy  V/(19.661)(30.796)

Result: The confidence intervals for p and tests concerning p on the statistic L. In R whose
2 1-R
distribution can be approximately normal with mean L in * and the variance 1__. Thus,
2 1-p n—3

%ln %r— 1 In 1T+—Qp \/'u_ (1 + T')(l - ,D)
= _ - .In
z 1 2 (1-n{1+p)
Vn—-3

Using this approximation, we can test the null hypothesis p = po against the alternative
hypothesis.

6.6.8. Suppose that we want to determine on the basis of the following data whether there is
a relationship between the time, in minutes, it takes a secretary to compute certain form in
the morning and in the late in the late afternoon:

Morning x 8.2 9.6 7 9.4 109 | 7.1 9 6.6 8.4 10.5

Afternoony | 8.7 | 9.6 6.9 8.5 113 | 7.6 9.2 6.3 8.4 12.3

Test the null hypothesis p = 0 against the alternative hypothesis p # 0 at the 0.01 level of
significance.

Solution:
1. Ho: p = 0
Hi:p#0
a=0.01
2. Reject the null hypothesis if z < —2.575 or z = 2.575, wherez = " . In -~
2 1-r
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3. Substituting n = 10 and r = 0.936, we get, z = V3¢~ 45

2 0.064

4. Since z = 4.5 exceeds 2.575, the null hypothesis must be rejected.
We conculde that there is a linear relationship between the time it takes a secretary to
complete the form in the morning and in the late afternoon.

Let Us Sum Up

In this unit we discussed the Normal Correlation analysis, linear regression, Method
of least squares and normal regression analysis are illustrated with numerical examples.

Check your Progress

1. The Coefficient of correlation lies between
2. The two-regression linear always intersect at their

3. The regression lines become identical if

Glossaries

Correlation: The relationship between two variables such that a change in one variable
results in corresponding greater or smaller change in the other variable.

Regression: It shows a relationship between the average values of two variables. It is very
helpful in estimating and predicting the average value of one variable for a given value of the
other variable.

Linear Regression: The relationship between two variables x and y is linear.

Method of Least squares: It is a mathematical device. It is used for obtaining the equation of
a curve which fits best to a given set of observations.

Suggested Readings

1. Freund. J.E.,” Mathematical Statistics”, Prentice Hall of India, Fifth Edition, 2001.

2. Gupta. S.C. and Kapoor. V. K., “Fundamentals of Mathematical Statistics”, Sultan Chand & Sons,
Eleventh Edition, 2003.

3. Devore. J. L. “Probability and Statistics for Engineers”, Brooks/Cole (Cengage Learning), First
India Reprint, 2008.

4. Veerarajan. T, “Fundamentals of Mathematical Statistics”, Yee Dee Publishing Pvt. Ltd, 2017.
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Unit -7

Structure

Objectives

Overview

7.1. Introduction

7.2. Yule’s Subscript notation
7.3. Plane of Regression

7.4. Properties of Residuals

7.5. Coefficient of multiple correlation

87



Objectives

After Studying this Unit, the student will be able to
e Understand the Yule’s notation

e Explain the concept of plane of regression, properties of residuals, coefficient of
partial and multiple correlation.

o Demonstrate the problems in partial correlation, multiple correlation and multiple
regression.

Overview

In this unit, we will study the concept of Partial and Multiple Correlation and
Regression Analysis. That is, in partial correlation, the relationship between dependent
variables and one of the independent variables by excluding the effect of other variables and
in multiple correlation the effect of all the independent factors on a dependent factor.

7.1. Introduction

Simple correlation that deals with the degree of relationship between two variables,
such as heights and weights of individuals, supply and demand of a commodity, ages of
husbands and wives and so on. But there are situations when there is interrelation between
many variables and the value of one variable may be influenced by other variables. For
example, the yield of crop in a year depends upon fertility of soil, amount of rainfall, type of
manure used, average temperature and so on. When we are interested in knowing the
combined effect group of variables upon a variable not included in that group, we resort to
the study of multiple correlation and multiple regression.

The simple correlation between two variables in a group when the influence of other
variables in the group has been eliminated from both is called partial correlation. For
example, the correlation between the heights and weights of boys of the same age and from
families of the same income group is partial correlation. Here the influence of the age factor
and the income factor of the family have been eliminated as they are kept constant and so
the heights and weights are the variable factors. Even if it is not possible to eliminate the
entire influence of variables other than the variables whose partial correlation is measured,
we can reduce the influence by easily eliminating the linear effect of those variables. Thus,
the simple correlation and regression between two variables in a group, when the linear
effect of other variables in the group eliminated, are called partial correlation and partial
regression.

7.2. Yule’s Subscript notation

We shall study the group of three variables only, through the meanings and
arguments will apply to the case of n variables also.

To find the equation of the regression plane x on y and z, we shall assume that
x1 = bia3x2 + b1zax3 (1)
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assuming that the variables have been measured from their respective means. The b's are
called partial regression coefficients. In b123, the first suffix 1 preceding the dot indicates the
dependent variable, the second suffix 2 preceding the dot indicates the variables to which
the coefficient bi123 is attached and the third suffix 3 succeeding the dot indicates the
remaining variable. Similar meanings are attached to bi3.. The suffixes preceding the dot
are called primary subscripts and those succeeding the dot are called secondary subscripts.

If we consider n variables xi, x, ..., x» then the equation of the regression plane
X1 On X2, ... , xoWill be assumed as x1 = bi224.7%X2 + b1324.nX3 + -+ + bln,zg,,_,(n_l)xn. The
order of the primary subscripts cannot be altered, but the secondary subscripts can be
written in any order. Note that b1234 = b1243; but b1234 # b21.43.

The order of any regression coefficient is the number of secondary subscripts in its
representation. Thus b1, is the regression coefficient of order zero is called simple or total
regression coefficient.b123 is of order 1 and b1234..» is of order (n — 2). The quantity x123 is
defined as x123 = x1 — bi23x2 — biszxs is called the residual of xi, given by the plane of
regression (1) and is said to be of order 2. Residual of x; is also called the error of estimate
of x1. The quantity x1 — x123 = b123x2 + biz2x3 is called the estimate of x; and it is denoted

by e1.23 o1 x1(23).

7.3. Plane of Regression

Consider a trivariate distribution consisting of three random variablesxi, x2, xs.

Let the equation of the plane of regression of x1 on x; and x3 be

x1 = a + bi123x2 + b132x3 (1)
where the variables are assumed to have been, measured from their respective means
namely E[x1] = 0,E[xz] = 0,E[x3] = 0 (2)

Taking expectations of both sides of (1) and (2) and using (2), we get a = 0.
(1) becomes x1 = b123x2 + b132x3 (3)

The constants bi23 and bi3; are determined by the principle of least squares which states
that if the (3) is to be the equation of the best fitting regression plane for a given data
consisting of N sets of corresponding values xi, x2, x3, the sum of the squares of the
residuals should be a minimum.

The best estimates of bi23 and b3, are obtained by minimizing
S =3 x}53 = X(x1 — b123x2 — b132X3)?

The normal equations for getting the best estimates of b1,3 and b13., are

9 —0and—_=0
0b123 db132

—2 Y x2(x1 — b123x2 — b132x3) = 0 and —2 Y, x3(x1 — b123x2 — b132x3) =0

2 X1X2 — b12.32x; — b2 x2x3 =0 (4) and Y x1x3 — b123 X, X2x3 — b132 ZX23= 0 (5

Since the variables are measured from their respective means,
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2x1x2
Yxx =Cov(x ,x )=N oo andr _ Covlxx_Cy )
12 172 121 2 = =

12 0107 0102

Tx1x3
Yxx =Cov(x ,x )=N oo andr _ Covlxixs)_( y )
13 173 13 1 23 13 0105 0103

Now, o; is the standard deviation of x:.
From (4) we have

Nr120167 = Nb1230% + Nb13 21230203
71201 = b12302 + b13272303 (6)

From (5) we have

Nr130103 = Nb1337230203 + Nby3,0%
71301 = b12312302 + b13203 (7)

Solving equations (6) and (7) by Cramer’s rule

b _ |T1201 T2303| y ) T23U3|
123 lrizoq 03 ' 'rp30; 03
or T12 723 1 723

bios =l 11y, 1 ®

Similarly
_9

b ==

132 o3 T23 T13 raz 1

1 T12| . | 1 23

1} ©

11 Ti2 T13
Consider the determinant A= |21 T22 T23|
r31 T32 733

where r;; is the simple correlation between x; and x;; i = 1,2, 3

Let the cofactor of r;; in A be denoted by R;;.

Using these notations and definitions in (8) and (9) we have

o1 R ; —
b =—"1 72 andp o1 Rz sincer U
L .

12.3 o2 Ry 3.2 o3 .Rll ij Ji

Using these values of bi23 and bis; in (3), the required equation of the regression plane of
x1 on x; and x3 becomes

o1 Ri o1 R13)
x1=(—— "% J)x2+(—— 5 )X3
1= o, Ri’™? ( o5 R

X1 X2 X3
—Riu+—Riz+—Ri3=0
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X1 X2 X3

or o 3=0

21 T22 T23

31 T32 T33

7.3.1. Note

1. The equation of the regression plane of x onx andx is xLR +2R +2R =0
2 3 1, 21 22 . 23

1 2 3

2. The equation of the regression plane of x onx and x is 1R +2R +%R =0

3 1 2, 31 4 32 . 33

3. If the variables xi, x,, x; are not measured from their respective means, the equation of
the regression plane of x1 onx2 and x3 igXl=x1 R, + x2=X2 R,, + x3=X3 R, =0

o1 02 g3

That is

X1—X1 X2—X2 X3—X3

o1 ()] o3 | =0
21 22 23
r31 32 33

4. If we consider a multivariate distribution consisting of n random variables x1, xz, ..., x», the
equation of the regression plane of x; on x3, ..., x,Will be assumed as x1 = b1224.2x2 +
bi324.nx3 + -+ + bin23..m-1)Xn @nd it is denoted in determinant notation as

X1 X2 X3 Xn

o1 o2 03 On
Y21 T22 723 .. Ton _
|r31 T3z T33 7‘3n|
Thi Th2 Thz = Tnn

7.4. Properties of Residuals

7.4.1. The sum of the products of any variable with every residual is zero, provided the
subscript of the variable occurs among the secondary subscripts of the residual.

Proof: In the derivation of the equation of the regression plane of x; on x; and x3 in a
univariate distribution, the normal equations for getting b123 and b3, are

sz(xl — b123x2 — b13.2X3) =0
Y x2x123 =0 (1) and

ZX3(X1 — b123x2 — b13.2X3) =0

Yx3.x123 =0 (2)
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From (1) and (2), the sum of the products of any variable with every residual is zero.

Similarly, From derivation of the equation of the regression plane of x; on x3 and x; , we get
Y x1.x231 = 0and Y x3.x231 =0

From derivation of the equation of the regression plane of x3on x; and x, , we get
ZX1.X3,21 =0 and le.x3_21 =0

7.4.2. The sum of the products of two residuals is unaltered, if we omit from one of the
residuals, any or all the secondary subscripts which are common to those of the other.

Proof: In a trivariate distribution, the residual x1, is given by x12 = x1 — bi2x2, where x1; is
got from x123 by omitting 3 and the residual x123 = x1 — b123x2 — b132X3

Now,

Y x123.X12 = ), X123(x1 — b12x2) = Y, X123%1 Since Y. x2. x123 = 0 (by above property)

Also

Y X123 . X123 = X x1.23(x1 — b123X2 — b132x3) = Y x123x1 (by above property)

7.4.3. The sum of the products of two residuals is zero, if all the subscripts (primary and
secondary) of one residual occur among the secondary subscripts of the order.

Proof:

Consider

Y x12x312 = (X1 — b12Xx2)X312 = Y. X1X312 — b12 ), X2X312 = 0 — b12 X 0 = 0 (by property 1)

7.4.4. The variance of the residual of a variable given by the plane of fegression can be

expressed in terms of the variance of the variable itself. Thatis, 62 = "~ ¢2, in a trivariate
123 R,

distribution.
Proof:

1.23 N 1.23

Noz = x2
1.23 > 1.23

N 02,3 = Y x123. X123 = X, X1X123 , by property 2
N o3 = Y. x1(x1 — b123%x2 — b13.2%3)
N 0-1223 = Z le — b123 Z xX1X2 — b13.2 Z X1X3

N 0'1223 = NO’f — b12_3NT120'10'2 - b13_2NT‘130’10’3
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2 _ 2
0° =0°—b13r120102 — b13271303
1.23 1
Ri304
o2 =g+ r L Ror
1.23 1 121 2 13
Rq10; Rq103
o2 =% (r R r R ) = 12
123 p 11 11 12 12 13 13 Ru
7.4.5. Note
A
1.02 =" o2
Ljk Ry
r11 Tr12 T13 - Tin
A r21 T22 T23 - Ton
2. 02 = oc2where A= 731 132 133 - T3y
123.n Ry |
Tmi Th2 Tn3 = Tnn

7.5. Coefficient of multiple correlation

The simple correlation coefficient between x; and the totality of all the other variables
X2, X3, ..., Xn iS called the coefficient of multiple correlation between x; and (x, x3, ..., x»,) and
it is denoted by R123.n OF R1(23__,n).

The simple correlation between x; and the estimate of x; in terms of x; and x3
namely, e123 is R123 for a trivariate distribution.

7.5.1. Multiple correlation coefficient in terms of simple correlation coefficients

In a trivariate distribution

2 4,2
T+ 1t — 2r101237T
R, =T2t7s 12123131

123 1-1

Cov(xi, e123) = Cov(x1, X1 — X123)
Cov(x1, e123) = Cov(x1, x1) — Cov(x1, X123)
Cov(xi, e123) = 07 — E(x1. x123) since E(x1) = E(x123) = 0

Cov(x1, e123) = 04 — E(x123. x123) by property 2 of residuals

Cov(x1, e123) = 02 — 02 €Y
1.23

Var(ei23) = Var(x: — x1.23)

Var(eizs) = Var(xi) + Var(xizz) — Cov(xi, X1.23)

Var(eizs) = 012 +02 —202 by(1)

1.23 1.23
Var(eiz3) = 02 — 02 2)
1 1.23
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Now

COU(X1, 61,23)
Ry3 =

VVar(x.). Var(ei.s)

0.2_0.2
Riz3= — 1% by (1) & (2)

01V01—0123

\/0' — 0123
Ripz=—1
01
2
01.23
Rizz=V1—(—)
o1
R 1 01'23)2
f23 =1—( p
{_p 01.23)2 _ A
23 = ( = Ri
Now,

11 Ti2 T13
A= |Tr21 T22 T23|
31 T32 T33
A=1 - i3 — T12(T‘12 - T23T31) + T13(T12- 23 — T31)

A=1—12—1r2 —1r2 4 2112123731
12 23 31

and Rii1=1- T‘fg
Therefore,

— 2 — 2 — 2
1 12— 13, r31+2r127”237”31

1—174

A
1—Rty; = R

2 4.2
T 8 — 211272371
R%23 =T, T, 12723731

1-n3
7.5.2. Note

1 RZ k. rl-zj +rl-2 —21ijTjkTik
s ijk T 2
J 1—rjk

2.02 =o0?(1—R?2 )
1.23 1 1.23

3. For a n-variate distribution,
2

2
R2 — 1 _ (0'1.23...11) — 1 _ 0—1.23“][ and 0_2 _ 0_2(1 . RZ )
2

1.23..n o1 o? 1.23..n 1 1.23..n
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4. Since Var(ei23) = Cov(x1, e123) From (1) & (2), Cov(x1, e123) = 0 and hence Ri23 = 0.
0<Ri2<1.

5.fR =1, theno? =12x2 =0
1.23 123y 123

That is, all the regression residuals are zero and hence x1 = b123x2 + biz2x3.
The equation of the regression plane may be treated as a perfect prediction formula for x;.

7.6. Partial correlation coefficient in terms of simple correlation coefficients

In the case of trivariate distribution, the correlation coefficient between x; and x:
after the linear effect of x3 on them has been eliminated is the partial correlation coefficient
between x; and x, and it is denoted by r123.

x13 = X1 — bisxz and x23 = x2 — bz3xs are the residuals that may be regarded as the parts
of the variables x; and x; that remain after the linear effects of x3 on them have been
eliminated.

Therefore,

cov(x13,%23)
Ti23 = €Y
123 VVar(xis). Var(xzs)
Now,

cov(x13, x23) = Cov{(x1 — bi3xs), (x2 — ba3x3)}
cov(x13, x23) = Cov(x1, x2) — b23Cov(x1, x3) — b13Cov(x2, x3) + bi3b23Cov(x1, Xx2)
covix ,x )=r 6o —r 22y 6o —r Ly gog +r Ly 02 ,
1.3 2.3 12 1 2

O-
230_3 13 1 3 130_3 23 2 3 130_3 230_33

cov(x13,X23) = 0102(r12 — r13r23)  (2) since cov(xs, x3) = Var(xs)
Var(xi13) = Var(xi1 — b1zxs)

Var(xi3) = Var(xi) + b3Var(xs) — 2b13Cov(x1, x3)

2
Var(x )=o024+12% .0,-2 %% g0
13 1 2 13713 1 3

03 03

Var(xi3) = 02(1 —12) 3)
1 13

Var(xz3) = o2(1 —12) (4)
2 23

Using (2), (3) and (4) in (1), we get

T12 — 713723
r123 =
V(l——qs)(l—-gg)

_=R1p
AISO Th2s = g
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7.6.1. Note

Tij — TikVjk " . 4 y
Tijk = ,wherei,j,k=1,2,3and i #j #
A - - )
ik Jjk

7.7. Examples

7.7.1. A teacher wished to find the relationship marks in the final examination to those in the
two class tests during the semester. Denoting the marks of a student in the first two test and
the final examination by x1, x2, x3 respectively, he obtained the following information

J?1 = 6.8,)?2 = 7, JE3 = 7.3, g1 = 1, oy = 0.8, o3 = 0.9,7"12 = 0.6, r13 = 0.7, T23 = 0.65

(i) Find the least square regression equation x; on x; and x;

(i) Estimate the marks in the final examination of two students who secured respectively 9
and 7, 4 and 8 in the two tests.

