HAR

p— | |

,
14
1}
>

(Z
=

m
L |
14 ,
- |
0 |
f
|
|

>
2
.v.!
&

W,
Al
di .‘\\\

ES

PROGRAMMING IN

C++

4
=)
D
<
@)
@)

BCA SEM-II



COURSE DESIGN, PREPARATION AND REVIEW TEAM

Prof. T.K. Jain
Director,
CDOE SGVU Jaipur

Prof. P.K. Sharama
Rtd. Professor
VMOU Kota

Dr. Ajay Vardhan
Regional Director
IGNOU Aligarh(UP)

Dr. Aman Sharma,*
Assistant Professor,
CDOE, SGVU

Dr. Ranjan Upadhyaya, Professor,
Department of Management Studies,
Vivekananda Global University, Jaipur

Dr. Vijay Sharma, HOD, Centre for Rural
Empowerment and Development,
Government Engineering College, Bikaner

Dr. Vishal Goar
Dean Research
Bikaner Technical University, Bikaner .

Dr. Ankur Jain,
Director,
CIQA, SGVU Jaipur

Ms. Shikha Srivastava,
Assistant Professor,
Dept. of Computer Applications, SGVU

Dr. Kriti Shrivastav
Assistant Professor
CIQA SGVU Jaipur

Ms. Isha Sharma,x*
Assistant Professor,
Dept. of Computer Applications, SGVU

Ms. Sonika Katta,
Assistant Professor,
Dept. of Computer Applications, SGVU

Mr. Satyanand Gora,
Assistant Professor,
Dept. of Computer Applications, SGVU

Dr. Lata Suresh,

Director, Indian Institute of Corporate
Affairs, (Ministry of Corporate Affairs)
Gurugram

Program Coordinator

Course Coordinator and editor

Dr. Anil Pal" |
Associate Professor
CDOE, SGVU Jaipur

Dr. Sohit Agarwal
Associate Professor,
CDOE, SGVU, Jaipur

Acknowledgement : The persons marked with (*) are the authors

PRINT PRODUCTION

Mahendra Sharma
Assistant Registrar
SGVU Jaipur

Published in: November, 2024

ISBN (Awaited)

©SGVU. All rights reserved. No part of this work may be reproduced in any form, by mimeograph or any other means,

without permission in writing from the SGVU.

Published by:

S. B. Prakashan Pvt. Ltd.

WZ-6, Lajwanti Garden, New Delhi: 110046 Tel.: (011) 28520627 | Ph.: 9625993408
Email: info@sbprakashan.com | Web.: www.sbprakashan.com


mailto:info@sbprakashan.com
http://www.sbprakashan.com/
*

*


BLOCK 1
INTRODUCTION TO C++

BLOCK 2
CONTROL STRUCTURES AND FUNCTIONS

64

BLOCK 3
OBJECT-ORIENTED PROGRAMMING CONCEPTS

119

BLOCK 4
ADVANCED OOP CONCEPTS

193

BLOCK 5
FILE HANDLING AND EXCEPTION HANDLING

244




Learning Map

Course Credit- 4

Content Course Credit Page No
BLOCK 1 INTRODUCTION TO C++ 0.8 1
Unit 1: Basics of C++ Programming 2
Unit 2: C++ Syntax and Data Types 29
Unit 3: Input / Output in C++ 43
BLOCK 2 CONTROL STRUCTURES AND 0.8 64
FUNCTIONS

Unit 4: Decision-Making and Loops 65
Unit 5: Functions in C++ (Inline, Overloading) 87
Unit 6: Recursion and Storage Classes 104
BLOCK 3 OBJECT-ORIENTED PROGRAMMING 0.8 119
CONCEPTS

Unit 7: Classes and Objects 120
Unit 8: Constructors and Destructors 146
Unit 9: Operator Overloading 168
BLOCK 4 ADVANCED OOP CONCEPTS 0.8 193
Unit 10: Inheritance and Types of Inheritance 194
Unit 11: Polymorphism and Virtual Functions 210
Unit 12: Templates and Generic Programming 229
BLOCK 5 FILE HANDLING AND EXCEPTION 0.8 244
HANDLING

