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Overview 

1.1. Introduction 

 
 

After Studying this Unit, the student will be able to 
 

 Explain the sampling distribution of the mean. 

 Demonstrate the t distribution and F distribution. 

 Elaborate the chi-square distribution with example. 
 

 

 
In this unit, we will study the concept of sampling distribution of the mean, the chi- 

square distribution, t distribution and F distribution. 
 

 

Statistics concerns itself mainly with conclusions and predictions resulting from 
chance outcomes that occur in carefully planned experiments or investigations. Drawing 
such conclusions usually involves taking sample observations from a given population and 
using the results of the sample to make inferences about the population itself, its mean, its 
variance, and so forth. To do this requires that we first fin the distributions of certain 
functions of the random variables whose value make up the sample, called statistics. The 
properties of these distributions then allow us to make probability statements about the 
resulting inferences drawn from the sample about the population. 

 

1.1.1. Population 

 
A set of numbers from which a sample is drawn is referred to as a population. The 

distribution of the numbers constituting a population is called the population distribution. 
 

1.1.2. Random Sample 
 

If  1,  2, … ,    are independent and identically distributed random variables, we say 
that they constitute a random sample from the infinite population given by their common 
distribution. 

 

1.1.3. Sample Mean and Sample Variance 
 

If   1,  2, … ,     constitute  a  random  sample,  then  the  sample  mean  is  given  by   = 
∑     ∑      (  −  )2 

 
  =1 

  
and the sample variance is given by  2 =  =1 

 −1 
 

1.1.4. Remark 
 

∑     ∑     (  −  )2 
 

 Let    =  =1 
  and  2 =  =1 

 −1 for observed sample data and refer to these 

statistics as the sample mean and the sample variance. Here   ,       2 are values of the 

corresponding random variables   ,       2  .  The formulas for       2  are used even when 
we deal with any kind of data, not necessarily sample data, in which case we refer       2 
simple as the mean and the variance. 

Objectives 
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 =1 

 =1   

  

 
 

1.2.1. Theorem 
 

If  1,  2, … ,    constitute a random sample from an infinite population with the mean   

and the variance  2, then  (  ) =   and    (  ) = 
 2

. 
  

 

Proof: 

 

Let   =    and hence setting    

 

= 
1
, we get 

  
 

 (  ) = ∑  
1 

.   =   (
1 

.  ) =  . Since  (  ) =  . 
  

 =1       
 

Then, “If the random variables  1,  2, … ,      are independent and   = ∑        , then 

   ( ) = ∑   2    (  )” 
 

  

   (  ) = ∑ 

 =1 

1 
 

 

 2 

 
.  2 =   ( 

1 

 2 

 
.  2) = 

 2 
 

 

  
 

1.2.2. Remark 
 

We write  (  )  as       and    (  )  as  2  and refer to       as the standard error of the 
       

mean.   The formula for the  standard  error of  the mean,       =  
   

, the  standard  deviation of 
   √  

the distribution of     decreases when n, the sample size, is increased. This means that when 

n  becomes  larger  and  we  actually  have  more  information,  we  can  expect  values  of      to 

closer to  , the quantity that they are intended to estimate. 
 

1.2.3. Result 
 

For any positive constant c, the probability that     will take on a value between   −   
to   +   is at least1 − 

 2

 
   2 

, When   → ∞, this probability approaches 1. This result, called a 

law of large numbers. 
 

1.2.4. Theorem (Central Limit Theorem) 

 
If  1,  2, … ,    constitute a random sample from an infinite population with the mean 

 , the variance  2, and the moment-generating function   ( ), then the limiting distribution 

of   = 
 −  

as   → ∞ is the standard normal distribution. 
 /√  

 

Proof: 

 
If a and b are constants, then 

 
1.   + ( ) =  [ ( + ) ] =    .   ( ) 

 
2.    ( ) =  [    ] =   (  ) 

 

 +  
 

 

    
 

 

3.   + ( ) =   [ ( 
  

    
) ] =     .     ( 

  
) “, we get 

1.2. The Sampling Distribution of the Mean 
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+ 1 2 1 2 3  1   2 1 3 

2 3 1   2 1 

 
   

 
( ) =   

 
 

 −  
     

√  

 
 

( ) =  −√   /  .    
 

 
 

√    
( ) 

  

 

 

   
 

( ) =   

 

 
 −  
     

√  

 
 

( ) =  −√   /  .      
 

  
( ) 
 √  

 

Since      =  1 +  2 + ⋯ +    
 

 
 

  ( ) =  −√   / . [   ( 

 
and hence that 

    

)] 
 √  

 
 

     ( ) = − 
√     

+  .      (   
    

) 
 

       
 √  

 

Expanding    (
    

) as a power series in t, we obtain 
 √  

 
 

 √        2  3 
     ( ) = − +  .    [1 +  ′ +  ′ +  ′ + ⋯ ] 

 

 
  

  1 
 √  2 2 2  3 6 3 √  

 

Where  ′ ,  ′      ′ are the moments about the origin of the population distribution, that is, 
1 2 3 

those of the original random variables  . 

If n is sufficiently large, we can use the expansion of   (1 +  ) as a power series in x, getting 
 

   2  3 
 1 [ ⋯ + ′  + ′  + ′ ] ل
I 

√     
I

 
1  √  

1   
 

 

2 2 2  

 2 
3 6 3 √  I 

 3 2 I 
     ( ) = − +   −   [ ′ +  ′ +  ′ + ⋯ ] 

  

    
❪ 2 1 

 √  
1   

2 2 2  

 2 

3 6 3 √  ❪ 
3 

 3 I+    [[ ′  
 +  ′    +  ′    + ⋯ ]]   −  …I 

 

 
  

  3 1  √  2 2 2  3 6 3 √    
 

Then, collecting powers of t, we obtain 
 
 
 

 √      √  ′  ′  ′2  ′  ′  ′  ′3 
     ( ) = (−                            )   + ( − )     + ( − + )    + ⋯. 

 
   

      2 2 2 2 6 3√  2 3√  3 2√  
 

and since  ′ =   and  ′ − ( ′ )2 =  2, this reduces to 
1 

 
1  ′ 

2 1 
 

 ′  ′ 
 
 ′3 

 
 3 

     ( ) =               + ( − + ) + ⋯ 
 

 
  2 

6 2 6  3√  
 

Finally, observing that the coefficient of  3 is a constant times 1 
√  

and in general, for  ≥ 2, the 

coefficient of    is a constant times 1 
√  −2 , we get 
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 =1 

  

lim      ( ) = 
 →∞ 

1 
 2 

2 

1  2 

and hence lim   ( ) =  2 

 →∞ 
 

Since the limit of a logarithm equals the logarithm of the limit (Provided these limit exist). 
 

1.2.5. Example 

 
A soft-drink vending machine is set so that the amount of drink dispensed is a 

random variable with a mean of 200 milliliters and a standard deviation of 15 milliliters. What 
is the probability that the average (mean) amount dispensed in a random sample of size 36 
is at least 204 milliliters? 

 

Solution: 
 

The distribution of     has the mean      = 200  and the standard deviation      =  
15

 

 

 
= 2.5 and 

    
 

√36 

according to the central limit theorem, this distribution is approximately normal. 
 

Since   = 
204−200 

= 1.6 
2.5 

 

By Statistical table, we have 
 

 (   ≥ 204) =  (  ≥ 1.6) = 0.5 − 0.4452 = 0.0548 
 

1.2.6. Theorem 
 

If     is the mean of a random sample of size n from a normal population with the mean 

  and the variance  2, its sampling distribution is a normal distribution with the mean   and 

the variance  
2

. 
  

 

Proof: 
 

If a and b are constants, then 

 
1.   + ( ) =  [ ( + ) ] =    .   ( ) 

 
2.    ( ) =  [    ] =   (  ) 

 

 +  
 

 

    
 

 

3.   + ( ) =   [ ( 
  

    
) ] =     .     ( 

  
). If  1,  2, … ,    are independent random variables and 

  =  1 +  2, … +    then   ( ) = ∏     ( ) where     ( ) is the value of the moment- 

generating function of    at t. 
 

We  can  write      ( )  = [   (
  
)]

    
and since the moment-generating  function of a  normal 

  1  2  2 
distribution with mean   and  2 is given by   ( ) =   

  +       
2 

 
1  2  2 

According to the theorem   ( ) =   
  +       

2 , we ger 
 

1    1  1  2   
2   
 
 

 
 

1  2   
2 

 
   .  +  (  )      +    (    ) 

   ( ) = [      2    ]   =   2   
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 =1 

1.3. The Sampling Distribution of the Mean: Finite Populations 

Ths moment-generating funciton is a normal distribution with the mean   and the variance 
 2

.
 

  
 

 

1.3.1. Random Sample-Finite Population 
 

If  1 is the first value drawn from a finite population of size N,  2 is the second value 

drawn,….,   is the   ℎ value drawn, and the joint probability distribution of these n random 
variables is given by  (  ,   , … ,   ) = 

1
 for each ordered n-tuple of values of 

1 2   
 

 ( −1)….( − +1) 

these random variables,  1,  2, … ,    are said to be constitute a random sample from the 
given finite population. 

 
1.3.2. Sample Mean and Variance – Finite Population 

 

The sample mean and the sample variance of the finite population { 1,  2, … ,   } are 
  = ∑     . 

1  
and  2 = ∑   (   −  )2. 

1
 

  

 =1       =1         
 

1.3.3. Theorem 

 
If    and    are the   ℎ and   ℎ random variables of a random sample of size n drawn 

2 
from the finite population {  ,   , … ,   }, then    (  ,   ) = − 

 
 

 

 

Proof: 

 
   (  ,   ) = ∑  

 
 

 
∑  

1     2 
 
 
 

 
1 (  

 

  
 
 
 

 
−  )(  

    
 
 
 
 

−  ) ,   ≠  . 

 −1 

     =1  =1  ( −1)     

 

    
1 

   (  ,   ) = 
 (  − 1) 

∑(   −  ) [∑(   −  ),   ≠  ] 
 =1  =1 

 

and since   ≠  , ∑  (   −  ) = ∑    (   −  ) − (   −  ) = −(   −  ), we get 
 =1 

 
  

1 

 =1  

 2 

   (  ,   ) =  
 

 (  − 1) 
∑(   −  )2 = − 

 =1 

. 
  − 1 

 

1.3.4. Theorem 
 

If     is the mean of a random sample of size n taken without replacement from a finite 

population of size N with the mean  and the variance  2, then  (  ) =   and 

   (  ) = 

 
Proof: 

 2 
 

 

  

  −   
. 
  − 1 

 

Substituting   = 
1 
,    (  ) =  2, and    (  ,   ) = −   

 2

 into the formula 
          

 

 −1 
 

 ( ) = ∑      (  ), we get 
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 =1   

  

 (  ) = ∑  
1 

.   =   and 
 

 =1   

  

   (  ) = ∑  
1

 

 
.  2 + ∑ ∑ 

1 
(− 

 
 
 2 

) 
 

 =1 
 2  

 <  
 2   − 1 

 

  
 2 

 
 

 (  − 1)   1 
 

 

 2 
 

 

   ( ) = 
 2 + 2. 

2 
. 
 2 (− 

) 
  − 1 

 

   (  ) = 
 2 

 
 

  

  −   
. 
  − 1 

 

 
 

If X has the standard normal distribution, then  2 has the special gamma distribution, 

which is known as the chi-square distribution and it is denoted by  2. 
 

If a random variable X has the chi-square distribution the   degrees of freedom if its 
probability density is given by 

 

1  −2   

 ( ) = { 
 

 
   2    −2      > 0 

22Γ( /2) 
0      ℎ    

 

The mean and the variance of the chi-square distribution with   degrees of freedom are 

    2 , respectively, and its moment-generating function is given by   ( ) = (1 − 2 )− /2 
 

1.4.1. Result 

 

If X has the standard normal distribution, then  2 has the chi-square distribution with 
  = 1 degree of freedom. 

 

1.4.2. Theorem 

 

If  1,  2, … ,    are independent random variables having standard normal 

distributions, then   = ∑   2 has the chi-square distribution with   =   degrees of freedom. 
 

Proof: 
 

Using the moment-generating function with   = 1 and by above result 1.3.1., we get 
 

−
 1 

 
 

  2 ( ) = (1 − 2 ) 
  

2   and from the theorem “   ( ) = ∏ =1     ( ) then 
 

  

− 
1 

− 
  

  ( ) =  (1 − 2 )   2   = (1 − 2 )   2 

 =1 
 

This moment-generating funciton is identified as that of the chi-square distribution with   =   
degrees of freedom. 

1.4. The Chi-Square Distribution 
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 =1 

 =1 

1.4.3. Result 

 
If  1,  2, … ,    are independent random variables having chi-square distribution with 

 1,   , …    degrees of freedom, then   = ∑        has the chi-square distribution with  1 + 
   + ⋯ +    degrees of freedom. 

1.4.4. Result 

 

If  1 and  2 are independent random variables,  1 has a chi-square distribution with 
 1 degrees of freedom, and  1 +  2 has a chi-sqaure distribution with   >  1 defrees of 
freedom, then  2 has a chi-square distribution with   −  1 degrees of freedom. 

1.4.5. Theorem 
 

If      and   2  are  the  mean  and  the  variance  of  a  random  sample  of  size  n  from  a 
normal population with the mean   and the standard deviation  , then The random variable 
( −1) 2 

has a chi-square distribution with n-1 degrees of freedom. 
 2 

 
Proof: 

 
Consider the identity 

 

    

∑(   −  )2 = ∑(   −  )2 +  (   −  )2 
 =1  =1 

 

Now, divided each term by  2and substitue (  − 1) 2 for ∑  (   −   )2, 
 

  

∑ ( 
 =1 

   −   2 
) 

  

(  − 1) 2 
= 

 2 

   −     
2

 
+ ( ) 

 /√  
 

We know from the theorem that the one on the left-hand side of the equation is a random 
variable having a chi-square distribution with n degrees of freedom. Also by theorems, the 
second term on the right-hand side of the equation is a random variable having a chi-square 

distributoin with 1 degree of freedom.  Now, since      and  2  are assumed to be independent 
that the two terms on the right-hand side of the equation are independent, and therefore 
( −1) 2 

is a random variable having a chi-squre distribution with n-1 degrees of freedom. 
 2 

 
1.4.6. Example 

 
Suppose that the thickness of a parat used in a semiconductor is its critical dimension 

and that the process of manufacturing these parts is condsidered to be under control if the 
true variation among the thickness of the parts is given by a standard deviation not greater 

than   = 0.60 thousandth of an inch. To keep a check on the process, random samples of 
size n = 20 are taken periodically, and it is regarded to be “out of control” if the probability 

that  2 will take on a value greater than or equal to the observed sample value is 0.01 or 

less (even though   = 0.60). What can one conculude about the process if the standard 

deviation of such a periodic random sample is   = 0.84 thousandth of an inch? 
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v 

1.5. The t Distribution 

Solution: 
 

The process will be declared “out of control” if ( −1) 
2

 

 2 

 

 
with   = 20 and   = 0.60 exceeds 

 2 = 36.191. Since ( −1) 
2 

= 
19(0.84)2 

= 37.24 exceeds 36.191, the process is declared 
  

0.01,19  2 (0.60)2 

out of control. Here we assumed that the sample regarded as a random sample from a 
normal population. 

 

 
1.5.1. Theorem 

 

If Y and Z are independent random variables. Y has a chi-square distribution with   
degrees of freedom, and Z has the standard normal distribution, then the distribution of   = 

  
 

√ /  

v+1 

is given by  ( ) =  
Γ(  

2  
)
 

√  Γ( ) 
2 

. (1 + 
 2

) 
  

− 
v+1 

    − ∞ <   < ∞ and it is called the t distribution 

with   degrees of freedom. 

Proof: 

Since Y and Z are independent, their joint probability density is given by 
 

1 1   2 1          −         
2 

−1   − 
 ( ,  ) =     

√2  v v  2 

Γ ( ) 22 
2 

    2 

for   > 0 and −∞ <   < ∞, and  ( ,  ) = 0 elsewhere. Then, to use the change-of-variable 

technique, we solve   = 
 

 
√ /  

density of Y and T is given by 

for  , getting   =  √ /  and hence 
   

= √ / . Thus, the joint 
   

 

1  −1    2 

 ( ,  ) = {   2    
− 

2
(1+ 

  
) 

      > 0     − ∞ <   < ∞ 
v 

 
 √2  Γ ( ) 22 

2 

0      ℎ    
 

and, integrating out y with the aid of the substitution   = 
  

(1 + 
 2

), we get 

 
Γ (

v+1) 
  2  

 

 2 
 

 

 
 

− 
v+1 

2 

2   

 ( ) =       . (1 + ) v       − ∞ <   < ∞ 
√  Γ ( ) 

2 

 

1.5.2. Theorem 
 

If      and   2  are  the  mean  and  the  variance  of  a  random  sample  of  size  n  from  a 

normal population with the mean    and the variance  2  then   =  
  − 

 
 /√  

has the t distribution 

with n-1 degrees of freedom. 
 

Proof: 
 

From theorems 1.2.6. & 1.4.5. we get, the random variables   = 
( −1) 2   

and   =  
  − 

 

 

 
have, 

 2  /√  

respectively, a chi-square distribution with n-1 degrees of freedom and the standard normal 

2 

v 
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1     2 

)   1  

1.6. The F Distribution 

distribution. Since they are also independent, substitution into the formula for T of the above 
  −  

theorem we have   =  
   /√     = 

   −  
. 

  

√ 2/ 2  /√  
 

1.5.3. Example 

 
In 16 one-hour test runs, the gasoline consumption of an engine averaged 16.4 

gallons with a standard deviation of 2.1 gallons. Test the claim that the average gasoline 
consumption of this engine is 12.0 gallons per hour. 

 
Solution: 

 
Substituting   = 16,   = 12.    = 16.4       = 2.1 into the formula for t in the above theorem 

 

 

  = 
   −   

 

 

 /√  

16.4 − 12 
=     = 8.38 

2.1/√16 
 

Since from statistical table we have, for   = 15 the probability of getting of T greater than 
2.947 is 0.005, the probability of getting a value greater than 8 must be negligible. Thus, it 
would seen reasonable to conculud that the ture average hourly gasoline consumption of the 
engine exceeds 12 gallons. 

 

 
1.6.1. Theorem 

 

If U and V are independent random variables having chi-squre distributions with  1 

and  2 degrees of freedom, then   = 
 / 1 is a random variable having an F distribution, that 
 / 2 

is, a random variable whose probability density is given by 
 

  +  Γ( )  1   2 
 

 1 
 

 

1 
  −  1+ 2) 

 ( ) = 2 ( 1)   2 
− 1 (1 +  1  )  2 for   > 0 and  ( ) = 0 elsewhere. 

 1  2     
Γ( 

2 
)Γ( 

2 
) 2 2 

Proof: 

By virute of independence, the joint density of U and V is given by 

 ( ,  ) = 
1  1 − 1 

    2   − 
  

2 

1  2 − 1 

    2   − 
  

2 

2 1/2Γ ( 1) 
2 

2 2/2Γ (  2) 
2 

 ( ,  ) = 1 
(  +    )/2  1  2 

 1 − 1 
  2 

 2 − 1 
  2   

( + ) 

2 for   > 0 and   > 0, and  ( ,  ) = 0 
2   1     2 Γ( 

2 
)Γ( 

2 
) 

elsewhere. Then, to use the change-of-variable, we solve   = 
 / 1

 

 / 2 

for u, getting   = 
 1 .    and hence    = 

 1 .  . Thus, the joint density of F and V is given by 
 2 

(
 1   1/2 
 2 

  1 − 1 

   

 1+ 2 − 1
 

 2 

− 

 
 
       ( +1) 

 

 ( ,  ) = 
2( 1+ 2)/2Γ(  1 

2 

  
)Γ( 

2
 

  2 

) 
    2    2  2 for     > 0   and     > 0,   and    ( ,  ) = 0 

elsewhere. 

( 

− 

2 
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Let Us Sum Up 

Check Your Progress 

Glossaries 

Now, integrating out v by making the substitutiion   = 
  

(
 1  

+ 1), we finally get 
 

 
 1+ 2 

 
 1       

 

 
− 

1
(  +  ) 

 
 

2      2 

 ( ) = 
Γ( 
 1 2     

) 
 2 (

 1) 2   

1 − 1 
  2 (1 + 

 1
    )   2 

2 

for   > 0 and  ( ) = 0 elsewhere. 
Γ( 

2 
)Γ( 

2 
) 2 2 

1.6.2. Result 

If  2 and  2 are the variances of independent random samples of sizes  1 and  2 
1 2 

 2/ 2  2 2 
populations from normal populations with the variances  2 and  2 then   = 1   1 =   2 1 is a 

1 2  2/ 2  2 2 
2      2 1   2 

random variable having an F distribution with  1 − 1 and  2 − 1 degrees of freedom.The F 
distribution is also known as the variance-ratio distribution. 

 

 

In this unit, we explained the concept of sampling distribution of the mean, the chi- 
square distribution, t distribution and F distribution with illustration. 

 

1. The stand error of     is   . 
 

2. The standard deviation computed from the observations of sampling distribution of a 
statistic is . 

3. The standard error of     varies   with standard deviation and   with sample size. 
 

 

Population: It means the whole of the information which comes under the purview of 
statistical investigation. 

 
Parameter: Any statistical measure computed from population data. 

Statistic: Any statistical measure computed from sample data. 

Population distribution: The distribution of the numbers constituting a population. 

 
Random sample: It is a subset of individuals chosen from a larger set in which a subset of 
individuals is chosen randomly, all with the same probability. 

 
Sample mean: It is an average value found in a sample. 

1 
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Answers to Check Your Progress 

 

 
 

1. Freund. J.E.,” Mathematical Statistics”, Prentice Hall of India, Fifth Edition, 2001. 

 

2. Gupta. S.C. and Kapoor. V. K., “Fundamentals of Mathematical Statistics”, Sultan Chand & Sons, 

Eleventh Edition, 2003. 

 

3. Devore. J. L. “Probability and Statistics for Engineers”, Brooks/Cole (Cengage Learning), First 

India Reprint, 2008. 
 

 

 
1.   . 

√  

 

2. Standard error of the statistic. 

 
3. Directly, inversely. 

Suggested Readings 
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Overview 

2.1. Introduction 

2.2. Unbiased Estimators 

 
 

After Studying this Unit, the student will be able to 
 

 Explain the unbiased estimators, efficiency, consistency and sufficiency. 

 Demonstrate the concept of the method of moments and maximum likelihood. 

 Illustrate the numerical problems in point estimation. 
 

In this unit, we will study the concept of Point estimation. We will mainly focus on 
unbiased estimators, efficiency, consistency, sufficiency, the method of moments and the 
method of maximum likelihood. 

 

 
Problems of statistical inference are divided into problems of estimation and tests of 

hypotheses, though actually they are all decision problems and, hence, could be handled by 
the unified approach. The main difference between the two kinds of problems is that in 
problems of estimation we must determine the value of a parameter or the values of several 
parameters from a possible continuum of alternatives, whereas in tests of hypotheses we 
must decide whether to accept or reject a specific value or a set of specific values of a 
parameter or those of several parameters. 

 

2.1.1 Point Estimation. 
 

Using the value of a sample statisitc to estimate the value of a population parameters 
is called point estimation. We refer to the value of the statistic as a point estimate. 

 

 

Perfect decision functions do not exist, and in connection with problems of estimation 
this means that there are no perfect estimators that always give the right answer. Thus, it 
would seem reasonable that an estimator should do so at least on the average; that is, it’s 
expected value should equal the parameter that is supposed to estimate. If this is the case, 
the estimator is said to be unbiased; otherwise it is said to be biased. 

 

2.2.1. Unbiased Estimator 
 

A statistic Θ   is an unbaised estimataor of the parameter   of a given distribution if and only if 

 (Θ ) =   for all possible vlaues of  . 

 
2.2.2. Example 

 

Show that unless   = 
1
, the minimax estimator of the binomial parameter   is biased. 

2 
 

Solution: 
 

Since  ( ) =    

Objectives 
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  + 
1 
√    (  + 

1 
√ )    + 

1 
√  

  ( 2 ) = 2 = 2  
   

  + √    + √    + √  
 

This quantity does not equal to   unless   = 
1

 
2 

 

2.2.3. Example 
 

If X has the binomial distribution with the parameters   and  , show that the sample 

proportion,  , is an unbiased estimator of  . 
  

 

Solution: 
 

 ( ) =    
 

  
  ( ) = 

  

1 
.  ( ) = 

  

1 
.    =   

  
 

Hence   is an unbiased estimator of  . 
  

 

2.2.4. Example 

 

If  1,  2, … ,    constitute a random sample from the population given by 

 ( ) = {
 −( − )      >  

0,   ℎ       

Show that     is a biased estimator of  . 

Solution: 

Since the mean of the population is   = ∫
∞ 
  .  −( − )   = 1 +   

From the theorem “If     is the mean of a random sample of size n taken without replacement 

from a finite population of size N with the  mean    and the variance  2, then     (     ) =   and 

   (  ) = 
 2 

. 
 − 

”  that     (     ) = 1 +   ≠   and hence that     is a biased estimator of  . 
      −1 

 

2.2.5. Asymptotically unbiased Estimator 
 

Letting    ( ) =  (Θ ) −     express  the  bias  of  an  estimator  Θ    based  on  a  random 

sample  of  size  n  from  a  given  distribution,  we  say  that  Θ   is  an  asymptotically  unbiased 

estimator of   if an only if lim   ( ) = 0. 
 →∞ 

 

2.2.6. Example 
 

If  1,  2, … ,    constitute a random sample from a uniform population with   = 0. 
Show that the largest sample value (that is, the nth order statistic,   ) is a biased estimator 

of the parameter  . Also, modify this estimator of   to make it unbiased. 
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 2 

Solution: 
 

Substituting into the formula for 
 

  
  (  ) = {  

− 
  [1−  

.     

− 
      

  ] 
 
       > 0 

0,   ℎ       
 

We find that the sampling distribution of    is given by 
 

 
  (  ) =  . 1    1 (∫ 

  

 −1 
  ) = 

  
.   −1 

 

  0        

 

for 0 <    <   and   (  ) = 0 elsewhere, and hence that 
 

 
 (  ) =     

∫        = 
 

  .   
 

     
0 

      + 1 
 

Thus,  (  ) ≠   and the nth order statistic is a biased estimator of the parameter  . 
 

Since   ( 
     

.   ) = 
 +1 

.   
 
 

  

.   =   
 +1   

 

   +1 
 

 +1times the largest sample value is an unbiased estimator of the parameter  . 
  

 

2.2.7. Theorem 

 
If  2 is the variance of a random sample from an infinite population with the finite 

variance  2, then  ( 2) =  2. 
 

Proof: 
 

By definition of sample mean and sample variance 
 

  

 ( 2) =   [
   1    

∑(  
 

2 −   ) ] 
  − 1     

 =1 
 

 ( 2) = 
1

 
  − 1 

  

  [∑{(   

 =1 

 
−  ) − (   −  )}2] 

 

 ( 2) = 
1

 
  − 1 

  

[∑  {(   

 =1 

 
−  )2} −  .  {(   −  )2}] 

 

Then, since 

 {(   

−  )2} =  2 and  {(   −  )2} = 
 2

, we get 
  

 

 

 (  ) = 

 
  

 
 

  −   

 
  

[∑    −  . 

 =  

 
   
 

 

  

 

] =    
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2   

 

2.3.1. Minimum Variance unbiased Estimator 
 

The estimator for the parameter   of a given distribution that has the samllest variance 

of all unbiased estimators for   is called the minimum variance unbiased estimator, or the 
best unbiased estimator for  . 

 

2.3.2. Result 

If  Θ   is  an  unbiased  estimator  of     and     (Θ ) =  
1

 
      ( ) then  Θ   is  a  minimum 

variance unbiased estimator of  . 

 . [( 
   

) ] 

2.3.3. Example 

Show  that      is  a  minimum  variance  unbiased  estimator  of  the  mean     of  a  normal 
population. 

Solution: 
1 1  −   2 

Since  ( ) =             −  (  
   

) 

 √2  
    − ∞ <   < ∞ 

 

   1 
    ( ) = −    √2  − 

2 

  −   2 
( ) 

  
 

     ( ) 
= 

1 
(
 − 

) and hence
 

       
 

     ( )  2 1   −   2 1 1 
  [( ) 

   
] = 

 2 .   [( 
     

) ] = 
 2 . 1 = 

 2 

 

Thus, 1 
     ( ) 

 
 

1 
 . 

1
 = 

 2 

  

 . [(     
        

) ]  2 

 

and since     is unbiased and    (  ) = 
 2

,     is a minimum variance unbiased estimator of  . 
  

 

2.3.4. Result 

 
Unbiased estimators of one and the same parameter are usually compared in terms 

of the size of their variances.  IfΘ 1  and Θ 2  are wo unbiased esitmators of the parameter    of   a  

given  population  and  the  vairance  Θ 1   is  less  than  the  variance    Θ 1   is  relatively  more 

efficient than  Θ  .  Also 
   (Θ 1)  

as a measure of the efficient of  Θ  
   ( Θ2) 

relative to  Θ 1. 

 

2.3.5. Example 

 

If  1,  2, … ,    constitute a random sample from a uniform population with   = 0, then 
 +1

,  
 

 

is an unbiased estimator of  .   (a) Show that 2    is also an unbiased estimator of  . 
    

(b) Compare the efficient of these two estimators of  . 

2.3. Efficiency 

2 

2 = 

2 

2 
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Soluiton: 
 

(a) Since the mean of the population is   = 
 
, accoring to the theorem, “The mean and the 

2 

variance of the uniform distribution are given by   = 
 +  

and  2 = 
1 

(  −  )2” and also from 
2 12 

the theorem “If  1,  2, … ,    constitute a random sample from an infinite population with the 

mean    and the variance  2, then  (  ) =          (  ) =  
 2

” that  (  ) = 
   

and hence that 
  2 

 (2  ) =  .  Thus 2   is an unbiased estimator of  . 
 

(b) Using the sampling distribution of   and the expression for  (  ) = 
  
∫
  
      

 =   
  .   

 
 ( 2) =  

   
∫
  
  +1    

 

 
=   

  

  
 
 
 2 and 

        0      +1 

        0     

 
  2 

 
 

 

 +2 

 

  2 
 

 

   (  ) = 
  + 2 

.   

  + 1 

− ( .  ) 
  + 1 

 2 

    ( 
  

  ) = 
 (  + 2) 

 

Since the variance of the population is  2 = 
 2   

according to the theorem we have    (  ) = 
12 

 2 
 

 

12  
and hence    (2  ) = 4.    (  ) = 

 2

. 
3  

 

Therefore, the efficiency of 2   relative to  +1 .   
 

is given by 
 
 
 

 +1 

 
 

     2  ( ) 

    

   (  
   

.  ) 
=

   ( +2)    
=  

3 
 

and for   > 1 the estimator based on the nth order statistic is much 
   (2  )  2 

(
3 

)  +2 

more efficient than the other one. For   = 10, foro exmpale, the relative efficiency is only 25 

percent, and for   = 25 it is only 11 percent. 
 

2.3.6. Example 

 
When the mean of a normal population is estimated on the basis of a random sample 

of size 2  + 1, what is the efficiency of the median relataive to the mean? 

 
Solution: 

From  the  theorem  we  know  that       is  unbaised  and  that     (  )   is  unbiased  and  that 

   (  ) =    
 2

 
2 +1 

For     , it is unbiased by virtue of the symmetry of the normal distribution about its mean, and 

for large sample    (  ) = 
  2

 

4  

 

Thus for larage samples, the efficiency of the median relative to the mean is approximately 
 

 2 

   (  )  
=  

(
2 +1

)  
= 

4 
  

 
and the asymptotic efficiency of the median with respect to the 

   (  ) (
  2

)
 

4  
 (2 +1) 

mean is lim 
4  

= 
2 

or about 64 percent. 
 →∞  (2 +1)   
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2.4.1. Consistent Estimator 
 

The  Statistic Θ   is a  consistent estimator of the  parameter    of  a given distribution  if 

and only if for each   > 0  lim   ([Θ  −  ] <  ) = 1 
 →∞ 

 

2.4.2. Result 
 

If Θ   is an unbiased estimator of the parameter   and    (Θ ) → 0      → ∞, then Θ   is a 

consistent estimator of  . 
 

2.4.3. Example 

 

Show that for a random sample from a normal population, the sample variance  2 is a 

consistent estimator of  2. 

 
Solution: 

 

Since  2 is an unbiased estimator of  2 by theorem. 
 

To show that    ( 2) → 0      → ∞. From the theorem “the random variable ( −1) 
2

 

 2 

 

 
has a 

chi-square distribution with   − 1 degress of freedom” 
 

We find that for a random sample from a normal population    ( 2) = 
2 4

 

 −1 

 

   ( 2) → 0      → ∞ and we have  2 is a consistent estimator of variance of a normal 
population. 

 

2.4.4. Example 
 

If  1,  2, … ,    constitute a random sample from the population given by 

 ( ) = {  
−( − )       >   

0      ℎ    
Show that the smallest sample value (that is, the first order statisitic  1) is a consistent 

estimator of the parameter  . 

Solution: 

Substituting into the formula for  1( 1), we find that the sampling distribution of  1 is given by 
 

  (  ) =  .  −(  − ). [∫
∞ 
 −( − )   ]

 −1 
=  .  − (  − )   for   >   and   (  ) = 0 elsewhere. 

1 1 
1

  1 
1 

1 1 1 

Based on this result, we have  (  ) =   + 
1

 
 

and hence   is an asymptotically unbiased 

estimator of  . 

1   1 

 

 +  

 (| 1 −  | <  ) =  (  <  1 <   +  ) = ∫  .  − ( 1− )  1 = 1 −  −   
  

2.4. Consistency 
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 =1 

  

( ) 

2.5. Sufficiency 

Since lim (1 −  −  ) = 1, from Definition we have  1 is a consistent estimator of  . 
 →∞ 

 

 

2.5.1. Sufficient Estimator 
 

The statistic Θ   is a sufficient estimator of the parameter    of a given distribution if and 

only  if  for  each  value  of  Θ   the  conditional  probability  distribution  or  density of  the  random 

sample  1,  2, … ,   , given Θ  =  , is independent of  . 

2.5.2. Example 

 
If  1,  2, … ,    constitute a random sample of size n from a Bernoulli population, Show 

that Θ   = 
 1,+ 2 ,+ ⋯+,    is a sufficient estimator of the parameter  . 

  
 

Solution: 

 
By the definition “BERNOULLI DISTRIBUTIONS, A random variable X has a Bernoulli 
distributon and it is referred to as a Bernoulli random variable if and only if its probability 

distribution is given by  ( ;  ) =   (1 −  )1−  for   = 0, 1”. 
 

 (  ;  ) =    (1 −  )1−      for    = 0, 1 
 

So that  ( 1,  2, … ,   ) = ∏     (1 −  )1−   
 

∑      −∑ 
    

 ( 1,  2, … ,   ) =    =1       (1 −  )  =1 

 

 ( 1,  2, … ,   ) =   (1 −  ) −  
 

 ( 1,  2, … ,   ) =    (1 −  ) −   
 

for    = 0    1 and   = 1, 2, … ,  . Also, since   =  1 +  2 + ⋯ +    is a binomial random 
varaible with the parameters   and  , its distribution is given by 

 

 ( ;  ,  ) = ( )  (1 −  ) −  and the transformation-of-variable technique we have 
 

 (  ) = (   )    (1 −  ) −     for     
1

 
    

 
We know that 

 

 (  ,   , … ,   

  = 0,   , … ,1 
  

 
 
 
 

|   ) = 
 ( 1,  2, … ,    ,   ) 

1 2   
 (  ) 

 

 
 (  ,   , … ,   |   ) = 

 ( 1,  2, … ,   ) 
1 2    (  ) 

 

 

 ( 1,  2, … ,    |   ) = 
     (1 −  ) −    
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( ) ( ) ( 

 
 (  ,   , … ,   |   ) = 

1 
=   

1   
= 

1
 

   

1 2     
    

    
   1+ 2+⋯+   

 

for    = 0    1  and    = 1, 2, 3, … ,  .  This  does  not  depend  on     and  therefore,  Θ  = 
 

 
  

is a 

sufficient estimator of  . 
 