(iiiy Compute R3.12

(iv) Compute 123

Solution:

(i) Equation of the regression plane of x; on x1 and x; is given by

X1—f1 XZ—fz X3—f3

01 02 03 |=0
21 22 23
31 32 33

X1—6.8 xz—7 X3—7.3

BE 0.8 09 | _g
1 0.6 0.7
0.6 1 0.65

x; — 6.8 Xy — 7 X3 — 7.3

2 -68) )(—0.31)—7( 2 )(0.23) +M(0.64) =0
1 0.8 0.9

0.711x3 — 0.288x2 — 0.310x; — 1.071 =0
x3 = 0.436x1 = 0.402x, + 1.506

(i) When x1 =9, x; = 7 then x; = 8.244
When x; =4, x; = 8then x3 = 6.466
(iii)

Ry =TaitTot2rarasrst _ (0.7)? + (0.65)2 — 2% 0.6 X 0.7 X 0.65 — 05727
312 1-13 1—(0.6)2

R3_12 = 0757
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(iv)
_ T12 —T13723
Va =T —77)

r12.3

0.6 — (0.7 x 0.65)
T123 = =0.263

V(1 —0.72)(1 — 0.652)

7.7.2. Prove that the necessary and sufficient condition for the three regression planes to
coincide is T2+ 12 d 12 = 2rprara =1

Solution:

The equations of the three regression planes are

X1 X2 X3
—rn+—rizt+—Riz=0 (1)
(o2} gy 03

X1 X2 X3

— R+ ra+ —Ra=0 (2)
X1 X2 X3
—R31+—R3; +—R33 =0 (3)
01 0-2 0-3

Planes (1) and (2) coincide, if and only if the corresponding coefficients are proportional.
Namely, if

Taking the first two rations, the required condition is
R11R22 —R12R21=0
(1—7r2)(A—7r2)—(riz—123r13)2=0

23 31
AQ—=7r2—72 +7r27r2) —(r2 + 1212 — 2r12r23r31) =0

23 31 2331 12 23 31
r2 +71r2 +1r2 — 27‘121‘237‘31 =1 (5)

31

12 23

Taking the second and third ratios in (4), we will get the same condition (5) as the required
condition.

Now the planes (2) and (3) will coincide. If

Proceeding as before, (6) will also reduce to the same condition as (5)
Therefore, the necessary and sufficient condition required is given by (5).

7.7.3. For a trivariate distribution, express the multiple correlation coefficient in terms of
simple and partial correlation coefficients.
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or

Prove that 1 - Ri . 1- rlzz)(l — rf3 2). Hence deduce that the multiple correlation

coefficient is not less than any simple correlation or any partial correlation coefficient.
Solution:

If we express R1.23 and ri3.is terms of simple correlation coefficients, we have

1-RrR2 = i (Dandr _ _=Ri
123 R 132 = JRy; Raa
1 — 72 — 1 — R%3
13.2 R11R33
R11R33 — R?
1—72 = 13 (2)
13.2 R11R33

Dividing (1) by (2) we get

11 Ti2 T3
1-Rf,; _ ARz _ where A=Y r  r | and R’s are the cofactors of the corresponding
-1_—er'— = R1{iR33=R%>— 21 22 23
13.2 13 r31 T3z 133

rs

1—R? a1Q-rz2— r2 — 12 + 2r12r23r31) (1 —12)
1.23 12 31 12

1—12 - (1 —7'2)(1 —T'Z) — (T‘12T23 —T'31)2

13.2

1—R? (A—7r2—=72 —1r2 4+ 2rr23r31) (1 —12)
23 31 12

L 1z 23
=72 — (1 — 12 — 12 — 712 F 21"127‘237"31)
13.2 12 23 31
2
1 1.23 2
S =1—r
1- 7"1232 12
1—R2 —(1—r2)(1—T2 ) (3)
13.2
Since

0<r2 <1, 0<1—712 <land0<rz <1,0<1-7r2 <1 (4)
12 12 13.2 13.2

From (3) & (4) we get

1-R2 <1—-12 = R? >r2 (5) and1—Rz2 <1—-1r2 = Rz 2>1r2 (6)
1.23 12 1.23 1.23 13.2 123~ 132

From (5) & (6) the required result holds.

Note: 1—R2 =({1-7r2)1—-1712)
1.23 13 12.3

7.7.4. If r,3 = 0 then prove that R2 =12 + r2 and deduce that if R123 = 0 then prove that
1.23 12

r2=113=0
Solution:
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2 2
e 41 4+ 2r1or23r
R, =1 13 12723731

123 1- 1

2 2
R% = 7‘12 + 7‘13
23 1

R2 =712+4712
123 12 13

0=72+12

12 13
2 +1r2 =0
12 13

Therefore, r1i, = 0andri3 =0

7.7.5.1fr1; =72 =13 = p then prove that 1123 =7531 =731 = ;7%1 and also prove that

(1-p)(A+2p)
1—-R?,, =
1.23 1 + D

Solution:
Tij = TikTjk

Tijk = \/(1 — Tizk)(l — 7;3{)

,Wherei,j,k=1,2,3and i #j #k

p-pr* _ pdl-p _ P
Va-p»2 (A-pA+p) 1+4p

1-R2 =({1-7r2)1-712)
1.23 12 13.2

Tijk =

pZ
1=Rtys = 1 =p) {1 - 5572

(1 -p)( +2p)

PR =11 py
(1-p)1+2p)
1-Riy= 1+
p

7.7.6.fr;3 =1thenshowthat (i) R2 =12 =72 and (i) 62 =o02(1—12)
123 12 13 1.23 1 12

Solution:
T‘Z + T‘Z — 2112123131
R%23 ="12""13 €Y)

— 12
1—r3

Rz (1—712)=1r2+712 — 211213
1.23 23 12 13

When ra3 =1

r2+712 —2ri2r31 =0
12 13
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(riz—ri3)2=0
riz=r13 (2)

Using (2) In (1) we get

2r2 = 2r2r
R%23 =210 1228
' 1—n%
212 (1 — T23)
2 12
Riz3 = 1— 2
3
R2 = B 72

123 (1 + T23) 12

R2 =7r2=172 By (2
1.23 T'12 T'13 y()

Now

02 =o02(1—-R

2 )=o02(1-12) =02(1—712)
123 1 1.23 1 12 1 13

7.77. If r %and ri3 are given, then show that r,; must lie in the range ri2ris + (1 — rﬁz—
r2 4+ r2r? 3 /2, Hence Prove that ;3 lies between -1 and 1 — 2k2, if rio = k and'riz = —k.
13 12 13

Solution:
Since ri23 is a partial correlation coefficient
0<13<1

123 <1

T12 — 713723

Va=o="2y

13 23

<1

T12 —T13r23 < V(1 —712)(1 —12)
13 23

(riz—rurs)2 <1 —r2)(1—r2)
13 23

2 —2riorasrsi +1r2r2 < (1—r2)(1—12)
12 13 23 13 23

12 — 2112723131 + 71212 <1 —712 —r2 4+ 71272
12 13 23 23 13 13 23

12 — 211212331 +1r21r2 <1 —1r2 —r2 471272
23 12 13 12 13 12 13

(ras —ririz)2 <1-— 7;22— ri3+ T'izrz13

|12z —riorz| < V1 —12 —1r2 41272
12 13 12 13

Therefore, 73 lie in the range roriz £ (1 — 712 — 712 +7r212)1/2 (1)
12 13 1213
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Put 1, = k and 713 = —k in (1), we get that r; lies in the range—k2 + V1 — 2k2 + k*
—k2 + (1 — k2)

—k2 — (1 —k?) <73 < —k?2+ (1 —k?2)

~1<r3<1-2k?

7.7.8. If the variables x1, x2, x3 are measurgd from the respective means and have the same
variance. Prove that(i)r +r +r >—="(ii)r2 +7r2 +7r2 <14+2rr r
12 23 31 2 12 23 31 12 23 31

Solution:
E[x1 + x2 + x3]%2 = E[xi + x; + xg + 2(x1x2 + x2x3 + x3x1)] (1)
Since the variables are measured from the respective means and have variance.

E[x?] =o2fori=1,2,3

Cov(xi, x))
rj=——
Ox,0x;
E[Xin]
Ty = p; fori,j=1,2,3andi #j
Consider

E[x1+x2+x3]2=>0

302+ 202(ri2+1r23+131) =0

3
T'12+T23+T'312—§

Since Rt,3 <1

2 2
e 4 1o — 212137
R%za =75 13 12723731

<1

— 12
1—r3

12 +712 — 2112123131 < 1 — 172
12 13 23

2 +12 +1r2 <14 211272331
12 23 31

7.7.9. If x1 = ax, + bxs then prove that the three partial correlations are numerically equal to
unity. Also show that 123 has got the same sign of a, ri32 has got the same sign as b and

1,3, Nas the opposite sign of (g).

Solution:

Since given x1 = ax; + bxs, assume that x; and x3; are independent variables and x; is the
dependent variable, depending on x; and xs. Therefore r,; = 0 and hence
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Cov(xz, x3) B

0203
Cov(xz,x3) =0

Var(x:) = Var(axz + bxs)
Var(x:) = a?Var(xz) + b2Var(xs)
Var(xi) = a2022 + b2032

Cov(xy, x2) = Cov(axz + bxs, x2)

Therefore

[ag? + bCov(x2, x3)]
2

T2 =
VVar(ax; + bxs)Var(xz)

ao
" T wor+ bror

2 3
Similarly

bO'3
"3 = Jaggr =+ bror

2 3
Now,

r —r r a0z ao

B 121323  _ GO =_ =41
r123= VT =72 (T =72) k2=b%c acz
13 23 3
Nz
Where k = vazo? + b2o?
2 3

Since Va20% = + a o,

r —rr &) bo

_ 13 12 23 _ K - . 3 =41
"32= VT =72 )L —72)  R—aa® ~Vb2or -
12 23 4/ 2 3
A

Since Vb2o% = + b 03

Therefore, ri23 has the same sign as a and ri32 has the same sign as b and they are
numerically equal to unity.
Now,

23— T12731

"B T =T =)
12 31
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—aag2 ba3 ¢ 2
Kk kK

231 Ve —azo2)tkz— bzo2)
2 3
—aboq0o3
"B e o)
2 3
—ab
231 =
Vazb?
a
— (_2
r231 = —
a2
\/b_z
a
- (E) _
231 = . = +1
+O

1,3,1@S Opposite sign of () and its numerical value is 1.
- b

Let Us Sum Up

In this unit, we explained the concept and the differences between simple, partial and
multiple correlation analysis with examples and also discussed plane of regression and
Properties of residuals.

Check your Progress

1. The partial correlation coefficient lies between
2. Multiple correlation coefficient is a coefficient.
3. If Riz3=0 then T12 = and riz3 =

4. In Multiple regression analysis, the independent variable is a random variable whereas the
independent variables random variables.

Glossaries

Partial Correlation: It is the measure of association between two variables, while controlling
or adjusting the effect of one or more additional variables.

Multiple Correlation: It is a statistical technique that predicts values of one variable on the
basis of two or more other variables.

Multiple Regression: It’s statistical technique that can be to analyse the relationship between
a single dependent variable and several independent variables.
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%

1.-1and +1

2. Non-negative
3. riz =0 and riz3=0

4. Need not be a
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| BLOCK IV: Desian of Eerriments |

Unit 8 Analysis of Variance one-way, two-way classification and Design of
Experiments
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Unit -8

Structure

Objectives

Overview

8.1. Introduction

8.2. Basic Principles of Experimental Design

8.3. Analysis of Variance (ANOVA) for one factor classification

8.4. Analysis of Variance (ANOVA) for two factors of classification
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Objectives

After Studying this Unit, the student will be able to

o Explain the design of experiments, analysis of variance one way and two-way
classifications.

¢ Distinguish between Completely Randomized Design, Randomized Block Design and
Latin Square Design.

e Solve the problems in analysis of variance one way and two-way classifications,
Completely Randomized Design, Randomized Block Design and Latin Square
Design

Overview

In this unit, we will study the concept of Design of Experiments. We will only focus on
the ANOVA one-way classification, ANOVA two-way classification and the most commonly
used design of experiments such as Completely Randomized Design, Randomized Block
Design and Latin Square Design.

8.1. Introduction

Experiment, what is meant is collection of data (which usually consist of a series of
measurement of some feature of an object) for a scientific investigation, according to certain
specified procedures. Statistics provides not only the principles and the basic for the proper
planning of the experiments but also the methods for proper interpretation of the results of
the experiment.

In the beginning, the study of the design of experiments was restricted only to
agricultural experimentation. The need to save time and money has led to the study of
methods to obtain maximum information with minimum cost and labour. Such
considerations resulted in the subsequent acceptance and wide use of the design of
experiments and related analysis of variance techniques in many fields of scientific
experimentation.

A statistical experiment in any field is performed to verify a particular hypothesis. For
example, an agricultural experiment may be performed to verify the claim that a particular
manure has got the effect of increasing the yield of paddy. Here the quantity of the manure
used and the amount of yield of paddy are the two variables involved directly. They are
called experimental variables. Apart from these two, there are other variables such as
fertility of the soil, the quality of the seed used and the amount of rain fall which also affect
the yield of paddy. Such variables are called extraneous variables. The main aim of the
design of experiments is to control the contribution of extraneous variables and hence to
minimize the experimental error so that the results of the experiments could be attributed
only to the experimental variables.

8.2. Basic Principles of Experimental Design

In order to achieve the objectives, usually the following three principles are adopted
while designing experiments.
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1. Randomisation

It is not possible to eliminate completely the contribution of extraneous variables to
the value of the response variable (namely; the amount of yield of paddy). So, we try to
minimize it by randomization technique. As per this technique, plots of the same size are
taken and divided into two groups. In one group called the experimental group the manure
is used in all the plots (units). In the other group of plots in which manure is not used but will
provide a basis for comparison is called the control group.

If any information regarding the extraneous variables and the nature and magnitude
of their effect on the response variable in question is not available, we resort t randomization
which means selection of plots for the experimental and control group in a random manner.
This technique provides the most effective way of eliminating any unknown bias in the
experiment.

2. Replication

If the effects of different manures on the yield of paddy are studied, each manure is
used in more than one plot. In other words, we resort to replication which means repetition.
In order to estimate the amount of experimental error and hence to get some idea of the
precision of the estimate of the manure effects, it is essential to carry out more than one test
on each manure.

3. Local Control

In order to achieve adequate control of extraneous variables, another important
principle used in the experimental design is the local control. This includes techniques such
as grouping, blocking and balancing of the experimental Plots (units) used in the
experimental design. By grouping, we mean combining sets homogeneous plots into
groups, so that different manures may be used in different groups. The number of plots in
different groups need not necessarily be the same.

By blocking we mean assigning the same number of plots in different blocks. The
plots in the same block may be assumed to be relatively homogeneous. We use as many
manures as the number of plots in a block in a random manner.

By balancing, we mean making minor changes in the procedures of grouping and
blocking and then assigning the manures in such a manner that a balanced configuration is
obtained.

The following are the commonly used design of experiments
1. Completely Randomized Design (C.R.D.)

C.R.D. is a design in which N values of a given random variable X (the yield of
Paddy) contained in a sample are sub-divided into h classes according to one factor of

classification (different manures)

Let us assume that we wish to compare h treatments (namely; h different manures)
and there are n plots available for the experiment.

Let ith treatment be replicated (repeated) n, times, so thatny + n2 + -+ + nx = n. The
plots to which the different treatments are to be given are found by the following
randomization principle. The plots are numbered from 1 to n serially, n identical cards are
taken which are also numbered from 1 to n and shuffled thoroughly. The numbers on the
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first n; card drawn randomly give the numbers of the plots to which the first treatment is to
be given. The numbers on the next n; card drawn at random give the numbers of the plots
to which the second treatment is to be given and so on. This design, known as completely
randomized design is used when the plots are homogeneous or pattern of heterogeneity of
the plots is not known.

2. Randomized Block Design (R.B.D.)

R.B.D. is a design in which the N variate values (yield of paddy) are classified
according to two factors.

Assuming that there are N plots and they are divided into h blocks (rows)
representing one factor of classification (say, soil fertility) each block containing k plots
(columns) representing the other factor of classification (say, treatments). The plots in each
block will be of homogeneous fertility as far as possible and k treatments are given to the k
plots in each block in perfectly random manner such that each treatment occurs only once in
any block. But the same k treatments are repeated from block to block.

3. Latin Square Design (L.S.D.)

L.S.D. is a design in which N = n2 plots are taken and arranged in the form ofann X
n square, such that the plots in each row will be homogeneous as far as possible with
respect to one factor of classification, say, soil fertility. Plots in each column will be
homogeneous as far as possible with respect to another factor of classification, say, seed
quality. Then n treatments (third factor of classification) represented by letters are given to
these plots such that each treatment occurs only once in each row and only once in each
column. The various possible arrangement obtained in this manner are known as Latin
squares of order n.

Analysis of Variance (ANOVA)

After planning and conducting experiments, the results obtained must be analysed
and interpreted. The technique for making statistical inferences is known as the analysis of
variance, which is widely used technique developed by R.A. Fisher. In general, there are
several factors involved, in an experiment each one of which may cause a certain amount of
variability in the observed values of the response variable.

In analysis of variance technique, we divide the total variation (represented by
variance) in a group into parts which might have been caused by different factors and a
residual random variation which could not be accounted for by any of these factors. The
variation due to any specific factor is compared with the residual variation for significance by
applying the F-test and thus test the homogeneity of the observed data, namely, test if all the
observations have been drawn from the same normal population.

8.3. Analysis of Variance (ANOVA) for one factor classification

We assume that the N values of a given random variable (yield of paddy) contained
in a sample are subdivided into h classes according to a factor of classification (manure)

We proceed with the assumption that the factor of classification has no effect on the
variable and test if this assumption (null hypothesis) can be accepted.
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Let x; be the value of the jt» member of the it* class, which contains n, members.
Let the general mean of all the N values be ¥ and the mean of the n; values in the it: class
bea?i.

Now,

SNy — %) = Xy — )+ GBi— D}

i j i j

S D =330 gAY AEIE D H2EN(x 57X )E ~X)

i j i j i j i J

S B =N %) +ENE m D2 4+28E —OX(x %) (1)
i i i i j=1

> (xij — ;) = Sum of the deviation of the n; values of x;; in the ith class from their mean X;
j=1

-0 @
Using (2) in (1) we get
SSGx R =30 xR+ E® —5)?
i J i J i

P=P,+P;

Where P = Total variation

Pi =Y ni(xi — x)>?
i

= Sum of the squared deviations of class means from the general mean
(namely, the variation between calsses)

2
P2 =233 (xy — Xi)
iJ
= sum of the squared deviation of variates from the corresponding class means
(variation within classes)

Since

P, = vartion within classes = P — Pican be considered to have been obtained
after removing the variation P1 between classes from the total variation P.

Hence P; is regarded as the residual variation.

. . . . . 1 . _ .
Now the items in the itclass with variance sz = ~ " (x — X )2may be considered as a
. S

L n; ]=1 y n-52
i

sample of size n; drawn from a population with variance o2, hence E (n—‘-_ '1) = 02
—
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By theory of estimation,

E[S(x 7%)]= O ~1o?
J

h
E[XS(x 7%)1=%0 Do

j i=1
E[P;] = (N — h)o?