Unit 13: File Operations in C++ (Text and Binary Files) 245
Unit 14: Exception Handling in C++ 259

Unit 15: Standard Template Library (STL) 275

Prior Learning

A basic understanding of programming concepts, such as variables, loops, and functions, will be helpful.
While prior knowledge of C or another programming language is not mandatory, it will assist in grasping the
object-oriented concepts in C++. This course is suitable for beginners, but a general comfort with logic and
problem-solving will make learning C++ smoother.




	UNIT 1: BASICS OF C++ PROGRAMMING
	Learning Objectives
	1.1 Glossary
	1.2 Introduction
	1.3 Features of C++
	1.4. Introduction to Object-Oriented Programming (OOP)
	Object-Oriented Programming (OOP) is a programming paradigm that organizes software design around data, or objects, rather than functions and logic. It is a methodology that uses objects and classes to structure software. OOP is widely used in program...
	1.5 Key Concepts of OOP
	a. Encapsulation
	b.  Inheritance
	c. Polymorphism
	d. Abstraction

	1.6 Benefits of OOP
	1.7 Benefits of OOP
	1.8 Platform Independence in C++
	1.8.1 C++ Compilation and Platform Independence
	1.8.2 Using C++ Standard Libraries
	1.8.3 Abstraction of Platform-Specific Features
	1.8.4Compiler Support for Different Platforms

	1.9 Cross-Platform Development Tools in C++
	1.10. Limitations and Challenges
	a. Native Code Generation
	b. Platform-Specific System Calls
	c. Differences in Libraries and Compilers
	d. Performance Considerations

	1.11. Achieving Platform Independence in C++
	1.12 High Performance
	Key Factors Affecting Performance in C++
	1.13Performance Optimization Techniques in C++
	1.14 Rich Standard Library in C++: Theory
	Components of the C++ Standard Library
	1.14.1. Containers
	1.14.2. Algorithms
	1.14.3. Input/output (I/O)
	1.14.4. String Handling
	1.14.5. Utility Functions and Types
	1.14.6. Multithreading and Concurrency
	1.14.7. Math Functions
	1.14.8. Error Handling

	1.15 Advantages of Using the Standard Library
	Memory Management
	Scalability
	1.16. Wide Range of Applications
	Strong Community and Support
	1.17 Disadvantages of C++
	a. Complex Syntax
	b. Manual Memory Management
	c. Lack of Built-in Garbage Collection
	d. Difficult Debugging
	e. Lack of Modern Features
	f. Slow Compilation Time
	g. Lack of Cross-Platform Libraries
	h. C++ Is Prone to Errors
	i. No Built-in String Handling
	k. Error-Prone Language
	l. Lack of Built-in GUI Support
	m. Not Ideal for Rapid Prototyping
	n. Steep Learning Curve
	1.18 Summary
	1.19 Keywords
	1.20 Self-Assessment Questions
	Case Study
	True/False
	Multiple Choice Questions (MCQs)
	Very Short Questions
	Short Questions
	Long Questions

	True/ False
	1. False
	2. False
	3. False
	4. True
	5. True
	Multiple choice Answers
	1. b) Bjarne Stroustrup
	2. b) private
	3. c) do-while
	4. b) Initialize an object
	5. a) Function with =0
	Short Answers
	1. Encapsulation is one of the fundamental concepts of Object-Oriented Programming (OOP). It refers to the bundling of data (variables) and methods (functions) that operate on the data into a single unit called a class. Encapsulation also restricts di...
	2. A for loop is generally used when the number of iterations is known beforehand or can be easily determined, and it has a more compact structure. It includes initialization, condition check, and iteration all in one line.
	A while loop is used when the number of iterations is not known ahead of time, and it continues executing as long as the condition is true. The initialization must be done before the loop, and the iteration occurs within the loop body.
	3. A pointer in C++ is a variable that stores the memory address of another variable. Instead of holding the actual value of a variable, a pointer holds the address where the variable is stored in memory. Pointers allow for indirect access to variable...
	4. Function overloading is a feature in C++ that allows multiple functions to have the same name but different parameter lists. The compiler distinguishes the functions based on the number and/or types of parameters. Function overloading allows for di...
	5. An abstract class is a class that cannot be instantiated on its own and must be inherited by other classes. It may contain pure virtual functions, which are functions that do not have an implementation in the abstract class and must be implemented ...
	Long answers
	1.22 References
	1.24 Additional Resources & Further Readings