2.5.3. Example 
 

Show   that     = 
1 

(  
 

 
 

+ 2  

 

 
+ 3  ) is not a sufficient estimator of the Bernoulli 

parameter  . 
6 1 2 3 

 

Solution: 

 
Since  (  ,   ,   

 

|  ) = 
 ( 1, 2, 3, ) 

is not independent of   for some values of   ,   

 

 
and   . 

1 2 3  ( ) 1 2 3 

 

Let us consider the case where  1 = 1,  2 = 1, and  3 = 0. 

Thus,   = 
1 

(1 + 2 .1 + 3.0) = 
1 

and 
6 

 

1   ( 1 
 

 

2 
 

= 1,  2 = 1,  3 

 
= 0,   = 

1
) 

2 
  (1, 1, 0 |   =    ) = 

2   (  = 
1
) 

2 
 

1  (1, 1, 0) 
  (1, 1, 0 |   = 

2
) = 

 (1, 1, 0) +  (0, 0, 1) 

Where  ( 1,  2,  3) =   1+ 2+ 3 (1 −  )3−( 1+ 2+ 3)
 

for  1 = 0    1 and   = 1, 2, 3. Since  (1, 1, 0) =  2(1 −  ) and  (0,0,1) =  (1 −  )2 
 

1  2(1 −  ) 
  (1, 1, 0 |   = 

2
) = 

 2(1 −  ) +  (1 −  )2 =   

This conditional probability depends on  . 
 

Thus,   = 
1 

(  + 2  + 3  ) is not a sufficient estimator of the parameter   of a Bernoulli 
 

6 1 2 3 

population. 
 

2.5.4. Result: (Factorization theorem) 
 

The  statistic  Θ    is  a  sufficient  etimator  of  the  parameter      if  and  only  if  the  joint 
probability dsitrbution or density of the randam sample can be factored so that 

 ( 1,  2, … ,   ;  ) =  (  ,  ). ℎ( 1,  2, … ,   ),  where   (  ,  )  depends  only  on       and   ,  and 

ℎ( 1,  2, … ,   ) does not depend on  . 

2.5.5. Example 
 

Show that      is  a  sufficient  estimator  of  the  mean     of  a  normal  population  iwht the 
known variance  2. 

) 
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2.6. The Method of Moments 

Solution: 
 

We know that  
 

1   

 
 

1 ∑   
 

 
 

  −  2 

 ( 1,  2, … ,   ;  ) = ( 
   ) 
 √2  

.  −  =1(  
    

) 

 

and that 
 

    

∑(   −  )2 = ∑[(   −   ) − (  −   )]2 
 =1  =1 

 

      

∑(   −  )2 = ∑(   −   )2 + ∑(   −  )2 

 =1  =1  =1 
 

    

∑(   −  )2 = ∑(   −   )2 +  (   −  )2 
 =1 

 

We get 

 =1  
 
 
 
 

 √  

 
 
 

 
1      −     

2
 

 
 

 

 
 

 
1 1  −1 

 
 
 
 
 
 

1      
 

 

 
 
 
 

  −     
2 

 (  ,   , … ,   ;  ) = {    
− 

2
(
 /√ 

)  
} × { 

 

(   ) 
  − 

2 
∑ =1(     

)  } 
1 2   

 √2  √   √2  
 

Where the first factor on the right-hand side depends only on the estimate    and the 

population mean  , and the second factor does not involve  . According to the theorem,     is 
a sufficient estimator of the mean   of a normal population with the known variance  2. 

 

 

2.6.1. Sampe Moments 

 
The   ℎ sample moment of a set of observations  1,  2, … ,    is the mean of their   ℎ 

power and it is denoted by  ′ . Symbolically, 
 

∑         

 ′  =     =1       
    

 
Thus, if a population has r parameters, the method of meoments consists of solving the 
system of equations  ′  =  ′ ,   = 1, 2, … ,   for the   parameters. 

2.6.2. Example 
 

Given a random sample of size n from a unifrom population with   = 1, use the 
method of moments to obtain a formula for estimating the parameter  . 

 
Solution: 

 
The equation that we shall to solve is  ′1 =  ′1 

2 
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2 

  

2.7. The Method of Maximum Likelihood 

Where  ′   =    and  ′ = 
 +  

= 
 +1

.
 

  

1 

 

Thus    = 
 +1

 
2 

1 2 2 

 

    = 2   − 1 
 

2.6.3. Example 
 

Given a random sample of size n from a gamma population, we use the method of 

meoments to obtain formulas for estimating the parameters   and  . 
 

Solution: 

 
The system of equations that we shall have to solve is  ′1 =  ′1 and  ′2 =  ′2 

Where  ′1 =    and  ′2 =  (  + 1) 2. 

Thus,  ′1 =    and  ′2 =  (  + 1) 2 

Solving for   and  , we get the following formulas for estimating the two parameters of the 
gamma distribution: 

 

    = 
     ( ′1)2   

and     = 
 ′2−( ′1)2 

 ′2−( ′1)2  ′1 
 

∑     ∑       2 

Since  ′1 =  =1 

  
=    and  ′   =    =1    

  
 

    2 
  ∑ (  −  )2 

    =  
 

∑     (  −  )2 
and   =    =1 in terms of the original observations. 

     
 =1 

 
 

2.7.1. Maximum Likelihood Estimator 

 
If  1,  2, … ,    are the values of a random sample from a population with the 

parameter  , the likelihood functin of the sample is given by  ( ) =  ( 1,  2, … ,   ;  ) for 

values of   within a given domain. Here  ( 1,  2, … ,   ;  ) is the value of the joint probability 
distribution or the joint probability density of the random variables  1,  2, … ,    at  1 =  1, 

 2 =  2,…,    =   . We refer to the value of   that maximizes  ( ) as the maximum 
likelihood estimator of  . 

 

2.7.2. Example 
 

Given   “successes” in   trials, find the maximum likelihood estimates of the parameter 

  of the corresponding binomial distribution. 

Solution: 

To find the value of   that maximizes  ( ) = ( )  (1 −  ) −  

 
The value of   that maximizes  ( ) will also maximize 
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    ( ) =    ( 

  
 

Thus, we get 

) +  .      + (  −  ).    (1 −  ) 

 

 [    ( )] 
 

   
= 

  

  
− 

 −  

1−  and, equating this derivative to 0 and solving for  , we get the likelihiood 

function has a maximum at   = 
 
. 
  

 

This is the maximum likelihood estimate of the binomial parameter  , we refere to Θ  = 
   

as 
  

the corresponding maximum likelihood estimator. 
 

2.7.3. Example 

 

If  1,  2, … ,    are the values of a random sample from a exponential population, find 

the maximum likelihood estimator of its parameter  . 
 

Solution: 
 

Since the likelihood function is given by  ( ) =  ( 1,  2, … ,   ;  ) 

 
 ( ) =    (  ;  ) 

 =1 
 

1   
 

 

1
(∑  ) 

 ( ) = ( ) 
   − 

 
  =1    

 

Differentiation of     ( ) with respect to  , we have 
 

 [    ( )] 
  

  1 

   
= − 

  
+ 
 2 ∑    

 =1 
 

Equating this derivative to zero and solving for  , we get the maximum likelihood estimate 
 

   = 
1 
∑         =    .  Hence, the maximum likelihood estimator is Θ   =   . 

 

       =1     

 
 

2.7.4. Example 

 

If  1,  2, … ,    are the values of a random sample of size n form a uniform population 
with   = 0, find the maximum likelihood estimator of  . 

 
Solution: The Likelihood funciton is given by 

 

  
1  

 

 ( ) =    (  ;  ) = (
 

) 
 =1 

 

for   greater than or equal to the largest of the  ′  and 0 otherwaise. Since the value of this 

likelihood function increases as   decreases, we must male   as samll as possible, and it 

follows that the maximum likelihood estimator of   is   , the   ℎ order statistic. 



26 
 

Let Us Sum Up 

Check Your Progress 

2.7.5. Example 

 

If  1,  , … ,    constitute a random sample of size n from a normal population with the 

mean   and the variance  2, find joint maximum likelihood estimates of these two 
parameters. 

 
Solution: 

 
Since the likelihood function is given by 

 

  

 ( ,  2) =    (  ;  ,  ) 

 =1 
 

1   
−

   1    ∑  
 

(  − )2 

 ( ,  2) = (   ) 
 √2  

.   2  2  =1       

 

Partial differentiation of     ( ,  2) with respect to   and  2, we have 
 

  
 [    ( ,  2)] 1 

 
 

and 

= 
    2 ∑(   −  ) 

 =1 

 

 [    ( ,  2)] 
 

 

  2 

  
= − 

2 2 

1 
+ 

2 4 

  

. ∑(   −  )2 

 =1 
 

Equating the first of these two partial derivatives to zero and solving for  , we get 
 

  
1 

   = 
  
∑    =    
 =1 

 

and equating the second of these partial derivatives to zero and solving for  2 after 

substituting   =   , we get 
 

  

  2 = 
1 
∑(  

 

 
−   )2 

    

 =1 
 

In this unit, we studied the concept of unbiased estimators, efficiency, consistency, 
sufficiency, the method of moments and the method of maximum likelihood. 

 

 

1. A good estimator must possess . 
 

2. A statistic   =    based on the sample size n is said to be consistent estimator of the 
parameter if . 
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Glossaries 

Suggested Readings 

Answers to Check Your Progress 

3. Method of moment estimators are usually less efficient than . 
 

Point estimate: The estimate of a population parameter given by a single number. 
 

Unbiasedness: The mean value of the sampling distribution of the statistic t is equal to the 
parameter of the population. 

 
Efficiency: An estimator with less variability is said to be more efficient and consequently 
more reliable than the other. 

 
Sufficiency: It contains all the information in the sample regarding the parameter. 

 

1. Freund. J.E.,” Mathematical Statistics”, Prentice Hall of India, Fifth Edition, 2001. 

 

2. Gupta. S.C. and Kapoor. V. K., “Fundamentals of Mathematical Statistics”, Sultan Chand & Sons, 

Eleventh Edition, 2003. 

 
3. Devore. J. L. “Probability and Statistics for Engineers”, Brooks/Cole (Cengage Learning), First 
India Reprint, 2008. 

 

 
1. Unbiasedness, Consistency, Efficiency, Sufficiency. 

 
2.    →        → ∞ 

 
3. Method of Maximum likelihood. 
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Overview 

3.1. Introduction 

3.2.The Estimation of Means 

 

 
 

After Studying this Unit, the student will be able to 
 

 Distinguish between the estimation means and differences between means. 

 Examine the difference between the estimation of proportions and differences 
between proportions. 

 Explain the estimation of variances and ratio of two variances. 
 

 
In this unit, we will study the concept of Interval estimation. We will mainly focus on 

the Estimation of Means, differences between means, proportions, and differences between 
proportions, variances and ratio of two variances. 

 

 
Although point estimation is a common way in which estimates are expressed. For 

instance, it does not tell us on how much informationthe estimate is based, nor does it tell us 
anything about the possible size ofthe error. Thus, we might have to supplement a point 

estimate      of  θ  with  the  size  ofthe  sample  and  the  value  of     (Θ )or  with  some  other 

information about the samplingdistribution of Θ .  This will enable us to appraise the possible 
size of the error. Alternatively, we might use interval estimation. 

 

An interval estimate of    is an interval of the form   1  <   <   2, where   1   and   2   are 

values of appropriate random variables Θ 1  and Θ 2. 

3.1.1. Confidence Interval 
 

If   1  and   2  are values of the random variables Θ 1  and Θ 2  such that  (Θ 1  <   < Θ 2) =            1 

−    for  some  specified  probability  1 −  ,  we  refer  to  the  interval    1  <   <   2   as  a  (1 − 
 )100% confidence interval for  . The Probability 1 −   is called the degree of confidence, 
and the endpoints of the interval are called the lower and upper confidence limits. 

When   = 0.05, the degree of confidence is 0.95 and we get a 95% confidence intrval. 
 

 
Suppose that the mean of a random sample is to be used to estimate the mean of a 

normal population with the known variance  2. By the theorem “If   is the mean of a random 
sample of size n from a normal populaton with the mean   and the variance  2, its sampling 

distribution of     for random samples of size n from a normal population with the mean   and 
2 

the variance  2 is a normal distribution with     =   and  2 = 
  

, Then  (| | <   
 

) = 1 −  , 
       /2 

where    =  
  − 

 
 

√  

and   /2 is such that the integral of the standard normal density from 

     ∞ equals  /2. Therefore,   (|   −  | <   . 
   

) = 1 −   
 

 /2  /2  √  

Objectives 
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3.2.1. Result 
 

If   , the mean of a random sample of size n from a normal population with the known 

variance  2, is to be used as an estimator of the mean of the population, the probability is 
1 −   that the error will be less than   .

  
 . 

 /2  √  

 

3.2.2. Example 
 

A team of efficiency experts intends to use the mean of a random sample of size   = 
150 to estimate the average mechanical aptitude of assembly-line workers in a large industry 
(as measured by a certain standardized test). If, based on experience, the efficiency experts 
can assume that   = 6.2 for such data, what can they assert with probability 0.99 about the 
maximum error of their estimate? 

 
Solution: 

 
Substituting   = 150,   = 6.2, and  0.005 = 2.575 into the expression for the maximum error, 
we get 

 

6.2 
2.575. = 1.30 

√150 
 

Thus, the efficiency experts can assert with probability 0.99 that their error will be less than 
1.30. 

 
3.2.3. Result 

 
To construct a confidence interval formula for estimating the mean of a normal 

population with the known variance  2, then   (|   −  | <   . 
  

) = 1 −  , we write 
 

  (   −   .  
    

<   <    +   .  
   

) = 1 −   
  

 /2  √  

 /2 
√  

 /2 
√ 

 

If    is the value of the mean of a random sample of size n from a normal population with the 
known variance  2, then    −   . 

  <   <    +   . 
  is (1 −  )100% confidence interval 

for the mean of the population. 
 

3.2.4. Example 

 /2  √   /2  √  

 

If a random sample of size   = 20 from a normal population with the variance  2 = 
225 has the mean    = 64.3 construct a 95% confidence interval for population mean  . 

 
Solution: 

 
Substituting   = 20,    = 20,   = 15 and  0.025 = 1.96 into the confidence-interval formula of 
above theorem, we get 

 

15 15 
64.3 − 1.96   <   < 64.3 + 1.96    

√20 √20 
 

57.7 <   < 70.9 
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3.2.5. Remark 

 
Confidence-interval formulas are not unique. This may be by changing the 

confidence-interval formula of the above result, we have 
 

 

   −  2 /3. 
  

 

 

√  

 

<   <    +   /3. 
  

 

 

√  

or to the one-sided (1 −  )100% confidence-interval formula   <    +   . 
  

 

  √  

3.2.6. Example 
 

An industrial designer wants to determine the average amount of time it takes an adult 
t assemble an “easy-to-assemble” toy. Use the following data (in minutes), a random 
sample, to construct a 95% confidence interval for the mean of the population sampled: 17, 
13, 18, 19, 17, 21, 29, 22, 16, 28, 21, 15, 26, 23, 24, 20, 8, 17, 17, 21, 32, 18, 25, 22, 16, 10, 
20, 22, 19, 14, 30, 22, 12, 24, 28, 11 

 
Solution: 

 

 

  = 36,    = 
∑   

 
 

  

717 
= 

36 

 

= 19.92 

 

Let    =   −   =   − 20 

 
∑    = −3, ∑   2 = 1151 

 
 

  

∑   2 − 
(∑   )2 

 

1151 − 
(−3)2

 
 

  = √   = √ 36     = 5.73 
  − 1 35 

 

for   into the confidence-interval formula of the above Result, we get 
 

5.73 5.73 
19.92 − 1.96   <   < 19.92 + 1.96    

√36 √36 
 

18.05 <   < 21.79 
 

Thus, the 95% confidence limits are 18.05 and 21.79 minutes. 
 

3.2.7. Result 

 

When we are dealing with a random sample from a normal population,   < 30, and   is 
unknown, Results 3.2.1 and 3.2.3. cannot be used. Instead, we make use of the fact that 

  =  
  −  

 /√  
is a random variable having the t distribution with   − 1 degrees of freedom. 

  −  

Substituting 
 /√  

for   in   (−  , −1 <   <   , −1) = 1 −   we get the following confidence 
2 2 

interval for  . 
If    and s are the values of the mean and the standard deviation of a random sample of size 
n from a normal population, then    −    . 

2
, −1 

  
 

√  
<   <    +    . 

2
, −1 

  
 

√  
is a (1 −  )100% 

confidence interval for the mean of the population.This confidence-interval formula is used 
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3.3. The Estimation of Differences Between Means 

mainly when n is samll, less than 30, we refer to it as a small-sample confidence interval for 
 . 

 
3.2.8. Example 

 
A paint manufacturer wants to determine the average drying time of a new interior wall 

paint. If for 12 test areas of equal size he obtained a mean drying time of 66.3 minutues and 

a standard deviation of 8.4 minutes, construct a 95% confidence interval for the true mean  . 
 

Solution: 
 

Substituting    = 66.3,     = 8.4 and  0.025,11 = 2.201 (from statistical table), the 95% 

confidence interval for   becomes 
 

8.4 
66.3 − 2.201 ×   <   < 66.3 + 2.201 × 

√12 

8.4 
 

 

√12 
 

61 <   < 71.6 
 

This mean that we can assert with 95% confidence that the interval from 61 minutes to 71.6 
minutes contains the true average drying time of the paint. 

 

3.2.9. Result 
 

When  we used  the  random variable    =  
  − 

 
 

√  

 

 
whose value cannoe calculated without 

knowledge of  , but whose distribution for random samples from normal populations, the 

standard normal distribution, does not involve  . This method of condfidence interval 
construcation is called the pivotal method. 

 

3.3.1. Result 

 
For independent random samples from normal populations 

 

  = 
(  1−  2)−( 1− 2)  

has the standard normal distribution. 
 2    2 

√  1+  2 
 1    2 

If we substitute this expression of Z into  (−   <   <   ) = 1 −   the pivotal method yields the 
2 2 

following confidence interval formula for  1 −  2. 
 

If   1 and   2 are the values of the means of independent random samples of sizes  1 and  2 
from normal populations with the known variances  2 and  2, then 

 

 2 
 

 2 

1 

 2 

2 

 2 

(  1 −   2) −   /2√  1 +  2 <  1 −  2 < (  1 −   2) +   /2√  1 +   2  
 1  2  1  2 

is a (1 −  )100% confidence interval for the difference between the two population means. 
 

By the central limit theorem, this confidence-interval formula can also be used for 

independent random samples from nonnormal populations with known variances with  1 and 
 2 are large, that is, when  1 ≥ 30 and  2 ≥ 30. 
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 =1 

2 

3.3.2. Example 

 
Construct a 94% confidence interval for the diffference between the mean lifetimes of 

two kinds of light bulbs, given that a random sample of 40 light bulbs of the first kind lasted 
on the average 418 hours of continuous use and 50 light bulbs of the second kind lasted on 
the average 402 hours of continuous use. The population standard deviations are known to 

be  1 = 26 and  2 = 22. 

Solution: 
 

For   = 0.06, we find from the statistical table that  0.03 = 1.88. Therefore, the 94% 
confidence interval for  1 −  2 is 

 

262 222 262 222 
(418 − 402) − 1.88 × √ 

40 
+ 

50 
<  1 −  2 < (418 − 402) + 1.88 × √ 

40 
+ 

50
 

 

6.3 <  1 −  2 < 25.7 
 

Hencew, we are 94% confident that the interval from 6.3 to 25.7 hours contains the actual 
difference betweem the mean lifetimes of the two kinds of light bulbs. The fact that both 
confidence limits are positive suggests that on the average the first kind of light bulb is 
superior to the second kind. 

 

3.3.4. Result 
 

To Construct a (1 −  )100% confidence interval for the difference between two means 

when  1 ≥ 30 and  2 ≥ 30, but  1 and  2 are unknown, we simply substitute  1 and  2 for  1 
and  2 and proceed as before. When  1 and  2 are unknown and either or both of the 
samples are small, the procedure for estimating the difference between the means of two 
normal populations is not straight forward unless it can be assumed that  1 =  2 . If  1 = 
    =  , then   = 

(  1−  2)−( 1− 2)  
is a random variable having the standard distribution, and  2 

2 1      1 
 √ 1

+
 2

 

can be estimated by pooling the squared deivations from the means of the two samples. 
 

( 1−1) 2+( 2−1) 2 The Pooled estimator  2 = 1 

 1+ 2−2 

2 is an unbiased esitmator of  2. Now, by 

two theorems, “If     and  2  are the mean and the variance of a random sample of size n from 

a  normal  population  with  the  mean     and  the  standard  deivation     then  ( )    and   2  are 

independent (  ) the random variable 
( −1) 2 

has a chi-square distribution with   − 1 degrees 
 2 

of freedom. If  1,  2, …    are independent random variables having chi-square distributions 
with  1,  2, …    degrees of freedom, then   = ∑    , has the chi-square distribution with 

( 1−1) 2  1, + 2 + ⋯ +    degrees of freedom” the independent random variables 
 2 

1   and 
( 2−1) 2   

have chi-square distributions with   
 

− 1 and   − 1 degrees of freedom, and their 
 2 

( 1−1) 2 
 

 

( 2−1) 2 
 

 

1 2 
( 1+ 2−2) 2 

 
sum   = 1  + 

 2 

2 = 
 2  2 has a   chi-squre   distribution   with    1 +  2 − 2 

degrees of freedom. Since the random variables Z and Y are independent. 
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  = 
 
 = 

(  1−  2)−( 1− 2) 
 

has a t distribution with   +   − 2 degrees of freedom. 
  1 1 1 2 

√
 1+ 2−2   √ 1

+
 2

 

Substituting this expression for T into   (−  , −1 <   <    ) = 1 −  , we get the following 
2 

(1 −  )100% confidence interval for  1 −  2. 
2

, −1 

 

If   1,   2,  1 and  2 are the values of the means and the standard deviations of 

independent random samples of sizes  1 and  2 from normal populations with equal 
variances, then 

 
(  1 −   2) −    

1 1 
.   √ + 

 
<  1 −  2 < (  1 −   2) +    

 
 

1 1 
.   √ + 

2
, 1+ 2−2  1  2 2

, 1+ 2−2  1  2 

is a (1 −  )100% confidence interval for the difference between the two population means. 
 

This confidence-interval formula is used mainly when  1 and/or  2 are small, less than 30, 
we refer to it as a small-sample confidence interval for  1 −  2. 

3.3.5. Example 

 
A study has been made to compare the nicotine contents of two brands of cigarettes. 

Ten cigarettes of Brand A has an average nicotine content of 3.1 milligrams with a standard 
deviation of 0.5 milligram. While eight cigarettes of Brand B had an average nicotine content 
of 2.7 milligrams with a standard deviatoin of 0.7 miligram. Assuming that the two sets of 
data are independent random samples from normal populations with equal variances, 
construct a 95% confidence interval for the difference between the mean nicotine contents of 
the two brands of cigarettes. 

 
Solution: 

 
Substitute  1 = 10,  2 = 8,  1 = 0.5 and  2 = 0.7 into the formula for   , we get 

 
( 1 − 1) 2 + ( 2 − 1) 2 9(0.25) + 7(0.49) 

   = √ 1 2 = √ = 0.596 
 1 +  2 − 2 16 

 

Then, substituting this value together with  1 = 10,  2 = 8,   1 = 3.1,   2 = 2.7 and  0.0.25,16 = 

2.120 (form statistical table) into the confidence-interval formula, we find that the required 
95% confidence interval is 

 
  

 1 1 (3.1 − 2.7) − 2.120 × 0.596√ + <   
 

 
−   < (3.1 − 2.7) + 2.120 × 0.596√ 

1 
+ 

1
 

  

10 8 1 2 10 8 
 

−0.20 <  1 −  2 < 1.00 
 

Thus, the 95% confidence limits are −0.20 and 1.00 milligrams; since this includes  1 − 
 2 = 0, we cannot conclude that there is a real difference between the average nicotine 
contents of the two brands of cigarettes. 
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 −   

 

 
 

3.4.1. Result 

 
In many problems we must esitmate proportions, probabilites, percentages or rates, 

such as the proportion of defectives in a large shipment of transistors, the probability that a 
car stopped at a road block will have faulty fights, the percentage of school children with 
I.Q.’s over 115 or the mortality rate of a disease. In many of these it is reasonable to 
assume that we are sampling a binomial population and hence our problem is to estimate 

the binomial parameter  . Thus we can make use of the fact that for large n the binomial 

distribution can br approximated with a normal distribution; that is   = 
 −  

 
√  (1− ) 

treated as a random variable having approximately the standard normal distributon. 

 
Substituting this expectation for   into   (−   <   <   ) = 1 −   , we get, 

can be 

 
 −   

2 2 
 −   

  (−   < <   ) = 1 −   and the two inequalities −   < and 
2 

 −   √  (1− ) 2 2 √  (1− ) 

  <   , whose solution will give (1 −  )100% confidence limit for  . 
√  (1− ) 2 

 

Let us give here instead a large sample approximation by rewriting 

 

  (−  , <   <   ,) = 1 −   with 
√  (1− ) 

substituted for  , as 
2 2 

 

  
 (1 −  ) 

 
 

 
 

 (1 −  ) 
 

 

  (Θ −    . √ 
2

,   
<   < Θ +    . √ 

2
,   

) = 1 −   

 

where   Θ  = 
 
. Then,   if   we   substitute        for       inside   the   radicals,which   is   a   futher 
  

approximation, we get the following 

If X is a binomial random variable with the parameters n and  , n is large, and    = 
 
, then 
  

 

   −   . √
  (1−  )  

<   <    +   
 

 

. √
  (1−  )  

is an approximate (1 −  )100%  confidence interval 
 

 /2   

for  . 

 /2   

 

3.4.2. Example 

 
In a random sample, 136 of 400 persons given a flu vaccine experienced some discomfort. 
Construct a 95% confidence interval for the true proportion of persons who will experience 
some discomfort from the vaccine. 

 

Solution: 
 

Substituting   = 400,    = 
136 

= 0.34 and   
 

 

 
= 1.96 into the confidence-interval formula, 

we get 
400 0.025 

 
  

√ 
 (1 −   ) 

 
 

  (1 −   ) 
 

   −   /2 
  

<   <    +   /2√ 
 

 

3.4.The Estimation of Proportions 
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3.5. The Estimation of Differences Between Proportions 

 
  

(0.34)(0.66) (0.34)(0.66) 
0.34 − 1.96√ <   < 0.34 + 1.96√   

400 400 
 

0.294 <   < 0.386 
 

0.29 <   < 0.39 
 

3.4.3. Result 

 
Using the same approximations that led to above result, we can get the following 

 

If    = 
 

 
  

is used as an estimate of  , we can assert with (1 −  )100% confidence that the 

error is less than   /2 

 

. √
  (1−  ) 

  
 

3.4.4. Example 

 
A study is made to determine the proportion of voters in a sizable community who 

favor the construction of a nuclear power plant. If 140 of 400 voters selected at random 

favor the project and we use    = 
140 

= 0.35 as an estimate of the actual proportion of all 
400 

voters in the community who favor the project, what can we say with 99% confidence about 
the maximum error? 

 

Solution: 
 

Substituting   = 400,    = 
140 

= 0.35 and   
 

 

 
= 2.575 into the formula we get 

400 0.005 

 
  

  (1 −   ) (0.35)(0.65) 
  /2 . √ = 2.575√ 

  
= 0.061 = 0.06 

400 
 

Thus, if we use    = 
140 

= 0.35 as an estimate of the actual proportion of voters in the 
400 

community who favor the projet, we can assert with 99% confidence that the error is less 
than 0.06 

 

3.5.1. Result 

 
In many probalems we must estimate the difference between the binomial parameters 

 1 and  2 on the basis of independent random samples of sizes  1 and  2 from two binomial 
populations. For example, if we want to estimate the difference between the poportions of 
male and female voters who favor a certain candidate for governor of Illinois. 

 

If the respective numbers of successes are  1 and  2 and the corresponding sample 

proportions  are  denoted  by   Θ 1 = 
 1 

 1 
and  Θ 2 = 

 2. Let us investigage the sampleing 
 2 

distribution of Θ 1  − Θ 2, which is an obvious estimator of  1 −  2. 
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Let’s  take (Θ  − Θ   ) =     −   and     (Θ  − Θ   ) = 
 1(1− 1) 

+ 
 2(1− 2)  

and  since, for 
1 2 1 2 1 2  1

  2 

large samples,  1 and  2, and hence also their differences, can be approximated with 
normal distributions, we get 

 

  = 
 (Θ 1−Θ 2)−( 1− 2)   is a random variable having approximately the standard normal 
√
 1(1− 1)   2(1− 2) 

 1 
+ 

 2 

distribution. Substituting this expression for   into   (−   <   <   ) = 1 −  , we get the 
2 2 

following 
 

If  1 is a binomial random variable with the parameters  1 and  1,  2 is a binomial 
random variable with the parameters   and   ,     and     are large, and    = 

 1 and    = 

 2, then 
 2 

2 2 1 2 1  1 
2 

    
  1(1 −   1) 

 
 

  2(1 −   2) 
 

 ( 1 −  2) −   /2 . √ 
 1 

+ 
 2 

<  1 −  2 
 

 

    
  1(1 −   1) 

 
 

  2(1 −   2) 
 

 < ( 1 −  2) +   /2 . √ 
 1 

+ 
 2 

is an approximate (1 −  )100% confidence interal for  1 −  2. 

3.5.2. Example 
 

If 132 and 200 male voters and 90 of 150 female voters favor a certain candidate 
running for governor of Illinois, find a 90% confidence interval for the difference between the 
actual proportions of male and female voters who favor the candidate. 

 

Solution: 

 
Substituting    

 

= 
132 

= 0.66,    
 

 
 

= 
90 

 

 
= 0.60 and   

 

 
= 2.575 into the confidece interal 

1 

formula, we get 
200 2 150 0.005 

 
 

      1(1 −   1) 
 

 

  2(1 −   2) 
 

 ( 1 −  2) −   /2 . √ 
 1 

+ 
 2 

<  1 −  2 

      1(1 −   1) 
 

 

  2(1 −   2) 
 

 < ( 1 −  2) +   /2 . √ 
 1 

+ 
 2 

 
 

 

(0.66)(0.34) (0.60)(0.40) 
(0.66 − 0.60) − 2.575 × √ + 

200 150 
<  1 −  2 < 

 
 

 

(0.66)(0.34) 
(0.66 − 0.60) + 2.575 × √ + 

200 

(0.60)(0.40) 
 

 

150 
 

−0.074 <  1 −  2 < 0.194 
 

Thus, we are 99% confident that the interval form -0.074 to 0.194 contains the difference 
between the actual proportions of male and female voters who favor the condidate. This 
includes the possibility of a zero difference between the two proportions. 
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3.7. The Estimation of the Ratio of Two Variances 

 

 
 

3.6.1. Result 
 

Given a random sample of size n from a normal population, we can obtain a (1 −  )100% 

confidence interval for  2 by making use of the result, 
( −1) 2   

is a random variable having a 
 2 

chi-square distribution with   − 1 degreees of freedom. Thus, 
 

2 (  − 1) 2 2   [      < 
2 <    ] = 1 −   

1−
2

, −1   2
, −1 

 
 

  [ 
(  − 1) 2 

2 <  2 < 
(  − 1) 2 

2 ] = 1 −   
        

2
, −1 1−

2
, −1 

 

Thus, we get the following 

 
If  2 is the value of the variance of a random sample of size n from a normal population, then 
( −1) 2 

<  2 < 
( −1) 2 

is a (1 −  )100% confidence interval for  2. 
  2 2 

    

2, −1 1−2, −1 

 

3.6.2. Example 
 

In 16 test runs the gasoline consumption of an experimental engine had a standard of 

2.2 gallons. Construct a 99% confidence interval for  2, which measures the true variability 
of the gasoline consumption of the engine. 

 
Solution: 

 

Assuming that the orbserved data can be looked upon as a random sample from a normal 
population. We substitute   = 16 and   = 2.2, along with  2 = 32.801 and  2 = 

0.005,15 0.995,15 

4.601, obtained from tatistical tables, into the confidence-interval formula we get, 
 

15 (2.2)2 
 

 

32.801 

 
<  2 < 

15 (2.2)2 
 

 

4.601 
 

2.21 <  2 < 15.78 
 

For 99% confidence interval , 1.49 <   < 3.97 
 

3.7.1. Result 

 
If  2 and  2 are the variances of independent random samples of sizes  1 and  2 from 

1 2 
normal populations, then, according to the theorem, “If  2 and  2 are the variances of 

1 2 

independent random samples of sizes  1 and  2 from normal populations with the variances 

3.6. The Esimation of Variances 
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( 1 ) 

2 

  =  2   1 

2 2 2 2 

 2 
1 

 2 
1 

1  

  
2 

 2 
 

 2 2 
 2 and  2, then   =     1 =   2 1 is a random variables having an F distribution with  1 − 1 

1 2  2  2 2 

(  2 ) 1  2 
 2 

and  2 − 1 degrees of freedom” 
 

  
2 2 

 2 2 is a random variable having an F distribution with  1 − 1 and  2 − 1 degrees of 
1  2 

 2 2 
freedom. Thus, we can write  (    <   2 1 <    ) = 1 −   

1− ,, 1−1, 2−1  2 2 ,, 1−1, 2−1 
2 1   2 2 

 

Since     = 
1 

, we have the following 
1−

2
,, 1−1, 2−1    

2,, 2−1, 1−1 

 

If  2 and  2 are the values of the variances of independent random samples of sizes  1 and 
1 2 

 2 from normal populations, then 
 

 2 1  2  2  2 
  1  . <   1 < 1 .    is a (1 −  )100% confidence interval for 1. 
 2 

 

   

2, 1−1, 2−1 
 2  2 

2
, 2−1, 1−1  2 

 

Corrponding (1 −  )100% confidence limits for  1 can be obtained by taking the square roots 
 2 

of the confidence limit for  
2

. 
2 

 

3.7.2. Example 
 

A study has been made to compare the nicotine contents of two brands of cigarettes. 
Ten cigarettes of Brand A has an average nicotine content of 3.1 milligrams with a standard 
deviation of 0.5 milligram. While eight cigarettes of Brand B had an average nicotine content 
of 2.7 milligrams with a standard deviatoin of 0.7 miligram. Assuming that the two sets of 
data are independent random samples from normal populations with equal variances. Find a 

98% confidence interval for  
2

. 
2 

 

Solution: 
 

Substituting  1 = 10,  2 = 8,  1 = 0.5,  2 = 0.7, and 

 0.01,9,7 = 6.72 and  0.01,7,9 = 5.61 from the statistical table, we get 
 

0.25 
 

 

0.49 

1 
. 
6.42 

  
2 

< < 
 2 

0.25 
 

 

0.49 

 
.5.61 

 

 2 

0.076 < 1 < 2.862 
 2 

 
Since the interval obtained here includes the possibility that the ratio is 1, there is no real 
evidence against the assumption of equal population variances. 

2 

2 
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Check Your Progress 

Glossaries 

Suggested Readings 

Answers to Check Your Progress 

 

 
 

In this unit, we discussed the concept of interval estimation, in particularly the 
Estimation of Means, differences between means, proportions, and differences between 
proportions, variances and ratio of two variances. 

 

 

1. The interval bounded by two limits is known as . 

 
2. The end points of the confidence interval are called . 

 
3. A random sample of size 100 has mean 15, the population variance being 25. The interval 
estimates of the population mean with a confidence level of 99% is . 

 

Interval estimation: It is the range of values used in making estimation of a population 
parameter. 

 
Population proportion: The population proportion P is the ratio of the number of elements 
possessing a characteristic to the total number of elements in the population. 

 
Sample Proportion: The sample proportion p is the ratio of the number of elements 
possessing to the total number of elements n in the sample. 

 
Degrees freedom: The degrees freedom is the number of independent random variables. 

 

1. Freund. J.E.,” Mathematical Statistics”, Prentice Hall of India, Fifth Edition, 2001. 

 
2. Gupta. S.C. and Kapoor. V. K., “Fundamentals of Mathematical Statistics”, Sultan Chand & Sons, 
Eleventh Edition, 2003. 