E [—PZ—] = o2
(N—h)

P
(N-h)

is an unbiased estimate of a2 with (N — h) degrees of freedom.

Now, if we consider the entire group of N items with variance

1
N i
i

j
As a sample of size N drawn from the same population

E[EX(x 78)°1= N - 1)0?
i j
P

Ely_pl= o

(N:) is an unbiased estimate of 2 with (N — 1) degrees of freedom.

Now Pi=P—P,
E[P:] = E[P] — E[P-]
E[P1] = (N —1)02 — (N — h)o?

E[P.] = (h — 1)a?

— P

P 2
(h=1)

E| =0

Py
(h—1)

is also an unbiased estimate of o2 with (h — 1) degrees of freedom.

If we assume that the sample population is normal, then the estimate _P1 and_ ?2_ are
(h-1) (N—h)

independent and hence the ratio
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[(7”_11—)]
[F2]

(N=h)

Follows a F-distribution with (h — 1, N — h) degree of freedom or the ratio

P2
[(N_h)]

[-21]

(h-1)

Follows a F-distribution with (N — h, h — 1)degree of freedom.
Choosing the ratio which is greater than 1, we employ the F-test.

If Calculated value of F is less than the table value of F at 5% , our hypothesis holds good,
that is , different treatments do not contribute significantly by different yields.

ANOVE table for one factor of classification

Source of Sum of square | Degrees of Mean square | Variance ratio
variation (S.V.) | (S.S)) freedom (M.S.) (F)
(d.f.)
Between P1 h—1 P, P, *1
Col — h—1
olumns (h—1) {_Pz_}
Within classes P, N—h P, (N—h)
(N-h)
Total P N-1
10.3.1. Note

For calculating P, P4, P, the following computational formulae may be used

1 2 2
P=N{yXXx;—x}

1 1 2
P=N{szx2ij_ (NZZXU) 3

2
P = ZZx;— :,_,whereT =D Xy
Similarly, for the it* class

S(xij — X)) = 2. x? — Iz, where T = D xij
j j o j

Therefore,
2
Pa=3 R0y —%)' =X 3z — 310
n.

i i i

L
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2
Therefore,Py =P — P, =Yl — %2
ng

8.4. Analysis of Variance (ANOVA) for two factors of classification

We assume that the N values of the random variable (yield of paddy) contained in a
sample are classified according to two factors-one factor classification (soil fertility)
represented by h rows and the other factor (treatment) represented by k columns. So that
N = hk.

We assume that the rows and columns are homogeneous, namely; there no

difference in the variance values (yields of paddy) between the various rows and between
the various columns and test if this assumption (null hypothesis) can be accepted.

Let x;; be the value of the variable in the it» row and jtt column.

Let ¥ be the general mean of all the N values, &;, be the mean of the k values in the it row
and x.; be the mean of the h values in the jt» column.

Now,
Xij — X = (x,-j — Xix — f*j + f) + (fi* - f) + (f*j - f)

Therefore,

IPHCTREN
Y (= K — %oy £ X)
FEN =D NGy~ + 2NNy — e — G+ D — D)
2 N (X — Foe — X - + D) (Fej — D) + 235 Y T — X (Fy — %) (1)

Now the fourth member in the R.H.S. of (1)

k
=2 Z(fl* — f) Z(Xij — J?i* — f*}' =+ J?)
j=1

L

Similarly, the last two members in the R.H.S. of (1) also become each.
Omitting these zero valued terms, (1) becomes

P = P3 + P1 + P,, say where

Pi =3 Y% — %)? = kX (X — X)?

L
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Pz => Y (X+ — J?)2= hY (% — %) i

ij
2

P3 == ZZ(fij - fi* — .f*j =+ f)

P = Total Variation

P1 = Sum of the squares due to the variations in the rows

P, = Sum of the squares due to the variations in the columns

P3; = Sum of the squares due to the residual variations.

Using one factor of classification, we can prove that

b P2 P3P are unbiased estimates of the population variance o2 with
(h-1)" (k=1) " (h=1)(k=1) * (hk—1)

degrees of freedom (h — 1),(k — 1), (h—1)(k — 1) and (hk — 1) respectively.

If the sample population is assumed normal, all these estimates are independent.

Therefore,
_P1
[(h—l)]

P3

[(h—l)(k—l)]

Or

It's reciprocal follows a F-distribution with {(h — 1), (h — 1)(k — 1)} degrees of freedom or
with {(h — 1)(k — 1), (h — 1)} degrees of freedom, depending on the value of F. Similarly

_P2
[(k—l)]
P3
[(h—l)(k—l)]
Or

It's reciprocal follows a F-distribution with {(k — 1), (h — 1)(k — 1)} degrees of freedom or
with {(h — 1)(k — 1), (k — 1)} degrees of freedom, depending on the value of F then the F-
test is applied as usual and the significance of the difference between rows and between
columns analysed.
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ANOVA table for two factors of classification

Source of Sum of Degrees of Mean square Variance  ratio
variation (S.V.) | square (S.S.) | freedom (M.S.) (F)
(d.f)
Between P, h—1 P hpl 1
R — =5
ows (h—1) o 3
(h-1)(k-1)
Between P, k—1 P, P 1
Columns (k-1 G
C 5 3
(h-1)(k-1)
. P3
Residual P (h—1)(k—1) h—Dk—1)
Total P hk —1
8.4.1. Note

For computing P, P4, P, and Ps, the following working formulae may used

2
LP=S3xi—, whereT =33 x

i i

1 ) TZ k
2.P1:E2Ti_W,WhereTi:ZxL’j

j=1

1 T2 !

3.P2=712T12—W,WhereTj=inj

i=1

4.P3 =P —P1— Py, Also X>XT,=>'T; =T

3 J

8.5. Analysis of Variance (ANOVA) for three factors of classification

We assume that N (= n?) variate values (yield of paddy) contained in a sample are
classified to three factors, namely soil fertility, seed quality and treatment represented by the

rows, columns and letters respectively.

We assume that the rows, columns and letters are homogeneous, namely, there is
no difference in the variate values between rows, between the columns and between the

letters and test if this assumption (null hypothesis) can be accepted.

Let x;; be the value of the variate corresponding to the it* row, jt» column and k¢t

letter.
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X = iZ x and x be the mean of the values of x corresponding to the kt: treatment.
*] n LU k ij

Now
Xi]'—f = (fl‘* —f) +(f*j —f) +(fk—f) +(XU — Xix —f*j — Xk +2f)
Therefore,
2
222 (xi — x%)
- TlZ(fl* - f)z

J
2 2
+nY(x,, —%) +nXE&, D2+ X X(x y— X, — X, — X+ 2%)
j k

Since all the product terms vanish, we have

P=Pi+P,+Ps+ P,

P P3 Py

We can prove that _P1 are unbiased estimates of the

D) (-1) (-1 (-D(n-2) (m2-1)
population variance o2 with degrees of freedom(n—1),(n—1),(n—1),(n—1)(n — 2),
(n2 — 1) respectively.

If the sample population is assumed normal, all these estimates are independent.
Therefore, each of

Pi
Py
[(n—l)(n—Z)]

P>
)]
[—P—]

(n-1D(n-2)

_P3 -
[(n_l)]
Py
[(n—l)(n—Z)]

Or their reciprocal follows a F-distribution with {(n — 1), (n — 1)(n — 2)} degrees of freedom
or {(n — 1)(n — 2), (n — 1)} degrees of freedom, depending on the value of F then the F-test
is applied as usual and the significance of the differences between rows, columns and letters
is analysed.
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ANOVA table for three factors of classification

Source of Sum of Degrees of Mean square Variance ratio (F)
variation square freedom (M.S))
(S.V) (S.S)) (d.f)
Between P n—1 Py Py *1
Rows (n—1) { n—1
Py
(n—-1D(n-2)
_P, *1
Between P n—1 Py n—1
Columns (n—1) { Pa
(n—1)(n—-2)
Between Ps n—-1 Py +1
letters P (—=b—
Py
(Tl - 1) (n—1)(n—-2)
Residual Py n—1(n-2) P,
n—1Dn-2)
Total P nz—1
8.5.1. Note

For computing P, P4, P;, P; and P, the following working formulae may used
2
1.P=Y Y x2 —T_, whereT =3}, ), x and N = n2
i jij N i j i
2.P =EZT2 —E,WhereT =Y x and N =n?
1 L, i N i j=1 ij
1

3.P =_2T2—T_2,WhereT =" x and N = n2
2 L J N j i=1 ij

4.p = iZ T? — T_Z,where T isthe sum of all x 's receiving the kt' treatment and N = n2
3 ., kN K ij

5.P4=P —P1— P,— P3 Also ZTLZZTJZZT}(:T
i J k

8.5.2. Note

Simplification of Computational work: The Variance of a set of values is independent
of the origin and so a shift of origin does not affect the variance calculations. Hence in
analysis of variance problems, we can subtract a convenient number from the original values
and work out the problem with the new values obtained. Also, since we are concerned with

variance ratios change of scale also may be introduced without affecting the value of F.
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8.6. Examples

8.6.1. A Car rental agency, which uses 5 different brands of tyres in the process of deciding
the brand of tyre to purchase as standard equipment for its fleet, finds that each of 5 tyres of
each brand last the following number of kilometers (in thousands)

Tyre brands

A B C D E
36 46 35 45 41
37 39 42 36 39
42 35 37 39 37
38 37 43 35 35
47 43 38 32 38

Test the hypothesis is that the five tyre brands have almost the same average life.

Solution:

Null hypothesis Ho: There is no significant difference between in the average life of the five
tyre brands.

Alternative hypothesis H;: There is a significant difference between in the average life of the
five tyre brands.

Let Xij = Xij — 40

Tyre brands

A B C D E Total
4 6 -5 5 1
-3 -1 2 -4 -1
Xij Values 2 -5 -3 -1 -3
-2 -3 3 -5 -5
7 3 -2 -8 -2
T; 0 0 -5 -13 -10 -28
n; 5 5 5 5 5 25
T? 0 0 5 33.8 20 58.8
n
5 82 80 51 131 40 2
> x2 22 xij
i
=1 = 384
T=>T =-28
> > x%= 384
, T? (—28)2
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2 2

PoT
Pr=2. =~ - =588-3136=2744

n;

P; =P — P1=352.64—27.44 = 325.20

ANOVA Table
Source of Sum of square | Degrees of Mean square | Variance ratio
variation (S.V.) | (S.S)) freedom (M.S)) (F)

(d.f)
Between Pi=27.44 h—1= P _ a6
tyre brands 5-1=4 — '
d (=1 1626 .,
Within tyre P, = 325.20 N—h= P 06| 686
brands 25—-5=20 (N — h) o
Total P =352.64 N—-1=

25—1=24

Table value of F at 5% level of significance for (20, 4) degrees of freedom is 5.80

Calculated value of F is less than table value of F.

Therefore, Null Hypothesis Hy is accepted.

Hence, the five tyre brands have almost the same average. That is, they do not differ
significantly in their lives.

8.6.2. The following data represent the number of units of production per day turned out by

different workers using 4 different types of machines.

Machine Type
A B C D
1 44 38 47 36
2 46 40 52 43
Workers 3 34 36 44 32
4 43 38 46 33
5 38 42 49 39

(a) Test whether the five workers differ with respect to mean productivity (b) Test whether
the mean productivity is the same for the four different machine types.

Solution:

Null Hypothesis Ho: (a) There is no significant difference between in the mean productivity of
the 5 workers and (b) There is no significant difference between in the mean productivity of
the 4 machine types.

Alternative Hypothesis Hi: (a) There is a significant difference between in the mean
productivity of the 5 workers and (b) There is a significant difference between in the mean

productivity of the 4 machine types.

Let Xij = Xij — 40
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Machine Type T; ; > X2
Workers A B C D k ;Y
1 4 -2 7 -4 5 6.25 85
2 6 0 12 3 21 110.25 189
3 -6 -4 4 -8 -14 49 132
4 3 -2 6 -7 0 0 0
5 -2 2 9 -1 8 16 90
T; 5 -6 38 -17 T=20 Tl.z_ IDIP.C
Z k ' ' ij
181.5 _cga
T? 5 72 | 28338 57.8 T}
J S =
h h
358.8
> X2 110 28 139 DD ¢
ij ij
i i
=594
TZ (20)2
_ 2 — ¢ — =574
P_szij_N_ 94— 20
T? T2
P - L—_ = —_ =
1=2] w Ty = 1815-20=1615
_2 TZ
Pz=73] RN 358.8 — 20 = 338.8
P;=P—-P;y—P,=574—-1615-338.8=73.7
ANOVA table
Source of Sum of Degrees of Mean square Variance
variation (S.V.) square freedom (M.S.) ratio (F)
(S.S)) (d.f.)
Between P, =161.5 h—1= P Fr=
Rows 5—-1=4 (h—1) 40.375
(Workers) = 40.375 6.142
= 6.57
Between
Columns P, =338.8 k—1= P> Fc=
(machine types) 4—-1=3 —(k —1) 112.933
=112.933 6.142
Residual = 18.39
Ps =737 (h—1Dk-1)=12 Ps
(h—1Dk-1)
= 6.142
Total P =574 hk—1=19

Table value of Fy at 5% level of significance of (4,12) degrees of freedom is 3.26
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Calculated value of Fr is greater than table value of Fz.

Null Hypothesis H, is rejected. (For Rows)

Therefore, there is significant difference between the mean productivity of the workers.
Table value of F¢ at 5% level of significance of (3,12) degrees of freedom is 3.49
Calculated value of F¢ is greater than table value of F¢.

Null Hypothesis H, is rejected. (For Columns)

Therefore, there is significant difference between the mean productivity for the four different
machine types.

8.6.3. A completely randomised design (CRD) experiment with 10 plots and 3 treatments
gave the following results:

Plot. No. 1 2 3 4 5 6 7 8 9 10
Treatment A B C A C C A B A B
Yield 5 4 3 7 5 1 3 4 1 7

Analyse the results for treatment effects.
Solution:

Rearranging the data (yields) according to the treatments, the following table is obtained.

Treatment

Yield from plots(x;;)

=~ o >
RN FNENEG
V= alw|O

Null hypothesis Hy: Treatments do not differ significantly.

Alternative hypothesis Hi: Treatments differ significantly.

A B C Total
5 4 3
7 4 5
x;; Values 3 7 1
1 - N
T; 16 15 9 40
T? 256 225 81 -
n; 4 3 3 N=10
Tl.2 64 75 27 166
n
5 , 84 81 35
Z X5 > > x?j
= = 200
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T=3T =40

i

N=>n =10
Z Z xzij: 200
P = 2 r =200 (40)7 =40
R D2 10

T? T2
Pi=3 -——=166-160=6

n; N
PzZP—P1:4O—6=34
ANOVA Table
Source of Sum of square | Degrees of Mean square | Variance ratio
variation (S.V.) | (S.S.)) freedom (M.S.) (F)

(d.f)
Between Pi=6 h—1= — P _
Classes 3-1=2 (h—1)
(Treatments) 486 _ 62
P, =34 N—h= P, — 486 3
Within  Classes 10-3=7 (N—h)
(Treatments)
Total P =40 N—-1=
10-1=

Table value of F at 5% level of significance for (7, 2) degrees of freedom is 19.35

Calculated value of F is less than table value of F.

Therefore, Null Hypothesis H is accepted.

Hence, the treatments do not give significantly different yields.

8.6.4. Three varieties A, B, C of a crop are tested in randomised block design with four
replications, the layout being as given below. The yields are given kilograms. Analyse for

significance
C48 | A51 | B52 | A49
A47 | B49 | C52 | C51
B49 | C53 | A49 | B50
Solution:

Rewriting the given data such that the rows represent the blocks and columns represent the

varieties of crop, we have the following table
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Crops
Blocks A B C
1 47 49 48
2 51 49 53
3 49 52 52
4 49 50 51

Null Hypothesis Hy: (a)There is no significant difference between rows (Blocks) and (b)
There is no significant difference between columns (Crops)

Alternative Hypothesis Hi: (a) There is a significant difference between rows (Blocks) and (b)
There is a significant difference between columns (Crops)

Let Xij = Xij — 50

Crops T; T? S X2
Blocks A B C k ; Y
1 3 -1 2 6 12 14
2 1 -1 3 3 3 11
3 -1 2 2 3 3 9
4 -1 0 1 0 0 2
T; -4 0 4 T=0 ZTf: >3 X2 = 36
k v
18 b
2 2
T’ 4 0 4 z:Tj B
h h
8
> X2 12 6 18 > > X2
7] Yy
i i j
=36
T2 (0)2
P=SSx;— =36—15 =74
l] N
_ Tﬁ_TZ
pP=2 P 18—0=18
T2 T2
P=>_t—_—=8-0=8
2 h N

P3=P—-P;—P,=36—-18—-8=10
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ANOVA table

Source of Sum of Degrees of Mean square Variance
variation (S.V.) square freedom (M.S)) ratio (F)
(S.S)) (d.f)

Between P =18 h—1= Py Fr=
Rows 4-1=3 (h—1 6
(Blocks) =6 1.67

= 3.6
Between
Columns P,=8 k—1= P> Fe=
(Crops) 3—-1=2 *k—1) i — 94

=4 1.67
Residual
P3; =10 (h—1Dk-1)=6 Ps
(h—1Dk-1)
= 1.67

Total P=10 hk—1=11

Table value of Fr at 5% level of significance of (3, 6) degrees of freedom is 4.76
Calculated value of F; is Less than table value of Fr.

Null Hypothesis H, is accepted. (For Rows)

Therefore, there is no significant difference between Rows (Blocks)

Table value of F¢ at 5% level of significance of (2, 6) degrees of freedom is 5.14
Calculated value of F¢ is Less than table value of Fe.

Null Hypothesis H, is accepted. (For Columns)

Therefore, there is no significant difference between Columns (Crops)

Hence the blocks do not differ significantly and the varieties of crop do not differ significantly
with respect to the yield.