	Learning Objectives (1)
	2.2 Introduction
	2.3  Basics of Syntax
	 Statements
	 Keywords
	 Identifiers
	 Expressions
	2.4  Operators
	2.5  Control Structures
	 Functions
	 Comments
	 Brackets and Semicolons
	Learning Activity
	2.6 Indentation and Formatting
	2.7 Syntax Errors
	Example of Correct Syntax:
	2.8 Data Types in C++
	Learning Activity

	2.9 Summary
	2.10 Keywords
	2.11 Self-Assessment Questions
	Case Study
	True/False Questions
	Multiple Choice Questions
	Very Short Questions
	Short Questions
	Long Questions

	2.12 Suggested Answers
	True/False Answers
	Multiple Choice Answers
	Very Short Answers
	Short Answer
	Long Answers

	2.14Additional Resources & Further Readings
	Learning Objectives (2)
	3.2 Introduction
	 Standard Input and Output Streams
	 Streams
	3.3 Types of Input/output in C++
	3.4 Common Functions for I/O
	 Input/output Functions
	 String Functions
	 Mathematical Functions
	 Utility Functions
	 Random Number Functions
	 Container Functions
	 File Handling Functions
	  Memory Management Functions
	 Date and Time Functions
	Learning Activity (1)
	3.5 Error Handling in I/O
	3.5.1. Checking for Input Errors
	Example: Handling Input Errors with fail ()

	Explanation:
	3.5.2. Checking for End-of-File (EOF)
	Example: Handling EOF with eof ()

	Explanation: (1)
	Learning Activity (2)
	3.6 Formatting Output
	3.6.1. setw() - Set Width
	Syntax:
	Example:

	3.6.2. setprecision() - Set Precision
	Syntax:
	Example:

	3.6.3. fixed - Fixed-Point Notation
	Example:

	3.6.4. scientific - Scientific Notation
	Example:
	3.7 Standard Input and Output
	Learning Activity
	3.8 Formatted and Unformatted I/O
	Learning Activity (1)
	3.9 File Handling

	3.10 Summary
	3.10 Keywords
	3.11Self-Assessment Questions
	Case Study
	True/False Questions
	Multiple Choice Questions
	Very Short Questions
	Short Answer Questions
	Long Answer Questions

	3.12 Suggested Answers
	Case Study
	True/False Answers
	Multiple Choice Answers
	Very Short Answer
	Short Answers
	Long Answers

	3.14 Additional Resources & Further Readings
	Learning Objectives (3)
	4.7 Loop
	4.8 Types of Loops in C++
	4.9 Special Control Statements in Loops
	4.10 Applications of Loops
	4.11 Summary
	4.12 Keywords
	4.13 Self-Assessment Questions
	4.14 Suggested Answers
	4.15 References
	4.16 Additional Resources & Further Readings
	4.1 Glossary
	4.2 Introduction
	4.3 Decision-Making in C++

	4.4.1 if Statement
	4.4.2 if-else Statement
	4.4.3 if-else-if Ladder
	4.4.4 Nested if Statements
	4.4.5 Switch Statement
	4.4.6 Ternary (?:) Operator
	Learning Activity (3)
	4.5 Comparison of Decision-Making Statements
	4.6 Use Which Statement
	4.7 Loop (1)
	4.8 Types of Loops in C++ (1)
	4.8.1 For Loop
	4.8.2 While Loop
	4.8.3 do-while Loop
	4.8.4 ange-Based for Loop
	4.9 Special Control Statements in Loops (1)
	Learning Activity