 

3. Devore. J. L. “Probability and Statistics for Engineers”, Brooks/Cole (Cengage Learning), First 

India Reprint, 2008. 
 

1. Confidence interval 
 

2. Confidence limits 

3. 13.71 to 16.29 

Let Us Sum Up 
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Unit 4 Hypothesis Testing 

 

Unit 5 Testing of Hypothesis involving Means, Variances and Proportions 

BLOCK II: Testing of Hypothesis 
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Hypothesis Testing 

 
Structure 

Objectives 

Overview 

4.1. Introduction 
 

4.2. Testing a Statistical Hypothesis 
 

4.3. Losses and Risks 
 

4.4. The Neyman-Pearson Lemma 
 

4.5. The Power Funciton of a Test 
 

4.6. Likelihood Ratio Tests 

Let us Sum Up 

Check Your Progress 

Glossaries 

Suggested Readings 

Answer To check your progress 

Unit – 4 
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Overview 

4.1. Introduction 

 

After Studying this Unit, the student will be able to 
 

 Demonstrate the simple hypothesis, alternative hypothesis, Type I and Type II errors, 
Critical Region. 

 

 Explain the Neyman-Pearson lemman with example. 
 

 Explain the Power function and the uniformly most powerful critical region test 
 

 Summarize the Likelihood ratio test.. 
 

In this unit, we will study the concept of testing a statistical hypothesis, the Neyman- 
Pearson Lemma, the Power function of a test, Likelihood ratio test with examples. 

 

 

If an engineer has to decide on the basis of sample data whether the true average 
life time of certain kind of tire is at least 42,000 miles, if an agronomist has to decide on the 
basis of experiments whether one kind of fertilizer produces a higher yield of soybeans than 
another, and if an manufacturer of pharmaceutical products has to decide on the basis of 
samples whether 90 percent of all patients given a new medication will recover from a 
certain disease, these problems can all be translated into the language of statistical tests of 
hypotheses. In the first case we might say that the engineer has to test the hypothesis that 

 , the parameter of an exponential population, is at least 42,000; in the second case we 

might say that the agronomist has to decide whether  1 >  2, where  1 and  2 are the 
means of two normal populations; and in the third case we might say that the manufacturer 

has to decide whether  , the parameter of a binomial population, equals 0.90. In each case 
it must be assumed that the chosen distribution correctly describes the experimental 
conditions. That is, the distribution provides the correct statistical model. 

 

4.1.1. Statistical Hypothesis 

 
An assertion or conjecture about the distribution of one or more random variables is 

called a statistical hypothesis. If a statistical hypothesis completely specifies the distribution, 
it is called a simple hypothesis, if not; it is referred to as a composite hypothesis. 

 
A simple hypothesis is not only the functional form of the underlying distribution, but 

also the values of all parameters. In the third of the above examples, the effectiveness of the 
new medication, the hypothesis   = 0.90 is simple, assuming that we specify the sample 
size and that the population is binomial. In the first of the preceding examples the hypothesis 
is composite since   ≥ 42,000 does not assign a specific value to the parameter  . 

 
For testing statistical hypotheses, it is necessary that we formulate alternative 

hypotheses. In the first example dealing with the lifetimes of the tires, we might formulate the 
alternative hypothesis that the parameter   of the exponential population is less than 42,000. 
In the second example dealing with the two kinds of fertilizer, we might formulate the 
alternative hypothesis 1 =  2. In the third example dealing with the new medication, we 

Objectives 



44 
 

4.2.Testing a Statistical Hypothesis 

mightformulate the alternative hypothesis that the parameter   of the given binomial 
population is only 0.60, which is the disease’s recovery rate without the new medication. 

 
The concept of simple simple and composite hypothesis applies also to alternative 

hypotheses. In the first example we can say that we testing the compositive hypothesis   ≥ 
42000 against the composite alternative   < 42,000, where   < 42,000, where   is the 
parameter of an exponential population. In the second example we are testing the 
composite hypothesis  1 >  2 against the composite alternative  1 =  2 where  1,  2 are the 
means of two normal populations. In the third exmple we are tesing the simple hypotheis 

  = 90 against the simple alternative   = 60, where   is the parameter of a binomial 
population for which n is given. 

If we want to show that the students in one school have higher average I.Q. than 
those in another school, we formulate the hypothesis that there is no difference: the 
hypothesis  1 =  2. 

In view of the assumptions of “no difference”, hypotheses such as these led to the 
term null hypothesis, but this term is applied to any hypotheis that we may want to test. 

 
We use the symbol  0 for the null hypothesis that we want to test and  1       for 

the alternative hypothesis. 
 

4.2.1. Type I and Type II errors 

 
1. Rejection of a null hypothesis when it is true is called a type I error. The probability of 
committing a type I error is denoted by  . 

 
2. Acceptance of the null hypothesis when it is false is called a type II error. The probability 
of commiting a type II error is denoted by  . 

 
  0          0          

        0                                    =   
        0                          =            

 

4.2.2. Critical Region 
 

It is customary to refer to the rejection region for  0 as the critical region of a test. 

The probability of obtaining a value of the test statistic inside the critical region when  0 is 
true is called the size of the critical region. Thus, the size of the critical region is just the 

probability   of committing a type I error. This probability is also called the level of 
significance of the test. 

 

4.2.3. Examples 
 

4.2.3.1. Suppose that the manufacturer of a new medication wants to test the null hypothesis 

  = 0.90 against the alternative hypothesis 0.60. His test statistic is X, the observed number 
of successes (recoveries) in 20 trials, and he will accept the null hypothesis if   > 14; 

otherwise, he will reject. Find   and  . 
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Solution: 
 

The acceptance region for the hull hypothesis is   = 15, 16, 17, 18, 19     20, and 

correspondingly, the rejection region or critical region is   = 0, 1, 2,3, … , 14. Therefore, from 
the Binomial Probabilites table of statistical tables we have 
  =  (  ≤ 14;   = 0.90) = 0.0114 and   =  (  > 14;   = 0.60) = 0.1255 

 
4.2.3.2. Suppose that we want to test the null hypothesis that the mean of a normal 

population with  2 = 1 is  0 against the alternative hypothesis that it is  1, where  1 >  0. 

Find the value of K such that    >   provides a critical region of size   = 0.05 for a random 
sample of size n. 

 
Solution: 

 

 

 

 
From the above figure and the standard normal distribution table of statisitcal tables, we find 
that   = 1.645 corresponds to an entry of 0.45 and hence that 

 

 

1.645 = 
  −  0 

1/√  

1.645 
  =  0 +    

√  

4.2.3.3. With reference to the previous example, Determine the minimum sample size 

needed to test the null hypothesis  0 = 10 against the alternative hypothesis  1 = 11 with 

  ≤ 6. 

Solution: 

Since   is given by the area of the ruled region of the above figure, we get 
 

  =   (   < 10 + 
1.645 

;    = 11) 
√  

(10 + 
1.645

) − 11 
  = [  < √  ] 

1/√  
 
 

  = (  < −√  + 1.645) 
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4.3. Losses and Risks 

and since   = 1.555 corresponds to an entry of 0.5 − 0.06 = 0.44 in the standard normal 

distribution table of statistical table, we get −√  + 1.645 equal to – 1.555. √  = 1.645 + 
1.555 = 3.2 and   = 10.24 or 11. 

 

The concepts of loss functions and risk functions also play an important part in the 
theory of hypotesis testing.   In the decision theory approach to testing the null hypothesis 
that a population parameter   equals  0 against the alternative that it equals  1, the 

statistican either takes the action  0and accepts the null hypothesis, or takes the action  1 
accepts the alternative hypothesis. Depending on the true “state of Nature” and the action 
that she takes, her losses are shown in the following table 

 
  Statistician 

 0  1 

Nature  0  ( 0,  0)  ( 1,  0) 
 1  ( 0,  1)  ( 1,  1) 

 
These losses can be positive or negative (reflecting penalties or rewards), and the only 
condition that we shall impose is that 

 

 ( 0,  0) <  ( 1,  0)      ( 1,  1) <  ( 0,  1) 
 

That is, in either case the right decision is more profitable than the wrong one. 

 
The statistician’s choice will depend on the outcome of an experiment and the 

decision funciton d, which tell her for each possible outcome what action to take. If the null 
hypothesis is true and the statistician accepts the alternative hypothesis, that is, if the value 

of the parameter  0 and the statistician takean action  1, she commits a type I error; 

correspondingly, if the value of the parameter is  1 and the statistician takes action  0, she 

commits a type II error.   For the decision function d, we shall let  ( ) denote the probability 

of committing a type I error and  ( ) the probability of committing a type II error. The values 
of the risk function are that 

 

 ( ,  0) = [1 −  ( )] ( 0,  0) +  ( ) ( 1,  0) 
 

 ( ,  0) =  ( 0,  0) +  ( )[ ( 1,  0) −  ( 0,  0)] 
 

and 
 

 ( ,  1) =  ( ) ( 0,  1) + [1 −  ( )]  ( 1,  1) 
 

 ( ,  1) =  ( 1,  1) +  ( )[ ( 0,  1) −  ( 1,  1)] 
 

Where, by assumption, the quantities in brackets are both positive. It is apparent from this 
that to minimize the risks the statistician must choose a decision funciton that, keeps the 
probabilities of both types of errors as small as possible. 

If we could assign prior probabiiities to  0 and  1 and if we know the exact values of 

all the losses  (  ,   ), we could calculate the Bayes risk and look for the decision funciton 

that minimize this risk. Alternatively, if we looked upon nature as a malevolent oppeonent, 

we could use the mimimax criterion and choose the decision funciton that minimizez the 

maximum risk. 
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4.4.1. The Power of a Test 

 

When testing the null hypothesis  0:   =  0 against the alternaive hypothesis  1:   = 
 1, the quantitiy 1 −   is referred to as the power of the test   =  1. A critical region for 

testing a simple null hypothesis  0:   =  0 against a simple alternative hypothesis  1:   =  1 
is siad to be a best critical region or a most powerful critical region if the power of the test is 
maximum at   =  1. 

 
To Construct a most powerful critical region 

 
The likelihoods of a random sample of size n from the population under consideration when 
  =  0 and   =  1. Denoting these likelihoods by  0 and  1, we have 

 

  

 0 =    (  ,  0) 
 =1 

  

     1 =    (  ,  1) 
 =1 

 

 0 

 1 
Should be small for sample points inside the critical region, which lead to type I erros 

when   =  0 and to correct decisions when   =  1. 

 0 Should be large for sample points inside the critical region, which lead to correct decisions 
 1 

when   =  0 and type II erros when   =  1. 

4.4.2. Theorem (Neyman-Pearson Lemma) 

 
If C is a critical region of size   and k is a constant such that  0 ≤             and 

 1  0 ≥             then C is a most powerful critical region of size   for testing   =   against 
 1 

0 

  =  1. 

Proof: 

Suppose that C is a critial region satisfying the conditions of the theorem and that D is some 

other critical region of size  . Thus, 

 
∫ … ∫  0    = ∫ … ∫  0    =   

    
where    stads for   1,   2, … ,     and the two multiple integrals are taken over the 

respective n-diemansional regions        . Now, making use of the fact that   is the union 

of disjoint sets   ∩   and   ∩  ′, while   is the union of the disjoint sets   ∩   and  ′ ∩  , 
we can write 

 

 
∫ … ∫  0    + ∫ … ∫  0    = ∫ … ∫  0    + ∫ … ∫  0    =   

  ∩     ∩  ′   ∩    ′ ∩   
 

and hence 

4.4. The Neyman-Pearson Lemma 
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∫ … ∫  0    = ∫ … ∫  0    

  ∩  ′  ′ ∩   
 

Then, since   ≥ 
 0 inside C and     ≤ 

 0 outside C, 
1   1   

 

 0  0 ∫ … ∫        ≥ ∫ … ∫    = ∫ … ∫    ≥ ∫ … ∫   
 
   

1     1 

  ∩  ′   ∩  ′  ′ ∩    ′ ∩   
 

and hence 

 
∫ … ∫  1    ≥ ∫ … ∫  1    

  ∩  ′  ′ ∩   
 

Finally, 

 
∫ … ∫  1    = ∫ … ∫  1    + ∫ … ∫  1    

    ∩     ∩  ′ 
 
 

 
∫ … ∫  1    = ∫ … ∫  1    + ∫ … ∫  1    = ∫ … ∫  1    

    ∩    ′ ∩     
 

So that 

 
∫ … ∫  1    ≥ ∫ … ∫  1    =   

    
 

The final inequality states that for the critical region C the probability of not committing a type 
II error is greater than or equal to the corresponding probability for any other region of size 
 . 

 
4.4.3. Example 

 

A random sample of size n from a normal population with  2 = 1 is to be used to test 

the null hypothesis   =  0 against the alternatiave hypothesis   =  1, where  1 >  0.   Use 
the Neyman-Pearson lemma to find the most powerful critical region of size  . 
Solution: 

 
The two likelihoods are 

 

1   1 
∑( )2 

 
 

1   1 
∑( )2 

 
    −   − 0    −   − 1  0 = ( ) 

√2  
   2      1 = ( ) 

√2  
   2 

 

Where the summations extend from   = 1    , and after some simplification their ratio 
becomes 
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=  2      1 0 

4.5. The Power Funciton of a Test 

4.6. Likelihood Ratio Tests 

 0 
 

 

 1 

 
( 2− 2)+( 0− 1) ∑    

 

Thus, we find a constant k and a region C of the sample sapce such that 
 

 
( 2− 2)+( 0− 1) ∑    

 2       1 0 ≤               
 

 
( 2− 2)+( 0− 1) ∑    

 2       1 0 ≥                
 

and after taking logarithms, subtractng   ( 2 −  2), and dividing by the negative quantity 
 

2 1 0 

 ( 0 −  1), these two inequalities become 

   ≤              
 

   ≥             
 

where K is an expresssion in  ,  ,  0      1. 
 

 

 

4.5.1. Power Function 

 

The Power function of a test of a statistical hypothesis  0 against an alternative 

hypothesis  1 is given by 
 

 ( ) = {
 ( )                                0 

1 −  ( )                                1 
 

4.5.2. Uniformly Most Powerful Critical Region (Test) 

 

If, for a given problem, a critical region of size   is uniformly more powerful than any 
other critical region of size  , it is said to be uniformly most powerful critical region, or a 
uniformly most powerful test. 

 

 

The Neyman-Pearson lemma provides a means of constructing most powerful critical 
regions for testing a simple null hypothesis against a simple alternative hypothesisi, but it 
does not always apply to compositie hypotheses.   We shall now present a general method 
for constructing critical regions for tests of composite hypotheses   that in most caes have 
very satisfactory properties. The resulting tests, called Likelihood ratio tests, are based on a 
generalization of the method of Neyman-Pearson lemma, but they are not necessarily 
uniformly most powerful. 

 

To Illustrate the likelihood ratio technique, Let us suppose that  1,  2, …    constitute 

a random sample of size n form population whose density at x is  ( ;  ) and that Ω is the set 

of values that can be taken on by the parameter  . We refer Ω as the parameter space for 
 . To test the null hypothesis is  0:   ∈   and the alternative hypothesis is  1:   ∈  ′, where 
  is the subset of Ω and  ′ is the complement of   with respect to Ω. Thus, the parameter 

space for   is partitioned into the disjoint sets   and  ′.   The null hypothesis is   is an 
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 =1  =1 

0 

element of the first set and the alternative hypothesis   is an element of the second set. Ω is 
either the set of all real numbers, the set of all positive real numbers, some interval of real 
numbers or a discrete set of real numbers. 

 
When  0 and  1 are both simple hypotheses,   each have one element, and in 4.4. 

we constructed tests by comparing the likelihood  0 and  1. In the general case, where at 
least one of the two hypotheses is composite, we comare instead the two quantitties max 
 0and max  , where max  0 is the maximum value of the likelihood funciton for all values of 

  in  , and max   is the maximum value of the likelihood function for all values of   in Ω. In 
other words, if we have a random sample of size n from a population whose density at   is 

 ( ;  ),    is the maximum likelihood estimate of   subject to the restriction that   must be an 

element of  , and    is the maximum likelihood estimate of   for all value of   in Ω, then 
 

     0 = ∏   ( ;   ) and       = ∏    ( ;   ) 
 

These quantities are both values of random varaibles, since they depend on the observed 
values   ,   , … ,   , and their ratio   = 

     0
 is known as a value of the likelihood ratio 

1 2   

statistic. 
      

 

Since      0 and       are both values of a likelihood function and therefore are 
never negative. Therefore   ≥ 0; also, since   is a subset of the parameter space Ω, 
therefore   ≤ 1. When the null hypothesis is false, would expect      0 to be small 

compared to      , in which case   would close to zero. On the other hand, when the null 
hypothesis is true and   ∈  , we would expect      0 to be close to      , in which case   
would be close to 1.   A likelihood ratio test states that the null hypothesis  0 is rejected if 
and only if   falls in a critical region of the form   ≤  , where 0 <   < 1. 

 

4.6.1. Likelihood Ratio Test 

 

If   and  ′ are complementary subsets of the parameter space Ω and if the likelihood 
ratio statistic   = 

     0 where       and       are the maximum values of the likelihood 
      0 

function for all values of   in   and Ω, respectively, then the critical region   ≤  , where 0 < 
  < 1, defines a likelihood ratio test of the null hypothesis   ∈   against the alternative 
hypothesis   ∈  ′. 

 
If  0 is a simple hypothesis, k is chosen so that the size of the critical region equals 

 ; if  0 is composite, k is chosen so that the probability of a type I error is less than or equal 

to   for all   in  , and equal to  , if possible, for at least one value of   in  . Thus, if  0 is a 
simple hypothesis and  ( ) is density of Λ at   when  0 is true, then k must be such that 

 (Λ ≤  ) = ∫
  
 ( )   =   

 
In the discrete case, the integral is replaced by a summation, and k is taken to be the 

large values for which the sume is less than or equal to  . 
 

4.6.2. Example 

 
Find the critical region of the likelihood ratio test for testing the null hypothesis 

 0:   =  0 against the composite alternative  1:   ≠  0 on the basis of a random sample of 

size n from a normal population with the known variance  2. 
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0 
1 1 

Solution: 
 

Since   contains only  0,    =  0, and since Ω is the set of all real number,     =   . Thus, 
 

  
        = ( ) 

 √2  

−
   1    

∑(  −  )2 

   2   

  
and       = ( ) 

 √2  

−
   1    

∑(  −  )2 

   2   

 

where the summation from   = 1     , and the value of the likelihood ratio statistic becomes 
 

−
   1    

∑(  −  )2 

  
  = 

2  2 

   1  

 
− 

2  2 ∑(  −  )
2 

−
     

(  −   )2 

  =   2  2  

−
    

(  −  )2 

Hence , the critical region of the likelihood ratio test is   2  2 ≤   and taking logarithms 
and dividing by − 

 
 

2  2 

 
2  2 

, we have 

(   −  0)2 ≥ − 
  

|   −  0| ≥   

.      

 

Where K will have to be determined so that the size of the critical region is  . 
 

Since     has a normal distribution with the mean  0 and the variance  
2

, the critical region of 
  

this likelihood ratio test is 

  
|   −  0| ≥   . 

2 

 
 

√  
 

| |  ≥    
2 

 

where   = 
   − 0  

     

√  
 

In other words, the null hypothesis must be rejected when Z takes on a value greater than or 
equal to    or a value less than or equal to −   

2 2 
 

4.6.3. Example 
 

On the basis of a single observation, we want to test the simple null hypothesis that 
the probability distribution of X is 

 

  1 2 3 4 5 6 7 

 ( ) 1 
 

12 

1 
 

12 

1 
 

12 

1 
 

4 

1 
 

6 

1 
 

6 

1 
 

6 

 
against the composite alternative that the probability distribution is 

 
  1 2 3 4 5 6 7 

 ( )   
 

3 
  

 

3 

  
 

3 

2 
 

3 

0 0 0 

2   0 2   

  0 

0 

0 
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Let Us Sum Up 

Check Your Progress 

where   +   +   = 1. Show that the critical region obtained by means of the likelihood ratio 
technique is inadmissible. 

 
Soluiton: 

 
The compositie alternative bypothesis includes all the probability distributions that we get by 

assigning different values from 0    1    1,  ,  ,      , subject only to the restriction that   + 
  +   = 1. 
For each value of  , let   = 1, for this value we get       = 

1 
,       = 

1 
(corresponding to 

  

  = 1) and hence   = 
1
. 

4 

0 12 3 

 

Determining   for the other values of   in the same way, we get 
 

  1 2 3 4 5 6 7 

  1 
 

4 

1 
 

4 

1 
 

4 

1 
 

8 

1 1 1 

 
If the size of the critical region is to be   = 0.25, we find that the likelihood ratiod technique 

yields, the critical region for which the null hypothesis is rejected when   = 
1
. This is, when 

4 

  = 1,   = 2,   = 3, we have  (1) +  (2) +  (3) = 
1 

+ 
1 

+ 
1   

= 0.25. The corresponding 
12 12 12 

probability of a type II error is given by  (4) +  (5) +  (6) +  (7) = 
2
. 

3 

 

Now, let us consider the critical region for which the null hypothesis is rejected only when 

  = 4. Its size is also   = 0.25 since  (4) = 
1
, but the corresponding probability of a type II 

4 error is   ( ) ( ) ( ) ( ) ( ) (  )   
 

 

    1
.
 

 
     1 +   2 +   3 +   5 +   6 +   7 = + + 

3 3 3 
+ 0 + 0 + 0 = 

3 
 

Since theis is less than 2, the critical region obtained by means of the likelihood ratio 
3 

technique is inadmissible. 
 

 

In this unit, we discussed the concept of testing a statistical hypothesis, the Neyman- 
Pearson Lemma, the Power function of a test, Likelihood ratio test with examples. 

 

 

1. The Probabilities of committing the type I and type II errors are called . 

 
2. The Power of a test is maximum, when the probability of type II error is . 

 
3. If both null hypothesis and alternative hypothesis are simple hypotheses, then Likelihood 
ratio test is . 

 
4. The Likelihood ratio test is a generalization of . 
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Suggested Readings 

Answers to Check Your Progress 

 

 
 

Hypothesis: A hypothesis is a statement about the population parameter. 

Type I error: It is the error of rejecting null hypothesis when it is true. 

Type II error: It is the error of accepting the null hypothesis when it is false. 

 
Critical Region: It is the region of the standard normal curve corresponding to a 
predetermined level of significance. 

 

1. Freund. J.E.,” Mathematical Statistics”, Prentice Hall of India, Fifth Edition, 2001. 

 

2. Gupta. S.C. and Kapoor. V. K., “Fundamentals of Mathematical Statistics”, Sultan Chand & Sons, 

Eleventh Edition, 2003. 

 

3. Devore. J. L. “Probability and Statistics for Engineers”, Brooks/Cole (Cengage Learning), First 

India Reprint, 2008. 
 

 

1. Sizes of errors 
 

2. Minimum. 

 
3. Neyman-Pearson Lemma 

 
4. Neyman-Pearson Lemma 

Glossaries 
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Testing of Hypothesis involving Means, Variances and Proportions 

 
Structure 

Objectives 

Overview 

5.1. Introduction 
 

5.2. Test Concerning Means 
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Overview 

5.1. Introduction 

 
 

After Studying this Unit, the student will be able to 
 

 Analyse and compare the tests based on normal, t,  2and F distributions for testing 
of mean, variance and proportions. 

 

 Explain the tests for Independence of attributes and Goodness of fit. 
 

 Illustrate with the numerical examples in normal, t,  2and F distributions. 
 

In this unit, we will study the tests based on normal, t,  2and F distributions for 
testing of means, variance and proportions and tests for Independence of attributes and 
Goodness of fit. 

 

We shall preseent some of the standard tests that are most widely used in 
applications.   Most of these tests, at least those based on known population distributions, 
can be obtained by the likelihood ratio technique. 

 
5.1.1. Test of Significance 

 
A statistical test which specifies a simple null hypothesis, the size of the critical 

region,  , and a composite alternative hypothesis is called a tet of significance. In such a 

test,   is referred to as the level of signficance. 
 

5.1.2. Two Tailed Test 

 
When thes test of hypothesis is made on the basis of rejection region represented by 

both sides of the standard normal curve, it is called a two tailed test. A test of statistical 
hypothesis where the alternative hypothesis is two tailed such as 

 
Null Hypothesis  0 ∶   =  0 

Alterntaive Hypothesis  1:   ≠  0 

Objectives 
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5.1.3. One tailed test 

 

 
    ≤    

 

 
−   

 
 
 

  
 /  √  

Or 

 
and    ≥    

 

 
+   

 
 
 

  
 /  √  

 

A test of statistical hypothesis, where the alternative hypothesis is one side is called 
as one tailed test. 

 
There are two types of one tailed test. 

 
1. Right tailed test: In the right tailed test the rejection region or critical region lies entirely on 
the right tail of the normal curve. 

 
Null Hypothesis  0 ∶   =  0 

 
Alterntaive Hypothesis  1:   >  0 (Right tailed) 
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2. Left tailed test: In the left tailed test the rejection region or critical region lies entirely on the 
left tail of the normal curve. 

 
Null Hypothesis  0 ∶   =  0 

 
Alterntaive Hypothesis  1:   <  0 (Left tailed) 

 
 

 

 
5.1.4. The following are the steps for testing of hypothesis by means 

 
1. Formulate  0 and  1, and specify  . 

 
2. Usng the sampling distribution of an appropriate test statistic, determine a critical region of 

size  . 
 

3. Determine the value of the test statistic from the sample data. 

 
4. Check whether the value of the test statistic falls into the critical region and accordingly, 
reject the null hypothesis, or reserve judgement. (Note that we do not accept the null 
hypothesis because  , the probability of false acceptance, is not specified in a test of 
significance) 

 
Definition: (P- Value) Corresponding to an observed value of a test statistic, the P-value is 
the lowest level of significance at which the null hypothesis could have been rejected. 

 

5.1.5. Alternative approach to testing hypotheses 

 

1. Formulate  0 and  1, and specify  . 
 

2. Specify the tst statistic. 
 

3. Determine the value of the test statistic and the corresponding P-value from the sample 
data. 

 
4. Check whether the P-value is less than or equal to   and, accordingly, reject the null 
hypothesis, or reserve judgement. 
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Suppose that we want to test the null hypothesis   =  0 against one of the 

alternatives   ≠  0,   >  0      <  0 on the basis of a random sample of size n from a 
normal population with the known variance  2. Thre critical regions for the respective 

alternatives are | | ≥   /2 ,     ≥           ≤ −   , where   = 
  − 0

 

 /√  
 

The most commonly used levels of significance are 0.05     0.01, and the corresponing 
values of    and   /2 are  0.05 = 1.645,  0.01 = 2.33,  0.025 = 1.96 and  0.005 = 2.575. 

 
5.2.1. Example 

 
Suppoe that it is known from experience that the standard deviation of the weight of 

8-ounce package of cookies made by a certain bakery is 0.16 ounce. To chcek whether its 
production is under control on a given day, that is, to check whether the true average weight 
of the packages is 8 ounces, employees select a random sample of 25 packages and find 

that their mean weight is    = 8.091 ounces. Since the bakery stands to lose money when 

  > 8 and the custormer loses out when   < 8, test the null hypothesis   = 8 against the 
alternative hypothesis   ≠ 8 at the 0.01 level of significance. 

 
Solution: 

 
1.  0:   = 8 
 1:   ≠ 8 
  = 0.01 

 
2. Reject the null hypothesis if   ≤ −2.575      ≥ 2.575 

 

 

  = 
   −  0 

 

 

 /√  
 

3. Substituting    = 8.091,  0 = 8,   = 0.16,       = 25, we get 
 

8.091 − 8 
  =    = 2.84 

0.16/√25 
 

4. Since   = 2.84 exceeds 2.575, the null hypothesis must be rejected and suitable 
adjustments should be made in the production process. 

 

5.2.2. Larage-sample test. 

 

When we dealing with a large sample of size   ≥ 30 from a population that need not 

be normal but has a finite variance, when  2 is unknown we can approximate its value with 

 2 in the computation of the test statistic. The following example is a larage-sample test. 
 

5.2.3. Example 

 
Suppose that 100 high-performance tires made by a certain manufacturer lasted on 

the average 21,819 miles with a standard deviation of 1,295 miles. Test the null hypothesis 

  = 22,000 miles against the alternative hypothesis   < 22,000 miles at the 0.05 level of 
significance. 

5.2. Test Concerning Means 
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Solution: 
 

1.  0:   = 22,000 
 1:   < 22,000 
  = 0.05 

 
2. Reject the null hypothesis if   ≤ −1.645 

   −  0 
  =  

 

 /√  
 

3. Substituting    = 21,819,  0 = 22,000,   = 1.295      ,       = 100, we get 
21,819 − 22,000 

  =    
1,295/√100 

= −1.40 

 

4. Since   = −1.40 is greater than −1.645, the null hypothesis cannot be rejected; there is no 
convincing evidence that the tires are not as good as assumed under the null hypothesis. 

 

5.2.4. One-Sample t test 

 
When   < 30 and  2 is unknown, for random samples from normal populations, the 

likelihood ratio techniques yidles a corresponding test based on   = 
  − 0   which is a value of 
 /√  

a random variable having the t distribution with   − 1  degrees of freedom. Thus, critifcal 
regions of size   for testing the null hypothesis   =  0 against the alternatives   ≠  0,   > 

 0      <  0 are, respectively, | | ≥   , −1,   ≥   , −1 and   ≤ −  , −1. 
2 

 

5.2.5. Example 

 
The specifications for a certain kind of ribbon call for a mean breaking strength of 185 

pounds. If five pieces randomly selected from different rolls have breaking strength of 171.6, 

191.8, 178.3, 184.9, and 189.1 pounds, test the null hypothesis   = 185 pounds against the 

alternative hypothesis   < 185 pounds at the 0.05 level of significance. 
 

Solution: 

 
1.  0:   = 185 
 1:   < 185 
  = 0.05 

 
2. Reject the null hypothesis if   ≤ −2.132, where 2.132 is the value of  0.05,4 

   −  0 
  = 

3. 

 
 

 /√  

     =   −   
   =   − 183 

  2 

171.6 − 11.4 129.96 
191.8 8.8 77.44 
178.3 − 4.7 22.09 
184.9 1.9 3.61 
189.1 6.1 37.21 

∑   = 915.7 ∑    = 0.7 ∑   2 = 270.31 
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5.3. Tests Concerning Differences Between Means 

 
   = ∑   

 
 

915.7 
= 

 
= 183.1 

  5       

∑   2−
(∑   )2 270.31−

(0.7)2
 

Standard deviation   = √          = √ 5       = 8.2 
 −1 4 

 

Substituting    = 183.1,  0 = 185,   = 8.2      ,       = 5, we get 
 

 

  = 
   −  0 

 

 

 /√  

183.1 − 185 
= 

8.2/√5 

 

= −0.51 

 

4. Since   = −0.49 is greater than – 2.132, the null hypothesis cannot be rejected. If we went 
beyond this and concluded that the rolls of ribbon from which the sample was selected meet 
spectifications. 

 

 

Let us suppose that we are dealing with independent random samples of sizes  1 
and  2 from two normal populations having the means  1 and  2 and the known variances 
 2 and  2 and that we want to test the hypothesis  1 −  2 =  , where   is a given constant, 
1 2 

against one of the alternatives  1 −  2 ≠  ,  1 −  2 >       1 −  2 <  . Applying the 
likelihood ratio technique, we will arrive at a test based on   1 −   2 and the respective critical 

regions can be written as | | ≥   /2,   ≥    and   ≤ −   , where 
 

  1 −   2 −   
  =    

 2  2 

√ 1  +  2 

 1  2 

 

When we deal with independent random samples from populations with unknown 
variances that may not even be normal, we can still use the test that we have just descirbed 

with  1 substituted for  1 and  2 substituted for  2 as long as both samples are large enough 
to invoke the central limit theorem. 

 
5.3.1. Example 

 
An experiment is performed to determine whether the average nicotine content of 

one kind of cigarette exceeds that of another kind by 0.20 miligram. If  1 = 50 cigarettes of 
the first kind had an average nicotine content of   1 = 2.61 miligrams with a standard 

deviation of  1 = 0.12 miligram, whereas  2 = 40 cigarettes of the other kind had an average 
nicotine content of   2 = 2.38 miligrams with a standard deviation of  2 = 0.14 miligram, test 

the null hypothesis  1 −  2 = 0.20 against the alternative hypothesis  1 −  2 ≠ 0.20 at the 
0.05 level fo significance. Based the decision on the P-Value corresponding to the value of 
the appropriate test statistic. 

 
Solution: 

 
1.  0 :  1 −  2 = 0.20 
 1 :  1 −  2 ≠ 0.20 
  = 0.05 
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2. Use the test statistic Z, where   =
   1−  2− 

 
 2    2 

√  1+  2 
 1    2 

 

3 Substituting  1 = 2.61,   1 = 2.61,   = 0.20,  1 = 0.12      1,  2 = 0.14      2,  1 = 50     
 2 = 40 into this formula, we get 

 

  1 −   2 −   
  =    

2.61 − 2.38 − 0.20 
=    

 
= 1.08 

 2  2 (0.12)2 (0.14)2 

√ 1  +  2 √ + 
 1  2 50 40 

 

This corrsponding P-value is 2 (0.5 – 0.3599), where 0.3599 is the entry in the statisical table 
for z = 1.08. 

 
4. Since 0.2802 exceeds 0.05, the null hypothesis cannot be rejected; we say that the 

difference between 2.61 − 2.38 = 0.23 and 0.20 is not significant. This means that the 
difference may well be atributed to chance. 

 
5.3.2. Two-Sample t test 

 

When  1 and  2 are samll and  1 and  2 are unknown. For independent random 

samples from two normal populations having the same unknown variance  2, the likelihood 
ratio technique yields a test based on 

 

   1−  2−   ( 1−1) 2+( 2−1) 2 
 

   =   Where  2 = 1 2
 

  1       1   √    +    1+ 2−2 
    1

  2 

Under the given assumptions and the null hypothesis  1 −  2 =  , this expression for t is a 

vlaue of a random variable having the t distribution with  1 +  2 − 2 degrees of freedom. 
Thus, the appropriate critical regions of size   for testing the null hypothesis  1 −  2 =   
against the alternatives  1 −  2 ≠  ,  1 −  2 >       1 −  2 <   under the given assumptions 
are, respectively, | | ≥   ,  +  −2 ,   ≥   , 1+ 2−2,       ≤ −  , 1+ 2−2. 

5.3.3. Example 

2    1 2 

 
In the comparison of two kinds of paint, a consumer testing service finds that four 1- 

gallon cans of the one brand over on the average 546 square feet with a standard deviation 
of 31 square feet, whereas four 1-gallon cans of another brand cover on the average 492 
square feet with a standard deviation of 26 square feet. Assuming that the two populations 

sampled are normal and have equal variances, test the null hypothesis  1 −  2 = 0 at the 
0.05 level of significance. 

 
Solution: 

 
1.  0 :  1 −  2 = 0 

 1 :  1 −  2 > 0 
  = 0.05 

 
2. Reject the null hypothesis if   ≥ 1.943, and 1.943 is the value of  0.05,6. 

 
 

3.     = √
3 (31)2+3(26)2 

= 28.609 and then substituting its value together with   
 

= 546, 
  4+4−2 1 

  2 = 492,   = 0,  1 =  2 = 4, we get 
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0 

0.05,17 

0 

0 

0.01,17 

5.4. The Concerning Variances 

546 − 492 
  = 

28.609√
1 

+ 
1

 

 

= 2.67 

4 4 
 

4. Since   = 2.67 exceeds 1.943 the null hypothesis must be rejected; we conclude that on 
the average the first kind of paint covers a greater area than the second. 

 

Given a random sample of size n from a normal population, we shall want to the null 

hypothesis  2 =  2 against one the alternatives 2 ≠  ,2 2 >  2, or  2 <  2, and the 
0 0, 0 0 

likelihood ratio technique leads to a test based on  2, the value of the sample variance. 
Based on theorem “ If  1 and  2 are independent random variables,  1 has a chi-square 

distribution with  1 degrees of freedom and  1 +  2 has a chi-square distribution with   >  1 
degrees of freedom, then  2 has a chi-square distributon with   −  1 degrees of freedom”. 
Thus, the critical regions for testing the null hypothesis against the two one-sided 
alternatives as  2 ≥  2         and  2 ≤  2 , where 2 = 

( −1) 2

 
 

 , −1 1− , −1  2 

For the two-sided alterntaive, we rejct the null hypothesis 
if  2 ≥  2 or  2 ≤  2 , and the size of all these critical regions is equal to  . 