8.6.5. Analyse the variance in the following Latin square of yields (in kgs) of paddy, where A,
B, C, D denote the different methods of cultivation:

D122 | A121 | C123 | B122
B124 | C123 | A122 | D125
A120 | B119 | D120 | C121
C122 | D123 | B121 | A122

Examine whether the different methods of cultivation have given significantly different yields.
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Solution:

Null hypothesis Ho: (a) There is no significant difference between rows (b) There is no
significant difference between columns and (c) There is no significant difference between
letters (method of cultivation)

Alternative hypothesis Hi: (a) There is a significant difference between rows (b) There is a
significant difference between columns and (c) There is a significant difference between
letters (method of cultivation)

Let Xij = Xij — 120

Columns T: T? > X2
Rows [ Il I IV n P
1 D2 Al C3 B2 8 16 18
2 B4 C3 A2 D5 14 49 54
3 AO B-1 DO C1 0 0 2
4 Cc2 D3 B1 A2 8 16 18
T; 8 6 6 10 T=20 T_ [>>x2 =092
n i Y
81
T? 16 9 9 25 7 _
n n
59
> X2 24 20 14 34 S>> X2
ij )
i i J
=92

Rearranging the X;'s values according to the letters (method of cultivation), we get the

following table

Letter

Value of Xx

o|O|m| >

N WIN|—

QW HAIN

WIN| =N

—
Slo|o|u

Total

T=30

T2
P =33 x%— 3 =92

ij
1 2
Pi=_XT

P2: ZT

1
n

TZ
——=281-56.25 = 24.75
N

N

3oy

16

2—T? =59 -56.25=1275

= 35.75
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1 ) TZ
Ps=-2T2— _ = 60.50 — 56.25 = 4.25
n N

Py=P—P1—P;—P3=3575—-2475-2.75—-4.25=4

ANOVA table
Source of Sum of Degrees of Mean square Variance ratio (F)
variation square (S.S.) | freedom (M.S))
(S.V) (d.f)
Between Pi = 24.75 n—-1=4-1-3 P oo 8.25
R =8 Fr=—7-=1231
ows (n—-1) 0.67
Between P, =2.75 n-1=4-1=3 P 092
Columns (n—1) = 0.92 Fe= 0.67 137
Between P; =4.25 n—-1=4-1=3
letters Ps 1.42
=1.42 Fr=—"7-=212
n—1) 0.67
Residual P,=4 n—1Mn-2) P,
=6 (n—1)(n—2)
= 0.67
Total P =35.75 nz—1

Table value of Fr at 5% level of significance of (3, 6) degrees of freedom is 4.76
Calculated value of Fy is greater than table value of Fp.

Null Hypothesis H, is rejected. (For Rows)

Therefore, there is a significant difference between Rows.

Table value of F¢ at 5% level of significance of (3, 6) degrees of freedom is 4.76
Calculated value of F¢ is Less than table value of Fe.

Null Hypothesis H, is accepted. (For Columns)

Therefore, there is no significant difference between Columns

Table value of Fr at 5% level of significance of (3, 6) degrees of freedom is 4.76
Calculated value of Fr is Less than table value of Fr.

Null Hypothesis H, is accepted. (For Letters)
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Therefore, there is no significant difference between letters (method of cultivation)

Hence the difference between the methods of cultivation is not significant.

Let Us Sum Up

In this unit we studied the design of experiments. We focused only on analysis of
variance one-way classification, two-way classification, Completely Randomized Design,
Randomized Block Design and Latin Square Design.

Check Your Progress

1. The term Analysis of variance was introduced by
2. The Analysis of variance originated in

3. ANOVA table stands for

4. The stimulus to the development of theory and practice of experimental design came from

5. The most widely used all experimental design is
6. The science of experimental designs is associated with the name

7. The Latin square model assumes that interactions between treatments and rows and
columns groupings are

8. The randomised block design is available for a wide range of treatments
9. Latin square design is not possible.

10. The assumptions in analysis of variance are the same as

Glossaries

Analysis of variance (ANOVA): It is the separation of variance ascribable to one group of
causes from the variance ascribable to other groups.

One-way classification: In one-way classification the data are classified according to only
one criterion or factor.

Two-way classification: In two-way classification the data are classified according to the two
different criteria or factors.

Design of experiment: The logical construction of the experiment in which the degree of
uncertainty with which the inference is drawn may be will defined.

Completely Randomized Design: In this Design, treatments are allocated at random to the
experimental units over the entire experimental material.
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Randomized block Design: It is an experimental design where the experimental units are in
groups called block. The treatments are randomly allocated to the experimental units inside
each block. When all treatments appear at least once in each block, we have a completely
randomized block.

Latin Square Design: It is the arrangement of t treatments, each one repeated t times, in
such a way that each treatment appears exactly one time in each row and each column in
the design. This kind of design is used to reduce systematic error due to rows (treatments)
and columns.

Suggested Readings

1. Freund. J.E.,” Mathematical Statistics”, Prentice Hall of India, Fifth Edition, 2001.

2. Gupta. S.C. and Kapoor. V. K., “Fundamentals of Mathematical Statistics”, Sultan Chand & Sons,
Eleventh Edition, 2003.

3. Devore. J. L. “Probability and Statistics for Engineers”, Brooks/Cole (Cengage Learning), First
India Reprint, 2008.

Answers to Check Your Progress

1. R. A. Fisher

2. Agrarian research

w

. Analysis of Variance table
4. Agricultural research

5. Randomised block design

»

. Latin square
7. non-existent
8.2t0 24
9.2x2

10. F-test
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| BLOCK V: Multivariate Analzsis |

Unit 9 Matrix Algebra and Random variables

Unit 10 The Multivariate Normal Distribution

Unit 11 Principal Components
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Unit -9

Structure

Objectives

Overview

9.1. Introduction

9.2. Random Vectors and Matrices

9.3. Mean Vectors and Covariance Matrices

9.4. Partitioning the Covariance Matrix

130



Objectives

After Studying this Unit, the student will be able to

o Explain the random vectors and matrices

o Demonstrate the concept of mean vectors and covariance matrices

e Summarize the partitioning the covariance matrix, sample mean vector and
covariance matrix.

Overview

In this unit, we will study the concept of random variables, random matrices, mean
vectors, covariance matrices, partitioning the covariance matrix, partitioning the sample
mean vector and covariance matrix.

9.1. Introduction

Scientific inquiry is an iterative learning process. Objectives pertaining to the
explanation of a social or physical phenomenon must be specified and then tested by
gathering and analysing data. In turn, an analysis of the data gathered by experimentation or
observation will usually suggest a modified explanation of the phenomenon. Throughout this
iterative learning process, variables are often added or deleted from the study. Thus, the
complexities of most phenomena require an investigator to collect observations on many
different variables. This block concerned with statistical methods designed to elicit
information from these kinds of data sets. Because the data include simultaneous
measurements on many variables, this body of methodology is called multivariate analysis.

9.1.1. Arrays

Multivariate data arise whenever an investigator, seeking to understand a social or
physical phenomenon, selects a number p = 1 of variables or characters to record. The
values of these variables are all recorded for each distinct item, individual, or experimental
unit.

We will use the notation x;to indicate the particular value of the kthvariable that is
observed on the jthitem, or trial. That is,
xji= measurement of the kthvariable on the jthitem

Consequently, n measurements on p variables can be displayed as follows:

Variable 1 Variable 2 Variable k Variable p
ltem 1 X11 X12 X1k X1p
ltem 2 X21 X22 X2k X2p
Item j Xj1 X2 Xjk Xjp
ltem n Xn1 Xn2 Xnk Xmp

Or we can display these data as a rectangular array, called X, of n rows and p columns:
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FX11 X12 e X1k xlpl
X

X e X2k x2p
[ 21 22 I
X = Ile X2 Xjk xjp |
[xnl Xn2 o Xpgo v an]

The array X, then, contains the data consisting of all of the observations on all of the
variables.

9.1.2. Example (A data array)

A selection of four receipts from a university bookstore was obtained in order
to investigate the nature of book sales. Each receipt provided, among other things,
the number of books sold and the total amount of each sale. Let the first variable be
total dollar sales and the second variable be number of books sold. Then we can
regard the corresponding numbers on the receipts as four measurements on two
variables. Suppose the data, in tabular form, are

Variable 1 (dollar sales) 45 52 48 58
Variable 2 (number of books) 4 5 4 3
Solution:

Using the notation just introduced, we have
x11 = 42,x21 = 52, x31 = 48, x41 = 58
xX12 = 4,x22 = 5, x32 =4, x42 = 3

2
84
48 4
3

and the data array Xis X = Jwith four rows and two columns.

58
9.1.3. Vectors

An array x of n real numbers x1, x2,..,xniS called a vector, and it is written as
X1
szl

X = II . iorX' = [x1, x2,..., Xn]

[21]

where the prime denotes the operation of transposing a column to a row.

9.2. Random Vectors and Matrices

A random vector is a vector whose elements are random variables. Similarly, a
random matrix is a matrix whose elements are random variables. The expected value of a
random matrix (or vector) is the matrix (vector) consisting of the expected values of each of
its elements. Specifically, let X = {X;}be an n XP random matrix. Then the expected value
of X, denoted by E(X), is the n xP matrix of numbers (if they exist)
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E(X11) E(X12) .. E(le)l

IE(X21) E(Xzz) o E(X2p)]
EX) = o
I S|
[E(an) E(an) E(an)]

where, for each element of the matrix

(o]

Y xiifij(xij) dxij if Xij is a continuous random variable with

—00

E(X:) I probability density function fi(xy)

ij) =
> xypii(xif) if Xijis a discrete random variable with
1 all xij
| probability function pi;(xi)

9.2.1. Example (Computing expected values for discrete random variables)

Suppose p= 2 and n = 1, and consider the random vector X = {X1,Xz}. Let the discrete
random variable X; have the following probability function:

X1 -1 0 1
p1(x1) 0.3 0.3 0.4

Solution:
Then E(X1) = Yaux, xip1(x1) = (=1)(0.3) + (0)(0.3) + (1)(0.4) = 0.1

Similarly, let the discrete random variable X, have the probability function

X2 0 1
pz(Xz) 0.8 0.2

Then E(X2) = Yaux, x2p2(x2) = (0)(0.8) + (1)(0.2) = 0.2

E(X1) _ 0.1

Thus, Elx] = [ ( =
E‘\X>) 0.2

9.3. Mean Vectors and Covariance Matrices

SupposeX’' = [X1,X>, ..., Xp] is @ p x 1 random vector. Then each element of X is a

random variable with its own marginal Erobablllty dlstrlbutl n. The mazglnal means fuand
variances azare defined as ui = )ando? % , 2, ..., p,respeclively

Specifically,
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[ee]

I xifi(x:) dx: if X: is a continuous random variable with

I probability density function fi(x;)
i =
> xipi(xi) if X is adiscrete random variable with
I allx;
1 probability function pi(x;)
U (a—w)? fi(xi)dxi if Xiisa continuous random variable with
o2 = I Probability density function fi(x;)
' > & —wu)p(x) if X isadiscrete random variable with
L l l l l
1 all x;
1

prob ability function p:(x;)

It will be convenient to denote the marginal variances byorather than the more traditional
o?, consequently, we shall adopt this notation.

The behaviour of any pair of random variables, such as X:and X, is described by their joint

probability function, and a measure of the linear association between them is provided by the
covariance.

Oik = E(Xi —,ui)(Xk —Ilk)

if X, Xr are continuous
random variables with

If f (i — ) Gere — ) fueCxs, x) doxi dxe the]omt densmt

I —o0 —o0

function f
Oik =
if Xi,X.are dlscrete
I random variables with
I % UZ & — (e ;k‘"‘) (X joint probability
I atl xj alt X L

function pu(x;, xi)

andwand w, i,k = 1,2,...,P,are the marginal means. When i =k, the covariance
becomes the marginal variance.

The collective behaviour of the P random variables X1, X, ... , Xpor, equivalently, the
random vector X' = [Xi, X, .., Xplis described by a joint probability density
function f(x1, x2, ..., xp) = f(x).f (x)will often be the multivariate normal density function.

If the joint probability P[X; < x; and Xx < xiJcan be written as the product of the
corresponding marginal probabilities, so that

P[X: < xiand Xk < xx] = P[X: < xi]P[Xx < xi]for all pairs of values x; and x;then X;and
Xare said to be statistically independent.

When X;and Xiare continuous random variables with joint density fu(x; xix)and
marginal densities fi(x;)and fr(xi)the independence condition becomes
fik(xi, xk) = fi(xi)fk(xk)for all pairs (xl-, xk).

The P continuous random variables X;, X2, .. , X, are mutually statistically
independent if their joint density can be factored as
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fiz..p(x1.x2, ..., xp) = f1(x1) f2(x2) ... fp(xp) for all p-tuples (x1, x2, ..., xp)

Statistical independence has an important implication for covariance. The
factorization in f12.. p(x1. X2, ..., Xp) = f1(x1) f2(x2) ... fp(xp) implies that Cov(X;, Xi) = 0.

Thus, Cov(X, Xx) = 0 If X; and X, are independent.

The converse of the above statement is not true in general; there are situations
where Cov(X; Xx) = Obut X; and X,are not independent.

The means and covariances of the P x 1 random vector X can be set out as
matrices. The expected value of each element is contained in the vector of means u =
E(X)and the P variances ag;and the p(p-1)/2 distinct covariances o (i < k)are contained in
the symmetric variance-covariance matrix ), = E(X — p)(X — w)".Specifically

FE(xﬂl p1
E(x2) Fllz1
EX)= . =l'lI=yuand
I . I 1
[E(xp)]  [#n]
S=EX-wX-uw
Jé:%1
2=E - [Xi—m Xi—p1 o Xie— p]
I . I
h[Xp — tp] )
- (X1 —m)? X1 — ) (X2 — p2) v (=) (Xp — )4
S—F X2 — p2) (X1 — p1) (X2 — p2)? (X2 _l‘.Z)(XP = lp)
X —p)X —p) & —u )X —p) Lk
[ » » 1 1 p p 2 2 PP ]
- E(X1— p)? E(X1 — pu) (X2 — p2) v EQG — ) (X — )4
s — E(X2 — p2) (X1 — 1) E(X2 — p2)? E(XZ—HZ)(Xp—#p)
EX —pu )X —p) EX —p)X —p) EX —u)2
[ » » 1 1 p p 2 2 p
o011 012 - glP
3 =Cov(x) =7 72 7 7
0;91 0;32 O'I.JP

Because of gix = E(X: — ) (Xx — ux) = 0w, it is convenient to write the above matrix as

011 012 - O1P

' 012 022 - 2p
T=EX-pwX-w = ]
O'1p Op .. Opp
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9.3.1. Example (Computing the covariance matrix)

Find the covariance matrix for the two random variables Xiand X:introduced in
Example 9.2.1. When their joint probability function p12(x1, x2)is represented by the entries
in the body of the following table:

X2
X1 0 1 p1(x1)
-1 0.24 0.06 0.3
0 0.16 0.14 0.3
1 0.40 0.00 04
p1(x1) 0.8 0.2 1

Solution:

We have already shown that u1 = E(X1) = 0.1 and pz = E(Xz) = 0.2 (See Example
9.2.1.) In addition,

011 = E(X1 — /11)2 = Z (x1 — 0.1)2 p1(X1)

all x1

011 = (=1 — 0.1)2(0.3) + (0 — 0.1)2(0.3) + (1 — 0.1)2(0.4) = 0.69

022 = E(Xz - ,le)z = Z (X1 — 0.2)2 pz(Xz)

all x2

022 = (0 — 0.2)2(0.8) + (1 — 0.2)2(0.2) = 0.16

o1z = EX1 — ) (X2 — p2) = > (x1 — 0.1)(x2 — 0.2) p12 (x1,%2)

all pairs (x1,x2)
012 =(—1-0.1)(0-0.2)(0.24) + (-1 —-0.1)(1 —0.2)(0.06)
+--+(1-0.1)(1-0.2)(0.00) = —0.08
021 = E(X2 — p2) (X1 — 1) = E(X1 — 1) (X2 — p2) = 012 = —0.08
Consequently, with X' = [X1, X2]

4= B(X) = [E(X1)] =y = 01
E(X2) j2%; 0.2

S=EX-wX—pw

]

Y=FE| (X1 — p1)? (X1 — u) (X2 ;Hz)]
(X2 — pu2) (X1 — p1) (X2 — p2)
5= E(X1— m)? E(X1— pu) (X2 — u2)
EX —w)X —n) EX —n )

g
0.69 —0.08
s=1
—0.08 0.16
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9.3.2. Note

The computation of means, variances, and covariances for discrete random variables
involves summation (as in Examples 9.2.1. and 9.3.1.), while analogous computations for
continuous random variables involve integration.

We shall refer to u and £ as the population mean (vector) and population variance-
covariance (matrix), respectively.

The multivariate normal distribution is completely specified once the mean vector
uand variance-covariance matrix Z are given, so it is not surprising that these quantities play
an important role in many multivariate procedures.

It is frequently informative to separate the information contained in variances a; from
that contained in measures of association and, in particular, the measure of association
known as the population correlation coefficient pj.

The correlation coefficient piis defined in terms of the covariance giand variances
_ Jik
o;and  as E—
Okk Pik

The correlation coefficient measures the amount of linear association between the
random variables X; and Xj.

Let the Population correlation matrix be the p X p symmetric matrix

F 011 g12 0179—1
Woiou  Voioz \/011\/0pp1
_} g11 a22 __O2p
P = Nemesr Jernfoz \/UZ—Z\/WI
I . : :
G - . I
o %l 5 2p : Opp I
V1V o V 22V pp V ppV pp]
1 piz - P1p
piz 1 . P2p
=F
Pip p2p . 1

and let the p X p standard matrix be

F\/O'n 0 .. 0 1
viz=1 0 oz |
| : o
[0 0 v VOpp]

Then

1 1 1 —1 1 -1

VapVz=% and p=(V2) Z (V2)
That is ¥ can be obtained from V1/2 and p, whereas pcan be obtained from Z. Moreover, the

expression of these relationships in terms of matrix operations allows the calculations to be
conveniently implemented on a computer.
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9.3.3 Example (Computing the correlation matrix from the covariance matrix)

Suppose
4 1 2 011 012 013
2=[1 9 -—-3]=[012 022 023]ObtainV/2and p.
2 -3 25 013 023 033
Solution:
, Vvou 0 0 2 00
VE:[O \/0'22 O]=[0 3 0]
0 0 vom 0 0 5
1
FE 0 01
| 1 I
I 3 1
I 1]
© 0 3
The correlation matrix p is given by
F1 0 01 F1 F1
— 0 01
_1 _1121141212 Ill
1 1
(V) = (V2) lo Z ol[1 9 —1]%0 5 ol=L
I 3 2 -3 25 [ I?
| 11 I 11 1
© 93 %8

= O e

9.4. Partitioning the Covariance Matrix

The characteristics measured on individual trials will fall naturally into two or more
groups. As examples, consider measurements of variables representing consumption and
income or variables representing personality traits and physical characteristics. One
approach to handling these situations is to let the characteristics defining the distinct groups
be subsets of the total collection of characteristics. If the total collection is represented by a
(p x 1)-dimensional random vector X, the subsets can be regarded as components of X and

can be sorted by partitioning X.