	4.10 Applications of Loops (1)
	Learning Activity

	4.11 Summary (1)
	4.12 Keywords (1)
	4.13 Self-Assessment Questions (1)
	Case Study
	True/False Questions
	Multiple Choice Questions
	Very Short Questions
	Short Questions
	Long Questions

	4.14 Suggested Answers (1)
	Case Study
	True/False Answers
	Multiple Choice Answers
	Very Short Answer
	Short Answers
	Long Answers

	4.15 References (1)
	4.16 Additional Resources & Further Readings (1)
	Learning Objectives (4)
	5.1 Glossary
	5.2 Introduction
	5.3 Inline Functions
	 Declaring an Inline Function
	Example of Inline Function
	 When to Use Inline Functions
	5.4 Advantages of Inline Functions
	5.5 Limitations of Inline Functions
	5.6 Inline Function vs. Macro
	Advanced Notes
	Not to Use Inline Functions
	Learning Activity (4)
	5.7 Function Overloading in C++
	5.7.1 Features of Function Overloading
	5.7.2 Syntax of Function Overloading
	 Examples of Function Overloading
	I. Example 1: Overloading with Different Numbers of Parameters
	II. Example 2: Overloading with Different Types of Parameters
	III. Example 3: Overloading with Different Parameter Orders

	5.8Rules for Function Overloading
	5.9 Advantages of Function Overloading
	5.10 Limitations of Function Overloading
	5.11 Function Overloading vs Function Overriding
	Learning Activity (5)
	5.12 Applications of Function Overloading
	5.13 Summary
	5.14 Keywords
	5.15 Self-Assessment Questions
	Case Study
	True/False
	Multiple Choice Questions
	Very Short Answer Questions:
	Short Answer Questions
	Long Answer Questions

	5.16 Suggested Answers
	Case Study
	True/False
	Multiple Choice
	Very Short Answer:
	Short Answer
	Long Answer

	5.17 References
	5.18 Additional Resources & Further Readings
	UNIT 6:  RECURSION AND STORAGE CLASSES
	Learning Objectives (5)
	6.1 Glossary
	6.2 Introduction to Recursion and Storage Classes
	6.3 Recursion
	6.4 Advantages of Recursion
	6.5 Disadvantages of Recursion
	6.6 Storage Classes in C
	6.7 Summary
	6.8 Keywords
	6.9 Self-Assessment Questions
	6.10 References
	6.11 Additional Resources & Further Readings
	6.1 Glossary (1)
	6.3 Recursion (1)
	Example of Recursion: Factorial Function
	It Works:
	6.4 Advantages of Recursion:
	6.5 Disadvantages of Recursion:
	Example: Fibonacci Series Using Recursion
	Learning Activity

	6.6 Storage Classes in C (1)
	6.6.1. Auto Storage Class
	6.6.2. Register Storage Class
	6.6.3. Static Storage Class
	6.6.4. Extern Storage Class
	6.6.5 Summary Table of Storage Classes:
	Learning Activity

	6.7 Summary (1)
	6.8 Keywords:
	6.9 Self-Assessment Questions (1)
	Case Study:
	True/False:
	MCQs:
	Very Short Questions:
	Short Questions:
	Long Questions:

	6.10 Suggested Answers
	Case Study 1:
	True/False Answers:
	MCQs Answers:
	Very Short Answer:
	Short Answer:
	Long Answer:

	6.11 References (APA Style)
	6.12 Additional Resources & Further Readings
	BLOCK 3
	OBJECT-ORIENTED PROGRAMMING CONCEPTS

	UNIT 7: CLASSES AND OBJECTS: A COMPREHENSIVE GUIDE
	Learning Objectives (6)
	7.1 Glossary
	7.2 Introduction
	7.3 Class
	 Creating Objects from Classes
	Methods and Attributes