 /2, −1 1− /2, −1 
 

5.4.1. Example 
 

Suppose that the uniformity of the thickness of a part used in a semiconductor is 
critical and that measurements of the thickness of a random sample of 18 such parats have 

the variance  2 = 0.68, where the measurements are in thousandths of an inch. The 
process is considered to be under control if the variation of the thickness is given by a 
variance not greater than 0.36. Assuming that the measurements constitute a random 

sample from a normal population, test the null hypothesis  2 = 0.36 against the alternative 

hypothesis  2 > 0.36 at the 0.05 level of significance. 
 

Solution: 

 
1.  0:  2 = 0.36 

 1:  2 > 0.36 
  = 0.05 

 
2. Reject the null hypothesis if  2 ≥ 27.587 and 27.587 is the value of  2 

 

3. Substituting  2 = 0.68,  2 = 0.36       = 18 we get 
 

 
 2 = 

(  − 1) 2 

 2 = 
17(0.68) 

 
 

0.36 

 
= 32.11 

 

4. Since  2 = 32.11 exceeds 27.587, the null hypothesis must be rejected and the process 
used in the manufacture of the parts must be adjusted. 

 

5.4.2. Note 
 

In the above example, if   = 0.01, the null hypothesis could not have been rejected, 

since  2 = 32.11 does not exceed  2 = 33.409. 
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1 2 

2 1 

2 1 

    

2 

1 

 =   

5.5. Test Concerning Proportions 

5.4.3. Remark 

 
The likelihood ratio statistic for testing the equality of the variances of two normal 

populations can be expressed in terms of the ratio of the two sample variances. Given 

indepdendent random samples of sizes  1 and  2 form two normal populations with the 
variances  2 and  2, from the theorem “  2 and  2 are the variances of independent random 

1 2 1 2 
sampels of sizes  1 and  2 from normal populations with the variances  2 and  2, then   = 
 2/ 2 

1 2 
 2 2 

   1      1  =  2   1 is a random variable having an F distribution with  1 − 1 and  2 − 1 degrees of 
 2/ 2  2 2 

2      2 1  2 
freedom” that corresponding critical regions of size   for testing the null hypothesis  2 =  2 

1 2 
against the one-sided alternaive  2 >  2     2 <  2 are respectively. 

  
2 
≥     

2 
    ≥   

1 2 1 2 

 2  , 1−1, 2−1  2  , 1−1, 1−1 

The appropriate critical region for testing the null hypothesis against the two-sided 
 2  2 

alternative  2 ≠  2 is 1 ≥   /2,  −1,  −1 if  2 ≥  2 and 2 ≥   /2,  −1,  −1 if  2 <  2 
1 2 

 

5.4.5.. Example 

 2 1 2 1 2  2 2 1 1 2 

 

In comparing the variabliity of the tensile strength of two kinds of structural steel, an 

experiment yielded the following results:  1 = 13,  2 = 19.2,  2 = 16      2 = 3.5, where 1 2 

the units of measurement are 1,000 pounds per square inch. Assuming that the 
measurements constitute independent random samples from two normal populations, tet the 
hypothesis  2 =  2 against the alternaive  2 ≠  2 at the 0.02 level significance. 

1 2 1 2 

 

Solution: 
 

1.  0:  2 =  2 
1 2 

 1:  2 ≠  2 
1 2 

  = 0.02 
 

2 
2. Since  2 ≥  2, reject the null hypothesis if 1 ≥ 3.67, where 3.67 is the value of  0.01,12,15 

1 2  2 

 

3. Substituting  2 = 19.2 and  2 = 3.5, we get 

 
  

2 

= 
 2 

 
19.2 

 
 

3.5 

1 2 
 

 

= 5.49 

 

4. Since   = 5.49 exceeds 3.67, the null hypothesis must be rejected; we conculde that the 

variability of the tensile strength of the two kinds of steel is not the same. 
 

Let’s take the most powerful critical region for testing the null hypothesis   =  0 
against the alternative hypothesis   =  1 <  0, where   is the parameter of a binomial 
population, is based on the value of X, the number of “successes” obtained in n trials. When 
it comes to compositve alternaives, the likelihood ratio technique also yields test based on 
the observed number of successes. If we want to test the null hypothesis   =  0 against the 
one-sided alternative   >  0, the critical region of size   of the likelihood ratio criterion is   ≥ 
   wher    is the smallest integer for which ∑   ( ;  ,  0) ≤   and  ( ;  ,  0) is the 

probability of getting y successes in n binomial trials when   =  0. The size of this critical 
region is thus as close as possible to   without exceeding it. 

2 
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 /2 

 /2     
0 

The corresponding critical region for testing the null hypothesis   =  0 against the 

one-sided alternative   <  0   is   ≤  ′ . Where  ′ is the largest integer for which 
       

∑   
 =   

 ( ;  ,  0) and finally, the critical region for testing the null hypothesis   =  0 against 

two-sided alternative   ≠  0 is   ≥   /2 or   ≤  ′ . 

 
5.5.1. Example 

 

If   = 4 of   = 20 patients suffered serious side effects from a new medication, test 
the null hypothesis   = 0.50 against the alternative hypothesis   ≠ 0.50 at the 0.05 level of 

significance. Here   is the true poportion of patients suffering serious side effects from the 
new medication. 

 
Solution: 

 
1.  0:   = 0.50 

 1:   ≠ 0.50 
  = 0.05 

 
2. Use the test statistic X, observed number of successes. 

 

3. x =4, and since  (  ≤ 4) = 0.0059, the P-value is 2(0.0059) = 0.0118 
 

4. Since the P-value, 0.0118 is less than 0.05, the null hypothesis is must be rejected; we 

conclude that   ≠ 0.50. 
 

5.5.2. Remark 
 

For large values of n we can use the normal approximation to the binomial 

distribution and treat   = 
 −  

 
√  (1− ) 

as a value of a random variable haing the standard 

normal distribution. For large n, we can thus test the null hypothesis   =  0 against the 
alternatives   ≠  0,   >  0      <  0using, respectively, the critical regions 

1 

| | ≥   ,     ≥     and   ≤ −  , where   =
   

   −  0  
√  0(1− 0) 

( ± )−   
or   = 2  

√  0(1− 0) 
 

If we use the continuity correction. We use the minus sign when x exceeds   0 and 
the plus sign when x is less than   0. 

5.5.3. Example 

 
An oil claims that less than 20 percent of all car owners have not tried its gasoline. 

Test this claim at the 0.01 level of significance if a random check reveals that 22 of 200 car 
owners have not tried the oil company’s gasoline. 

 
Solution: 

 
1.  0:   = 0.20 
 1:   < 0.20 
  = 0.01 

 
2. Reject the null hypothesis of   ≤ −2.33, where (without the continuity correction) 
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 =1   

 ,  

  

5.6. Tests Concerning Differences among k proportions 

  −   0 
  =    

√  0(1 −  0) 
 

3. Substituting   = 22,   = 200,      0 = 0.20 we get 
 

22 − 200(0.20) 
  =   = −3.18 

√200(0.20)(0.80) 
 

4. Since   = −3.18 is less than – 2.33, the null hypothesis must be rejected; we conclude 
that, as claimed, less than 20 percent of all car owners have not tried the oil company’s 
gasoline. 

 

5.5.4. Note 

 
If we had used the continuity correction in the above problem, we get 

(  ± 
1
) −    

  = 2 
0 (22 + 0.5) − 200(0.20) 

= = −3.09 

√  0(1 −  0) √200(0.20)(0.80) 
 

Since   = −3.09 is less than – 2.33, the null hypothesis must be rejected; we conclude that, 
as claimed, less than 20 percent of all car owners have not tried the oil company’s gasoline. 

 

Suppose that  1,  2, … ,    are observed values of k independent random variables 
 1,  2, … ,    having binomial distributions with the parameters  1 and  1,  2 and  2….   and 

  . If n’s are sufficiently large, we can approximate the distributions of the independent 
random variables 

 

   =
      −              for   = 1, 2, …   
√    (1−  ) 

 

With standard normal distributions, and , according to the  theorem : If  1,  2, … ,    are 

independnet random variables having standard normal distributions, then   = ∑  2 has 

the chi-square distribution with   =   degrees of freedom, we have 
 

  (  −     )2 
 2 = ∑ 

 
       

 

 =1 
    (1 −   ) 

 

as a value of a random variable having the chi-square distribution with k degrees of freedom. 

To test the null hypothesis  1 =  2 = ⋯ . =    =  0 (against the alternative that the least one 

of the  ′  does not equal  0), we can thus use the critica region  2 ≥  2 , where 
  (  −     )2 

 2 = ∑ 
 

     0 

 

 =1 
   0(1 −  0) 

 

When  0 is not specified, that is, when we are interested only in the null hypothesis  1 = 
 2 = ⋯ . =   , we substitute for   the pooled estimate 

   = 
 1 +  2 + ⋯ . +   

 1 +  2 + ⋯ . +   
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 , −1 

  

and the critical region becomes  2 ≥  2 , where 
 

  

 2 = ∑ 

2 

(   −     ) 
 

 

 
 =1 

    (1 −   ) 
 

The loss of 1 degree of freedom, thati is, the change in the critical region from  2 to  2 , 

is due to the fact that an estimate is substituted for the unkown parameter  . 
 ,   , −1 

 

Let us now present an alternative formula for the chi-square statistic. If we arrange 
the data as in the following table, let us refer to its entries as the observed cell frequencies 

   , where the first subscript indicates the row and the second subscript indicates the column 

of this   × 2 tables 
 

 Successes Failures 

Sample 1  1  1 −  1 
Sample 2  2  2 −  2 

⋮ ⋮ ⋮ 
Sample k       −    

 
Under the null hypothesis  1 =  2 = ⋯ . =    =  0 the expected cell frequencies for 

the first column are    0 for   = 1,2, … ,  , and those for the second column are   (1 −  0). 

when  0 is not known, we substitute for it, the pooled estimate   , and estimate the expected 

cell frequencies as   1 =       and     2 =   (1 −    )  for   = 1,2, … ,  .    The chi-square statistic 
(   −     )

2
 (  2 −   ) 

 2 = ∑      can also b written as  2 = ∑  ∑2               
.
 

 =1      (1−  )  =1  =1     
 

5.6.1. Example 
 

Determine on the basis of the sample data shown in the following table, whether the 
true proportion of shoppers favoring detergent A over detergent B is the same in all three 
cities: 

 
 Number favoring 

detergent A 
Number favoring 
detergent B 

 

Mumbai 232 168 400 

Chennai 260 240 500 

Kerala 197 203 400 

 
Use the 0.05 level of significance. 

Solution: 

1.  0:  1 =  2 =  3 
 0:  1,  2,      3 are not all equal. 

  = 0.05 
 

2. Reject the null hypothesis if  2 ≥ 5.991, where 
2 

 2 = ∑3 ∑2 
(   −   )  

, and 5.991 is the value of  2 . 
 =1  =1     

0.05,2 
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 =1 

5.7. The Analysis of an   ×   Table 

3. Since the pooled estimate of   is 
 

   = 
232 + 260 + 197 

= 0.53
 

400 + 500 + 400 
 

The expected cell frequencies are 
 

 11 = 400(0.53) = 212,  12 = 400(0.47) = 188,  21 = 500(0.53) = 265 
 

 22 = 500(0.47) = 235,  31 = 400(0.53) = 212,  32 = 400(0.47) = 188 
 

and substituted into the formula we get 
 

 
 2 = 

(232 − 212)2 
 

 

212 

(260 − 265)2 
+ 

265 

(197 − 212)2 
+ 

212 

(168 − 188)2 
+ 

188 

(240 − 235)2 
+ 

235 
(203 − 188)2 

+ 
188 

= 6.48 

 

4. Since  2 = 6.48 exceeds 5.991, the null hypothesis must be rejected; That is, the true 
proportions of shoppers favoring detergent A over detergent B in the three cities are not the 
same. 

 

5.7.1. Contingency Table 
 

A table having r rows and c columns where each row represents c values of a non- 
numerical variable and each column represents r values of a different nonnumerical variable 
is called a contingency table. In such a table, the entries are count data (Positive integers) 
and both the row and the column total are left to chance. Such a table is assembled for the 
purpose of testing whether the row variable and the column variable are independent. 

 
We denote the observed frequency for the cell in the   ℎ rwo and the   ℎcolumn by    , 

the row totals by   ., the column totals by  . , and the grand total, the sum all the cell 

frequencies, by  , With this notation, we estimate the probabilities   .and  .  as 
 

   = 
  . 

        .  = 
 

 .   .    
 

and under the null hypothesis of independenfce we get 
 

 

    =    . .    .  

  . 
.   = 

  

 .  
. 
  

  . .  .  
.   = 

  
 

for the expected frequency for the cell in the   ℎ rwo and the   ℎcolumn.     is obtained by 

multiplying the total of the row to wich the cell belongs by the total of the coulmn to which it 

belongs and then dividing by the grand total. 
 

 

The value of   2 = ∑  

 
  
 =1 

2 
(   −   )   

    
 

Reject the null hypothesis if  2 exceeds  2
 ,( −1)( −1). 

∑ 
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 =1 

5.7.2. Example 

 
Use the data shown in the following table to test at the 0.01 level of significance 

whether a person’s ability in mathematics is independent of his or her interest in statistics. 

 
  Ability in Mathematics 

Low Average High 

Interest 
in 

statistics 

Low 63 42 15 

Average 58 61 31 

High 14 47 29 

 
Solution: 

 
1.  0: Ability in mathemtics and interest in statistics are independent. 

 
 1: Ability in mathematics and interest in statistics are not independent. 

  = 0.01 
 

 

2. Reject the null hypothesis if  2 ≥ 13.277, where  2 = ∑  

 
  
 =1 

2 
(   −   )    

and 13.277 is the 
    

value of  2 ( ) =  2 ( ) =  2 
 ,  −1 ( −1) 0.01, 3−1 (3−1) 0.01,4 

 

3. The expected frequencies for the first row are 120×135 = 45, 
120×150 

= 50, 
120×75 

= 25. 
360 360 360 

 

The expected frequencies for the second row are 150×135 = 56.25, 
150×150 

= 62.5, 

150×75 = 31.25 . 
360 

360 360 

 

The expected frequencies for the fourth row are 90×135 = 33.75, 
90×150 

= 37.5, 

90×75 = 18.75 . 
360 

360 360 

 

 2 = 
(63−45)2 

+ 
(42−50)2 

+ 
(15−25)2 

+ 
(58−56.25)2 

+ 
(61−62.5)2 

+ 
(31−31.25)2 

+ 
(14−33.75)2 

+
 

45 50 25 56.25 62.5 31.25 33.75 
(47−37.5)2 

+ 
(29−18.75)2 

= 32.14.
 

37.5 18.75 
 

4. Since  2 = 32.14 excedds 13.277, the null hypothesis must be rejected; we conclude that 
there is a relationship between a person’s ability in mathematics and his or her interest in 
statistics. 

 

5.7.3. Goodness of Fit 

 
The goodness-of-fit test considered here applies to situtations in which we want to 

determine whether a set of data may be looked upon as a random sample from a population 
having a given distribution. 

 
5.7.4. Example 

 
From the following table, test at the 0.05 level of significance whether the number of 

errors the compositor makes in setting a galley of  type is a random variable having a 
Poisson distribution. 

∑ 
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 =1 

of   . 

Let Us Sum Up 

Number of 
errors 

0 1 2 3 4 5 6 7 8 9 

Observed 
frequencies 

18 53 103 107 82 46 18 10 2 1 

 

Solution: 

 
Since the expected frquencies corresponding to eight and nine errors are less than 5, the 
two classes are combined. 

 
1.  0: Number of errors is a Poisson random variable. 

 1: Number of errors is not a Poisson random variable. 
 

  = 0.05 
 

Number of errors Observed 
frequencies    

Poisson Probabilites 
with   = 3 

Expected 
frequencies    

0 18 0.0498 21.9 

1 53 0.1494 65.7 

2 103 0.2240 98.6 

3 107 0.2240 98.6 

4 82 0.1680 73.9 

5 46 0.1008 44.4 

6 18 0.0504 22.2 

7 10 0.0216 9.5 

8 2 0.0081 3.6 

9 1 0.0038 1.7 
 

2. Reject the null hypothesis if  2 ≥ 14.067, where  2 = ∑  
(  −  )

2 

and 14.067 is the value 
   

2 
0.05,7 

 

3. 

 2 = 
(18−21.9)2 

+ 
(53−65.7)2 

+ 
(103−98.6)2 

+ 
(107−98.6)2 

+ 
(82−73.9)2 

+ 
(46−44.4)2 

+ 
(18−22.2)2 

+
 

21.9 65.7 98.6 98.6 73.9 44.4 22.2 
(10−9.6)2 

+ 
(3−5.3)2 

= 6.83.
 

9.5 5.3 
 

4. Since  2 = 6.83 is less than 14.067, the null hypothesis cannot be rejected, the close 
agreement between the observed and expected frequencies suggest that the Poisson 
distribution provides a “good fit” 

 

In this unit, we studied the tests based on normal, t,  2and F distributions for testing 
of mean, variance and proportions and tests for Independence of attributes and Goodness of 
fit. 
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Glossaries 

Suggested Readings 

Answers to Check Your Progress 

 
 

1. The  2 test is one of the simplest and most widely used test. 
 

2. The range of F-distribution is . 

 
3. The range of t-distribution is . 

 
4. In a   ×   contingency table, the degrees of freedom is _ . 

 

 
Level of Significance: The level of significance is the maximum probability of making a type I 
error. 

 
Two tailed test: When the test of hypothesis is made on the basis of critical region 
represented by both sides of the standard normal curve. 

 
One tailed test: A test of statistical hypothesis, where the alternative hypothesis is one sided. 

 
Critical value: The value of the sample statistic that defines the region of acceptance and 
rejection. 

 

1. Freund. J.E.,” Mathematical Statistics”, Prentice Hall of India, Fifth Edition, 2001. 

 

2. Gupta. S.C. and Kapoor. V. K., “Fundamentals of Mathematical Statistics”, Sultan Chand & Sons, 

Eleventh Edition, 2003. 

 

3. Devore. J. L. “Probability and Statistics for Engineers”, Brooks/Cole (Cengage Learning), First 

India Reprint, 2008. 
 

1. Non-parametric test 

 
2. 1    ∞ 

 
3. – ∞    ∞ 

 

4. (  − 1) × (  − 1) 

Check Your Progress 
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Unit 6 Correlation and Regression Analysis 

 

Unit 7 Partial and Multiple correlation and regression Analysis 

BLOCK III: Correlation and Regression 
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Correlation and Regression Analysis 

 
Structure 

Objectives 

Overview 

6.1. Introduction 
 

6.2. Linear Regression 
 

6.3. Method of Least Squares 
 

6.4. Normal Regression Analysis 
 

6.5. Normal Correlation Analysis 
 

6.6. Examples 

Let us Sum Up 

Check Your Progress 

Glossaries 

Suggested Readings 

Answer To check your progress 

Unit – 6 
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Overview 

6.1. Introduction 

6.2. Linear Regression 

 
 

After Studying this Unit, the student will be able to 
 

 Explain the relationship between two variables and the relationship between 
the average values of two variables. 

 

 Relationship between correlation analysis and regression analysis. 
 

 Solving problems in correlation and regression analysis. 
 

In this unit, we will study the concept of correlation and Regression analysis. That is, 
correlation is the relationship between two variables and regression means relationship 
between the average values of two variables. Regression is very useful in estimating and 
predicting the average value of one variable for a given value of the other variable. 

 

 

The main objective of many statistical investigations is to establish relationships that 
make it possible to predict one or more variables in terms of others. Thus, studies are made 
to predict the potential sales of a new product in terms of its price, a patient’s weight in terms 
of the number of weeks he or she has been on a diet, family expenditures on entertainment 
in terms of family income etc. 

 
If we are given the joint distribution of two random variables X and Y, and X is known 

to take on the value x, the main objective of bivariate regression is that of determining the 

conditional mean    |  , that is, “ the average value of Y for the given value of X. In Problems 

involving more than two random variables, that is, in multiple regression, we are concerned 
with quantities such as    |  ,  , the mean of Z for given values of X and Y,    |  , ,  , the 

mean of W for given values of X, Y, Z and so on. 
 

6.1.1. Bivariate Regression (Regression equation) 
 

If  ( ,  ) is the value of the joint density of two random variables X and Y, bivariate 

regression consists of determining the conditional density of Y, given X = x and then 
evaluating the integral 

∞ 

   |  =  (  |  ) = ∫    .  ( | )   
−∞ 

The resulting equation is called the regression equation of Y on X. Alternately, the 
regression equation of X on Y is given by 

∞ 

   |  =  (  |  ) = ∫    .  ( | )   
−∞ 

 

The Linear regression equation is of the form    |   =   +    , where   and   are 

constant, called the regression coefficients. 

Objectives 
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1 1 

Let us express the regression coefficients   and   in terms of some of the lower 
moments of the joint distribution of X and Y, that is, in terms of  ( ) =  1,  ( ) =  2, 
   ( ) =  2,    ( ) =  2, and    ( ,  ) =  12. Then, also using the correlation coefficient 

1 2 

  = 
  12 . 
 1 2 

 

6.2.1. Theorem 

 
If the regression of Y on X is linear, then   =   

 

+   
 2 (  −   ) and if the 

  |   2 

regression of X on Y is linear, then   =   +   
 1 (  −   ) 

 1 
1 

 

Proof: 
 

Since    |   =   +    

 
∫  .  (  |  )   =   +    

  |   1  2 
2 

 

and if we multiply the expression on both sides of this equation by  ( ), the corresponding 
value of the marginal density of X, and integrate on x, we obtain 

 
∫ ∫  .  (  | ) ( )      =   ∫  ( )   +   ∫  .  ( )   

 
 2 =   +   1 

 

Since  (  | ) ( ) =  ( ,  ). If we had multiplied the equation for    |   on both sides by x. 

g(x) before integrating on x, we obtain 

 
∫ ∫    .  ( ,  )     =   ∫  .  ( )   +   ∫  2.  ( )   

 
 (  ) =   1 +   ( 2) 

Solving  2 =   +   1 and  (  ) =   1 +   ( 2) for   and   and using 

 (  ) =  12 +  1 2 and  ( 2) =  2 +  2, we get 
1 1 

 

  =   − 
 12 .   =   −   

 2 .   and   = 
 12 =   

 2
 

2  2 1 2  1 
1  2  1 

 

The linear regression equation of Y on X as   =   +   
 2 (  −   ) 

  |   2  1 
1 

 

Similarly we prove the regression equation of X on Y is linear,   =   +   
 1 (  −   ) 

 

6.2.2. Remark 

  |   1  2 
2 

 

If the regression equation is linear and   = 0 then   |  does not depend on x or   |  
does not depend on y. When   = 0 and hence  12 = 0, the two random variables X and Y 

are uncorrelated and we can say that if two random variables are independent, they are also 

uncorrelated, but if two random variables are uncorrelated, they are not necessarily 

independent. 
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(   2   

(   2   

  

 

 
 

6.3.1. Least Squares Estimate 
 

If we are given a set of paired data {(  ,   );   = 1, 2, … ,  }. The least squares estimates 
of the regression coefficients in bivariate linear regression are those that make the quantity 
  = ∑      2 = ∑    [   −      +    )]   a minimum with respect to     and  . 

 =1      =1         
 

6.3.2. Theorem 
 

Given the sample data {(  ,   );   = 1,2, … ,  }, the coefficients of the least squares line 

   =    +     are     = 
     

and     =    −   .  . 
    

 

Proof: 

 
  = ∑      2 = ∑    [   −      +    )]   a minimum with respect to     and  . 

 =1      =1         
 

Differentiating partially with respect to     and     we have 
 

    
= ∑ 

 
 

(−2)[  − (   +     )] and 
     =1     

 

  
   =   ∑(−2)  [  

 

 
− (   +     )] 

     
 =1 

      

 

For the finding the minimum value,    = ∑  
 

(−2)[  − (   +     )] = 0 and 

  
   =   ∑(−2)  [  

 

    
 

− (   +     )] = 0 

 =1     

     
 =1 

      

 

Therefrore we have the system of normal equations 
 

    

∑     =     +    ∑    

 =1  =1 
 

      

∑       =    ∑    +    ∑  2 

 =1  =1  =1 

 
 

Solving this system of equations, we have, the least squares estimate of   is 
 

 (∑         ) − (∑        )(∑    ) 
   =  =1  =1  =1  

 (∑     2) − (∑  2   ) 
 =1      =1     

 

Then the least sqaures estimate of   is 
 

∑        −     ∑        
    =      =1  =1  

  

6.3. The Method of Least Squares 
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By solving the first of the two normal equations for   . 

Therefore     =    −   .    

Let us consider 
 

      2 

  =  ∑(  −   )2 = ∑  2 − 
1 
(∑   ) 

 

     

 =1 

  

 =1 
    

 =1 
 

      2 

  =  ∑(  −   )2 = ∑  2 − 
1 

(∑    ) 
 

     

 =1 

  

 =1 
    

 =1 
 

        
1 

    = ∑(   −   )(   −   ) = ∑      − 
  

(∑    ) (∑   ) 
 =1  =1 

 
 (∑         ) − (∑        )(∑    ) 

 =1  =1 

   =
  =1  =1  =1  

 (∑     2) − (∑  2   ) 

 

   = 
    

    

 =1      =1     

 

 
 

When we analyse a set of paired data {(  ,   ): 1,2, … ,  } by regression analysis, we 

look upon the    as constants and the    as values of corresponding independent random 
variables. For example, If we want to analyze data on the ages and prices of used cars, 
treating the ages as known constants and the price as values of random variables, this is a 
problem of regression analysis. 

 
Assume that the for each fixed    the conditional density of the corresponding random 
variable    is the normal density 

1 1   −( +   ) 2
      − [ ] 

 (  |  ) =      2   

 √2  
; −∞ <    < ∞ 

Where  ,       are the same for each  . Given a random sample of such paired data, 
normal regression analysis concerns itself mainly with the estimation of   and the regression 
coefficients  and  , with tests of hypothesis concerning these three parameters, and the 

predictions  based  on  the  estimated  regression  equation     =    +    ,  where       and       are 
estimates of   and  . 

 
6.4.1. To Obtain maximum likelihood estimates of the parameters  ,      . 

 
Differentiate partially the likelihood function (or its logarithm, which is easier) with respect to 

 ,      , equate the expressions to zero, we get 
 

  1      = − .      − .    2  − 
 

  

∑[  − (  +    )]2 
 

2 2 2 
    

 =1 

6.4. Normal Regression Analysis 
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(  )    ( )    2 

  
      1 

    
= 
 2 ∑[   − (  +    )] = 0 

 =1 

  
      1 

     
= 

 2 ∑   [   − (  +    )] = 0 
 =1 

      
 

 

  
  1 ∑[ ]2 

 
  

     
= − 

  
+ 
 3 

 
 =1 

   − (  +    ) = 0 

Since the first two equations are equivalent to the two normal equations. The maximum 

likelihood estimates of         are identical with the least squares estimate of the above 

theorem. 
 

If we substitute these estimates of         into the equation obtained by       to zero, we get 
   

the maximum likelihood estimate of   is 
 

 

  
1    = √   ∑[  

 
2 − (   +    )] 

      

 =1 

 

   = √
1 

(  −   .   ) 
        

 

Let us now investigate their use in testing hypotheses concerning         and in 

constructing confidence intervals for these two parameters. 

To study the sampling distribution of   , let us write 

  ∑  
 

(  −   )(   −   )     −    
    = 

   = 
    

 =1     

    
= ∑ ( 

 =1 

  

    
)    

which is a linear combination of the n independent normal random variables   .      itself has 

a normal distribution with the mean 

    

 (  ) = ∑ [
    −   

]   (  |  ) = ∑ [
    −   

] (  +    ) =   
 

 =1 
    

     
 =1 

    
 
 

and the variance 

    −       −   
 

 2 
                = ∑ [ ]       |  = ∑ [ ]   = 

 

 
 =1 

6.4.2. Result 

    
     

 =1 
        

Under the assumptions of normal regression analysis,     
2

 

 2 

 
is a value of a random 

variable having the chi-square distribution with n-2 degree of freedom. Furthermore, this 

random variable and     are independent. 
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2 

      

  

 =1 

1 2 

6.5. Normal Correlation Analysis 

6.4.3. Result 

Under the assumptions of normal regression analysis, 

     −   
 ( ) 

  =        /√      =  
  −  

√( −2)    

is a value of a random variable having the t distribution withn - 

√
   2

/( −2) 
  

2 of freedom. 

 

6.4.4. Result 

     

 

Let Σ  be the random variable whose variable are   , then 

 
 

 
  (−   

2
, −2 

   −   
< 

Σ 
 

(  − 
2)    

 
 

  

 
<    

2
, −2 

 

) = 1 −   

By Result 2, we write this as 

 
  

  [   −     
     

. Σ√ <   <   +    
     

. Σ√ ] = 1 −   
2

, −2 (  − 
2)    

2 
, −2 (  − 2)    

 

6.4.5. Result 

 
Under the assumptions of normal regression analysis, 

   −    

 
 

     
.  σ√ <   <   +    

 
 

     
.  σ√ 

2
, −2 (  − 2)    2

, −2 (  − 2)    

Is a (1 −  )100% confidence interval for the parameter  . 
 

Assume   that   the        are   fixed   constants   analyzing   the   set   of   paired   data 

{(  ,   ): 1,2, … ,  }, where   ′  and   ′  are values of a random sample from a bivariagte 
normal population with the parameters  1,  2,  1,  2    . 

 
6.5.1. To estimate the parameters   ,   ,   ,        by the method of maximum 
likelihood 

 

we shall have to maximize the likelihood   = ∏   (  ,   ) 
 

           
      

are equated to zero, we get 
  1 

 
∑  

  2 

 
(  − 1) 

 

  ∑ 
 

 

(  − 2) 

 

  ∑ 
 

 

(  − 1) 

 
 

∑  

 

(  − 2 ) 

−    =1 

 2 +  =1 

 1 2 
= 0 and −  =1 

 1 2 
+  =1 

 2 = 0 

 

Solve these two equations for  1 and  2, we get the maximum likelihood estimates of these 

two parameters are   1 =     and   2 =    are the respective sample means. 
 

        
, 
       

 

    
       

are equated to zero and substituting   
 

=    and   =    , we get 
  1 

 

  2    1 2 

√ 
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6.6. Examples 

∑  (  −  )2 ∑  (  −  )2 ∑  (  −  )(  −  ) 

  1 = √  =1 

  
,    2 = √  =1 

  
and    =  =1 

 

√∑      (  −  )2√∑      (  −  )2 
 =1  =1 

The estimate    is called the sample correlation coefficient, is usually denoted by  . 

 

6.5.2. Result 

 
If {(  ,   ): 1,2, … ,  } are the values of a random sample from a bivariate population 

then   =
         

 
√   .    

 

 

6.6.1. Given the two random variables X and Y that have the joint density 

 ( ,  ) = {  .  − (1+ ),       > 0       > 0 
0,      ℎ    

Find the regression equation of Y on X and sketch the regression curve. 

Solution: 

Integrating out y, we find that the marginal density of X is given by 

 

 ( ) = { 
 −        > 0 

0      ℎ    
 

and hence the conditional density of Y given X = x is given by 
 

 

 (  | ) = 
 ( ,  ) 

= 
 ( ) 

 .  − (1+ ) 
 

 

 −  

 
=  .  −   

 

for   > 0 and  (  | ) = 0 elsewhere, which we recognize as an exponential density with   = 
1. Hence, by 
  

∞
 

   |   = ∫    .  .  −      
0 

 

The mean and the variance of the exponential distribution are given by   =   and  2 =  2, 

so that the regression equation Y on X is    |   = 
 

The corresponding regression curve is shown the following figure 

1 
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6.6.2. If X and Y have the multinomial distribution 

   ( ,  ) = ( ) .   .   (1 −   −   ) − −  

 ,  ,   −   −   1 2 1 2 
for   = 0, 1, 2, …  , and   = 0, 1, 2, …  , with   +   ≤  , find the regression equation of Y on X. 

Solution: 

The Marginal distribution of X is given by 
 

 −  
  ( ) ∑ 

 
   (  

) − −      (
  ) −  

    = 
 =0 

(
 ,  ,   −   −  

)  1 .  2
 

1 −  1 −  2 = (
 

)  1 . 1 −  1 

 

for   = 0, 1, 2, …  , which we recognize as a binomial distribution with the parameters n and 

 1. Hence, 
 

 ( ,  ) ( − )   (1 −  1 −  2) − −  

 (  | ) = 
  

= 
 ( ) 

2 

(1 −  1) −  
 

for   = 0, 1, 2, …  , 
 

  −   

 

 
 2 

 

  1 −  1 −  2 

 
 
 
 − −  

 (  | ) = ( 
  

) ( )  ( 
1 −  1 

) 
1 −  1 

 

The conditional distribution of   given   =   is binomial distribution with parameters   − 
  and  2 , so that the regression equation of Y on X is   = 

( − ) 2 

1− 1   |   1− 1 
 

Note: In the Previous example, if we let X be the number of times that an even number 

comes cup in 30 rools of a balanced die and Y be the number of times that the reulst is a 5, 
then the regression equation becomes 

 

 
   |   

(  −  ) 2 
= = 

1 −  1 

(30 −  ) 
1

 
6 = 

1 − 
1

 
2 

1 
(30 −  ) 

3 
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Because there are equally likely possibilities 1, 3 or 5, for each of the 30 −   outcomes that 
are not even. 

 
6.6.3. If the joint density of  1,  2 and  3 is given by 

 

 ( 1,  2,  3) 
( 1 +  2) − 3 ,     0 <  1 < 1, 0 <  2 < 1 
0      ℎ    

 

Find the regression equtaion of  2 on  1 and  3. 

Solution: 

The Joint marginal density of  1 and  3 is given by 
 

 ( 1,  3) = {( 1 + 

1 
)   

2 

 
− 3 

 

    0 <  1 < 1,  3 > 0 

0      ℎ    
 

 
∞  (  ,   ,   ) 

 
1    (  

 
+   )   + 

2
 
 

  = ∫   .
 1 2 3   

     = ∫  
  2 1 2   

     = 
1 3

 
 

 2| 1, 3 
−∞   2  ( 1,  3) 

2 1 
0  1 + 

2
 

2 2 1 + 1 

 

6.6.4. Consider the following data on the number of hours that 10 persons studies for a 

French test and their scores on the test: 
 

Hours 
studied 
x 

4 9 10 14 4 7 12 22 1 17 

Test 
score 
y 

31 58 65 73 37 44 60 91 21 84 

 

(a) Find the equation of the least squares line that approximates the regression of the test 

scores on the number of hours studied. 

(b) Predict the average test score of persons who studied 14 hours for the test. 

Solution: 

(a)   = 10, ∑   = 100, ∑  2  = 1,376, ∑   = 564, ∑    = 6,945,     = 
∑    

= 
564  

= 56.4, 
 
 

   = 

 
∑   

 
 

  

 
100 

= 
10 

 
 

= 10 

  10 

  = ∑  (  −   )2 = ∑   2 − 
1 
(∑  

 

  )2 = 1,376 − 
1 

(100)2 = 376 
 

    =1    =1         =1      10 

 

    
 

    
1 1 

     = ∑(   −   )(   −   ) = ∑      − 
  

(∑    ) (∑   ) = 6,945 − 
10 

(100)(564) = 1,305 
 =1  =1  =1  =1 

 

    = 
     

= 
1,305  

= 3.471 and     =    −   .     = 56.4 − 3.471(10) = 56.4 − 34.71 = 21.69 
    376 

= { 
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Therefore, the equtaion of the least squares is     = 21.69 + 3.471  

(b) Substituting   = 14 into the equation obtained in part (a), we get 

   = 21.69 + 3.471(14) = 70.284 

6.6.5. Consider the following data on the number of hours that 10 persons studies for a 

French test and their scores on the test: 
 

Hours 
studied 
x 

4 9 10 14 4 7 12 22 1 17 

Test 
score 
y 

31 58 65 73 37 44 60 91 21 84 

Test the null hypothesis   = 3 against the alternative hypothesis   > 3 at the 0.01 level of 

significance. 