In general, we can partition the p characteristics contained in the p x 1 random
vector X into, for instance, two groups of size q and p —q, respectively. For example, we can

write
X1 H1
5] Y
X I pg 1 @
q xD q u
X: I I: [ _________ ] andl,{ = I I = [ ......... ]
1Xe+1] @ [Her1l @
I I i
[ X ] [ # ]

From the definitions of their transpose and matrix multiplication
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' 1_—,11
2=
(X0 — pon e — oy = (2 Y x WX —p X —u)
: q+1 q+1 q+2 q+2 P p
Xqg—l
XD — Wy(x@ — ;@)
(X1 — u)(Xg+1 — pg+1) (X1 — u1) (X2 — Ug+2) (X1 — u) (X, — W)
= (X2 —p2)(Xg+1 — pg+1) (X2 — p2) (Xq+2 — Hq+2) (X2 — p2) (Xp — 1p)
I : s s I
[(Xq — ) Xg+1 — pg+1)  (Xq — Hq) (Xq+2 — Hg+2) (Xq — ) (Xp — )]
Upon taking the expectation of the matrix (X(O — uM)(X@ — u®@), we get
POlg+l  O1g+1 O1p
' o o O2p
E(X® — p)(X@ — u@) =1 24+1 2442 =%,
1 : Pl
[Oqq+1 Oqq+2 Tap]

Which gives all the covariances ¢y, i=1,2,..,q,j=q=1,q + 2, ..., p, between a component
of X and a component of X,

The matrix X2 is not necessarily symmetric or even square.

With help of Partitioning, we can get

011 Oy 01,g+1 O1,p
Foer ~ i) ( i) 1
1 Oq1 O4qq Oq,q+1 Oqp .
I_ Og+1,1 Og+1,p+1 Og+1,p I
Og+1q ) C ¢ )
(G : Opg+1 Opp ]
[ p1 Opq
FOXW — Wy x® — @y (XD — (XD — 4@y 4
. X1 1 X X1 1X(p—
K- K — ) = ((2? )(2) (1§ q()l) o @xD (1% @ -q)
I(X — X = utY) X@ — y@)(x@ — p@)
[ (p—q@x1) (Axgq) (- x1) Ax{@-9)]
p p—q
b3 ' q (Z1) (Z12)
=EX-pX-p =
p xp) = EX=OX =10 =4 gl (5]
pXp
. 011 oy 01,?+1 O-?,p 1
[ (¢ i) ( : i) I
1 Iq1 O4qq Oq,q+1 Oqp |
I Og+1,1 Og+1,p+1 Og+1,p I
Og+1q )y D)
1( Opa+1 Tpp ]
[ Op1 Opgq



Note thatX:, = X5;. The covariance matrix of X isX;y, that of X is X,, and that of
elements from X and X® is X1; or ;.

It is convenient to use the Cov(X®, X@) notation where Cov(X®,X®) = E1,.is a matrix
containing all the covariances between a component of X and a component of X,

The Mean Vector and Covariance Matrix for linear Combinations of Random Variables

Recall that if a single random variable, such as X, is multiplied by a constant c, then
E(cX1) = cE(X1) = cu1 and Var(cX1) = E(cX1 — cu1) = c2var(X1) = c2011.

If X, is a second random variable and a and b are constants, then, using additional
properties of expectation, we get

Cov(aX1, bX,) = E(aX1 — au1)(bX2 — buz) = abE(X1 — 1) (X2 — uz) = abCov(aXi, X2)
= ab0'12

Finally, for the linear combination aX: + bX>, we have

E(aX1 + bX;) = aE(X1) + bE(X2) = aus + bua

Var(aX1 + bX2) = E[(aX1 + bX2) — (ap1 + buz)]?

Var(aX:+ bX;) = E[a(X1— u1) + b(X2 — u2)]?

Var(aX:+ bXz) = E[a2(X1 — u1)? + b2(X; — u2)2 + 2ab(X1 — p1) (X2 — u2)]
Var(aX: + bX2) = a?Var(X1) + b2Var(Xz) + 2abCov(X1, X2)

Var(aX1+ bX>2) = a?011 + b2022 + 2aboi;

With ¢’ = [a, b], aX1 + bX> can be written as

@ b1 =cx
X2
Similarly, E(aX: + bXz) = aE(X1) + bE(X2) = a1 + buz can be expressed as

[a b1 "] =de

o o
IfweletZ =] 1 12] be the variance-covariance matrix of X, then we have

021 022

Var(aX1+ bX2) = Var(c'X) =c'Yc

011 012 QA 2 2
11

2 [ ][b] =a o011+ 2aboiz +b 022

Since ¢ “¢c =
a b 012 022

The preceding results can be extended to a linear combination of p random variables:
The linear combination ¢'X = c1X1 + -+ + ¢,X, has
Mean=E(cX) =cu

Variance = Var( ¢X) = c'2c
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Where u = E(X) and £ = Cov(X)
In general, consider the q linear combinations of the p random variables X3, ..., Xp:
Z1 = c1iX1 + c2Xz + -+ c1pXp

Zy = c21X1 + c22X2 + -+ C2pXp

Zq = quXl + CqZXZ + cec + quXp

Z1 €11 C12 = X1
7 C1p c
2, (€21 C22 -+ CL2P 2
7= ) %) = cx
Zq Cq1 Cq2 .. Xp
Cap

The linear combinations Z = CX have

p: = E(Z) = E(CX) = Cux

%, = Cov(Z) = Cov(CX) = CxxC

Where u. and Z, are the mean vector and variance-covariance matrix of X, respectively.
9.4.1. Example (Means and covariances of linear combinations)

Let X' = [X1, X>] be a random vector with mean vector u’ = [w, y2] and variance-covariance

011 012
]

matrix Xx = [012 022

Solution:

Find the mean vector and covariance matrix for the linear combinations

Z1=X1—X2
Z=X1+X:

vA 1 -1, X
z=["=] 1M =cx

Z> 1 1 X
in terms of ux and Zx

1 -1, M1 U1 — Uz
p =EQ@Q)=Cc =]
VA

101=I
&) 1 1 M U1+ 2

1 -1 011 012 1 1
1 1][021 022[—1 1]]

011 — 2012 + 0 011 — 022

]

) ’
3, =CovZ =CixC =l

2= 011 — 022 011 +2012 + 02

9.4.2. Note

If 011 = 022, that is, if X1and X, have equal variances, the off-diagonal terms in X,
vanish. This demonstrates the well-known result that the sum and difference of two random
variables with identical variances are uncorrelated.
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9.5. Partitioning the sample mean vector and Covariance matrix

Let X' =[xy, %2, ..., X, | be the vector of sample averages constructed from n
observations on p variables X1, X, ..., Xp, and let

Sll cee Slp
Sn e ( 3 "- 3 )
Slp cee Spp
1" 2 1"
1 ZZ(le —x) ;Z(le — X1)(Xjp — Xp)
j=1 j=1
S, = : .
I _ _ 1" o, I
r—lZ(le —x1)(Xxjp — Xp) - ;Z(xjp — Xp)
h'j=1 j=1 D

be the corresponding sample variance-covariance matrix.

The sample mean vector and the covariance matrix can be partitioned in order to
distinguish quantities corresponding to groups of variables. Thus,

X1
F . 1
fx, 1 0
P ECR e
(px1) Xg+1 @
I 1 %
1iT
[ *p ]
S11 Sy S1,g+1 " Sip 1
(i1 DI
Sn Sq1 " Sqq Sqq+1 " Sgp : (S11)  (S12)
®xp) | Sqr11 Sq+1,p+1 1_[(521) (S22)
Sq+1q Sq+1p ) .
O D B G T
[ Sp1 - Spg+1 v Spp ]
Spa

Where ¥ and x¥®@ are the sample mean vectors constructed from observations

X0 = [x1’ X ] and x® =k oo X 1, respectively; Snis the sample covariance matrix
q qt+ 14

computed from observations x@; Syis the sample covariance matrix computed from
observations x¥@; and Si2 = Szis the sample covariance matrix for elements of xWand

elements of x@.
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| Let Us Sum UE |

In this unit we studied the random variables, random matrices, mean vectors,
covariance matrices, partitioning the covariance matrix, partitioning the sample mean vector
and covariance matrix.

| Check Your Progress |

1. Cov(xy, x2) = if x1 and x, are independent.

2. Let X be a random variable and let A and B be conformable matrices of constants. Then
E(AXB) =

3. The P continuous random variables X1, X», ..., X, are mutually statistically independent if
their joint density can be factored as

| Glossaries —

Random vector: It is a vector whose elements are random variables.

Random matrix: It is a matrix whose elements are random variables.

Correlation coefficient: It measures the amount of linear association between the random
variables.

| Suaﬂested Readinﬂs |

1. Johnson. R. A. and Wichern. D. W., “Applied Multivariate Statistical Analysis”, Pearson
Education Asia, Sixth Edition, 2007.

| Answers to Check Your Progress |

1. Zero

2. AE(X)B

3.f1,2,,_,,_p(X1. X2, ...,xp) = f1(.X'1)f2(.X'2) ...fp(xp) for all p-tuples (X1,XZ, ...,xp)
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Unit — 10

Structure
Objectives
Overview

10.1. Introduction

10.2. Multivariate Normal Density and its properties
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Objectives

After Studying this Unit, the student will be able to

o Explain the multivariate normal distribution
o Demonstrate the concept of the Multivariate Normal Density and its properties

Overview

In this unit, we will study the concept of multivariate normal distribution and multivariate
normal density and its properties.

10.1. Introduction

A generalization of the bell-shaped normal density to several dimensions plays a
fundamental role in multivariate analysis. Most of the techniques encountered in this unit are
based on the assumption that the data were generated from a multivariate normal
distribution. While real data are never exactly multivariate normal, the normal density is a
useful approximation to the true population distribution.

One advantage of the multivariate normal distribution is mathematically tractable and
nice results can be obtained. The normal distributions are useful for two reasons: First, the
normal distribution serves as a bona fide population model in some instances; Second, the
sampling distributions of many multivariate statistics are approximately normal, regardless of
the form of the parent population, because of central limit effect.

Many real-world problems fall naturally within the framework of normal theory. The
importance of the normal distribution rests on its dual role as both population model for
certain natural phenomena and approximate sampling distribution for many statistics.

10.2. Multivariate Normal Density and its properties

The multivariate normal density is a generalization of the univariate normal density to
p = 2 dimensions. Recall that the univariate normal distribution, with mean pand variance
o?,has the probability density function

f(x) =

e—[(x_ﬂ)/a]z/z’—oo < x < o

2no
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The above figure is a Normal density with mean p and variance ¢2 and selected
areas under the curve

A plot of this function yields the familiar bell-shaped curve shown in the above figure.
Also shown in the figure are approximate areas under the curve within +1 standard
deviations and +2 standard deviations of the mean. These areas represent probabilities,
and thus, for the normal random variable X.

Pu—o<X<pu+o0)=0.68
Plu—20<X<pu+20)=095
It is convenient to denote the normal density function with mean pyand variance o2 by

N(u,0?). Therefore, N(10, 4) refers to the function f(x) = Fe—[(x—u)/alz/z, —m < x <o
o

withuy =2 and o = 2.

2
The term (%) = (x — w)(62)~'(x — p) is the exponent of the univariate normal
g

density function This can be generalized for a p x 1 vector x of observations on several
variables as (x — uW)Z-1(x — ).

The p x 1 vector u represents the expected value of the random vector X, and the
p X p matrixZ is the variance-covariance matrix of X. We shall assume that the symmetric
matrix £ is positive definite, so the expression (x — w)E-1(x — w) is the square of the
generalized distance from x to p.

The multivariate normal density is obtained by replacing the univariate distance in the
2
function (x—)f) = (x—w(?)(x —u) by the multivariate generalized distance of

(x — w)'Z-1(x — p) in the density function of (x) = e l-w/01/2 _0 < x < o0 .

2no

When this replacement is made, the univariate normalizing constant
(2m)~1/2(a2)-1/2 must be changed to a more general constant that makes the volume under
the surface of the multivariate density function unity for any p. This is necessary because, in
the multivariate case, the probabilities are represented by volumes under the surface over
regions defined by intervals of the x; values. Consequently, a p —dimensional normal density
for the random vector X' = [X1,X>, ..., Xp] has the form

fx) = We—(x—ﬂ)il—l(x —wu)/2, where —oo < x; <o00,i =1,2,...p.

We shall denote this p-dimensional normal density by N,(u, Z) which is analogous to the
normal density in the univariate case.

10.2.1. Example (Bivariate normal density)

Evaluate the p = 2 —variate normal density in terms of tt}%individual parameters pi =

E(XX),u,=EX,). o, =Var(X,),0,, =Var(X,),and p,, == Corr(X ,X
(Vo11vo22) o2
Solution
011 012 -1 1 022 —012
The inverse of the covariance matrix ¥ = [, =, 1is¥ = som =01, o)
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= 011022 the square mes

!Ir%tzroducmg the gglrg’eléart]lgn coefﬂuen& fuz by wiiting ¢y = p12v/o11/o22, we obtain o11022 —

x—wWyY1(x—w =[x —u ,x T 022 —Plz\/ﬂj\/a] [xl—,ul]
Pt —Plz\/a—ll\/a_zz 011 X2~ H

2 2 o
x—wWYyilx—p = 20 =) " 4 o11(xa — 1) — 2p1No1Vor(x — 1) (2 — 1)
011022(1 — pfy)

1 2 2
w1 X1~ Hq X2 — Hy X1 =MW X2~ H
x—wy (—p= [(—) +(—) -7 , () (—=)]
1-p2,  op Vo2 27 oy Vo
The last expression is written in terms of the standardized values =41 and x2-u2

VO11 V022

Next, since|X| = 011022 — oizz 011022(1 — p21)2. We can substitute for -1 and |Z| in f(x) =

We—@—mz—l(x — w)/2 to get the expression for the bivariate (p = 2) normal density

involving the individual parameters i, 2, 011, 622 and p12

1 1 X1— M1 % X2— U2 ?
fx1,x2) = —F —exp {— Ty (=) + (=)
2n 011022(1 — piy) (1 —=pi3) 11 22
—-2p KXi—H 2 — U2

( ) 1
12 " +Joqq Nz

The above expression is somewhat unwidely, and the compact general form

flx) = We—(x—ﬂ)zi—l(x—y)/z is more inofmative in many ways. On the
Y3

other hand, the above expression is useful for discussing certain properties of the
normal distribution.

For example, if the randam variables X1 and X» are uncorrelated, so that p12 = 0, the
joint density can be written as the product of two univariate normal densities each of
the form of (X) = e—[(x—u)/a]Z/Z’ — 0 < x < oo .

2mo

That is, f(x1,x2) = f(x1)f(x2) and X1 and X, are independent.
Two bivariate distributions with a11 = 022 in the following figures.
In Figure (a), X1 and X» are independent p12 = 0.

In Figure (b) p12 = 0.75.

Notice how the presence of correlation causes the probability to concntrate along a
line.
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In the above two figures, Two bivariate normal distributions (a) g11 = 022 and p12 =0
(b) 011 = 022 and P12 = 0.75

From the expression f(x) = ! i
p - We—(x—ﬂ)z—l(x —-w/2 for the denSIty of a p-

dimensional normal variable, it should be clear that the paths of x values yielding a constant
height for the density are ellipsoids. That is, the multivariate normal density is constant on
surfaces where the square of the distance(x — w)T-1(x — p) is constant. These paths are
called contours.

Constant probability density contour = {all x such that (x — u)'Z-1(x — u) = c?}
Constant probability density contour = surface of an ellipsoid centred at .

The axes of each ellipsoid of constant density are in the direction of the eigenvectors
of Z-1and their lengths are proportional to the reciprocals of the square roots of the Eigen
values of Z-1. Fortunately, we can avoid the calculation of -1 when determining the axes,
since these ellipsoids are also determined by the eigenvalues and eigenvectors of X.

10.2.2. Result
If X is positive definite, so that Z-1 exists, then Ze = Ae imples X-1le = (31) e so (4,e)is

an eigen value - eigen vector pair for T corresponding to the pair gl,e) for c¢. Also, -1 is

positive definite.
Proof:
For X is positive definite and e # 0 an eigen vector, we have
0<ele=eC)=e¢e'(le)
e = AX-le, and division by 4 > 0, we have
Ile= (1) e
A
Thus, (1;, e) is an eigen value - eigen vector pair for £-1. Also, for any p x 1x
We know that -1 = PA-1P' =¥k (Dee

i=1 /11' i

1

k 4
xZ-1x' = x" (3 o
( 717-) eie;) x

i=1
1

xX-1x' =3 (I) (x'e)2=0
i=1

Since each term A;(x'e;)? is nonnegative. In addition, x« = 0 for all | only if x = 0. So x #

0 implies that Y () (x’e )2 > 0 and therefore -1 is positive definite.
i=1 A i
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The following summarizes these concepts:

Contours of constant density for the p —dimensional normal distribution are ellipsoids
defined by x such that (x — )’ Z-1(x — u) = c2.

These ellipsoids are centred at u and have axes icxfl_,-ei where Ze; = Ae; fori = 1,2, ..., p.

A contour of constant density for a bivariate normal distribution with o11 = 022 is
obtained in the following example.

10.2.3. Example(contours of the bivariate normal density)

Obtain the axes of constant probability density contours for a bivariate normal
distribution when g11 = g22. From (x — w)Z-1(x — u) these axes given by the eigen values
and eigenvectors of X.

Here | — AI| = 0 becomes

Ozlan—l 01z | =¢ —-AN2—02=QA—0 -0 A—0 +o0 )
12 011 — A 11 12 11 12 11 12

Consequently, the Eigen values are 11 = g11 + 012 and A; = 011 — 012. The eigen vector e;
is determined from

011 012 e,

012 O (011+012)[ ]

o11e1+ o262 = (011 +012)€e1
o121 + 01162 = (011 + 012) €2

These equatlons imply that e1= qz qnd after normalization, the firstr eign value — elgen

vectorpairisA =o +o0 ,e =[_,_];thesecond eigen value - eigen vector pairis 4 =

1 11 12 1
R 1 \/2 V2 2
o —og ;e =[_,—_]

1 12 1 5 2
When the covariance a1,0r correlationp1zis positive, 11 = g11 + g1:is the largest eigenvalue,

and its associated eigenvector e’1= [\17 jT]Iies along the 45° line through the point y' =
[¢t1, uz]. This is true for any positive valué ozf the covariance (correlation). Since the axes of
the constant-density ellipses are given by +cvl.e; and *cvi.ezand the eigenvectors each
have length unity, the major axis will be associated with the largest eigenvalue. For positively
correlated normal random variable, then, the major axis of the constant-density ellipses will
be along the 45° line through u.

The following figure is a constant-density contour for a bivariate normal distribution with
o011 =0zzand o12 > 0 or p12 > 0.
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When the covariance or correlation is negative, 1. = g11 + o1.will be the largest eigenvalue,
and the major axes of the constant-density ellipses will lie along a line at right angles to the
450 line through u. These results are ture only for 11 = g22.

To summarize the axes of the ellipses of constant denstiy for a bivariate normal
distribution with 011 = 022 are determined by

1 1
tevorr Foiz[V2] and tevorr —orz [ V2]
7z V2

From the result ,(x — u)Z-1(x — u) = c? that the choice ¢ = y2(a), x?(a) is the
P P

upper (100a)th percentile of a chi-square distibution with p degress of freedom, leads to
contours that contian (1 — @) x 100% of the probability, specifically, the following is true for a
p-dimensional normal distibution.

The solid ellipsoid of x values satisfying (x — p)Z-1(x — u) < x3(a) has probability
1-a.

The constant-density contours contianing 50% and 90% of the probaility under the
bivariate normal surfaces.

The following figure is the 50% and 90% contours for the bivariate normal
distibutions.

Xy o
A

I
Hol |~ 2
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The p-variate normal density in f(x)—We—(x—#)Z—l(x—u)/Z has a

maximum value when the squared distance in(x — p)Z-1(x — w). is zero - that is, when
x = u. Thus, uis the point of maximum density, or mode, as well as the expected value of X,
or mean. The fact that uis the mean of the multivariate normal distribution follows from the
symmetry exhibited by the constant-density contours. These contours are cantered, or
balanced, at p.

Let Us Sum Up

In this unit we studied the concept of multivariate normal distribution and multivariate
normal density and its properties.

Check Your Progress

1. The multivariate normal density is a generalization of the univariate normal density to
dimensions.

2. The normal density function with mean pand variance o2 is denoted by
3. The p x 1 vector u represents

4. The p X p matrix £ represents

Glossaries

Univariate normal distribution: It is defined by two parameters mean, which is expected value
of the distribution and standard deviation, which corresponds to the expected square
deviation from the mean.

Bivariate normal distribution: It is made up of two independent random variables. The two
variables in a bivariate normal are both normally distributed and they have normal
distribution when both are added together.

Multivariate normal distribution: It is a generalization of the one-dimensional (univariate)
normal distribution to higher dimensions.

Suggested Readings

1. Johnson. R. A. and Wichern. D. W., “Applied Multivariate Statistical Analysis”, Pearson
Education Asia, Sixth Edition, 2007.

Answers to Check Your Progress

1

2.N (u, 0?)

3. The expected value of the random vector X
4. The variance-covariance matrix of X.

152




Unit - 11

Structure
Objectives
Overview

11.1. Introduction

11.2. Population Principal Components
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Objectives

After Studying this Unit, the student will be able to

o Explain the principal components
e Summarize the uses of population principal components

Overview

In this unit, we will study the concept of the principal components and the population
principal components.

11.1. Introduction

A principal component analysis is concerned with explaining the variance-covariance
structure of a set of variables through a few linear combinations of these variables. Its
general objectives are (1) data reduction and (2) interpretation.

Although p components are required to reproduce the total system variability, often
much of this variability can be accounted for by a small humber k of the principal
components. If so, there is (almost) as much information in the k components as there is in
the original p variables. The k principal components can then replace the initial p variables,
and the original data set, consisting of n measurements on p variables, is reduced to a data
set consisting of n measurements on k principal components.

An analysis of principal components often reveals relationships that were not
previously suspected and thereby allows interpretations that would not ordinarily result.

Analyses of principal components are more of a means to an end rather than an end
in themselves, because they frequently serve as intermediate steps in much larger
investigations.

11.2. Population Principal Components

Algebraically, principal components are particular linear combinations of the p
random variablesX;, X2, .. , Xpr. Geometrically, these linear combinations represent the
selection of a new coordinate system obtained by rotating the original system with
X1, X2, ..., Xp as the coordinate axes. The new axes represent the directions with maximum
variability and provide a simpler and more parsimonious description of the covariance
structure.

Principal components depend solely on the covariance matrix £ or the correlation
matrix p ofXi, X, .. , Xp. Their development does not require a multivariate normal
assumption. On the other hand, principal components derived for multivariate normal
populations have useful interpretations in terms of the constant density ellipsoids. Further,
inferences can be made from the sample components when the population is multivariate
normal.
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Let the random vector X' = [X1, X2, ..., Xp] have the covariance matrix £ with Eigen
valuesA; >4, >+ >4, > 0.

Consider the linear combinations
Y1 = aiX = a11X1 + a12X2 + -4+ alep

Y, = CLZ’X = a1 X1+ apX,+ -+ aszp

Yp=a,X =ap1 X1 +ap,Xe+ - +ap,Xp
Then by using

The linear combinations Z = CX we have
. = E(Z) = E(CX) = Cy,

Yz = Cov(Z) = Cov(CX) = CYxC’

We obtain

Var(Y) = ¢ Y a: i=12,..,p

Cov(Y,Yi) =q¢ X ax iLk=12,..,p

The Principal components are those uncorrelated linear combinations Y4, Y, ..., Yp whose
variances in Var(Yy) = a;Y a;,i = 1,2 ..., p are as large possible.

The first principal component is the linear combination with maximum variance. That is, it
maximizes Var(Y1) = a’lz ai. It is clear that Var(Y1) = a qu can be increased by

multiplying any a: by some constant. To eliminate this indeterminacy, it is convenient to
restrict attention to coefficient vectors of unit length.

We define
First principal component = linear combination a’lX that maximizes Var(a’{() subject to
ajar =1

Second principal component = linear combination a ' X that maximizes Var(a’ X) subject to
azaz =1 and Cov(a X, a X) =0

At the ith step

ith principal component = linear combination aX that maximizes Var(aX) subject to a ‘a; =
1 and Cov(aX a X) =0fork<i
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11.2.1. Result

Let X be the covariance matrix associated with the random vector X' = [X1, X2, ..., Xp].
Let X have the eigenvalue-eigenvector pairs (14, e1), (A2, €2), ..., (An, €y) Where A1 = A, > -+ >
Ap» = 0. Then ith principal component is given by

Yi=¢e =euX1+ exXs+ -+ epXy, i=12,..,p

With these choices,

Var(Y) =¢e¢Ye =1, i=12,..,p

Cov(Y,Yi) =¢Yer,i+k

If some A; are equal, the choices of the corresponding coefficient vectorse;, and hence Y; are
not unique.

Proof:

We know that, with B = X, that

max“ 2% = 2 (Attained when a = ¢ )

a#0 a'a 1 1

But eje1 = 1 since the eigen vectors are normalized. Thus,

, r
max 4 1% = } :e&:e e =Var(Y)
w0 d'a L e 1 1

Similarly, we get

a'Ya
max X

!
aleiez,..ep A QA

=M, k=12,..,p—1

For the choice a = ex+1 With e}, e, =0,fori=12,...,kandk=1,2,...,p—1

’

e Yerr
k+1

=e 12 k=1 = VClT'(Yk+1)
Cht1Ck+1

k+

Bute' (O eir1) = diri€’  er+1 = Aks1, SO Var(Yis1) = Aks1.
k+1 k+1

It remains to show that e; perpendicularto e;. Thatis e'ey; = 0, i # k gives Cov(Y; Yi) = 0.
Now, the eigen vectors of ), are orthogonal if all the eigen values A1, 4;, ... , Ap are distinct. If
the eigen values are not all distinct, the eigen vectors corresponding to common eigen

values may be chosen to be orthogonal.. Therefore, for any two eigen vectors e; and ey,
e%k =0, %/t E étlj?lceef ex = Akex, plgemulltlplnzat?on %y e, glnes g ‘
L L

Cov(Y,Yr) = e Y ex = elrex = he'ex = 0 forany i # k
L L L

From the above result, the principal components are uncorrelated and have variances equal
to the Eigen values of X.
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11.2.2. Result

Let X' = X, .., Xp] have covariance matrix %, with eigenvalue-eigenvecor pairs
(A, e1), (a, €2), .. @wﬂw%m%,AL;~2M20.mHG—eKh=e Y, = eX
1 P
be the principal components. Then
P P
onutont-top=YXVar(X) =1+ A+ -+ =X Var(Y)
i=1 i=1

Proof:
We know thatoi1 + 22 + -+ + Opp = tT(Z).

Also from

Lo P A P

(e x k) = 20X 1) 1k T (kxR xRk X B

With A = Z, we can write £ = PAP' where A ia the diagonal matrix of eigen values and P =
[e1, €2, ..., ep] SO Othat PP' = P'P = I.

tr(Z) = tr(PAP) = tr(APP) = tr(A) =+ L2+ -+ A

Thus,

P P
YVar(X) = tr(Z) = tr(4) = Y Var(Y)
i=1 i=1

Result. 11.2.2. Says that

Total population variance = ou+on+-+op=A4+A2+--+1, and
consequently, the proportion of total variance due to the kt principal component is

Proportion of total

opulation variance A
(PP ) = bk k=12,..,p
due to kth A+ A2+ +2p
principal
component

If most (for instance 80 to 90) of the total population variance, for large p, can be
attributed to the first one, two, or three components, then these components can “replace”
the original p variables without much loss of information.

Each component of the coefficient vector e’ = [ei1, e, ..., ep| also merits inspection.
The magnitude of eix measures the importance of the kt: variable to the it principal
component, irrespective of the other variables. In particular, ey is proportional to the
correlation coefficient between Y; and Xx.
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11.2.3. Result

fY:=¢eXY,= €e'X, .., Y, = e X are the principal components obtained from the
1 2 Py

covariance matrix ¥ then pY,X =M}”—, i,k=1,2,..,p are the correlation coefficients
L VOik

between the components Y; and the variablesX.. Here (41, e1), (42 €2), ..., (45, €p) are the

eigenvalue-eigenvector pairs for X.

Proof:
Set a’k= [0,...,0,1,0,..0] so that X, = a'kX and Cov(X.,Y)) = Cov(a'kX, eX) = a'kZ e;. Since
L
Y ei = Aiei, Cov(Xy, Vi) = ajdie; = diewe Then Var(Y:)) = A and Var(Xy) = ow yield
Cov(Yy Xi) Aieg  eaNAr

= ) i;k:1:2;---:p

pYi, Xk = = —
VWVar(Y)VWVar(X) VAo Okk

11.2.4. Remark

Although the correlations of the varibales with the principal components often help to
interpret the components, they measure only the univariate contribution of an individual X to
a component Y. That is, they do not indicate the importance of an X to a component Y in the
presence of the other X’s. For this reason, some statisticians recommend that only the
coefficientseixand not the correlations, be used to interpret the components. Although the
coefficients and the correlations can lead to different rankings as measures of the
importance of the variables to a given component, it is our experience that these rankings
are often not appreciably different. In practice, variables with relatively large coefficients (in
absolute value) tend to have relatively large correlations, so the two measures of
importance, the first multivariate and the second univariate, frequently give similar results.
We recommend that both the coefficients and the correlations be examined to help interpret
the principal components.

The following hypothetical example illustrates the contents of Results 11.2.1, 11.2.2 and
11.2.3.

11.2.5. Example (Calculating the population principal components)

Suppose the random variables X1, X2 and X3 have the covariance matrix

1 -2 0
T=[-2 5 0]
0o 0 2

The Eigen value - Eigen vector pairs are
A1 =583,  e;=[0.383,—-0.924,0]
A2 =200, e,=10,0,1]

A3 =017,  ey=1[0.924,0.383,0]
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Therefore, the principal components become
Y1 =¢X = 0.383X1 — 0.924X,

Y2 = e,X = X3

Y3 = e;X = 0.924X; + 0.383X>

The variable X3 is one of the principal components, because it is uncorrelated with
the other two variables.

We know that
Var(Y)=e XYei=A i=12,..,p

Cov(Y;, Y1) = e; ) er,i # k can be demonstrated from first principles.

For example,

Var(Y1) = Var(0.383X1 — 0.924X>)

Var(Y1) = (0.383)2Var(Xy) + (—0.924)2Var(X2) + 2(0.383)(=0.924)Cov(X1, X2)
Var(Y1) = 0.147(1) + 0.854(5) — 0.708(—2) = 5.83 = 11

Cov(Y1,Y2) = Coc(0.383X; — 0.924X>, X3) = 0.383 Cov(X1, X3) — 0.924 Cov(X2, X3)
Cov(Y1,Y3) = 0.383(0) — 0.924(0) = 0
on+ox+033=14+5+2=11+1,+13=583+2.00+0.17=8

Thelproportion of total variance accounted for by the first principal component is
1

=>% = 0.73.
(A1+22+23) 8

Further, the first two components account for a proportion 5-838+2 = 0.98 of the population

variance. In this case, the components Y1 and Y, could replace the original three variables
with little loss of information

Using pY,X = ek =12, ...,p We obtain
¢ Vo
e;V1; 0.383V583
pYL Xy = L = = 0.925
Vo Vi
eiVAl;  —0.924V5383
pY1,X2 = = = —0.998
V022 V5

The variableX, with coefficient - 0.924 receives the greatest weight in the componentY;. It is
also having the largest correlation (in absolute value) with Y;. The correlation of X1, with Y3,
0.925, is almost as large as that for X», indicating that the variables are about equally
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important to the first principal component. The relative sizes of the coefficients of X; and X;
suggest, however, that X,contributes more to the determination of Y; than doesX;. Since, in
this case, both coefficients are reasonably large and they have opposite signs. We would
argue that both variables aid in the independent of Y;.

Finally
oY X =pY,X =0andpY,X =V =+
2 1 2 2 5 3 — -
Vo3 V2
The remaining correlations can be neglected, since the third component is unimportant.
11.2.6. Reamark

Consider principal components derived from multivariate normal random variables.
Supoose X is distsributed as N,(y, X).

We know that the density of X is constant on the u centered ellipsoids (x —
1) T-1(x — ) = c2 which have axes +cVe;, i = 1,2, ..., p where the (1, e;) are the eigenvalue-
eigenvector pairs of Z. A point lying on the it axis of the ellipsoid will have coordinates
proportional to e’ = [ei, e, ..i, €ip] IN the coordinate system that has origin u and axes that
are parallel to the original axes x1, xz, ..., Xp.

Setu =0 and A = -1, we can write

) 1 1 1 2
c2=x¥x= (ex)+ (ex)?+-+ (%)
T Ay ? A, P

Where e’lx, e'zx,...,e'x are recognized as the principal components of x. Setting y1=

ex,y,=¢€ex ..,V e’ x we have

1 2 P

2= 1_y2 + 1_y2 + -+ 1_y2 and this equation defines an ellipsoid (since 1,4 ,...,A are
Y P P A P 1 2 p

positive) in a coordinate system with axesyiys ...,¥, lying in the directions

ey, ez, ..., eprespectively. If 1, is the largest eigenvalues, then the major axis lies in the

directions e;. The remaining minor axes line in the directions defined by e, ..., e,.

To summarize, the principal components y, =e'x,y, = €'x,...,yp = e x lie in the
1 2 14

directions of the axes of a constant density ellipsoid. Therefore, any point on the it: ellipsoid
axis has x cooridinates proportional to e =, [ei1, e, .. , ep|] and necessarily, pincipal
compoent coordinates of the form [0, ...,0,y,0, ...,0].

When p # 0, it is the mean-centreed principal component y; = e;(x — p) that mean 0
and lies in the direction e;.

A constant density ellipse and the pincipal components for a bivariate normal random
vector with ¢ = 0 and p = 0.75 are shown in the following figur. We see that the principal
components are obtained by rotating the orginal coordinate axes through an angle 6 until
they coincide with the axes of the constant density ellipse. This result holds for p > 2
diemensions as well
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The above figure is the constant density ellispe x'2-1 x = c2 and the principal components
y1,y2 for a bivariate normal random vector X having mean 0.

11.2.7. Principal Components Obtained from Standardized Variables

Principal components may also be obtained for the standardized variables
(X1 — )
Zi=———
VO11

_ (X2 — p2)

Z>
V0322

X —
Z, =( P _.“p)
Vo

In matrix notation

Z = (V1/2)_1 (X —w) where V1/2 is the diagonal standard deviation matrix, E(Z) = 0 and

Cov(Z) = (Vl/z)_lz(Vl/Z)_1 = p . The principal components of Z may be obtained from the
eigenvectos of the correlation matrix p of X. Since the variance of each Z; is unity. We shall
continue to use the notation Y; to refer to the it* principal component and (4;, e;) for the
eigenvalue-eigenvector pair from either p or £. The (4, e;) derived from X are not the same
as the ones derived from p.

11.2.8. Result

The it principal component of the standardized variables Z = [Z3,Za, ..., Z,] with Cov(Z) =

: A .
pisgivenbyY, = eZ=¢; (Vo) X—wi=12..p
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Moreover, ¥_, Var(Y) = ¥_, Var(Z) = p and pY;, Zk = eaAs, ik = 1,2, ..., p

In this case, (11, e1), (12, €2), ..., (Ap, ep) are the eigen value-eigenvector pairs for p, with 1, >
Ad2==2=0

Proof:

Result. 11.2.8. Follows from Results 11.2.1., 11.2.2. and 11.2.3. with Z,Z,,,,,, Z»in place of
X1,X2,,,,Xp and p in place of .

11.2.9. Ramark

From ®_, Var(Y) = ¥_,Var(Z) = p, we have the total (standard varaibles) population
variances is simply p, the sum of the diagonal elements of the matrix p. Using

Proportion of total

(POPulation Variance) X ,k=12,..,p with Z in place of Z, we find the
due to kth ﬂ.1+ﬂ.2+"'+ﬂ.p
principal
component

proportion of total variances explained by the kt* principal component of Z is

Proportion of (Standard)

population y=%% k=12 ..,p
variance ~ due to kth P
principal
component

Where the Ai's are the eigenvalues of p.

11.2.10. Example (Principal components obtained from covariance and correlation
matrices are different)

. . . 1 4
Consider the covariance matrix £ = [4 100 @nd the derived correlation matrix
_r1 04
P=los o]

The Eigen value - Eigen vector pairs from Y, are

A1 =100.16, e; = [0.040,0.999]

12=0.84, €,=[0.999,—0.040]

Similarly, the Eigen value - Eigen vector pairs from p are
M=1+p=14, e, =1[0.7070.707]
la=1-p=06 e,=1[0.707,—0.707]

The respective principal components become

5. Y1=0040X,4+0999%,
© Y, =0.999X; — 0.040x; 2"
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Y1 =0.707Z1+ 0.7072;

X1 — X2 — U2

Y1 =10.707 ( )+ 0.707 (

)

Y1=0.707(X1 — u1) + 0.0707 (X2 — u2)

Y, =0.707Z, — 0.707Z;

X1 — X2 — W2

Y: = 0.707 ( ) = 0.707 (—;

)

Y1 = 0.707(X:1 — 1) — 0.0707(Xz — p2)

Because of its large variance, X, completely dominates the first principal component
determlned from Z. This first principal component explains a proportion

=_"" = 0.992 of the total population variance.
A1+A2 101

When the variables X1 and X, are standardized, the resulting variables contribute equally to
the principal components determined from p. Using Result 4 we obtain

pY1,Z1 = e;VA; = 0.707v1.4 = 0.837

pY1,Z2 = exvA = 0.707V/1.4 = 0.837

In this case, the first principal compoent explains a proportion A = = 0.7 of the total
14 2
(standardized) population variance.

The relative importance of the variables to the first pincipal compoenent is greatly affected
by the standardization.

When the first principal component obatined from p is expressed in terms of X; and X», the
relative magnitudes of the weights 0.707 and 0.0707 are in direct opposition to those of the
weights 0.040 and 0.999 attached to these variables in the pincipal component obtained
from X.

11.2.11. Note

The above example demonstrates that the principal components derived from X are
different from those derived from p. One set of principal components is not a simple function
of the other. This suggests that the standardization is not inconsequential.

Variables should probably be standardized if they are measured on scales with
widely differing ranges or if the units of measurement are not commensurate. For example,
if X;represents annual sales in $10,000 to $35,000 range and X is the ratio (net annual
income)/(total assets) that falls in the 0.01 to 0.06 range, then the total variation will be due
almost exclusively to dollar sales. In this case, we would expect a single (important) principal
component with a heavy weighting of X;. Alterntively, if both variables are standardized,
their subsequent magnitudes will be of the same order, and X, or (Z;) will play a larager role
in the construction of the principal components. This behavior was observed in Exmple
11.2.10.

164



u

In this unit we studied the principal components and the population principal
components.

| Check Your Proaress |

1. LetXy, X3, ..., Xp be the p random variables. Then the principal components depend on the

2. The first principal component is the linear combination with

| Glossaries |

Principal component analysis: It is concerned with explaining the variance-covariance
structure of a set of variables through a few linear combinations of these variables.

ith principal component: It is a linear combination a'X that maximizes Var(a'X) subject to
da; =1 and Cov(aX,a Ig() =0fork <i ' '
L L

1. Johnson. R. A. and Wichern. D. W., “Applied Multivariate Statistical Analysis”, Pearson
Education Asia, Sixth Edition, 2007.

| Answers to Check Your Proaress |

1. Maximum variance

2. Covariance matrix X or the correlation matrix p
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STATISTICAL TABLES

|. Binomial Probabilities
Il. Poisson Probabilities

Ill. Standard Normal Distribution

IV. Values of ta

2V

V. Values of x2,,
VI. Values of f0.05,vl,vz and f0.01,,;1,1;2
VII. Factorials and Binomial Coefficients

VIIl. Values of ex and e—x
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Table I: Binomial Probabilities’
i
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3 AMMES AMES 13 0256 62 0756 A115 1536 MG 25040
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5 0O JT3R 5005 4437 27T 2373 1681 1160 O07TTE 0503 0312
1 2036 3280 3915 4096 3955 3602 3124 2592 2059 1562
2 214 T2 1382 JFME 2637 30ET B304 3456 3369 3125
3 Al A 0244 D512 T 1323 JAAEL 23 Z2TST O Z1ES
E | MMM AMNE W22 MW Nl 4G D24 AdEE O7TaRE 1125 (1562
5 MMM UMMM WMN] AMNIE A0 M2 AMIS3 010z vlss 0312
L [k 7351 S314 3771 e | ATEOD 1176 AT54 EAGT A2TT A6
1 2321 A543 3993 FZQ37 3560 3025 2437 186h (1359 (W3EAR
2 3OS AMEd 1762 458 20606 3241 AR 3110 ZTERD 2544
3 A2 AO4s d1s 0E19 0 J131E (152 2355 2TRS S 3032 312S
F. | AN AMFIZ  WISE DS54 0A30 0595 R A3E2 1861 2344
5 MMM AWM AW MFlIE MdEdg DAz A0S 0E60 kDD O3EE
& MMM AMMEY  WMED (MM AWM M JMITE MM AMIER A6
T [k JBOE3 ATER 3R AT 1335 0EZ24 AWl 0280 NISZ2 MTR
1 2573 ATHY Zosd ZATD 3115 2471 AE4LE 130 OETZ2 0547
2 A A240 2007 (FT53 3115 3177 2085 2613 21400 (1641
3 T 230 sS17T 0 1147 ATE0 23S0 G790 O3 FO0E 2734
4 SO AHEEG R JZET AO5T7TT AWFT2 44 A935 23R8 2T34
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Table I: (continued)
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1k OO MWy DO D DD WD 02 DT 021 NS
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1 S413 0 3Te6 3012 202 1267 0712 0368 0174 0075 209
2 OEEE 2301 2924 2R3S5 2323 0 1aTE 10ER 0639 0339 0l1al
3 73 0852 TR0 2562 2581 2397 1954 Q419 0923 0537
4 A1 021F DeES 15320 1936 2311 2387 2128 AT 1208
5 2 Es 9s 0532 0 1032 1585 2009 22700 2235 1934
sl OO S e L0155 &0 0792 1281 ATe6 2124 XSG
7 ANMHD) HMHF MM W33 L0115 0291 0591 e 1489 1934
3 MM HMMF WD LDMNDS D024 OTE 9e dE200 O0Te2 1208
o AWM WM WM WD MR DS s 2S5 0277 L0537
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11 WMWK (HMHF HWME M) MM MWD WM DG WD D20
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Table I: (continued)

n x 05 A0 A5 20 25 30 35 40 45 50
13 3 | 0214 0997 L1900 2457 2517 2181 L1651 L1107 0660 0349
4 | 0028 0277 .OB38 1535 2097 2337 2222 1845 1350 0873

5 | 0003 0055 266 0691 1258 1803 2154 2714 1989 1571

6 | 000D OD0E 0063 0230 0559 1030 (1546 L1968 2169 2005

7 | 000D 0001 0011 0058 0186 0442 0833 1312 1775 2095
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10 | 000D 000D 0000 0000 0001 0006 L0022 0065 D162 0349
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2 | .1220 2570 2012 2501 1802 1134 0634 0317 0141 0056

3 | 0250 1142 2056 2501 2402 1943 1366 0845 0462 0222

4 | 0037 0349 0998 1720 2202 2290 2022 1549 1040 0611

5 | 0004 OOTE 0352 0860 1468 1963 2178 2066 1701 1222

6 | 000D 0013 093 0322 0734 1262 1759 2066 2088 1833

7 | 000D 0002 N9 0092 0280 0618 L1082 1574 1952 2005
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13 | 000D 000D 0000 0000 0000 0000 000 0001 0002 0009

14 | 000D 000D 0000 0000 0000 0000 000 000 0000 0001

15 0 | 4633 2059 0874 0352 0034 4T 006 0005 0001 0000
1 3658 3432 2312 1319 0668 0305 0126 0047 16 0005

2 | 1348 2660 2ZRS6 2300 1559 0916 0476 0219 0090 0032

3 | 0307 1285 2184 2501 2252 1700 (1110 0634 0318 0139

4 | 049 428 1156 1876 2252 2186 1792 1268 OTED 0417

5 | 0006 0105 49 1032 1651 2061 2123 1859 1404 (0916

6 | 000D 0019 0132 430 0917 1472 1906 2066 1914 1527

7 | 000D 0003 0030 38 0393 0811 L1319 1771 2013 1964

& | 0000 0000 0005 0035 0131 0348 0710 1181 1647 1964

o | 0000 0000 0001 0007 034 0116 L0298 0612 1048 1527

10 | 0000 0000 0000 0001 0007 0030 .00s 0245 0515 0916
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13| 0000 000D 0000 0000 0000 0000 00T 0003 0010 0032
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Table I: {continued)
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Table I: {comtineed)
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Table II: Poisson Probabilities™

A
x o1 o2 03 0.4 s LI o7 LR 09 1.0
0 AHdE B18T Ta4dE 6703 A5 5485 49606 0 4493 4066 3679
1 MRS Aa37 2223 6El 3033 3M3 34Ta 3595 53659 3679
2 AHB4S Aled4 0333 0536 OF58 0 MEE 1217 A438 0 14T 1E39
3 KL L AR ANIE3 HET2 126 M9E 02E4 AEES 494 D613
4 AR MR AW HHDT A0e 30 oS 07T 1l AM53
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& AHEME MR WML MR MWD WMD) MO AMHIZE M3 MNOS
7 A MMM WMD) MR MWD MM WM (MHBED WM (WO
A
X 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
0 3329 3z 2725 2466 0 (2231 2019 82T A653 0 1494 (13553
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A
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5 AT AdTe 538 a2 AaE 0735 0804 AETZE g0 100E
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A
x 31 3.2 33 3.4 3.5 3.8 AT 3.8 349 4.0
L1 AES0 aOE 0369 0534 AE0Z2 02TF3 0247 AZ24 0302 DAES
1 397 A304 1217 1135 057 0eEE4 WS JAES0 0789 0733
2 2165 28T 2008 1929 JIBs0 1771 692 615 1539 (1465
3 2237 23 22009 2MEBe 2158 2125 20ET e 201 954
4 A734 A7EL A3 1SR IBEE 1912 (1931 Jd944 0 1951 954
5 ATS A140 1203 (1264 A322 37T 1429 1477 1522 (1563
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TRased on E. C. Molina, Meivson s FExporeniiol Bimomial Limil, 1973 Reprint, Robert E. Krieger
Publishing Company, Melboame, Fla_, by permission of the publisher.
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Table II: (comtimued)

A

x 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0
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8 | 0328 03600 0393 0428 M3 0500 0S3T 0 0575 0614 D653
9 | L01S0 L0168 JDIER 0208 0232 0255 0280 0307 0334 0363
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3| 1348 1293 1239 1185 (1133 1082 L1033 0983 WEE L0892
4| 1719 1681 1641 1600 (1558 1515 L1472 1428 1383 (13390
S| 1753 1748 1740 AT2E ATI4 1697 I6TE 1656 1632 L1606
6 | 1490 1515 1537 .1555 (1571 1584 (1594 1601 1505 L1606
7| 1086 1125 (1163 12000 1234 1267 1298 1326 1353 L1377
& | 602 0731 L0771 OR10 0840 OES7 0925 0962 0998 1033
O | L0F02 423 0454 MBS 0519 0552 0SES 0620 0654 LD6HES

10 | ozoo 0220 0241 0262 085S 0509 0334 0359 0386 0413

11 | o093 olod 0116 0129 0143 0157 L0173 o0 0207 L0225
2| 0G0 WS 0051 UNSE 06S 0073 082 o092 0102 L0113

13 | o015 ods L0021 0024 028 0032 L0036 41 ide D052
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A
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Table II: (continued)

A
x 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0
3| OB4B  OBD6 0763 0726 DGER D652 0617 0SB4 0552 0521
4| 1294 12490 1205 1162 1118 1076 1034 0992 0952 0912
s | aAs7e 1S540 1519 1487 1454 1420 1385 (1349 1314 1277
6| 1605 1601 1505 1586 1575 1562 1546 .1529 1511 .1490
7| 1399 1418 1435 1450 (1462 1472 1480 1486 1489 1490
8| 066 1090 1130 1160 1188 1215 1240 (1263 1284 1304
o| 0723 0757 0791 0825 ORSE 0801 0023 0054  _(0ORS 1014
10 | 0441 M69 MO8 0528 0558 OSER 0618 0640 0679 0710
11 | 0245 0265 0285 0307 0330 0353 0377 401 (426 (452
12 | 0124 0137 0150 0164 0179 0194 0210 0227 0245 (0264
13 | 0058 0065 0073 0081 0080 08 0108 0119 0130 0142
14 | 0025 0020 0033 0037 0041 ide 0052 0058 0064 0071
15 | 0010 0012 0014 0016 0018 020 0023 026 0029 (D033
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7| 1489 1486 1481 1474 1465 1454 1442 1428 1413 1396
8| 4321 1337 1351 1363 1373 1382 1388 .1392 1395 1396
o | 142 1070 1096 1121 1144 1167 1187 1207 1224 1241
10 | 0740 0770 0800 0820 08S8 0887 0014 0041 0967 0903
11 | 478 0504 0531 0558 0585 0613 0640 0667 0695 0722
12 | 0283 0303 0323 0344 0366 0388 (411 0434 (457 (481
13 | 0154 L0168 81 0196 0211 0227 0243 0260 0278 0296
14 | 07T 006 0095 0104 0113 0123 0134 0145 0157 0169
15 | 0037 041 MMe 0051 D057 062 0069 0075 OE3 (0090
16 | 0016 09 0021 0024 0026 0030 0033 0037 0041 (WS
17 | 0007 L0008 0009 0010 0012 013 0015 0017 0019 0021
18 | 0003 0003 0004 0004 0005 0006 0006 0007 D008 0009
19 | 0001 0001 0001 0002 0002 0002 0003 0003 0003 0004
20 | 0000 0000 0001 0001 0001 0001 0001 0001 0001 0002
21 | 0000 0000 0000 0000 0000 0000 0000 0000 0001 0001
A
x .1 8.2 B3 8.4 B.S 8.6 8.7 B8 8.0 0.0
0| 0003 0003 0002 0002 002 0002 0002 L0002 0001 0001
1| 0025 023 021 009 017 0016 0014 0013 0012 i1
2 | Mmoo 0Me2 086 0079 0074 D06E 0063 0S8 0054 0050
3| 0260 0252 0237 0222 0208 0195 01R3 0171 0160 0150
4| 0544 0517 491 (466 M43 0420 0398 0377 0357 0337
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Table II: (continuedy

A
x 8.1 82 8.3 g4 85 8.6 87 88 2.0 o0
s | .oms2 o400 0816 OTE4 0752 0722 0602 0663 0635 0607
& | 1191 1180 (1128 1097 _1d6s 1034 1003 0972 0941 L0911
7| 1378 1358 1338 1317 1294 1271 (1247 1222 1197 1171
g | 1395 1392 (1388 1382 1375 1366 .1356 1344 1332 1318
o | 1256 1269 L1280 1290 1299 1306 1311 1315 (1317 1318
10 | 1017 1040 1063 1084 1104 1123 1140 1157 1172 1186
11 | 0749 0776 L0802 OSZE 0853 0STE 0002 0925 0948 0970
12 | L0505 0530 0555 L0579 04 0629 0654 0679 0703 L0728
13 | L0315 0334 03354 0374 0395 0416 438 (4590 (481 0504
14 | D182 0196 0210 0225 0240 0256 0272 0289 0306 (0324
15 | o098 107 L0116 0126 0136 0147 0158 0169 0182 0194
16 | 0050 0055 0060 0066 072 0079 0086 0093 0101 0109
17 | 0024 26 0020 0033 036 0040 0044 4B 0053 005K
18 | 0011 0012 0014 0S5 017 0010 0021 0024 026 (D029
19 | 0005 005 0006 00T 008 0000 00 0011 012 0014
20 | 0002 0002 0002 0003 0003 0004 0004 0005 0005 0006
21 | 0001 0001 0001 O 0001 0002 0002 0002 (002 0003
22 | L0000 0000 0000 O 0001 0001 0001 0001 0001 0001
ER
x 9.1 9.2 9.3 9.4 9.5 0.6 9.7 0.8 0.9 10
0| 0D 0001 L0001 0001 0001 0001 0001 0001 0001 0000
1| 0010 009 000 D008 0007 07 0006 0005 0005 000S
2 | oDds 43 M0 0037 0034 0031 029 0027 0025 L0023
3| o140 31 W23 0115 07 0100 093 08T 0081 0076
4 | 0319 0302 0285 0269 0254 0240 0226 0213 0201 0189
s | 0S8l 0555 L0530 0506 M83 (460 0430 (418 0398 0378
& | omBE1 oEsS1 0822 0793 0764 0736 OTOO 0682 0656 L0631
7| 1145 1118 L1091 1064 1037 1010 0982 0955 0928 0901
g | 1302 1286 1260 1251 1232 1212 1191 1170 1148 1126
o | 1317 L1315 (1311 1306 1300 (1293 (1284 1274 1263 1251
10 | 1198 1210 1219 12P® 1235 1241 1245 1249 1250 1251
11 | 0991 1012 1031 1049 1067 1083 L1098 1112 (1125 (1137
12 | 0752 0776 0799 OR22 0844 OB66  ORSR 0908 0928 (948
13 | 0526 0549 0572 0594 61T 0640 0662 0GRS 0707 0729
14 | 0342 0361 0320 03099 (419 (430 (450 (470 0500 0521
15 | 0208 0221 L0235 0250 0265 0281 0297 0313 0330 (0347
16 | 0118 0127 0137 0147 0157 0168 OIS0 0192 0204 (0217
17 | D063 0060 0075 0081 OER 0005 0103 0111 0119 0128
18 | 0032 G35 0030 042 de 0051 0055 0060 0065 0071
19 | D015 0017 019 0021 023 0026 028 0031 0034 0037
20 | .0D0T 0008 0009 0010 0011 0012 0014 0015 0017 L0019
21 | L0003 0003 0004 0 005 0006 0006 0007 (08 0000
22 | oDl 0001 0002 0002 002 0002 0003 0003 004 0004
73 | L0000 0001 0001 O 001 0001 0001 0001 (N2 00032
24 | L0000 0000 0000 MK OO0 0000 0000 0001 001 0001
ER
x 11 12 13 14 15 16 17 18 19 20
O | 0000 0000 0000 000 0000 0000 0000 0000 0000 0000
1| 0002 0001 0000 000 0000 0000 0000 0000 0000 000
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Table II: (continued)

x 11 12 13 14 15 16 17 18 19 20
2 W g 0002 01 MHEY OO0 (HEME (NHED (ENHD WO
3 3T MR O00E 0004 MH2 0001 WM J(NHED (ENHD WO
4 02 0053 0027 AWME MHe 0003 W1 JNHFD (ENHD WO
5 0224 27 070 0ay e 0010 HE)S 02 001 (W01
6 | M1 0255 M52 00ET MH-E 2a W4 JNWT 04 (N2
7 Oede M3T 0 0ZE1 T4 014 0060 34 R 010 (HE)S
B | OBEE 0655 M5T 0304 0194 200 T2 2 24 (W3
9 JQ0Es 0ET4 661 dTE 0324 0213 M35 083 050 2w