	Learning Activity (6)
	7.4 Encapsulation
	7.5 Features of Encapsulation
	7.6 Syntax of Encapsulation
	Example of Encapsulation
	7.7 Advantages of Encapsulation
	7.8 Real-World Analogy
	7.9 Access Specifiers in Encapsulation
	7.10 Common Mistakes in Encapsulation
	7.11 Encapsulation vs Other OOP Concepts
	7.12 Applications of Encapsulation
	7.14 Key Concepts of Inheritance
	7.15 Types of Inheritance in C++
	f. Syntax of Inheritance in C++
	7.16 Constructor and Destructor in Inheritance
	Learning Activity (7)
	7.17 Advantages of Inheritance
	7.18 Disadvantages of Inheritance
	7.19 Polymorphism
	7.20 Types of Polymorphism
	 Compile-Time Polymorphism
	 Function Overloading
	 Operator Overloading

	 Run-Time Polymorphism
	 Virtual Functions
	 Pure Virtual Functions

	7.21 Advantages of Polymorphism
	7.22 Disadvantages of Polymorphism
	Learning Activity:
	7.23 Summary
	7.24 Keywords
	7.25 Self-Assessment Questions
	Case Study:
	True/False:
	Multiple Choice Questions (MCQs):
	Very Short Questions:
	Short Questions:
	Long Questions:

	7.26 Suggested Answers
	Case Study:
	True/False:
	MCQs:
	Very Short Answer:
	Short Answer:
	Long Answer:

	7.27 References
	7.28 Additional Resources & Further Readings
	UNIT 8: CONSTRUCTORS AND DESTRUCTORS
	Learning Objectives:
	8.1 Glossary:
	8.2 Introduction:
	8.3 Constructors
	8.5 Types of Constructors
	a. Default Constructor
	b.Parameterized Constructor
	c. Copy Constructor
	d. Dynamic Constructor
	8.6 Constructor Initialization List
	8.7 Constructor Overloading
	8.8 Destructor
	8.9 Key Characteristics of Destructors
	a. Syntax of Destructor
	b. Example of Destructor
	8.10 The Destructor Called
	8.11 Destructors and Dynamic Memory Allocation
	8.12Destructor in Inheritance
	___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________...
	8.14 Destructor and Copy Constructor
	Virtual Destructor Example with Inheritance and Dynamic Memory
	8.15 Summary:
	8.16 Keywords:
	8.17 Self-Assessment Questions:
	Very Short Questions
	8.18 Suggested Answers:
	Very Short Answer
	8.19 References:
	8.20 Additional Resources & Further Readings:
	UNIT 9: OPERATOR OVERLOADING
	Learning Objectives
	9.3 Operator Overloading

	9.4 Categories of Operators That Can Be Overloaded
	9.5 Operator Overloading Works
	9.6 Guidelines for Operator Overloading
	9.7 Advantages of Operator Overloading
	9.8 Disadvantages of Operator Overloading
	9.9 Summary
	9.10 Keywords
	9.11 Self-Assessment Questions
	9.12 Suggested Answers
	9.13 References
	9.14 Additional Resources & Further Readings
	9.1 Glossary
	9.2 Introduction
	9.3 Operator Overloading

	Key Concepts
	Benefits of Operator Overloading
	9.4 Categories of Operators That Can Be Overloaded (1)
	9.4.1. Arithmetic Operators
	9.4.2. Relational Operators
	9.4.3. Logical Operators
	9.4.4. Assignment Operator
	9.4.5.Increment and Decrement Operators
	9.4.6. Unary Operators
	9.4.7. Subscript (Array Indexing) Operator
	9.4.8.Function Call Operator
	9.4.9Type Conversion Operators
	9.4.10. New and Delete Operators
	9.4.11. Comma Operator
	9.4.12. Pointer-to-Member Operators
	Summary of Overload able Operators:
	9.6 Guidelines for Operator Overloading (1)
	 Example: Implementing Operator Overloading in Python
	 Overloading Arithmetic Operators:
	 Overloading Comparison Operators:

	9.7 Advantages of Operator Overloading (1)
	 Improved Code Readability
	 Consistency with Built-In Types
	 Intuitive Abstraction
	 Encapsulation of Logic
	 Simplifies Complex Operations
	 Facilitates Code Reusability
	 Supports Overloading of Relational and Logical Operators
	 Enhanced User Experience
	 Supports Domain-Specific Languages (DSLs)
	 Reduces Boilerplate Code
	 Streamlines Operator Behavior in Collections
	Learning Activity

	9.8 Disadvantages of Operator Overloading (1)
	 Increased Complexity
	 Potential for Misuse
	 Reduced Readability
	 Hidden Side Effects
	 Performance Overhead
	 Inconsistent Behavior Across Instances
	 Debugging Challenges
	 Compatibility Issues
	 Increased Maintenance Effort
	 Potential for Over-Engineering
	 Lack of Universal Semantics
	 Limited to Certain Operators
	Learning Activity
	9.9 Summary
	9.10 Keywords
	9.11 Self-Assessment Questions

	Very Short Questions (1)
	9.12 Suggested Answers

	Very Short Answer (1)
	9.13 References
	9.14 Additional Resources & Further Readings

	Learning Objectives (7)
	10.3 Single Inheritance
	10.4 Features of Single Inheritance
	10.5 Advantages of Single Inheritance
	10.6 Limitations of Single Inheritance
	10.7 Use Cases
	10.8 Comparison with Other Types of Inheritance
	10.9 Multiple Inheritance
	10.10 Multilevel Inheritance
	10.11 Hierarchical Inheritance
	10.12 Hybrid Inheritance

	10.13 Summary
	10.14 Keywords
	10.15 Self-Assessment Questions
	10.16 Suggested Answers
	10.17References
	10.18 Additional Resources & Further Readings
	10.1 Glossary
	10.2 Introduction
	10.3 Single Inheritance (1)
	10.4 Features of Single Inheritance (1)
	 Syntax and Example
	 General Syntax (in Python):
	Example:

	10.5 Advantages of Single Inheritance (1)
	10.6 Limitations of Single Inheritance (1)
	10.7 Use Cases (1)
	 Practical Example
	 Scenario: Vehicle and Car

	Learning Activity (8)
	10.8 Comparison with Other Types of Inheritance (1)
	10.9 Multiple Inheritance

	Learning Activity (9)
	10.10 Multilevel Inheritance
	10.11 Hierarchical Inheritance
	10.12 Hybrid Inheritance

	10.13 Summary (1)
	10.14 Keywords (1)
	10.15 Self-Assessment Questions (1)
	Case Study
	True/False Questions
	Multiple-Choice Questions (MCQs)
	Very Short Questions
	Short Questions
	Long Questions

	10.16 Suggested Answers (1)
	Case Study
	MCQs
	Very Short Answer

	Short Answer
	Long Answer

	10.17 References
	10.18 Additional Resources & Further Readings (1)
	Learning Objectives (8)
	11.3 Polymorphism Types

	11.4 Virtual Function
	11.5 Advantages of Virtual Functions
	11.6 Disadvantages of Virtual Functions
	11.7 Practical Example: Shape and Derived Classes
	11.8 Function Overriding
	11.9 Dynamic Binding and Virtual Tables (VTables)

	11.10 Summary
	11.11 Keywords
	11.12 Self-Assessment Questions
	11.13 Suggested Answers
	11.14 References
	11.15 Additional Resources and Further Readings
	11.1 Glossary
	 Polymorphism: The ability of different objects to respond to the same function call in different ways.
	11.2 Introduction
	11.3 Polymorphism Types