Solution: 

1.  0:   = 3 

 1:   > 3 

  = 0.01 

2. Reject the null hypothesis if   ≥ 2.896, where 2.896 is the value of  0.01,8 from the 

statistical table. 

3. Caculate   = 10, ∑   = 100, ∑  2  = 1,376, ∑   = 564, ∑    = 6,945,    = 
∑    

= 
564  

= 56.4, 

∑  2 = 36,562. 

    

 
 

  2 

  10 

  =  ∑(  −   )2 = ∑  2 − 
1 

(∑    ) 
 

= 36,562 − 
1 

(564)2 = 4,752.4 
 

     

 =1 

  

 =1 
    10 

 =1 
 

        
1 1 

    = ∑(   −   )(   −   ) = ∑      − 
  

(∑    ) (∑   ) = 6,945 − 
10 

(100)(564) = 1,305 
 =1 

 

   = 
    

= 
1,305 

= 3.471 

 =1  =1  =1 

    376 

 
  

   = √
1 

[  − (  )(   1  
)] = √ [4,752 − (3,471)(1,305)] = 4.720 

        10 

 
 

  

 
  = 

   −   
√

(  − 2)    3.471 − 3 
= 

8.376 
√ 

 
= 1.73 

     4,720 10 
 

since   = 1.73 is less than 2.896, the null hypothesis cannot be rejected; we cannot conclude 

that one the average an extra hour of study will increase the score by more than 3 points. 

6.6.6. Consider the following data on the number of hours that 10 persons studies for a 

French test and their scores on the test: 
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Hours 
studied 
x 

4 9 10 14 4 7 12 22 1 17 

Test 
score 
y 

31 58 65 73 37 44 60 91 21 84 

Construct a 95% confidence interval for  . 

Solution: 

  = 10, ∑   = 100, ∑  2  = 1,376, ∑   = 564, ∑    = 6,945,    = 
∑    

= 
564  

= 56.4, 

 

 
   = 

 
∑   

 
 

  

 
100 

= 
10 

 
 
= 10 

  10 

 

  = ∑  (  −   )2 = ∑   2 − 
1 
(∑  

 

  )2 = 1,376 − 
1 

(100)2 = 376 
 

    =1    =1         =1      10 
 

      2 

  =  ∑(  −   )2 = ∑  2 − 
1 

(∑    ) 
 

= 36,562 − 
1 

(564)2 = 4,752.4 
 

     

 =1 

  

 =1 
    10 

 =1 
 

        
1 1 

    = ∑(   −   )(   −   ) = ∑      − 
  

(∑    ) (∑   ) = 6,945 − 
10 

(100)(564) = 1,305 
 =1 

 

   = 
    

= 
1,305 

= 3.471 

 =1  =1  =1 

    376 

 
  

   = √
1 

[  − (  )(   1  
)] = √ [4,752 − (3,471)(1,305)] = 4.720 

        10 

 

 0.025,8 = 2.306 

 
  

   −    
     

.  σ√ <   <   +    
     

.  σ√ 
2

, −2 (  − 2)    2
, −2 (  − 2)    

 
 

  

10 
3.471 − (2.306)(4.720)√ 

(
 

10 

) 
<   < 3.471 + (2.306)(4.720) √ 

8 376 8(376) 

 

2.84 <   < 4.10 
 

6.6.7. Suppose that we want to determine on the basis of the following data whether there is 

a relationship between the time, in minutes, it takes a secretary to compute certain form in 
the morning and in the late in the late afternoon: 

Morning 
x 

8.2 9.6 7 9.4 10.9 7.1 9 6.6 8.4 10.5 

Afternoon 
y 

8.7 9.6 6.9 8.5 11.3 7.6 9.2 6.3 8.4 12.3 

Compute and interpret the sample correlation coefficient. 
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Solution: 
 

From the data we get 

 
  = 10, ∑   = 86.7, ∑  2 = 771.35, ∑   = 88.8, ∑    = 792.92, ∑  2 = 819.34 

 
      2 

  =  ∑(  −   )2 = ∑  2 − 
1 
(∑   ) 

 

= 771.35 − 
1 

(86.7)2 = 19.661 
 

     

 =1 

  

 =1 
    10 

 =1 
 

      2 

  =  ∑(  −   )2 = ∑  2 − 
1 

(∑    ) 
 

= 891.34 − 
1 

(88.8)2 = 30.796 
 

     

 =1 

  

 =1 
    10 

 =1 
 

        
1 1 

    = ∑(   −   )(   −   ) = ∑      − 
  

(∑    ) (∑   ) = 792.92 − 
10 

(86.7)(88.8) 
 =1  =1  =1  =1 

 

    = 23.024 
 

    23.024 
  =   =   = 0.936 

√   .     √(19.661)(30.796) 
 

Result: The confidence intervals for   and tests concerning   on the statistic 1 .    
1+  

whose 
2 

distribution can be approximately normal with mean 1    
1+  

and the variance 1 
1−  

. Thus, 

 
1 
   

1+  
− 

1 
   

1+  

 

   − 3 

2 
 
 (1 +  )(1 −  ) 

1−   −3 

2 
  = 

1−  2 

1 
 

1−  √ 
= .    

2 (1 −  )(1 +  ) 
√ −3 

 

Using this approximation, we can test the null hypothesis   =  0 against the alternative 
hypothesis. 

 

6.6.8. Suppose that we want to determine on the basis of the following data whether there is 

a relationship between the time, in minutes, it takes a secretary to compute certain form in 
the morning and in the late in the late afternoon: 

 
Morning x 8.2 9.6 7 9.4 10.9 7.1 9 6.6 8.4 10.5 

Afternoon y 8.7 9.6 6.9 8.5 11.3 7.6 9.2 6.3 8.4 12.3 

 
Test the null hypothesis   = 0 against the alternative hypothesis   ≠ 0 at the 0.01 level of 
significance. 

 
Solution: 

 
1.  0:   = 0 
 1:   ≠ 0 
  = 0.01 

 

2. Reject the null hypothesis if   ≤ −2.575      ≥ 2.575, where  = √
 −3 

.    
1+ 

 
2 1−  
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Let Us Sum Up 

Check your Progress 

Glossaries 

Suggested Readings 

 
 

3. Substituting   = 10       = 0.936, we get,   = √
7 

.    
1.936 

= 4.5 
2 0.064 

 

4. Since   = 4.5         2.575, the null hypothesis must be rejected. 
We conculde that there is a linear relationship between the time it takes a secretary to 
complete the form in the morning and in the late afternoon. 

 

In this unit we discussed the Normal Correlation analysis, linear regression, Method 
of least squares and normal regression analysis are illustrated with numerical examples. 

 

1. The Coefficient of correlation lies between . 

 
2. The two-regression linear always intersect at their . 

 
3. The regression lines become identical if . 

 

 
Correlation: The relationship between two variables such that a change in one variable 
results in corresponding greater or smaller change in the other variable. 

 
Regression: It shows a relationship between the average values of two variables. It is very 
helpful in estimating and predicting the average value of one variable for a given value of the 
other variable. 

 
Linear Regression: The relationship between two variables x and y is linear. 

 
Method of Least squares: It is a mathematical device. It is used for obtaining the equation of 
a curve which fits best to a given set of observations. 

 
 

 
1. Freund. J.E.,” Mathematical Statistics”, Prentice Hall of India, Fifth Edition, 2001. 

 

2. Gupta. S.C. and Kapoor. V. K., “Fundamentals of Mathematical Statistics”, Sultan Chand & Sons, 

Eleventh Edition, 2003. 

 

3. Devore. J. L. “Probability and Statistics for Engineers”, Brooks/Cole (Cengage Learning), First 

India Reprint, 2008. 

 

4. Veerarajan. T, “Fundamentals of Mathematical Statistics”, Yee Dee Publishing Pvt. Ltd, 2017. 
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Overview 

7.1. Introduction 

7.2. Yule’s Subscript notation 

 
 

After Studying this Unit, the student will be able to 
 

 Understand the Yule’s notation 
 

 Explain the concept of plane of regression, properties of residuals, coefficient of 
partial and multiple correlation. 

 

 Demonstrate the problems in partial correlation, multiple correlation and multiple 
regression. 

 

In this unit, we will study the concept of Partial and Multiple Correlation and 
Regression Analysis. That is, in partial correlation, the relationship between dependent 
variables and one of the independent variables by excluding the effect of other variables and 
in multiple correlation the effect of all the independent factors on a dependent factor. 

 

Simple correlation that deals with the degree of relationship between two variables, 
such as heights and weights of individuals, supply and demand of a commodity, ages of 
husbands and wives and so on. But there are situations when there is interrelation between 
many variables and the value of one variable may be influenced by other variables. For 
example, the yield of crop in a year depends upon fertility of soil, amount of rainfall, type of 
manure used, average temperature and so on. When we are interested in knowing the 
combined effect group of variables upon a variable not included in that group, we resort to 
the study of multiple correlation and multiple regression. 

 
The simple correlation between two variables in a group when the influence of other 

variables in the group has been eliminated from both is called partial correlation. For 
example, the correlation between the heights and weights of boys of the same age and from 
families of the same income group is partial correlation. Here the influence of the age factor 
and the income factor of the family have been eliminated as they are kept constant and so 
the heights and weights are the variable factors. Even if it is not possible to eliminate the 
entire influence of variables other than the variables whose partial correlation is measured, 
we can reduce the influence by easily eliminating the linear effect of those variables. Thus, 
the simple correlation and regression between two variables in a group, when the linear 
effect of other variables in the group eliminated, are called partial correlation and partial 
regression. 

 

We shall study the group of three variables only, through the meanings and 
arguments will apply to the case of n variables also. 

 
To find the equation of the regression plane x on y and z, we shall assume that 
 1 =  12.3 2 +  13.2 3 (1) 

Objectives 
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1.23 

7.3. Plane of Regression 

assuming that the variables have been measured from their respective means. The  ′  are 

called partial regression coefficients. In  12.3, the first suffix 1 preceding the dot indicates the 
dependent variable, the second suffix 2 preceding the dot indicates the variables to which 
the coefficient  12.3 is attached and the third suffix 3 succeeding the dot indicates the 
remaining variable.   Similar meanings are attached to  13.2. The suffixes preceding the dot 
are called primary subscripts and those succeeding the dot are called secondary subscripts. 

 
If we consider n variables  1,  2, … ,    then the equation of the regression plane 

 1     2, … ,   will be assumed as   1 =  12.24…  2 +  13.24…  3 + ⋯ +  1 .23….( −1)  . The 

order of the primary subscripts cannot be altered, but the secondary subscripts can be 

written in any order. Note that  12.34 =  12.43;      12.34 ≠  21.43. 

The order of any regression coefficient is the number of secondary subscripts in its 
representation. Thus  12 is the regression coefficient of order zero is called simple or total 

regression coefficient. 12.3 is of order 1 and  12.34….  is of order (  − 2). The quantity  12.3 is 
defined as  12.3 =  1 −  12.3 2 −  13.2 3 is called the residual of  1, given by the plane of 

regression (1) and is said to be of order 2. Residual of  1 is also called the error of estimate 
of  1. The quantity  1 −  12.3 =  12.3 2 +  13.2 3 is called the estimate of  1 and it is denoted 
by  1.23     1(23). 

 

 

Consider a trivariate distribution consisting of three random variables 1,  2,  3. 

Let the equation of the plane of regression of  1     2      3    
 1 =   +  12.3 2 +  13.2 3  (1) 

where the variables are assumed to have been, measured from their respective means 
namely  [ 1] = 0,  [ 2] = 0,  [ 3] = 0 (2) 

 
Taking expectations of both sides of (1) and (2) and using (2), we get   = 0. 

 
(1) becomes  1 =  12.3 2 +  13.2 3   (3) 

 
The constants  12.3 and  13.2 are determined by the principle of least squares which states 
that if the (3) is to be the equation of the best fitting regression plane for a given data 
consisting of N sets of corresponding values  1,  2,  3, the sum of the squares of the 
residuals should be a minimum. 

 
The best estimates of  12.3 and  13.2 are obtained by minimizing 

  = ∑  2 = ∑( 1 −  12.3 2 −  13.2 3)2 

 
The normal equations for getting the best estimates of  12.3 and  13.2 are 
   

 

  12.3 

= 0 and       = 0 
  13.2 

 

−2 ∑  2( 1 −  12.3 2 −  13.2 3) = 0 and −2 ∑  3( 1 −  12.3 2 −  13.2 3) = 0 

∑  1 2 −  12.3 ∑  2 −  13.2 ∑  2 3 = 0 (4) and ∑  1 3 −  12.3 ∑  2 3 −  13.2 ∑  2 = 0 (5) 
2 3 

 

Since the variables are measured from their respective means, 
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2 

3 

∑  1 2 

∑     =    (  ,   ) =        and   = 
   ( 1, 2) 

= 
(    

      
) 

 

1   2 1 2 12  1   2 12  1 2
  1 2 

 

∑  1 3 

∑     =    (  ,   ) =        and   = 
   ( 1, 3) 

= 
(    

      
) 

 

1   3 1 3 13  1   23 13  1 3
  1 3 

 

Now,    is the standard deviation of   . 

From (4) we have 

  12 1 2 =   12.3 
2 +   13.2 23 2 3 

 12 1 =  12.3 2 +  13.2 23 3 (6) 
 

From (5) we have 
 

  13 1 3 =   12.3 23 2 3 +   13.2 
2

 

 13 1 =  12.3 23 2 +  13.2 3 (7) 
 

Solving equations (6) and (7) by Cramer’s rule 
 

  = |
 12 1  23 3| ÷ | 

 2  23 3| 12.3  13 1  3  23 2  3 
 

 1 
 

 

 12  23 1  23 

 12.3 = 
  

Similarly 

{| 13 1 | ÷ | 23 1 |} (8) 

 

  = 
 1 

{| 
1  12| ÷ | 

1  23|} (9) 
13.2  3  23  13  23 1 

 11  12  13 

Consider the determinant ∆= | 21  22  23| 
 31  32  33 

 

where     is the simple correlation between    and   ;   = 1, 2, 3 

Let the cofactor of     in ∆ be denoted by    . 

 
Using these notations and definitions in (8) and (9) we have 

 

  = − 
 1   . 

 12
 and   = − 

 1   . 
 13 since   =   

12.3  2  11 
13.2  3  11 

      

 

Using these values of  12.3 and  13.2 in (3), the required equation of the regression plane of 

 1 on  2 and  3 becomes 
 

 1 
 1 = (− 

 
 

 12 
. 
 11 

 1 
)  2 + (− 

 
 

 13 
. 
 11 

 

)  3 

 
 1 

 
 

 1 

 2 
 11 + 

 
 

 3 
 12 + 

 
 

 

 13 = 0 

2 

2 3 

2 3 



91 
 

 1 
 

 

|  1 

 2 
 

 

 2 

 3 
 

  3 | = 0 
 21  22  23 

 31  32  33 

 
 

7.3.1. Note 

 
1. The equation of the regression plane of     on     and   

 

 
is  1   

 
 

+ 
 2   

 
 

+ 
 3   = 0 

2 3 1  1  
21  2  

22  3  
23 

 

2. The equation of the regression plane of     on     and   is  1   + 
 2   + 

 3   = 0 
3 1 2  1  

31  2  
32  3  

33 

 

3. If the variables  1,  2,  3 are not measured from their respective means, the equation of 
the regression plane of   on   and   is

 1−  1  
 

+ 
 2−  2  

 
+ 

 3−  3   = 0
 

 

That is 

 

 
| 

1 2 
 
 
 
 
 

| = 0 

3  1 
11  2 

12  3 
13 

 

 

4. If we consider a multivariate distribution consisting of n random variables  1,  2, … ,   , the 
equation of the regression plane of  1     2, … ,   will be assumed as  1 =  12.24…  2 + 
 13.24…  3 + ⋯ +  1 .23….( −1)   and it is denoted in determinant notation as 

   
… 

   
…  2  

= 0
 

 

… 
  1 

 

… 
  2 

 

… 
  3 

…  3  | 
… … 
…     

 
 

 
 

7.4.1. The sum of the products of any variable with every residual is zero, provided the 
subscript of the variable occurs among the secondary subscripts of the residual. 

 

Proof: In the derivation of the equation of the regression plane of  1 on  2 and  3 in a 
univariate distribution, the normal equations for getting  12.3 and  13.2 are 

 
∑  2( 1 −  12.3 2 −  13.2 3) = 0 

 
∑  2.  1.23 = 0   (1) and 

 
∑  3( 1 −  12.3 2 −  13.2 3) = 0 

 
∑  3.  1.23 = 0   (2) 

7.4. Properties of Residuals 

 1 −   1   2 −   2   3 −   3 

 1 
 21 

  2 
 22 

  3 
 23 

 31   32   33 

 

 1  2  3 

 1  2  3 
 21  22  23 

| 31  32  33 
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1.23 

1.23 

From (1) and (2), the sum of the products of any variable with every residual is zero. 
 

Similarly, From derivation of the equation of the regression plane of  2 on  3 and  1 , we get 
∑  1.  2.31 = 0 and ∑  3.  2.31 = 0 

From derivation of  the equation of the regression plane of  3 on   1 and  2 , we get 
∑  1.  3.21 = 0 and ∑  1.  3.21 = 0 

7.4.2. The sum of the products of two residuals is unaltered, if we omit from one of the 
residuals, any or all the secondary subscripts which are common to those of the other. 

 
Proof: In a trivariate distribution, the residual  1.2 is given by  1.2 =  1 −  12 2, where  1.2 is 
got from  1.23 by omitting 3 and the residual  1.23 =  1 −  12.3 2 −  13.2 3 

 
Now, 

 

∑  1.23 .  1.2 = ∑  1.23( 1 −  12 2) = ∑  1.23 1 since ∑  2.  1.23 = 0 (by above property) 

Also 

∑  1.23 .  1.23 = ∑  1.23( 1 −  12.3 2 −  13.2 3) = ∑  1.23 1 (by above property) 

 

7.4.3. The sum of the products of two residuals is zero, if all the subscripts (primary and 

secondary) of one residual occur among the secondary subscripts of the order. 
 

Proof: 

 
Consider 

 

∑  1.2 3.12 = ∑( 1 −  12 2) 3.12 = ∑  1 3.12 −  12 ∑  2 3.12 = 0 −  12 × 0 = 0 (by property 1) 

7.4.4. The variance of the residual of a variable given by the plane of regression can be 
expressed in terms of the variance of the variable itself. That is,  2 = 

∆
  2, in a trivariate 

 

distribution. 

Proof: 

 2 = 
1 
∑  2 

 

1.23  11  
1

 

1.23   1.23 

 
   2 = ∑  2 

1.23 1.23 

 

   2 = ∑  1.23.  1.23 = ∑  1 1.23 , by property 2 

 
   2 = ∑  1( 1 −  12.3 2 −  13.2 3) 

 
   2 = ∑  2 −  12.3 ∑  1 2 −  13.2 ∑  1 3 

1.23 1 

 

   2 =   2 −  12.3  12 1 2 −  13.2  13 1 3 
1.23 1 
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2 12 13  

23 

1 

1 

 2 =  2 −  12.3 12 1 2 −  13.2 13 3 
1.23 1 

 

 2 =  2 + 
 12 1 

  
 
    

 13 1 +     
1.23 1 

 
 

 2 

 11 2 
12  1   2  11 3  

13  3 

 
∆ 

 2 =    1  (      +       +         ) =  2 
 

1.23  11 
11   11 12   12 13   13  11   

1
 

 

7.4.5. Note 
 

1.  2 = 
∆  
 2 
 

 ,           
 
  

 11  12  13 …  1  

 21  22  23 …  2  
2.  2 = 

∆
  2 where ∆=  31  32  33 …  3  

1.23…   11  
1

 
| 
… 
  1 

… 
  2 

… 
  3 

| 
… … 
…     

 

 
 

The simple correlation coefficient between  1 and the totality of all the other variables 

 2,  3, … ,    is called the coefficient of multiple correlation between  1 and ( 2,  3, … ,   ) and 
it is denoted by  1.23…  or  1(23… ). 

 
The simple correlation between  1 and the estimate of  1 in terms of  2 and  3 

namely,  1.23 is  1.23 for a trivariate distribution. 

7.5.1. Multiple correlation coefficient in terms of simple correlation coefficients 
 

In a trivariate distribution 
 

  
2 +  2 − 2 12 23 31 

  = 
1.23 1 −  2 

 

   ( 1,  1.23) =    ( 1,  1 −  1.23) 
 

   ( 1,  1.23) =    ( 1,  1) −    ( 1,  1.23) 
 

   ( 1,  1.23) =  2 −  ( 1.  1.23) since  ( 1) =  ( 1.23) = 0 

   ( 1,  1.23) =  2 −  ( 1.23.  1.23) by property 2 of residuals 

   ( 1,  1.23) =  2 −  2 (1) 
1 1.23 

 

   ( 1.23) =    ( 1 −  1.23) 
 

   ( 1.23) =    ( 1) +    ( 1.23) −    ( 1,  1.23) 
 

   ( 1.23) =  2 +  2 − 2 2 by (1) 
1 1.23 1.23 

 

   ( 1.23) =  2 −  2 (2) 
1 1.23 

7.5. Coefficient of multiple correlation 
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1 

1 1.23  

1  

1.23 

1.23 

23 

23 

1.23 
23 

12 23 31  

2 12 13  

23 

             = 

1.23…  

1 

Now 
 

   ( 1,  1.23) 
 1.23 =    

√   ( 1).    ( 1.23) 
 

      
2− 2 

 1.23 = 
 1√ 

2− 1.23 

by (1) & (2) 

 
 

 

√  2 −  1.23 
 1.23 = 

 1 
 

 

 1.23 = √1 − ( 
 1.23  

2
 

) 
 1 

 
 

 2 = 1 − ( 

 
 

1 −  2 = ( 

 
Now, 

 1.23 
2

 
) 

 1 
 
 1.23 

2
 

) 
 1 

 
 

 
∆ 

= 
 11 

 
 11  12  13 

∆= | 21  22  23| 
 31  32  33 

 

∆= 1 −  2 −  12( 12 −  23 31) +  13( 12.  23 −  31) 
 

∆= 1 −  2 −  2  −  2  + 2 12 23 31 
12 23 31 

 

and  11 = 1 −  2 
 

Therefore, 

 

1 −  2 = 

 

 
∆ 

 
 

 11 

 
 

1 −  2 −  2  −  2  + 2 12 23 31 
= 

1 −  2 
 

  
2 +  2 − 2 12 23 31   = 

1.23 
 
 

7.5.2. Note 

1 −  2 

 

1. 2  2 + 2 −2          

 .   2 
   

 

2.  2 =  2(1 −  2 ) 
1.23 1 1.23 

 

3. For a n-variate distribution, 
 

 2 = 1 − (
 1.23… )

2 
= 1 − 

 2

 

 

 
and  2 =  2(1 −  2 ) 

1.23…   1  2 1.23…  1 1.23…  

1−  



95 
 

13 

1 2 

3 

7.6. Partial correlation coefficient in terms of simple correlation coefficients 

4. Since    ( 1.23) =    ( 1,  1.23) From (1) & (2),    ( 1,  1.23) ≥ 0 and hence  1.23 ≥ 0. 

0 ≤  1.23 ≤ 1. 
 

5. If   = 1, then  2 = 
1 
∑  2 = 0 

 

1.23 1.23   1.23 

That is, all the regression residuals are zero and hence  1 =  12.3 2 +  13.2 3. 
The equation of the regression plane may be treated as a perfect prediction formula for   . 

 

In the case of trivariate distribution, the correlation coefficient between  1   and  2 
after the linear effect of  3 on them has been eliminated is the partial correlation coefficient 

between  1 and  2 and it is denoted by  12.3. 
 

 1.3 =  1 −  13 3 and  2.3 =  2 −  23 3 are the residuals that may be regarded as the parts 

of the variables  1 and  2 that remain after the linear effects of  3 on them have been 
eliminated. 

 
Therefore, 

 

 
 12.3 =

    ( 1.3,  2.3) 
(1)

 

√   ( 1.3).    ( 2.3) 
 

Now, 
 

   ( 1.3,  2.3) =    {( 1 −  13 3), ( 2 −  23 3)} 
 

   ( 1.3,  2.3) =    ( 1,  2) −  23   ( 1,  3) −  13   ( 2,  3) +  13 23   ( 1,  2) 
 

 
   (  

 
,   

 
) =   

 
    

 
−    2   

 
    

 
−    1   

 
    

 
+    1    2 

 2 

1.3 2.3 12  1   2 23  3
 13  1   3 13  3

 23   2   3 13  3
 23  3  

3 

 

   ( 1.3,  2.3) =  1 2( 12 −  13 23) (2) since    ( 3,  3) =    ( 3) 

   ( 1.3) =    ( 1 −  13 3) 
 

   ( 1.3) =    ( 1) +  2    ( 3) − 2 13   ( 1,  3) 
 

 
   (  

 
) =  2 +  2   

2 
.     − 2   1   

 

 
    

1.3 1 13  2 3 13  3  
13   1   3 

 

   ( 1.3) =  2(1 −  2 ) (3) 
1 13 

 

   ( 2.3) =  2(1 −  2 ) (4) 
2 23 

 

Using (2), (3) and (4) in (1), we get 

 12 −  13 23 
 12.3 =    

√(1 −  2 )(1 −  2 ) 

 
Also  12.3 

13 23 

 

=
   − 12  

√ 11 22 
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2 31 32  

12 

7.7. Examples 

7.6.1. Note 
 

    −        
   .  = 

√(1 −  2 )(1 −  2 ) 

 
,  ℎ     ,  ,   = 1, 2, 3       ≠   ≠   

      

 

7.7.1. A teacher wished to find the relationship marks in the final examination to those in the 
two class tests during the semester. Denoting the marks of a student in the first two test and 

the final examination by  1,  2,  3 respectively, he obtained the following information 

  1 = 6.8,   2 = 7,   3 = 7.3,  1 = 1,  2 = 0.8,  3 = 0.9,  12 = 0.6,  13 = 0.7,  23 = 0.65 
 

(i) Find the least square regression equation  3 on  1 and  2 
(ii) Estimate the marks in the final examination of two students who secured respectively 9 
and 7, 4 and 8 in the two tests. 
(iii) Compute  3.12 
(iv) Compute  12.3 

Solution: 

(i) Equation of the regression plane of  3 on  1 and  2 is given by 
 

 
| | = 0 

 
 
 
 

| | = 0 
 
 

 
( 1 − 6.8) 

(−0.31) − 
( 2 − 7) 

(0.23) + 
( 3 − 7.3) 

(0.64) = 0 
1 0.8 0.9 

 

0.711 3 − 0.288 2 − 0.310 1 − 1.071 = 0 
 

 3 = 0.436 1 = 0.402 2 + 1.506 
 

(ii) When  1 = 9,  2 = 7 then  3 = 8.244 

When  1 = 4,  2 = 8 then  3 = 6.466 

(iii) 

  
2 +  2 + 2 12 23 31   = = (0.7)2 + (0.65)2 − 2 × 0.6 × 0.7 × 0.65 

 
 

= 0.5727 
3.12 1 −  2 1 − (0.6)2 

 

 3.12 = 0.757 

 1 −   1   2 −   2   3 −   3 

 1 
 21 

  2 
 22 

  3 
 23 

 31   32   33 

 
 1 − 6.8   2 − 7   3 − 7.3 

1  0.8  0.9 
1  0.6  0.7 

0.6  1  0.65 
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(iv) 

 12 −  13 23 
 12.3 =    

√(1 −  2 )(1 −  2 ) 
13 23 

 

0.6 − (0.7 × 0.65) 
 12.3 =   = 0.263 

√(1 − 0.72)(1 − 0.652) 
 

7.7.2. Prove that the necessary and sufficient condition for the three regression planes to 

coincide is  2 +  2 +  2 − 2 12 23 31 = 1 
12 23 31 

 

Solution: 
 

The equations of the three regression planes are 

 
 

1 
 
 
 

1 
 

 1 
 

 

 1 

 

2 
 
 
 

2 
 

 2 
 31 + 

 
 

 
 
 
 
 

 3 
 32 + 

 
 

 13 = 0 (1) 

 

 23 = 0 (2) 

 

 33 = 0 (3) 

 

Planes (1) and (2) coincide, if and only if the corresponding coefficients are proportional. 
Namely, if 

 

 11 
 

 21 

 12 
= 
 22 

 13 
= 
 23 

 

(4) 

 

Taking the first two rations, the required condition is 
 

 11 22 −  12 21 = 0 
 

(1 −  2 )(1 −  2 ) − ( 12 −  23 13)2 = 0 
23 31 

 

(1 −  2 −  2  +  2  2 ) − ( 2  +  2  2  − 2 12 23 31) = 0 
23 31 23 31 12 23  31 

 

 2  +  2  +  2  − 2 12 23 31 = 1 (5) 
12 23 31 

 

Taking the second and third ratios in (4), we will get the same condition (5) as the required 
condition. 

 
Now the planes (2) and (3) will coincide. If 

 

 21 
 

 31 

 22 
= 
 32 

 23 
= 
 33 

 

(6) 

 

Proceeding as before, (6) will also reduce to the same condition as (5) 
Therefore, the necessary and sufficient condition required is given by (5). 

 

7.7.3. For a trivariate distribution, express the multiple correlation coefficient in terms of 
simple and partial correlation coefficients. 

2 3 

 1   2   3 

  

 1 

 11 + 
  

 2 

 12 + 
 3 

 3 

   21 +    22 +  3 
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1 −   

  1.23    

or 
 

Prove that 1 −  2 = (1 −  2 )(1 −  2    ). Hence deduce that the multiple correlation 
1.23 12 13.2 

coefficient is not less than any simple correlation or any partial correlation coefficient. 

Solution: 

If we express  1.23 and  13.2is terms of simple correlation coefficients, we have 
 

1 −  2 = 
∆

 (1) and   = 
− 13 

 

1.23  11  
 2 

13.2 √ 11  33 

1 −  2 = 1 − 13  
13.2  11 33 

 
 11 33 −  2 

1 −  2 = 13 (2)  
13.2  11 33 

 

Dividing (1) by (2) we get 

 11  12  13 
1− 2 

= 
∆ 33 where ∆= |      | and R’s are the cofactors of the corresponding 

1− 2  11 33− 2 21 22 23 

 

r’s 

13.2 13  31  32  33 

 

1 −  2 (1 −  2 −  2  −  2  + 2 12 23 31)(1 −  2 ) 
  1.23 

=
 12 23 31 12  

1 −  2 (1 −  2 )(1 −  2 ) − ( 12 23 −  31)2 
13.2 23 12 

 

1 −  2 (1 −  2 −  2  −  2  + 2 12 23 31)(1 −  2 ) 
  1.23 

=
 12 23 31 12  

1 −  2 (1 −  2 −  2 −  2  + 2 12 23 31) 
13.2 

 
2 
1.23 = 1 −  2 

12 23 31 

2 12 
13.2 

 

1 −  2 = (1 −  2 )(1 −  2    ) (3) 
1.23 

 

Since 

12 13.2 

 

0 ≤  2 ≤ 1,    0 ≤ 1 −  2 ≤ 1     0 ≤  2 ≤ 1, 0 ≤ 1 −  2 ≤ 1 (4) 
12 12 

 

From (3) & (4) we get 

13.2 13.2 

 

1 −  2 ≤ 1 −  2   ⟹  2 ≥  2 (5) and 1 −  2 ≤ 1 −  2 ⟹  2 ≥  2 (6) 
1.23 12 1.23 12 1.23 13.2 1.23 13.2 

 

From (5) & (6) the required result holds. 
 

Note: 1 −  2 = (1 −  2 )(1 −  2   ) 
1.23 13 12.3 

 

7.7.4. If  23 = 0 then prove that  2 =  2 +  2 and deduce that if  1.23 = 0 then prove that 

 12 =  13 = 0 
Solution: 

1.23 12 13 

1 − 
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2 12 13  

23 

2 12 13 

1.23 

1.23 

2 12 13  

23 

  
2 +  2 + 2 12 23 31 

  = 
1.23 1 −  2 

 

  
2 +  2 

  = 
1.23 1 

 

 2 =  2 +  2 
1.23 12 13 

 

0 =  2 +  2 
12 13 

 

 2  +  2  = 0 
12 13 

 

Therefore,  12 = 0      13 = 0 
 

7.7.5. If  12 =  23 =  31 =   then prove that  12.3 =  23.1 =  31.2 =   
  

 +1 
and also prove that 

1 −  2 = 
(1 −  )(1 + 2 ) 

 

1.23 1 +   
 

Solution: 

    −        
   .  = 

√(1 −  2 )(1 −  2 ) 

 
 

,  ℎ     ,  ,   = 1, 2, 3       ≠   ≠   

      

 

  −  2 
   .  =   = 

√(1 −  2)2 

 (1 −  ) 
 

 

(1 −  )(1 +  ) 

  
= 

1 +   
 

1 −  2 = (1 −  2 )(1 −  2   ) 
1.23 12 13.2 

 

 2 

1 −  2 = (1 −  2) {1 − (1 +  )2
}
 

 

 
1 −  2 = 

(1 −  2)(1 + 2 ) 

(1 +  )2 
 

1 −  2 = 
(1 −  )(1 + 2 ) 

 

1.23 1 +   
 

7.7.6. If  23 = 1 then show that (i)  2 =  2 =  2 and (ii)  2 =  2(1 −  2 ) 

 
Solution: 

 

  
2 +  2 − 2 12 23 31 

  = 

 
 
 

 
(1) 

1.23 12 13 1.23 1 12 

1.23 1 −  2 
 

 2 (1 −  2 ) =  2 +  2  − 2 12 23 31 
1.23 23 12 13 

 

When  23 = 1 
 

 2 +  2  − 2 12 31 = 0 
12 13 
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2 12 12  

23 

23 

        2 

12 

12.3 

( 12 −  13)2 = 0 

 12 =  13 (2) 
 

Using (2) In (1) we get 
 

2  2 − 2 2  23 
  = 

1.23 1 −  2 
 

2 2 (1 −  23) 
 2 =

     12  
1.23 1 −  2 

 

2 
 2 = 12 =  2 

1.23 (1 +  23) 12 
 

 2 =  2 =  2  By (2) 
1.23 12 13 

 

Now 
 

 2 =  2(1 −  2 ) =  2(1 −  2 ) =  2(1 −  2 ) 
1.23 1 1.23 1 12 1 13 

 

7.7.7. If  12 and  13 are given, then show that  23 must lie in the range  12 13 ± (1 −  2 − 
 2 +  2  2 )1/2. Hence Prove that  23 lies between – 1 and 1 − 2 2, if  12 =   and  13 = − . 

13 12 13 
 

Solution: 
 

Since  12.3 is a partial correlation coefficient 

 
0 ≤  2 ≤ 1 

 
 12.3 ≤ 1 

 12 −  13 23 
  ≤ 1 

√(1 −  2 )(1 −  2 ) 
13 23 

 

 12 −  13 23 ≤ √(1 −  2 )(1 −  2 ) 
13 23 

 
( 12 −  13 23)2 ≤ (1 −  2 )(1 −  2 ) 

13 23 
 

 2 − 2 12 23 31 +  2  2  ≤ (1 −  2 )(1 −  2 ) 
12 13  23 13 23 

 

 2 − 2 12 23 31 +  2  2  ≤ 1 −  2  −  2  +  2  2 
12 13 23 23 13 13  23 

 

 2 − 2 12 23 31 +  2  2  ≤ 1 −  2  −  2  +  2  2 
23 12 13 12 13 12  13 

 

( 23 −  12 13)2 ≤ 1 −  2 −  2  +  2  2 
12 13 12  13 

 

| 23 −  12 13| ≤   √1 −  2 −  2  +  2  2 
12 13 12 13 

 
Therefore,  23 lie in the range  12 13 ± (1 −  2 −  2 +  2  2 )1/2 (1) 

12 13 12 13 
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1.23 

2 12 13  

23 

 
 

Put  12 =   and  13 = −  in (1), we get that  23 lies in the range− 2 ± √1 − 2 2 +  4 

− 2 ± (1 −  2) 
 

− 2 − (1 −  2) ≤  23 ≤ − 2 + (1 −  2) 
 

−1 ≤  23 ≤ 1 − 2 2 

7.7.8. If the variables  1,  2,  3 are measured from the respective means and have the same 
variance. Prove that (i)   +   +   ≥ − 

3
(ii)  2 +  2 +  2 ≤ 1 + 2        
 

 

Solution: 

12 23 31 2 12 23 31 12  23  31 

 

 [ 1 +  2 +  3]2 =  [ 2 +  2 +  2 + 2( 1 2 +  2 3 +  3 1)] (1) 
1 2 3 

 

Since the variables are measured from the respective means and have variance. 

 
 [ 2] =  2 for   = 1, 2, 3 

 

 

    = 
   (  ,   ) 

 
 

       

    = 
 [    ] 

 2      ,   = 1, 2, 3      ≠   
 

Consider 
 

 [ 1 +  2 +  3]2 ≥ 0 

3 2 + 2 2( 12 +  23 +  31) ≥ 0 
 

3 
 12 +  23 +  31 ≥ − 

2
 

Since  2 ≤ 1 

  
2 +  2 − 2 12 23 31 

  = ≤ 1 
1.23 1 −  2 

 

 2 +  2  − 2 12 23 31 ≤ 1 −  2 
12 13 23 

 

 2  +  2  +  2  ≤ 1 + 2 12 23 31 
12 23 31 

 

7.7.9. If  1 =   2 +   3 then prove that the three partial correlations are numerically equal to 

unity. Also show that  1.23 has got the same sign of a,  13.2 has got the same sign as b and 

 23.1 
has the opposite sign of (

 
). 

  
 

Solution: 
 

Since given  1 =   2 +   3, assume that  2 and  3 are independent variables and  1 is the 

dependent variable, depending on  2 and  3. Therefore  23 = 0 and hence 
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2 

3 

   ( 2,  3) 
= 0 

 2 3 
 

   ( 2,  3) = 0 
 

   ( 1) =    (  2 +   3) 
 

   ( 1) =  2   ( 2) +  2   ( 3) 

   ( 1) =  2 2 +  2 2 
2 3 

 

   ( 1,  2) =    (  2 +   3,  2) 
 

Therefore 
 

[  2 +     ( 2,  3)] 

 12 =
 2  

√   (  2 +   3)   ( 2) 

  2 
 12 =    

√ 2 2 +  2 2 
2 3 

 

Similarly 
 

  3 
 13 =    

√ 2 2 +  2 2 

 
Now, 

2 3 
 
 
 

 
  −       

 
 

(  2) 

 
 
 
 

   
 12.3 = 

12 13  23 
 

√(1 −  2 )(1 −  2 ) =   

 2− 2 2 
= 

2 
= ±1 

  2 
13 23 √ 3 

 2 

 
 

Where   = √ 2 2 +  2 2 
2 3 

 

Since √ 2 2 = ±    2 
 

  −       (  3)    
 13.2 = 

13 12  23 
 

√(1 −  2 )(1 −  2 ) =   = 
 2− 2 2 

3 = ±1 
√ 2 2 

12 23 √ 2 3 
 2 

 
 

Since √ 2 2 = ±    3 
 

Therefore,  12.3 has the same sign as   and  13.2 has the same sign as   and they are 
numerically equal to unity. 

 

Now, 

 23 −  12  31 
 23.1 =    

√(1 −  2 )(1 −  2 ) 
12 31 
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Check your Progress 

Glossaries 

−  2   3  2 

 23.1 =
     

 
√( 2 −  2 2)( 2 −  2 2) 

2 3 
 

−   2 3 
 23.1 =    

√( 2 2)( 2 2) 
2 3 

 

−   
 23.1 =    

√ 2 2 
 

− (
 
) 

 23.1 =
   

 

√ 2 
 

 2 

 

− (
 
) 

 23.1 =
       

= ∓1 
± (

 
) 

  
 

 23.1 
has opposite sign of (

 
) and its numerical value is 1. 
  

 

 

In this unit, we explained the concept and the differences between simple, partial and 
multiple correlation analysis with examples and also discussed plane of regression and 
Properties of residuals. 

 

1. The partial correlation coefficient lies between . 
 

2. Multiple correlation coefficient is a coefficient. 
 

3. If  12.3 = 0 then  12 = and  13 = . 

 
4. In Multiple regression analysis, the independent variable is a random variable whereas the 
independent variables random variables. 

 

Partial Correlation: It is the measure of association between two variables, while controlling 
or adjusting the effect of one or more additional variables. 

 
Multiple Correlation: It is a statistical technique that predicts values of one variable on the 
basis of two or more other variables. 

 
Multiple Regression: It’s statistical technique that can be to analyse the relationship between 
a single dependent variable and several independent variables. 

Let Us Sum Up 
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1. Freund. J.E.,” Mathematical Statistics”, Prentice Hall of India, Fifth Edition, 2001. 
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4. Veerarajan. T, “Fundamentals of Mathematical Statistics”, Yee Dee Publishing Pvt. Ltd, 2017. 
 

 

1. – 1     + 1 
 

2. Non-negative 

 
3.  12 = 0 and  13 = 0 

 
4. Need not be a 

Suggested Readings 
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Unit 8 Analysis of Variance one-way, two-way classification and Design of 

Experiments 

BLOCK IV: Design of Experiments 
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Analysis of Variance one-way, two-way classification and Design of experiments 

 
Structure 

Objectives 

Overview 

8.1. Introduction 
 

8.2. Basic Principles of Experimental Design 
 

8.3. Analysis of Variance (ANOVA) for one factor classification 
 

8.4. Analysis of Variance (ANOVA) for two factors of classification 
 

8.5. Analysis of Variance (ANOVA) for three factors of classification 
 

8.6. Examples 

Let us Sum Up 

Check Your Progress 

Glossaries 
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Overview 

8.1. Introduction 

8.2. Basic Principles of Experimental Design 

 
 

After Studying this Unit, the student will be able to 
 

 Explain the design of experiments, analysis of variance one way and two-way 
classifications. 

 

 Distinguish between Completely Randomized Design, Randomized Block Design and 
Latin Square Design. 

 

 Solve the problems in analysis of variance one way and two-way classifications, 
Completely Randomized Design, Randomized Block Design and Latin Square 
Design 

 
 

In this unit, we will study the concept of Design of Experiments. We will only focus on 
the ANOVA one-way classification, ANOVA two-way classification and the most commonly 
used design of experiments such as Completely Randomized Design, Randomized Block 
Design and Latin Square Design. 

 

Experiment, what is meant is collection of data (which usually consist of a series of 
measurement of some feature of an object) for a scientific investigation, according to certain 
specified procedures. Statistics provides not only the principles and the basic for the proper 
planning of the experiments but also the methods for proper interpretation of the results of 
the experiment. 

In the beginning, the study of the design of experiments was restricted only to 
agricultural experimentation. The need to save time and money has led to the study of 
methods to obtain maximum information with minimum cost and labour. Such 
considerations resulted in the subsequent acceptance and wide use of the design of 
experiments and related analysis of variance techniques in many fields of scientific 
experimentation. 

A statistical experiment in any field is performed to verify a particular hypothesis. For 
example, an agricultural experiment may be performed to verify the claim that a particular 
manure has got the effect of increasing the yield of paddy. Here the quantity of the manure 
used and the amount of yield of paddy are the two variables involved directly. They are 
called experimental variables.   Apart from these two, there are other variables such as 
fertility of the soil, the quality of the seed used and the amount of rain fall which also affect 
the yield of paddy. Such variables are called extraneous variables. The main aim of the 
design of experiments is to control the contribution of extraneous variables and hence to 
minimize the experimental error so that the results of the experiments could be attributed 
only to the experimental variables. 

 

In order to achieve the objectives, usually the following three principles are adopted 
while designing experiments. 

Objectives 
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1. Randomisation 
 

It is not possible to eliminate completely the contribution of extraneous variables to 
the value of the response variable (namely; the amount of yield of paddy). So, we try to 
minimize it by randomization technique. As per this technique, plots of the same size are 
taken and divided into two groups. In one group called the experimental group the manure 
is used in all the plots (units). In the other group of plots in which manure is not used but will 
provide a basis for comparison is called the control group. 

 
If any information regarding the extraneous variables and the nature and magnitude 

of their effect on the response variable in question is not available, we resort t randomization 
which means selection of plots for the experimental and control group in a random manner. 
This technique provides the most effective way of eliminating any unknown bias in the 
experiment. 

 

2. Replication 

 
If the effects of different manures on the yield of paddy are studied, each manure is 

used in more than one plot. In other words, we resort to replication which means repetition. 
In order to estimate the amount of experimental error and hence to get some idea of the 
precision of the estimate of the manure effects, it is essential to carry out more than one test 
on each manure. 

 
3. Local Control 

 
In order to achieve adequate control of extraneous variables, another important 

principle used in the experimental design is the local control. This includes techniques such 
as grouping, blocking and balancing of the experimental Plots (units) used in the 
experimental design. By grouping, we mean combining sets homogeneous plots into 
groups, so that different manures may be used in different groups. The number of plots in 
different groups need not necessarily be the same. 

 
By blocking we mean assigning the same number of plots in different blocks. The 

plots in the same block may be assumed to be relatively homogeneous. We use as many 
manures as the number of plots in a block in a random manner. 

 
By balancing, we mean making minor changes in the procedures of grouping and 

blocking and then assigning the manures in such a manner that a balanced configuration is 
obtained. 

 
The following are the commonly used design of experiments 

 
1. Completely Randomized Design (C.R.D.) 

 
C.R.D. is a design in which N values of a given random variable X (the yield of 

Paddy) contained in a sample are sub-divided into h classes according to one factor of 
classification (different manures) 

 
Let us assume that we wish to compare h treatments (namely; h different manures) 

and there are n plots available for the experiment. 

 
Let ith treatment be replicated (repeated) n, times, so that n1 + n2 + ⋯ + nk = n. The 

plots to which the different treatments are to be given are found by the following 
randomization principle. The plots are numbered from 1 to n serially, n identical cards are 
taken which are also numbered from 1 to n and shuffled thoroughly. The numbers on the 
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8.3. Analysis of Variance (ANOVA) for one factor classification 

first n1 card drawn randomly give the numbers of the plots to which the first treatment is to 

be given.   The numbers on the next n2 card drawn at random give the numbers of the plots 
to which the second treatment is to be given and so on. This design, known as completely 
randomized design is used when the plots are homogeneous or pattern of heterogeneity of 
the plots is not known. 

 
2. Randomized Block Design (R.B.D.) 

 
R.B.D. is a design in which the N variate values (yield of paddy) are classified 

according to two factors. 

 
Assuming that there are N plots and they are divided into h blocks (rows) 

representing one factor of classification (say, soil fertility) each block containing k plots 
(columns) representing the other factor of classification (say, treatments). The plots in each 
block will be of homogeneous fertility as far as possible and k treatments are given to the k 
plots in each block in perfectly random manner such that each treatment occurs only once in 
any block. But the same k treatments are repeated from block to block. 

 
3. Latin Square Design (L.S.D.) 

 
L.S.D. is a design in which N = n2 plots are taken and arranged in the form of an n × 

n square, such that the plots in each row will be homogeneous as far as possible with 
respect to one factor of classification, say, soil fertility. Plots in each column will be 
homogeneous as far as possible with respect to another factor of classification, say, seed 
quality. Then n treatments (third factor of classification) represented by letters are given to 
these plots such that each treatment occurs only once in each row and only once in each 
column. The various possible arrangement obtained in this manner are known as Latin 
squares of order n. 

 
Analysis of Variance (ANOVA) 

 
After planning and conducting experiments, the results obtained must be analysed 

and interpreted. The technique for making statistical inferences is known as the analysis of 
variance, which is widely used technique developed by R.A. Fisher. In general, there are 
several factors involved, in an experiment each one of which may cause a certain amount of 
variability in the observed values of the response variable. 

 
In analysis of variance technique, we divide the total variation (represented by 

variance) in a group into parts which might have been caused by different factors and a 
residual random variation which could not be accounted for by any of these factors. The 
variation due to any specific factor is compared with the residual variation for significance by 
applying the F-test and thus test the homogeneity of the observed data, namely, test if all the 
observations have been drawn from the same normal population. 

 

We assume that the N values of a given random variable (yield of paddy) contained 
in a sample are subdivided into h classes according to a factor of classification (manure) 

 
We proceed with the assumption that the factor of classification has no effect on the 

variable and test if this assumption (null hypothesis) can be accepted. 
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2 

Let     be the value of the   ℎ member of the   ℎ class, which contains n, members. 

Let the general mean of all the N values be    and the mean of the    values in the   ℎ class 

be   . 

Now, 
 

2 2 
∑ ∑(    −   ) = ∑ ∑{(    −    ) + (    −   )} 
        

 

∑ ∑(  −   )
2 

= ∑ ∑(  −    )
2 

+ ∑ ∑(   −   )2 + 2 ∑ ∑(  −    )(   −   ) 

                
 

   

∑ ∑(  −   )
2 

= ∑ ∑(  −    )
2 

+ ∑ ∑(    −   )2 + 2 ∑(    −   ) ∑(    −    ) 
 

(1) 

               =1 
 

   

∑(    −    ) = Sum of the deviation of the ni values of xij in the ith class from their mean     

 =1 

= 0 (2) 
 

Using (2) in (1) we get 
 

∑ ∑(  −   )
2 

= ∑ ∑(  −    )
2 

+ ∑   (   −   )2 

          
 

  =  2 +  1 
 

Where   = Total variation 

 
 1 = ∑   (    −   )2 

  

= Sum of the squared deviations of class means from the general mean 
(namely, the variation between calsses) 

 

2 
 2 = ∑ ∑(    −    ) 

    

= sum of the squared deviation of variates from the corresponding class means 
(variation within classes) 

 
Since 

 
 2 = vartion within classes = P −  1can be considered to have been obtained 
after removing the variation  1 between classes from the total variation P. 

 
Hence  2 is regarded as the residual variation. 

 

Now the items in the   ℎclass with variance  2 = 
1 
∑   

 

(  −    ) may be considered as a 
      =1      

   
2

 
 

 sample of size    drawn from a population with variance  2, hence   (   ) =  2 
  −1 
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2  2 

   

1  2 

By theory of estimation, 

 

  [∑(   −    )
2
] = (   − 1) 2 

  

 

ℎ 

  [∑ ∑(   −    )
2
] = ∑(   − 1) 2 

     =1 
 

 [ 2] = (  − ℎ) 2 

    
  [ ] =   

(  − ℎ) 
 

     2     is an unbiased estimate of  2 with (  − ℎ) degrees of freedom. 
( −ℎ) 

 

Now, if we consider the entire group of N items with variance 
 

 2 = 
1 
∑ ∑(  

 

2 −   ) 
  

    

   

As a sample of size N drawn from the same population 

 

  [∑ ∑(   −   )
2
] = (  − 1) 2 

    
 

     
  [ ] =   

(  − 1) 
 

  

( −1) 
is an unbiased estimate of  2 with (  − 1) degrees of freedom. 

 

Now  1 =   −  2 

 [ 1] =  [ ] −  [ 2] 
 

 [ 1] = (  − 1) 2 − (  − ℎ) 2 

 [ 1] = (ℎ − 1) 2 

      
  [ ] =   

(ℎ − 1) 
 

    1    is also an unbiased estimate of  2 with (ℎ − 1) degrees of freedom. 
(ℎ−1) 

 

If we assume that the sample population is normal, then the estimate     1  and   2  are 

independent and hence the ratio 
(ℎ−1) ( −ℎ) 

2 
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[   1    ] 
(ℎ−1) 

[   2     ] 
( −ℎ) 

 

Follows a F-distribution with (ℎ − 1,   − ℎ) degree of freedom or the ratio 

 

[
   2     ]

 
( −ℎ) 

[   1    ] 
(ℎ−1) 

 

Follows a F-distribution with (  − ℎ, ℎ − 1)degree of freedom. 

Choosing the ratio which is greater than 1, we employ the F-test. 

If Calculated value of F is less than the table value of F at 5% , our hypothesis holds good, 
that is , different treatments do not contribute significantly by different yields. 

 
ANOVE table for one factor of classification 

 

Source of 
variation (S.V.) 

Sum of square 
(S.S.) 

Degrees of 
freedom 
(d.f.) 

Mean square 
(M.S.) 

Variance ratio 
(F) 

Between 
Columns 

 1 ℎ − 1  1 
 

(ℎ − 1) 

 1 
±1 

 

 (ℎ−1)  
{  2     

} 
( −ℎ) 

Within classes  2   − ℎ    2  

   (  − ℎ) 
Total     − 1   

 

10.3.1. Note 
 

For calculating  ,  1,  2 the following computational formulae may be used 
 

1 
2 2 

  =   {
  
∑ ∑     −   } 

1 1 2 
  =   { 

  
∑ ∑  2 − ( 

  
∑ ∑    ) } 

 

2 
 2 

  = ∑ ∑     − 
  

, where T = ∑ ∑     

Similarly, for the   ℎ class 
 

 
2 ∑(    −    ) 

2 
= ∑  2 −    ,  ℎ       = ∑     

 
    

      
  

 

Therefore, 

 
2  2 = ∑ ∑(    −    ) 

 
 

 
2 

= ∑ ∑  2 − ∑     
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2 

Therefore, 1 =   −  2 = ∑    − 
   

 2 
 

  

 

 

We assume that the N values of the random variable (yield of paddy) contained in a 
sample are classified according to two factors-one factor classification (soil fertility) 
represented by h rows and the other factor (treatment) represented by k columns. So that 

  = ℎ . 
 

We assume that the rows and columns are homogeneous, namely; there no 
difference in the variance values (yields of paddy) between the various rows and between 
the various columns and test if this assumption (null hypothesis) can be accepted. 

 
Let     be the value of the variable in the   ℎ row and   ℎ column. 

 
Let    be the general mean of all the N values,    , be the mean of the k values in the   ℎ row 

and   ∗  be the mean of the h values in the   ℎ column. 

 
Now, 

 

    −    = (    −    ∗ −   ∗  +   ) + (   ∗ −   ) + (  ∗  −   ) 

 
Therefore, 

 
2 

∑ ∑(    −   ) 
2 

= ∑ ∑(    −    ∗ −   ∗  +   ) 

+ ∑ ∑(  
 

 ∗ −   )2 + ∑ ∑(  
 

∗  

2 
−   ) + 2 ∑ ∑(    −   

 

 ∗ −     ∗ +   )(  
 

 ∗ −   ) 

+ 2 ∑ ∑(    −    ∗ −     ∗ +   )(  ∗  −   ) + 2 ∑ ∑(   ∗ −   )(  ∗  −   ) (1) 

 
Now the fourth member in the R.H.S. of (1) 

 

  

= 2 ∑(   ∗ −   ) ∑(    −    ∗ −   ∗  +   ) 

 =1 

= 2 ∑(   ∗ −   )(    ∗ −     ∗ −     +    ) = 0 

  

 

Similarly, the last two members in the R.H.S. of (1) also become each. 

Omitting these zero valued terms, (1) becomes 

  =  3 +  1 +  2, say where 

 
 

 1 = ∑ ∑(   ∗ −   )2 =   ∑(   ∗ −   )2 

      

8.4. Analysis of Variance (ANOVA) for two factors of classification 
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2 2 
 2 = ∑ ∑(  ∗  −   ) = ℎ ∑(  ∗  −   ) 

      
 

2 
 3 = ∑ ∑(     −    ∗ −   ∗  +   ) 

 

  = Total Variation 
 

 1 = Sum of the squares due to the variations in the rows 

 
 2 = Sum of the squares due to the variations in the columns 

 3 = Sum of the squares due to the residual variations. 

Using one factor of classification, we can prove that 

    1    ,
   2      ,

  3 , 
  are unbiased estimates of the population variance  2   with 

(ℎ−1) ( −1)   (ℎ−1)( −1)   (ℎ −1) 

degrees of freedom (ℎ − 1), (   − 1), (ℎ − 1)(  − 1) and (ℎ  − 1) respectively. 

 
If the sample population is assumed normal, all these estimates are independent. 

Therefore, 

[
   1    ]

 
(ℎ−1) 

[
  3 ]

 
(ℎ−1)( −1) 

 

Or 
 

It’s reciprocal follows a F-distribution with {(ℎ − 1), (ℎ − 1)(  − 1)} degrees of freedom or 

with {(ℎ − 1)(  − 1), (ℎ − 1)} degrees of freedom, depending on the value of F. Similarly 

 

[   2    ] 
( −1) 

[  3 ] 
(ℎ−1)( −1) 

 

Or 
 

It’s reciprocal follows a F-distribution with {(  − 1), (ℎ − 1)(  − 1)} degrees of freedom or 

with {(ℎ − 1)(  − 1), (  − 1)} degrees of freedom, depending on the value of F then the F- 
test is applied as usual and the significance of the difference between rows and between 
columns analysed. 
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8.5. Analysis of Variance (ANOVA) for three factors of classification 

ANOVA table for two factors of classification 
 

Source of 
variation (S.V.) 

Sum of 
square (S.S.) 

Degrees of 
freedom 
(d.f.) 

Mean square 
(M.S.) 

Variance ratio 
(F) 

Between 
Rows 

 1 ℎ − 1  1 
 

(ℎ − 1) 

 1 
±1 

 

  (ℎ−1)  
{  3 

} 

    (ℎ−1)( −1) 

Between 
Columns 

 2   − 1      2  

(  − 1) 
     2 

±1 

  ( −1)  
{  3 

} 
    (ℎ−1)( −1) 

Residual  3 (ℎ − 1)(  − 1) 
 3 

 

(ℎ − 1)(  − 1) 

 

Total   ℎ  − 1   

 

8.4.1. Note 

 

For computing  ,  1,  2      3, the following working formulae may used 

 2 

1.   = ∑ ∑  2 − ,  ℎ      = ∑ ∑     
  

 

 
2.  1 = 

 
 

3.  2 = 

    
 
 

1 
∑  2 − 

  
 

 
1 
∑  2 − 

ℎ 

 

 2 
 

 

  
 

 2 
 

 

  

    

 
  

,  ℎ       = ∑     

 =1 

 
ℎ 

,  ℎ       = ∑     

 =1 

 

4.  3 =   −  1 −  2,      ∑    = ∑    =   

    
 

We assume that   (=  2) variate values (yield of paddy) contained in a sample are 
classified to three factors, namely soil fertility, seed quality and treatment represented by the 
rows, columns and letters respectively. 

 
We assume that the rows, columns and letters are homogeneous, namely, there is 

no difference in the variate values between rows, between the columns and between the 
letters and test if this assumption (null hypothesis) can be accepted. 

 
Let     be the value of the variate corresponding to the   ℎ row,   ℎ column and   ℎ 

letter. 
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∗        ∗ ∗    

Let 
 

1 
   = 

 2 ∑ ∑     

1 
   ∗ = 

  
∑     
  

 

  = 
1 
∑   and   

 

be the mean of the values of   corresponding to the   ℎ treatment. 
∗                 

 
Now 

   

 

    −    = (   ∗ −   ) + (  ∗  −   ) + (    −   ) + (    −    ∗ −   ∗  −     + 2  ) 

 
Therefore, 

 
2 

∑ ∑(    −   ) 

=   ∑(   ∗ −   )2 

  

+   ∑(   −   )
2 

+   ∑(    −   )2 + ∑ ∑(    −    −    −    + 2  )
2

 

    
 

Since all the product terms vanish, we have 
 

  =  1 +  2 +  3 +  4 
 

We can prove that      1   ,
    2    ,

    3      ,
  4 , 

 
 

 

 
are unbiased estimates of the 

( −1) ( −1)   ( −1)   ( −1)( −2)   ( 2−1) 

population variance  2 with degrees of freedom(  − 1), (  − 1), (  − 1), (  − 1)(  − 2), 
( 2 − 1) respectively. 

 
If the sample population is assumed normal, all these estimates are independent. 

Therefore, each of 

 

[
   1    ]

 
( −1) 

[  4 ] 
( −1)( −2) 

 

[   2    ] 
( −1) 

[  4 ] 
( −1)( −2) 

 

[   3    ] 
( −1) 

[  4 ] 
( −1)( −2) 

 

Or their reciprocal follows a F-distribution with {(  − 1), (  − 1)(  − 2)} degrees of freedom 

or {(  − 1)(  − 2), (  − 1)} degrees of freedom, depending on the value of F then the F-test 
is applied as usual and the significance of the differences between rows, columns and letters 
is analysed. 
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ANOVA table for three factors of classification 
 

Source of 
variation 
(S.V.) 

Sum of 
square 
(S.S.) 

Degrees of 
freedom 
(d.f.) 

Mean square 
(M.S.) 

Variance ratio (F) 

Between 
Rows 

 1   − 1  1 
 

(  − 1) 

 1 
±1 

 

{
 ( −1)  

   4 
} 

( −1)( −2) 
 

 
    2 

±1 

{
 ( −1)  

   4 
} 

( −1)( −2) 
 

    3 
±1 

{
 ( −1)  

   4 
} 

( −1)( −2) 

 

Between 
Columns 

 

 2 

 
 

  − 1 

 
 

   2  

(  − 1) 

Between 
letters 

 

 3 
 

  − 1 
 

     3  

   (  − 1) 

 
Residual 

 
 4 

 
(  − 1)(  − 2) 

 
   4  

   (  − 1)(  − 2) 

Total    2 − 1   

 
8.5.1. Note 

 

For computing  ,  1,  2,  3      4 the following working formulae may used 
 

1.   = ∑ ∑  2 − 
 2 

,  ℎ      = ∑ ∑   
 

and   =  2 
                        

 

2 
2.   = 

1 
∑  2 − 

    
,  ℎ      

  

= ∑    and   =  2 
1          =1    

 

2 
3.     = 

1 
∑  2 − 

    
,  ℎ      

  

= ∑      and   =  2 
2          =1      

 

2 
4.     = 

1 
∑  2 − 

    
,  ℎ      

  

is the sum of all   ′  receiving the   ℎ treatment and   =  2 
3            

 

5.  4 =   −  1 −  2 −  3      ∑    = ∑    = ∑    =   
      

 

8.5.2. Note 

 
Simplification of Computational work: The Variance of a set of values is independent 

of the origin and so a shift of origin does not affect the variance calculations. Hence in 
analysis of variance problems, we can subtract a convenient number from the original values 
and work out the problem with the new values obtained. Also, since we are concerned with 
variance ratios change of scale also may be introduced without affecting the value of F. 
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8.6.1. A Car rental agency, which uses 5 different brands of tyres in the process of deciding 
the brand of tyre to purchase as standard equipment for its fleet, finds that each of 5 tyres of 
each brand last the following number of kilometers (in thousands) 

 
Tyre brands 

A B C D E 

36 46 35 45 41 

37 39 42 36 39 

42 35 37 39 37 

38 37 43 35 35 

47 43 38 32 38 

Test the hypothesis is that the five tyre brands have almost the same average life. 

Solution: 

Null hypothesis  0: There is no significant difference between in the average life of the five 
tyre brands. 

 

Alternative hypothesis  1: There is a significant difference between in the average life of the 
five tyre brands. 

 
Let     =     − 40 

 
Tyre brands 

 A B C D E Total 

 

    Values 

-4 6 -5 5 1  

-3 -1 2 -4 -1 

2 -5 -3 -1 -3 

-2 -3 3 -5 -5 

7 3 -2 -8 -2 

   0 0 -5 -13 -10 -28 

   5 5 5 5 5 25 

 2 
  

 

   

0 0 5 33.8 20 58.8 

5 

∑  2 
   

 =1 

82 80 51 131 40 ∑ ∑  2 
   

= 384 

 
  = ∑    = −28 

  
 

  = ∑    = 25 

 
∑ ∑  2 = 384 

 

2 
 2 

 
 

(−28)2 
 

 

  = ∑ ∑     − 
  

= 384 − 
= 352.64 

25 

8.6. Examples 
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2 

 1 = ∑ − 
   

 2 
 

 

  

 
= 58.8 − 31.36 = 27.44 

 

 2 =   −  1 = 352.64 − 27.44 = 325.20 
 

ANOVA Table 
 

Source of 
variation (S.V.) 

Sum of square 
(S.S.) 

Degrees of 
freedom 
(d.f.) 

Mean square 
(M.S.) 

Variance ratio 
(F) 

Between 
tyre brands 

 1 = 27.44 ℎ − 1 = 
5 − 1 = 4 

     1  
= 6.86 

(ℎ − 1) 
 

   2  
= 16.26 

(  − ℎ) 

 
 

16.26 
= 2.37 

6.86 Within tyre 
brands 

 2 = 325.20   − ℎ = 
25 − 5 = 20 

Total   = 352.64   − 1 = 
25 − 1 = 24 

  

 
Table value of F at 5% level of significance for (20, 4) degrees of freedom is 5.80 

Calculated value of F is less than table value of F. 

Therefore, Null Hypothesis  0 is accepted. 

 
Hence, the five tyre brands have almost the same average. That is, they do not differ 
significantly in their lives. 

 

8.6.2. The following data represent the number of units of production per day turned out by 
different workers using 4 different types of machines. 

 Machine Type 

A B C D 

 
 

Workers 

1 44 38 47 36 

2 46 40 52 43 

3 34 36 44 32 

4 43 38 46 33 

5 38 42 49 39 

 

(a) Test whether the five workers differ with respect to mean productivity (b) Test whether 
the mean productivity is the same for the four different machine types. 

 
Solution: 

 
Null Hypothesis  0: (a) There is no significant difference between in the mean productivity of 
the 5 workers and (b) There is no significant difference between in the mean productivity of 
the 4 machine types. 

 
Alternative Hypothesis  1: (a) There is a significant difference between in the mean 
productivity of the 5 workers and (b) There is a significant difference between in the mean 
productivity of the 4 machine types. 

 
Let     =     − 40 
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Workers 

Machine Type      
2 
    

  

∑  2 
   

  
A B C D 

1 4 -2 7 -4 5 6.25 85 

2 6 0 12 3 21 110.25 189 

3 -6 -4 4 -8 -14 49 132 

4 3 -2 6 -7 0 0 0 

5 -2 2 9 -1 8 16 90 

   5 -6 38 -17 T=20   
2 

∑   = 
  

181.5 

∑ ∑  2 
   

    

= 594 
 2 
  

 

ℎ 

5 7.2 288.8 57.8  2 

∑ 
  

= 
ℎ 

358.8 

 

∑  2 
   

  

110 28 326 139 ∑ ∑  2 
   

    

= 594 
 

2 
 2 

 
 

(20)2 
 

 

  = ∑ ∑     − 
  

= 594 − 
= 574 

20 
 

  
2 

 1 = ∑ − 
  

 

  
2 

 2 = ∑  − 
ℎ 

 2 
 

 

  

 2 
 

 

  

 
= 181.5 − 20 = 161.5 
 
 
= 358.8 − 20 = 338.8 

 

 3 =   −  1 −  2 = 574 − 161.5 − 338.8 = 73.7 
 

ANOVA table 
 

Source of 
variation (S.V.) 

Sum of 
square 
(S.S.) 

Degrees of 
freedom 
(d.f.) 

Mean square 
(M.S.) 

Variance 
ratio (F) 

Between 
Rows 
(Workers) 

 1 = 161.5 ℎ − 1 = 
5 − 1 = 4 

 1 
 

(ℎ − 1) 
= 40.375 

   = 
40.375 

 

6.142 
    = 6.57 
Between     

Columns 
(machine types) 

 2 = 338.8   − 1 = 
4 − 1 = 3 

 2 
 

(  − 1) 

   = 
112.933 

Residual 
  = 112.933 6.142 

= 18.39 

 
 3 = 73.7 (ℎ − 1)(  − 1) = 12  3 

 

   (ℎ − 1)(  − 1)  

   = 6.142  

Total   = 574 ℎ  − 1 = 19   

 
Table value of     at 5% level of significance of (4,12) degrees of freedom is 3.26 
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Calculated value of    is greater than table value of   . 

Null Hypothesis  0 is rejected. (For Rows) 

Therefore, there is significant difference between the mean productivity of the workers. 

Table value of    at 5% level of significance of (3,12) degrees of freedom is 3.49 

Calculated value of    is greater than table value of   . 

Null Hypothesis  0 is rejected. (For Columns) 

 
Therefore, there is significant difference between the mean productivity for the four different 
machine types. 

 

8.6.3. A completely randomised design (CRD) experiment with 10 plots and 3 treatments 
gave the following results: 

 
Plot. No. 1 2 3 4 5 6 7 8 9 10 

Treatment A B C A C C A B A B 

Yield 5 4 3 7 5 1 3 4 1 7 

 
Analyse the results for treatment effects. 

Solution: 

Rearranging the data (yields) according to the treatments, the following table is obtained. 
 

 Treatment 

 
Yield from plots(   ) 

A B C 

5 4 3 

7 4 5 

3 7 1 

1 - - 

 
Null hypothesis  0: Treatments do not differ significantly. 

Alternative hypothesis  1: Treatments differ significantly. 

 A B C Total 

 

    Values 

5 4 3  

7 4 5 

3 7 1 

1 - - 

   16 15 9 40 

 2 
  256 225 81 - 

   4 3 3 N=10 

 2 
  

 

   

64 75 27 166 

5 

∑  2 
   

 =1 

84 81 35  
∑ ∑  2 

   

= 200 
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  = ∑    = 40 

  
 

  = ∑    = 10 

 
∑ ∑  2 = 200 

 

 
  = ∑ ∑  2 − 

 2 
 

 

  

 
= 200 − 

(40)2 
 

 

10 

 
= 40 

 

  
2 

 1 = ∑ − 
   

 2 
 

 

  

 
= 166 − 160 = 6 

 

 2 =   −  1 = 40 − 6 = 34 
 

ANOVA Table 
 

Source of 
variation (S.V.) 

Sum of square 
(S.S.) 

Degrees of 
freedom 
(d.f.) 

Mean square 
(M.S.) 

Variance ratio 
(F) 

Between 
Classes 
(Treatments) 

 1 = 6 ℎ − 1 = 
3 − 1 = 2 

     1  
= 3 

(ℎ − 1) 
 

   2  
= 4.86 

(  − ℎ) 

 
 

4.86 
= 1.62 

3 
Within Classes 
(Treatments) 

 2 = 34   − ℎ = 
10 − 3 = 7 

Total   = 40   − 1 = 
10 − 1 = 9 

  

 
Table value of F at 5% level of significance for (7, 2) degrees of freedom is 19.35 

Calculated value of F is less than table value of F. 

Therefore, Null Hypothesis  0 is accepted. 
 

Hence, the treatments do not give significantly different yields. 
 

8.6.4. Three varieties A, B, C of a crop are tested in randomised block design with four 
replications, the layout being as given below. The yields are given kilograms. Analyse for 
significance 

 
C48 A51 B52 A49 

A47 B49 C52 C51 

B49 C53 A49 B50 

 
Solution: 

 
Rewriting the given data such that the rows represent the blocks and columns represent the 
varieties of crop, we have the following table 
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Blocks 

Crops 

A B C 

1 47 49 48 

2 51 49 53 

3 49 52 52 

4 49 50 51 
 

Null Hypothesis  0: (a)There is no significant difference between rows (Blocks) and (b) 
There is no significant difference between columns (Crops) 

 
Alternative Hypothesis  1: (a) There is a significant difference between rows (Blocks) and (b) 
There is a significant difference between columns (Crops) 

 
Let     =     − 50 

 
 
Blocks 

Crops      
2 
    

  

∑  2 
   

  
A B C 

1 -3 -1 -2 -6 12 14 

2 1 -1 3 3 3 11 

3 -1 2 2 3 3 9 

4 -1 0 1 0 0 2 

   -4 0 4 T=0   
2 

∑   = 
  

18 

∑ ∑  2 = 36 
   

    

 2 
  

 

ℎ 

4 0 4  2 

∑ 
  

= 
ℎ 
8 

 

∑  2 
   

  

12 6 18 ∑ ∑  2 
   

    

= 36 
 

2 
 2 

 
 

(0)2 
 

 

  = ∑ ∑     − 
  

= 36 − 
= 574 

12 
 

 
 1 

  
2 

= ∑ − 
  

 2 

 2 
 

 

  

 2 

 
= 18 − 0 = 18 

  = ∑   − 
2 ℎ   

= 8 − 0 = 8 

 

 3 =   −  1 −  2 = 36 − 18 − 8 = 10 
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ANOVA table 
 

Source of 
variation (S.V.) 

Sum of 
square 
(S.S.) 

Degrees of 
freedom 
(d.f.) 

Mean square 
(M.S.) 

Variance 
ratio (F) 

Between 
Rows 
(Blocks) 

 1 = 18 ℎ − 1 = 
4 − 1 = 3 

 1 
 

(ℎ − 1) 
= 6 

   = 
6 

 

1.67 
= 3.6 

 
   = 

4 
= 2.4 

1.67 

Between 
   

Columns 
(Crops) 

 2 = 8   − 1 = 
3 − 1 = 2 

 2 
 

(  − 1) 

Residual 
  = 4 

 
 3 = 10 (ℎ − 1)(  − 1) = 6  3 

   (ℎ − 1)(  − 1) 
   = 1.67 
Total   = 10 ℎ  − 1 = 11   

 
Table value of    at 5% level of significance of (3, 6) degrees of freedom is 4.76 

Calculated value of    is Less than table value of   . 

Null Hypothesis  0 is accepted. (For Rows) 
 

Therefore, there is no significant difference between Rows (Blocks) 
 

Table value of    at 5% level of significance of (2, 6) degrees of freedom is 5.14 

Calculated value of    is Less than table value of   . 

Null Hypothesis  0 is accepted. (For Columns) 

 
Therefore, there is no significant difference between Columns (Crops) 

 
Hence the blocks do not differ significantly and the varieties of crop do not differ significantly 
with respect to the yield. 

 

8.6.5. Analyse the variance in the following Latin square of yields (in kgs) of paddy, where A, 
B, C, D denote the different methods of cultivation: 

 
D122 A121 C123 B122 

B124 C123 A122 D125 

A120 B119 D120 C121 

C122 D123 B121 A122 

 
Examine whether the different methods of cultivation have given significantly different yields. 
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Solution: 
 

Null hypothesis  0: (a) There is no significant difference between rows (b) There is no 
significant difference between columns and (c) There is no significant difference between 
letters (method of cultivation) 

 

Alternative hypothesis  1: (a) There is a significant difference between rows (b) There is a 
significant difference between columns and (c) There is a significant difference between 
letters (method of cultivation) 

 
Let     =     − 120 

 
 

Rows 

Columns      
2 
    

  

∑  2 
   

  
I II III IV 

1 D2 A1 C3 B2 8 16 18 

2 B4 C3 A2 D5 14 49 54 

3 A0 B-1 D0 C1 0 0 2 

4 C2 D3 B1 A2 8 16 18 

   8 6 6 10 T=20   
2 

∑   = 
  

81 

∑ ∑  2 = 92 
   

    

 2 
  

 

  

16 9 9 25  2 

∑ 
   

= 
  

59 

 

∑  2 
   

  

24 20 14 34 ∑ ∑  2 
   

    

= 92 

Rearranging the    ′  values according to the letters (method of cultivation), we get the 

following table 

 

Letter Value of        2 
  

 

  
A 1 2 0 2 5 6.25 

B 2 4 -1 1 6 9 

C 3 3 1 2 9 20.25 

D 2 5 0 3 10 25 

Total T=30   
2 

∑    

  
= 60.50 

 

 
  = ∑ ∑  2 − 

 2 
 

 

  

 
= 92 − 

(30)2 
 

 

16 

 
= 35.75 

    

 
1 2 

 
 

 
 2 

 
 

 1 = 
  
∑    

− = 81 − 56.25 = 24.75 
  

 

1 2  2 

 2 = 
  
∑    

− = 59 − 56.25 = 2.75 
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 3 = 

1 
∑  2 − 

  

 2 
 

 

  

 
= 60.50 − 56.25 = 4.25 

 

 4 =   −  1 −  2 −  3 = 35.75 − 24.75 − 2.75 − 4.25 = 4 
 

ANOVA table 
 

Source of 
variation 

(S.V.) 

Sum of 
square (S.S.) 

Degrees of 
freedom 
(d.f.) 

Mean square 
(M.S.) 

Variance ratio (F) 

Between 
Rows 

 1 = 24.75 
 
 
 
 

 2 = 2.75 
 
 
 

 3 = 4.25 
 
 
 
 

 4 = 4 

  − 1 = 4 − 1 − 3      1  
= 8.25 

(  − 1) 
 
 
 
 

 2 

(  − 1) 
= 0.92 

 

 3 
= 1.42 

(  − 1) 
 
 
 

   4  

(  − 1)(  − 2) 
= 0.67 

8.25 
   = 

0.67 
= 12.31 

 
 

Between 
Columns 

 

 
  − 1 = 4 − 1 = 3 

 
 

0.92 
   = 

0.67 
= 1.37 

 
Between 
letters 

 
  − 1 = 4 − 1 = 3 

 
 

1.42 
   = 

0.67 
= 2.12 

 

Residual 

 

(  − 1)(  − 2) 

 

 = 6  

Total   = 35.75  2 − 1   

 
Table value of    at 5% level of significance of (3, 6) degrees of freedom is 4.76 

Calculated value of    is greater than table value of   . 

Null Hypothesis  0 is rejected. (For Rows) 
 

Therefore, there is a significant difference between Rows. 

 
Table value of    at 5% level of significance of (3, 6) degrees of freedom is 4.76 

Calculated value of    is Less than table value of   . 

Null Hypothesis  0 is accepted. (For Columns) 
 

Therefore, there is no significant difference between Columns 
 

Table value of    at 5% level of significance of (3, 6) degrees of freedom is 4.76 

Calculated value of    is Less than table value of   . 

Null Hypothesis  0 is accepted. (For Letters) 
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Check Your Progress 

Glossaries 

Therefore, there is no significant difference between letters (method of cultivation) 

Hence the difference between the methods of cultivation is not significant. 

 

In this unit we studied the design of experiments. We focused only on analysis of 
variance one-way classification, two-way classification, Completely Randomized Design, 
Randomized Block Design and Latin Square Design. 

 

 
1. The term Analysis of variance was introduced by . 

 
2. The Analysis of variance originated in . 

 
3. ANOVA table stands for . 

 
4. The stimulus to the development of theory and practice of experimental design came from 
  . 

 
5. The most widely used all experimental design is . 

 
6. The science of experimental designs is associated with the name . 

 
7. The Latin square model assumes that interactions between treatments and rows and 
columns groupings are . 

 
8. The randomised block design is available for a wide range of treatments . 

 
9.   Latin square design is not possible. 

 
10. The assumptions in analysis of variance are the same as . 

 
 

Analysis of variance (ANOVA): It is the separation of variance ascribable to one group of 
causes from the variance ascribable to other groups. 

 
One-way classification: In one-way classification the data are classified according to only 
one criterion or factor. 

 
Two-way classification: In two-way classification the data are classified according to the two 
different criteria or factors. 

 
Design of experiment: The logical construction of the experiment in which the degree of 
uncertainty with which the inference is drawn may be will defined. 

 
Completely Randomized Design: In this Design, treatments are allocated at random to the 
experimental units over the entire experimental material. 

Let Us Sum Up 
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Suggested Readings 

Answers to Check Your Progress 

Randomized block Design: It is an experimental design where the experimental units are in 
groups called block. The treatments are randomly allocated to the experimental units inside 
each block. When all treatments appear at least once in each block, we have a completely 
randomized block. 

 
Latin Square Design: It is the arrangement of t treatments, each one repeated t times, in 
such a way that each treatment appears exactly one time in each row and each column in 
the design. This kind of design is used to reduce systematic error due to rows (treatments) 
and columns. 

 

1. Freund. J.E.,” Mathematical Statistics”, Prentice Hall of India, Fifth Edition, 2001. 

 

2. Gupta. S.C. and Kapoor. V. K., “Fundamentals of Mathematical Statistics”, Sultan Chand & Sons, 

Eleventh Edition, 2003. 

 

3. Devore. J. L. “Probability and Statistics for Engineers”, Brooks/Cole (Cengage Learning), First 

India Reprint, 2008. 
 

1. R. A. Fisher 

 

2. Agrarian research 

 

3. Analysis of Variance table 

 

4. Agricultural research 

 

5. Randomised block design 

 

6. Latin square 

 

7. non-existent 

8. 2 to 24 

9. 2 × 2 
 

10. F-test 
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Matrix Algebra and Random variables 

 
Structure 

Objectives 

Overview 

9.1. Introduction 
 

9.2. Random Vectors and Matrices 
 

9.3. Mean Vectors and Covariance Matrices 
 

9.4. Partitioning the Covariance Matrix 
 

9.5. Partitioning the sample mean vector and Covariance matrix 

Let us Sum Up 

Check Your Progress 

Glossaries 

Suggested Readings 

Answer To check your progress 

Unit – 9 
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Overview 

9.1. Introduction 

 

After Studying this Unit, the student will be able to 
 

 Explain the random vectors and matrices 

 Demonstrate the concept of mean vectors and covariance matrices 

 Summarize the partitioning the covariance matrix, sample mean vector and 
covariance matrix. 

 

In this unit, we will study the concept of random variables, random matrices, mean 
vectors, covariance matrices, partitioning the covariance matrix, partitioning the sample 
mean vector and covariance matrix. 

 

Scientific inquiry is an iterative learning process. Objectives pertaining to the 
explanation of a social or physical phenomenon must be specified and then tested by 
gathering and analysing data. In turn, an analysis of the data gathered by experimentation or 
observation will usually suggest a modified explanation of the phenomenon. Throughout this 
iterative learning process, variables are often added or deleted from the study. Thus, the 
complexities of most phenomena require an investigator to collect observations on many 
different variables. This block concerned with statistical methods designed to elicit 
information from these kinds of data sets. Because the data include simultaneous 
measurements on many variables, this body of methodology is called multivariate analysis. 

 

9.1.1. Arrays 

 
Multivariate data arise whenever an investigator, seeking to understand a social or 

physical phenomenon, selects a number p ~ 1 of variables or characters to record. The 
values of these variables are all recorded for each distinct item, individual, or experimental 
unit. 

 

We will use the notation    to indicate the particular value of the   ℎvariable that is 

observed on the   ℎitem, or trial. That is, 

   = measurement of the   ℎvariable on the   ℎitem 

 
Consequently, n measurements on p variables can be displayed as follows: 

 
 Variable 1 Variable 2 … Variable k … Variable p 

Item 1  11  12 …  1  …  1  

Item 2  21  22 …  2  …  2  

⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮ 
Item j   1   2 …     …     

⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮ 

Item n   1   2 …     …     

 
Or we can display these data as a rectangular array, called X, of n rows and p columns: 

Objectives 
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9.2. Random Vectors and Matrices 

 11  12 …  1  
…  1   

    …  2  …  2  
1

 
I  …21 

  = I   1
 

I … 
[  1 

…22 

  2 

… 
  2 

… 

…. . 

… 

… 
    

… 
    

… … I 
    I 

… … I 
…     ] 

 

The array X, then, contains the data consisting of all of the observations on all of the 
variables. 

 

9.1.2. Example (A data array) 

 
A selection of four receipts from a university bookstore was obtained in order 

to investigate the nature of book sales. Each receipt provided, among other things, 
the number of books sold and the total amount of each sale. Let the first variable be 
total dollar sales and the second variable be number of books sold. Then we can 
regard the corresponding numbers on the receipts as four measurements on two 
variables. Suppose the data, in tabular form, are 

 
Variable 1 (dollar sales) 45 52 48 58 

Variable 2 (number of books) 4 5 4 3 

 
Solution: 

 
Using the notation just introduced, we have 

 
 11 = 42,  21 = 52,  31 = 48,  41 = 58 

 
 12 = 4,  22 = 5,  32 = 4,  42 = 3 

 

42 4 
and the data array X is   = [52 5]with four rows and two columns. 

 

9.1.3. Vectors 

48 4 
58 3 

 

An array x of n real numbers  1,  2,…,  is called a vector, and it is written as 
 1 
  2

1 
  = I . 

I . 
I     ′ = [ 1,  2, . . . ,   ] 
I 

[  ] 
where the prime denotes the operation of transposing a column to a row. 

 

A random vector is a vector whose elements are random variables. Similarly, a 

random matrix is a matrix whose elements are random variables. The expected value of a 

random matrix (or vector) is the matrix (vector) consisting of the expected values of each of 

its elements. Specifically, let   = {   }be an n ×P random matrix. Then the expected value 

of X, denoted by E(X), is the n ×P matrix of numbers (if they exist) 
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( 11)  ( 12) …  ( 1 )1 

I ( 21)  ( 22) …  ( 2 )I 
 ( ) = I … 

I … 

… … … I 
… … … I 

[ (  1)  (  2) …  (   )] 
 

where, for each element of the matrix 
 

∞ 

 ℎ                                                 (   )          ∫ل
−∞ 

I 
 (   ) = 

❪ 

I 
  

 

∑       (   ) 
        

                                (   ) 

                                        ℎ 

 
                        (   ) 

 

9.2.1. Example (Computing expected values for discrete random variables) 
 

Suppose p= 2 and n = 1, and consider the random vector   = { 1,  2}. Let the discrete 

random variable  1 have the following probability function: 
 

 1 -1 0 1 

 1( 1) 0.3 0.3 0.4 

 
Solution: 

 

Then  ( 1) = ∑     1 
 1 1( 1) = (−1)(0.3) + (0)(0.3) + (1)(0.4) = 0.1 

Similarly, let the discrete random variable  2 have the probability function 
 

 2 0 1 

 2( 2) 0.8 0.2 

 

Then  ( 2) = ∑     2 
 2 2( 2) = (0)(0.8) + (1)(0.2) = 0.2 

 

[   ] [
 ( 1) 0.1 

Thus,     = ( ] = [ ] 
   2) 0.2 

 

 

Suppose ′ = [ 1,  2, … ,   ] is a p x 1 random vector. Then each element of X is a 

random variable with its own marginal probability distribution. The marginal means   and 
variances    2are   defined   as      =  (  )and 2 =  (   −   )2,     = 1, 2, . . . ,  ,respectively. 

    

Specifically, 

9.3. Mean Vectors and Covariance Matrices 
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I 

 
 

 
   = 

∞ 

     (  )        ∫ل

I 
−∞ 

 
                                         ℎ 

 
 
 
 

 
 
 

 2 = 

∞ 

 ℎ                                               (  )   2(   −   )    ∫ل

I −∞ 

                               (  ) 
  ❪ ∑ (  −   )2  (  )                                       ℎ 

  

I        

  

        

 

                        (  ) 
 
 

It will be convenient to denote the marginal variances by   rather than the more traditional 

 2, consequently, we shall adopt this notation. 

 
The behaviour of any pair of random variables, such as   and    is described by their joint 
probability function, and a measure of the linear association between them is provided by the 
covariance. 

 

    =  (   −   )(   −   ) 

 
 ∞ ∞ ل

I∫  ∫   (   −   )(   −   )    (  ,   )         
I −∞ −∞ 

 

 
     ,                   
                    ℎ 

 ℎ                 
           (  ,   ) 

    =        

❪ 
I ∑  ∑ (   

                

 
−   )(   

 
−   ) 
    

 
(  ,   ) 

     ,                 
                    ℎ 

                  

            (  ,   ) 
 

 
and   and   ,  ,   = 1,2, . . . ,  ,are the marginal means. When   =  , the covariance 
becomes the marginal variance. 

 
The collective behaviour of the P random variables  1,  2, … ,   or, equivalently, the 

random   vector    ′ = [ 1,  2, … ,   ]is   described   by   a    joint    probability    density 

function  ( 1,  2, … ,   ) =  ( ). ( )will often be the multivariate normal density function. 

 
If the joint probability  [   ≤           ≤   ]can be written as the product of the 

corresponding marginal probabilities, so that 
 [   ≤           ≤   ] =  [   ≤   ] [   ≤   ]for all pairs of values    and   then   and 
  are said to be statistically independent. 

When   and   are continuous random variables with joint density    (  ,   )and 

marginal densities   (  )and   (  )the independence condition becomes 
   (  ,   ) =   (  )  (  )for all pairs (  ,   ). 

 
The P continuous random variables  1,  2, … ,    are mutually statistically 

independent if their joint density can be factored as 

 
❪ 

 
∑     (  ) 

                               (  ) 

                                       ℎ 

I 
  

       

                       (  ) 
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 1.2…… ( 1.  2, … ,   ) =  1( 1) 2( 2) …   (  ) for all p-tuples ( 1,  2, … ,   ) 

 
Statistical independence has an important implication for covariance. The 

factorization in  1.2…… ( 1.  2, … ,   ) =  1( 1) 2( 2) …   (  ) implies that    (  ,   ) = 0. 
 

Thus,    (  ,   ) = 0 If    and    are independent. 

 
The converse of the above statement is not true in general; there are situations 

where    (  ,   ) = 0but    and   are not independent. 
 

The means and covariances of the P × 1 random vector X can be set out as 
matrices. The expected value of each element is contained in the vector of means    = 
 ( )and the P variances    and the p(p-1)/2 distinct covariances     (  <  )are contained in 

the symmetric variance-covariance matrix ∑ =  (  −  )(  −  )′.Specifically 
 
 

 
 ( 1)

1
 

 ( 2) 
 1 
  2 

1 

 ( ) = . 
I . 

= I . 

I I . 
I =   and 
I 

[ (  )] [  ] 
 

Σ =  (  −  )(  −  )′ 
 

 
 1 −  1 

1
 

l  2 −  2 
Σ =   

.
 

I . 
[ 1 −  1  1 −  1 …    −   ]  

I 

 [   −   ] ) 
 
 
 

Σ =   
 
 
I (  

 
 

−   

 

⋮ 
)(  

 

 
−   ) 

 
 

(  

 
 

−   

 

⋮ 
)(  

 

⋱ 
−   ) … 

 

⋮ 

(  

 

2 I −   ) 
[     1 1     2 2     ] 

 
 
 

Σ = 
I  (  

 

 
−   

 
⋮ 
)(  

 
 
−   ) 

 

 
 (  

 

 
−   

 
⋮ 
)(  

 
⋱ 

−   ) … 

 

⋮ 
 (  

 
2 I −   ) 

[     1 1     2 2     ] 
 

 11  12 …  1  

Σ =    ( ) = [
 21  22 …  2 

] 
⋮ ⋮ ⋱ ⋮ 

  1   2 …     

Because of     =  (   −   )(   −   ) =    , it is convenient to write the above matrix as 

 11  12 …  1  

Σ =  (  −  )(  −  )′ = [
 12  22 …  2  

] 
⋮ 

 1  

⋮ 
   

⋱ ⋮ 
…     

  
( 1 −  1)2 ( 1 −  1)( 2 −  2) … ( 1 −  1)(   −   )1 

( 2 −  2)( 1 −  1) ( 2 −  2)2 … ( 2 −  2)(   −   ) 

 

   ( 1 −  1)2  ( 1 −  1)( 2 −  2) …  ( 1 −  1)(   −   )1 

 ( 2 −  2)( 1 −  1)  ( 2 −  2)2 …  ( 2 −  2)(   −   ) 
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9.3.1. Example (Computing the covariance matrix) 

 

Find the covariance matrix for the two random variables  1and  2introduced in 

Example 9.2.1.   When their joint probability function  1,2( 1,  2)is represented by the entries 
in the body of the following table: 

 

 
 1 

 2  

0 1  1( 1) 
-1 0.24 0. 06 0.3 

0 0.16 0.14 0.3 

1 0.40 0. 00 0.4 

 1( 1) 0.8 0.2 1 

 
Solution: 

 

We have already shown that  1 =  ( 1) = 0.1 and  2 =  ( 2) = 0.2 (See Example 
9.2.1.) In addition, 

 
 11 =  ( 1 −  1)2 = ∑ ( 1 − 0.1)2  1( 1) 

     1 

 11 = (−1 − 0.1)2(0.3) + (0 − 0.1)2(0.3) + (1 − 0.1)2(0.4) = 0.69 
 

 22 =  ( 2 −  2)2 = ∑ ( 1 − 0.2)2  2( 2) 
     2 

 22 = (0 − 0.2)2(0.8) + (1 − 0.2)2(0.2) = 0.16 
 

 12 =  ( 1 −  1)( 2 −  2) = ∑ ( 1 − 0.1)( 2 − 0.2)  12 ( 1,  2) 

          ( 1, 2) 

 12 = (−1 − 0.1)(0 − 0.2)(0.24) + (−1 − 0.1)(1 − 0.2)(0.06) 

+ ⋯ + (1 − 0.1)(1 − 0.2)(0.00) = −0.08 

 21 =  ( 2 −  2)( 1 −  1) =  ( 1 −  1)( 2 −  2) =  12 = −0.08 

Consequently, with  ′ = [ 1,  2] 

  =  ( ) = [
 ( 1)

] = [
 1

] = [
0.1

] 
 ( 2) 

Σ =  (  −  )(  −  )′ 

 2 0.2 

 

 
Σ =   [ 

( 1 −  1)2 ( 1 −  1)( 2 −  2) 
2 ] 

( 2 −  2)( 1 −  1) ( 2 −  2) 
 

 ( 1 −  1)2  ( 1 −  1)( 2 −  2) 
Σ = [ ]  (  −   )(  −   )  (  −   )2 

2 2 1 1 2 2 

Σ = [
 11  12] 
 21  22 

[ 0.69 − 0.08 
Σ = ] 

− 0.08 0.16 
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√    √ 

9.3.2. Note 

The computation of means, variances, and covariances for discrete random variables 
involves summation (as in Examples 9.2.1. and 9.3.1.), while analogous computations for 
continuous random variables involve integration. 

 
We shall refer to   and Σ as the population mean (vector) and population variance- 

covariance (matrix), respectively. 

 

The multivariate normal distribution is completely specified once the mean vector 

 and variance-covariance matrix Σ are given, so it is not surprising that these quantities play 
an important role in many multivariate procedures. 

 
It is frequently informative to separate the information contained in variances     from 

that contained in measures of association and, in particular, the measure of association 
known as the population correlation coefficient    . 

 
The correlation coefficient    is defined in terms of the covariance    and variances 

    and 
    

as 
    

=
      

√   √    

 

The correlation coefficient measures the amount of linear association between the 

random variables    and   . 

Let the Population correlation matrix be the   ×   symmetric matrix 

 
  11  

I√ 11√ 11 

I   11  
  = I√ 11√ 22 

   12  
 

  

√ 11√ 22 

   22  
 

  √ 22√ 22 

   1   

… 1 
11    I 

… 
   2  I 

√ 22√    
I 

I ⋮ I  1  I     

⋮ 
 2  
    

 

⋱ 
…   

⋮ 
I
 

    
I 
I   

[√ 11√    √  22√    √   √   ] 

1  12 …  1  

  = [
 12 1 …  2 

]
 

⋮ ⋮ ⋱ ⋮ 
 1   2  … 1 

and let the   ×   standard matrix be 
 

 √
 11 0 … 0 1 

 1/2 = I 0 √ 22 … 0   I 
I   ⋮ ⋮ ⋱ ⋮ I 

 

[ 0 

Then 

0 … √   ] 

1 1 1     −1 
 

1     −1 

 2   2  = Σ   and   = (  2 ) Σ (  2 ) 
 

That is Σ can be obtained from  1/2 and  , whereas  can be obtained from Σ. Moreover, the 
expression of these relationships in terms of matrix operations allows the calculations to be 
conveniently implemented on a computer. 
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⋮ 

9.3.3 Example (Computing the correlation matrix from the covariance matrix) 
 

Suppose 
 

4 1 2 

 
 

 11  12  13 

Σ = [1 9 −3] = [ 12  22  23]Obtain  1/2and  . 
2 −3 25 

 

Solution: 

 13  23  33 

 
 

 
1 

 2  = [ 

√ 11 0 0 
 

 

0 √ 22 0 
 

 

0 0 √ 33 

1 

2 0 0 
] = [0 3 0] 

0 0 5 

  0 01 
−1 I2 I 

1 

( 2 ) = I0 
1 

0I 
I 3  I 
I 1I 

[0 0 
5] 

The correlation matrix p is given by 

1 1 1 1 
 

−1 −1 

  0 01 
I2 I 

  
4 1 2 I2 

0 01 
I 

 1 1 
I 6 5 I 

1 

(  2 ) 
1 

Σ (  2 ) = I0 
1

 
I 3 

0I [1 9 −1] I0 
1

 
I   2 −3 25   I 3 

0I = I
1 

I I6 
1 − 

1I 
5I 

I 1I I 1I I1 1 I 

[0 0 
5] [0 0 

5] [5 
− 

5 
1 ] 

 

 

The characteristics measured on individual trials will fall naturally into two or more 
groups. As examples, consider measurements of variables representing consumption and 
income or variables representing personality traits and physical characteristics. One 
approach to handling these situations is to let the characteristics defining the distinct groups 
be subsets of the total collection of characteristics. If the total collection is represented by a 

(p × 1)-dimensional random vector X, the subsets can be regarded as components of X and 
can be sorted by partitioning X. 

 
In general, we can partition the p characteristics contained in the p × 1 random 

vector X into, for instance, two groups of size q and p −q, respectively. For example, we can 
write 

 

  
 1  

1 
I         

I 
I I 

 
 

 (1) 

 1 
  ⋮ 1 
I          I 

 
 

 (1) 

  = I… … …I = [… … …] and   = I… … …I = [… … …] 

I   +1 I  (2) I   +1 I  (2) 

I ⋮ I I ⋮ I 

[        ] [         ] 

From the definitions of their transpose and matrix multiplication 

9.4. Partitioning the Covariance Matrix 
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p − q 

I I 

I I 

 1 −  1 
( (1) −  (1))( (2) −  (2))

′ 
= [

 2 −  2 
] [  

 

−   

 

  −   

 

… …   
 
−   ] 

 

 
( (1) −  (1))( (2) −  (2)) 

⋮ 
   −    

 +1  +1  +2  +2     

( 1 −  1)(  +1 −   +1) ( 1 −  1)(  +2 −   +2) … ( 1 −  1)(   −   ) 

=   
( 2 −  2)(  +1 −   +1) ( 2 −  2)(  +2 −   +2) … ( 2 −  2)(   −   ) 

I ⋮ ⋮ ⋱ ⋮ I 

[(   −   )(  +1 −   +1) (   −   )(  +2 −   +2) … (   −   )(   −   )] 

Upon taking the expectation of the matrix ( (1) −  (1))( (2) −  (2))
′
, we get 

 1, +1  1, +1 
…  1,  

′ 
 
    …  2, 

1
 

 ( (1) −  (1))( (2) −  (2))  = I 
I 

2, +1 

⋮ 
2, +2 

⋮ ⋱ 
I = Σ12 

⋮ I 
[  , +1   , +2 …   , ] 

Which gives all the covariances    ,   = 1,2, … ,  ,   =   = 1,   + 2, … ,  , between a component 

of  (1) and a component of  (2). 

The matrix Σ12 is not necessarily symmetric or even square. 

With help of Partitioning, we can get 

  ( 
 11 ⋯  1  

⋮ ⋱ ⋮ 

 1, +1 ⋯  1,  

) ( ⋮ ⋱ ⋮  ) 1 
I   1 ⋯     
= I    +1,1 ⋯  

  +1,  

I( ⋮ ⋱ ⋮ 
[   ,1 ⋯   ,  

  , +1 ⋯   ,  
I
 

  +1, +1 ⋯   +1,    
I
 

) ( ⋮ ⋱ ⋮ )I 
  , +1 ⋯     ] 

 

 

 

 
(  −  )(  −  )′ = 

 ( (1) −  (1))( (1) −  (1))
′ 

(  × 1) (1 ×  ) 

( (2) −  (2))( (1) −  (1))
′ 

I 

( (1) −  (1))( (2) −  (2))
′ 

1 

(  × 1) (1 × (  −  )) 

( (2) −  (2))( (2) −  (2))
′ 

I 
[   ((  −  ) × 1) (1 ×  ) ((  −  ) × 1) (1 × (  −  )) ] 

 

 

 
Σ 

(  ×  ) 
=  (  −  )(  −  )′ = 

q
 

p p − q 

[
(Σ11)  (Σ12)

] 
(Σ21) (Σ22) 

  ×   
 

 
  ( 

 11 ⋯  1  

⋮ ⋱ ⋮ 

 1, +1 ⋯  1,  

) ( ⋮ ⋱ ⋮  ) 1 
I   1 ⋯     
= I    +1,1 ⋯  

  +1,  

I( ⋮ ⋱ ⋮ 
[   ,1 ⋯   ,  

  , +1 ⋯   ,  
I
 

  +1, +1 ⋯   +1,    
I
 

) ( ⋮ ⋱ ⋮ )I 
  , +1 ⋯     ] 
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21 

  

Note that Σ12 = Σ′   . The covariance matrix of  (1) isΣ11, that of  (2) is Σ22, and that of 

elements from  (1) and  (2) is Σ12 or Σ21. 

It is convenient to use  the    ( (1),  (2)) notation  where    ( (1),  (2)) = Σ12.is a matrix 

containing all the covariances between a component of  (1) and a component of  (2). 

The Mean Vector and Covariance Matrix for linear Combinations of Random Variables 

Recall that if a single random variable, such as  1, is multiplied by a constant c, then 

 (  1) =   ( 1) =   1 and    (  1) =  (  1 −   1) =  2   ( 1) =  2 11. 

If  2 is a second random variable and a and b are constants, then, using additional 
properties of expectation, we get 

 

   (  1,   2) =  (  1 −   1)(  2 −   2) =    ( 1 −  1)( 2 −  2) =      (  1,  2) 
=    12 

 
Finally, for the linear combination   1 +   2, we have 

 (  1 +   2) =   ( 1) +   ( 2) =   1 +   2 

   (  1 +   2) =  [(  1 +   2) − (  1 +   2)]2 

   (  1 +   2) =  [ ( 1 −  1) +  ( 2 −  2)]2 

   (  1 +   2) =  [ 2( 1 −  1)2 +  2( 2 −  2)2 + 2  ( 1 −  1)( 2 −  2)] 

   (  1 +   2) =  2   ( 1) +  2   ( 2) + 2     ( 1,  2) 

   (  1 +   2) =  2 11 +  2 22 + 2   12 

With  ′ = [ ,  ],   1 +   2 can be written as 

[   ] [
 1] =  ′  
 2 

Similarly,  (  1 +   2) =   ( 1) +   ( 2) =   1 +   2 can be expressed as 

[   ] [
 1]   =  ′  2 

If we let Σ = [
 11  12

] be the variance-covariance matrix of X, then we have 
 21  22 

 
 

   (  1 +   2) =    ( ′ ) =  ′ ∑   
 

∑ [ ] [
 11  12   2 2 

Since  ′   =         12  22
] [ ] =    11 + 2   12 +    22 

 

The preceding results can be extended to a linear combination of p random variables: 

The linear combination  ′  =  1 1 + ⋯ +      has 

Mean =  (  ′ ) =  ′  

Variance =    (  ′ ) =  ′Σ  
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Where   =  ( ) and Σ =    ( ) 

In general, consider the q linear combinations of the p random variables  1, … ,   : 

 1 =  11 1 +  12 2 + ⋯ +  1    

 2 =  21 1 +  22 2 + ⋯ +  2    

⋮ 

   =   1 1 +   2 2 + ⋯ +       

 1  11  12 …  

 1  

 1 

  = [
 2] [

 21  22 …  2 
] [

 2] =    
⋮ 
   

⋮ 
  1 

⋮ 
  2 

⋱ ⋮ 
…  
    

⋮ 
   

The linear combinations   =    have 

   =  ( ) =  (  ) =     

Σ  =    ( ) =    (  ) =  Σ  ′ 

Where    and Σ  are the mean vector and variance-covariance matrix of X, respectively. 

9.4.1. Example (Means and covariances of linear combinations) 
 

Let  ′ = [ 1,  2] be a random vector with mean vector  ′ = [ 1,  2] and variance-covariance 
 11  12 

matrix Σ  = [ 12  22
] 

Solution: 

 
Find the mean vector and covariance matrix for the linear combinations 

 1 =  1 −  2 

 2 =  1 +  2 

  = [
 1] = [

1 −1] [
 1] =    

 2 1 1  2 

in terms of    and Σ  
 

    =  ( ) =   = [
1 −1

] [
 1

] = [
 1 −  2

] 
     1 1  2  1 +  2 

 (  ) ′ [1 −1  11  12 1 1 
Σ  =        =  Σ    = 1 1 

] [ 21  22 
[
−1 1

]]
 

 

 11 − 2 12 +  22  11 −  22 

Σ  = [  11 −  22  11 + 2 12 +  22
]
 

9.4.2. Note 

 

If  11 =  22, that is, if  1and  2 have equal variances, the off-diagonal terms in Σ  
vanish. This demonstrates the well-known result that the sum and difference of two random 
variables with identical variances are uncorrelated. 
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I I 

2 

 
 

Let   ′ = [  1,   2 , … ,     ] be the vector of sample averages constructed from n 

observations on p variables  1,  2, … ,   , and let 

 11 ⋯  1  

   = ( ⋮ ⋱ ⋮  ) 
 1  ⋯     

    
1 2 1 

l   
∑(  1 −   ) 
 =1 

⋯ 
  
∑(  1 −   1)(    −    )

 
 

 =1 
   = ⋮ ⋱ ⋮ 

I1   
  

1   
   I 

  
∑(  1 −   1)(    −    ) ⋯ 

   =1 
  
∑(    −    ) 
 =1 ) 

be the corresponding sample variance-covariance matrix. 

The sample mean vector and the covariance matrix can be partitioned in order to 

distinguish quantities corresponding to groups of variables. Thus, 

  1 
  ⋮ 1 
I      

I   
 

  (1) 
= 

I … … I = [… …] and 
(  × 1) 

I   +1
I 

(2) 
I I 
I   ⋮   I 

   

[     ] 
 
 

 
  ( 

 11 ⋯  1  
⋮ ⋱ ⋮ 

 1, +1 ⋯  1,  

) ( ⋮ ⋱ ⋮  ) 1 
   

I   1 ⋯       , +1 ⋯   ,  
I
 (S11) (S12) 

(  ×  ) 
== I

   +1,1 ⋯  

  +1,  

  +1, +1 ⋯  

  +1,  

I = [ 
21 

] 
) (S22) 

I( ⋮ ⋱ ⋮ 
[   ,1 ⋯  
  ,  

) ( ⋮ ⋱ ⋮ )I 
  , +1 ⋯     ] 

 

 

Where   (1) and   (2)   are the sample   mean vectors   constructed from observations 
  (1) = [  , … ,   ] and   (2) = [  , … ,   ′ ] , respectively; S is the sample covariance matrix 

1    +1   11 

computed from observations   (1); S22is the sample covariance matrix computed from 

observations   (2); and S12 = S21is the sample covariance matrix for elements of   (1)and 

elements of   (2). 

9.5. Partitioning the sample mean vector and Covariance matrix 

(S 
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In this unit we studied the random variables, random matrices, mean vectors, 
covariance matrices, partitioning the covariance matrix, partitioning the sample mean vector 
and covariance matrix. 

 

1.    ( 1,  2) = if  1 and  2 are independent. 

 
2. Let X be a random variable and let A and B be conformable matrices of constants. Then 

 (   ) = . 
 

3. The P continuous random variables  1,  2, … ,    are mutually statistically independent if 

their joint density can be factored as . 

 

Random vector: It is a vector whose elements are random variables. 

Random matrix: It is a matrix whose elements are random variables. 

Correlation coefficient: It measures the amount of linear association between the random 
variables. 

 

1. Johnson. R. A. and Wichern. D. W., “Applied Multivariate Statistical Analysis”, Pearson 

Education Asia, Sixth Edition, 2007. 

 

1. Zero 

 

2.   ( )  
 

3. 1.2…… ( 1.  2, … ,   ) =  1( 1) 2( 2) …   (  ) for all p-tuples ( 1,  2, … ,   ) 

Let Us Sum Up 
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Overview 

10.1. Introduction 

10.2. Multivariate Normal Density and its properties 

 

 
 

After Studying this Unit, the student will be able to 
 

 Explain the multivariate normal distribution 

 Demonstrate the concept of the Multivariate Normal Density and its properties 

 

In this unit, we will study the concept of multivariate normal distribution and multivariate 
normal density and its properties. 

 

A generalization of the bell-shaped normal density to several dimensions plays a 
fundamental role in multivariate analysis. Most of the techniques encountered in this unit are 
based on the assumption that the data were generated from a multivariate normal 
distribution. While real data are never exactly multivariate normal, the normal density is a 
useful approximation to the true population distribution. 

 

One advantage of the multivariate normal distribution is mathematically tractable and 
nice results can be obtained. The normal distributions are useful for two reasons: First, the 
normal distribution serves as a bona fide population model in some instances; Second, the 
sampling distributions of many multivariate statistics are approximately normal, regardless of 
the form of the parent population, because of central limit effect. 

 
Many real-world problems fall naturally within the framework of normal theory. The 

importance of the normal distribution rests on its dual role as both population model for 
certain natural phenomena and approximate sampling distribution for many statistics. 

 

The multivariate normal density is a generalization of the univariate normal density to 
  ≥ 2 dimensions. Recall that the univariate normal distribution, with mean  and variance 

 2,has the probability density function 
1 

 ( ) = 
√2   

 −[( − )/ ]2/2, −∞ <   < ∞ 

 
 

 

Objectives 
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The above figure is a Normal density with mean   and variance  2 and selected 
areas under the curve 

 
A plot of this function yields the familiar bell-shaped curve shown in the above figure. 

Also shown in the figure are approximate areas under the curve within ±1 standard 

deviations and ±2 standard deviations of the mean.   These areas represent probabilities, 
and thus, for the normal random variable X. 

 

 (  −   ≤   ≤   +  ) = 0.68 
 

 (  − 2  ≤   ≤   + 2 ) = 0.95 
 

It is convenient to denote the normal density function with mean  and variance  2 by 

 ( ,  2). Therefore, N(10, 4) refers to the function  ( ) = 
1

 
√2   

 −[( − )/ ]2/2, −∞ <   < ∞ 

with   = 2 and   = 2. 
 

The term (
 − 

)
2 

= (  −  )( 2)−1(  −  ) is the exponent of the univariate normal 
  

density function This can be generalized for a   × 1 vector x of observations on several 
variables as (  −  )′Σ−1(  −  ). 

 
The   × 1 vector   represents the expected value of the random vector X, and the 

  ×   matrixΣ is the variance-covariance matrix of X. We shall assume that the symmetric 

matrix Σ is positive definite, so the expression (  −  )′Σ−1(  −  ) is the square of the 
generalized distance from x to  . 

 
The multivariate normal density is obtained by replacing the univariate distance in the 

function (
 − 

)
2 

= (  −  )( 2)−1(  −  ) by the multivariate generalized distance of 
)  

(  −  )′Σ−1(  −  ) in the density function of ( ) = 
1

 
√2   

 −[( − )/ ]2/2, −∞ <   < ∞ . 

 

When this replacement is made, the univariate normalizing constant 
(2 )−1/2( 2)−1/2 must be changed to a more general constant that makes the volume under 

the surface of the multivariate density function unity for any  . This is necessary because, in 
the multivariate case, the probabilities are represented by volumes under the surface over 

regions defined by intervals of the    values. Consequently, a   −dimensional normal density 

for the random vector  ′ = [ 1,  2, … ,   ] has the form 

 ( ) =  
1 

(2 ) /2⌈Σ⌉1/2 
 −( − )Σ−1(  −  )/2, where −∞ <    < ∞,   = 1,2, …  . 

 

We shall denote this p-dimensional normal density by   ( , Σ) which is analogous to the 

normal density in the univariate case. 
 

10.2.1. Example (Bivariate normal density) 

 
Evaluate the   = 2 −variate normal density in terms of the individual parameters  1 = 

 (  ),     =  (  ).   =    (  ),   =    (  ), and   =
  12 =     (  ,   ). 

1 2 2 11 1 22 2 12 

(√ 11√ 22) 1 2
 

Solution 
 

 
 11  12 

 
 
 

−1 1 

 
 

 22 − 12 

The inverse of the covariance matrix ∑ = [ 12  22
] is ∑ = 

 11 22 
[− 12  11 

]
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−   ] [ ] 

12 

12 

 
  

Introducing the correlation coefficient  12 by writing  12 =  12√ 11√ 22, we obtain  11 22 − 
 2 =  11 22(1 −  2 ), and the squared distance becomes 

12 12 

 
  

(  −  )′∑−1(  −  ) = [  −   ,   ] [ 
 22 − 

12√ 11√ 22  1 −  1 
 

  1 1 2 
2 −  √ 11 √ 22  11 

 2 −  2 

 

2 

(  −  )′∑−1(  −  ) = 
 22( 1 −  1)

 +  11( 2  −  2) 
2         

− 2 12√ 11√ 22( 1 −  1)( 2 −  2) 

 11 22(1 −  2 ) 
 

−1 1  1 −  1   
2 

 
 

 2 −  2   
2 

 
 

 1 −  1  2 −  2 
 (  −  )′∑ (  −  ) = [(    ) + (    ) − 2  (    ) (    )] 

1 −  2 √ 11 √ 22 
12 √ 11 √ 22 

 

The last expression is written in terms of the standardized values  1− 1 and  2− 2 
  

√ 11 √ 22 
 

Next, since|Σ| =  11 22 −  2 =  11 22(1 −  2 ). We can substitute for Σ−1 and |Σ| in  ( ) = 
12 12 

1 
 

(2 ) /2⌈Σ⌉1/2 
 −( − )Σ−1(  −  )/2 to get the expression for the bivariate (  = 2) normal density 

involving the individual parameters  1,  2,  11,  22      12 
 

1 
 ( 1,  2) = √ 

1 

2 
    {− 

2(1 −  2 ) 
[( 
 1 −  1 2 

) √  
 2 −  2  2 

+ ( ) √  
2   11 22(1 −  12) 12 11 22 

− 2  (
 1 −  1

) (
 2 −  2

)]}
 

 
  

12 √ 11 √ 22 
 

The above expression is somewhat unwidely, and the compact general form 

 ( ) =  
1 

(2 ) /2⌈Σ⌉1/2 
 −( − )Σ−1(  −  )/2 is more inofmative in many ways. On the 

other hand, the above expression is useful for discussing certain properties of the 
normal distribution. 

 
For example, if the randam variables  1      2 are uncorrelated, so that  12 = 0, the 
joint density can be written as the product of two univariate normal densities each of 

the form of ( ) = 
1

 
√2   

 −[( − )/ ]2/2, −∞ <   < ∞ . 

That is,  ( 1,  2) =  ( 1) ( 2) and  1      2 are independent. 
 

Two bivariate distributions with  11 =  22 in the following figures. 

In Figure (a),  1      2 are independent  12 = 0. 

In Figure (b)  12 = 0.75. 
 

Notice how the presence of correlation causes the probability to concntrate along a 
line. 

12 
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In the above two figures, Two bivariate normal distributions (a)  11 =  22 and  12 = 0 
(b)  11 =  22 and  12 = 0.75 

 

From the expression  ( ) = 
1

 
(2 ) /2⌈Σ⌉1/2 

 −( − )Σ−1(  −  )/2 for the density of a p- 

dimensional normal variable, it should be clear that the paths of x values yielding a constant 
height for the density are ellipsoids. That is, the multivariate normal density is constant on 

surfaces where the square of the distance(  −  )′Σ−1(  −  ) is constant. These paths are 
called contours. 

 

Constant probability density contour = {         ℎ  ℎ   (  −  )′Σ−1(  −  ) =  2} 
 

Constant probability density contour = surface of an ellipsoid centred at  . 

 
The axes of each ellipsoid of constant density are in the direction of the eigenvectors 

of Σ−1and their lengths are proportional to the reciprocals of the square roots of the Eigen 

values of Σ−1. Fortunately, we can avoid the calculation of Σ−1 when determining the axes, 

since these ellipsoids are also determined by the eigenvalues and eigenvectors of Σ. 
 

10.2.2. Result 
 

If Σ is positive definite, so that Σ−1 exists, then Σe = λe imples Σ−1  = (
1
)   so ( ,  ) is 

  

an eigen value – eigen vector pair for Σ corresponding to the pair (
1 

,  ) for  . Also, Σ−1 is 
  

positive definite. 

Proof: 

For Σ is positive definite and   ≠ 0 an eigen vector, we have 

 
0 <  ′Σe = e′(Σe) = e′(  ) 

 
  =  Σ−1 , and division by   > 0, we have 

 

Σ−1 
 

  = ( 
1 

)   
  

 

Thus, (
1 

,  ) is an eigen value – eigen vector pair for Σ−1. Also, for any   × 1  
  

 

We know that  −1 =   −1 ′ = ∑  ( 
1 

)    ′ 
 

 =1         

 

  
 Σ−1 ′ =  ′ (∑   

1 ′
 

 

 =1 

(   )      )   
  

 

  

 Σ−1 ′ = ∑ 

 =1 

1 
(  ) 
   

 
( ′   

 
)2 ≥ 0 

 

Since each term  −1( ′  )2 is nonnegative. In addition,  ′   = 0 for all I only if   = 0. So   ≠ 
0 implies that ∑  ( 

1 
) ( ′  )2 > 0 and therefore Σ−1 is positive definite. 

 

 =1    
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The following summarizes these concepts: 
 

Contours of constant density for the   −dimensional normal distribution are ellipsoids 

defined by x such that (  −  )′Σ−1(  −  ) =  2. 

 

These ellipsoids are centred at   and have axes ± √     where Σ   =      for   = 1, 2, … ,  . 

A contour of constant density for a bivariate normal distribution with  11 =  22 is 
obtained in the following example. 

 
10.2.3. Example(contours of the bivariate normal density) 

 
Obtain the axes of constant probability density contours for a bivariate normal 

distribution when  11 =  22.   From (  −  )′Σ−1(  −  ) these axes given by the eigen values 

and eigenvectors of Σ. 
 

Here |Σ −   | = 0 becomes 
 

0 = |
 11 −    12 | = (  −  )2 −  2  = (  −   

 
−   )(  −   +     ) 

 12  11 −   11 
12 11 12 11 12 

 

Consequently, the Eigen values are  1 =  11 +  12 and  2 =  11 −  12. The eigen vector  1 
is determined from 

 

[
 11  12  1 

(
 

)  
 1 

 12  22
] [ 2

] =
 
 11 +  12 [ 2

] 

 

 11 1 +  12 2 = ( 11 +  12) 1 
 

 12 1 +  11 2 = ( 11 +  12) 2 
 

These equations imply that  1 =  2 and after normalization, the firstr eign value – eigen 
vector pair is     =   +     ,   = [ 

1 
, 

1 
] ; the second eigen value – eigen vector pair is   = 

  

1 11 12     1 
√2   √2 2 

  −     ;   = [ 
1 

, − 
1 

] 
  

11 12 1 √2 √2 
 

When the covariance  12or correlation 12is positive,  1 =  11 +  12is the largest eigenvalue, 

and its associated eigenvector  ′ = [ 
1 

, 
1 

]lies along the 45° line through the point  ′ = 
1 √2 √2 

[ 1,  2]. This is true for any positive value of the covariance (correlation). Since the axes of 

the constant-density ellipses are given by ±c√ 1 1 and ±c√ 2 2,and the eigenvectors each 
have length unity, the major axis will be associated with the largest eigenvalue. For positively 

correlated normal random variable, then, the major axis of the constant-density ellipses will 

be along the 45° line through  . 

The following figure is a constant-density contour for a bivariate normal distribution with 

 11 =  22 and  12 > 0 or  12 > 0. 
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1 

  

 

 
 

When the covariance or correlation is negative,  2 =  11 +  12will be the largest eigenvalue, 
and the major axes of the constant-density ellipses will lie along a line at right angles to the 

45  line through  . These results are ture only for  11 =  22. 
 

To summarize the axes of the ellipses of constant denstiy for a bivariate normal 

distribution with  11 =  22 are determined by 
 

1 1 
  

 
  

± √ 11 +  12 [√2] and ± √ 11 −  12 [ √2 ] 
− 

1 

√2 √2 
 

From the result ,(  −  )′Σ−1(  −  ) =  2 that the choice  2 =  2( ),  2( ) is the 
    

upper (100 ) ℎ percentile of a chi-square distibution with p degress of freedom, leads to 

contours that contian (1 −  ) × 100% of the probability, specifically, the following is true for a 
p-dimensional normal distibution. 

 

 

1 −  . 

The solid ellipsoid of x values satisfying (  −  )′Σ−1(  −  ) ≤  2( ) has probability 

 

The constant-density contours contianing 50% and 90% of the probaility under the 
bivariate normal surfaces. 

 
The following figure is the 50% and 90% contours for the bivariate normal 

distibutions. 
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The p-variate normal density in  ( ) = 
1

 
(2) /2⌈Σ⌉1/2 

 −( − )Σ−1(  −  )/2 has a 

maximum value when the squared distance in(  −  )′Σ−1(  −  ). is zero - that is, when 

x =  . Thus,  is the point of maximum density, or mode, as well as the expected value of X, 

or mean. The fact that  is the mean of the multivariate normal distribution follows from the 
symmetry exhibited by the constant-density contours. These contours are cantered, or 

balanced, at  . 

 

In this unit we studied the concept of multivariate normal distribution and multivariate 
normal density and its properties. 

 

1. The multivariate normal density is a generalization of the univariate normal density to 
_ dimensions. 

 
2. The normal density function with mean  and variance  2 is denoted by . 

 
3. The   × 1 vector   represents . 

 
4. The   ×   matrix Σ represents . 

 

Univariate normal distribution: It is defined by two parameters mean, which is expected value 
of the distribution and standard deviation, which corresponds to the expected square 
deviation from the mean. 

 
Bivariate normal distribution: It is made up of two independent random variables. The two 
variables in a bivariate normal are both normally distributed and they have normal 
distribution when both are added together. 

 
Multivariate normal distribution: It is a generalization of the one-dimensional (univariate) 
normal distribution to higher dimensions. 

 

1. Johnson. R. A. and Wichern. D. W., “Applied Multivariate Statistical Analysis”, Pearson 
Education Asia, Sixth Edition, 2007. 

 

1.   ≥ 2 
2.  ( ,  2) 
3. The expected value of the random vector X 
4. The variance-covariance matrix of X. 
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Overview 

11.1. Introduction 

11.2. Population Principal Components 

 

 

After Studying this Unit, the student will be able to 
 

 Explain the principal components 

 Summarize the uses of population principal components 

 

In this unit, we will study the concept of the principal components and the population 
principal components. 

 

A principal component analysis is concerned with explaining the variance-covariance 
structure of a set of variables through a few linear combinations of these variables. Its 
general objectives are (1) data reduction and (2) interpretation. 

 
Although p components are required to reproduce the total system variability, often 

much of this variability can be accounted for by a small number k of the principal 
components. If so, there is (almost) as much information in the k components as there is in 
the original p variables. The k principal components can then replace the initial p variables, 
and the original data set, consisting of n measurements on p variables, is reduced to a data 
set consisting of n measurements on k principal components. 

 
An analysis of principal components often reveals relationships that were not 

previously suspected and thereby allows interpretations that would not ordinarily result. 
 

Analyses of principal components are more of a means to an end rather than an end 
in themselves, because they frequently serve as intermediate steps in much larger 
investigations. 

 

Algebraically, principal components are particular linear combinations of the p 

random variables 1,  2, … ,   . Geometrically, these linear combinations represent the 
selection of a new coordinate system obtained by rotating the original system with 

 1,  2, … ,    as the coordinate axes. The new axes represent the directions with maximum 
variability and provide a simpler and more parsimonious description of the covariance 
structure. 

 
Principal components depend solely on the covariance matrix Σ or the correlation 

matrix   of 1,  2, … ,   . Their development does not require a multivariate normal 
assumption. On the other hand, principal components derived for multivariate normal 
populations have useful interpretations in terms of the constant density ellipsoids. Further, 
inferences can be made from the sample components when the population is multivariate 
normal. 

Objectives 
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1 

2 

  

  

  

  

1 

Let the random vector  ′ = [ 1,  2, … ,   ] have the covariance matrix Σ with Eigen 
values  1 ≥  2 ≥ ⋯ ≥    ≥ 0. 

 
Consider the linear combinations 

 
 1 =  ′   =  11 1 +  12 2 + ⋯ +  1    

 
 2 =  ′   =  21 1 +  22 2 + ⋯ +  2    

 

⋮ 
 

   =  ′   =   

 
 
 

 1 

 
 
 1 

 

 
+   

 
 
 

 2 

 
 
 2 

 

 
+ ⋯ +   

 
 
 

   

 
 
   

 

Then by using 
 

The linear combinations   =    we have 
 

   =  ( ) =  (  ) =     

∑  =    ( ) =    (  ) =  ∑  ′ 
 

We obtain 

 
   (  ) =  ′ ∑      = 1,2, … ,   

 
   (  ,   ) =  ′ ∑     ,   = 1,2, … ,   

 
The Principal components are those uncorrelated linear combinations  1,  2, … ,    whose 
variances in    (  ) =  ′ ∑   ,   = 1,2 … ,   are as large possible. 

The first principal component is the linear combination with maximum variance. That is, it 
maximizes    ( 1) =  ′ ∑  1. It is clear that    ( 1) =  ′ ∑  1 can be increased by 

1 1 

multiplying any  1 by some constant. To eliminate this indeterminacy, it is convenient to 
restrict attention to coefficient vectors of unit length. 

 
We define 

 
First principal component =  linear combination  ′   that maximizes    ( ′  ) subject to 

1 1 

 ′  1 = 1 
 

Second principal component = linear combination  ′   that maximizes    ( ′  ) subject to 
2 2 

 ′  2 = 1 and    ( ′  ,  ′  ) = 0 
2 1 2 

 

At the   ℎ step 
 

  ℎ principal component = linear combination  ′  that maximizes    ( ′ ) subject to  ′   = 
  

1 and    ( ′ ,  ′  ) = 0 for   <   
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1 

1  ′ 

1 

 +1 

 +1  ′ 

 +1 

  

11.2.1. Result 
 

Let Σ be the covariance matrix associated with the random vector  ′ = [ 1,  2, … ,   ]. 
Let Σ have the eigenvalue-eigenvector pairs ( 1,  1), ( 2,  2), … , (  ,   ) where  1 ≥  2 ≥ ⋯ ≥ 

   ≥ 0. Then ith principal component is given by 

 
   =  ′ =   1 1 +   2 2 + ⋯ +      ,   = 1,2, … ,   

 
With these choices, 

 
   (  ) =  ′ ∑    =   ,    = 1,2, … ,   

 
   (  ,   ) =  ′ ∑    ,   ≠   

 
If some    are equal, the choices of the corresponding coefficient vectors  , and hence    are 
not unique. 

 
Proof: 

 
We know that, with   = Σ, that 

 

max 
 ′ ∑   

=   (Attained when   =   ) 
 

 ≠0     ′  1 1 

But  ′  1 = 1 since the eigen vectors are normalized. Thus, 
 

 
max  ′∑  

 
 

 
=     

′ ∑  1 
= =    ∑   

 
=    (  ) 

 ≠0  ′  1  ′  1 
1 1 1 

 

Similarly, we get 
 

 
max 

 ⊥ 1, 2,…   

 ′∑  
 

 

 ′  

 

=   +1,   = 1,2, … ,   − 1 

 

For the choice   =   +1 with  ′    = 0, for   = 1,2, … ,   and   = 1, 2, … ,   − 1 
 

  
′ ∑   +1 

=   ∑   =1 =    (  +1) 
 ′   +1 

 +1 

 

But  ′ (∑   +1) =   +1 ′   +1 =   +1, So    (  +1) =   +1. 
 +1  +1 

 

It remains to show that    perpendicular to   . That is  ′   = 0,   ≠   gives    (  ,   ) = 0. 
Now, the eigen vectors of ∑ are orthogonal if all the eigen values  1,  2, … ,    are distinct. If 
the eigen values are not all distinct, the eigen vectors corresponding to common eigen 

values may be chosen to be orthogonal. Therefore, for any two eigen vectors    and   , 
 ′   = 0,   ≠  . Since ∑    =     , premultiplication by  ′, gives 
    

 
   (  ,   ) =  ′ ∑    =  ′     =    ′   = 0 for any   ≠   

      
 

From the above result, the principal components are uncorrelated and have variances equal 

to the Eigen values of Σ. 
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11.2.2. Result 
 

Let  ′ = [ 1,  2, … ,   ] have covariance matrix Σ, with eigenvalue-eigenvecor pairs 
( 1,  1), ( 2,  2), … , (  ,   ) where  1 ≥  2 ≥ ⋯ ≥    ≥ 0. Let  1 =  ′  ,  2 =  ′  , … ,    =  ′   

be the principal components. Then 
  

1 2   
 

  

 11 +  22 + ⋯ +     = ∑    (  ) =  1 +  2 + ⋯ +    = ∑    (  ) 

 

Proof: 

 =1  =1 

 

We know that 11 +  22 + ⋯ +     =   (Σ). 
 

Also from 
  

  

 

   
 

 ′ 

 
 

  Λ 

 
 

 ′ 

(   ×  ) 
= ∑   (  × 1) 

 =1 

  

(1 ×  ) (  ×  )(  ×  )(  ×  ) 

 

With   = Σ, we can write Σ =  Λ ′ where Λ ia the diagonal matrix of eigen values and   = 
[ 1,  2, … ,   ] so othat   ′ =  ′  =  . 

 

  (Σ) =   ( Λ ′) =   (Λ ′ ) =   ( ) =  1 +  2 + ⋯ +    

 
Thus, 

 

    

∑    (  ) =   (Σ) =   ( ) = ∑    (  ) 

 =1  =1 

 
 

Result. 11.2.2. Says that 

 

Total population variance =  11 +  22 + ⋯ +     =  1 +  2 + ⋯ +    and 

consequently, the proportion of total variance due to the   ℎ principal component is 
 

                    

( 
                   

) =
    ,   = 1,2, … ,  

 

         ℎ 
          
          

 1+ 2+⋯+   

 

If most (for instance 80 to 90) of the total population variance, for large p, can be 
attributed to the first one, two, or three components, then these components can “replace” 

the original   variables without much loss of information. 

 
Each component of the coefficient vector  ′ = [  1,   2, … ,    ] also merits inspection. 

The magnitude of     measures the importance of the   ℎ variable to the   ℎ principal 

component, irrespective of the other variables. In particular,     is proportional to the 

correlation coefficient between    and   . 

= 
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1 

2 

3 

11.2.3. Result 
 

If  1 =  ′  ,  2 =  ′  , … ,    =  ′   are the principal components obtained from the 
1 2   

covariance matrix Σ then    ,   
 

 

= 
   √   ,    ,   = 1,2, … ,   are the correlation coefficients 

 
     √    

between the components    and the variables  . Here ( 1,  1), ( 2,  2), … , (  ,   ) are the 

eigenvalue-eigenvector pairs for Σ. 

 

Proof: 
 

Set  ′ = [0, … , 0, 1, 0, … 0] so that    =  ′   and    (  ,   ) =    ( ′  ,  ′ ) =  ′ ∑   . Since 
          

∑    =     ,    (  ,   ) =  ′      =       Then    (  ) =    and    (  ) =     yield 

 
 

   (  ,   )           √   
   ,    =       =         =    ,    ,   = 1,2, … ,   

√   (  )√   (  ) √  √    √    
 

11.2.4. Remark 

 
Although the correlations of the varibales with the principal components often help to 

interpret the components, they measure only the univariate contribution of an individual X to 
a component Y. That is, they do not indicate the importance of an X to a component Y in the 
presence of the other X’s. For this reason, some statisticians recommend that only the 
coefficients   and not the correlations, be used to interpret the components. Although the 
coefficients and the correlations can lead to different rankings as measures of the 
importance of the variables to a given component, it is our experience that these rankings 
are often not appreciably different. In practice, variables with relatively large coefficients (in 
absolute value) tend to have relatively large correlations, so the two measures of 
importance, the first multivariate and the second univariate, frequently give similar results. 
We recommend that both the coefficients and the correlations be examined to help interpret 
the principal components. 

 
The following hypothetical example illustrates the contents of Results 11.2.1, 11.2.2 and 
11.2.3. 

 

11.2.5. Example (Calculating the population principal components) 

 
Suppose the random variables  1,  2 and  3 have the covariance matrix 

 
1 −2 0 

Σ = [−2 5 0] 
0 0 2 

The Eigen value - Eigen vector pairs are 
 

 1 = 5.83,  ′ = [0.383, −0.924, 0] 
 

 2 = 2.00,  ′ = [0, 0, 1] 
 

 3 = 0.17,  ′ = [0.924, 0.383, 0] 
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1 

2 

3 

  

  

Therefore, the principal components become 
 

 1 =  ′  = 0.383 1 − 0.924 2 
 

 2 =  ′   =  3 
 

 3 =  ′   = 0.924 1 + 0.383 2 
, 

The variable  3 is one of the principal components, because it is uncorrelated with 
the other two variables. 

 
We know that 

 
   (  ) =  ′ ∑    =   ,   = 1,2, … ,   

 
   (  ,   ) =  ′ ∑    ,   ≠   can be demonstrated from first principles. 

 

For example, 
 

   ( 1) =    (0.383 1 − 0.924 2) 
 

   ( 1) = (0.383)2   ( 1) + (−0.924)2   ( 2) + 2(0.383)(−0.924)   ( 1,  2) 

   ( 1) = 0.147(1) + 0.854(5) − 0.708(−2) = 5.83 =  1 
 

   ( 1,  2) =    (0.383 1 − 0.924 2,  3) = 0.383    ( 1,  3) − 0.924    ( 2,  3) 
 

   ( 1,  2) = 0.383(0) − 0.924(0) = 0 
 

 11 +  22 +  33 = 1 + 5 + 2 =  1 +  2 +  3 = 5.83 + 2.00 + 0.17 = 8 
 

The proportion of total variance accounted for by the first principal component is 
   1 = 

5.83 
= 0.73. 

( 1+ 2+ 3) 8 
 

Further, the first two components account for a proportion 5.83+2 = 0.98 of the population 
8 

variance. In this case, the components  1 and  2 could replace the original three variables 
with little loss of information 

 
 

Using    ,   = 
   √   ,     ,   = 1,2, … ,   we obtain 

 
     √    

 
  

  1,  1 = 
 11√ 1 

√ 11 

0.383√5.83 
= = 0.925 

√1 
 

  

  1,  2 = 
 12√ 1 

√ 22 

−0.924√5.83 
= = −0.998 

√5 
 

The variable 2, with coefficient - 0.924 receives the greatest weight in the component 1. It is 
also having the largest correlation (in absolute value) with  1. The correlation of  1, with  1, 
0.925, is almost as large as that for  2, indicating that the variables are about equally 
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important to the first principal component. The relative sizes of the coefficients of  1 and  2 
suggest, however, that  2contributes more to the determination of  1 than does 1. Since, in 
this case, both coefficients are reasonably large and they have opposite signs. We would 
argue that both variables aid in the independent of  1. 

 
Finally 

 
 

 

   ,     =    ,   = 0 and    ,     =
 √ 2    = √

2 
= 1 

 
  2 1 2 2 

2 3 
√ 33 √2 

The remaining correlations can be neglected, since the third component is unimportant. 
 

11.2.6. Reamark 
 

Consider principal components derived from multivariate normal random variables. 

Supoose X is distsributed as   ( , Σ). 

 
We know that the density of X is constant on the   centered ellipsoids (  − 

 )′Σ−1(  −  ) =  2 which have axes ± √    ,   = 1,2, … ,   where the (  ,   ) are the eigenvalue-

eigenvector pairs of Σ. A point lying on the   ℎ axis of the ellipsoid will have coordinates 

proportional to  ′ = [  1,   2, … ,    ] in the coordinate system that has origin   and axes that 

are parallel to the original axes  1,  2, … ,   . 

 
Set   =   and   = Σ−1, we can write 

 2 =  ′Σ−1  = 
1 

( ′  )2 + 
1 

( ′  )2 + ⋯ + 
1 

( ′  )
2

 
   

 1 
1  2 

2    
  

 

Where  ′  ,  ′  , … ,  ′   are recognized as the principal components of x. Setting   = 
1 2   1 

 ′  ,  2 =  ′  , … ,    =  ′   we have 
1 2   

 

 2 = 
1 
 2 +   

1 
 2 + ⋯ + 

1 
 2 and this equation defines an ellipsoid (since   ,   

   

, … ,   are 
 1     

1  2     
2       

  1 2   

positive) in a coordinate system with axes 1,  2, … ,    lying in the directions 

 1,  2, … ,   respectively. If  1 is the largest eigenvalues, then the major axis lies in the 

directions  1. The remaining minor axes line in the directions defined by  2, … ,   . 

To summarize, the principal components  1 =  ′  ,  2 =  ′  , … ,    =  ′   lie in the 
1 2   

directions of the axes of a constant density ellipsoid. Therefore, any point on the   ℎ ellipsoid 

axis has x cooridinates proportional to  ′ = [  1,   2, … ,    ] and necessarily, pincipal 

compoent coordinates of the form [0, … ,0,   , 0, … ,0]. 

When   ≠ 0, it is the mean-centreed principal component    =  ′(  −  ) that mean 0 

and lies in the direction   . 
 

A constant density ellipse and the pincipal components for a bivariate normal random 
vector with   = 0 and   = 0.75 are shown in the following figur. We see that the principal 

components are obtained by rotating the orginal coordinate axes through an angle   until 

they coincide with the axes of the constant density ellipse. This result holds for   > 2 
diemensions as well 
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The above figure is the constant density ellispe  ′Σ−1   =  2 and the principal components 

 1,  2 for a bivariate normal random vector X having mean 0. 

11.2.7. Principal Components Obtained from Standardized Variables 

 
Principal components may also be obtained for the standardized variables 

 
( 1 −  1) 

 1 = 
 
 

 2 = 

 
… 
… 
… 

√ 11 

( 2 −  2) 

√ 22 

 

(   −   ) 
   =    

√    
 

In matrix notation 
 

  = ( 1/2)
−1 

(  −  )   where  1/2 is the diagonal standard deviation matrix, E(Z) = 0 and 

   ( ) = ( 1/2)
−1
Σ( 1/2)

−1 
=   . The principal components of Z may be obtained from the 

eigenvectos of the correlation matrix   of X. Since the variance of each    is unity. We shall 

continue to use the notation    to refer to the   ℎ principal component and (  ,   ) for the 

eigenvalue-eigenvector pair from either   or Σ. The (  ,   ) derived from Σ are not the same 

as the ones derived from  . 
 

11.2.8. Result 

 

The   ℎ principal component of the standardized variables  ′ = [ 1,  2, … ,   ] with    ( ) = 

′ ′ 
1   −1 

  is given by   =     =    ( 2) (  −  ),   = 1,2, … ,   
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 =1  =1 

 =1  =1 

1 

2 

1 

2 

Moreover, ∑     (  ) = ∑  
 

 

   (  ) =   and    ,    =    √  ,  ,   = 1,2, … ,   
 

In this case, ( 1,  1), ( 2,  2), … , (  ,   ) are the eigen value-eigenvector pairs for  , with  1 ≥ 

 2 ≥ ⋯ ≥    ≥ 0 
 

Proof: 
 

Result. 11.2.8. Follows from Results 11.2.1., 11.2.2. and 11.2.3. with  1,  2, , , , ,   in place of 

 1,  2, , , , ,    and   in place of Σ. 

 
11.2.9. Ramark 

 

From ∑     (  ) = ∑     (  ) =  , we have the total (standard varaibles) population 

variances is simply p, the sum of the diagonal elements of the matrix  . Using 
 

                    

( 
                   

) =
     

 

,   = 1,2, … ,   with Z in place of Z, we find the 
         ℎ 
          
          

 1+ 2+⋯+   

proportion of total variances explained by the   ℎ principal component of Z is 
 

              (        ) 
           

         
( 
         ℎ 

          
          

 
) = 

   ,   = 1,2, … ,   
  

 

Where the   ′  are the eigenvalues of  . 

11.2.10. Example (Principal components obtained from covariance and correlation 
matrices are different) 

 

Consider the covariance matrix Σ = [
1 4

 
4 100 

] and the derived correlation matrix 

ρ = [ 1 0.4] 
0.4 0 

 

The Eigen value – Eigen vector pairs from ∑ are 
 

 1 = 100.16,  ′ = [0.040, 0.999] 

 2 = 0.84,  ′  = [0.999, −0.040] 
 

Similarly, the Eigen value – Eigen vector pairs from   are 
 

 1 = 1 +   = 1.4,  ′ = [0.707, 0.707] 

 2 = 1 −   = 0.6,  ′ = [0.707, −0.707] 
 

The respective principal components become 
 

Σ: 
 1 = 0.040 1 + 0.999 2 
 1 = 0.999 1 − 0.040 2 

and 

 



163 

 

 : 



164 
 

 1 = 0.707 1 + 0.707 2 
 

 1 −  1 

 
 

 2 −  2 
 1 = 0.707 ( ) + 0.707 (  ) 

1 10 
 

 1 = 0.707( 1 −  1) + 0.0707( 2 −  2) 
 
 

 2 = 0.707 1 − 0.707 2 
 

 1 −  1 

 
 

 2 −  2 
 1 = 0.707 ( ) − 0.707 (  ) 

1 10 
 

 1 = 0.707( 1 −  1) − 0.0707( 2 −  2) 
 

Because of its large variance,  2 completely dominates the first principal component 
determined from Σ. This first principal component explains a proportion 
     1       = 

100.16 
= 0.992 of the total population variance. 

 1+ 2 101 
 

When the variables  1 and  2 are standardized, the resulting variables contribute equally to 

the principal components determined from  . Using Result 4 we obtain 
 

  1,  1 =  11√ 1 = 0.707√1.4 = 0.837 
 

  1,  2 =  21√ 1 = 0.707√1.4 = 0.837 
 

In this case, the first principal compoent explains a proportion  1 = 
1.4 

= 0.7 of the total 

(standardized) population variance. 
  2 

 

The relative importance of the variables to the first pincipal compoenent is greatly affected 
by the standardization. 

 
When the first principal component obatined from   is expressed in terms of  1 and  2, the 
relative magnitudes of the weights 0.707 and 0.0707 are in direct opposition to those of the 
weights 0.040 and 0.999 attached to these variables in the pincipal component obtained 
from Σ. 

 
11.2.11. Note 

 

The above example demonstrates that the principal components derived from Σ are 
different from those derived from  . One set of principal components is not a simple function 
of the other. This suggests that the standardization is not inconsequential. 

 
Variables should probably be standardized if they are measured on scales with 

widely differing ranges or if the units of measurement are not commensurate. For example, 
if  1represents annual sales in $10,000 to $35,000 range and  2 is the ratio (net annual 
income)/(total assets) that falls in the 0.01 to 0.06 range, then the total variation will be due 
almost exclusively to dollar sales. In this case, we would expect a single (important) principal 

component with a heavy weighting of  1.   Alterntively, if both variables are standardized, 

their subsequent magnitudes will be of the same order, and  2 or ( 2) will play a larager role 
in the construction of the principal components. This behavior was observed in Exmple 
11.2.10. 
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Check Your Progress 

Glossaries 

Suggested Readings 

Answers to Check Your Progress 

 
 

In this unit we studied the principal components and the population principal 
components. 

 

 
1. Let 1,  2, … ,    be the p random variables. Then the principal components depend on the 
  . 

 
2. The first principal component is the linear combination with . 

 

Principal component analysis: It is concerned with explaining the variance-covariance 
structure of a set of variables through a few linear combinations of these variables. 

 
  ℎ principal component: It is a linear combination  ′  that maximizes    ( ′ ) subject to 

    
 ′   = 1 and    ( ′ ,  ′  ) = 0 for   <   
      

 

1. Johnson. R. A. and Wichern. D. W., “Applied Multivariate Statistical Analysis”, Pearson 

Education Asia, Sixth Edition, 2007. 

 

1. Maximum variance 

 
2. Covariance matrix Σ or the correlation matrix   

Let Us Sum Up 
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STATISTICAL TABLES 
 

I. Binomial Probabilities 
 

II. Poisson Probabilities 

 
III. Standard Normal Distribution 

 
IV. Values of    

2
,  

 
V. Values of  2

 ,  

VI. Values of  0.05, 1, 2 
and  0.01, 1, 2

 

VII. Factorials and Binomial Coefficients 
 

VIII. Values of    and  −  
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