10 ] 1194 148 0859 0663 dBse 0341 0230 0150 M5 S8

11 ] 1194 1144 1015 0844 0663 (96 03535 245 0led4 0106

12 | 10ed 1144 1009 (984 B9 Oehl 0504 Ge8 0259 01T

13 | 0926 1056 1009 10al 00956 0814 0658 0508 0378 0271

14 | 0728 005 1021 Qe 1024 850 0800 0655 0514 0357

15 | 0534 0724 0885 0889 1024 8A2 W0e  07R6 650 0516

16 | 0367 0543 0719 0866 (Aed (K92 (Wa3 BR4 0772 Oedo

17 | 0237 383 0650 0713 0847 834 We3 (W36 Ee3 OTab

15 | M45 0256 0397 0554 7 0830 0909 (836 0911 0844

19 ] 0084 0161 0272 40w 0557 06099 0814 OBRT A1 0BER

20| e DT MTT O 0286 MR 0559 0692 0T9E 0866 0BER

21 | o024 0Es 09 091 O02ed 26 0560 06E4 OTE3 0846

22| M2 DDA 006: 0121 g 0310 0433 0560 0aTh 0769

23 | 0e e GT 0074 0133 0216 0320 (38 0559 0669

24 | 0003 DE 20 M3 0083 44 0226 528 442 0557

35 | 0001 D 00100 024 0050 W2 0134 237 0336 46

26 | 0000 D2 000F M3 0029 05T 0101 0led 0246 0343

27| 0000 D01 0002 0007 e 34 a3 01 T3 0254

25 | 0000 DD 0001 003 W e 03E 0070 0117 01E1

20 0000 DD 0001 0002 Od 0011 0023 00d4 07T 0125

300 0000 DM 0000 001 N2 e W3 0026 49 DNES

31 | 0000 D 0000 000 0 03 DT 0015 030 054

32 | 0000 DR 0000 D000 001 001 D4 i 0018 0034

33 | 0000 D 0000 00 0 01 W2 NS 00100 020

34 | 0000 DM 000 000 W) 0D i N2 006 W2

35 | 0000 DM 0000 000 W) 0D 0 0T 003 07

36 | 0000 DM 0000 000 ONHE) 0D D0 0T 002 Od04

37 | 0000 DMy 0000 000 ONHE) D D0 NN 0] 02

35 | 0000 D 0000 000 R 0000 (D 0D 000 (01

30 0000 R 0000 W0 O0HE)Y 000 O DD 000 W0
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Table III: Standard Mormal Distribution
I LI A A2 A3 A A5 A6 AT iR LIL]

o | Oy O00E0 e0 0120 el 0190 0239 2T 0319 0339
0.1 | 0398 d38 47 0517 DA5T 0aDh G336 GTS 0T14 OTA3
0.2 | 073 ORI DET1 W10 9d4E aRT 1026 1064 1103 1141
03 ) 117 217 2550 1203 1331 1368 1406 1443 14B00 1517
04 | 15354 1591 1628 1664 TN 1736 1TT2 O IRIE 1844 1RTO
05 ) 1915 1950 1985 209 2054 SR 2123 25T 2190 223
6 | 2257 2291 2324 X357 IR0 MI? 2454 MEs 2517 2549
07 | 2580 2611 2642 2673 2T 2734 2Ted 2794 2E2Z ZRA?
R | 2ZERT .10 2930 MaT 2005 3023 3051 3078 3Fle 3133
08 | 3159 3186 3212 3238 3264 3280 3315 3340 3365 33E0
1.0 | 3413 H38 3461 MBS 3508 3531 35354 3577 3309 3611
1.1 | 3643 3665 3686 3IT0R 3720 3749 37T 3T 310 3830
1.2 | 3840 3R60  3EBE 3007 3025 3044 3062 3080 3907 4015
1.3 | 4032 4049 4066 4082 4009 4115 4131 4147 4162 4177
14 | 4192 42070 4222 4236 4251 4265 4279 4292 4306 4319
1.5 | 4332 4345 4357 4370 4382 4394 4406 4418 4420 4441
1.6 | 4452 4463 4474 4484 4495 4505 45315 4525 4335 4545
1.7 | 4554 4564 4573 4582 45301 4590 4608 4616 4625 4633
1.8 | 4641 4040 4656 4604 4671 4678 4686 4693 460909 4706
1.9 | ATI3  AT19  A4T26  AT732  ATIR 4744 4750 475 4761 4767
200 ATT2  ATTR  A4TES  A4TERR 4T3 4798 4803 4808 4812 4817
2.1 | A1 A4ARMG AE30 4R34 4E3R 4R4? 4846 4B30 4EB54 4BAT
22 4861 4B6d 4868 4ART1  4BTS  4RTE O 4EB1 48B4 4ERT  4RW)
2.3 | AE93 4R9a 4EOF 4901 4904 4006 4900 4911 4913 4916
24 | 4918 4920 4922 4925 4977 4920 4931 49372 4934 4936
2.5 | 4938 4940 4941 4043 4045 4046 4048 4040 4051 4052
2.6 | 4953 4955 4956 4957 4950 4060 4961 4962 4963 4064
2.7 | 495 496 49T 40968 496 4970 4971 4972 4973 4974
2.8 | 4974 4975 4976 A9TT 4977 A0TR 4970 4070 49RO 40H1
29 | 4981 4982 4982 4083 4UB4 4OB4 4URS  4OR5 49R6 JURR
300 AURT 4087 4U9BT  40RF  4UBER 4980 49R0 400 4000 4900

Also, for 7 = 40, 5.0, and 6.0, the probabilitics are 02907 049FEFT and (49900
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Table I'V: Values of .!,m.+

v a =10 e =[5 o = (125 o = .01 o = 5 v
1 3078 6314 12.706 31.821 63657 1
2 1886 2.920 4.303 6,965 09.925 2
3 1638 2353 3182 4.541 5.841 3
4 1.533 2132 2.776 3747 4.604 4
5 1476 2015 2.5M 3365 4.032 5
3] 1.440 1.043 2.447 3143 1.707 3]
7 1415 1.RO5 2365 2.098 3.499 7
L] 1.397 1.560 2.306 2,894 3.355 L]
qQ 1383 1.R33 2.262 2.1 3.250 qQ
110 1372 1.812 2228 2764 3169 110
11 1.363 1.756 2.1 2718 3106 11
12 1.356 1.782 2179 2.681 3.055 12
13 1.350 1.771 2160 2.650 3012 13
14 1.345 1.761 2145 2.624 2977 14
15 1.341 1.753 213 2602 2.947 15
16 1.337 1.746 2120 2583 2.4921 16
17 1.333 1.740 2110 2.567 2.B08 17
18 1.330 1.734 2.1 2.552 2ETR 18
149 1.328 1.729 2003 2534 2.861 149
20 1.325 1.725 20086 2.528 2.B45 20
21 1.323 1.721 2R 2.518 2.831 21
x? 1.321 1.717 2.074 2508 2819 x?
L 1.319 1.714 2069 2500 2B07 L
24 1.318 1.711 2064 2.492 277 24
25 1.316 1.708 20600 2485 2. 787 25
26 1.315 1.706 2056 2479 2719 26
27 1.314 1.703 2.052 2473 277 X7
. 1.313 1.701 2048 2.467 2763 .
2 1.311 1.6049 2.5 2.462 2756 2
inL 1282 1.645 1. 0600 2326 2576 inL

TBased on Richard A. Johnson and Dean W Wichern, Applied Muliivariate Statistical Analysis,
2nd ed., © 1988, Table 2, p. 592, By permission of Prentice Hall, Upper Saddle River, M.
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Table v: Values of 52,7

a=1M5 g=0 =0 o= o=.05 a=.08c=.01 =005

-
=
=

1 LO0EE3 00157 009E2 0393 3841 5024 6635 TEW 1
2 AL A2 AE06 03 5.9 T3TR 9210 10597 2
3 AT1T A15 216 352 THEIZ 9348 11345 12858 3
4 207 297 A4 711 0488 11.143 13277 14.860 4
5 412 554 831 1.145 1070 12,832 15086  16.750) 5
i) HT6 BT2 1.237 1.635 12392 14449 16812 18548 6
7 Rt 1.239 1.650 2.167 14.067 1613 18475 20278 7
Bl 1344 1.646 2180 2733 15,507 17.535 200090 21.955 B
a1 1.735 2088 2700 3.325 16919 19023 21666 23589 Q
1] 2156 2.558 3247 39440 18.307 20483 23224 25188 |10
11 2603 3.053 3816 4.575 19675 21920 24725 26757 |11
12 3.074 35T 4404 5.226 21026 23337 262117 28300 | 12
13 ] 3.565 4.107 5.004 5.802 22362 4736 27688 29819 |13
14 4075 4.66() 5.629 6571 23685 26119 29041 31319 |14

15] 4.601 5.220 6262 7.261 24990 IT488 30578 32801 |15

18] 5142 5.812 6.8 7.962 26,206 IEB4AS 32000 34267 |16
17 56487 6408 75604 B.6o72 27587 391 334040 35718 | 1
18] 6.265 7.5 5.231 0. 3000 28869 31.526 34805 37156 |18
19] 6844 7.633 BT 1117 30144 32.H52 36191 3BS5H2 |19
| TA4AM B.260 9.591 10.851 3410 MATD 37566 30007 | X

21| 85034 B.897 10283 11.591 32671 35479 38932 41400 | 21
22 He43 9.542 10982 12.338 33924 36781 40289 42.79h | 22
23 9260 10,19 116349 130491 35172 38076 41638 44181 |23
24| 9.886 10.856 12401 15848 36415 39564 42080 45558 |4
25 | 10,520 11.524 13.120 14.611 31652 40646 44314 46028 | 25
26| 11.160 12.198 13,844 15.379 3HERS 41923 45642 4200 | 26
27 11808 12,8749 14.573 16,151 400113 4319 46963 49645 | 27
28] 12461 13,565 15508 16,928 41.337 461 485278 50993 | 28
28 (13121 14.256 16,047 17.708 425357 45722 40588 513536 | 1
30| 13,787 14.933 16.791 18.493 43773 46970 50892 53672 | 3

THased on Table 8 of Riometrika Tables for Statisticians, Vol. 1. Cambridge University Press, 1954,
by permission of the Biomerrika trustees.
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Table VI: Values of fo s y, 0,
v = Degrees of freedom for numerator
1 2 3 4 5 6 7 8 9 0 12 15 20 24 30 4 60 120 o

1| 161 200 216 225 230 234 237 230 241 242 244 246 A48 249 250 251 252 253 24
21185 190 192 192 193 193 194 194 194 194 194 194 194 195 195 195 195 195 195
3101 055 928 912 901 8% 880 885 881 B8 874 B 866 864 862 859 857 85 853
4
q

771 694 639 639 626 616 609 604 600 59 591 58 580 577 575 572 569 566 563
S| 661 579 541 519 505 495 488 482 477 474 468 462 456 453 450 446 443 440 437

6 599 514 476 453 439 428 421 415 410 406 400 394 387 384 381 377 374 370 367
71 559 474 435 412 397 387 379 373 368 364 357 351 344 341 338 334 330 327 323
8 532 446 407 384 369 358 350 344 339 335 328 322 315 312 308 304 301 297 293
9 512 426 386 363 348 337 329 323 318 314 307 301 294 290 28 283 279 275 27
0f 4% 410 371 348 333 322 314 307 302 298 291 28 277 274 270 266 262 258 2

1| 484 398 359 336 320 300 301 295 290 28 279 272 265 261 257 253 249 245 240
21 475 380 349 326 311 300 291 285 280 275 269 262 254 251 247 243 238 234 230
13( 467 381 341 318 303 292 28 277 271 267 260 253 246 242 238 234 230 225 221
14] 460 374 334 311 296 28 276 270 265 260 253 246 230 235 231 227 222 218 213
o 15 454 368 320 306 290 279 271 264 259 2 248 240 233 229 225 220 216 211 207

Degrees of freedom for denominator

TReproduced from M. Merrington and C. M. Thompson, “Tables of percentage points of the inverted beta (F) distribution.” Biometrika, Vol. 33 (1943), by permission of
the Biometrika trustees.

Table VI: (continued) Values of fygs

v = Degrees of freedom for numerator

12 3 4 5 6 7T 8 9 10 12 15 0 A N 4 60 10

16 1449 363 34 301 285 274 266 250 254 249 242 23 228 24 219 215 11 26 200
17 |445 350 320 29 281 270 261 255 249 245 23 231 223 219 215 210 206 201 19
18 |441 355 316 293 277 266 258 251 246 241 23 227 219 215 21 206 202 197 192
19 1438 352 313 290 274 263 26 248 242 238 231 213 216 211 207 203 198 193 188
A 1435 349 310 287 21 260 251 245 239 235 2B 220 212 208 204 19 195 190 184

201432 347 307 284 268 257 249 242 237 23 25 218 210 205 201 196 192 187 181
21430 34 305 282 266 255 246 240 234 230 2B 215 207 203 198 194 180 1M LW
342 303 280 264 253 24 237 232 227 20 213 205 200 19 191 18 181 176
41426 340 300 278 262 251 242 236 230 225 218 211 203 198 194 180 184 1M 173
B 424 330 29 276 260 249 240 23 228 24 216 209 2001 1% 192 187 18 17 1N

01417 332 29 269 253 242 233 227 221 26 209 201 193 180 184 179 14 168 162
40 1408 323 284 261 245 234 225 218 212 208 200 192 184 179 174 169 164 158 151
60 400 315 276 253 237 225 217 210 204 19 192 18 175 10 16 159 153 147 139

120 1392 307 268 245 229 218 200 202 196 191 183 L75 166 161 155 150 143 13 1D
co (384 300 260 237 220 210 200 194 188 183 175 167 157 152 146 139 132 12 100

v = Degrees of freaedom for denomin ator
=
P
82
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Table VI: (continued) Values of fy, ,

vy = Degrees of freedom for numerator

4

7

8

9

10

12

15

30

40

120

00

vz = Degrees of freadom for denomin ator

RREER

g Bzse

853

6.3
6.11
6.01
593

578

431

4T

444

425
417
410

44
39
394

386

370
351
334
KAy
30

403
393
384
an
370

364
359
34
350
346

330
KR V)
295
21
24

380
i
i
363
356

360
359
351
343
337

33
326
32
37
3

298
280
263
247
)

355
346
337
330
KWA]

3
312
307
303
299

284
266
250
234
218

341
331
n
315
kALY

303
208
29
2.89
2.85

270

326

300

280
27
270
266
262

247

310
300
29

n

32
29
2%
276
260
264
258
234
249
245

1.59

284
275
266
258
252

275
265
257
240
242

236
231
226
221
pAY)

20
1.60

138
100
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Table wiI:

Factorials and Binomial Coefficients

Factorials
n ! love m!
0 I L
1 I 0.0
2 2 03010
3 6 0782
4 24 13802
5 120 20792
6 720 2.B573
7 FA40 37024
B 40320 4.6053
9 IGZEROD 55508
10 I602EEDD 65508
11 0916800 76012
12 479000600  B.6R03
13 622702080 97943
14 BT.ITE291 200  10.9404
15 1307674368000 12.1165

Rinomial Coefficienis

|6 () () G) ()

() ) ()

)

n
(m

=k
-
=

T T T T e T N T T S (It A

WO sl 3 LN e el Pl

SHAROEG BREGE cwe

105
0

153
171
190

10

n 1
35 35
S 0
B4 124

120 210
165 330
70 495
286 T3
364 104
455 1365
360 1820
6RO 2380
Blo 306
D6 3RTh

11400 4845

i
|
56

126

52
462
T2
1287
2002
3003
4368
6158
B368

1 1628
15504

1
7
I8
54

210
462
024
1716
3003

5005
BON0E
12376
18564

niz2

38760

1

B

36
1240
330
T2
1716
M3z
435
11440
19448
31824
50388
77520

1
0

45
165
4495
1287
3003

435
12870
24310
43758
T3582

125970

|

10
35
240
T15
2002

5005
11440
24310
45620
Q2378

167960

11

s
286
1N
35
B8
19448
43758
Y2378

184756
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Table WiIll:

Walues of eF amdd &

x =e* - i x e i
i 1 HMD A OsHE .0 1454 (L H ST
LI | 1.105 (oS 5.1 165200 L HS T
o2 1221 s 1 52 181.3 (L{HFSS
o3 1 3500 741 =3 pELN B (L HS
.4 1. 4092 Tl =4 2Z21.4 (LiHRYS
on.s T L] ol T 5.5 244 7T (LW 1
L1 1. 822> [ S4Ly .6 T4 (L{HKRT
o7 2014 (b 207F =57 20 (L HNEE
o= 2206 Ch_84Ly =B A3 32 W0
L ] e 27 =0 A5 2T
1.0 2.T71= [ S6HE [ 4054 LS
1.1 3 W1 333 [ | A4 5 O DTN e
1.2 2 320 301 [ 407 = (L0
1.3 e 273 6.3 544 .6 MM =
1.4 4 055 247 [ S Lol -4 L{HKFLF
1.5 4 4=HE 223 6.5 LSS i | MiHKF1IS
1.6 4 Q53 20z [ TE5.1 (LWl 4
1.7 5474 (183 0BT =124 L{HFLE
1.8 S S0 (165 L HOT.E L{HFL 1
1. (et 1 S0k .1 g2 3 (L HFLO
2.0 T.AED 135 T 1.0 6 L HOAD
2.1 ol (122 T.A 1. 21200 ChH WS
2.2 D25 111 T2 1 330 4 (L HMYF
2.3 L L e § 1R T3 1. 480 .3 (WM YT
2.4 11023 e T4 1. 436000 L HOeS
2.5 12 1% o2 T.5 1. =0E0 (L HNISS
2.6 135 46 W7 T .o 1. O 2 CHL MOS0
2.7 14 2= ST T.T 2. 003 DN E
i 1644 o651 T.B 2. 4404 DN e
2.0 1817 LSS T 2.a07 3 (L HME T
e ] pei NN S0 =D 20881 (L HMIE
.1 22210 R A .1 3. 204 5 C0LCHMOCED
3.2 24 53 e 1 =z R ] LM
3.3 2711 3T 5.3 £ NN2E L{HHIZS
3.4 20 U (O35 H2.4 £ 44701 (L HMEE
3.5 I 1= OO S H.5 4 o4 = CHL WO
e o OZT o6 54317 DRI
3.7 445 V2SS 5.7 5 OR02 L{HMILT
3.8 A T OOz H5.B8 I T Y ({HHILS
e 40 Al O .0 TAZZAND (WML
] S lk i LE LR =103 CL{HMITL 2
4.1 e Sl (AL .1 5955 3 LdHETL
4.2 [ atel ol S 0 r L5t T | CHL WML D
4.3 TA T vl L ol e 0 W
A4 2145 I 0 4 12 0d3= L WO
4.5 3 02 ol 0.5 13 360 WO T
b O 45 o L L 14,765 WO T
4.7 1 05 sy 0T 16318 I WS
4.8 12151 OO0 o= 15 34 I WS
M ] 134 oy s T LU E 1 S (LM
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