	11.3.1. Compile-time Polymorphism (Static Polymorphism)
	Function Overloading
	Operator Overloading

	11.3.2. Run-time Polymorphism (Dynamic Polymorphism)
	Virtual Functions
	11.3.3 Key Concepts in Run-time Polymorphism:

	11.3.4 Key Differences Between Compile-time and Run-time Polymorphism
	Learning Activity (10)
	11.4 Virtual Function (1)
	Key Features of Virtual Functions
	 Syntax and Example in C++
	 Declaring a Virtual Function
	 Using a Virtual Function

	 Key Points
	11.5 Advantages of Virtual Functions (1)
	11.6 Disadvantages of Virtual Functions (1)
	11.7 Practical Example: Shape and Derived Classes (1)
	Code Example
	Output

	 Use Virtual Functions
	 Virtual Functions in Other Languages
	Learning Activity (11)
	11.8 Function Overriding

	Key Points of Function Overriding:
	11.9 Dynamic Binding and Virtual Tables (VTables)
	Example Code (C++)

	Learning Activity (12)
	11.10 Summary (1)
	11.11 Keywords (1)
	11.12 Self-Assessment Questions (1)
	Case Study
	True/False Questions
	Multiple Choice Questions (MCQs)

	Very Short Questions (2)
	Short Questions
	Long Questions

	11.13 Suggested Answers (1)
	Case Study
	True/False Questions
	MCQs

	Very Short Answer (2)
	Short Answer
	Long Answer

	11.14 References (1)
	11.15 Additional Resources & Further Readings
	UNIT 12: TEMPLATES AND GENERIC PROGRAMMING
	Learning Objectives:

	12.3 Function Templates
	12.4 Multiple Template Parameters
	12.5 Advantages of Function Templates
	12.6 Disadvantages of Function Templates
	12.7 Common Use Cases
	12.8 Comparison with Regular Functions
	12.9 Class Templates
	12.10 Template Specialization
	12.11 Veridic Templates
	12.12 Template Metaprogramming

	12.13 Summary
	12.14 Keywords
	12.15 Self-Assessment Questions
	12.16 Suggested Answers
	12.17 References
	12.18 Additional Resources & Further Readings
	12.2 Introduction:

	12.3 Function Templates (1)
	Features of Function Templates
	 Syntax of a Function Template
	o General Syntax

	Example: Swapping Two Values
	Template Function for Swapping

	Learning Activity (13)
	12.4 Multiple Template Parameters
	Example: Adding Two Values

	12.5 Advantages of Function Templates
	12.6 Disadvantages of Function Templates
	12.7 Common Use Cases
	12.8 Comparison with Regular Functions
	12.9 Class Templates:
	12.10Template Specialization:
	Learning Activity:
	___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________...
	12.11Variadic Templates:
	12.12 Template Metaprogramming:
	Learning Activity: (1)

	12.13 Summary:
	12.14 Keywords:
	12.15 Self-Assessment Questions:
	Case Study:
	True/False Questions:
	MCQs:

	Very Short Questions
	Short Questions:
	Long Questions:

	12.16 Suggested Answers:
	Case Study Answer:
	True/False Answers:
	MCQs Answers:

	Very Short Answer
	Short Answers:
	Long Answers:

	12.17 References:
	12.18 Additional Resources & Further Readings:
	BLOCK 5
	FILE HANDLING AND EXCEPTION HANDLING

	Learning Objectives:
	13.6 Error Handling in File Operations:
	13.7 Summary
	13.8 Keywords

	13.1 Glossary:
	13.2 Introduction:
	13.3Text Files in C++:
	13.4Binary Files in C++:


	Learning Activity (14)
	13.5 File Modes
	Common File Modes
	Combining File Modes
	Complete List of File Modes
	Example of File Modes Usage
	13.6 Error Handling in File Operations

	Common File Operation Errors
	Error Handling Mechanisms in C++
	Learning Activity:
	13.7 Summary:
	13.8 Keywords:
	13.9 Self-Assessment Questions:
	Case Study:
	True/False:
	MCQs:

	1. Which header file is required for file operations in C++?
	2. Which class is used for reading from a file?
	3. How do you write data to a binary file in C++?
	4. What does the eof() function check?
	5. Which mode flag is used to append data to a file in C++?
	Very Short Questions
	Short Questions
	Long Questions

	13.10 Suggested Answers:
	Case Study:
	True/False Answers:
	MCQ Answers:

	Very Short Answer
	Short Answers:
	Long Answers:

	13.11 References:
	13.12 Additional Resources & Further Readings:
	UNIT 14: EXCEPTION HANDLING IN C++
	Learning Objectives
	14.1 Glossary
	14.2 Introduction
	14.3 Basic Structure of Exception Handling

	Explanation of the Keywords
	Example:
	14.4 Standard Exception Classes

	Key Points:
	Hierarchy of Standard Exception Classes

	Learning Activity (15)
	14.5 Custom Exception Classes
	Example:

	Exception Safety
	14.6 Stack Unwinding
	Stack Unwinding Works:
	Example of Stack Unwinding
	Output:
	Explanation of the Output:
	Concepts of Stack Unwinding:
	14.7 Re-throwing Exceptions

	Re-throw Exceptions
	Syntax for Re-throwing Exceptions
	Example: Re-throwing the Same Exception
	Output: (1)

	Learning Activity (16)
	14.9 Keywords
	14.10 Self-Assessment Questions
	Case Study
	True/False
	Multiple Choice Questions (MCQs)

	Very Short Questions
	Short Questions
	Long Questions

	14.11 Suggested Answers
	Case Study Answer
	True/False Answers
	MCQ Answers

	Very Short Answer
	Short Answers
	Long Answers

	14.12 References
	14.13 Additional Resources & Further Readings

	UNIT 15: STANDARD TEMPLATE LIBRARY (STL)
	Learning Objectives:
	15.1 Glossary
	15.2 Introduction
	15.3 Containers in STL
	15.4 Iterators
	15.5 Algorithms
	15.6 Memory Management
	15.7 Summary
	15.8 Keywords
	15.1 Glossary:
	15.2 Introduction:
	15.3 Containers in STL (Standard Template Library)
	15.3.1. Sequence Containers
	15.3.2. Associative Containers
	15.3.3. Unordered Containers
	15.4 Iterators

	Types of Iterators
	Iterator Operations
	Iterator Example

	Learning Activity (17)
	15.5 Algorithms:
	Common Categories of Algorithms in STL:
	15.5.1. Sorting Algorithms
	15.5.2. Searching Algorithms
	15.5.3. Modifying Algorithms
	15.5.4. Set Algorithms
	15.5.5. Numeric Algorithms
	15.5.6. Heap Algorithms

	Learning Activity:
	15.6 Memory Management:

	Concepts in Memory Management
	Memory Allocation in C++
	a. Automatic Memory Allocation (Stack Allocation):
	b. Dynamic Memory Allocation (Heap Allocation):
	New and delete Operators:


	Example of Dynamic Memory Allocation
	Memory Management Issues
	Smart Pointers
	Learning Activity: (1)
	15.7 Summary:
	15.8 Keywords:
	15.9 Self-Assessment Questions:
	Case Study:
	True/False:
	Multiple Choice Questions (MCQs):
	Q1. Which of the following is not a component of the Standard Template Library (STL)?
	Q2. Which container in STL provides constant-time insertion and deletion at both ends?
	Q3. What does the std::sort function require from its elements?
	Q4. Which of the following is an associative container in STL?
	Q5. Which function can be used to remove all elements from a container?

	Very Short Questions
	Short Questions:
	Long Questions:

	15.10 Suggested Answers:
	Case Study:
	True/False:
	Multiple Choice Answers:

	Very Short Answer
	Short Answer:
	Long Answer:

	15.11 References:
	15.12 Additional Resources & Further Readings:




